

COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FRANKFORT, KENTUCKY 40601

September 29, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508 TELEPHONE 606-254-4475 H.2.49

Memorandum to: J. R. Harbison State Highway Engineer Chairman, Research Committee

Subject:

CHARLES PRYOR, JR.

COMMISSIONER OF HIGHWAYS

Research Report No. 340; "Construction of Full-Depth Asphaltic Concrete Pavements;" KYHPR-70-49; HPR-1(8), Part II.

The brief, interim report submitted herewith documents the history of the experimental, full-depth, asphaltic concrete paving project (US 60, Ashland-Cannonsburg) through the construction phase. Progress reports are required by PPM 20-6.2. An advance report on the project was made to the Kentucky Highway Conference last March by W. B. Drake; his report was published in the conference proceedings (Bulletin 99, College of Engineering, University of Kentucky, June 1972).

Since the conception of this project, full-depth designs have been employed on some sections of the Green River Valley and Cumberland Parkways. Some tests and evaluations planned for the US 60 project may be conducted also on the Parkway sections to obtain extended data.

A weighing-vehicles-in-motion system will be installed on the US 60 project within the next few months. Other measurements are proceeding according to schedule. Significant developments will be reported from time to time during the next five years.

Respectfully submitted

Jas. H. Havens Director of Research

JHH:dw Attachment cc's: Research Committee

·

. .

· ·

.

.

.

·		TECHNICAL REPORT STANDARD TITLE PAGE
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		
		5. Report Date
Construction of Full-depth Asph	altic Concrete Pavement	September 1972
		6. Performing Organization Code
7. Author(s)	· · · · · · · · · · · · · · · · · · ·	8. Performing Organization Report No.
Jerry D. Ross		340
Herbert F. Southgate		
9. Performing Organization Name and Addr Division of Research	255	10. Work Unit No.
Kentucky Department of Highw	avs	11. Contract or Grant No.
533 South Limestone		KYHPR- 70-49
Lexington, Kentucky 40508		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		
		Interim
		14. Sponsoring Agency Code
16. Abstract Considerable attention pavements. An experimental f 60), and the mechanical resp been tested during construct	tation of section designs and constructio	the Cannonsburg-Ashland Road (US to static and dynamic loading has
17. Key Words Full-depth asphaltic concrete pavem	18. Distribution Sta	tement
Density, Benkelman beam, Road Ra crushed slag aggregate, deflection 19. Security Classif. (of this report)		21. No. of Pages 22. Price
crushed slag aggregate, deflection	iter, DGA,	21. No. of Pages 22. Price

Form DOT F 1700.7 (8-69)

Research Report 340

CONSTRUCTION OF FULL-DEPTH ASPHALTIC CONCRETE PAVEMENTS

KYHPR 70-49, HPR-1(8), Part II Interim Report

by

Jerry D. Ross Research Engineer

and

Herbert F. Southgate Research Engineer Principal

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

in cooperation with the U. S. Department of Transportation Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Kentucky Department of Highways and Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

September 1972

PROJECT DESCRIPTION

Project F 1(10), SP 10-165 and SP 10-145, Boyd County, Cannonsburg-Ashland Road (US 60), was chosen in 1970 by the Division of Design for the investigation of full-depth asphaltic concrete pavement designs and performance (see Figure 1). The eastbound lanes were constructed according to Figures 2 and 3, which show CBR's, total section depths, construction lift thicknesses, test sections and project termini, conventional control section at the east end, and shoulder designs. Existing US 60 lanes were salvaged and incorporated into the westbound lanes from Station 128+00 to Station 321+50. The remainder of the westbound lanes to the Ashland city limits utilized the same design as for the eastbound lanes. Design cross sections are shown in APPENDIX A.

This project was designed as a four-lane, divided highway having two 12- foot lanes in each direction and 10-foot outer shoulders and 4-foot inner shoulders (Figure 4). The center area was designed as a depressed grass median (Figure 5) from Station 128+00 to Station 312+00; and from Station 312+00 to Station 329+50, a paved flush median (Figure 6) was constructed to allow easy access to a shopping center. The section from Station 329+50 to the Ashland city limits was designed with a lip curb and gutter and a paved, 16-foot, mountable median (Figures 7 through 9).

The eastbound lanes from Station 80+00 to Station 128+00 were constructed using conventional designs. This section was not a part of the research study but can be used as a control correlation with the full-depth asphaltic concrete sections.

The contract for this project was awarded to Kentucky Road Oiling Company, Georgetown, Kentucky on May 12, 1970. Paving was subcontracted to Ashland Asphalt Paving, Ashland, Kentucky. Construction was to begin no later than June 12, 1970, and was to be completed by December 1, 1971.

CONSTRUCTION EQUIPMENT

The subgrade was compacted with a sheepsfoot roller and a vibrating roller and cut to grade with a CMI machine (Figures 10 and 11). Final compaction was accomplished with a RayGo "Rascal" vibratory roller and a pneumatic-tired roller.

Slag DGA base, where used, was laid with an aggregate spreader box and was compacted with a RayGo "Rascal" vibratory roller. Final grade was cut with a CMI machine and final compaction was also accomplished with the RayGo "Rascal".

A Barber Greene Model SB-50 paver with a 24-foot capacity (Figure 12) was used to lay both lanes in a single pass, thus eliminating a centerline construction joint. Continuous skids on the SB-50 paver (Figure 13) created a few problems in controlling lift thicknesses. A slight irregularity in the subgrade would cause a thickness change for the length of the skid. For example, as the skid would start over a high area, the thickness of asphaltic material being laid would increase until the skid cleared the raised area. The problem was eliminated by replacing the long, continuous skid with a series of short, articulating skids as shown in Figure 14. Individual skid units would pass over an irregularity in the subgrade without causing a significant change in the pavement thickness. Pavement breakdown rolling was accomplished with a Huber ten-ton, two-axle tandem roller followed by Galion nine-wheel, pneumatic-tired roller for intermediate compaction. Finish rolling was accomplished with a Galion eight-ton, two-axle tandem roller - in the eastbound lanes from Station 373+50 to Station 399+50, a RayGo "Rustler" 404 vibratory roller was used (Figure 15). (For a complete report on the use of the vibratory roller, see Research Report 328 entitled Comparative Evaluation of RayGo 404 Vibratory Roller.)

CONSTRUCTION MATERIALS

Construction supervision and inspection of materials were accomplished in accordance with standard procedures. Tests by Division of Research personnel were for research purposes only and were not used in the control, or acceptance, of materials or construction.

Two types of subgrade material were anticipated in design and construction of the project. From Station 128+00 to Station 210+00, the material was a shale credited with a CBR of 9. This material is found along the alluvial terraces of the East Fork of the Little Sandy River and its tributaries. The remainder of the project was constructed on soil subgrade having a CBR of 3. The soil is derived from materials found in the middle to upper portions of the Breathitt Formation of Middle Pennsylvanian Age. Top portions of exposed cuts may be in the lowest part of the Conemaugh Formation of Upper Pennsylvanian Age.

Dense graded aggregate (DGA) used in the construction was crushed slag. The crushed slag had a specific gravity of 2.33 and was obtained from Standard Slag of Ashland.

Aggregate for the asphaltic concrete was the same as that used for the DGA. Asphalt used as a binder varied from 5.7 percent in the upper lifts of the base to 7.5 percent in the surface mix for the paved median. The slag aggregate contained excessive moisture and created some problems. Moisture was first detected by excessive bleeding of the asphaltic concrete (Figures 16 and 17). PAC 5 asphaltic cement was used in all asphaltic concrete paving, except that PAC 7 was used in the final one-inch seal coat treatment on the shoulders.

SELECTION OF TEST STATIONS

Seventy-four stations were chosen as test stations throughout the project (Table 1). From Station 80+00 to Station 210+00, every fifth station was selected. If one of these stations was located at an intersection, the next station was tested. From Station 210+00 to the end of the project, the same number of stations per section were tested, but these test stations and alternate sites were chosen randomly. Alternate test stations were used wherever one of the chosen test stations was located at an intersection. Locations across the mainline width for the nuclear density tests were selected on a random basis.

At each test station, nuclear density, Benkelman beam, and California Road Rater tests were run. Benkelman beam and Road Rater measurements were taken in each wheel track. Shoulders at each of these stations were also tested.

RESEARCH TESTING

Density tests were run with a Seaman nuclear density meter (Figure 18). Tests were performed on the subgrade, DGA, and each lift of asphaltic concrete. Moisture and density values and the percent of maximum laboratory densities of the subgrade are given in APPENDIX B. Table 2 summarizes moisture-density data and specific gravities of subgrade material obtained from laboratory tests on samples taken from borrow pits. Results of moisture-density tests on DGA are given in Table 3. APPENDIX C gives the moisture content, density, and percent compaction of the asphaltic concrete. Very few problems were encountered with density testing, and almost all planned tests were completed.

Benkelman beam tests (Figure 19) were conducted on each lift of asphaltic concrete. An 18,000-pound, single axleload was used, and tests were performed using the creep speed method. It was found that the asphaltic concrete must cure for two or more days before tests could be run. Tests taken prior to the two-day curing time usually resulted in permanent deformations to the pavements. These deformations were caused by the tires, the Benkelman beam probe points, or both. More than two days curing time was required when the surface temperature rose to 120°F or above. Tests were usually run during the early morning or late afternoon to take advantage of cooler pavement temperatures and to prevent permanent deformations. Due to the paving schedule (APPENDIX D), several tests could not be, completed. The Benkelman beam testing schedule is given in APPENDIX E. Table 4 summarizes test data and age of the asphaltic concrete when tested.

California Road Rater tests (Figure 20) were performed on the subgrade, DGA, and each lift of asphaltic concrete. A static loading of 1600 pounds was used as a standard for the tests. Tests were conducted at frequencies of 20, 25, and 30 cps, using a dynamic force of 600 pounds peak to peak. It was found that the asphaltic concrete had to cure for 24 hours before the tests could be run. Several Road Rater tests were not performed due to the paving schedule (APPENDIX D). Several other tests were not performed because of mechanical problems with the Road Rater. The Road Rater testing schedule is listed in APPENDIX F, and Table 5 a summary of the tests obtained and those not performed and the age of the asphaltic concrete when tested.

TEST RESULTS

All inspection and surveying was done by the Division of Construction for construction control.

Subgrade densities are given in APPENDIX B along with the average percent compaction for each section; Table 3 summarizes DGA densities. Density results and the percent compaction on each lift of asphaltic concrete is given in APPENDIX C.

Three different asphaltic concrete base mixes and two surface mixes were used. A special mix was used for leveling, and a surface mix was used in the median of the curb-and-gutter section. These mix designs are listed in APPENDIX G along with the actual average gradations and asphalt contents. The standard deviation of each mix from the mean is also given. In APPENDIX H, the asphalt content of each construction lift, as obtained from nuclear density tests and by extractions, are compared to design values.

All 10-inch and 16-inch sections had a 2-inch lift immediately over the subgrade. As these two- or three-day-old lifts were being overlaid, deformation was noted under loaded trucks.

Roughness measurements of the full-depth asphaltic concrete pavement were made on December 1, 1971, with the automobile roughness-measuring system. The roughness indexes for the four lanes ranged from 235 to 245, giving an equivalent verbal smoothness rating of excellent. The final profilometer tests have not been completed at this time due to mechanical problems with that equipment.

The roadway between Stations 368+00 and 374+00 was located in a valley. During construction, the subgrade in the eastbound lanes in that area drained poorly and was usually soft and(or) covered by standing water. After the final surface was laid, the eastbound lanes still drained slowly and at times were covered by standing water (Figure 21). The area is thus a potential early failure area.

After final completion of the construction, each test section was cored to obtain the as-constructed thickness. Design and actual thicknesses are summarized in Table 6.

3

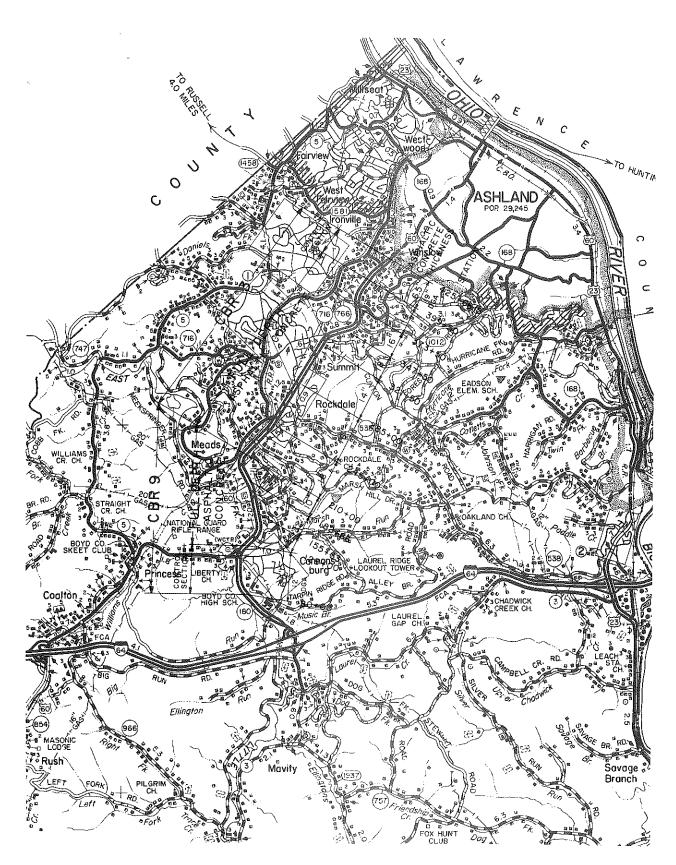


Figure 1. Project Location

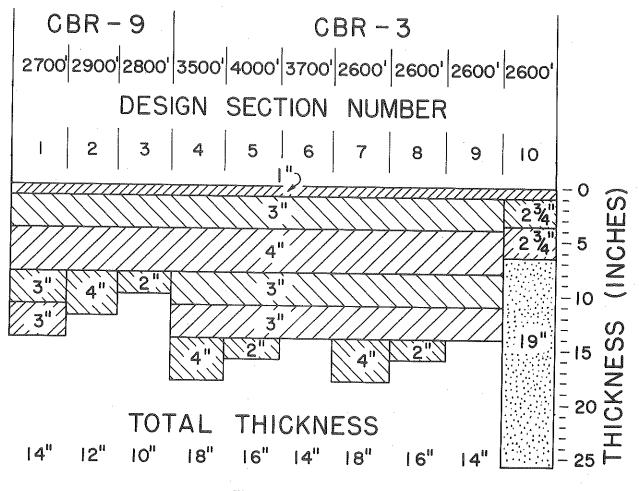


Figure 2. Mainline Design

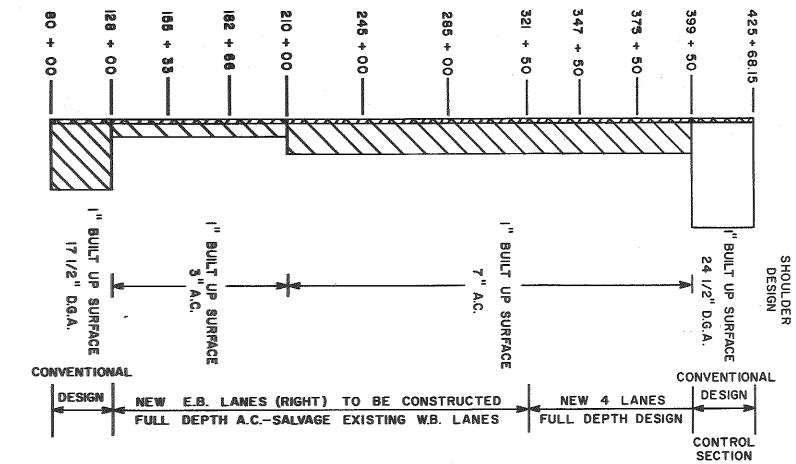


Figure 3. Shoulder Design

¢

· Figure 4. Lane and Shoulder Design



Figure 5. Depressed Grass Median

Figure 6. Paved Flush Median

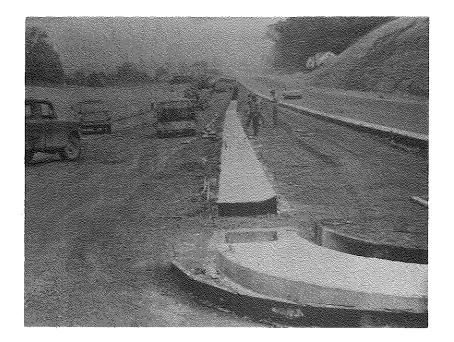


Figure 7. Construction of Lip Curve and Gutter Mountable Median

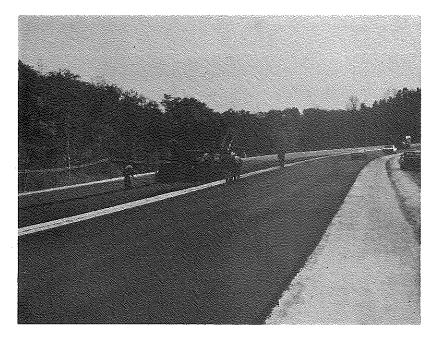


Figure 8. Paving of Lip Curve and Gutter Mountable Median

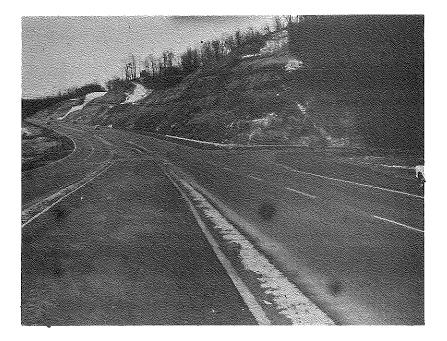
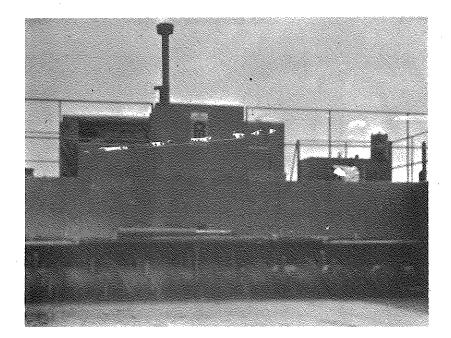



Figure 9. Lip Curve and Gutter Mountable Median

Figure 10. CMI Machine

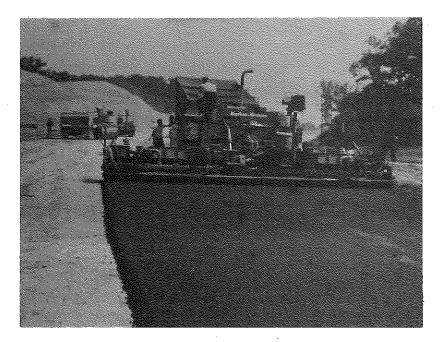


Figure 12. Barber Green 24 Foot Capacity Paver

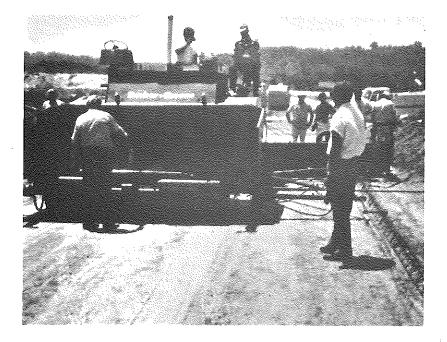


Figure 13. Barber Green SB-50 Paver with Continuous Skids



Figure 14. Barber Green SB-50 Paver with Articulating Skids

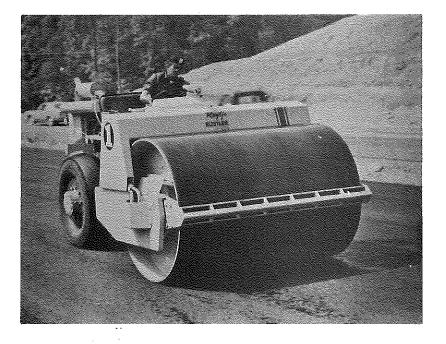


Figure 15. RayGO "Rustler" 404 Vibratory Roller

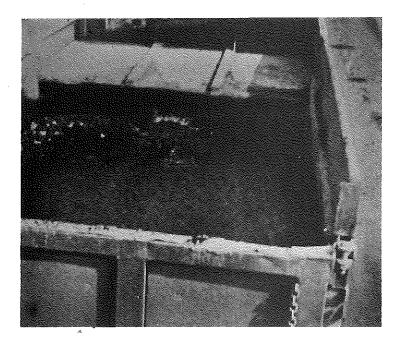


Figure 16. Excessive Bleeding of Asphaltic Concrete

13

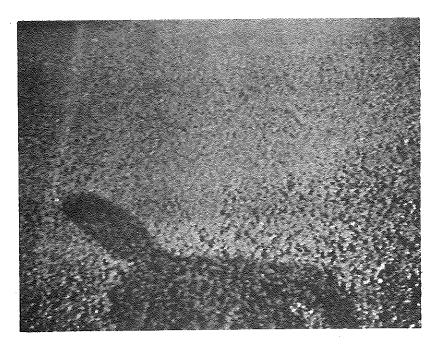


Figure 17. Excessive Bleeding of Asphaltic Concrete

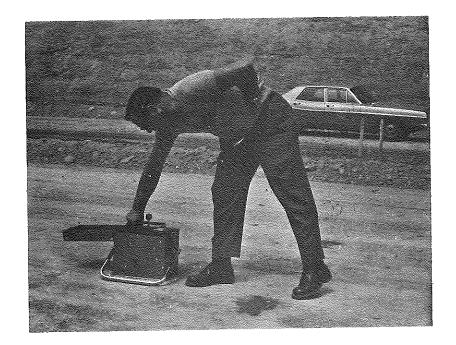


Figure 18. Seaman Nuclear Density Meter

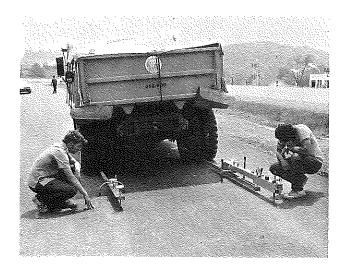


Figure 19. Benkelman Beam Testing

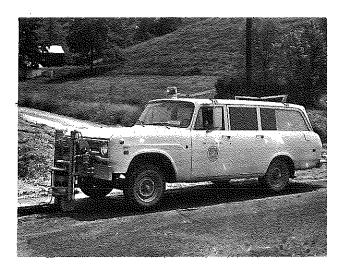
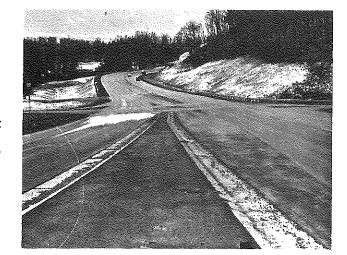



Figure 20. California Road Rater

Figure 21. Standing Water on Pavement

TABLE 1.

PAVEMENT DESIGNS AND RESEARCH TEST LOCATIONS

SECTION NUMBER	DIRECTION OF TRAVEL	BEGINNING STATION								ENDING STATION	CBR**		CKNES NSTRU 2		NCHE		TOTAL BASE THICKNESS (INCHES)		RESE	CARCH TEST ST	ATIONS	
1	EB	128+00	155+33	9	3	3	4	3	•	1.3	130+00	135+00	145+00	150+00	155+00							
2	EB	155+33	182+66	9	4	4	3			11	160+00	165+00	170+00	175+00	180+00							
3	EB	182+66	210+00	9	2	4	3			9	186+00 210+00	190+00	195+00	200+00	205+00							
4	EB	210+00	245+00	3	4	3	3	4	3	17	213+00 232+00	215+00 237+50	215+00 241+50	217+00 242+50	222+00 243+50							
5	EB	245+00	285+00	3	2	3	3	4	3	15	257+50 271+00	262+00 273+50	264+00 276+00	265+00 279+50	268+50							
6	EB	285+00	321+50	З	3	3	4	3		13	289+50 307+00	295+50 314+00	299+00 315+00	306+00	306+50							
7	EB+WB	321+50	347+50	з	4	3	З	4	3	17	323+00	323+50	334+00	338+50	341+50							
8	EB+WB	347+50	373+50	3	2	3	З	4	3	15	349+00	355+00	359+00	360+50	372+00							
9	EB+WB	373+50	399+50	3	3	3	4	Э		13	376+50	379+50	388+00	391+50	396+50							
10	EB+WB	399+50	425+68.15	3	6	6 %	6½	2%	2¾	5½ AC 19 DGA	403+50	405+50	407+50	410+00	414+00							

*One-inch surface on all sections. Layer thicknesses are in order from bottom to top.

** California Bearing Ratio as determined by the Kentucky Department of Highways laboratory method.

TABLE 2.

CHARACTERISTICS OF BORROW MATERIALS

SAMPLE STATION IN BORROW PIT	LIMITING STATION WHICH BORROW M WAS UTILIZ	ATERIAL	MAXIMUM DENSITY* (PCF)	OPTIMUM MOISTURE CONTENT* (PERCENT)	SPECIFIC GRAVITY	PERCENT OF PLUS NO. 4 SIEVE MATERIAI	
83+00	78+00	88+00	119.7	11.3	2.65	21	
93+00	88+00	98+00	117.9	11.3	2.65	24	
103400	98+00 1	08+00	128.9	11.1	2,65	21	
113+00	108+00 1	18+00	122.0	8,6	2.65	21	
123+00	118+00 1	28+00	125.3	10.3	2.65	27	
168+00	128+00 1	80+00	112.4	12.6	2.63	22	
193+00	180+00 2	10+00	114.1	15.1	2.70	42	
201+50	210+00 2	30+00	118.5	12.7	2,70	D	
271+50	230+00 2	74+00	113.5	15,4	2,74	0	
306+00	274+00 3	15+00	106.5	12.5	2,70	0	
377+56	315+00 3	80+00	112.5	16.0	2.74	0	
396+00	380+00 3	99+00	114.1	15.0	2.74	0	
391+00	399+00 4	11+00	109.1	17.5	2.74	0	
	411+00 4	25+68.15	116.1	13.2	2.67	0	

* AASHO T99-70

TABLE 3,

NUCLEAR DENSITY-MOISTURE TESTS ON DENSE GRADED AGGREGATE

BEGINNING STATION	ENDING STATION	LAYER NUMBER	NUMBER OF TESTS	AVERAGE PERCENT MOISTURE	AVERAGE DRY DENSITY (PCF)	AVERAGE PERCENT COMPACTION
81+00	125+00		23	2,7	111.2	77.5
403+50 403+50 403+50	414+00 414+00 414+00	1 2 3	5 5 10	5.4 4.6 4.9	117.2 111.8 119.1	81.6 77.9 83.0
	R STATIONS 403+)	5.0	116.8	81.4*

*Specifications require 85% compaction.

AGE OF ASPHALTIC CONCRETE AT TIME OF BENKELMAN BEAM TESTS

	DIROWION	NUMBER	NUMBER	NUMBER OF STATIONS MISSED	PERCENT OF STATIONS TESTED	AGE OF ASPHALTIC CONCRETE AT TIME OF BENKELMAN BEAM TESTS ONE DAY TWO DAYS THREE DAYS NORE THAN THREE DAY										
LAYER NUMBER	DIRECTION OF TRAVEL	OF STATIONS	OF STATIONS TESTED			NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT			
1	EB	56	5	51	8,9	· 0	0	0	0	3	60.0	2	40.0			
2	EB	56	46	10	82.1	3	6.5	18	39.2	Lą.	B.7	21	45.6			
3	EB	66	57	9	86.4	5	8.8	4	7.0	2	3.5	46	80.7			
4	EB	60	48	12	. 80.0	1	2.1	17	35.4	2	4.2	28	58.3			
5	EB	31	29	2	93.5	0	0	7	24.1	0	Q	22	75.9			
Surface	EB	71	71	0	100.0	0	0	6	6.5	2	2,В	63	88.7			
1	WB	15	0	15	0	0	0	0	0	0	0	0	0			
2	WB	15	14	1	93.3	0	0	3	21.4	0	0	11	78.6			
3	WB	15	14	1	93.3	0	0	0	Ċ	3	21.4	11	78.6			
4	WB	20	15	5	75.0	Û	D	9	60.0	0	0	6	.40.0			
5	WB	15	15	J	100.0	D	0	5	33.3	0	0	10	66.7			
Surface	WB	20	20	3	100.0	0	0	0	0	0	0	20	100.0			

TABLE 5,

AGE OF ASPHALTIC CONCRETE AT TIME OF ROAD RATER TESTS

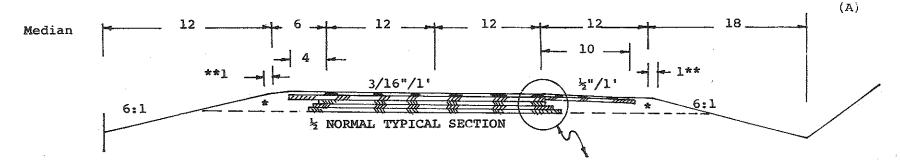
		NUMBER	NUMBER	NUMBER	PERCENT	AGE OF ASPHALTIC CONCRETE AT TIME OF ROAD RATER TESTS												
LAYER	DIRECTION	OF	OF STATIONS	OF STATIONS	OF STATIONS		0 DAYS		ONE DAY		TWO DAYS		THREE DAYS		THREE DAYS			
NUMBER	OF TRAVEL	STATIONS	TESTED	MISSED	TESTED	NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT	NUMBER	PERCENT			
1	EB	59	24	35	40.7	1	4.2	15	62.5	2	8.3	0	C	Б	25,0			
2	EB	69	59	10	85.5	0	0	27	45.8	6	13.6	4	6.8	20	33.6			
3	EB	74	73	1.	98.6	D	D	27	37.0	10	13.7	1.3	17.8	23	31,5			
4	EB	63	59	4	93.7	2	3.4	18	30.5	6	13.6	0	C	31	52.5			
5	EB	34	34	0	100.0	0	0	12	35.3	4	11.6	0	0	18	52.9			
Surface	EB	74	74	0	100.0	C	0	0	Ū	0	D	2	2.7	72	97.3			
1	WB	15	2	13	13.3	0	0	2	100.0	0	0	0	0	0	0			
2	WB	15	14	1	93.3	0	0	5	35.7	3	21.4	6	42.9	0	0			
3	WB	20	20	0	100.0	0	0	1	5.0	Ó	0	Ó	0	3.9	95.0			
4	WB	20	20	a	100.0	0	0	9	45.0	6	30.0	0	0	_5	25.0			
5	WB	15	15	a	100.0	0	0	9	60.0	0	٥	0	0	6	40.0			
Surface	WB	20	20	0	100.0	0	Û	0	Q	0	Ð	C	0	20	100.0			

TABLE 6.

THICKNESSES OF THE DESIGN SECTIONS AS DETERMINED BY CORES

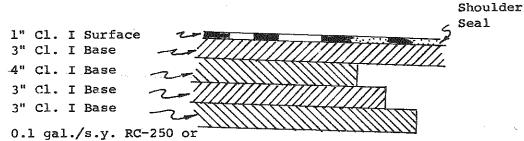
DESIGN S			TOTAL DESIGN	ACTUAL TOTAL		DESIG	N LIFT I	HICKNESS	ACTUAL LIFT THICKNESSES (INCHES)							
BEGINNING STATION	ENDING STATION	DIRECTION	(INCHES)	THICKNESS (INCHES)	l	2	з	4	5	SURFACE	1	2	3	4	5	SURFACE
80+00 128+00 155+33 182+66 210+00 245+00 321+50 347+50 347+50 347+50	128+00 155+33 182+66 210+00 245+00 285+00 371+50 347+50 373+50 373+50 373+50 389+50	EB EB EB EB EB EB EB EB EB EB EB	6.5 14.0 12.0 18.0 16.0 14.0 18.0 18.0 18.0 18.0 18.0 14.0	5.6 14.8 12.0 10.3 17.4 16.9 13.7 18.2 17.1 17.5 17.5 16.3	2.75 3.0 4.0 2.0 4.0 2.0 3.0 4.0 4.0 2.0 2.0 2.0 3.0	2.75 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	4.0 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 4.0	3.D 4.0 4.D 3.D 4.0 4.0 4.0 4.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.1 2.6 3.5 2.6 1.9 2.8 4.9 2.8 4.9 2.6 3.0	2.4 3.4 3.4 3.5 3.5 3.0 3.0 3.4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	3.1 2.6 2.7 3.0 3.3 3.8 2.9 4.1 3.4 5.0	3.1 1.4 3.8 3.9 3.9 3.7 3.7 3.7 3.5 4.1	1.8 2.8 3.2 3.0 2.7 3.5 3.3	1.1 1.1 1.6 1.1 1.1 1.0 1.0 1.1 1.1 1.3 1.3
373+50 399+50 399+50	399+50 425+68 425+68	WB EB WB	14.0 6.5 6.5	14.0 6.8 6.2	3.0 2.75 2.75	3.0 2.75 2.75	4.0	3.0		1.0 1.0 1.0	3.1 2.8 2.5	2.9 2.9 2.4	3.8	3.2		1.0 1.1 1.3

APPENDIX A


- 12 gen -

DESIGN CROSS SECTIONS

· 王王,王王王王,"你说你,王王弟弟弟弟弟弟弟弟子,你们不知道你,你不是你了你,你不是你,你不是你,你不是你?"

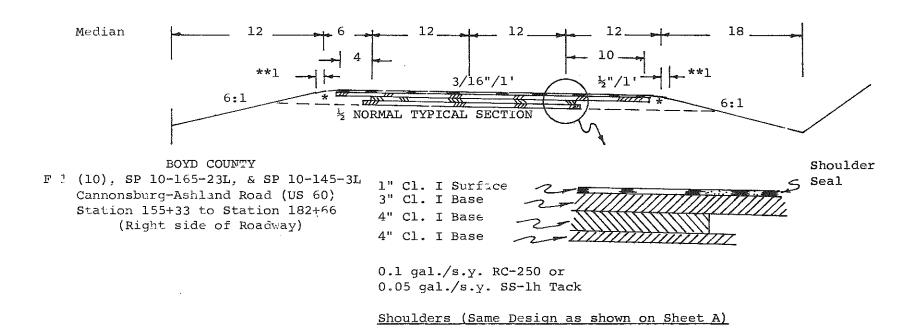

n a sua managementente a concentration de la concentration de la concentration de la concentration de la concent

<u>A</u>4

BOYD COUNTY F 1 (10), SP 10-165-23L, & SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 128+00 to Station 155+33 (Right side of Roadway)

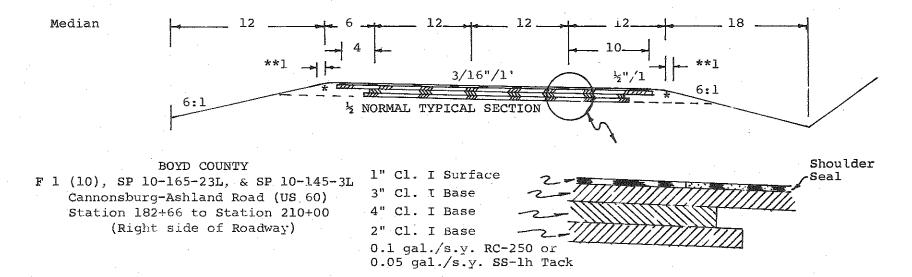
21

0.05 gal./s.y. SS-lh (Tack)

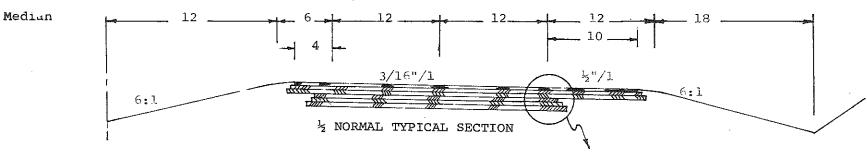

Shoulders

One lift of rock subgrade 3" compt. depth Cl. I Base Bit. Surface Class A-2 0.45 gal./s.y. PAC-7 50 lbs./s.y. Size No. 57 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.15 gal./s.y. PAC-7 20 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers ** 0.20 gal./s.y. PAC-7 ** 15 lbs./s.y. Size No. 8 (spread immediately)

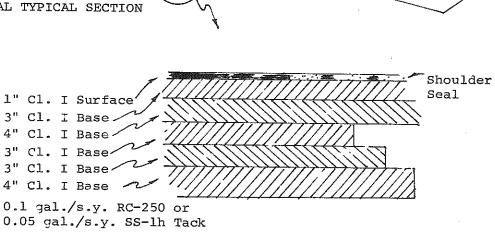
Roll immediately with steel wheel and pneumatic rollers


** The last application of PAC-7 and stone shall be extended down the slope for erosion control.

*This shoulder portion shall be constructed with rock subgrade in accordance with Special Provision No. 41.

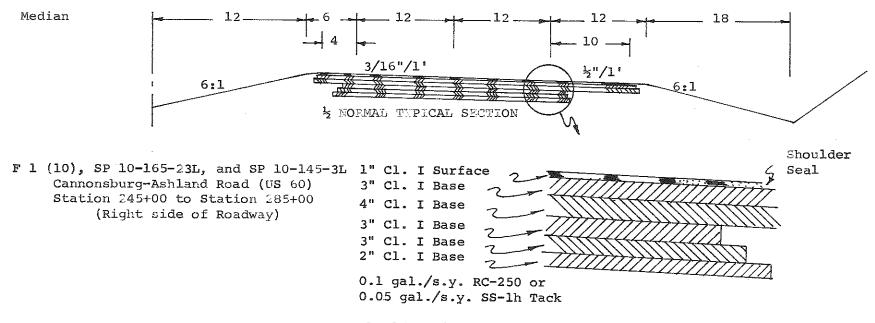

*This shoulder portion shall be constructed with rock subgrade in accordance with Special Provision No. 41.

⊉В)

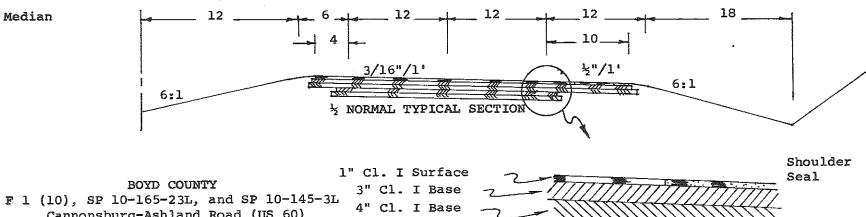

Shoulders (Same Design as shown on Sheet A)

(C)

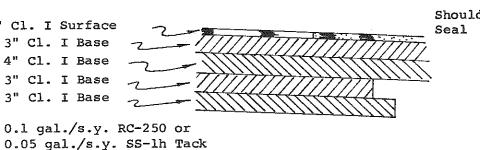
BOYD COUNTY F 1 (10), SP 10-165-23L, & SP 10-145-3L Cannonsburg-Ashland koad (US 60) Station 210+00 to Station 245+00


(Right side of Roadway)

<u>Shoulders</u>

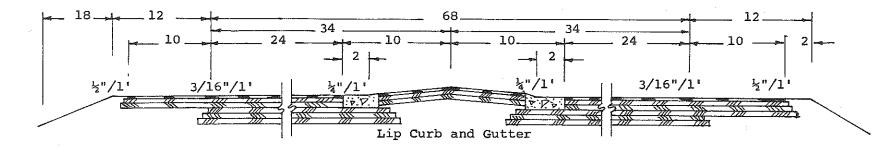

7" compt. depth Cl. I Base (4" + 3" course) Bit. Surface Class A-2 0.45 gal./s.y. PAC-7 50 lbs./s.y. Size No. 57 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.15 gal./s.y. PAC-7 20 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.20 gal./s.y. PAC-7 15 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers

(D)



Shoulders (Same Design as shown on Sheet D)

(E)

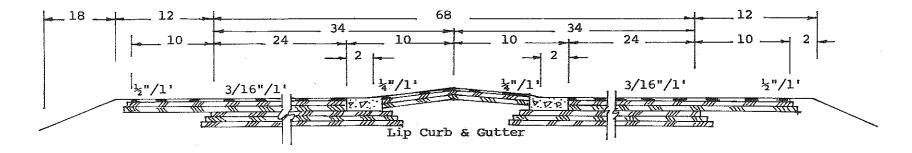


F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 285+00 to Station 321+50 (Right side of Roadway)

(F)

Shoulders (Same Design as shown on Sheet D)

BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 321+50 to Station 347+50


Pavement

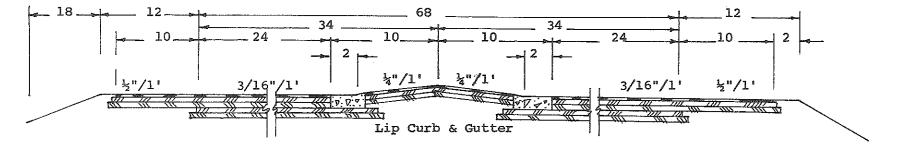
1" Cl. I Surface
3" Cl. I Base
4" Cl. I Base
3" Cl. I Base
3" Cl. I Base
3" Cl. I Base
4" Cl. I Base
0.1 gal./s.y. RC-250 or
0.05 gal./s.y. SS-lh (Tack)

<u>Median</u>

0.5 gal./s.y. RT-2 or AE Primer L (Prime) l" Cl. I Surface 3" Cl. I Base 4" Cl. I Base

Shoulders (Same Design as Shown on Sheet p)

BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 347+50 to Station 373+50


Pavement

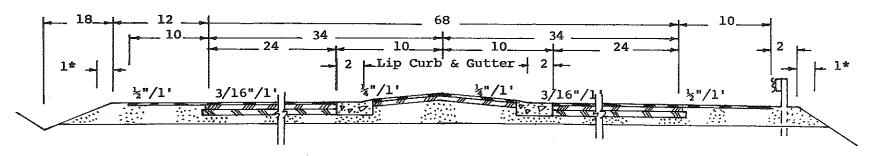
1" Cl. I Surface 3" Cl. I Base 4" Cl. I Base 3" Cl. I Base 3" Cl. I Base 2" Cl. I Base 0.1 gal./s.y. RC-250 or 0.05 gal./s.y. SS-lh (Tack) Median

0.05 gal./s.y. RT-2 or AE Primer L 1" Cl. I Surface 3" Cl. I Base 4" Cl. I Base

Shoulders (Same Design as Shown on Sheet D)

(H)

BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 373+50 to Station 399+50


<u>Pavement</u>

1" Cl. I Surface
3" Cl. I Base
4" Cl. I Base
3" Cl. I Base
3" Cl. I Base
0.1 gal./s.y. RC-250 or
0.05 gal./s.y. SS-lh (Tack)

<u>Median</u> 0.05 gal.

0.05 gal./s.y. RT-2 or AE Primer L 1" Cl. I Surface 3" Cl. I Base 4" Cl. I Base

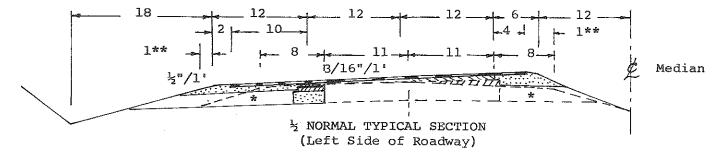
Shoulders (Same Design as shown on Sheet D)

BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 399+50 to Station 425+68.15

<u>Pavement</u>

19" compt. depth D.G.A. Base
5½" compt. depth Cl. I Base (2- 2 3/4" courses)
1" compt. depth Cl. I Surface
0.1 gal./s.y. RC-250 or 0.05 gal./s.y. SS-1h

Shoulders

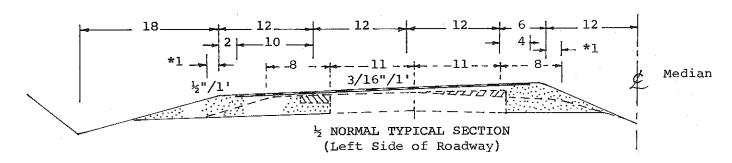

Full depth D.G.A. Base 0.5 gal./s.y. RT-2 or AE Primer L (Prime) Bit. Surface Class A-2 0.45 gal./s.y. PAC-7 50 lbs./s.y. Size No. 57 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.15 gal./s.y. PAC-7 20 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers * 0.20 gal./s.y. PAC-7 * 15 lbs./s.y. Size No. 8 (spread immediately)

<u>Median</u>

Full depth D.G.A. Base 3" compt. depth Cl. I Base 1" compt. depth Cl. I Surface 0.1 gal./s.y. RC-250 or 0.05 gal./s.y. SS-1h

Shoulders (continued)

Roll immediately with steel wheel and pneumatic rollers *The last application of **PAC-7** and stone shall be extended down the slope for erosion control. (J)


BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 128+00 to Station 210+00

Pavement

Widening (trench) 11" compt. depth D.G.A. Base 4½" compt. depth Cl. I Base Overall Surfacing 0.1 gal./s.y. RC-250 or 0.05 gal./s.y. SS-1h Tack Add sufficient tonnage of Cl. I Base and/or Surface for correcting adverse crown and add 500 ton/mile for leveling 2½" compt. depth Cl. I Base 1" compt. depth Cl. I Surface 0.1 gal./s.y. RC-250 or 0.05 gal./s.y. SS-1h Tack

Shoulders One lift of rock subgrade 5" compt. depth D.G.A. Base Bit. Surface Class A-2 0.5 gal./s.y. RT-2 or AE Primer L (Prime) 0.45 gal./s.y. PAC-7 50 lbs./s.y. Size No. 57 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.15 gal./s.y. PAC-7 20 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers **0.20 gal./s.y. PAC-7 **15 lbs./s.y. Size No. 8 (spread immediately)

*This shoulder portion shall be constructed with rock subgrade in accordance with Special Provision No. 41. **The last application of PAC-7 and stone shall be extended down the slope for erosion control.

BOYD COUNTY F 1 (10), SP 10-165-23L, and SP 10-145-3L Cannonsburg-Ashland Road (US 60) Station 210 to Station 321+50

Pavement (Same Design as shown on Sheet K)

Shoulders Full depth D.G.A. Base Bit. Surface Class A-2 0.5 gal./s.y. RT-2 or AE Primer L (Prime) 0.45 gal./s.y. PAC-7 50 lbs./s.y. Size No. 57 (spread immediately) Roll immediately with steel wheel and pneumatic rollers 0.15 gal./s.y. PAC-7 20 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers * 0.20 gal./s.y. PAC-7 * 15 lbs./s.y. Size No. 8 (spread immediately) Roll immediately with steel wheel and pneumatic rollers

*The last application of PAC-7 and stone shall be extended down the slope for erosion control.

(L)

APPENDIX B

(a) the provide state of the state of the

MOISTURE-DENSITY DATA FOR THE SUBGRADE

BEGINNING STATION	ENDING STATION	DIRECTION OF TRAVEL	LOCATION*	NUMBER OF TESTS	AVERAGE PERCENT MOISTURE	MOISTURE (PERC MINIMUM		AVERAGE DRY DENSITY (PCF)	DRY DENS: (PO MINIMUM		AVERAGE PERCENT COMPACTION	COMPACTI (PER) MINIMUM	
128+00	155+33	EB	ML	12	9.2	7.4	12.0	110.6	101.5	120.4	98.4	90.3	107.1
155+33	182+66	EB	ML	10	9.4	5.0	14.2	112.0	100.3	122.3	101.4	89.2	112.3
182+66	210+00	EB	ML	10	9.2	7.4	12.1	107.8	91.0	114.4	96.9	84.9	106.7
210+00	245+00	EB	ML	9	11.4	10.0	13.5	109.4	103.6	115.8	98.5	92.2	103.4
245+00	285+00	EB	ML	9	10.1	7.9	13.0	109.6	103.4	119.8	96.2	90.0	104.0
285+00	321+50	EB	ML	8	10.4	9.3	13.6	107.0	96.7	120.5	100.5	90,8	113.1
321+50	347+50	EB	ML	2	8.1	6,7	9.5	101.7	96.7	106.6	95.5	90.8	100.1
347+50	373+50	EB	ML	4	9.9	7.9	12.3	112.9	106.5	119.8	95.3	89.9	101.1
373+50	399+50	ËB	ML	5	12.4	10.8	15.1	103.5	99.1	109.3	91.3	86,9	95.9
399+50	428+68.15	EB	ML	5	10.7	7,4	13.4	112.4	108.9	117.0	98.5	95.5	102.6
321+50	347+50	WB	ML	5	9.8	8.2	12.7	110.3	89.5	120.0	98.0	79.6	106.7
347+50	373+50	WB	ML	2	10.3	9.9	10.6	112.0	106.3	117.7	99,6	94.5	104.6
373+50	399+50	WB	ML	5	9.5	8.7	11.3	109.9	102.8	113.4	96.9	90.1	99.4
WEIGHTED AVE	ERAGE			85	10.5	5.0	15.1	109.4	91.0	122.3	97.8	84.9	112.3
128+00	155+33	EB	SH	10	8.1	6.9	10.9	117.9	105.1	129.0	104.8	93.5	114.8
155+33	182+66	ΞB	SH	7	9.3	6.5	12.0	108.4	99.7	123.5	96.1	87.4	109.9
182+66	210+00	EB	SH	12	8.2	6.7	10.4	108.5	94.3	120.8	94.5	82.6	105.9
210+00	245+00	EB	SH	7	10.3	8,2	12.1	103.6	99.7	108.7	87.4	84.1	91.7
245+00	285+00	EB	SH	7	8.8	6.7	11.8	105.2	99.1	114.0	94.6	87.3	100.4
285+D0	321+50	EB	SH	11	8.4	3.8	12.3	112.0	94.3	126.8	105.2	88.5	119.1
321+50	347+50	EB	SH	5	8.7	8.1	9.5	112.5	106.5	116.4	100.0	94.7	103.5
347+50	373+50	EB	SH	4	12.6	10.1	15.0	115.8	113.7	121.1	102.9	101.1	107.6
373+50	399+50	EB	SH	5	12.6	10.4	14.6	115.2	111.2	119.3	101.6	97,5	106.0
347+50	373+50	WB	SH	5	13.3	11.7	16.4	114.7	103.8	125.8	102.0	92.3	111.8
373+50	399+50	WB	SH	5	12.6	10,6	13,9	113.6	107.3	117.6	100.2	94.0	103.1
WEIGHTED AVI	ERAGE			78	9.7	3.8	16.4	111.2	94.3	129.0	98.9	82.6	119.1

*ML - Main Line; SH - Shoulders

i

APPENDIX C

.

COMPACTION DATA FOR ASPHALTIC CONCRETE

EGINNING STATION	ENDING STATION	LAYER	DIRECTION OF TRAVEL	LOCATION®	NUMBER OF TESTS	AVERAGE ASPHALT CONTENT (PERCENT)	ASPHALT CON (PERC MINIMUM	(TENT RANGE (ENT) MAXIMUM	AVERAGE BULX DENSITY (PCF)	BULK DENS: (PC) HINIMUM	ITY RANGE F) NAXIMUH	AVERAGE#4 . PERCENT COMPACTION	COMPACTION (PER) MINIMUN	CENT)
128+00	155+33	1 2 3	EB	ML	12 12 12	5.7 N.9 5.8	5.0 4,2 5.1 4,8	6.5 5.3 6.8 6.1	131.0 130,6 130,8 128,7	119.6 125.4 123.5 121.5	137.2 135.2 139.1 135.2	93.8 94.2 94.3 92.8	85,7 90.4 89.0 87.6	98.3 97.5 100.3 97.5
55+33	182+66	SURFACE	EB	ML	12 5 . 8	5.3 5.8 6.6	5.2	6,2 7.1	134.6 133.0	128.0 125.4	139,6 135.2	97.1 95,3	92.9 90.4	100.1 96.8
44.44	100.00	234			8	5.1 6.5 5.0	3.8 5.3 4.0	5.6 7.8 5.6	128.6 128.1 125.5	125,4 121,5 119,6	131.3 133.3 127.4	92.9 92.3 90.5	90.4 87.6 86,2	94.1 96.1 91.9
82+66	210+00	SURFACE	EB	нL	6 12	5.9	5.6 5.0	6.1 7.5	130.6	126,9 121,5	134.2 141.1	94,2 93.2	91.6 87.0	96. 101.
	110.00	2 3 SURFACE	20		10 10 6	5.4 6.0 5.6	4.3 5.6 5.4	6.2 6.5 5.7	130.2 130.9 127.6 131.4	125.4 123.5 122.8	137.2 133.3 134.7	94.4 92.0 94.8	90,% 89,0 80,6	98. 96. 97,
10+00	245+00	12	£Β	н г	5 11	5.4 5.3	4.7 5.0	5.9 6.6	128.2 130.8	123.5	133.3	91.8 94.3	88.5 90.4	95. 98.
		9 4 5			9 9 10	4.5 5.9 4.4	3.8 4.9 3.7	5.0 6.7 5.3	127.2 128.0 126.0	117.5 123.5 121.5 124.8	133.3 133.3 129.3 132.8	91,7 92.3 90.9 94,6	84.8 89.0 87.6 90.0	96, 96, 93, 95,
45+00	285+00	SURFACE 1	EB	NL	7	5.8	5.3 5.4 4,3	6.2	131.1 124.2 125.4	115.7	129,3	89.0 90,4	82,9 84.0	92. 93.
		2 3 4			8 5 7 8	4.9 5.3 5.1	4.5 4.1	5.6 6.3 6.1 6.4	130.3 129.6 132.5	125.4 119.6 129.3	129.3 137.2 133.3 137.2	94.0 93.5 95.6	90.4 86.2 93.2	98. 96. 98.
		SURFACE			10 10 8	5.6 5.9 5.7,	5.4 5.2 5.4	6.0	133.0	128.8	134.7 133.3	95.9	92.9 88.5	97.
85+00	321+50	1 2 3	EB	ML	8	5,4 5,4 5,3	4.8 4.9 4.7	6,0 6,2 5,7	130.6 132.1 132.3	127.4 127.4 127.4	133.3 137.2 137.2	94,2 95,2 95,4	91.9 91.9 91.9	96, 98, 98,
121#50	347+50	SURFACE	£B	HL	0 2	5.5	4.9	6,5	132.6	124.B 127.4	137.8	95.7 92.D	90,0 91.3	99. 92.
121+20	341*50	2 3	20	ны	\$ 7 5	5.9 5.7 4,9	5.6 4.5 4.5	6.2 6.1 7.0 5.7	128.6 132.1 126.6	119.6 127.4 121.5	133.3 137.2 131.3	92.7 95.3 91.3 93.8	86.2 91.9 87.6	96 98 94
		SURFACE			\$ 5	4.5	3.5 5.9	5.5 6.6	130.1	121.5	135.2 141.4	100.2	87.6 98.1	97 102
947+50	373*50	1 2 3	EB	NL	3 4 5	6,8 5.9 5.3	6.3 5.5 8.4	7.8 6.5 7.0	127.4 130.3 134.8	119.6 127.4 129.3	133.3 135.2 139.1	91,3 94,0 96.9	85.7 91.9 93.2	95 97 100
		5 SURFACE			4 5 5	5.2 3.0 5.0	14.8 3.5 5.4	\$.7 4.5 7.1	128.9 127.0 137.1	125.4 121,5 136.0	133,3 133,3 139,6	92.9 91.6 98.9	90.4 87.6 98.1	96 96 100
373+50	399+50	1 2	EB	ML	3	7.0 4.7	6.5 9.1	7.3 5.4	129.3 132.1	125.4 127.4	133.3 139.1	92.6 95.2	89.8 91.9	95 100
		9 9 SURFACE			5 5 5	4.0 3.9 5.9	3.6 3.2 5.3	4.4 4.3 6.2	124.3 123,1 134.6	119,6 119,6 130,6	129.3 129.3 141.4	89.6 88.7 97.1	B6.2 B6,2 94.2	93 93 102
399+50	¥25+68.15	4 5	EB	NL	5 5	4.5 3.6 5.4	4.1 3.0 5.1	5.0 4.0 5.8	127.0 122.7 137.1	123.5 115.7 134.2	131.3 131.3 139.6	91.0 88.0 98.9	88.5 81.0 96.8	94 94 100
321+50	347+50	SURFACE	¥В	HL .	3	5,3	5.0 3.6	5.5 4.4	131.3	127.4	135.2	94.0 93.3	91,2 89,0	95 94
		3			5	3.9 7.4`	2.8 2.7 4.2	4.5	129.3 129.3 128.8 131.7	123.5 115.7 124.8 128.8	135.2 134.7 132.4	93.3 92,9 95.0	83.4 90.0 92.9	97 97 95
347+50	373+50	SURFACE	WB	нг.	5	4.6 5.7	5,3	4.8	137.1	134,2	139.6	98.9	96,8	100
		2 3 4			н 5 5	3.9 4.0 4.0	3.3 3.4 3.4	4.4 4.4 5.0	125.5 128.2 128.0	115.7 121.5 126.9	131,3 133,3 120,8	90.5 92.4 92.3	83.4 87.6 91.5	94 96 92
		SURFACE			5	5.0	4.6 5.6	5,7 6.3	131.5	126.9	132,4 141.4	93.4 97.8	91.5 94.2 84.2	95 102 92
373+50	399+50	1 2 3	WB	ИL	5 5 5	5.9 4.7 4.6	5.0 4.3 4,3	6.9 5.2 5.0	123.9 128.9 132.0	117.6 119.6 128.8	129.3 133.3 136.0	88.7 93.0 95.2 94.8	84.2 86.2 92.9 92.9	96 98 96
		5 SURFACE			5 5 5	5.7 5.7	4.8 4.9 4.9	5.1 6.2 6.3	130.6 137.1 137.4	128.8 134.2 134.2	134,2 139,6 141,4	98.9 99.2	96.8 96.8	100
399+50	414+00	4 5	ыв	ML	5	4.8 3.4	4.3 3.0	5.1 3.7 6.3	121.7 127.6 138.7	109.0 122.8 134.2	128,8 132.4 141.4	87.2 97.0 99.7	78.1 88.5 96.8	92 95 10?
128+00	355+33	SURFACE	EA	SB	5	5.7 5.0	5,2	7.4	125.7	121,5	129.3	90.1	87.0	92
165+33	182+66	1	EB	SH	U N	6,D	4.9 4.5	6.4 7.3	122,5	111.7	129.3 129.3	87.8 87.3	00.0 80.0	92 92
182*66 210+00	210+00 245+00	1 1 2	EB EB	SH	10 13 16	5.8 4.3	4.9 2.8	6.4 4.8	124.1 124.8	113.7	133.3	86,9	01,4 85,2	95 94
245+00	285+00	1 2	63	SH	13 13	4.8 4.7	3.5	6.2	121.1	109.8	131,3	86,7 91.1	78,7 82,0	94 97
285+00	321+50	1 2	EB	sit	11 11	5.0 4.8	4.1 3.9	5.9 6.1	125.4 123.5	117.6	129.3	89.8	84,2 83,4	92 98
321+50	347+5D	1 2	58	sit	0 5	4,4	3.7	5,7	129.3	123.5	135.2	93.3	09.0	97
347+50	373+50	1 2	EB	SH	0. 5	3,2	2.5	3.7	126.2	117.5	131.3	91.0	84.9	94
373+50	399+50	1 2	EB	SK	5 5	4.1 3.8	3.0 2.9	5.0 4,2	123.1 131.7	115.7 121.5	129.3 135.2	88.2 95.0	82.9 87.6	92 97
321+50	347+50	1 2	WB	SH	5 5	4.3 4.6	4.2 4.3	4.7 5.6	127.2 126.3	12%.8 118.0	130.8 132,9	91.1 91.0	89.4 85.1	93 95
347+50	373+50	12	WB	SH	4 4	4.8	3,9 3,8	5.5 5.4	128.7 131.5	120.8 125.2	134.2 136.0	52.2 54.8	86.5 90.3	9 B 9 C
373+50	399+50	1 2	WB	รห	5 5	5.4 4.5	4.1 3.8	6.1 4.8	129.5 131.0	125.2 128.8	136.0 132.⊧	92.8 94.4	89.7 92.9	97 95
128+00	425+68.15	1	COMBINED	NL	69	5.9	4.2	7,8	129.1	115.7	141.1	92.11	82.9	201
		2 3 4	-		85 83 79	5.1 4.7 4.9	3,3 2,8 2,7	5.6 7.8 6.7	129.5 129.7 127.9	115.7 115.7 109.0	139.1 139.1 137.2	93.4 93.5 92.3	83.4 83.4 78.1	100 100 98
		5 SURFACE			53 82	4.6 5,8	3,0 4,9	6.4 7.1	129.4 134.6	115,7 122,8	139.6 141.4	93.2 97.0	81.0 88.6	100
128+OD	425#68.15	1 2	COMBINED	SH	80 69	5.3 կ.ա	3.0 2.5	7.4 6.1	124.2 126.8	109.8 115.7	136.0 137.2	88.9 91.4	78.7 82.0	97 98

 \hbar - ML - Mainline; SH - Shoulder $^{p\alpha}$ - Hased on mix design values; 1st Lift = 139.6 PCF, remainder = 138.7 PCF

det. - Company of

-02

APPENDIX D

a da fan de service a service de la 🚍

•

~

PAVING SCHEDULE

1971 PAVING SCHEDULE

EASTBOUND LANES

	6-2	4	6	- 25) - 20						. 10 -	21			
SURFACE		95 + 00	1		125+90	.1	1	1			177+00	1	1 1			ı	1	I
5TH LIFT Class I base [.]			1		ł		NO 5	тн	COUF	RSE	I			210 + 00	7 -		-231+50 237+25 CI-2	8-9
4TH LIFT CLASS I BASE		6 - 11	5	l.	71 - 6 [58+20 [58+20	1	6 - 28	Б. В. В. В. В. В. В. В. В. В. В. В. В. В.		NO	4 T H	coui	RSE	210+00	7-8	7	- 9	239+40 9 - 8
3RD LIFT CLASS I BASE			6-11		128+00	- 135+00 6-9	. 6 - 1		6-	165 + 75 169 + 40	7-1	1	7-8	209+00		6 - 23	5	7-17
2ND LIFT CLASS I BASE		2 ND		DGA	128+00	1	6 - 7		- 161 + 00		6-8	187+00	6-9	209+00	216+75 81-9	6-1	9	245+75 - 7
IST LIFT CLASS I BASE		IST		DGA	128+00	2~0 136+50	6-	- 3	1	164+50	6-4	1	2 - 8 - 16-0-20 - 16-0-20	209+25	6-17	221+90	6-18	7-1: 74 \$0 54 \$0
DESIGN THICKNESSES	4 T 3 R 2 N		T BAS T BAS T DGA	E 2.75" E 2.75" 6"	I	4 TH L 3 RD L 2 ND L	A SURF _IFT BA IFT BA IFT BA IFT BAS	.SE 3' SE 4" SE 3"	3 RD	LIFT LIFT	BASE 3 BASE 4	3" 3 RD 4" '2 ND	E A SURI LIFT B/ LIFT B/ LIFT B/	FACE I" ASE 3" ASE 4"	TYPE 5 TH 4 TH 3 RD 2 ND I ST	LIFT LIFT LIFT	BASE BASE BASE BASE	1" 3" 4" 3" 3" 4"
DESIGN SECTION NUMBER		RT OF		N WAS RESEAR		00+82	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2		182 + 66	3	210 + 00		4		245+00
STATION	80 + 00 90 + 00	00+00	· ·	+ i	+		140+00	150+00	160+00	00+021	180+00	+	200+00	210+00	220+00	00+026		245+00

NOTE : A / indicates the same month as the previous date.

6-28 / 30 means 6-28 and 6-30.

1971 PAVING SCHEDULE

EASTBOUND LANES

	10 - 21		_1	ħ	0-25	-1					II-13						11-14	
	1	1	283+00	ı		3 + 50	I	I	1	1	1			ſ	1	409 + 50	1	SURFACE
252+50 0	8-24	-271+50	8-28 00+588		5 TH	COURSE	321+50 00	328+00 05- 	9-17	-	-36 *25	9-18		05TH	COURSE	9-29 00 ** **	42 +50	5TH LIFT CLASS I BASE
8-8 520+20 520	8-7	269+50 0			302+25	8-30	-321+50	3-23 09+ 88 8	9-14		387+80	9-15	373+50	9-28	399+50 6 399+50 6		- <u>421+50</u>	4TH LIFT Class I base
7-17 523+34 523	2-2 264+50	Ś	8-12 00+582		8-19	/20 314+80	6 + 00 21+50	8-17	343+10	8-2	360.50	8-27	373+60	9-27	50	8-30 3RD LIFT	0	3RD LIFT Class I base
7-10	264+50 264+50	7-21 7-21 00+222	8-11	289+75	8-12	010+012	1	8-16	344+00	-360+00	8-18 /2 00+19 198	422	25 09+£/£	8-27	399 + 50	8-2 2ND LIF	5 T DGA	2 ND LIFT CLASS I BASE
7-18		7-1	276+35 0	3-10	303 + 00	÷ i	319+00 10	3-13	8-14 348+28	363+25 363+25			24 09+ELE	8~25	5 / 27 00+86£	0	4 T DGA	IST LIFT CLASS I BASE
5 TH 4 TH 3 RC 2 ND	E A SU I LIFT I LIFT I LIFT LIFT LIFT	BASE BASE BASE BASE	3" 4" 3" 3"	4 T H 3 R D 2 N D	LIFT LIFT LIFT	JRFACE I" BASE 3" BASE 4" BASE 3" BASE 3"		TYPE A SU STH LIFT ITH LIFT SRD LIFT 2ND LIFT ST LIFT	BASE 3" BASE 4" BASE 3" BASE 3'	5 TH 4 TH 3 RC 2 NC	H LIFT) LIFT) LIFT	BASE BASE BASE BASE	3" 4 TH 4" 3 RC 3" 2 NC 3" 1 ST	e a sur 1 lift b 1 lift b 1 lift b 1 lift b 1 lift b	ASE 3" ASE 4"	3 RD D 2 ND D	SE 2.75" SE 2.75"	DESIGN Thicknesses
	5		285+00		6		321 + 50	7	0 4 7 7 7 7 7 7	22.12	8		373+50	, 9	03+665	10	425 + 68,5	DESIGN SECTION NUMBER
250+00	260+00	270+00	280+00	290+00	300+00	310+00	320+00	330+00	340+00	350+00	360+00	370+00	380.00	00+065	400+00	410+00	420+00 425+68,15	

1971 PAVING SCHEDULE

WESTBOUND LANES

	\sim				8				
SURFACE			- 7		370+0	1 1	11 - 12	1 1	
5TH LIFT Class I base		II - 2 I	347+50	11 - 3	11 - 4 92 + 52 800+02 80 80	5 TH COURSE	399 + 50	10 - 26	
4TH LIFT Class I base			IO - 27	365+00	10 - 28 - 4 S7 + 12 E2 + 12	4 II - 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 388 + 20 1	25 IO-26 25 IO-26 52 52 52 52 52 52 52 52 52 52 52 5 52 5 5 52 5 5 5 5	074
3RD LIFT Class I base		9 - 29 352+20	9 - 30	. 1	Õ N	0 - 29	• 01 9 + 50 9 +	* *	421+50 421+50
2ND LIFT CLASS I BASE		9 -	52 1990 1990 1990 1990 1990 1990 1990 199	9 - 27		10 - 5	399+50 0 406+00 8	0 0	421+50 / 92 /
IST LIFT CLASS I BASE		9 - 23 09 + 23	9-2	4	1 - 01 * 368 • 30	10 - 4 0 <u>5</u> 18:	8-01 406+50 406+00		4 <u>5 +</u> 20 7
DESIGN THICKNESSES	NOTE: SALVAGED PAVEMENT COVERED WITH LEVELING COURSES AND ONE INCH OF TYPE A SURFACE		E 3" 5 TH E 4" 4 TH E 3" 3 RD E 3" 2 ND	A SURFACE LIFT BASE LIFT BASE LIFT BASE LIFT BASE LIFT BASE	3" 4 TI 4" 3RI 3" 2NI 3" IST	PE A SURFACE I H LIFT BASE 3 D LIFT BASE 4 D LIFT BASE 3 LIFT BASE 3	5 TH 5 TH 4" 4 TH 3" 3 RD	LIFT BASE 2.7 LIFT BASE 2.7 LIFT DGA 6 LIFT DGA 6.	,75 " 75 " .75 " .5 "
DESIGN SECTION NUMBER		7	347 + 50	8	373 + 50	9	399 + 50	10	
STATION	128+00 321+50	330•00	350+00	360+00	370+00 380+00	00+06£	400+00	410+00	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -

APPENDIX E

All a strategies of the strategies of the strategies

een doodaata (1990) daalaa

BENKELMAN BEAM TESTING SCHEDULE

·

							· · ·	
TEST STATION	DIRECTION OF TRAVEL	DESIGNED NUMBER OF LAYERS	lst LAYER	2nd LAYER	3rd LAYER	4th LAYER	5th LAYER	SURFACE
81+00 85+00 90+00 100+00 105+00 110+00 110+50 120+00 125+00 130+00 135+00 140+00 155+00 155+00 155+00 155+00 155+00 155+00 168+00 195+00 195+00 200+00 205+00	EB EB EB EB EB EB EB EB EB EB EB EB EB E	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DGA DGA DGA DGA DGA DGA DGA DGA DGA DGA	DGA DGA DGA DGA DGA DGA DGA DGA DGA DGA	June 15, 1971 June 15, 1973 June 15, 1971 June 11, 1971 June 15, 1971 June 15, 1971 June 15, 1971 June 15, 1971 June 15, 1971 June 15, 1971 July 7, 1971 July 13, 1971 July 13, 1971 July 13, 1971 July 13, 1971	June 18, 1971 June 18, 1971 Juny 7, 1971 July 7, 1971 July 7, 1971 July 7, 1971 July 7, 1971		July 7, 1971 July 7, 1971 Oct. 26, 1971 Oct. 26, 1971 Oct. 26, 1971 Oct. 27, 1971 Oct. 27, 1971 Oct. 26, 1971
203+00 213+00 213+00 215+00 215+50 217+00 222+00 241+50 257+50 265+00 265+00 265+00 273+50 273+50 273+50 273+50 279+50 295+50 299+00 306+50 307+00 307+00	EB EB EB EB EB EB EB EB EB EB EB EB EB E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	June 8, 1971	June 11, 1971 June 22, 1971 July 20, 1971 July 20, 1971 July 20, 1971 July 20, 1971 July 20, 1971 Aug, 17, 1971	July 13, 1971 June 28, 1971 June 28, 1971 June 28, 1971 June 28, 1971 June 28, 1971 June 28, 1971 July 20, 1971 July 20, 1971 Aug. 2, 1971 Aug. 2, 1971 Aug. 2, 1971 Aug. 2, 1971 Aug. 17, 1971 Aug. 17, 1971 Aug. 17, 1971 Aug. 24, 1971	July 13, 1971 July 13, 1971 July 13, 1971 July 13, 1971 July 13, 1971 wet at Aug. 11, 1971 Aug. 11, 1971 Aug. 11, 1971 Aug. 11, 1971 Aug. 11, 1971 Aug. 24, 1971 Aug. 24, 1971 Aug. 24, 1971 Aug. 24, 1971 Sept. 8, 1971	July 16, 1971 July 16, 1971 July 16, 1971 July 16, 1971 July 16, 1971 Aug. 11, 1971 Aug. 11, 1971 Sept. 8, 1971	Oct 26, 1971 Oct 27, 1971 Oct 27, 1971 Oct 27, 1971 Oct 27, 1971 Nov.17, 1971 Nov.17, 1971 Nov.17, 1971
315+00 323+00 323+50 334+00 338+50 341+50 355+00 355+00 355+00 355+00 355+00 355+00 355+00 376+50 376+50 376+50 376+50 391+50 391+50 391+50 395+50 405+50 405+50 405+50 410+00 414+00	EB EB EB EB EB EB EB EB EB EB EB EB EB E	465555554444455555	*** *** *** *** *** *** *** *** *** **	Aug. 18, 1971 *** *** *** *** Aug. 23, 1971 Aug. 23, 1971 Aug. 23, 1971 Aug. 23, 1971 Aug. 23, 1971 Sept. 9, 1971 S	Aug. 24, 1971 Aug. 18, 1971 Aug. 18, 1971 Aug. 18, 1971 Aug. 18, 1971 Aug. 18, 1971 Sept. 9, 1971 Sept. 9, 1971 Sept. 9, 1971 Sept. 9, 1971 Sept. 9, 1971 Sept. 9, 1971 Aug. 18, 1971 Sept. 9, 1971 Dept. 9, 1971 Sept. 9, 1971 Se	Sept. 8, 1971 *** *** *** *** *** *** *** *	Sept. 8, 1971 Sept. 8, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Sept.22, 1971 Oct. 27, 1971 Oct. 27, 1971 Oct. 27, 1971 Oct. 27, 1971	Nov.17, 1971 Nov.17, 1971
323+00 323+50 334+00 334+50 349+50 355+00 355+00 355+00 355+00 369+50 372+25 376+50 379+50 391+50 391+50 391+50 403+50 403+50 403+50 407+50 410+00 410+00	WB WB WB WB WB WB WB WB WB WB WB WB WB W	5 5 5 5 5 5 5 5 5 4 4 4 4 4 5 5 5 5 5 5	R R	Sept. 28, 1971 Sept. 28, 1971 Oct. 6, 1971	Oct. 5, 1971 Oct. 5, 1971 Nov. 1, 1971 Nov. 1, 1971 Nov. 1, 1971 Nov. 1, 1971 Nov. 1, 1971 DGA DGA DGA DGA	Oct. 29, 1971 Oct. 29, 1971 Nov. 10, 1971 Nov. 10, 1971 Nov. 10, 1971 Nov. 10, 1971 Nov. 10, 1971 Nov. 10, 1971	Nov. 8, 1971 Nov. 8, 1971 Oct. 28, 1971 Oct. 28, 1971 Oct. 28, 1971 Oct. 28, 1971	Nov. 30, 1971 Nov. 30, 1971

* - Testing suspended because tests caused permanent deformation in the pavement ** - Missed *** - Asphalt laid too fast **** - Not tested due to excessive superelevation

u ne né vériékérélésétetetetet 🕷 – né vérélésé

the state of the s I .

APPENDIX F

S-

, diservere 🕱 Presentingerer continue of server

ROAD RATER TESTING SCHEDULE

-

			,					
TEST STATION	DIRECTION OF TRAVEL	DESIGNED NUMBER OF LAYERS	låt LAYER	2nđ LAYER	3rd LAYER	4th LAYER	5th LAYER	SURFACE
81+00	EB	44 14	DGA	May 27, 1971	June 14, 1971	June 23, 1971		July 7, 1971
85+00 90+00	EB EB	4	DGA DGA	May 27, 1971 May 27, 1971	June 14, 1971 June 14, 1971	June 23, 1971 June 23, 1971		July 7, 1971 July 7, 1971
95+00 100+00	EB EB	4 4	DGA DGA	May 27, 1971	June 14, 1971 June 14, 1971	June 23, 1971		July 7, 1971
105+00	EB	4	DGA	June 11, 1971	June 14, 1971	June 23, 1971 June 23, 1971		July 7, 1971
110+00 116+50	EB EB	14 14	DGA DGA	June 11, 1971	June 14, 1971	June 23, 1971 June 23, 1971		July 7, 1971 July 7, 1971
120+00	EB	4	DGA	**	June 14, 1971 June 14, 1971	June 23, 1971		July 7, 1971
125+00 130+00	EB EB	14 11	DGA *	** June 9, 1971	June 14, 1971 June 10, 1971	June 23, 1971 June 30, 1971		July 7, 1971 Nov, 15, 1971
135+00	EB	4	Ŕ	June 9, 1971	June 10, 1971	June 30, 1971		Nov, 15, 1971
140+00 145+00	EB EB	4	* *	June 9, 1971 June 9, 1971	June 11, 1971 June 11, 1971	June 30, 1971 June 30, 1971		Nov. 15, 1971 Nov. 15, 1971
150+00	EB	.4	ń	June 9, 1971	June 11, 1971	June 30, 1971		Nov. 15, 1971
155+00 160+00	EB EB	4 3	* *	June 9, 1971 June 9, 1971	June 11, 1971 June 30, 1971	June 30, 1971		Nov. 15, 1971 Nov. 15, 1971
165+00	EB	3	к ж	June 9, 1971	June 30, 1971			Nov. 15, 1971
170+00 175+00	EB EB	3 3	r ù	June 9, 1971 June 9, 1971	July 15, 1971 July 15, 1971			Nov. 15, 1971 Nov. 15, 1971
180+00	EB	3	*	June 9, 1971	July 13, 1971			Nov. 15, 1971
186+00 190+00	EB EB	3 3	Ŕ	June 9, 1971 June 10, 1971	July 13, 1971 July 13, 1971			Nov. 15, 1971 Nov. 15, 1971
195+00	EB	3 3	*	June 10, 1971	July 13, 1971 July 13, 1971			Nov. 16, 1971 Nov. 16, 1971
200+00 205+00	EB EB	3	**	June 10, 1971 June 10, 1971	July 13, 1971			Nov. 16, 1971
210+00 213+00	EB EB	3 5	** **	**' June 21, 1971	July 13, 1971 June 24, 1971	July 13, 1971	July 15, 1971	Nov. 16, 1971 Nov. 16, 1971
215+00	EB	5	**	June 21, 1971	June 24, 1971	July 13, 1971	July 15, 1971	Nov. 16, 1971
215+50 217+00	EB EB	5 5	**	June 21, 1971 June 21, 1971	June 24, 1971 June 24, 1971	July 13, 1971 July 13, 1971	July 15, 1971 July 15, 1971	Nov. 16, 1971 Nov. 16, 1971
222+00	EB	5	**	June 21, 1971	June 24, 1971	July 13, 1971	July 15, 1971	Nov. 16, 1971
232+00 237+50	EB EB	5 5	**	June 21, 1971 June 21, 1971	June 24, 1971 June 24, 1971	July 14, 1971 July 14, 1971	July 15, 1971 Aug. 11, 1971	Nov. 16, 1971 Nov. 16, 1971
241+50	EB	5	** **	June 21, 1971	July 20, 1971	**	Aug. 11, 1971	Nov. 16, 1971
242+50 243+50	EB EB	5 5	**	June 21, 1971	July 20, 1971 July 20, 1971	** **	Aug. 11, 1971 Aug. 11, 1971	Nov. 16, 1971 Nov. 16, 1971
257+50	EB	5	July 16, 1971	July 20, 1971	July 22, 1971	Aug. 11, 1971	Aug. 25, 1971	Nov, 16, 1971
262+00 264+00	EB EB	5 5.	July 16, 1971 July 16, 1971	July 20, 1971 July 20, 1971	July 22, 1971 July 22, 1971	Aug. 11, 1971 Aug. 11, 1971	Aug. 25, 1971 Aug. 25, 1971	Nov. 22, 1971 Nov. 22, 1971
265+00 268+50	EB EB	5 5	July 20, 1971	kan nan	July 22, 1971	Aug. 11, 1971	Aug. 25, 1971	Nov. 22, 1971 Nov. 22, 1971
271+00	EB	5	July 20, 1971 July 20, 1971	Aug. 2, 1971	Aug. 17, 1971	Aug. 11, 1971 Aug. 19, 1971	Aug. 25, 1971 Aug. 25, 1971	Nov. 22, 1971
273+50 276+00	EB EB	5 5	July 20, 1971 July 20, 1971	Aug. 12, 1971 Aug. 12, 1971	Aug. 17, 1971 Aug. 17, 1971	Aug. 19, 1971 Aug. 19, 1971	Sept. 7, 1971 Sept. 7, 1971	Nov. 22, 1971 Nov. 22, 1971
279+50	EB	5	July 20, 1971	Aug. 12, 1971	Aug. 17, 1971	Aug. 25, 1971	Sept. 7, 1971	Nov. 22, 1971
289+50 295+50	EB EB	4 4	** Aug. 12, 1971	Aug. 12, 1971 Aug. 17, 1971	Aug. 25, 1971 Aug. 25, 1971	Sept. 7, 1971 Sept. 7, 1971		Nov. 22, 1971 Nov. 22, 1971
299+00	EB	4	Aug. 12, 1971	Aug. 17, 1971	Aug. 25, 1971	Sept. 7, 1971		Nov. 22, 1971
306+00 306+50	EB EB	4 4	Aug. 12, 1971 Aug. 12, 1971	Aug. 17, 1971 Aug. 17, 1971	Aug. 25, 1971 Aug. 25, 1971	Sept. 7, 1971 Sept. 7, 1971		Nov. 17, 1971 Nov. 17, 1971
307+00	EB	4	Aug, 12, 1971	Aug. 17, 1971	Aug. 25, 1971	Sept. 7, 1971		Nov. 17, 1971
314+00 315+00	EB EB	4 4	Aug. 12, 1971 Aug. 12, 1971	Aug. 17, 1971 Aug, 17, 1971	Aug. 25, 1971 Aug. 25, 1971	Sept. 7, 1971 Sept. 7, 1971		Nov. 17, 1971 Nov. 17, 1971
323+00 323+50	EB EB	5 5	** **	Aug. 17, 1971	Aug. 18, 1971 Aug. 18, 1971	Aug. 25, 1971 Aug. 25, 1971	Sept. 7, 1971 Sept. 7, 1971	Nov. 17, 1971 Nov. 17, 1971
334+00	EB	5	**	Aug. 17, 1971 Aug. 17, 1971	Aug. 18, 1971	Sept, 15, 1971	Sept, 22, 1971	Nov. 17, 1971
338+50 341+50	EB EB	5 5	** **	Aug. 17, 1971 Aug. 17, 1971	Aug. 18, 1971 Aug. 18, 1971	Sept.15, 1971 Sept.15, 1971	Sept.22, 1971 Sept.22, 1971	Nov. 17, 1971 Nov. 17, 1971
349+00	EB	5	** **	Aug. 17, 1971	Aug. 25, 1971	Sept.15, 1971	Sept.22, 1971	Nov. 17, 1971
355+00 359+00	EB EB	5 5	Aug. 18, 1971	**	Aug. 25, 1971 Aug. 25, 1971	Sept.15, 1971 Sept.15, 1971	Sept.22, 1971 Sept.22, 1971	Nov. 17, 1971 Nov. 17, 1971
360+50 372+00	EB EB	5	Aug. 18, 1971	** Aug. 26, 1971	Aug. 31, 1971 Aug. 31, 1971	Sept, 15, 1971	Sept.22, 1971 Sept.22, 1971	Nov. 17, 1971 Nov. 17, 1971
376+50	EB	4	Aug. 25, 1971 Aug. 26, 1971	Aug, 31, 1971	Sept. 28, 1971	Sept. 29, 1971	Sept. 22, 15/1	Nov, 17, 1971
379+50 3 8 8+00	EB EB	ц 4	Aug. 26, 1971 Aug. 26, 1971	Aug. 31, 1971 Aug. 31, 1971	Sept.28, 1971 Sept.28, 1971	Sept.29, 1971 Sept.29, 1971		Nov. 17, 1971 Nov. 17, 1971
391+50	EB	4	Aug. 26, 1971	Aug. 31, 1971	Sept. 28, 1971	Sept. 29, 1971		Nov. 17, 1971
396+50 403+50	EB EB	4 5	Aug. 26, 1971 DGA	Aug. 31, 1971 DGA	Sept.28, 1971 Aug. 31, 1971	Sept.29, 1971 Sept.28, 1971	Oct. 14, 1971	Nov. 17, 1971 Nov. 17, 1971
405+50	EB	5	DGA	DGA	Aug. 31, 1971	Sept.28, 1971	Oct, 14, 1971	Nov. 17, 1971
407+50 410+00	EB EB	5 5	DGA DGA	DGA DGA	Aug. 31, 1971 Aug. 31, 1971	Sept.29, 1971 Sept.29, 1971	Oct. 14, 1971 Oct. 14, 1971	Nov. 17, 1971 Nov. 17, 1971
414+00	EB	5	DGA	DGA	Aug. 31, 1971	Sept. 29, 1971	Oct. 14, 1971	Nov. 17, 1971 Nov. 17, 1971
323+00	₩B	5	1 ¹	Sept.28, 1971	Oct. 4, 1971	Oct. 28, 1971	Nov. 3, 1971	Nov. 30, 1971
323+50 334+00	WB WB	5 5	ă ă	Sept.28, 1971 Sept.28, 1971	Oct. 4, 1971 Oct. 4, 1971	Oct. 28, 1971 Oct. 28, 1971	Nov. 3, 1971	Nov. 30, 1971 Nov. 30, 1971
338+50	WB	5	*	Sept.28, 1971	Oct. 4, 1971	Oct. 29, 1971	Nov. 3, 1971	Nov. 30, 1971
341+50 349+00	WB WB	5 5	ਸ਼ੇ ਸ਼ੇ	Sept.28, 1971 Sept.28, 1971	Oct. 4, 1971 Oct. 4, 1971	Oct. 29, 1971 Oct. 29, 1971	Nov. 3, 1971 Nov. 4, 1971	Nov. 30, 1971 Nov. 30, 1971
355+00	WB	5	*	Sept.28, 1971	Oct. 4, 1971	Oct. 29, 1971	Nov: 4, 1971	Nov, 30, 1971
359+00 360+50	WB WB	5 5	ที่ ม่า	Sept,28, 1971	Oct, 4, 1971 Oct. 4, 1971	Oct. 29, 1971 Oct. 29, 1971	Nov, 4, 1971 Nov, 4, 1971	Nov. 30, 1971 Nov. 30, 1971
372+25	WB	5	*	Sept.28, 1971	Oct. 5. 1971	Oct, 29, 1971	Nov. 9, 1971	Nov. 30, 1971
376+50 379+50	WB WB	ц ц	म के	Oct. 5, 1971 Oct. 5, 1971	Nov. 2, 1971 Nov. 2, 1971	Nov. 9, 1971 Nov. 9, 1971		Nov. 30, 1971 Nov. 30, 1971
388+00 391+50	WB WB	4	* 0ot 5 1071	OCT. 7, 1971	Nov. 2, 1971	Nov. 9, 1971		Nov. 30, 1971
396+50	WB	ų	Oct. 5, 1971 Oct. 5, 1971	Oct. 7, 1971 Oct. 7, 1971	Nov. 2, 1971 Nov. 2, 1971	Nov. 9, 1971 Nov. 9, 1971		Nov. 30, 1971 Nov. 30, 1971
403+50 405+50	WB WB	5 5	DGÅ DGA	DGÁ DGA	Oct. 19, 1971	Oct. 26, 1971	Nov. 2, 1971	Nov. 30, 1971
407+50	WB	5	DGA	DGA	Oct. 19, 1971 Oct. 20, 1971	Oct. 26, 1971 Oct. 26, 1971	Nov. 2, 1971 Nov. 2, 1971	Nov. 30, 1971 Nov. 30, 1971
410+00 414+00	WB WB	5 5	DGA DGA	DGA DGA	Oct. 20, 1971 Oct. 20, 1971	Oct. 26, 1971 Oct. 26, 1971	Nov. 2, 1971 Nov. 2, 1971	Nov. 30, 1971 Nov. 30, 1971
		~			JUL: 10, 13/1	JCL. 10, 10/1		

and how we are a standard and the restriction of the

1.00

* - Road Rater inoperable
 ** - Asphalt laid too fast
 *** - Missed
 **** - Construction interference

APPENDIX G

Reference Science and

State of the state

ASPHALTIC CONCRETE MIX DESIGN DATA

TYPE OF	EFFECTIV	E DATES	DESIGN ASPHALT			ASPHALT				COMPOSITION			IN GRADATION				GRADATION	
MIX	FROM	то	CONTENT (PERCENT)	EXTRE (PERC	MES ENT)	AVERAGE (PERCENT)	STANDARD DEVIATION	NUMBER OF TESTS	SIEVE SIZE	LIMITS (PERCENT)	NUMBER OF TESTS	EXTREMES (PERCENT)	AVERAGE (PERCENT)	STANDARD DEVIATION	NUMBER OF TESTS	EXTREMES (PERCENT)	AVERAGE (PERCENT)	STANDARD DEVIATION
Agg. Lime Class I Base	June 1, 1971	June 23, 1971	6.6 6.1	5.9 4.9	7.9 7.0	5.65 5.99	0,405 0,499	22 17	1 1/2" 1'' #4 #8 #16 #50 #100	100 85-10D 50-80 30-50 25-45 15-35 5-20 3-10	29	100 100 61-74 33-46# 28-39 24-34 7-12 2-8	100 100 67:9 39.0 33.9 29.8 10.2 4.3	0.00 D.90 2.87 2.30 1.91 2.55 1.44 1.22	4	100 100 65-74 34-42 31-37 28-34 11-14 5-6	100 100 70.0 38.2 34.2 31.2 12.2 5.2	0.00 3.92 3.50 2.75 2.75 1.26 0.503
4% Fly Ash Class I Base	June 24, 1971	Aug. 28, 1971	6.5 6.D	6.0 5.7	6.8 6.8	6.48 5.99	0.236 0.243	31 49	L 1/2" 1" 1/2" #4 #16 #50 #100	100 85-100 30-80 30-50 25-45 15-35 5-20 3-10	74	100 100 64-74 35-47 31-37 25-34 8-16 4-8	100 100 69.3 40.4 34.5 30.2 10.8 5.9	D.D0 0.DD 2.19 1.37 1.30 1.73 1.28 0.591	5	100 100 67-76 37-42 31-38 27-32 8-10 4-5	100 100 71.4 39.5 33.4 29.5 9.0 4.6	0.00 3.58 2.07 2.30 2.07 1.00 0.548
3% Fly Ash Class I Base	Aug. 29, 1971	Dec. 12, 1971	5.7 6.2 6.5	5,4 5,9 5,9	6.5 6.5 8.8	5_68 6_16 6_45	0.200 0.219 0.204	53 5 40	1 1/2" 1" 1/2" #4 #16 #50 #100	100 85-100 50-80 30-50 25-45 15-35 5-20 3-10	102	100 100 64-75 39-50 33-39 26-33 8-15 4-9	100 100 69.5 41.2 34.7 30.6 10.2 5.4	0.00 0.00 2.09 1.34 0.965 1.30 1.56 0.956	8	100 100 56-79 39-46** 32-35 27-32 6-10 3-5	100 100 70.4 43.4 34.2 29.5 8.6 4.1	0.00 4.34 2.93 1.49 1.50 1.30 0.641
Surface Sta 80+00 to Sta 128+00 Note: Not a part of the Research Proj- act.	·	June 25, 1971	7.0	6.9	7.3	7.07	• 0.163	6	1/2" 3/8" #4 #16 #50 #100 #200	100 80-108 55-75 35-60 25-50 9-21 5-14 3-7	4	100 91-98 62-66 48-50 43-14 13-18 6-10 5-8	100 95.8 64.9 48.8 43.2 15.2 B.0 6.2	0.00 3.30 1.09 0.959 0.503 2.06 1.63 1.25	4	100 94-99 62-73 48-61 41-54 12-14 2-6 1-4	100 97.0 68.0 54.8 47.5 13.0 4.2 2.8	0.00 2.16 4.97 6.24 6.45 0.818 1.71 1.50
Surface	Oct. 8, 1971	Dec. 12, 1971	6.6	6.3	6,9	6.61	0.158	¥ð	1/2" 3/8" #4 #16 #50 #100 #200	100 8D-100 85-75 3S-60 25-50 8-21 5-14 3-7	ч В	100 90-98 60-67 48-54 40-48 11-17 5-9 3-7	100 95.5 62.5 51.7 45.0 14.9 7.8 5.5	0.00 1.79 1.79 1.27 1.99 1.21 0.787 0.715	36	100 93-99 57-86 45-54 39-48 9-17 4-10 3-6	100 95.6 62.2 50.2 43.3 13.9 7.1 4.7	0.00 1.32 1.96 1.7D 2.03 1.74 1.40 1.12
Leveling	0et. 7, 1971	Nov. 13, 1971	6.6	6.4	Б,9	6.68	5.198	В	3/8" #4 #8 #16 #50 #200 #200	#\$\$	5	100 91-97 54-57 50-54 17-21 7-9 4	10D 95.2 65.0 52.6 19.0 8.4 4.0	0.00 2.49 1.22 1.67 1.87 0.894 0.00	8	100 93-98 63-66 50-57 14-21 4-12 2-5	100 95.6 63.8 53.5 17.1 7.4 3.4	0.00 1.41 1.17 2.20 2.90 2.56 0.917
Median Surface	Nov. 15, 1971	Nov. 17, 1971	7.5	7.S	7.7	7.60	1.00	3	エノ2 ¹⁴ ポリ ポら0 ポ20D	100 60-60 45-65 13-25 6-12	4	100 69-74 55-60 19-21 9-10	100 71.2 58.5 20.2 9.8	0.00 2.06 1.73 0.959 0.503	3	100 70-75 58-60 20-22 7-9	100 71.7 58.7 20.7 7.7	0.00 2.89 1.16 1.16 1.16

*: A value of 57 was excluded from the average since it was out of line with the other values. **: A value of 58 was excluded from the average since it was out of line with the other values. ***: Two-Bin Mix - Surface mix without the top screen. No limits were specified.

Sector Contractor Sector

APPENDIX H

🖉 – state state state state i state s

services where a service service and a service service service service

ASPHALT CONTENTS OF ASPHALTIC CONCRETE PAVEMENTS

-

						MI12			AVERAGE	PERCENT			•			~~~
ASPHALTIC FROM	CONCRETE	DATE SECTION PAVED	DIRECTION OF TRAVEL	ASPHALTIC CONCRETE LAYER	design Percent Asphalt	AS	PERCENT PHALT FR	ом	PERCENT ASPHALT FROM EXTRACTION	ASPHALT FROM NUCLEAR TESTS	NUMBER OF TESTS		SECT	ON TEST STA	TIONS	
60+00	128+00	6/11/71	83	let		6.5	6.5	6,9	6.83	5.67	20	81+00	86+00	90+00	95+00	100+00
128+00 136+60	185+50 184+50	6/2/71	22 58	lst let	6,6 8,8	6.4 7.7	7.1	R. U	6.40	6.08	4 10	105+00 130+00 140+00	110+00 135+00 145+00	116+50 150+00	120+00	125+00 160+00
164+60 190+60	190+50 200+25	6/3/71 6/4/71 8/8/71	28 28	let let	6.8	7.0	7.1 6.9 7.3	8.4 7.2	6.90 7.03 7.15 6.30	6.85 7.28	10 5 7	170+00 195+00	175+00 200+00	160+00 205+00 215+00	186+00 216+80	100+00 217+00
209+25 221+90	221+90 244+80	6/17/71 6/18/71	28 28	lat let	8.8	8,5 5,8 8,4	8,1 7.2	6.6	6,30 6,45	6.29	ő	210+00	213+00		170400	217400
244+60 287+00	287+00 276+95	7/15/71 7/17/71 8/10/71	EB EB	let let	6.5	8,2 8,3			6,20 5,30	7.08 8.69 5.28	5 H	267+50 288+50 279+50	282+00 271+00 280+50	284+00 273+80 298+50	278+00 298+00	
276+35 303+00 314+65	303+00 314+65 319+00	8/10/71 8/11/71 8/12/71	ee Fe Fe	1st 1st 1st	8,5	6,9 5,7 6,2			6,30 8,70 5,20	6.84 5.55	i 1	308+00 316+00	308+50	307+00	314+00	
314+65 319+00 331+00	331+00 348+25	8/13/71	EB EB EB	let let	6.8	6.5	8.0	8.7	5.40 5.40	5,60	1 0 2 0	338+50	341+50			
346+25 353+25 362+50	353+25 362+80 368+70	8/16/71 8/17/71 8/18/71	eb Eb Eb Eb	lst lst lst	6.5	6.7 6.5 6.2			6,70 6,50 8,20	7,63	2	358+00	360+50			
386+70 373+60	368+70 373+60 398+00	8/18/71 8/24/71 8/25/71	EB EB EB	lst	8.5	6,2 6.8 8.8 8.5 5.5	6.6		5,80 6,60 6,60	6,98 8.68	1 3 0	372+00 376+30	388+00	398+50		
398+60 399+60 408+00	399+60 408+00 421+61	8/25/71 8/27/71 9/27/71 9/28/71	E5 E5	lot let let	8.8 5.7 6.7	6.6	6.5		5,50 5,90	5.45 5.28	2	403+80 407+80	405+50 410+00	414+00		
Average of All Stations for					8.8	-			8.71 8.88	6.29 6.62	87 24					
let Lift			6-2 CU 1977-00-		0.8 8.7				6,48 5,61	6,51	1	1661410-FAX-Weight Market				
80+00	157+58	8/18/71	TP .	2nd		6.2	\$.1		6,18	8,71	18	81+00 105+00 125+00	\$\$+00 110+00	90+00 116+60	95+00 120+00	100+00
121+26 126+50	129+60 161+00	6/17/71 8/7/71	E8 X8	and and	8.1 8.1	8.3 6.2	8.3		8.90 6.95	6,42 6,61	7 <i>6</i> 5		198400 180+00 170+00	140+00	145+00	160+00
101+00 107+00 205+00	187+68 205+00	6/6/71 6/6/71		and She	€.1 6.1	8.7 4.9	6.8 8.9	8,1 8,0	6,87 5,60	8,77 5,27	8	185+00 185+00 190+00	170+00	100+00 200+00	185+00 205+00	
208+00 216+78	216+76 242+75	6/6/71 6/19/71 6/15/71	NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2nd 2nd	6:1 6:1	6.0 6.2	8.0		6,00 6,10	6,42 8,42	4	100+00 218+00 217+00 217+00 212+60	198+00 218+00 222+00	915+40 232+00	593400	242*88
142+76 164+60 272+88	264+80 172+00	7/16/71 7/11/71	おお	2nd 2nd	6,0 6,0	8,1 4,7	8,9 8,9		6.00 6.00	6.70 5.42 5,78	and gall	967+50 968+60 978+60	262+00 271+00 275+00	284+00 978+60	200+5D	
272+88 289+75 910+68	172+00 189+78 810+80 144+00	7/11/71 8/11/71 8/19/71 8/16/91		and She Ind	6.0 6.0 8.0 6.0	6,1 6,1	6.7		6,10 6,10 6,96	6,24 6,24 6,36	:	289+60 214+00	278400 299408 315400 341488	279*80 205+00 323+00	289460 306+60 825460	207+08 884+00
344+80 360+80	360+80 381+00	8/19/93		2nd 2nd	6.8	6.1				6.61	1	\$98+60 \$48+80 858+00	841+60 889+00	360+60		
363460 363400 373450	363+82	8/18/71 8/83/71 8/85/71		2nd 2nd 2nd	8 0 6 0		6,1		8,18 198 8,98 8,98 8,98	6.86	1					
875+56 399+60	398*60 121+26	6/97/71		१०व १०व १९व १९व	5 9	5,6	6.0 8.8	6.8	6.19B 6.19B 6.19G	6,41 4,56	10.00	378+60 403+60	876+68 406+69	388+00 407+30	887\$\$00 887\$80	395+50 414+00
Average of All Stations for	L				6. <u>1</u> 6.0 6.7				5,65 5,05 8,80	5:88 6:80 4:80	6 0 3 0 6					
and Witt					6,9				8180		e					
188+75 188+59 188+99	136+60 166+33	6/9/71 0/10/71	EB	ard ard	6.1	, D	8.8 7.0 8.7	5,0	6,50 6,00	6,14 6,52	8	110+00 140+00	135+00 145+00	140+00	188+00	
108+32 108+76 168+80	166+33 166+76 169+40 177+00	0/10/71 0/28/71 0/10/71 9/1/71		8rd 8rd 8rd 8rd	5,0 5,0				6,90 5,75 5,76 6, <u>1</u> 0 6, <u>1</u> 0	7:80 6:67	6	170+00	175+00			
164+40 177+00	177+00 209+00	7/1/71	ieb Kon Kon	ård ård ård		8,1 8,6 8,4	8,9 8.0		6.00 8.20	6,67 8,26	12	190+00 208+00 213+00	181400 218+00	180+00 23,6+60	195+00 217+00	200+00 222+00
208+08 240+90 263+34	240+90 253+34	8/23/71 7/17/71	25	Ind	6.0	ā.7			5.70	5,68	2	282+00 241+60 287+60	297+60 242+60			
253+34 284+50 270+70	284+50 270+70 285+00	7/21/71 7/81/71 8/19/71		ård ård	8.0 8.0	5.7 6.1 6.8	8.3		8,00 8,05 8,50	8.00 8.10	ŏ	257+60 271+00 289+80	262+00	284+00 278+80		
285+00	\$1,4+BC	8/19/71	22	3 2 4	8.6	6.0	5.0		\$,\$6	8,64	37	209+80 307+00 315+00	206+60 514+00	288+00	306+00	906+80
314+60 316+00 321+60	315+00 321+50 343+10 360+25	6/20/71 6/23/71 6/17/71	ee Ee Ee	ård ård ärd	8.0	6.6 8.8 8.1	8.8 8.1		6,50 \$,95 6,10 8,95	5,81 5,30	2 0 5	323+00	323+30	334+00	338¢30	841+50
321+60 343+10 350+26 373+50	360+25 373+50 399+50	6/17/71 6/23/71 6/27/71 9/27/71	55 55 55 55 55 55 55 55 55 55 55 55 55	3rd 9rd 3rd 3rd	Б,О	5.8 5.7 5.5	6.1 6.0 5.5	5,0	8.95 6.17 5.50	6.12 5,64 4,89	3 2 5	349+00 360+50 376+50	355+00 372+00 379+50	369+00 388+00	391+50	396+50
Average of All		5/2///1	ED.	aru	6.1		0.0		5,82	5.94						
Stations for 3rd Lift					6.0				5,99 5,50	6,15 4,89	20 49 5					
126+00	155+33	5/28/71	28	4th	6,0	6.8	6.7		5.75	5.99	12	130+00 158+00	135+00	140+00	145+00	150+00
210+00 221+60	221+60 239+40	7/8/7 <u>1</u> 7/8/71	28 65	4 th 4 th	6.0	5.8	6,2		8.00 5.70	8.56 5.30	7	210+00	213+00 232+00	215+00 237+60	215+50	217+00
239+40 250+50 259+50	250+50 259+50 280+75	8/8/71 6/7/71 8/18/71	Σ8 68 68	425 425 425	6.0	6.1 8.3 6.9	8.0 5.7		6,08 5,00 5,90	6.05 5,44	0	202+00 271+00	284+00 273+50	266+60 270+00	279+60	
280+75 285+60	285+50 302+25	8/19/71 8/28/71	28 28 28	4 t). 4 t ii	8.0 5.7	5.0 5.7	6.0 5.4		5,95	6.01	0 3 8	289+50 306+00	285+50 305+60	208+00	314+00	315+00
302+26 321+60 329+50	321+60 329+60 367+60	0/20/71 8/23/71 9/14/71	ED EB	4 th Կ ե հ կ է հ	5.7 6.0 5.7	6.8 6.8 5.7	6,5 5.1	5.7	8,00 5,95 6,70	6,92 8,18 6.65	2	329+00 334+00	323+50 328+50	30700 341050	349+00	355+00
367+60 373+50	373+60 394+26	0/15/71 8/16/71 0/28/71	eb eb eb	uth 4th	\$.7 5.7	5.9			5,70 5,90	6.01 4.70	2 4	359+00 376+50 306+50	360+00 376+60	386+00	391+80	
304+25 Average of All	309+60	9/29/71	110	4th	8.7 8.0	5.8	6.8		6,80 5.93	4.70 6.14	31 31	020.00				
Stationa for 4th Lift									5.60	3.55	30					

1.0000000 St

ASPHALTIC		DATE	DIRECTION OF TRAVEL	ASPHALTIC	DESIG	T	PERCEN ASPHALT F	ROM	AVERAGE PERCENT ASPHALT FROM	PERCENT ASPHALT FROM NUCLEAR	NUMBER		010	ON 100 07.	TONE	
1 FROH	то	PAVED		LAYER	ASPHA:		EXTRACTI	DN	EXTRACTION	TESTS	OF TESTS			ION TEST STA		
210+00 231+50	231+5D 237+25	7/14/71 7/15/71	E. EB	5th 5th	5.0 8.0	5.8 5.8	6.1		5.95 5,80	5.03	8 1	238+00 223+00 232+00	213+00	215+00	215+50	217+00
237+25 247+80	247+80 252+50	8/9/71 8/10/71	EB	5th Sth	6.0 6.0	5.9			5.90 5.00	5.88	2	241+50	242+50			
252+50 271+50 321+50	271+50 285+00 328+00	0/24/71 0/20/71 0/30/71	EB EB	5th 5th	6.D 5.7	6.0 5.7	5-4		5,55	6.22	5	267+5D 273+5D	262+08 279+50	254+00	266+50	271+00
328+00 331+50	331+50 361+25	9/16/71 9/17/71	EB	5th 5th 5th	5.7 5.7 5.7	5,8 5,5 5,9	6.5 6.0	5.7	6.DO 5.50 5.95	6,D9 4,75	2 0 7	323+00	323+50 338+50	343+50	389+50	335+00
351+50	372+25	9/16/71	EB	Sth	\$,7	5.6	5.5		5,55	4,61	1	359+00 372+00	360+50	341.00	141.00	333100
Average of All Stations for 5th Lift					6.0 5.7				5,90 5.76	5.59 5.21	' 16 12					
80+00 95+00	95+DD 125+90	6/24/71 6/25/71	EB FB	SURFACE SURFACE	7.0	7.0	6.9 7.3	6.9	5.93	5.78	\$	81+00	85+00	90+00	954DD	
125+90	177+00	10/20/71	EB	SURFACE	6,6	6.9	5.6	7.1	7.20	6.24 6.74	12	100+00 125+00 130+00	105+00 135+00	110+00 140+00	116+00],45+00	120+00 150+00
177+00	283+00	10/21/71	EB	SURFACE	6.6	6.6	6.9	6.6	6.70	*6,99	23	155+00	160+00	167+00	170+00	190.90
283+00 311+50 409+50	311+50 409+50 425+68	10/25/71 11/13/71 11/14/71	EB EB	SURFACE SURFACE SURFACE	6.6 5.6	6.5 6.7 6.6	6.9		6.60	*6.72 6.86	6 20	289+50 314+00		307+08 407+50	ALL	
Average of All	423.00	171,141,11	LD	SURPACE	6.6 7.0	6.0			6.60	6.16 8.46	2	410+00	414+00			
Stations for Surface Lift					6.6				6.71	6.78	31					
321+50 337+50	337+50 368+80	9/23/71 9/24/71	WB WB	lst	8.5 6.5	5.4	6.2		5,30 5,40	5.00	3	323*50	323+50	334+00		
368+80 381+50	381+50 399+50	10/1/71	WB WB WB	lst 1st	6.5 5.5	5.5 6.2	0.15		6,50	6.12 5.86	2	376+50 388+00	279+50 391+50	396+50		
399+50 415+25 421+25	%15+25 421+25 425+68	10/25/71 10/25/71 10/30/71	WB WB	lst lst lst	6.2 6.2 5.2	6.1 5.9 6.2			6.10 5.90 6.20	¥6,26	5 0	403+50	405+50	407+50	410+00	414400
Average of All Stations for lst Lift					6.5 6.2				6.35 6.07	8.01	8.0					
321+50	354+00	9/25/71	Wa	2nd	5.7	5,4	5.4		5,40	5.05	δ	323+00	323+50	334+50	338+50	341+50
354+0D 368+50	368+50 373+50	9/27/71 10/2/71	WB WB	2nd 2nd	5,7 5,7	5.5	5,5		5.50	4.69	3 0	349+50 355+00	359+00	360+50		
373+50 383+25 399+50	381+25 399+50	10/4/71 10/5/71	WB WB	2nd 2nd	5.7 5.7 5.7	5.7 5.6 5.6			5,60	5.80 5.43	23	376+50 388+50	379+50 391+50	396+50		
Average of All	421+50	10/26/71	WΒ	2nd	5.7	5.6			5.60	4.96	5	403+50	405+50	407+50	410+00	414+00
Stations for 2nd Lift					5.7				5.54	5.13	14					
321+50 327+50	327+50 368+25	9/29/71 9/30/71	WB WB	3rd 3rd	5.7 5.7	5,8 5,8	5.8 5.9		5,80 5,85	5.25	2	323+00	323+50 338+50	341+50	349#00	355+00
388+25	373+25 381+00	10/4/71 10/28/71	WB WB	3rd	5,7	5.6			5,60	5.26	1	359+00 372+50	350+50			
381+00	299+50	10/29/71	WB	3rd 3rd	6.5	5.8 8.4	6.7		5.60	5.33 5.59	2 3	376+50 388+00	379+60 391+50	396+50		
Average of All Stations for 3rd Lift					5.7				5.75	4.89	12					
321+50 365+00	365+00 373+25	10/27/71 10/28/71	үв wb	4th 9th	5.7 5.7	\$,7 \$,6	5,9		5,80 5,60	#5.10 6.06	9	323+00 372+25		360+50		
373+25 383+50	383+50 399+50	11/4/71 11/5/71	WB WB	4th 4th	5.7	5.6 5.9			5.60 5,90	5.40 5.87	2	375+50 388+00	379+50 391+50	396+50		
Average of All Stations for Wth Lift					5,7				5.74	6.08	6					
321+50 347+50 370+00	347+50 370+00 373+25	11/2/71	WB WB	ith Sth	5.7	5.8 5.6	5.5		5.80 5.55	5.74 6,06	5 4	323+00 349+00	323+50 355+00	334+00 359+00	338+50 360+50	341+50
Average of All	3/3725	11/4/71	WB	5th	5,7	5.6			5.60 5.62	5.86	1	372+25				
Stations for 5th Lift									0+62	5.56	10					
321+00	370+00	11/11/71	WB	SURFACE	6.6	6.6	6,8		6.70	6.64	9	323+00 349+50	323+50 355+00	334+00	338+50 360+50	341+50
370+00	425+68	11/12/71	WB	SURFACE	6.5	6,9			6,90	6.63	11	372+25 396+50	376+50 403+50	379+50 405+50	368+00 407+50	391+50 410+00
Average of All Stations for Surface Lift					6.6				5.77	6.63	20	4 1 4+00				

and the second states a second

^e Insufficient tests were obtained with this nuclear meter to prepare a calibration curve. These values were omitted from the final averages.