B. E. KING
 COMAMISSIONER OF HIGHWAYS

COMMONWEALTH OF KENTUCKY
DEPARTMENT OF HIGHWAYS
FRANKFORT, KENTUCKY SO8O1
June 27, 1971

> AOORESS REPLY TO DEPARTMENT OF HIGHWAYS DIVIIION OF RESEARCH S3S SOUTH UIMESTONE STREET LEXINGTON, KENTUCKY $\$ 0809$ TELEPHONE $606-254-4475$

MEMORANDUM TO: J. R. Harbison, State Highway Engineer Chairman, Research Committee

SUBJECT: \quad Research Report, "Development of an Electronic Means of Weighing Vehicles in Motion"; KYHPR - 61-27; HPR - 1 (6), Part II

Despite overwhelming hardware failures which beset us in the development of an automatic, in-stream, vehicle weighing system -- which we are now convinced we must abandon .. significant measures of success were achieved. In other words, we have created an automaton which almost works. The decision to abandon the prototype installation arose from pilot operations and proof testing. The basic defect is in the weighing platform in the pavement. Unfortunately, it is a design defect.

Tie rods anchoring the platform in the pit induce a purposeful preload on the load-sensing elements. These tie rods change the preload as the temperature fluctuates. Thus, the balance or null point drifts. The noticeable effect was a triggering of the counting and weighing circuits when there was no live load on the platform. Since this load was not transient .- but sustained .. the circuitry "locked in" on the excess preload.

The preload and tie rods were intended to keep the platform in firm bearing on the load-sensing units and to eliminate resonances and friction. Conceivably, it would be possible to control the temperature in the pit, but other factors were equally dissuasive.

The pit structure extends almost four feet below pavement elevation. Access is made by removing the top plates. Whereas walk-in pits were constructed in the entrance ramp to weighing station on I 64, near Shelbyville (Westward side) and on a farm road at the University of Kentucky, it seemed unnecessary to require this feature in roadway installations. In fact, we visualized a "lift-out" platform which could be replaced by a "dummy" if or when repairs were needed. We did not achieve the "lift-out" simplicity.

In the recent past, opportunities to build automatic weighing systems into an Ohio River bridge were forsaken because there was no practical way to flt the platform into the deck system. Consideration was given to incorporating the device into a pit or cavity in the abutment. A later alternative considered was to build the pit and platform completely remote from the bridge .- in a ramp section on an earth embankment. Fortunately, our suspicions regarding the reliability of the pilot installation prevented us from advancing any of the aforesaid plans to the final design stage.

The developmental research on this project began in 1960 and was originally programmed by the Division of Planning [HPS - 1 (22)]. Responsibility transferred to the Division of Research with HPS - HPR - 1 (25), FY 1963-1964. The project was contracted to the University of Kentucky Research Foundation until June 30, 1969. In December 1969, the Research Division was authorized to begin a pilot period of operation. The report submitted herewith pertains only to this final phase -- and our summary evaluation of the system from an operational standpoint. Approximately $\$ 198,000$ will have
been expended in sustaining the project.
Whereas an early decision was made to adopt the so-called "broken-back bridge" platform in order to achieve a triangular form of output wave as a wheel passed over the platform, others have developed a weighing platform which can be recessed into a pavement (requires only a three-inch inset). The wave form is trapezoidal and would not directly couple with the digitizing system we have. We understand that matching instrument packages will be available soon. This was a persuasive factor in our decision to discontinue this project.

Enclosure
cc's: Research Committee
Assistant State Highway Engineer, Research and Development
Assistant State Highway Engineer, Planning and Programming
Assistant State Highway Engineer, Pre-Construction
Assistant State Highway Engineer, Construction
Assistant State Highway Engineer, Operations
Assistant Pre-Construction Engineer
Assistant Operations Engineer
Executive Director, Office of Computer Services
Executive Director, Office of Equipment and Properties
Director, Division of Bridges
Director, Division of Construction
Director, Division of Design
Director, Division of Maintenance
Director, Division of Materials
Director, Division of Photogrammetry
Director, Division of Traffic
Director, Division of Planning
Director, Division of Right of Way
Director, Division of Roadside Development
Director, Division of Rural Roads
Division Engineer, Federal Highway Administration
Chairman, Department of Civil Engineering, University of Kentucky
Associate Dean for Continuing Education, College of Engineering, University of Kentucky All District Engineers
Research Report307
DEVELOPMENT OF AN ELECTRONIC MEANS OF WEIGHING VEHICLES IN MOTION
FINAL REPORT
KYHPR - 61-27, HPR-1 (6), Part II
by
Ben W. Carr, Jr.
Research Engineer Assistant
and
Rolands L. Rizenbergs
Chief Research Engineer
Division of Research
DEPARTMENT OF HIGHWAYS
Commonwealth of Kentucky
in cooperation with the
U.S. Department of Transportation
Federal Highway Administration
The opinions, findings, and conclusionsin this report are not necessarily those of the Depart-ment of Highways or the Federal Highway Administration.

ABSTRACT
 DEVELOPMENT OF AN ELECTRONIC MEANS OF WEIGHING VEHICLES IN MOTION

An in-stream weighing platform was designed and installed in the eastbound lane of 164 and 75 near Lexington, Kentucky. The broken-bridge scale platform was designed with the outer edges of the two sections supported on hinges and contiguous edges supported by two 20,000pound capacity load cells. The assembled scale measures $4^{\prime}-6^{\prime \prime} \times 10^{\prime}-1 / 2{ }^{\prime \prime}$ with a total weight of about 2,000 pounds.

The electronics developed for the system included digitizing circuitry which processed the load cell signals and recorded the data on digital magnetic tape. Computer processing of the field data produced tabular information on vehicle speed, axle spacing, number of axles, vehicle classification, time of day, and weight for each vehicle, as well as voluminous statistical data such as average daily traffic and equivalent axleloads.

Conceptually, the system was good, but numerous electronic and mechanical problems compounded to render the present system inoperative. Future dynamic weighing system designs should consider portable, lightweight scales and electronic instrumentation suitable for mounting in a vehicle, thus providing a flexible data-gathering system that will be more readily maintainable. Immediate data output in the field would be highly desirable.
PAGE
INTRODUCTION 1
Background 1
Current Phase of Study 1
RESEARCH EFFORTS 2
Initial Efforts - FY 70 2
Other Problems 3
Additional Efforts - FY 7I 3
RESULTS 4
CONCLUSIONS 4
RECOMMENDATIONS 4
REFERENCES 5
APPENDIX A -- Example of Output Data 6
APPENDIX B .. PL/l Program for Tabular Output 17

INTRODUCTION

BACKGROUND

The forces which pavements must withstand are dynamic and differ from the static weights of the vehicles. Whereas impact factors relating these forces are sometimes used for designing bridges and pavements, the relationship is variable and only approximate. With regard to law enforcement, it is now necessary to require vehicles to be diverted from the traffic stream and to stop in order to be weighed. A more desirable situation would be to be able to check vehicle weights without requiring them to stop or to at least screen them for suspected overloads.

Basic investigations have been conducted to determine the most practical means of measuring and recording dynamic loads produced by vehicles in motion. The study was initiated in 1960 by the Department of Civil Engineering, University of Kentucky, in cooperation with the Kentucky Department of Highways and the Bureau of Public Roads. Its purpose was to determine the optimum mechanical configuration for a scale which would perform the dynamic axle-weighing function in an overall data-gathering system and to construct and furnish a suitable scale with an appropriate transducer system and automatic data recording system ($1,2,5$). As a result of this study a broken-bridge scale was placed in the outside eastbound lane of I 64 and 75, north of Lexington, Kentucky. An automatic data collection system was installed at the scale site in a vandal-proof structure on the right of way. A final report on that phase of the study was submitted by the University of Kentucky Research Foundation in November 1969 (5).

CURRENT PHASE

Following the completion of the final phase of research and development contracted by the University of Kentucky Research Foundation, in behalf of the subject study, the Division of Research planned to operate the installation for a pilot period to verify the in-stream weighing and recording system. A continuation plan was approved by the Bureau of Public Roads in December 1969. Operation of the scales for data collection and data processing was begun, a method of calibration for weight, speed, axle spacing, and other parameters was developed, and the computer programs for producing statistical data from field data were expanded to meet Departmental needs. Those procedures were developed and used to test the ability of the system to meet the original specifications as defined in February 1967 when the purchase order for the electronic data system was issued to Robert Perelman, DGE Instruments, University Heights, Ohio. These specifications (5) were as follows:

1. The vehicle may have from two to ten axles.
2. The vehicle may travel at legal speeds up to 70 miles per hour; therefore, an actual timing up to 80 miles per hour would be desirable.
3. Dynamic loads will range from 1,000 to 30,000 pounds per axle.
4. The dynamic measurement of load should be recorded with an accuracy of plus or minus 200 pounds per axle.
5. The speed of the vehicle must be recorded or deduced at an accuracy of plus or minus five miles per hour.
6. The system will be designed so that the number of axles per vehicle can be deduced from the data on the digital tape.
7. It is desirable to be able to deduce the spacing between axles within plus or minus $1 / 2$ foot.
8. It is desirable that the measurement system operate unattended over a minimum period of 24 hours, with a longer period preferred.
9. Dual-axle trucks may have the loa of two axles on the scale simultaneously. Therefore, under this condition, the trace will not retum to zero between the axles. In addition, the noise pips \quad in the siles of the signal are characteristic and must not be accepted as peaks of minor waves.
10. It should be possible to determine the approximate time of day and date for the passage of each vehicle, from the data on the digital tape.

This report covers the pilot-operation period.

RESEARCH EFFORTS

INITAL EFFORTS - FY70

After assuming responsibility for the study following the completion of the research and develop. ment phase by the University of Kentucky Research Foundation, the Division of Research began a trial period of data collection. Problems with the systern became immediately apparent. The signal conditioner had an inherent voltage drift which tended to either mask or diminish the input signal to the digitizing circuitry. The digital tape recorder, which was used to store the field data, was malfunctioning and was returned to the manufacturer for repairs and updating modifications.

Several modifications were made to the original signal conditioning unit. The power supply was redesigned to produce a more stable output voltage. The low pass filter was modified to extract a more ideal output signal. Temperature insensitive components were used throughout the unit. Results of these changes were still not satisfactory. Instead of completely redesigning the unit, two commercially ava lable, highly stable signal conditioning units were purchased and installed in t e system. An active low pass filter and operational amplifiers were used to extract a nearly ideal output signal. Upon its return from the manufacturer, the digital tape recorder required further modifications to readapt it for use with the output circuitry of the system. These modifications were required to make the logic levels of the tape recorder and the digitizing circuitry compatible.

Component failures and replacements were common. Some of the components used in the original construction of the system were of poor quality, others had marginal ratings, others were the wrong components to use altogether. Plastic transistors used to drive the indicator lights had to be reolaced en masse by transistors with higher power ratings. Throughout the system, several transistors, integrated circuits, and capacitors were replaced. Precision resistors were used to replace common resistors in application where resistance variation had to be held to a minimum.

Loose circuit cards and poor electrical connections between the cards and their connectors were a constant problem. The cards were of such poor construction that they seldom matched with their connectors and had to be forced into a correct position. The printed circuits were not tinned, i.e. covered with solder, and the surface layer of the copper paths quickly oxidized. Each card had to be periodically removed, and the copper paths had to be manually cleaned to assure a proper electrical connection between the card and its connector. Deterioration of the printed circuits, due to the oxidation of the untinned copper, was a continuing source of open circuits and high-resistance current paths.

Throughout the period of the pilot study, the recurring breakdowns of the digitizing circuitry were often traced back to the above mentioned problems with components and circuit cards. These problems were only temporarily alleviated by componert replacements and modifications to existing circuit cards and could have been eliminated only by a complete redesign and proper construction of the entire system.

OTHER PROBLEMS

With the system functioning properly, the scales were statically calibrated using a vehicle of known weight. Preparations were made to check accuracy in determining the speed, axle spacing, and weight of several test vehicles. Before these tests were run, a voltage transient in the system damaged one of the two new signal conditioners, destroyed several integrated circuits and other semiconductor components in the digitizing circuitry, and damaged one of the two load cells in the scale platform to the extent that it had to be replaced if data collection were to begin.

ADDITIONAL EFFORTS - FY 71

Due to a lack of sufficient data collection and the numerous problems encountered with the system during FY 70, additional efforts were proposed to verify the system during FY 71. Approval to continue the study was received from the Bureau of Public Roads in August 1970.

To eliminate the cost of purchasing a new load cell, and the inherent delay in delivery, it was decided to replace the above mentioned defective load cell with a previously used, but operative, load cell. This load cell was used in the first phase of this study in the scale installation at the loadometer station near Shelbyville, Kentucky (1). It was also used for approximately one year in the present scales, but had been removed in February 1961 when the other cell in the scales was found to be defective and was replaced (5).

At this time the updated computer programs were stored on magnetic tape, thereby simplifying the processing of field data by virtually eliminating the handling of computer cards.

With the system operational again, serious problems with the scales became apparent. After a vehicle crossed the scales, the output voltage of the signal unit returned to a voltage other than zero. Investigations revealed that hysteresis was caused by insufficient preload. After increasing the preload, a change of temperature in the scale pit caused a drift of signal output. This was determined to be the result of excess preload on the platform.

Another factor entering into the problem of preload adjustment was the oscillations impressed on the platform by a vehicle crossing the scales. Insufficient preload allowed these oscillations to increase in magnitude to such an extent that the digitizing circuitry was triggered, treating the peaks of the oscillations as individual axles.

These problems had been masked by the inherent voltage drift in the original signal conditioning unit. Due to the downtime of the system, they became apparent only after the system was operable over a period of a few days.

While adjusting the preload mechanism, one of the preload rods sheared. New preload rods of a special stainless steel alloy were fabricated and installed in the system. These rods were adjusted to give the best compromise between the effects of hysteresis, oscillations, and output signal drift. Although these adjustments did reduce the above effects, the results were not within acceptable limits. The output signal still had a significant drift which was related to the temperature in the scale pit. Also, the oscillations impressed on the platform by a vehicle crossing the scales significantly distorted the input signal so as to spuriously trigger the digitizing circuitry. Some hysteresis in the platform was still apparent; the platform halves came to rest, following the crossing of the scales by a vehicle, in a position which was slightly higher or lower than the position prior thereto. Thus, it became apparent that to eliminate these problems a new design for the weighing platform was needed.

In October 1970, it was decided by the Division of Research to continue trying to make the system operational but to discontinue work on the present system at the end of the present fiscal year. This decision was prompted by the numerous problems encountered with the system and because of the obvious deterioration of the electronic data system with age.

Data collection was begun, but after a few days a malfunction in the digital tape recorder interferred. A minor repair was made and data collection was begun. A faulty voltage regulator in the tape recorder power supply destroyed several conponents in the recorder's logic network, again preventing data collection.

While major repairs on the digital tape recorder were in process, the scales were again calibrated, using the same procedures as before. Results of this calibrafion showed that the load cell installed in the scale in July 1970 was now defective. Its output was approximately 40 per cent below the output of the other load cell. Probable cause of this defect was the load cell's length of time in service and the overloads it had sustained while in use. Thus, replacement of this load cell was necessary.

In February 1971, all efforts to make the system operable were halted. With the scales malfunctioning, the recorder damaged, and the circuit boards deteriorating, further work was deemed unproductive.

As an example of the statistical data obtainable with an operational system, the computer print-out for a single day in November 1970 is included in APPENDIX A. The updated computer program for extracting such data is included in APPENDIX B.

CONCLUSIONS

Conceptually, the system is good, but mechanical and electrical difficulties compound to render the system at hand inoperative. The existing scales, however, have basic inherent deficiencies. Due to its size and weight, the platform exhibits hysteresis, preload, and temperature drift problems of such magnitude as to seriously limit the accuracy obtainable with the system.

Insufficient data has been collected to prove that this system meets the original specifications listed in the INTRODUCTION of this report.

Extensive work had been done to obtain the largest possible amount of statistical data out put from the field data. The computer programs designe for use with this system, and adaptable to similar systems, would prove invaluable in highway planning and evaluating applications when used to process extensive amounts of field data.

RECOMMENDATIONS

A portable, lightweight scale similar to the one developed at the University of Texas at Austin should be considered in future in-stream weighing platforms. This scale has no problem with hysteresis and temperature drift and requires no preload. Maintenance can be performed in the laboratory, thus reducing the hazards of on-site repairs and maintenance while diverting traffic around the site. The system is portable, arid data can be gathered from several selected sites (7).

The electronics package in future designs should be installed in a van-type vehicle to provide portability. Electronic design should include facilities to store field data and simultaneously display desired results such as vehicle speed, axle weights, gross weights, etc.

REFERENCES

1. "Weighing Vehicles in Motion, A Summary Report," Kentucky Department of Highways, April 1964.
2. O.K. Normann and R.C. Hopkins, "Weighing Vehicles in Motion," Bulletin 50, Highway Research Board, 1952.
3. "Weighing Vehicles in Motion, A Progress Report," Kentucky Department of Highways, October 1965.
4. "RODAS (Road Data Acquisition System) Operation and Instruction Manual," Office of Research and Engineering Services, College of Engineering, University of Kentucky, June 1969.
5. "Research Relating to Weighing Vehicles in Motion," Office of Research and Engineering Services, College of Engineering, University of Kentucky, September 1969.
6. S.P. Maggard, "Weighing Vehicles in Motion," Unpublished Thesis, Master of Science in Civil Engineering, University of Kentucky 1957.
7. Lee, C.E. and Al-Rashid, N.I., "A Portable Electronic Scale for Weighing Vehicles in Motion," Center for Highway Research, The University of Texas at Austin, April 1968.

APPENDIX A

Example of Output Data

VEHICLE DATA FOR DAY 112

STATION IDENTIFICATION=4
NUMBER OF AXLES FOR THIS DAY $=9557$
NUMBER OF VEFICLES FOR THIS DAY $=4280$

CURRENT LOAD EQUIVALENCY FACTURS (AS OF 3-20-69)
SINGLE AXLES
TANDEM AXLES

LOAD	KENTUCKY	AASHO	LOAD	
(KIPS)		KENTUCKY	AASHO	
$1-3$	0	$0 . C 002$	$(K I P S)$	
$3-5$	0	0.002	$6-6$	
$5-7$	0	$0 . C 1$	$10-14$	
$7-9$	0	0.03	$14-18$	0.01
$9-11$	1	$0 . C 9$	$18-22$	0.05
$11-13$	2	0.19	$22-26$	0.12
$13-15$	4	0.36	$26-30$	0.26
$15-17$	8	0.62	$30-34$	0.50
$17-19$	16	1.00	$34-38$	0.86
$19-21$	32	1.51	$38-42$	1.38
$21-23$	64	2.18	$42-46$	2.08
$23-25$	128	3.03	$46-50$	3.00
$25-27$	256	$4 . C 9$	$50-54$	4.17
$27-29$	512	5.39	$54-58$	5.63
$29-31$	1024	6.97	$58-62$	7.41

[^0]1.2 AND 3 INDICATE SINGLE,BITANDEN AND TRITANDEM AXLES

0	0			110
0	0	0		111
0	0	0	0	1111
0	00	0		1210
0	0	00	0	1121
0	0	00		1120
0	000			1300

TANDEM SPACING IS 40 INCHES OR LESS
1,2 AND 3 INDICATF SINGLE,BITANBEM AND TRITANDEM AXLES

TANDEM SPACING IS 40 INCHES OR LESS
(AASHO CATEGORIES)
1,2 AND 3 INDICATE SINGLE,BITANDEM AND TRITANDEM AXLES

1,2 AND 3 INCICATE SINGLE,RITANDEM AND TRITANDEM AXLES

axle lead versus axle placement
TANDEM SPACING IS 40 INCHES OR LESS
(AASHO CATEGORIES)
2.2 AND 3 INDICATE SINGLE,BITANDEM AND TRITANDEM AXLES

axle loaj versus axie placement icontinued from last paged
TANDEM SPACING IS 40 INCHES OR LESS
(AASHC GATEGORIES)
1.2 AND 3 INDICATE SINGLE,BITANDEM AND IRITANDEM AXLES

AXLE LGAD VERSUS AXLE PLACEMENT
TANDEM SPACING IS 40 INCHES TO 120 INCHES (KENTUCKY CATEGORIES)

1*2 ANO 3 INDICATE SINGLE,BITANDEM AND TRITANDEM AXLES

axle load versus axie placement (CONTINUED from last page)
IANDEM SPACING IS 40 INCHES TO 120 INCHES
IKENTUCKY CATEGORIES)
1.2 AND 3 INDICATE SINGLE,BITANDEM AND TRITANDEM AXLES

APPENDIX B

PL/1 Program for Tabular Output
//P27CHART J JB (100タ-51001,..,A),' BFNNY DUKES'•MSGLEVEL=1,REG10N=268K
//BLAH EXEC PLILFCLG,PARM.PLIL='EXTDIC, BPT=I',PARM。LKED='LET'
//PLIL.SYSI.IN DD SPACE=(80,(990,990))
//PLIL.SYSUT3 DD SPACE $=(80,(990,990))$
//PLIL.SYSUT1 0D SPACE=(1024,(500,500))
//PLIL.SYSIN DD *
VEHDATA : PROCEDURE OPTIONS (MAIN): TBLOOO1O
OPEN FILF(SYSPRINT) DUTPUT LINESIZE(132); TRLOOO20
DECLARE SLASH CHAR(1): TBLOOO30
DECLARE
(OSVSAX(30,11) INIT(330$) 0), \quad$ GOWVSAX(30,27) INIT(810$) 01$, gOWVSOS(1), 27) INIT((297)0), AXLDVSAXAA(3),21) INIT(630)0), CA INIT(O).
CAD INIT(O), DAY INIT(O). NUMOFAXLES INIT(O), AXLENUM JNITIAL(O), DAYHOLD INIT(O), NUMBER INIT(O), SPD INIT(O). AXLDVSAX(30,21) INIT((630)0), AL INIT(O), CAA INIT(O), I INIT(O), ID INIT(O). N INIT(O), RECORD INITIAL(O), IDHOLD INIT(O), NLJMVEH INIT(O). W INIT(O))
FIXED RINARY(31) STATIC;
declare
(STORF(9,3) INIT(127)0), SDGOWAX(3,30) INIT(190)0), SDLDAX(3,29) INIT((87)0), MAXLDAASHO(29) INIT((29)O). MEANAASHO(29) INIT(129)0), MAXLDADKY(29) INIT((29)0), MEANLOADKY(29) INIT(t29)0), LD INIT(O), DWT INIT(O), WEIGHT INIT(O.O), ta init (O), SPACING INIT(O.O), MINLOAASHC(29) INIT((29)99999), MINLOADKY(29) INIT(129)99999))

FLOAT BINARY(l6) STATIC;
DECLARE MAXMINA ENTRY (FIXED BINARY (31)). MAXMINK ENTRY (FIXED BINARY (31)), GOWCHK ENTRY (FIXED BINARY (31)), SPDCHK ENTRY (FIXED BINARY (31)), TBL 00040 TBL00050 TRL00060 TBL 00070 TBL 00080 TBL00090 TBL00100 TBLOO110 TBLOO120 TBLOO130 TBLOO140 TBLOO150 TBLOO160 TBL00170 TBL00180 TBL00190 TBL00200 TBL00210 TBL00220
TBL00230
TBL 00240
TBLOO250
TBL00260
TBL00270
TBL00280
TBL00290
TBLOO300
TBL00310
TBL00320
TBL00330
TBL00340 BLOO350 ADOAXL ENTRY (FIXED BIN(31),FIXED BIN(31), FLOAT BIN(16)), TBLOO370 ADAXLAA ENTRY(FIXED BIN(31),FIXED BIN(31),FLOAT BIN(16)), TBLOO380 ADDVEH ENTRY(FIXED BIN(31),FIXED BIN(31),FIXED BIN(31)). TBLOO390 TANDAA ENTRY (FLOAT BIN (16)), rBL 00400 ADOVHKY ENTRY (FIXED BINARY (31)), TBL00410 ADDVHAA FNTRY (FIXED BINARY (31));

TBL 00510

- n endfile (tape) begin; call suamary; go to done: end;

BEGIN: GET FILE(TAPE) EDIT (WEIGHT,SPEEO,SPACING,DAY,AXLENUM,ID,SLASH) $(F(3,1), F(4,1), F(3,1), F(3,0), X(9), 2 F(1,0), A(I)) ;$
IF ID=O THEN GO TO REGIN;
0520
TBL00530 TBL00540
TBL00550
IF DAY=0 THEN GO TO BEGIN;
TBL00560
IF SLASH $\sim=\%$ THEN DO; AI:PUT FILE(SYSPRINTI SKIP(5) EDIT TBLOO570
 -ETWFEN SLASHES $++++++++++++++++++++++++++++1(A) ; A 2: G E T$ FILE TBLO0590 (TAPF) EDIT (SLASH)(A(l)): IF SLASH = '/: THEN GO TO A2; A3: TBLOO600 GET FILE(TAPE) EDIT (WFIGHT,SPEED,SPACING,DAY,AXLENUM,ID, TBLOO6IO SLASH) (F(3,1),F(4,1),F(3,1),F(3,0),X(9),? F(1,0),A(1)): TBLO0620 IF SLASH \rightarrow, /' THEN G TO Al: IF AXLENUM $\rightarrow=1$ THEN GO TO A3; TBLOO630 GO TO G2; END;

```
    IF RFCORD = 0 THEN UN; RFCORI=1; DAYHOLD=DAY; IDHOLD=ID; GO TO G3; TBLOO650
        ENO; TBL00660
    IF ID = IOHOLO THFN DO; CALL SUMMARY: IDHOI.O = ID; DAYHOLD=DAY; TBLOO670
        GO TO GI; FND; TBL00680
    IF DAY T= DAYHOLD THEN DO; CALL SUMMARY; DAYHQLD=DAY;GO TO GI; END;TBLOO690
G1: IF AXLENUM = 1 TMEN
TBL00700
G2: DO; IF NUNBER=1 THFN DC; STORF(1,1)=WEIGHT; STORE(1,2)=SPEED; TBLOO71O
        STORE(1,3)=SPACING; VEHWT = WEIGHT; GO TO REGIN; END;NUMVEH = TBLOOT20
        NUMVEH + 1; GO TO Bl; END;
    TBL00730
G3: NUMBER=AXLENUM; STOKE(NUMBER,1) = WEIGHT; STOREINUMBFR,2)=SPEED; TBLOO740
        STORE(NUMBER.3)=SPACING; VFHWT = VEHWT + WEIGHT; NUMOFAXLES = TBLOO750
        NUMOFAXLES + 1;; GO TO BEGIN;
    TBL00760
B1: CALL SPDCHK(SPD); CALL GOWCHK(W);
    IF NUMBER=2 THEN DO; IF VEHWT <= 4.0 THEN CALL AXLEZL; ELSE CALL
        AXLF2H; GO TO G4; END;
    IF NUMBER=3 THEN DO; CALL AXLE3; GO TO G4; END;
    IF NUMBER=4 THEN DO: CALL AXLE4; GO TO G4; END;
    IF NUMBER=5 THEN DO; CALL AXLE5; GO TO G4; END;
    IF NUMBER=6 THEN DO; CALL AXLEB; G` TO G4; END;
    CALL AXLEMG;
G4: VEHWT=0.0; GO TO G3;
SUMMARY : PROCEDURE;
    PUT FILE(SYSPRINT) PAGE LINE(2) FDIT ((:******, DO I=1 TO 8), TBLOO870
        ' VEHICLF DATA FOR DAY •,DAYHOLD, (0******: DO I=1 TO 8)|. TBLOO880
        (COLUMN(5),9 A,F(3,0),X(1),3 A);
    PUT FILE(SYSPRINT) SKIP(2) EDIT ('STATION IDENTIFICATION = '. TBLOO900
        IDHOLD) (COLUMN(53),A,F(1,01);
    TBL00910
    PUT FILE(SYSPRINT) SKIP(2) EDIT ('NUMBER OF AXLES FOR THIS DAY = ' TBLO0920
        NUMOFAXLES) (COLUMN(48),A,F(5,0)); TBL00930
    PUT FILE(SYSPRINT) SKIP(2) EDIT ('NUMBER OF VEHICLES FOR THIS DAY0,TBLOO940
        ! = ', NUMVEH) (COLUMN{47),2 A,F(5,0)); TBL00950
    PUT FILEISYSPRINT) SKIP(4) EDIT ( TBLO0960
        - CURRENT LOAO EQUIVALENCY FACTORS (AS OF 3-20-69)', TBL00970
        : SINGLE AXLES TANDEMAXLES', TBLOO9BO
        - LOAD KENTUCKY AASHO LOAD KENTUCKY AASHO', TBLOO990
        ('KIPS) (KIPS)', TBLOL000
        :1-3 0.0.0002 TBLO1010
        # 3-5 0 0.002 6-10 1, TBLOLO2O
        : 5-7 0 0.01 0.014 0.10, TBLO1030
        7-9 0 0.03 14-18 0.05', TBLO1040
        0 9-11 1 0.09 18-22 0.12', TBLO1050
        111-13 2 0.19 22-26 0.26', TBLO1060
        13-15 4 0.36 26-30 0.50% TBLOLO70
        15-17 8 0.62 30-34 0.86', TBLO1080
        117-19 16 1.00 34-38 1.38', TBLOL090
        19-21 32 1.51 38-42 2.0B', TBLOllOO
        1 21-23 64 2.18 42-46 3.00', TBLOL110
        0 23-25 128 4.03 4.50 4.17', TBLOll20
        # 25-27 256 50-54 5.09 5., TBLO1130
        0 27-29 512 54-58 7.41', TBLO1140
        1 29-31 1024 58-62 6.97 9.59', TBLO1150
        -NOTE: KENTUCKY DOES NOT IDENTIFY TANDEM AXLES SEPARATELY ', TBLOl160
        - FOR PIJRPOSES OF COMPUTATION.', TBLO1170
        - the factors uSEd by aASHO RELATE to truck AXLES. IN',TblOIlbo
        # ADDITION, TWO-AXLE, FOUR TIRED VEHICLES ARE ASSUMED', TBLOIl90
        0 TO CONTRIBUTE 0.0002 EAL''S PER VEHICLE.', TBLOI200
        * SINGLE AXLE, AASHO faCtORS RELATE TO fLEXIBLE PAVE-', TBLOl2lo
        # MENTS HAVING A TERMINAL SERVICEABILITY INOEX OF 2.5', TBLOI220
        - AND A STRUCTURAL NUMBER OF 5.'! TBLOl230
        (CDLUMN(3B),A,SKIP(2),1B(COLUMN(36),A),SKIP(2), 8(COLUMN(36), TBLO1240
        A) 1:
            TBLOl250
```

```
    PUT FILE\SYSPKINT) SKIP(4) EDIT (
        -1.2 AND 3 INOICATE SINGLEPITANOEM AND TRITANDEM AXLES*. TBLOI\7O
    O0 110%, TRLOl280
    10 O 111%. TOLC1290
    O0 0 O 1111., TBLO1300
    0 OU O 1210%. TBLOL31O
```



```
    O 0 OM 1120%, TBLO1330
    OOO! 1300') TBLOL340
    (COLIJMN(39),A,SKIP(2),7 (COLUMN(53),A)); TBLO1350
    CALL GWVSOSC (GONVSOS,SOGOWOS); TBLO1360
    CALL GWAXC (GOWVSAX,SDGOWAX): TBLO1370
    CALL OSVSAXC (OSVSAX,SDOSAX); TBLO1380
    CALL LDAXCA (AXLDVSAXAA,SDLDAXAA); TBLO1390
    CALL LDAXCK (AXLDVSAX,SDLDAX); TBLO1400
    CALL FWLC; TBLO1410
    OSVSAX=0; SDOSAX=0; SDGOWAX=0; SDGOWAX=0; AXLDVSAX=0; AXLDVSAXAA=0;TBLO1420
        NUMOFAXLES=0; NUMVEH=0; SDGOWOS=0; SDLDAX=0; SDLDAXAA=0; TBLO1430
        MAXLOAASHO=0; MEANAASHO=0; SDAASHO=0; MAXLOADKY=0; TBLO1440
        MINLUAASHO=99999; MINL\capADKY=99999; MEANLOADKY=0; SDKY=0; TBLO1450
        GOWVSAX=0; GOWVSOS=0; TBLO1450
END SUMMARY:
MAXMINA : PROCEDURF (CA);
DECLARE CA FIXED BINARY (31);
TBLO1470
TBLO1480
TBLO1490
    IF TA < MINLDAASHD(CA) THEN MINLDAASHO{CA) = TA: TBLO15OO
    IF TA > MAXLDAASHO(CA) THEN MAXLDAASHO(CA) = TA; TBLO1510
    MEANAASHOICA) = MEANAASH\cap(CA) + TA; TBLO1520
    SDAASHO(CA) = SDAASHO(CA) + TA ** 2; TBLO1530
    TA = O.O;
END MAXMINA;
MAXMINK : PROCEDURE(CA):
DECLARE CA FIXED BINARY (3l);
    IF TK < MINLOADKY(CA) THEN MINLOADKY(CA) = TK;
    IF TK > MAXLOADKY(CA) THEN MAXLOADKY(CA) = TK;
    ME ANLOADKY(CA) = MEANLOADKY(CA) + TK;
    SDKY(CA) = SDKY(CA) + TK ** 2; TBLO1610
    TK = 0.0;
END MAXMINK;
GOWCHK:PROCEDURE (W);
DECLARE W FIXED RINARY (3l);
IF VEHWT < 4.0 THEN DO; W=1; GO TO FINISH; END;
IF VFHWT>=4.0 &VEHWT<lO. THEN DO; W= 2 ;GO TO FINISH; END;
IF VEHWT>=10. &VEHWT<15. THFN DO; W= 3;GO TO FINISH; END;
IF VEHWT>=15. &VEHWT<2O. THFN DO; W= 4;GO TO FINISH; END;
IF VEHWT>=20. EVFHWT<22. THEN DO; W= 5;GO TO FINISH; END;
IF VEHWT>=22. &VEHWT<24. THEN DO; W= 6;GO TO FINISH: END;
IF VEHWT>=24. &VEHWT<26. THEN DO; W= 7;GO TO FINISH; END;
IF VEHWT>=26. &VEHWT<28. THEN DO; W= 8;GO TO FINISH; END;
IF VEHWT>=28. &VEHWT<30. THEN DO; W= 9;GO TO FINISH; END;
IF VEHWT>=30. &VEHWT<32. THEN DO; W=10;GO TO FINISH; END;
IF VEHWT>=32. &VEHWT<34. THEN DO; W= 11;GO TO FINISH; END;
IF VEHWT>=34. &VEHWT<36. THEN DO; W=12;GO TO FINISH; END;
IF VEHWT>=36. &VEHWT<38. THFN DO; W= 13;GO TO FINISH; END;
IF VEHWT>=38. &VEHWT<40. THEN DO; W= 14;GO TO FINISH; END;
IF VEHWT>=40. &VEHWT<45. THEN DO; W= 15;GO TO FINISH; END:
IF VEHWT> = 45. &VFHNT<50. THEN DO; W= 16;GO TO FINISH; END;
IF VEHWT>=50. &VEHWT<55. THEN DO; W= 17;GO TO FINISH; END;
IF VEHWT>=55. &VEHW r<60. THEN DO; W= 18;GO TO FINISH; END;
IF VEHWT>=60. &VFHWT<65. THEN DO; W=19;GO TO FINISH; END;
IF VEHWT>=65. &VEHWT<70. THEN DO; W= 20;GO TO FINISH; END; TBLO1850
IF VEHWT>=70. &VEHWT<75. THEN DO; W= 21;GO TO FINISH; END; TBLO1860
```


CALL MAXMINA12:; CALL MAXMINK(2): TBLO3090


```
            TK=TK+LOADKY; CALL MAXMINK(7); RETURN; END; TBL03700
    CALL ADDVHKY(5); DO I=1 TO 4; CALL AXLOAD(STORE(I,1),AL); CALL TBLO3710
        ADDAXL(5,AL,STORE(I.1)); TK=TK+LOADKY; END; CALL MAXMINK(5); TBLO3720
END AXLE4;
AXLE5 : PROCEDURE;
    IF STORE(4,3)<=3.33 & STORE (5,3)<=3.33 THEN DO;
        CALL ADDVHAA(14);CALL ADDVEH(14,SPD,W); DO I=1 TO 2. CALL
        AXLOAD(STORE(I,1),AL);CALL ADAXLAA(14,AL,STOREII,1)I; TA= TBL03770
        TA+LDAASHO; END; DWT=STORE(3,1)+STORE(4,1)+STORE(5,1); TBL03780
        CALL AXLOAD(DWT,AL); CALL ADAXLAA(14,AL,DWT);CALL TANDAA(DWT);TBL03790
        TA=TA+LDAASHO; CALL MAXMINA(14); RETURN; END; TBLO3800
    IF STORE ( 3,3)<=3.33 & STORE (4,3)<=3.33 THEN DO; TBLO3810
        CALL ADDVHAA(13); CALL ADDVEH(13,SPD,W);CALL AXLOAD(STORE(1,1)TBL03820
        ,AL); CALL ADAXLAA(13,AL,STORE(1,1)); TA=TA+LDAASHO; TBLO3830
        DWT=STORE(2,1) +STORE(3,1)+STORE(4,1); CALL AXLOAD(DWT,AL);CALLTBL03840
        ADAXLAA(13,AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; CALL TBLO3850
        AXLOAD(STORE(5,1),AL);CALL ADAXLAA(13,AL,STORE(5,1)); TBL03860
        TA=TA+LDAASHO; CALL MAXMINA(13); RETURN: END; TBLO3870
    IF STORE(3,3)<=3.33 & STORE (5,3)<=3.33 THEN DO; TBLO38BO
        CALL ADDVHAA(15); CALL ADDVEH(15,SPD,W);CALL AXLOAD(STORE(1,1)TBL03890
        ,AL); CALL ADAXLAA(15,AL,STORE(1,1)); TA=TA+LDAASHO; TBL03900
        DO 1=2 TO 4 BY 2; DWT=STORE(I,l)+STDRE(I+1,1): CALL AXLOAD TBLO3910
        (DWT,AL); CALL ADAXLAA(15,AL,DWT);CALL TANDAA(DWT); TBL03920
        TA=TA+LDAASHO; END: CALL MAXMINA(15); RETURN; END; TBLO3930
    IF STORE(5,3)<=3.33 THEN DO;
        CALL ADDVHAA(12);CALL ADDVEH(12,SPD,W);DO I=1 TO 3; CALL TBL03950
        AXLOAD(STORE(I,1),AL);CALL ADAXLAA(12,AL,STORE(I,l)); TA=
        TA+LDAASHO; END; DWT=STORE(4,1)+STORE(5,1); CALL AXLOADPDWT,
        AL); CALL ADAXLAA(12,AL,DWT); CALL TANDAA(DWT);
        TA=TA+LDAASHO; CALL MAXMINA(12); RETURN; END;
    IF STORE(4,3)<=3.33 THEN DO;
        CALL ADDVHAA(11); CALL ADDVEH(11,SPD,W); DO I=1 TO 2; CALL TBL0,4010
        AXLOAD(STORE(I,l),AL);CALL ADAXLAA(Il,AL,STORE(I,1)); TA= TBL04020
        TA+LDAASHO; END; DWT=STORE(3,1)+STORE(4,1); CALL AXLOAD(DWT, TBLO4030
        AL.);CALL ADAXLAA(Il,AL,DWT); CALL TANDAA(DWTI;TA=TA+LDAASHO; TBL04040
                CALL AXLOAD(STORE(5,1),AL); CALL ADAXLAA(11,AL,STORE(5,1TBL04050
        1!; TA=TA+LDAASHO; CALL MAXMINA(11); RETURN; END; TBL04060
    IF STORE(3,3)<=3.33 THEN DO; TBL04070
        CALL ADDVHAA(10);CALL AODVEH(10,SPD,W): CALL AXLOAD(STORE(1,1)TBLO4OBO
        ,AL); CALL ADAXLAA(10,AL,STORE(1,1)); TA=TA+LDAASHO; DWT= TBL04090
        STORE(2,1)+STDRE(3,1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(10, TBL04.100
        AL,DWT!; CALL TANDAA(DWT); TA=TA+LDAASHO; DO I=4 TO 5; CALLTBLO4110
        AXLDAD(STORE(I,1),AL); CALL ADAXLAA(10,AL,STORE(I,1)); TBLO4120
        TA=TA+LDAASHO; END; CALL MAXMINA(10); RETURN; END; TBLO4130
    CALL ADDVHAA(9); CALL ADDVEH(9,SPD,W); DO I=1 TO 5; CALL AXLOAD
        {STORE(I,1),AL); CALL ADAXLAA(9,AL,STORE(I,l));TA=TA+LDAASHO;
        END; CALL MAXMINA(9);
    IF STORE(4,3)<=10.0 & STORE(5,3)<=10.0 THEN DO;
        CALL ADDVHKY(14); DO I=1 TO 2; CALL AXLOAD(STORE(I,1),AL); TBL04180
        CALL ADDAXL(14,AL,STDRE(I,1)); TK=TK+LOADKY; TBL04190
                END; DWT=STORE(3,1)+STORE(4,1) TBL 04200
        +STORE(5,1); CALL AXLOAD(DWT,AL); CALL ADDAXL(14,AL,DWT); TBL04210
        TK=TK+LDADKY; CALL MAXMINK(14); RETURN; END; TBL04220
IF STORE (3,3)<=10.0 & STORE (4,3)<=10.0 THEN DO; TBL04230
        CALL ADDVHKY(13); CALL AXLOAD(STORE(1,1),AL);CALL ADDAXL(13, TBL04240
        AL,STORE(1,1)); TK=TK+LOADKY;
                DWT=STORE(2,1)+STORE(3,1)+STORE(4,1); CALL TBL04260
        AXLOAD(DWT,AL); CALL ADDAXL(13,AL,OWT); TK=TK+LOADKY; TBL04270
                CALL AXLOAD(STORE(5,1)TBL04280
    ,AL); CALL ADDAXL(13,AL,STORE(5,1)); TK=TK+LOADKY; TBLO4290
    CALL MAXMINK(13); RETURN; END; TBLO4300
```

If STORE $(3,3)<=10.0$ \& $\operatorname{STORE}(5,3)<=10.0$ THEN DO; TBLO4310
CALL ADDVHKY(15); CALL AXLOAD(STORE (1, 1), AL) ; CALL ADDAXL(15, TBL 04320 AL,STORE(1,1)): TK=TK+LOADKY; TBL04330
OO I=2 TO 4 BY 2; DWT=STORE(I,1)+STORE (I +1,1);TBL04340
CALL AXLOAD(DWT,AL); CALL ADDAXL(15,AL,DWT): TK=TK+LOADKY; TBL04350
END; CALL MAXMINK (15); RETURN; END; TBL04360
IF STORE 5,3) $<=10.0$ THEN D TBL04370 CALL ADDVHKY(12); DO I=1 TO 3; CALL AXLOAD(STORE(I,1),AL);CALLTBL04380 ADDAXL(12,AL,STORE(I,1)); TK=TK+LOADKY; TBL04390 END; OWT=STORE(4,1)+STORE(5,1); CALLTBL04400
AXLOAD(DWT,AL);CAL'L ADDAXL(12,AL,DWT); TK=TK+LOADKY; CAIL TBL04410
MAXMINK(12); RETURN; END; TBLO4420
IF STORE $(4,3)<=10.0$ THEN DO;
TALO4430
CALL ADDVHKY(11): DO I=1 TO 2; CALL AXLOAD(STORE(I,1),AL);CALLTBL04440
ADDAXL(11, AL,STORE (I, 1) ; TK=TK+LOADKY; TBLO4450
END: DWT=STORE(3,1)+STORE(4,1); CALLTBL04460
AXLOAD(DWT,AL); TK=TK+LOADKY; TBL04470
CALL ADDAXL(11,AL,DWT); CALL AXLOAD(STORE(5,1)TBL04480
, AL);CALL ADDAXL(11,AL,STORE(5,1)); TK=TK+LOADKY; TBL04490
CALL MAXMINK (11); RETURN: END; TBL04500
IF $\operatorname{STORE}(3,3)<=10.0$ THEN DO;
CALL ADUVHKY(10); CALL AXLOAD(STORE(1,1),AL);CALL ADDAXL(10,
AL,STORE(1,1)); TK=TK+LOADKY;
DWT=STORE(2,1)+STORE(3,1); CALL AXLOAD(DWT,
AL); TK=TK+LOADKY;
CALL ADDAXL(IO,AL,DWT); DO I=4 TO 5; CALL AXLOAD(STORE
(I,1),AL);CALL ADDAXL(10,AL,STORE(I,1)); TK=TK+LOADKY; END;
CALL MAXMINK (10); RETURN; END;
CALL ADDVHKY(9); DO $1=1$ TO 5; CALL AXLOAD(STORE(I, 1),AL); CALL
ADDAXL(9,AL,STORE(I,1)); TK=TK+LOADKY; END; CALL MAXMINK(9);
RETURN;
END AXLE5;
AXLEG: PROCEDURE;
TBL04510
TBL04520
TBL04530
TBL04540
TBL04550
TBL04560
TBL 04570
TBL04580
TBL04590
TBL04600
TBL04610
TBL04620
IF $\operatorname{STORE}(3,3)<=3.33 \varepsilon \operatorname{STORE}(5,3)<=3.33 \& \operatorname{STORE}(6,3)<=3.33$ THEN DO; TBL04640 CALL ADDVHAA(25); CALL ADDVEH(25,SPD,W);CALL AXLOAD(STORE(1,1)TBL04650 , AL) ; CALL ADAXLAA(25,AL,STORE (1, 1)); TA=TA+LDAASHO; DWT= TAL04660 STORE(2,1)+STORE(3,1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(25, TBL04670 AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; DWT=STORE(4,1)+ TBL046B0 STORE 5,1) +STORE $(6,1)$; CALL AXLOAD(DWT,AL): CALL ADAXLAA(25, TBL04690 AL,DWT); CALL TANOAA(DWT); TA=TA+LDAASHO; CALL MAXMINA(25); TBL04700 RETURN; END;
TBL04710
IF $\operatorname{STORE}(3,3)<=3.33 \& \operatorname{STORE}(4,3)<=3.33 \& \operatorname{STORE}(6,3)<=3.33 \operatorname{THEN} \operatorname{DO} \operatorname{TBL} 04720$ CALL ADDVHAA(24); CALL ADDVEH(24,SPD,W); CALL AXLOAD(STORE(1, TBL 04730 1), AL): CALL ADAXLAA(24,AL,STORE(1,1));TTA=TA+LDAASHO; DWT=TBL04740 STORE (2,1)+STORE(3,1)+STORE(4,1); CALL AXLOAD(DWT,AL); CALL TBL04750 ADAXLAA(24,AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; DWT= TBL04760 STORE (5,1) +STORE(6,1); CALL AXLOAD(OWT,AL); CALL ADAXLAA(24, TBL04770 AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; CALL MAXMINA(24); TBLO4780 RETURN; END;
TBL 04790
IF $\operatorname{STORE}(3,3)<=3.33 \& \operatorname{STORE}(6,3)<=3.33$ THEN DO;
TBL04800 CALL ADDVHAA(23); CALL ADDVEH(23,SPD,W); DO I=1 TO 4 BY 3 ;CALLTBLO4B10 AXLOAD(STORE(I, 1), AL); CALL ADAXLAA(23,AL,STORE(I,1)); TA= TBL04820 TA+LDAASHO; OWT=STORE(I+1,1)+STORE(I+2,1); CALL AXLOAD(DWT, TBLO4B30 AL): CALL ADAXLAA(23,AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; END; CALL MAXMINA(23); RETURN; END;

IF $\operatorname{STORE}(4,3)<=3.33 \varepsilon \operatorname{STORE}(6,3)<=3.33$ THEN DO;
$\quad \operatorname{CALL} A D D V H A A(22) ; \operatorname{CALL} A D D V E H(22, S P D, W) ;$ DO I=1 TO 2; CALL TBL04840 TBL04850 TBL 04860 AXLOAD(STORE (I, 1),AL): CALL ADAXLAA122,AL,STORE II 1) TA+LDAASHO; END; DO $1=3$ TO 5 BY 2; DWT=STORE(I, l) +STORE(I+1, TBL 04890 1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(22,AL,DWT); CALL TANDAA TBL04900 (DWT); TA=TA+LDAASHO; END; CALL MAXMINA(22); RETURN; END; TBLO4910

IF $\operatorname{STORE}(3,3)<=3.33 \varepsilon \operatorname{STORE}(5,3)<=3.33$ THEN DO;
CALL ADDVHAA(21); CALL AOOVEH(21,SPO,W); CALL AXLOAD(STOPE(1, TBL04930 1), AL); CALL ADAXLAA(21,AL,STORE(1,1)); TA=TA+LUAASHO; DO TBL04940 I=2 TO 4 BY 2; DWT=STORE(I,l) +STORF(I+1.1); CALL AXLOAD(OWT, TBLO4950 AL) ; CALL ADAXLAA (21,AL,DWT); CALL TANDAA(UWT);TA=TA+LDAASHO; TBL04960 END; CALL AXLOAD(STORF(6.1),AL); CALL ADAXLAA(21,AL, TBL04970 STORE(6,1)); TA=TA+LDAASHO; CALL MAXMINA(21); RETURN; END; TBLO49BO
IF STORE $(6,3)<=3.33$ \& STORE $(5,3)<=3.33$ THEN DO; CALL ADDVHAA(28); CALL ADDVEH(28,SPD,W); D I=1 TO 3; CALL AXLOAD(STORE(I, 1), AL) ; CALL ADAXLAA(28,AL,STORE(I,1)); TA= TA+LDAASHO; END; DWT=STORE(4,1)+STORE(5,1)+STORE(6,1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(28,AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; CALL MAXMINA(28); RETURN; END;
IF $\operatorname{STORE}(5,3)<=3.33 \& \operatorname{STORE}(4,3)<=3.33$ THEN DO;
CALL ADOVHAA(27); CALL ADDVEH(27,SPD,W); DO I=1 TO 2; CALL AXLOAD(STORE(I,1), ALI; CALL ADAXLAA(27,AL,STORE(I,1)); TA= TA+LDAASHO; FND; DWT=STORF(3.1)+STORE(4,1)+STORE(5,1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(27,AL,DWT); CALL TANDAA(DWT); TBL04990 TBL05000 TBL05010
TBL05020
TBLO5030
TBLO5040 TBLO5050
TBL 05060
TBL 05070
TBL05080
TBL05090
 AL, STORE $(6,1)$; TA=TA LLDAASHO; CALL MAXMINA 27$)$; RETURN; END; TBL05110
IF STORE $(4,3)<=3.33 \& \operatorname{STORE}(3,3)<=3.33$. THEN DO; TBLO5120
CALL ADDVHAA(26); CALL ADDVEH(26,SPD,W); CALL AXLOAD(STORE(1, TBL05130 1), AL): CALL ADAXLAA(26,AL,STORE (1, 1)); TA=TA+LDAASHO; DWT=TBLO5140 $\operatorname{STORE}(2,1)+\operatorname{STORE}(3,1)+\operatorname{STORE}(4,1) ; \operatorname{CALL} \operatorname{AXLOAD}(D W T, A L) ; ~ C A L L ~ T B L 05150$ ADAXLAA(26,AL,DWT); CALL TANDAA(OWT); TA=TA+LDAASHO; DO I=5TBL 05160 TO 6; CALL AXLOAD(STORE(I,1),AL); CALL ADAXLAA(26,AL,STOREII, TBLO5170 1才; TA=TA+LDAASHO; FND: CALL MAXMINA1261; RETURN; END; TBL05180
IF STORE $(6,3)<=3.33$ THEN DO;
CALL AODVHAA (20); CALL ADDVEH (20,SPD,W); DO I=1 TO 4; CALL TBLO5200
AXLOAD(STORE (I, l), AL) ; CALL ADAXLAA(20,AL,STORE(I,1)); TA= TBL 05210 TA+LDAASHO; END; DWT=STORE 5,1) +STORE 6,1$)$; CALL AXLOAD(DWT, TBL 05220 ALI; CALL ADAXLAA(20,AL,DWT); CALL TANDAA(DWT); TBL05230 TA=TA LDAASHO; CALL MAXMINA(20); RETURN; END; TBLO5240
IF STORE $(5,3)<=3.33$ THEN DO; TBL05250
CALL ADDVHAA(19); CALL ADDVEH (19,SPD,W): DO I=1 TO 3; CALL TBLO5260 AXLOAD(STORE (I, 1), AL) ; CALL ADAXLAA(19,AL,STORE (I, l)) ; TA= TBL05270 TA+LDAASHO; END; DWT=STORE(4,1)+STORE(5,1); CALL AXLOAD(DWT, TBLO52BO AL): CALL ADAXLAA(19,AL,DWT); CALL TANDAA(DWT);TA=TA+LDAASHO; TBL05290 CALL AXLOAD(STORE(6,1),AL): CALL ADAXLAA(19,AL,STORE(6,TBLO5300 1) ; CALL MAXMINA(19); RETURN; END; TBLO5310

IF STORE $(4,3)<=3.33$ THEN DO; CALL ADDVHAA(18); CALL ADDVEH(1B,SPD,W); DO $1=1$ TO 2; CALL TBLO5330 AXLOAD(STORE(I, 1), AL); CALL ADAXLAA(18,AL,STORE(I,1)); TA= TBL05340 TA+LDAASHO; END; DWT=STORF(3,1)+STORE(4,1); CALL AXLOAD(DWT, TBLO5350 AL); CALL ADAXLAA(18,AL,DWT); CALL TANDAA(DWT);TA=TA+LDAASHO; TBLO5360 DO I=5 TO 6; CALL AXLOAD(STORE(I,1),AL); CALL ADAXLAA TBL 05370 (18,AL,STORE(I,1)); TA=TA+LDAASHO; END; CALL MAXMINA(18); TBLO53B0 RETURN; END;
IF STORE 3,3$)<=3.33$ THEN DO;
TBL05390
CALL ADDVHAA (17): CALL ADDVEH(17,SPD,W): CALL AXIOAD(STORE(i. TBL 05410 1), AL); CALL ADAXLAA(17,AL,STORE (1, 1)); TA=TA+LDAASHO; DWT=TBL05420 STORE(2.1) + STORE 3.1); CALL AXLOAD(DWT,AL); CALL ADAXLAA(17, TBL05430 AL,DWT); CALL TANDAA(DWT); TA=TA+LDAASHO; DO I=4 TO 6; CALLTBLO5440 AXLGAD(STORE(I, 1), AL); CALL ADAXLAA(17,AL,STORE(I,l)); TBL05450 TA = TA L LDAASHO; END; CALL MAXMINA(17); RETURN; END; TBL05460
CALL ADDVHAA(16); CALL ADDVEH(16,SPD,W); DO I=1 TO 6; CALL AXLOAD TBL05470 (STORE (I, 1), AL) ; CALL ADAXLAA(16,AL,STORE(I,1));TA=TA+LDAASHO;TBLO54BO END; CALL MAXMINA(16); TBLO5490
IF STORE $(3,3)<=10.0 \varepsilon \operatorname{STORE}(5,3)<=10.0 \varepsilon \operatorname{STORE}(6,3)<=10.0$ THEN DO; TBLO5500 CALL ADDVHKY(25); CALL AXLOAD(STORE(1,1),AL); CALL ADDAXL(25, TBL05510 AL,STORE (1,1) ; TK=TK + LOADKY; TBL 05520

```
                    DWT=STORE(2,1)+STORE(3,1); CALL AXLOAD(DWT, TBL05530
    AL); TK=TK+LOADKY;
                CAIL ADDAXL(25,AL,DWT): DWT=STORE(4,1)+STORE(5,1)+STORE TBLO5
        (6,1); CALL AXLOAD(DWT,AL); CALL ADDAXI(25,AL,DWT); TBL05560
        TK=TK+LOADKY; CALL MAXMINK(25); RETURN; END; TBLO5570
IF STORE(3,3)<=10.0 & STORE (4,3)<=10.0 & STORE (6,3)<=10.0 THEN DO; TBLO5580
        CALL ADDVHKY(24); CALL AXLOAD(STORE(1,1),AL); CALL ADDAXL(24, TBL 05590
        AL,STORE(1,1));TK=TK+LOADKY; TBL05600
                            DWT=STORE (2,1)+STORE(3,1)+STORE(4,1); CALL TBL05610
        AXLOAD(DWT,AL); TK=TK+LOADKY;
                    CALL ADDAXL(24,AL,DWT); DWT=STORE(5,1)+STORE TBL05630
        (6,1); CALL AXLOAD(DWT,AL); CALL ADDAXL(24,AL,DWT); TBL05640
        TK=TK+LOADKY; CALL MAXMINK(24); RETURN; END; TBL05650
IF STORE(3,3)<=10.0 & STORE (6,3)<=10.0 THEN DO;
        CALL ADDVHKY(23); DO I=1 TO 4 BY 3; CALL AXLOAD(STORE(I,1),
        ALI; TK=TK+LOADKY;
            CALL ADDAXL(23,AL,STORE(I,1)); DWT=STORE(I+1,1)+STORE
        (I+2,1); CALL AXLOAD(DWT,AL); CALL ADDAXL(23,AL,DWT);
        TK=TK+LOADKY; END; CALL MAXMINK(23); RETURN; END;
        TBL05710
IF STMRE(4,3)<=10.0 & STORE (6,3)<=10.0 THEN DO;
TBL05720
        CALL ADDVHKY(22); DU I=1 TO 2; CALL AXLOAD(STORE(I,1),AL);CALLTBLO5730
        ADDAXL(22,AL,STORE(I,1)); TK=TK+LOADKY; TBL05740
                    END; DO I=3 TO 5 BY 2; DWT=STORE(I, TBLO5750
        1)+STORE(I+1,1); CALL AXLOAD(DWT,AL); CALL ADDAXL(22,AL,DWT); TBL05760
        TK=TK+L\capADKY; END; CALL MAXMINK(22); RETURN; END; TBL05770
IF STORE (3,3)<=10.0 & STORE (5,3)<=10.0 THEN DO; TBL05780
    CALL ADDVHKY(21); CALL AXLOAD(STORE(1,l),AL); CALL ADDAXL(21, TBLO5790
    AL,STORE(1,1)); TK=TK+LOADKY; TBLO5800
            DO I=2 TO 4 BY 2; DWT=STORE(I,l)+STORE{I+1,1);TBLO5810
        CALL AXLOAD(OWT,AL); TK=TK+LOADKY; TBLO5820
                CALL ADDAXL(21,AL,DWT); END; CALL AXLOAD TBLO5830
        (STORE(6,1),AL); CALL ADDAXL(21,AL,STORE(6,1)); TBL05840
        TK=TK+LOADKY; CALL MAXMINK(21); RETURN; END; TBL05850
IF STORE(6,3)<=10.0 & STURE(5,3)<=10.0 THEN DO; TBL05860
    CALL ADDVHKY(28); DO I=1 TO 3; CALL AXLOAD(STORE(I,1),AL);CALLTBL05870
    ADDAXL(28,AL,STORE(I,l)); TK=TK+LOADKY; TBL05880
                                    END; DWT=STORE(4,1)+STORE(5,1)+ TBL05890
    STORE(6,1); CALL AXLOAD(DWT,AL); CALL ADDAXL(2B,AL,DWT); TBL05900
    TK=TK+LOADKY; CALL MAXMINK(28); RETURN; END; TBL05910
IF STORE(5,3)<=10.0 & STORE(4,3)<=10.0 THEN DO; TBL05920
    CALL ADDVHKY(27); DO I=1 TO 2; CALL AXLOAD(STORE(I,1),AL);CALLT8LO5930
    ADDAXL(27,AL,STORE(I,1)); TK=TK+LOADKY; TBL05940
                                    END; DWT=STORE(3,1)+STORE(4,1) +S TORETBLO5950
    (5.l); CALL AXLOAD(DWT,AL); TK=TK+LOADKY; TBL05960
                                    CALL ADDAXL(27,AL,DWT); CALL TBL05970
    AXLOAD(STORE(6,1),AL); CALL ADDAXL(27,AL,STORE(6,1)); TBL05980
    TK=TK+LOADKY; CALL MAXMINK(27); RETURN; END; TBL05990
IF STORE (4,3)<=10.0 & STORE (3,3)<=10.0 THEN DO; TBLO6000
    CALL ADDVHKY(26); CALL AXLOAD(STORE(1,1),AL); CALL ADDAXL(26, TBLO6010
    AL,STORE(1,1));TK=TK+LOADKY; TBL06020
                            DWT=STORF(2,1)+STORE(3,1)+STORE(4,1); CALL TBL06030
        AXLOAD(DWT,AL); TK=TK+LOADKY; T8L06040
            CALL ADDAXL(26,AL,DWT); DO I=5 TO 6; CALL TBL06050
        AXLOAD(STORE(I,1),AL); CALI ADDAXL(26,AL,S.TORE(I,1)); TBL06060
        TK=TK+LOADKY; END; CALL MAXMINK(26); RETURN; END; TBL06070
IF STORE(6,3)<=10.0 THEN DO; TBL06080
    CALL ADDVHKY(20); DO I=1 TO 4; CALL AXLOAD(STORE(I,l),AL);CALLTBL06090
    ADDAXL(20,AL,STORE(I,1)); TK=TK+LOADKY; TBL06100
    ENO; DWT=STORE(5,1)+STORE(6,1); CALLTBLO6110
    AXLOAD(DWT,AL); CALL ADDAXL(20,AL.DWT); TBLO6120
    TK=TK+LOADKY; CALL MAXMINK(20); RETURN; END; TBLO6130
```

```
    IF STORE(5,3)<=10.0 THEN DO; TBLO6140
    CALL ADDVHKY(19): DO 1=1 TO 3; CALL AXLOAD(STORE(I,1),AL);CALLTBLO6150
    ADDAXL(I9,AL,STORE(I,L)); TK=TK+LOADKY; TBLO6I60
    END; DWT=STORE(4,1)&STORE(5,1); CALLTBLO6170
    AXLOAD(DWT,AL); TK=TK+LOADKY;
                                TBL06180
                            CALL ADDAXL(19,AL,DWT); CALL AXLOAD(STORE(6,1)TBL06190
        ,AL); CALL ADDAXL(19,AL,STORE (6,1));
        TBL06200
        TK=TK+LOADKY; CALL MAXMINK(19); RETURN; END; TBLO6210
    IF STORE(4,3)<=10.0 THF:N DO;
    TBL06220
        CALL ADDVHKY(18); DO I=1 TO 2; CALL AXLOAD(STORE(I,1),AL);CALLTBLO6230
        ADDAXL(1R,AL,STORE(I,l)); TK=TK*LOADKY; TBL06240
                END; DWT=STORE(3,1)+STORE(4,1); CALL TBLO6250
    AXLOAD(DWT,AL);TK=TK+LOADKY;
            CALL ADDAXL(18,AL,DWT); DO I=5 TO 6; CALL TBL06270
        AXLOAD(STORE(I,1),AL); CALL ADDAXL(18,AL,STORE(I,l)); TBLO6280
        TK=TK+LOADKY; ENO; CALL MAXMINK(18); RETURN; END; TBL06290
    IF STORE (3.3)<=10.0 THEN DO;
        TBL06300
        CALL ADDVHKY(17); CALL AXLOAD(STOPE(1,1),AL); CALL ADDAXLPIT, TBLO6310
        AL,STORE(1,1)); TK=YK+LDADKY; TBLO6320
            DWT=STORE(2,1)+STORE(3,1); CALL AXLOAD(DWY,
        AL); TK=TK +LDADKY;
            CALL ADDAXL(17,AL,DWT); DO I=4 TO 6; CALL AXLOAO{STORE
        (1,1),AL); CALL ADDAXL(17,AL,STORE(1,1));
        TK=TK+LOADKY; ENO; CALL MAXMINK(17); RETURN; END;
            TBL06330
            TBL06340
            TBLO6350
        TBL06360
        ADDVHKY(16); DO I=1 rO 6; CALL AXLOAD(STORE(I,1),AL); CALL
        ADDAXL(16,AL,STORE(I,l));
        TK=TK+LOADKY; END; CALL MAXMINK(16);
        RETURN;
    END AXLEG;
AXLEM6 : PRDCEDURE;
    CALL ADOVHAA(29); CALL ADDVHKY(29); CALL ADDVEH(29,SPD;W); DO I=1 TBL06440
        TO NUMBER; CALI. AXLOAD(STORE(I,1),AL); CALL ADAXLAA(29,AL, TBL06450
        STORE(I,1)); TA=TA+LDAASHO; CALL ADDAXL(29,AL,STORE(I,1)); TBL06460
        TK=TK+LOADKY; END; CALL MAXMINA(29); CALL MAXMINK(29); TBL06470
    END AXLEMG;
    EWLC : PROCEDURE;
    DO I=1 TO 29;
    IF MINLUADKY(I)=99999.0 THEN MINLOADKY(I)=0.0;
    F MINLDAASHO(II=99999 0 THEN MINLDAASHO(I)=0000
    N=AXLDVSAXAA(I,21)* (AXLDVSAXAA(I,21)-1); TBL12120
    IF N=O THEN DO; SDAASHO(I)=O; GO TO 1. END; TBL121.30
    DWT = (AXLDVSAXAA(I,21)*SDAASHO(I) - MEANAASHO(I) ** 2) / N: TBLl2140
    IF DWT < O THEN DD; SDAASHO(I) = - 1; GO TO Al; END; TBL12150
    SDAASHO(I) = SQRT(DWT);
A1: IF AXLDVSAXAA(I,21)=0 THEN DO; MEANAASHO(I)=0; GO TO A2; END; . TBL12170
    MEANAASHO(I) = MEANAASHO(I) / AXLDVSAXAA(I, );); TBL12180
A2: N=AXLDVSAX(I,21) * (AXLDVSAX(I,21) - 1);
    IF N=0 THEN DO; SDKY(I)=0; GO TO A3; END;
    DWT = (AXLDVSAX(I,21)*SDKY(I) - MEANLOADKY(I)** 21 / N; TBL12210
    IF DWT < O THEN DO; SDKY(I)=-1; GO TO A3; END; TBL12220
    SDKY(I) = SQRT(DWT); TBL12230
A3: IF AXIDVSAX(I,21)=0 THEN DO; MEANLOADKY(I)=0; GO TO A4; END; TBL12240
    MEANLOADKY(I) = MEANLOADKY(I) / AXLDVSAX(I,21); TBI.12250
A4: END;
    PUT FILE(SYSPRINT) PAGE LINE(&) EDIT ('EQUIVALENT AXLE LOAD PER`, TBLI2270
        - VEHICLE0) (COLUMN(39), A,A); TBLl2280
    PUT FILE(SYSPRINT) SKIP(3) EDIT {:| UNDER*,AXLE PLACEMENT:) TBL12290
        (COLUMN(20),A,X(31),A); TBLl2300
    PUT FILE(SYSPRINT) SKIP EDIT (% CATEGORIES | 2 TONS') (A); TBLl2310
    PUT FILE(SYSPRINTISKIP EDIT (0| 110 110 111 120 0, TBLl2320
        lll11 11210 1120 1400 11111 12110% 
```

```
        (COLUMN(20),A,A);
TBL 12340
```



```
PUT FILE(SYSPRINT) SKIP EDIT ('I MAXIMUM l', (' I=1 TO 10) (COLUMN(9),A,10 A); TBL12370
PUT FILEISYSPRINT) SKIP EDIT ('I EAL I', (MAXLOADKY(I).' 19 TBLI2380 DO \(I=1\) TO 10)) (COLUAN(9),A,10 (F(7,1),A));
PUT FILE(SYSPRINT) SKIP EDIT('I MINIMUM 1', (' 19 DBLI2400 \(\mathrm{I}=1\) TO 101 (COLUMN(9),A,10 A); TBL12410
```



``` DO I=1 TO 10) (COLUMN(9),A,10 (F(7,1),A)); TBL12430
PUT FILE(SYSPRINT) SKIP EDIT ('KENTUCKYI MEAN I', (' I' TBL12440 DO I=1 TO 10) (A); TBLI2450
PUT FILE(SYSPRINT) SKIP EDIT ('| EAL I', (MEANLOADKY(I).' |' TBLI2460 DO \(\mathrm{I}=1\) TO 10) \()(\operatorname{COLUMN(9),A,10(F(7,1),A));~TBL12470}\)
PUT FILE(SYSPRINT) SKIP EDIT ('| STANDARD \(1 \cdot, 10\) I' TBLI2480 DO I=1 TO 10) (COLUMN(9),11 A); TBL12490
PUT FILE(SYSPRINT) SKIP EDIT ('IDEVIATION \|', (SDKY(I),' 1: TBLI2500 DO \(I=1\) TO 10) 1 (COIUMN(9), A,10 (F(7,1), A)); TBL12510 PUT FILE(SYSPRINT) SKIP EDIT (if TOTAL I!, (: 10 TRL12520 DO I=1 TO 10) (COLUMN(Q), 11 A): TBLI2530
PUT FILE(SYSPRINT) SKIP EDIT (1) VEHICLES 1', (AXLDVSAX(I,21), \(1 \cdot\) TBLI2540 DO \(1=1\) TO 10) \((\operatorname{COLUMN(9),A,10(F(7,0),A));~TBL12550~}\)
```



``` I=1 TO 10) (COLUMN(9),A,10 A); TRL12580
```



``` DO \(I=1\) TO 1011 (COLUMN(9),A,10 (F(7,1),A)); TBL12600
```



``` I=1 TO 10) (COLUMN(9),A,10 A): TRL12620
PUT FILE(SYSPRINT) SKIP EDIT ('I EAL I', (MINLDAASHO(I), I' TBLI2630.
```



``` PUT FILE(SYSPRINT) SKIP EDIT ('AASHO I MEAN I', (' I' TBLI2650 DO I=1 TO 10)I (A); TBL12660 PUT FILE(SYSPRINT) SKIP EDIT ('I EAL I', ( MFANAASHO(I),' I' TBLI2670 DO I=1 TO 10) (COLUMN(9),A,10 (F(7,1),A)); TBL12680
PUT FILE(SYSPRINT) SKIP EDIT (1| STANDARO l!, (! DO I=1 TO 10) (COLUMN(9),11 A); TBL12700
PUT FILE(SYSPRINT) SKIP EDIT ('IDEVIATIUN I', (SDAASHIJ(I), I' TBLI2710 DO I=1 TO 10) (COLUMN(9),A,10(F(7,1),A)); TBL12720
```



``` DO I=1 T0 10) (COLUMN(9),11 A); TBL12740
PUT FILE(SYSPRINT) SKIP EDIT ('1 VFHICLES 1', (AXLDVSAXAA(I,21), I'TBLI2750 DO \(I=1\) TO 10) (COLUMN(9), A, 10 (F(7,0),A)): TBL127650
```



``` PUT FILE(SYSPRINT) SKIP(4) EDIT (') TBLI2780 (COLUMN(20), A, X(31), A);
TBL. 12790 PUT FILE(SYSPRINT) SKIP EDIT (' CATEGORIES । 1 (A): TBLI2800 PUT FILE(SYSPRINT) SKIP EDIT ('I 11210 11120 13100 11300', TBLI2810 - 12200 111111 121110 112110 111210 11112011 TBL12820 (COLUMN(20),A,A); TBLI2830
PUT FILE(SYSPRINT) SKIP(O) EDIT (I'_ DO I=1 TO 11)) (A); PUT FILE(SYSPRINT) SKIP EDIT ('1 MAXIMUM |', (O I' DO \(\mathrm{I}=1\) TO 10) (COI.UMN(9), A, 10 A); PUT FILE(SYSPRINT) SKIP EDIT (•1 EAL I', (MAXLOADKY(I), 10 TBLI2870 DO \(\mathrm{I}=11\) TO 20) \((\operatorname{COLUMN(9),A,10(F(7,1),A));}\) TBL12880 PUT FILE(SYSPRINT) SKIP EDIT(I|MINIMUM I!, (! I' DO TBLI2890 I=1 TO 10) (COLUMN(9), A, 10 A);
TBL12900
PUT FILE(SYSPRINT) SKIP EDIT (il EAL I', (MINLOADKY(I), I' TRLI2910 DO I=11 TO 20) (COLUMN(9),A,10 (F(7,1),A)); \(1 \%\) TBL12920 PUT FILE(SYSPRINT) SKIP EDIT ('KENTUCKYI MEAN I', (' I' TBLI2930 DO \(\mathrm{I}=1\) TO 101 ) (A): TBL12940
```

 DO I=11 TO 20)) (COLUMN(9),A,10 (F(7,1),A)); TBL12960
PUT FILE(SYSPRINT) SKIP EDIT ('I STANDARD 1', (\% I' TBLI2970 DO $I=1$ TO 101) (CDLUMN(9).11 A);
PUT FILE(SYSPRINT) SKIP EDIT ('IDEVIATION I', (SDKY(I), ${ }^{\prime \prime}$ DO I=11 TO 20) (COLUMN(9),A,10 (F(7,1),A));
PUT FILE(SYSPRINT) SKIP EDIT ('I TOTAL l', (' I' DO I=1 TO 10) ($(\operatorname{COLUMN(9),11} \mathrm{A}) ;$
PUT FILE(SYSPRINT) SKIP EDIT (il VEHICLES 1',(AXLDVSAX(I,21), 1' DO $I=11$ TO 20) $)(\operatorname{COLUMN}(9), A, 10(F(7,0), A))$;
PUT FILE(SYSPRINT) SKIP(O) EDIT (10 PUT FILE(SYSPRINT) SKIP EDIT ('I MAXIMUM I'.(' $1 \cdot$ DO I=1 TO 10) (COLIJMN(9), A,10 A); TBL13070
 DO I=11 TO 201) (COLUMN(9), A, 10 (F(7,1),A)); TBL13090
 $I=1$ TO 10) (COLUMN(9), A, 10 A); TBL13110
PUT FILEISYSPRINT) SKIP EDIT ('I EAL I', (MINLDAASHO(I), $1 \cdot$ TBL13120 DO I=11 TO 201) (COLUMN(9),A,10 (F(7,1),A)):

TBL13130
 DO I=1 TO 10) (A);
PUT FILE(SYSPRINT) SKIPEDIT ('I FAL I', I MEANAASHO(I), I IE TBL13160 DO I=11 TO 201) (COLUMN(9),A,10(F(7,1),A));
 DO I=1 TO 10) ((COLUMN(9), 11 A);
PUT FILE(SYSPRINT) SKIP EDIT (:1DEVIATION 1•, (SDAASHO(I), 1• TBLI3200 DO I=11 TO 20) 1 (COLUMN(9),A,10(F(7,1),A)); TBL13210
PUT FILE (SYSPRINT) SKIP EDIT M: TOTAL IM. 1.10 TBLI3220 DO I=1 TO 101) (COLUMN(9), 11 A); TBL13230
QUT FILE(SYSPRINT) SKIP EDIT ('I VEHICLES 1', (AXLDVSAXAA(I,21), ' I'TBLI3240 DO I=11 TO 20) ($\operatorname{COLUMN(9),A,10(F(7,0),A));~TBL13250~}$

PUT FILE(SYSPRINT) PAGE; TAL13270

PUT FILE(SYSPRINT) SKIP(4) EDIT ('I 1 •'AXLE PLACEMENT') TBLI3280 (COLUMN(20),A,X(26),A); 1BL13290 PUT FILE(SYSPRINT) SKIP EDIT (' CATEGORIES I 1 (A); TBLI3300 PUT FILE(SYSPRINT) SKIP EDIT ('1 122100 112200 121200 13200',TBLI3310 | \circ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $123000 \quad 131100 \quad 113100 \quad 11130$ OVER 6') TBL 13320 (CDLUMN(20),A,A); TBL13330 PUT FILE(SYSPRINT) SKIP(O) EDIT (('- DO I=1 TO 101)) (A); TBLI3340 PUT FILF(SYSPRINT) SKIP EDIT (I MAXIIMUM I'.1. I' DO TBL13350

 DO I=21 TO 29) (COLUMN(9), A,10 (F(7,1),A)); TBL13380
PUT FILE(SYSPRINT) SKIP EOIT('IMINIMUM 1•, 10 DO TBLI3390 I=1 TO 9) ((COLUMN(9), A, 10 A):
PUT FILE(SYSPRINT) SKIP EDIT ('I EAL I', (MINLOADKY(I), ' 1 ' TBL13400
PUT FILE(SYSPRINT) SKIP EDIT ('1 EAL I', (MINLOADKY(I), $\%$ TBLI3410 DO I=21 TO 29) (COLUMN(9),A,10 (F(7,1),A)); 1., TBL13420
PUT FILE(SYSPRINT) SKIP EDIT ('KENTUCKYI MEAN I', (' I' TBL13430 DO I=1 TO 9)) (A);

TBL 13440
PUT FILE(SYSPRINT) SKIP EDIT (') EAL $1 \cdot,(M E A N L O A D K Y(I), ' 1 \cdot ~ T B L 13450$ DO I=21 TO 29) (COLUMN(9), A,10 (F(7,1),A)); TBL13460
PUT FILE(SYSPRINT) SKIP EDIT ('I STANDARD 1', (' DO I=1 TO 9 1) (COLUMN(9),11 A);
PUT FILE(SYSPRINT) SKIP EDIT ('IDEVIATION I', (SDKY(I), ' DO I=21 TO 29) ($\operatorname{COLUMN(9),A,10~(F(7,1),A));~}$
PUT FILE(SYSPRINT) SKIP EDIT (1) TOTAL I•, (' DO $\mathrm{I}=1 \mathrm{TO} 9 \mathrm{l})(\operatorname{COL} \mathrm{UMN}(9), 11 \mathrm{~A})$;

TBL13480
 DO I=21 ro 29)) (COLUMN(9), A, $10(F(7,0), A))$;
PUT FILE(SYSPRINT) SKIP(O) EDIT (('_ DO $1=1$ TO lOl)) (A);

TBL 13490

TBL13500
TBL13510
TBL13520
TBLL13530
TBL13540
TBL13550

PUT FILE(SYSPRINT) SKIP EDIT (•(AASHO CATEGORIES)•)(COLUMN(48),A): TBLO7390 PUT FIIE SYSPRINT) SKIP(2) EDII (1 TANDEM SPACING IS 40 INCHES ', TBLO7400 - OR LESS •) (COLUMN(38),A,A);

TBLO7410
PUT FILE(SYSPRINT) SKIP(2) EDIT (11,2 AND 3 INOICATE SINGLE.BITAN',TBLO7420 - DEM ANO TRITANDEM AXLES') (COLUMN(31),A,A); TBLO7430

PUT FILE(SYSPRINT) SKIP(5) LIST ("GROSS |!); TBL07440
PUT FILE(SYSPRINT) SKIP EDIT ('IIPERATING I UNDER', 'AXLE PLACEMEN',TBLO7450 -T ${ }^{\prime}$) (A, X (35),A);
PUT FILE(SYSPRINT) SKIP LIST (' WEIGHT 12 TONS'); TBLO7470 PUT FILEISYSPRINTI SKIP ERIT(C (KIPS) I 110 110 11111 ,TBLO7480
 - 13100 11300 12200 () (A,A.A): TBLO7500 PUT FILE(SYSPRINT) SKIP(-1); TBLO7510 DO I=1 TO 29; PUT FILE(SYSPRIVT) EDIT ('_-.') (A); FND; TBLOT520 PUT FILE (SYSPRINT) SKIP LIST (• UNDER 4 †'); CALL PRGWAXI(1); TRLO7530 PUT FILE(SYSPRINT) SKIP LIST (• $4-10$ 1.); CALL PRGWAXI(2); TBLO7540 PUT FILE(SYSPRINT) SKIP LIST ('10-15 (1); CALL PRGWAXI(3); TBLO7550 PUT FILE(SYSPRINT) SKIP LIST (1 $15-20$ 1'); CALL PRGWAXI(4); TBLO7560 PUT FILE(SYSPRINT) SKIP LIST (1 20-22 11); CALL PRGWAXI(5); TBLO7570 PUT FILE(SYSPRINT) SKIP LIST (' $22-24$ l'); CALt PRGWAXI(6); TBLO7580 PUT FILE(SYSPRINT) SKIP LIST (' $24-26$ (1); CALL PRGWAXI(7); TBLO7590 PUT FILE (SYSPRINT) SKIP LIST (1 $26-28$ 11); CALL PRGWAXI(8); TBL07600 PUT FILE(SYSPRINT) SKIP LIST (• $28-30$ il); CALL PRGWAXI(9); TBLO76IO PUT FILE(SYSPRINT) SKIP LIST (1 $30-32$ 1'); CALI PRGWAXI(10); TBLO7620 PUT FILE(SYSPRINT) SKIP LIST (' $32-34$ i'); CALL PRGWAXI(11); TBLO7630 PUT FILE(SYSPRINT) SKIP LIST (• $34-36$ 1•); CALL PRGWAXI(12); TBLO7640 PUT FILE(SYSPRINT) SKIP LIST (" $36-38$ l'); CALL PRGWAXI(13); TBLO7650 PUT FILE(SYSPRINT) SKIP LIST (• $38-40$ li); CALL PRGWAXI(14); TBLO7660 PUT FILE (SYSPRINT) SKIP LIST ($40-45$ 1:); CALL PRGWAXI(15); TBL07670 PUT FILE(SYSDRINT) SKIP LIST (1 $45-50$ (1); CALL PRGWAXI(16); TBL.07680 PUT FILF(SYSPRINT) SKIP LIST (' $50-55$ 1'); CALL PRGWAXI(17); TBLO7690 PUT FILE(SYSPRINT) SKIP LIST (• $55-60$ | $)$ (CALL PRGWAXI(18); TBLO7700 PUT FILE(SYSPRINT) SKIP LIST (• $60-65$ (•); CALL PRGWAXI(19); TBLO7710 PUT FILE(SYSPRINT) SKIP LIST (1 65-60 |1); CALL PRGWAXI(20); TBL07720 PUT FILE(SYSPRINT) SKIP LIST (• $70-75$ 1'); CALL PRGWAX191); TBLO7730 PUT FILE(SYSPRINT) SKIP LIST (• $75-80$ (1); CALL PRGWAXI(22); TBLO7740 PUT FILE(SYSPRINT) SKIP LIST (180-85 (1); CALL PRGWAXI(23); TBLO7750 PUT FILE(SYSPRINT) SKIP LIST (185-90 1•); CALL PRGWAXI(24); TBLO7760 PUT FILEISYSPRINT) SKIP LIST (190-95 1:1; CALL PRGWAX1(25); TBL07770 PUT FILE(SYSPRINT) SKIP LIST (' OVER 95 1'): CALL PRGWAXI(26); TBLO7780 PUT FILE(SYSPRINT) SKIP(I)LIST (' TOTAL (i); TBLO7790 DO I=1 TO 15: PUT FILE(SYSPRINT) EDIT(1 I!) (A); END; TBLO7800 PUT FILE(SYSPRINT) SKIP LIST (1 VEHICLES 1!); CALL PRGWAXI(27); TBLO7810 PUT FILE(SYSPRINT) SKIP LIST ('MEAN GROSSI'); TBLO7820 DO I=1 TO 15; PUTFILF(SYSPRINT) EDIT(M Iי)(A); END; TBLO7830 PUT FILE(SYSPRINT) SKIP LIST (' WEIGHT 1:); TBLO7840 DO I=1 TO 15; PUT FILE(SYSPRINT) EDIT (SDGOWAX(1,I), 1•)(F(5,1), TBLO7850 A): END:

PUT FILE(SYSPRINT) SKIP LIST (' STANDARD ('); TBLO7860 DO I=1 TO 15; PUT FILE (SYSPRINT) EDIT(I I')(A); END; TBLO7880 PUT FILE(SYSPRINT) SKIP LIST (C DEVIATIONI!); TBL07890 OO I=1 TO 15; PUT FILE(SYSPRINT) EDIT (SOGOWAX(2.I), 1')(FI5,1), TBLO7900 A): END ; PUT FILE(SYSPRINT) SKIP(O); DO I=1 TO 29; PUT FILE(SYSPRINT) EDIT (:-) (A); END; TBLO7910 TBLO7920 PUT FILE(SYSPRINT) PAGE LINE (6) EDIT ('GROSS OPERATING WEIGHT ', TBLO7930 'VERSUS $\triangle X L E$ PLACEMENT (CONTINUED FROM PRECEDING PAGE)') TBL07940 (COLUMN(25),A,A);
PUT FILE(SYSPRINT) SKIP(Z) EDIT $1 \cdot$ TANDEM SPACING IS 40 INCHES • TBLO7960 'OR LFSS ') (COLIJMN(38),A,A): TBLO7970 PUT FILE(SYSPRINT) SKIP EDIT (•(AASHO CATFGORIES)•)(COLUMN(48).A); TBLO7980 PUT FILE(SYSPRINT) SKIP(2) EDIT ('1,2 AND 3 INDICATE SINGLE,BITAN',TBLO7990

```
    PUT FILE(SYSPRINT) SKIP LIST (' 28-30 1'); CALL PRGWOS(9); TBLO6830
    PUT FILE(SYSPRINT) SKIP LIST (' 30-32 |'); CALL PRGWOS(lO); TRL06840
    PUT FILE(SYSPRINT) SKIP LIST (' 32-34 1'); CALL PRGWOS(11); TBL06850
    PUT FILE(SYSPRINT) SKIP LIST (: 34 - 36 |!); CALL PRGWOS(12); TBL06860
    PUT FILE(SYSPRINT) SKIP LIST (' 36-38 l'); CALL PRGWOS(13); rBLO6870
    PUT FILE(SYSPRINT) SKIP LIST (' 38-40 (1); CALL PRGWOS(14);
    PUT FILE(SYSPRINT) SKIP LIST (1 40-45 (1); CALL PRGWOS(15);
    PUT FILE(SYSPRINT) SKIP LIST (' 45 - 50 |'); CALL PRGWOS(l6);
    PUT FILE(SYSPRINT) SKIP LIST (' 50-55 (1); CALL PRGWOS(17);
    PUT FILE(SYSPRINT) SKIP LIST (. 55-60 1'); CALL PRGWOS(18);
    PUT FILF(SYSPRINT) SKIP LIST ('60-65 |'); CALL PRGWOS(I9);
    PUT FILE(SYSPRINT) SKIP LIST (' 65-70 |!); CALL PRGWOS(20);
    PUT FILE(SYSPRINT) SKIP LIST (' 70-75 |!); CALL PRGWOS(?1);
    PUT FILE(SYSPRINT) SKIP LIST (:75-80 l:); CALL PRGWOS(22);
    PUT FILE(SYSPRINT) SKIP LIST (. 80-85 1%:; CALL PRGWOS(23);
    PUT FILE(SYSPRINT) SKIP LIST (1 85-90 l'); CALL PRGWOS(24);
    PUT FILE(SYSPRINT) SKIP LIST (0 90 - 95 |!): CALL PRGWOS(25);
    PUT FILE(SYSPRINT) SKIP LIST (' OVER 95 |'); CALL PRGWOS(26);
    PUT FILEISYSPRINT.) SKIP LIST (' TOTAL |');
    DO l=1 TO 1l; PUT FILEISYSPRINT) EDIT(' |'|(A); END;
    PUT FILE(SYSPRINT) SKIP LIST (' VEHICLES |!); CALL PRGWOS(27);
    PUT FILF(SYSPRINT) SKIP LIST ('MEAN GROSS|');
    DO I=1 TO ll; PUT FILE(SYSPRINT) EDIT(' IO)(A); END; PBL07050
    PUT FILE(SYSPRINT) SKIP LIST (% WEIGHT l'); TBL07060
    DO I=1 TO 10; PUT FILE(SYSPRINT) EDIT (SDGOWOS(l,I),' |')(F(5,1), TBLO7070
        A); END;
    PUT FILE(SYSPRINT) EDIT (' ---- (') (A);
    PUT FILE(SYSPRINT) SKIP LIST (' STANDARD |');
    DO I=1 TO 11; PUT FILE(SYSPRINT) EDIT(' l')(A); END;
    PUT FILE(SYSPRINT) SKIP LIST(' DEVIATIONI'I;
            DO I=1 TO 10; PUT FILE(SYSPRINT) EDIT (SDGOWOS(2,I).' 1')
            (F(5,1),A); END;
        PUT FILE(SYSPRINT) EDIT (' ---- (') (A);
        PUT FILE(SYSPRINT) SKIP(O) EDIT (',
```



```
        (A,A);
PRGWOS : PROCEDURE(CA);
    DCL CA FIXED BINARY (31);
    DO I=1 TO Ll;
    PUT FILE(SYSPRINT) EDIT (GOWVSOS(I,CA),' 1')(F(5,O),A);
    END;
END PRGWOS;
END GWVSOSC;
* PROCESS ('OPT=1')
GWAXC : PROCEDURE (GOWVSAX,SDGOWAX); TBLO7260
    DECLARE PRGWAXI ENTRY (FIXED BIN (31)), TBL00430
                PRGWAX2 ENTRY (FIXED BIN (31)); TBLO0440
    DCL GOWVSAX(30,27) FIXED BIN(31).
        (SDGOWAX(3,30),DWT) FLOAT BIN (16);
    DO I=1 TO 29; N=GOWVSAX(I,27) * (GOWVSAX(I,27) - 1);
    IF N=O THEN DO;SDGOWAX(2,I) =0; GO TO Gl; END;
    DWT = (GOWVSAX(I,27) * SDGOWAX(2,I) - SDGOWAX(1,I) ** 2) / N;
    IF DWT < O THEN DO; SDGOWAX(2;1) = -l; GO TO Gl; END;
    SDGOWAX(2,I) = SQRT (DWT);
G1: IF GOWVSAX(I,27)=0 THEN DO ;SDGOWAX(1,II= 0; GO TO G2; END: TBL07320
    SDGOWAX(1,I) = SDGOWAX(1,I) / GOWVSAX(I,27); TBLO7330
    GOWVSAX(30,27)= GOWVSAX(30,27) + GOWVSAX(I,27); TBL07340
G2: END;
    PUT FILE(SYSPRINT) PAGE;
    TBLOT350
    TBLO7360
    PUT FILE(SYSPRINT) SKIP(5) EDIT ('GROSS OPERATING WEIGHT VERSUS ', TBLO7370
        'AXLE PLACEMENT')(COLUMN(35),A,A); TBL07380
```

```
    PUT FILFISYSPRINT) SKIP ECIT ('I MAXIMIJM 1',(% 10 IJO TML13560
        I=1 TO 9 )| (COIUMN(9),A,1O A); 1BL13570
```



```
        DO I=21 TO 29)) (COLIMN(9),A,10 (F(7,1),A)); TBL13590
    PUT FILEISYSPRINT) SKIP FDIT('I MINIMUM |',10 I' DO TBL13600
        I=1 TO 9 l) (COLIJMN(9).A.10 A): TPL13610
    PUT FILE(SYSPRINT) SKIP EDIT ('1 EAL |,,(MINLDAASHO(I),' |' TBLI3620
        DO I=21 TO 29)) (COIUMN(9),A,10 (F(7,1),A)); T3L13630
    PUT FILE(SYSPRINT) SKIP EDIT (:AASHO I MEAN I',(' I' TBLI3640
        DO I=1 TO 9 |) (\Delta);
    PUT FILEISYSPRINT) SKIP FDIT ('I FAL |.| MEANAASHO(II.' | TBLI3660
        DO I=21 TO 29)) (COLIMM(9),A,10 (F(7,1),Al); TBL13670
    PUT FILE(SYSPHINT) SKIP FDIT ('| STANDARD |%:(% |BL136BO
        DO I=1 TO 91) (COLUMN(9),11 Al;
    PUT FILF(SYSPRINT) SKIP EDIT ('IDEVIATION |',(SDAASHO(I).: |: TBLI3700
        DO I=21 TO 29)) (CDLUMN(9),A,10 (F(7,1),A)); TBLI3710
    PUT FILEISYSPRINT) SKIP EDIT (I| TOTAL |!.(! I: TBLI3720
        DO I=1 TO 9)) (COLUMN(9).11 A): TBL13730
    PUT FILE(SYSPRINT) SKIF EDIT ('| VEHICLES |',(AXLOVSAXAA(I,21).0 |'TBLI3740
        DO I=21 TO ?9)! (COLUMN(9),A,10 (F(7,0),A)); TBL13750
    PUT FILE(SYSPRINT) SKIP(O) EOIT (('_' DO I=1 TO lOI)) (A); TBLI3760
    END EWLC:
    DONE : END VEmDATA;
* PROCESS ('\capPT=1')
    GWVSOSC : PROC EDURE (GOWVSOS,SDGOWOS); TBLO6490
        DECLARE PRGWOS ENTRY (FIXED BIN (31)); TBL00420
        DCL GOWVSOS(11,27) FIXED BIN(31), TBL06491
        (SDGOWOS(2,10),DWT) FLOAT BIN (16);
    DO I=1 TO 10;
    IF (GOWVSOS(I,27) * (GOWVSOS(I,27) -1)) = O THEN DO; SOGOWOS(2,1)
        =0; GO TO G1; END;
    OWT = (GOWVSOS(I,27) * SOGOWOS(2,1) - SDGOWOSP1,II ** 2)% TBL06530
        (GOWVSOS(I 27) * (GOWVSOS(I.27) -1)):
        IF DWT < O.O THEN DO; SDGOWOS(2,I) = -1; GO TO Gl; END;
        SDGOWOS(2,I) = SQRT(DWT):
    Gl: IF GOWVSOS(I,27) = O THEN DO: SDGOHOS(1,II = 0; GO TO G2: END:
    SDGOWOS(1,I) = SDGOWOS(1,1) / GOWVSOS(I,27);
    GOWVSOS(11,27)= GOWVSOS(11.27) + GOWVSOS(1.27);
G2: END;
    PUT FILE(SYSPRINT) PAGE;
    PUT FILE(SYSPRINT) SKIP (4) EOIT ('GROSS OPERATING WEIGHT VERSUS', TBLO6620
        - OPERATING SPEED') (COLUMN(IT),A,A); TBLO6630
    PUT FILE(SYSPRINT) SKIP (5) LIST (" GROSS 1%); TBL06640
    PUT FILE(SYSPRINT) SKIP EOIT ('OPERATING |','SPFED (MPH)') TBLO6650
        (A,X(3l),A): TBL06660
    PUT:FILE(SYSPRINT) SKIP EDIT (: WEIGHT I UNDER', TBL06670
        'OVFR TOTAL') (A;X(59),A);
    PUT FILE(SYSPRINT) SKIP EDIT(' (KIPS) | 20 20-40 40-50 & TBL06690
        '50-55 55-60 60-65 65-70 70-80 80-90 90 VEHICLES'I TBLO6700
        (A,A);
    TBL06710
```



```
        '
        (A,A):
        ) TBL06730
            TBL06740
    PUT FILE(SYYSPINT) SKIP LIST (' UNDER 4 l'); CALL PRGWOS(1); TBL06750
    PUT FILEISYSPRINT) SKIP LIST (' 4-10 1'); CALL PRGWOS(2); TBL06760
    PUT FILE!SYSPRINT) SKIP LIST (0 10-15 |!); CALL PRGWOS(3); 'TBLO6770
    PUT FILE(SYSPRINT) SKIP LIST (: 15-20 1%); CALL PRGWOS(4); TBL067B0
    PUT FILE(SYSPRINT) SKIP LIST (' 20-22 |!); CALL PRGWOS(5); TBL06790
    PUT FILE(SYSPRINT) SKIP LIST (' 22-24 |'): CALL PRGWOS(6); TBLO6B00
    PUT FILE(SYSPRINT) SKIP LIST (:24-26 |!); CALL PRGWOS(7); TBLO6810
    PUT FILEISYSPRINT) SKIP LIST (0 26-2B 1'); CALL PRGWOS(B); TBLO6B2O
```

```
    -DEM AND TRITANDEM AXLES') (COLUMN(31),A,A); TBLOBOOO
    PUT FILE(SYSPRINT) SKIP(5) LIST (' GROSS |!); TBLOBOIO
    PUT FILE(SYSPRINT) SKIP EDIT ('OPERATING I •,'AXLE PLACEMEN',TBLO802O
    'T !) (A,X(35),A); TBLO8030
    PUT FILE(SYSPRINT) SKIP EDIT (' WEIGHT 1 ','TOTAL'' TBLOBO4O
    (A,X(93),A);
    PUT FILE(SYSPRINT) SKIP EDIT (' (KIPS) 11111111 121110 112110 119,TBLO8060
    '1210 111120 122100 112200 121200 132000 123000 131100 11310',TBLO8070
    -O 111300 OVER 6 VEHICLES') (A,A,A); TBLOBO80
    PUT FILE(SYSPRINT) SKIP(O);
    DO I=1 TO 29; PUT FILE(SYSPRINT) EDIT ('
    -') (A); END
    PUT FILE(SYSPRINT) SKIP LIST (' UNDER 4
    PUT FILE(SYSPRINT) SKIP LIST (' 4 - lo |i); CALL PRGWAX2(2); TBLO8120
    PUT FILE(SYSPRINT) SKIP LIST (' 10-15 1'); CALL PRGWAX2(3); T'BLOB130
    PUT FILE(SYSPRINT) SKIP LIST (' 15-20 |!); CALL PRGWAX2(4); TBLOB140
    PUT FILE(SYSPRINT) SKIP LIST (' 20-22 |'); CALL PRGWAX2(5); TBLOB150
    PUT FILE(SYSPRINT) SKIP LIST (' 22-24 |i); CALL PRGWAX2(6); TBLOB160
    PUT FILE(SYSPRINT) SKIP LIST (' 24-26 1'); CALL PRGWAX2(7); TBLO8170
    PUT FILE(SYSPRINT) SKIP LIST (' 26 - 28 |!); CALL PRGWAX2(8): TBLO8180
    PUT FILE(SYSPRINT) SKIP LIST (' 28-30 |'); CALL PRGWAX2(9); TBLO8190
    PUT. FILE(SYSPRINT) SKIP LIST (' 30 - 32 l'); CALL PRGWAX2(10); TBLO8200
    PUT FILE{SYSPRINT) SKIP LIST (' 32-34 (1); CALL PRGWAX2(11); TBLO8210
    PUT FILEISYSPRINT) SKIP LIST (' 34 - 36 |'); CALL PRGWAX2(12); TBLO8220
    PUT FILE(SYSPRINT) SKIP LIST (' 36 - 38 |!); CALL PRGWAX2(13); TBLO8230
    PUT FILE(SYSPRINT) SKIP LIST (' 38-40 |'); CALL PRGWAX2(14); T8LO8240
    PUT FILE(SYSPRINT) SKIP LIST (' 40-45 l'); CALL PRGWAX2(15); TBLO8250
    PUT FILE(SYSPRINT) SKIP LIST (' 45-50 l'); CALL PRGWAX2(16); TBLO8260
    PUT FILE(SYSPRINT) SKIP LIST (' 50 - 55 1'); CALL PRGWAX2(17); TBLO8270
    PUT FILE(SYSPRINT) SKIP LIST (' 55-60 1'); CALL PRGWAX2(18); TBLO8280
    PUT FILE(SYSPRINT) SKIP LIST (' 60-65 l'); CALL PRGWAX2(19); TBLO8290
    PUT FILE(SYSPRINT) SKIP LIST (' 65-70 1'); CALL PRGWAX2(20); TBLO8300
    PUT FILE(SYSPRINT) SKIP LIST (' 70-75 1'); CALL PRGWAX2(21); TBLO8310
    PUT FILE(SYSPRINT) SKIP LIST (' 75-80 1'); CALL PRGWAX2(22); TBLO8320
    PUT FILE(SYSPRINT) SKIP LIST (' 80-85 1'); CALL PRGWAX2(23); TBLO8330
    PUT FILE(SYSPRINT) SKIP LIST (' 85-90 1!); CALL PRGWAX2(24); T8LO8340
    PUT FILE(SYSPRINT) SKIP LIST (' 90- 95 1'); CALL PRGWAX2(25); TBLO8350
    PUT FILE(SYSPRINT) SKIP LIST (' OVER 95 (1); CALL PRGWAX2(26); T8LO8360
    PUT FILE(SYSPRINT) SKIP LIST (' TOTAL |!); TBLO8370
    DO I=1 TO 15; PUT FILE(SYSPRINT) EDIT(' li)(A); END; TBLO8380
    PUT FILE(SYSPRINT) SKIP LIST (' VEHICLES |%); CALL PRGWAX2(27); T8LO8390
    PUT FILE(SYSPRINT) SKIP LIST ('MEAN GROSSI'); TBL08400
    DO I=1 TO 15; PUT FILE(SYSPRINT) EDIT(' |')(A); END; TBLO8410
    PUT FILE(SYSPRINT) SKIP LIST (' WEIGHT 1'1; TBLO8420
    DO I=16 TO 29; PUT FILE(SYSPRINT) EDIT (SDGOWAX(l,I),' (1)(F(5,1), TBLO84.30
        A); END;
    PUT FILEISYSPRINT) EDIT ('---- |') (A); TBLO8450
    PUT FILE(SYSPRINT) SKIP LIST (' STANDARD |'); TBL08460
    DO I=1 TO 15; PUT FILE(SYSPRINT) EDIT(' l')(A); END; TBLO8470
    PUT FILE(SYSPRINT) SKIP LIST (' DEVIATION|'); TBLO8480
    DO I=16 TO 29; PUT FILE(SYSPRINT) EDIT (SUGOWAX(2,I),' |')(F(5,1), TBLO8490
```



```
        A): END;
    TBL08500
    PUT FILE(SYSPRINT) EDIT (' ---- (') (A)
    TBL08510
    PUT FILE(SYSPRINT) SKIP(O);
    DO I=1 TO 29; PUT FILE(SYSPRINT) EDIT ('___:) (A); END; T8LO8530
PRGWAXI : PROCEDURE (CA);
    DCL CA FIXED BINARY (31); TBLO8560
    DO I=1 TO L5; TBLO8570
    PUT FILE(SYSPRINT) EDIT (GOWVSAX(I,CA).' |') (F(5.O),A); END; TBLO8580
END PRGWAXI;
PRGWAX2 : PROCEDURE (CA);
TBL08590
T BLO8600
DCL CA FIXED BINARY (31);
TBL08610
```

```
    DO I=16 TO 30;
    PUT FILE(SYSPRINTI EDIT (GOWVSAX(I,CA),' l') (F(5,0),A); END;
    END PRGWAX2;
    END GWAXC;
* PROCESS (0OPT=1!)
    OSVSAXC : PROCEDURE (OSVSAX,SDOSAXI;
    DECLARE PROSAXI ENTRY (FIXED BIN (31)),
        PROSAX2 ENTRY (FIXED BIN (31));
    DCL OSVSAX(30,11) FIXED BIN (31),
        (SDOSAX(3,30),OWT) FLOAT BIN(16);
    DO I=1 TO 29;
    N = OSVSAX(I,11) * (CSVSAX(1,11) - 1);
    IF N=0 THEN DO; SDOSAX(2,I) = O; GO TO Gl; END;
    OWT = (OSVSAX(I,11) * SDOSAX(2,I) - SDOSAX(1,I) ** 2) / N;
    IF DWT<O THEN DO; SDOSAX(2.I) = -1; GO TO Gl; END;
    SDOSAX(2,I) = SQRT(DNT);
Gl: IF OSVSAX(I,I l) = D THEN DO; SDCSAX(l,I) = O; GO TO G2; END;
    SDOSAX(1,I) = SDOSAX(1,I) / OSvSAX(I,11);
    OSVSAX(30,11) = OSVSAX(30,11) + OSVSAX(I,11);
G2: END;
    PUT FILE(SYSPRINT) PAGE LINE(4) EDIT ('OPERATING SPEED VERSUS AX',T8L08760
        'LE PLACEMENT','TANDEM SPACING IS 40 INCHES OR LESS','(AASHO',TBL08770
        - Categnries)','1,2 aND 3 INDICATE SINGLE,BITANDEM AND TRITA',TblO8780
        'NDEM AXLES') (COLUMN(40),A,A,SKIP(2),COLUMN(39),A,COLUMN(49),TBL 08790
        A,A,SKIP(2),COLUMN(31),A,A);
        TBL08800
    PUT FILE(SYSPRINT) SKIP(5) EDIT ('AXLE PLACFMENT')(COLUMN(53),A); TBLO8810
    PUT FILEISYSPRINT) SKIP EDIT ('OPERATING | UNDER',' SPEED | 2', TBLO8820
        ' TONS',' (MPH) | 110 110 111 120 1111 1210',TBL08830
        -1120 1300 111111 12110 11210 11120 13100 11300 19,T8LO8840
        '2200') (A,SKIP,A,A,SKIP,A,A,A); TBLO8850
```



```
        | _------------------------------------------------------------------
                                    -,TBLO8870
        ,--------------------------------------
PUT FILE(SYSPRINT) SKIP FDIT ('UNDER 20 (')(A); CALL PROSAXI(1);
PUT FILEISYSPRINT) SKIP EDIT (' 20-40 |!)(A); CALL PROSAXI(2);
PUT FILE(SYSPRINT) SKIP EDIT (' 40-50 (1)(A); CALL PROSAXI(3);
PUT FILE(SYSPRINT) SKIP EDIT (0 50 - 55 |!)(A); CALL PROSAXI(4);
PUT FILE(SYSPRINT) SKIP EDIT (' 55 - 60 (1)(A); CALL PROSAXI(5);
PUT FILE(SYSPRINT) SKIP EDIT (' SO - 65 (!)(A); CALL PROSAXI(6);
PUT FILF(SYSPRINT) SKIP EDIT (' 65-70 l')(A); CALL PROSAXI(7); T8L08950
PUT FILE(SYSPRINT) SKIP EDIT (' 70-80 l')(A); CALL PROSAXI(8); TBL08960
PUT FILE(SYSPRINT) SKIP EDIT (1 80-90 1')(A);-CALL PROSAXI(9); TBLO8970
PUT FILE(SYSPRINT) SKIP EDIT (' OVER 90 (!)(A); CALL PROSAX1(10); TBLO8980
PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL (1) (A); TBLC8990
DO I=1 TO 15;PUT FILE(SYSPRINT) EDIT(' |P| (A); END; TBL09000
PUT FILE(SYSPRINT) SKIP EDIT (' VEHICLES |!)(A); CALL PROSAXI(11); TBLO9010
PUT FILEISYSPRINT) SKIP EDIT (' MEAN |')(A); TBL09020
DO I=1 TO 15:PUT FILE(SYSPRINT) EDIT(' |') (A); END; TBLO9030
PUT FILE(SYSPRINT) SKIP EDIT (' SPEED |')(A); TBL09040
DO I= 1 TO 15;PUT FILF(SYSPRINT) EDIT (SDOSAX(1,I),' |')(F(5,1),A);TBLO9050
        END;
PUT F(LE(SYSPRINT) SKIP EDIT (' STANDARD |!)(A); TBLO9070
DO I=1 TO 15;PUT FILE(SYSPRINT) EDIT(1 10) (A); END; TBL09080
PUT FILEISYSPRINT) SKIP EDIT('DEVIATION |') (A); TBLO9090
DO I=1 TO 15; PUT FILE(SYSPRINT) EDIT (SDOSAX(2,I).' 1')(F(5,1), TBLO9100
        A); END; 位 (
```



```
PUT FILE(SYSPRINT) SKIP(5) EOIT ('AXLE PLACEMENT')(COLUMN(53),A); TBLO9150
PUT FILE(SYSPRINT) SKIP EDIT (POPERATING |.,' SPEED |'., TRLO9160
```

```
    ' TOTAL`,' (MPH) 1111111 121110 112110 111210 111120 1221',TBLO9170
    -OO 112200 121200 132000 123000 131100 113100 111300 OVER 6 ',TBLO9180
    'VEHICLES') (A,SKIP,A,X(98),A,SKIP,A,A,A); TBLO9190
```



```
    PUT FILE(SYSPRINT) SKIP. EDIT ('UNDER 20 |!)(A); CALL PROSAX2(1);
    PUT FILE(SYSPRINT) SKIP EDIT (' 20-40 ()(A); CALL PROSAX2(2); TBL09240
    PUT FILE(SYSPRINT) SKIP EDIT (' 40-50 l')(A); CALL PROSAX2(3); TBLO9250
    PUT FILE(SYSPRINT) SKIP EDIT (' 50 - 55 |')(A); CALL PROSAX2(4); TBLO9260
    PUT FILE(SYSPRINT) SKIP EDIT (' 55 - 60 (1)(A); CALL PROSAX2(5); TBL09270
    PUT FILE(SYSPRINT) SKIP EDIT (' 60-65 (')(A); CALL PROSAX2(6); TBLO9280
    PUT FILE(SYSPRINT) SKIP EDIT (' 65-70 |!)(A); CALL PROSAX2(7); TBL09290
    PUT FILE(SYSPRINT) SKIP EDIT (' 70-80 (')(A); CALL PROSAX2(8); TBLO9300
    PUT FILE(SYSPRINT) SKIP EDIT (' 90- 90 |!)(A); CALL PROSAX2(9); TBLO9310
    PUT FILE(SYSPRINT) SKIP EDIT (' OVER 90 (')(A); CALL PROSAX2(10); TBLO9320
    PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL (') (A); TBLO9330
    DO I=1 TO 15;PUT FILE(SYSPRINT) EDIT(' l') (A); END; TBLO9340
    PUT FILE(SYSPRINT) SKIP EDIT (' VEHICLES |!)(A); CALL PROSAX2(11); TBLO9350
    PUT FILE(SYSPRINT) SKIP EDIT (' MEAN (') (A); TBLO9360
    DO I=1 TO l5;PUT FILE(SYSPRINT) EDIT(' |') (A); END; TBLO9370
    PUT FILE(SYSPRINT) SKIP EDIT (' SPEED |')(A); TBLO9380
    DO I=16 TO 29;PUT FILE(SYSPRINT) EDIT (SDOSAX(1,I),' l')(F(5,1),A);TBLO9390
        END; TBL09400
    PUT FILE(SYSPRINT) EDIT (' ---- (') (A); TBL09410
    PUT FILE(SYSPRINT) SKIP EDIT (' STANDARD |')(A); TBL09420
    DO I=1 TO 15;PUT FILE(SYSPRINT) EDIT(' (') (A); END; TBL09430
    PUT FILE(SYSPRINT) SKIP EDIT ('DEVIATION |') (A); TBLO9440
    DO I=16 TO 29; PUT FILE(SYSPRINT) EDIT (SDOSAX(2,I),' l')(F(5.1), TBL09450
        A); END;
    PUT FILE(SYSPRINT) EDIT (' ---- (') (A); TBLO9470
```



```
PROSAXI : PROCEDURE (CA);
    DCL CA FIXED BINARY (31);
    DO I=1 TO 15;
    PUT FILE(SYSPRINT) EDIT (OSVSAX(I,CA),' |')(F(5,0).A); END;
END PROSAXI;
PROSAX2 : PROCEDURE (CA);
    DCL CA FIXED BINARY (31);
    DO I=16 TO 30;
    PUT FILE(SYSPRINT) EDIT POSVSAX(I,CA),' |')(F(5,0),A); END; TBLO9600
END PROSAX2;
TBL09610
TBLO9520
END OSVSAXC;
* PROCESS ('OPT=1')
LDAXCA : PROCEDURE (AXLDVSAXAA,SDLDAXAA); TBLO9720
    DECLARE PRLDAXI ENTRY (FIXED BINARY (31)), TBLOO450
            PRLDAX2 ENTRY (FIXED BINARY (31)); TBLO0460
    DCL AXLDVSAXAA (30,21) FIXED BIN(31),
            (SDLDAXAA(3,29),DWT) FLOAT BIN(16);
    DO I=1 TO 29; N = AXLDVSAXAA(I,20)*(AXLDVSAXAA(1,20) - 1); TBL09730
    IF N=0 THEN DO; SDLDAXAAI2,I)=0; GO TO Al; END; TBL09740
    DWT = (AXLDVSAXAA(I,20)*SDLDAXAA(2,I)-SDLDAXAA(1,I)**2)/ N; TBL09750
    IF DWT < O THEN DO; SDLDAXAA(2,1) =-1; GO TO A1; END; TBLO9760
    SDLDAXAA(2,I) = SQRT(DWT); TBL09770
Al: IF AXLDVSAXAA(I,20)=0 THEN DO; SDLDAXAA(1,I)=0; GO TO A2; END; TBL09780
    SDLDAXAA(1,I) = SDLDAXAA(1,I) / AXLDVSAXAA(I,20);
    AXLDVSAXAA(30,20)= AXLDVSAXAA(30,20) + AXLDVSAXAA(I,20); TBL09800
A2: AXLDVSAXAA(30,21) = AXLDVSAXAA(30,21) + AXLDVSAXAA(I,21); TBLO981C
    END;
TBL09820
```

put file (Sysprint) page line (6) edit ('axle load versus axle placo,tblog830 -EMENT') (CDLUMN(43),A,A); TBL09840 PUT FILE(SYSPRINT) SKIP(2) EDIT (PTANDEM SPACING IS 40 INCHES OR 0 , TBLO9850 'LESS') (COLUMN(41),A,A); TBLO9860 PUT FILE(SYSPRINT) SKIP EDIT (•(AASHO CATEGORIES)•)(COLUMN(49),A): TBLO9870 PUT FILE(SYSPQINT) SKIP(2) EDIT ('l,2 AND 3 INDICATE SINGLE, BITAN',TBLO9880 - DEM AND TRITANDEM AXLES') (COLUMN(31), A,A); TBLOG890

PUT FILE(SYSPRINT) SKIP(5) EDIT (: AXLE I UNDFR', 'AXLE PLACEM•,TBLO9900 -ENT \quad I) (A,X(36),A,A): TBL09910
PUT FILE(SYSPRINT) SKIP EDIT (' LOAD |2 TONS') (A): TBLO9920 PUT FILE(SYSPRINT) SKIP EDIT (' (KIPS) I 110 110 1111 $1120 \quad 1111 \quad 1210 \quad 1120 \quad 1300 \quad 11111 \quad 12110 \quad 11210 \quad 11120$ •TBLO9940 - 1310011300 12200')(A,A,A); TBLO9950
 $\begin{array}{llll} & \text { - } \\ \text { PUT FILE(SYSPRINT) SKIP } \\ \text { PUT FILE }\end{array}$ PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL l'l(A): TBLIO180 PUT FILE(SYSPRINT) EDIT ((0 I' DO I=1 TO 15)) (A); TBLIO190 PUT FILE(SYSPRINT) SKIP EDIT (• AXLES I')(A); CALL PRLDAX1(20); TBL10200 PUT FILE(SYSPRINT) SKIP EDIT (: TOTAL |•)(A); TBLIO210 PUT FILE(SYSPRINT) EDIT (10 I' DO I=1 TO 15)) (A); TBLIO220 PUT FILE(SYSPRINT) SKIP EDIT (•VEHICLES (!)(A); CALL PRLDAXI(21); TBLIO230 PUT FILE(SYSPRINT) SKIP EDIT(PMEAN AXLE (•)(A); TBLIO240 PUT FILE(SYSPRINT) EDIT (10 $1 \cdot$ DO I=1 TO 15) (A); TBLIO250 PUT FILE(SYSPRINT) SKIP EDIT (' WEIGHT l', (SDLDAXAA(1,I), $1 \cdot$ TBL10260 DO $I=1$ TO 15) (A,15 (F(5,1),A)); TBL10270
PUT FILE(SYSPRINT) SKIP EDIT ('STANDARD $\mathrm{I}^{\prime \prime \prime} \mathrm{I}^{\prime} \quad \mathrm{I}^{\prime} \mathrm{DO} \mathrm{I}=1 \mathrm{TO}$ TBLIO280 15) (A);

TBL 10290

PUT FILE(SYSPRINT) PAGE LINF(S) EDIT ''AXLE LOAD VERSUS AXLE PLAC', TBL 10330 -EMENT (CONTINUED FROM LAST PAGE)') (COLUMN(30), A,A): TBL10340
PUT FILE(SYSPRINT) SKIP(2) EDIT (PTANDEM SPACING IS 40 INCHES OR D, TBLIO350 -LESS') (COLUMN(41),A,A);

TBL10360
PUT FILE(SYSPRINT) SKIP EDIT ('(AASHO CATEGORIES) M)(COLUMN(49),A); TBL10370 PUT FILE(SYSPRINT) SKIP(2) EDIT (•1,2 AND 3 INDICATE SINGLE,BITAN', YBLIO380 - DEM AND TRITANDEM AXLES') (COLIJMN(31),A,A); TBL10390

PUT FILF(SYSPPINT) SKIP(5) EDIT (' AXLE J•, 'AXLE PLACEMENT•) TBL 10400 ($A, X(42), A)$;
 PUT FILE(SYSPRINT) SKIP EDIT (' (KIPS) Ill1111 12111011211011\%,TBL10430

```
    '1210 111120 122100 112200 121200 132000 123000 131100 11310',THLIO44.,
    -O 111300 OVER 6 TOTALS ') (A);
    PUT FILE(SYSPRINT) SKIP(O) EDIT ((!-_
    PUT FILE(SYSPRINT) SKIP EDIT (' UNDER 1 |!)(A); CALL PRLJAX2(1);
    PUT FILE(SYSPRINT) SKIP EUIT (' 1 - 3 l')(A); CALL PRLDAXZ(2);
    PUT FILE(SYSPRINT) SKIP EOIT (' 3 - 5 |!)(A); CALL PRLDAX2(3);
    PUT FILE(SYSPRINT) SKIP EOIT (' 5 - 7 |!)(A); CALL PRLDAX\(4);
    PUT FILE(SYSPRINT) SKIP EDIT (' 7 - 9 |!)(A); CALL PRLDAX2(5);
    PUT FILE(SYSPRINT) SKIP EDIT (' 9 - ll |!)(A); CALL PRLDAXZ(6);
    PUT FILE(SYSPRINT) SKIP EDIT (' 11 - 13 |!)(A); CALL PRLDAX2(7);
    PUT FILE(SYSPRINT) SKIP EDIT (' 13 - 15 |')(A); CALL PRLDAX2(9);
    PUT FILE(SYSPRINT) SKIP EDIT (1 15-17 |!)(A); CALL PRLDAX2(9); TBLIO550
    PUT FILE(SYSPRINT) SKIP FOIT (' 17 - 19 |')(A); CALL PRLDAX2(10): TBLIO5hO
    PUT FILE(SYSPRINT) SKIP EDIT (' 19 - 21 (')(A); CALL PRLDAX2(11); TBLIOS70
    PUT FILE(SYSPRINT) SKIP EDIT (' 21 - 23 |')(A); CALL PRLDAX2(12); TBLIO580
    PUT FILE(SYSPRINT) SKIP EDIT (' 23-25 |')(A); CALL PRLDAX2(13); TBLI0590
    PUT FILE(SYSPRINT) SKIP EDIT (' 25-27 (1)(A); CALL PRLDAX2(14); TBL10600
    PUT FILE(SYSPRINT) SKIP EDIT (' 27-29 |')(A); CALL PRLDAX2(15); TBLIOGlO
    PUT FILE(SYSPRINT) SKIP EDIT (' 29 - 31 |')(A); CALL PRLDAX2(16); TBL10620
    PUT FILE(SYSPRINT) SKIP EDIT (1 31 - 33 1')(A); CAI.L PRLDAX2(17); TBLIO630
    PUT FILE(SYSPRINT) SKIP EDIT (1 33-35 |)|(A); CALL PRLDAX2(18); TBLIO640
    PUT FILE(SYSPRINT) SKIP EDIT (' OVER 35 l')(A); CALL PRLDAX2(19); TBLIO650
    PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL |') (A); TBLI0660
    PUT FILE(SYSPRINT) EDIT ((' | DO I=1 TO l5)) (A);
    PUT FILE(SYSPRINT) SKIP EDIT (' AXLES |!)(A);CALL PRLDAX2(20);
    PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL |',(' |' DO I=1 TO
        15)) (A);
    PUT FILE(SYSPRINT) SKIP EDIT (' VEHICLES |')(A); CALL PRLDAX2(2l);
    PUT FILE(SYSPRINT) SKIP EDIT ('MEAN AXLE |',(' |' DO I=I TO
        15))(A);
    PUT FILE(SYSPRINT) SKIP EDIT (' WEIGHT |',(SDLDAXAA(l,I),' |'
        DO I=16 TO 29)) (A,15 (F(5,1),A));
    PUT FILE(SYSPRINT) EDIT (' ---- |') (A);
    P(JT FILE(SYSPRINT) SKIP EDIT (' STANDARD |',(' |' DO I=1 TO
        15)|(A);
    PUT FILE(SYSPRINT) SKIP EDIT ('DEVIATION |',(SDLDAXAAI2,I),' |' TBLIO790
        DO I=16 TO 29)) (A,15 (F(5,1),A));
    PUT FILF(SYSPRINT) EDIT (' --- |') (A);
    PUT FILE{SYSPRINT) SKIP(0) EDIT (('____' DO I=1 TO 29)) (A); TBL10B20
    PRLDAXI : PROCEDURE (CA);
    DECLARE CA FIXED BINARY(31);
    DO l=1 TO 15;
    PUT FILE(SYSPRINT) EDIT (AXLDVSAXAA(I,CA),' |')(F(5,0),A); END;
    END PRLDAXI;
    PRLDAX2 : PROCEDURE (CA);
        DECLARE CA FIXED BINARY(31);
        DO I=16 TO 30;
        PUT FILE(SYSPRINT) EDIT (AXLDVSAXAA(I,CA),' |')(F(5,0),A); END;
    END PRLDAX2;
    END LDAXCA;
* PROCESS ('OPT=1')
    LDAXCK : PROCEDURE (AXI.DVSAX,SDLDAX);
        DECLARE PRLDAX3 ENTRY (FIXED BINARY (31)), TBL00470
                PRLDAX4 ENTRY (FIXED BINARY (31)); TBLO0480
    DCL AXLDVSAX(30,21) FIXED BIN(31),
        (SDLDAX(3,29),DWT) FLOAT BIN(16);
    DO I=1 TO 29; N = AXLDVSAX (I,20)*(AXLDVSAX (I,20) - 1); TBL10950
    IF N=0 THEN DO; SDLDAX {2,I)=0; GO TO Al; END; TBLIO960
    DWT =(AXLDVSAX (I,20)*SDLDAX (2,I)-SDLDAX (1,I)**2:/ N; TBLIO97D,
    IF DWT < O THEN DC; SDLDAX (2,I)= O; GO TO AI; END; TBLIO9B0
    SDLDAX (2,I) = SQRT(DWT); TBLI0990
```

END: TBL11040
put file (Sysprint) page line (6) foit ('axle fioad versus axle placopbliloso
- FMENT•) (COLUMN(43),A,A);
TBL11060
PUT FILE(SYSPRINT) SKIP(2) EDIT(TTANDEM SPACING IS 40 INCHES TO $19, T B L 11070$
- 20 INCHES') (COLUMN(38),A,A): TBL11080
PUT FILE(SYSPRINT) SKIP EDIT ('(KENTUCKY CATEGORIES)') TBL11090
(COLUMN (47),A); TBL11100
PUT FILE(SYSPRINT) SKIP(2) EDIT (:1,2 AND 3 INDICATE SINGLE,BITAN',TBLII110
- DEM AND TRITANDEM AXLFS') (COLUMN(31), A,A); TBLI1120
PUT FILE(SYSPRINT) SKIP(5) EDIT (" AXLF I UNDER','AXLE PLACEMP, TBLIll30
- ENT \quad) ($A, X(36), A, A)$ TBL11140
PUT FILE(SYSPRINT) SKIP EDIT (• LOAD 12 TONS•) (A); TBLI1150
PUT FILE(SYSPRINT) SKIP EDIT (' (KIPS) I 110 110 1111 •TBLIl160
-120 1111 $1210 \quad 1120 \quad 1300 \quad 11111 \quad 12110 \quad 11210 \quad 11120$, TBL 11170
- 13100 11300 $\left.12200^{\circ}\right)(A, A, A)$; TBLI1180

PUT FILE(SYSPRINT) SKIP EDIT (TUNDER 1 if)(A); CALL PRLDAX3(1); TBL11220
PUT FILE(SYSPRINT) SKIP FDIT (• $1-3$ 1')(A); CALL PRLDAX3(2); TBL 11230
PUT FILE(SYSPRINT) SKIP EDIT (• $3-5$ |•)(A); CALL PRLDAX3(3); TBL11240
PUT FILE(SYSPRINT) SKIP EDIT (9 5-7 l')(A); CALL PRLDAX3(4); TBL11250
PUT FILE(SYSPRINT) SKIP El)IT (• $7-9$ |')(A); CALL PRLDAX3(5); TBLII260
PUT FILE(SYSPRINT) SKIP EDIT (• $9-11$ |•)(A); CALL PRLDAX3(6); TBLII270
PUT FILE(SYSPRINT) SKIP EDIT (' 11-13 |')(A); CALL PRLDAX3(7); TBL11280
PUT FILE(SYSPRINT) SKIP EDIT (•13-15 l•)(A); CALL PRLDAX3(8); TBLI1290
PUT FILF(SYSPRINT) SKIP EDIT (' $15-17$ (•)(A); CALL PRLDAX3(9); TBLIl300
PUT FILE(SYSPRINT) SKIP FDIT (. 17-19 j) (A); CALL PRLDAX3(10); TBL11310
PUT FILE(SYSPRINT) SKIP EDIT (•19-21 |•)(A); CALL PRLDAX3(11); TBL11320
PUT FILE(SYSPRINT) SKIP EDIT (' $21-23$ (1)(A): CALL PRLDAX3(12); TBL11330
PUT FILE(SYSPRINT) SKIP EDIT (: $23-25$ l')(A): CALL PRLDAX3(13); TBL11340
PUT FILF(SYSPRINT) SKIP EDIT (' $25-27$ (1)(A); CALL PRLDAX3(14); TBLII350
PUT FILE(SYSPRINT) SKIP EDIT (• $27-29$ (1)(A); CALL PRLDAX3(15); TBLIl360
PUT FILE(SYSPRINT) SKIP EDIT (' $29-31$ |')(A); CALL PRLDAX3(16); TBL11370
PUT FILF(SYSPRINT) SKIP EDIT (• $31-33$ (リ)(A); CALL PRLDAX3(17); TBLI1380
PUT FILE(SYSPRINT) SKIP EDIT (• $33-35$ (1)(A); CALL PRLDAX3(18); TBLIl390
PUT FILE (SYSPRINT) SKIP EDIT (: OVER 35 (i)(A); CALL PRLDAX3(19); TBL11400
PUT FILE(SYSPRINT) SKIP EDIT (• TOTAL $1 \cdot)(A) ; ~ T B L 11410$
PUT FILF(SYSPRINT) EDIT (1 (1 DO I=1 TO 15) (A); TBL11420
PUT FILE(SYSPRINT) SKIP FDIT (' AXLES |')(A); CALL PRLDAX3(20); TBL11430
PUT FILE(SYSPRINT) SKIP EDIT (: TOTAL $1 \boldsymbol{1}(A) ;$ TBL11440
PUT FILE(SYSPRINT) EDIT (I' $1 \cdot$ DO I=1 TO 15) (A); TBL11450
PUT FILE(SYSPRINT) SKIP EDIT (• VEHICLES (1)(A); CALL PRLDAX3(21); TBL11460
PUT FILE(SYSPRINT) SKIP EDIT(OMEAN AXLE (')(A); TBL11470
PUT FILE(SYSPRINT) FDIT (10 $1 \cdot$ DO I=1 TO 151$)$ (A); TBL11480

DO $I=1$ TO 15) (A.15 (F(5,1),A));
PUT FILE(SYSPRINT) SKIP EDIT ('STANDARD $\mathrm{I}^{\prime \prime} \mathrm{I}^{\prime} \quad \mathrm{I}^{\circ} \mathrm{DO} \mathrm{I}=1$ TO TBLII510
151) (A):

DO I=I TO 15) (A,15 (F(5.1),A)); TBL11540
PUT FILF(SYSPRINT) SKIP(O) EDIT(('_- DO I=1 TO 29) (A); TBL11550
PUT FILE(SYSPRINT) PAGE LINE(6) EDIT ('AXLE LOAD VERSUS AXLE PLAC•, TBLIl560
-EMENT (CONTINUED FROM LAST PAGE)') (COLUMN(30),A,A); TBLI1570
PUT FILE(SYSPRINT) SKIP(?) EDIT(TTANDEM SPACING IS 40 INCHES TO $1 \cdot, T B L 11580$
-20 INCHES') (COLUMN(38), A,A); TBL11590
PUT FILE(SYSPRINT) SKIP EDIT ('(KENTUCKY CATEGORIESI') TBLI1600

```
        (COLUMN (47),A):
TBL11610
    PUT FILEISYSPRINT) SKIP(2) EDIT ('1,2 AND 3 INDICATE SINGLE,BITAN',TBLIl620
        @DFM AND TRITANUFM AXLES') (COLUMN(31),A,A); TBL11630
        PUT FILF(SYSPRINT) SKIP(5) EDIT (' AXLE I','AXLF PLACEMENT') TBLIl640
        (A,X(42),A);
    PUT FILE(SYSPRINT) SKIP EOIT (' LOAD |', (')(A,X(98),A); TBLl1660
    PUT FILF(SYSPRINT) SKIP EDIT (' (KIPS) lllllll 121110 112110 11!,TBLl1670
        '1210 111120 122100 112200 121200 132000 123000 131100 11310',T8L11680
        'O 111300 OVFR 6 TOTALS ') (A);
    PUT FILE(SYSPRINT) SKIP(O) EDIT (1'_- DO I=1 TO 29)) (A); TBLII700
    PUT FILE(SYSPRINT) SKIP EDIT (' UNDER 1 |!)(A); CALL PRLDAX4(1); TBLI1710
    PUT FILE(SYSPRINT) SKIP EDIT (' 1- 3 (')(A); CALL PRLDAX4(2); TBLI1720
    PUT FILE(SYSPRINT) SKIP EDIT (' 3-5 |!)(A); CALL PRLDAX4(3); TBLIl730
    PUT FILE(SYSPRINT) SKIP EDIT (' 5-7 l')(A); CALL PRLDAX4(4); TBLIIT40
    PUT FILF(SYSPRINT) SKIP EOIT (' 7 - 9 |!)(A); CALL PRLDAX4(5); TBLll750
    PUT FILE(SYSPRINT) SKIP EDIT (' 9 - 11 1)|(A); CALL PRLDAX4(6); TBLIl760
    PUT FILE(SYSPRINT) SKIP EDIT (' 11 - 13. '1)(A); CALL PRLDAX4(7); TBLl1770
    PUT FILE(SYSPRINT) SKIP EDIT (' 13-15 1!:(A); CALL PRLDAX4(8); TBLII780
    PUT FILE(SYSPRINT) SKIP EDIT (' 15-17 1')(A); CALL PRLDAX4(9); TBLIl790
    PUT FILF(SYSPRINT) SKIP EDIT (' 17-19 (1)(A); CALL PRLDAX4(10); TBLIl800
    PUT FILE(SYSPRINT) SKIP EDIT ('19-21 (1)(A); CALL PRLDAX4(11); TBLIIBIO
    PUT FILE(SYSPRINT) SKIP EDIT (' 21 - 23 (1)(A); CALL PRLDAX4(12); TBLIl820
    PUT FILE(SYSPRINT) SKIP EDIT (' 23-25 (1)(A): CALL PRLDAX4(13); TBLI1830
    PUT FILE(SYSPRINT) SKIP EDIT (' 25-27 (')(A); CALL PRLDAX4(14); TBLl1840
    PUT FILE(SYSPRINT) SKIP EDIT (1 27-29 1!)(A); CALL PRLDAX4(15); TBL11850
    PUT FILE(SYSPRINT) SKIP EDIT (' 29 - 31 |!)(A); CALL PRLDAX4(16); TBLl1860
    PUT FILE(SYSPRINT) SKIP EDIT (' 31-33 1')(A); CALL PRLDAX4(17); T8Ll1870
    PUT FILE(SYSPRINT) SKIP EDIT (' 33-35 |!)(A); CALL PRLDAX4(l8); TBLll880
    PUT FILE(SYSPRINT) SKIP FDIT (' OVFR 35 l')(A); CALL PRLDAX4(19); TBLI1890
    PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL |') (A): TBLll900
    PUT FILE(SYSPRINT) EDIT (1: |' DO I=1 TO 15)| (A); TBLIl910
    PUT FILE(SVSPRINT) SKIP EDIT (' AXLES I')(A):CALL PRLOAX4(20); TBLIl920
    PUT FILE(SYSPRINT) SKIP EDIT (' TOTAL l',(' I' DO I=1 TO TBLII930
        151) (A);
    PUT FILE(SYSPRINT) SKIP EOIT (' VEHICLES (1)(&); CALL PRLDAX4(21); TBLI1950
    PUT FILEISYSPRINT) SKIP EDIT ('MEAN AXLE |',(' I' DO I=1 TO TBLI1960
        15)|(A);
    PUT FILE(SYSPRINT) SKIP EDIT (' WEIGHT 1',(SDLDAX (1,I),' |' TBLIl980
        DO I=16 TO 2.9)) (A,15 (F(5,1),A)); TBLll990
    PUT FILF(SYSPPINT) EDIT ('---- (') (A); TBLI2000
    PUT FILE(SYSPRINT) SKIP EDIT (' STANDARD |','' |' DO I=1 TO TBLI2OlO
        15)|(A);
        PUT FIIEISYSPRINT) SKIP EDIT ('DEVIATION |!,(SDLDAX (2.II,' |' TBLI2030
        DO I=16 TO 29)) (A,15 (F(5,1),A)); TBLI2040
    PUT FILE(SYSPRINT) EDIT (' ---- (') (A);
    PUT FILFISYSPRINT) SKIP(O) EDIT (('_-- DO I=1 TO 29)) (A); TBLI2060
    PRLDAX3 : PROCEDURE (CA);
    DECLARE CA FIXED BINARY(31);
    DO I=1 TO 15;
    TBL10860
    PUT FILE(SYSPRINT) EDIT (AXLDVSAX (I,CA),' |')(F(5,0),A); END; TBLIO870
END PRLDAX3;
PRLDAX4 : PROCEDURE (CA);
    DFCLARE CA FIXED RINARY(31);
    DO I=16 TO 30;
    PUT FILE(SYSPRINT) EDIT (AXLDVSAX (I,CA),1 10)(F(5,0),A): END:
END PRLDAX4;
    PUT FILE(SYSPRINT) SKIP(O) EDIT (('_- DO I=1 TO 29)) (A); TBLIl700
TBL11690
    TBL11940
    TBLl1970
    TBL12020
    T8L12030
    TBL12050
    TBL10840
    TBL10850
    TBL10880
    rBL10890
    TBL10900
    TBL10910
    TBL10920
    TBL10930
    TBL12070
    END IDAXCK;
/&
//GO. SYSUDUMP DD SYSOUT=A
//GO.TAPE DO UNIT=2400, OISP=(BLD,KEFP), DCR=(RLKSIZE=2500,LRECL:=25,
// \(D E N=2, R E C F M=F R I, V O L=S E R=H I W Y O 9\),
```


[^0]: NDTE: KENTUCKY DOES NOT IDENTIFY TANDEM AXLES SEPARATELY FOR PURPOSES OF COMPUTATION. THE FACTORS USED BY AASHO RELATE TO TRUCK AXLES. IN ADDITION, ThO-AXLE, FOUR TIREC VEHICLES ARE ASSUMED ${ }^{r}$ O CONTRIBUTE O.0002 EAL'S PER VEHICLE. SINGLE AXLE, AASHO FACTBRS RELATE TO FLEXIBLE PAVEMENTS HAVING A TERMINAL SERVICEABILITY INDEX OF 2.5 AND A STRUCTURAL NUMBER OF 5.

