

COMMONWEALTH OF KENTUCKY

DEPARTMENT OF HIGHWAYS

CHARLES PRYOR, JR. COMMISSIONER OF HIGHWAYS

FRANKFORT, KENTUCKY 40601 July 6, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508 TELEPHONE 606-254-4475 H.2.24

MEMORANDUM TO: J. R. Harbison State Highway Engineer Chairman, Research Committee

SUBJECT:

Research Report No. 331; "Skid Resistance of Pavements;" KYHPR-64-24; HPR-1(8), Part II

Our studies of pavement slipperiness seem unending. Significant improvement in the skid resistance of pavements has not been achieved. In fact, it appears that increasing traffic has magnified the problem. Studded tires have surely increased wear. Evidences of critical friction factors continue to mount. The development of skid-resistant surface courses to operational status has become more and more compelling.

It remains intuitively apparent to me that sand asphalts containing angular quartz sands offer the best, general recourse. The Rockcastle (Sharon), Buffalo, and other conglomerates are indigenous sources. The Rockcastle deposits and their western equivalents are more widespread and abundant in Kentucky than was realized heretofore. Crushed products are most desirable. Special Provision 59-B is advocated.

The report submitted herewith presents skid-resistance histories of the respective pavement types and materials in Kentucky. The analyses have been ordered according to highway classification, cumulative traffic, and test speed. The surface types which are now more or less standard diminish to marginal levels of skid resistance after about 3 to 5 million vehicles pass.

Peak (limited slip) skid numbers are significantly higher than locked-wheel values. It appears that greater stopping traction may be obtained with braking devices which prevent lockup. The report presents a brief discussion of this possible advantage in terms of stopping distance.

I submit into record some further conjectures and hypotheses, as follows:

Apparently, tread rubber in contact with the pavement undergoes tangential shear (strain) in some proportion to the tractive force. Others have noted that the tire print is displaced rearward during braking. Surely, the rubber strains considerably; this strain and recoil probably accounts for the squeal of tires on dry pavements. Thick treads would stretch or elongate more than thin treads. In a locked-wheel slide, the same tire print is being stretched and torn continuously. However, if the wheel is merely braked, the velocity of the vehicle at any instant must be the sum of the rolling velocity (rps x circumference of wheel), the true slip velocity, and that portion attributable to stretching in the tread. If the average or effective elongation is 1.25 times, this component of velocity is proportional to rps of the wheel and may be stated as a percentage of vehicle velocity if there is no slip. In this instance, it would be 13% -- that is, (1.00 - 1/1.25) x 100; 1.5 times stretching or elongation would account for 33.3% of the vehicle velocity. In any case, it seems very possible that the peak coefficient of friction (PSN/100) is also decomposable into components. The tractive resistance of the tire tread may be stated as: shear strain in the rubber x shear modulus of rubber x real contact area. This product divided by the normal force W yields a coefficient of friction. The real contact area on a dry, fine-textured surface is here considered to be a very high percentage of the apparent area; the apparent area is approximated by W/P_a , where P_a is the tire pressure. The equation hypothesized corrects for hydrodynamic or air pressure (P_h) at the interface, as follows: T. Descention

 $PSN/100 = f = (\epsilon_s \ge E_s \ge W/P_a) (1 - P_h/P_a) / W$

 e_s = shear strain = 1.215 in./in./in. (maximum, deduced for f = 1) $E_s = 24.65 \text{ lbs./in.}^2$ (handbook value)

First, let $P_h = 0$, and $P_a = 30$ psi; W = 1000 lbs.:

PSN/100 = f = 1.215 x 24.65 x 0.033

PSN/100 = f = 1

Let $P_h = 15$ psi:

PSN/100 = f = 1.215 x 24.65 x 0.033 x 0.5 = 0.5

The limiting value of shear strains, above, was deduced for f = 1. Assuming a tread thickness of 1/3 inch, the effect on vehicle velocity, assuming no slip, $1/3 \ge 1.215$, or 0.405, or $(1 - 1/1.405) \ge 100 = 29.8\%$. This hypothesis implies that for peak friction to develop any contact between tread rubber and the pavement surface induces maximum shear in the tread rubber in the contact area. All traction is lost when $P_h = P_a$.

Some related research activities might be mentioned also, as follows:

- A separate report addressing the technical aspects of skid testing is pending.
- A report on correlations between accident frequencies and skid resistance will be forthcoming in the 1. near future. The analyses embrace the entire, rural interstate and parkway network in Kentucky. 2.
- Significant wear (in order of 1/4 inch) in the wheel tracks has been measured on I 75, from I 71 3. northward to the Ohio River.
- Undue slipperiness developed while overlaying I 75, in Madison County, during June. Over densification and flushing occurred under immediate traffic. Adjustments were made in the mixture. A 1.3-mile 4. section south of Clays Ferry was deslicked with sand asphalt.
- FHWA is currently considering issuing minimum standards for skid resistance. 5.

Respectfully submitted,

Jas. H. Havens Director of Research

JHH/dw Attachment Research Committee cc's:

TECHNICAL REPORT STANDARD TITLE PAGE

And october (1997–1997) – se objektivne state for eingesterne state october 🕷 . Mediane state state state state The second state of the

Report No.		
Neport No.	2. Government Accession No.	3. Recipient's Catalog No.
		5 Provet Date
Title and Subtitle		July 1972
		4 Reviewing Organization Code
SKID RESISTANCE OF PAVE	MENTS	6. Performing organization court
		A D (amonitation Report No.
Author(s)		6. Performing Organization and
D I Diverberge VI Burcheft	and C.T. Napier	331
K. L. Kizenbergs, J. E. Buronett		10. Work Unit Ne.
Performing Organization Name and Add	ress	
Division of Research		11. Contract or Grant No.
Kentucky Department of High	ways	KYHPR- 64-24
533 South Limestone		13. Type of Report and Period Covered
Lexington, Kentucky 40508		
. Sponsoring Agency Name and Address		Interim
		14. Sponsoring Agency Code
Study Title: Pavement Slipp Abstract Standard pavement types a	periness Studies	throughout Kaptucky were evaluated in terms
	and experimental surfaces on rouge.	infoughout Kentucky were evaluated in the
of skid resistance and effects between locked-wheel and inc four-lane roads were found to more skid resistant than concre surfaces containing significant sustained. Several experimental rock asphalt surfaces remain t	of traffic, wear, and polishing. Fri sipient friction were determined. Co be significantly more skid resistant et e surfaces (especially those contain proportions of limestone sands show sand asphalts without limestone sart the most skid resistant of all surfa	iction-vs-speed gradients and the relationships Class I bituminous pavements on high-speed, nt than on two-lane highways and somewhat ning calcareous gravel aggregates). Sand-asphalt wed inadequate level of friction for the traffic nds exhibited greater skid resistance; Kentucky aces investigated.
of skid resistance and effects between locked-wheel and inc four-lane roads were found to more skid resistant than concre- surfaces containing significant sustained. Several experimental rock asphalt surfaces remain to 17. Key Words Skid Resistance, Friction, Par	 and experimental surfaces of traffic, wear, and polishing. Fri- sipient friction were determined. Concerning the significantly more skid resistant of the significantly more skid resistant proportions of limestone sands show sand asphalts without limestone sands show the most skid resistant of all surfaces of all surfaces skid resistant of all surfaces show sand asphalts. Note that the most skid resistant of all surfaces show show the most skid resistant of all surfaces show show show show show the most skid resistant of all surfaces show show show show the most skid resistant of all surfaces show show show show show show show sho	introduction-vs-speed gradients and the rélationships Class I bituminous pavements on high-speed, nt than on two-lane highways and somewhat hing calcareous gravel aggregates). Sand-asphalt wed inadequate level of friction for the traffic hds exhibited greater skid resistance; Kentucky aces investigated.
of skid resistance and effects between locked-wheel and inc four-lane roads were found to more skid resistant than concre- surfaces containing significant sustained. Several experimental rock asphalt surfaces remain to 17. Key Words Skid Resistance, Friction, Par Surface Texture	 and experimental surfaces on room of traffic, wear, and polishing. Fricipient friction were determined. Concern the significantly more skid resistances (especially those contains proportions of limestone sands show sand asphalts without limestone sands the most skid resistant of all surfaces where the most skid resistant of all surfaces are surfaces. 18. Distribution of the surfaces of	bution Statement
of skid resistance and effects between locked-wheel and inc four-lane roads were found to more skid resistant than concre- surfaces containing significant sustained. Several experimental rock asphalt surfaces remain 17. Key Words Skid Resistance, Friction, Pa Surface Texture 19. Security Classif. (of this report)	and experimental surfaces on roots of traffic, wear, and polishing. Fri- sipient friction were determined. Co be significantly more skid resistant ete surfaces (especially those contain proportions of limestone sands show sand asphalts without limestone sands the most skid resistant of all surfaces vements, Aggregates, 20. Security Clossif. (of this price	page) 21. No. of Pages 22. Price
of skid resistance and effects between locked-wheel and ind four-lane roads were found to more skid resistant than concre- surfaces containing significant sustained. Several experimental rock asphalt surfaces remain 17. Key Words Skid Resistance, Friction, Pa Surface Texture 19. Security Classif. (of this report)	and experimental surfaces on roots of traffic, wear, and polishing. Fri- sipient friction were determined. Composition be significantly more skid resistances ete surfaces (especially those contains proportions of limestone sands shows sand asphalts without limestone sands the most skid resistant of all surfaces vements, Aggregates, 20. Security Classif. (of this proportions) unclassified	page) 21. No. of Pages 22. Price

•

Form DOT F 1700.7 (8-69)

6633<u>661</u> 🖗

Research Report 331

ಿಷಣೆ ಮನ್ನು ಕ

SKID RESISTANCE OF PAVEMENTS

INTERIM REPORT KYHPR-64-24; HPR-1(8), Part II

by

Rolands L. Rizenbergs Research Engineer Chief

James L. Burchett Research Engineer Senior

and

Cass T. Napier Research Engineer Associate

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

in cooperation with the U.S. Department of Transportation Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Department of Highways or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

July 1972

TABLE OF CONTENTS

INTRODUCTION	1
CLASS I BITUMINOUS CONCRETE	1
KENTUCKY ROCK ASPHALT	4
PORTLAND CEMENT CONCRETE	4
SAND ASPHALT	6
EXPERIMENTAL SAND-ASPHALT PROJECTS	6
DISCUSSION AND RECOMMENDATIONS	9
REFERENCES	14
APPENDIX Skid Test Data	15

۰.

INTRODUCTION

Traffic polishes all pavements; all pavements wear and weather. The development of slipperiness and loss of friction (traction) is closely associated with cumulative traffic. The loss of traction is most severe during the first few years. After five or six million vehicle passes, the friction value tends to stabilize. Judgements of performance of pavements are based on mature values. Some types or surface treatments, however, may exhibit low skid resistance earlier. This report presents performance histories and analyses of standard and experimental surfaces.

No single mode of testing, such as locked wheel sliding or peak friction at critical percent slip (8 to 20 percent), completely describes the traction available to a vehicle. Kentucky trailer measurements (1) provided both locked-wheel skid resistance, expressed as Skid Numbers, SN, and peak slip resistance, expressed as Peak Slip Number, PSN. Skid resistance of pavements decreases as speed increases; material textural differences amongst pavements result in differing friction-vs-speed relationships. Measurement at a single test speed does not fully characterize a surface. The ASTM E-274-70 standard test speed is 40 mph; at least three test speeds are needed for research purposes. By choice, tests were made at 20, 40, and 60 mph. Where the speed limit was 70 mph, this higher test speed was used. The peak slip resistance at these speeds may be a better indicator of traction available to vehicles during acceleration, deceleration, and perhaps in cornering and passing maneuvers. However, in panic braking where the driver locks wheels and skids, the Skid Number more closely reflects available traction, and it may be useful in ascertaining stopping distances or speed reduction prior to collision. Obviously, overall evaluation of pavements is not a simple task.

A previous report (2), issued in March 1970, discussed the polishing characteristics of various pavements and deslicking and surface treatments used in Kentucky. Several pavement types have been monitored continually. All data are presented in the Appendix.

CLASS I BITUMINOUS CONCRETE

Limestone remains the predominant coarse aggregate in surface courses. Most, if not all, limestones are susceptible to polishing. Surface courses contain

limestone coarse aggregate and natural or conglomerate sand in the proportion of not. less than 40 percent of the combined aggregate. Natural sand is defined in Section 611 of the Standard Specifications...(3). Mineral composition, gradation and particle-shape requirements for sand, however, were not specified. The evolutionary refinements in the design for bituminous surface-course mixtures were reported in September 1966 (4).

In-service performance of Class I, Type A, and Type A, Modified surfaces on US and KY routes is shown in Figure 1. Only 40-mph test data are shown. The cumulative traffic per lane was calculated from ADT data. No weighting factors for trucks as opposed to automobiles were considered.

Scatter of data, on the basis of available information, could not be explained. Percentages of various aggregates and asphalt contents bore no relationship to deviations from the regression curve. Practically all of the surfaces contained the following:

Intermediate	Grade	Limestone
--------------	-------	-----------

(No. 9 or No. 8)	40%
Limestone Filler	20%
Natural, Siliceous Sand	40%
Asphalt Content	5.3% 5.6%

A few surfaces varied in relative proportions of the two limestones, but all contained at least 40 percent natural (river or pit) sand. These sands usually contained a large percentage of well-rounded particles.

Performance of Class I, Type A and Type B, Modified (six projects) surfaces on interstate and parkway roads is shown in Figure 2. At 70 mph, and for the same cumulative traffic, lower values were found in the outer lanes. Traffic density appears to be the affecting factor. A limited number of these projects was tested at 40 mph to obtain a relationship between the two test speeds. An equivalent SN40 curve, derived from the correlation given in Figure 3, is also shown in Figures 1 and 2. Surprisingly, the SN_{40} values interpolated from Figure 3 failed to match the SN_{40} values measured on two-lane roads. These differences are shown in Figure 1. No satisfactory explanation for the differences has been found. Inaccuracy of ADT information, density and composition of traffic, environmental factors, and variables associated with the test may obscure the precise influence of traffic. Hardness and wear characteristics of limestone and(or) sand aggregates from different sources most likely affected the skid resistance to some extent. The possibility remains that the style of road is the most important factor.

ાલ્ટન

Figure 1. Effect of Traffic on Class I, Type A, Bituminous Surfaces; US and KY Routes.

Figure 2. Effect of Traffic on Class I, Type A and Type B (Modified), Bituminous Surfaces; Interstate and Parkway Routes.

Changes in friction with test speed are shown in Figure 4. The slopes of the lines are referred to as the speed gradient, G, expressed as change in SN per velocity increment. The smaller the G value, the less the reduction in skid resistance with increasing speed. In the increment between 40 mph and 60 mph, the average G was approximately 0.4, a loss of about 8 Skid Numbers.

Peak Slip Number has been defined previously. Figure 5 shows the measured SN and its corresponding PSN for three test speeds. Separate regression lines were required for each speed. The correlation between these values was rather good, but the data shows considerable scatter as reflected by the standard error of estimate (E_c). Figure 6 was constructed from the regression equations. Friction values were converted to PSN/SN, and equal-SN curves were drawn. This graph clearly demonstrates a proportionally higher PSN associated with the lower SN values. Moreover, for a given SN value, the PSN increased with speed. The full significance of this finding is not understood. It appears that a percentage of slip is equivalent to a percentage reduction in speed in the skid mode. For instance, 12 percent slip at 60 mph is equivalent to about 7 mph in the skid mode and 53 mph free running. These may be viewed as vector components of the velocity. Extrapolating the speed-gradient curves (Figure 4) to 7 mph yields a value of, let us say, 70 Skid Numbers. In the case chosen, the SN_{60} was 40. Now, proceeding to Figure 5, and entering the graph with an SN_{60} of 40, 70 is found to be within the limits of the PSN correlation data. Taking the highest case from Figure 4 ($SN_{60} = 55$), extrapolation to 7 mph yields a PSN value of 87. For the lowest in Figure 4 ($SN_{60} = 25$), extrapolation to 7 mph yields an SN of 51; Figure 5 also yields these values, approximately, for the PSN.

If, indeed, the above interpretations are correct, advantages of the limited-slip method of braking would be predictable from speed gradients and percent slip at which peak traction occurs. Presumably, a limited-slip braking system would shorten the stopping distance and would probably reduce side slips, also.

Figure 4. Effect of Speed on Skid Resistance of Class I, Type A, Bituminous Pavements.

Figure 5. Relationship between Peak Slip Number and Skid Number of Class I, Type A, Bituminous Pavements.

KENTUCKY ROCK ASPHALT

Eleven paving projects, constructed in 1966 and 1967 under Special Provisions No. 24 and 24-A, were monitored for skid resistance. A discussion and description of Kentucky rock asphalt surfaces are given in an August 1968 report (5). Performance of these surfaces is shown in Figure 7. Reduction in skid resistance with cumulative traffic is apparent. The surfaces are smooth but rather porous (about 12 percent voids). The relationship between skid resistance and speed is shown in Figure 8. The speed gradient is approximately 0.6 (40 mph to 60 mph). Figure 9 shows the SN data and corresponding PSN's. There was no increase in PSN/SN (Figure 6) as the speed increased. However, Figure 9 indicates that the loss of traction in the slip mode is almost uniquely constant, regardless of speed. This may mean that no hydraulic influences (hydroplaning) are present.

PORTL'AND CEMENT CONCRETE

Limestone was used as coarse aggregate in most concrete pavements. Projects on I 75 in the northern Kentucky area and projects on I 71, however, contained crushed, calcareous, glacial gravel. Fine aggregates were

4

natural sand, comprising 34 to 40 percent of combined solid volume of the fine and coarse aggregate. Gradations and quality requirements are given in Section 611 of the Standard Specifications... (3).

In 1970, the latest available data, as presented in the Appendix, were used to prepare Figure 10. All but one were on interstate and parkway roads. Most were tested in 1970, but some were tested in 1969. The ADT's on some segments were quite high. In some instances both inner and outer lanes were tested. Measurements in the inner lanes did not deviate from performance trends of the outer lanes. Pavements containing gravel coarse aggregate were found to be less skid resistant at 40 mph than those containing limestone aggregate.

In 1971, the entire interstate and parkway systems were tested at 70 mph, and these results are presented in Figure 11. Several sections were also tested at 40 mph to obtain a relationship between the two speeds. These data were included in Figure 3. An equivalent SN_{40} -curve is shown in Figure 11. The 70-mph performance of pavements on I 75 containing crushed gravel appeared to be comparable to other sections containing limestone. However, the northernmost projects had posted speed limits of 50 mph and 60 mph and, therefore, perhaps greater weight should be given to the 40-mph curve shown in Figure 10. The I 71

an in the second se

5

ere rees en ren render in a de 🔬 - dre der der

concrete pavements, all constructed with calcareous glacial gravel, exhibited low skid resistance very early. Several sections of the highway should be considered slippery when wet. Visual inspection of the surfaces revealed a predominance of well-rounded and polished gravel particles exposed and protruding above the matrix.

Speed gradients for several concrete pavements are shown in Figure 12. The surfaces exhibited similar textural characteristics, and the average G was approximately 0.5. The relationships between PSN and SN are shown in Figure 13. The equal-SN curve in Figure 6 shows a peculiar hump.at a test speed of 40 mph and may be due to scatter and the limited data available for analysis.

Figure 8. Effect of Speed on Skid Resistance of Kentucky Rock Asphalt Pavements.

SAND ASPHALT

Between 1964 and 1970, sand asphalt surfaces were constructed under Special Provisions No. 22 and No. 22-A. A discussion and description of these surfaces were given in a February 1965 report (6) and a later report in October 1970 (7). Only rural sections of these roads were monitored. A plot of skid resistance versus cumulative traffic is presented in Figure 14. Because of the scatter of data and the limited number of projects involved, a meaningful best-fit curve could not be obtained. Chemical composition and shape of the sands used varied considerably amongst these projects. Limestone sands, especially in the larger sand size, surely

Figure 9. Relationship between Peak Slip Number and Skid Number of Kentucky Rock Asphalt Pavements.

diminished skid resistance. A pavement in Boone County on KY 236 has performed well after 11 million vehicle passes. The mix contained only 13 percent limestone sand. Most surfaces did not exhibit the desired level of friction for the volume of traffic sustained. Consequently, this style of sand asphalt was discontinued.

Change in skid resistance with speed (G = 0.6) is shown in Figure 15. The relationship between the two friction measurements (Figure 16) was pronouncedly speed dependent. The PSN/SN ratio significantly increased with speed (refer to Figure 6); this might be regarded as a positive attribute of the surfaces.

EXPERIMENTAL SAND-ASPHALT PROJECTS

Because of the apparent failure to obtain desired friction level with sand asphalts composed of not less than 50 percent quartz (SiO_2) , five experimental surfaces were constructed on US 27 in Pulaski County. The design, construction, and performance evaluation to October 1970 may be found in a report entitled *Experimental Silica-Sand-Asphalt Surfaces (7)*. The 1.5-mile sections were tested soon after construction. Results of these tests, conducted with an automobile, were presented in a March 1970 report (2). Precise conversion of friction measurements then employed and the subsequent trailer tests was not possible. Therefore,

Figure 10. Effect of Traffic on Skid Resistance of PCC Pavements.

Figure 11. Effect of Traffic on Skid Resistance of PCC Surfaces; Interstate and Parkway Routes (70 mph).

Figure 12. Effect of Speed on Skid Resistance of PCC Pavements.

performance of the surfaces since 1968, as shown in Figure 17, was based on the trailer data.

A single experimental surface, designed in accordance with a given specification and constructed with particular aggregate type available locally, introduces uncertainties as to how representative the pavement may be of a similarly designed mix placed elsewhere. Also, several other problems hindered proper evaluation of the surfaces in Pulaski County. Sections 4 and 5B were located on a rural segment of US 27 having a lower ADT than the other sections located in more congested areas near Somerset. Limestone aggregate used later to build up the shoulders adjoining the experimental sections was scattered onto the pavement and became imbedded. The percentages of the surfaces composed of extraneous aggregate were:

SECTION	PERCENT OF AREA
1 Regular Sand Asphalt	1
2B Open-Graded High Silica	16-SB, 27-NB
3 Open-Graded Medium Silica	2
4 Kentucky Rock Asphalt	3
5B Simulated Kentucky Rock Asphalt	2

Skid resistance of the sections was surely affected, particularly Section 2B. The extent of the decrease in terms of SN, however, cannot be accurately determined. Since the primary concern was in comparing the sections with each other, only the loss of friction on 2B need be considered. Simplified assumptions concerning the surface yielded an approximate difference of 3 Skid Numbers. Therefore, the skid resistance of this surface should be increased about 3 Skid Numbers.

No reduction in friction was noted on any of the

Figure 13. Relationship between Peak Slip Number and Skid Number; PCC Pavements.

sections in the three-year period of monitoring. Large variations in SN shown in Figure 17 were partly due to temperature differences encountered on the various test dates. The major variations, however, were associated with seasonal changes; SN values were lowest during the fall and highest in the late winter and spring periods.

The latest measurements (August 1971) (three test speeds) are presented in Figure 18. The payements ranked in the order anticipated. Regular sand asphalt, constructed under Special Provision No. 22-A, exhibited the lowest friction and Kentucky rock asphalt (Special Provision No. 24-B) the highest. Both surfaces seemed to be rather comparable to similar pavements constructed elsewhere in accordance with the respective specifications. As expected, the open-graded, high-silica pavement yielded higher skid resistance. than the open-graded, medium-silica section. Simulated Kentucky rock asphalt did not prove to be comparable to the Kentucky rock asphalt.

Figure 14. Effect of Traffic on Skid Resistance of Sand-Asphalt Surfaces.

Only a slight difference in friction was found between the open-graded, medium-silica and the regular sand asphalt, containing 33 percent and 36 percent limestone sand, respectively. Limestone sand obviously reduces the skid resistance of sand asphalts. The frictional level achieved on Sections 2B and 5B, however, must be viewed with some disappointment. Test values at 60 mph were very low. Surfaces of this type are not suitable for deslicking purposes on roadways carrying high-speed traffic.

Monitoring and evaluation of the experimental sections in Pulaski County will continue, but it remains doubtful whether any further insights or revelations concerning the frictional performance of these surfaces will be forthcoming. Additional experimental surfaces, containing hard, angular, silica sands and other aggregate types recognized for their high skid-resistant properties, are pending.

DISCUSSION AND RECOMMENDATIONS

The skid trailer has enabled extensive testing in the locked-wheel mode and in the incipient-skid mode. But, more importantly, tests have been made at speeds much greater than those considered to be safe with the automobile method of testing. The interstate and parkway systems, therefore, were tested at 70 mph;

Figure 15. Effect of Speed on Skid Resistance of Sand-Asphalt Surfaces.

some selected projects were also tested at 40 mph. The regression curves in Figure 19 permit summary comparison of in-service performance of Class I bituminous and PCC surfaces on interstate and parkway routes. PCC pavements are now showing about 4 SN lower Sskid resistance than the Class I at 70 mph. These differences in performance have not been apparent previously. Wear induced by studded tires and seasonal polishing are believed to be significant influences. Obviously, corrective measures will be required to improve some sections of interstate roads before they have fulfilled their 20-year design life. Roadway curves may be remedied by overlays, grooving, etching, etc. Continuous grooving or texturing has not been found to be economically feasible.

Texturing of freshly placed concrete surfaces has been recognized to be important. The added macrotexture or macroroughness improves tire-pavement friction and reduces the potential for hydroplaning. The texture depth (amplitude), spacing (pitch) between adjoining ridges, wear rates, and direction of texturing are important considerations in choosing a method or style.

Skid resistance on most pavements has been adequate for the first few million vehicle passes.

Figure 17. Effect of Traffic on Skid Resistance of Experimental Sand-Asphalt in Pulaski County.

Broomed finishes improve initial friction level and reduce hydroplaning; however, resulting tire noise is objectionable. A fluted roller or float method of texturing (8) holds promise. Such devices could be designed to construct evenly spaced grooves (3/8 inch to 1/2 inch centers) having uniform and significant (1/8inch) amplitudes. Undoubtedly the rate of wear would be increased but the greater depth would be somewhat compensating. The net effect on long-term frictional level is believed to be positive. Regardless of the method employed, the direction of texturing should be transversely across the pavement.

Of the surface types monitored on rural US and KY highways, Kentucky rock asphalts exhibited the highest skid resistance. Sand asphalts, designed in accordance with Special Provisions No. 22 and No. 22-A, have not provided the desired level of friction primarily due to the limestone sands in the aggregate (see Figure 20).

The need for thin-layered asphaltic surface courses (approximately 1/2 inch) remains, and the demand for them will grow, particularly as concrete pavements require deslicking. Such surfaces, in contrast to the Class I bituminous surface courses, must meet the following criteria: 1) superior skid resistance, especially at the higher traffic speeds, 2) wear rates commensurate with the desired service life, and 3) competitive cost per square yard of material. However, conditions may warrant higher expenditures to achieve desired friction levels.

The demand for skid testing has exceeded the capabilities of a single tester. Testing schedules, therefore, were adjusted to high priority needs and thus limited the frequency and extent to which a given section could be tested. Multi-speed testing was kept to a minimum. Tests at 40 mph are standard according to ASTM E-274-70 and are made routinely for comparative purposes. However, selected surfaces were tested at other speeds. In summary, Figure 21 was prepared to show representative curves for each pavement type by choosing a common SN value of 40 at 40 mph. The Kentucky rock asphalts were much higher in friction and were not directly comparable.

Only limited experimental efforts were devoted to the peak friction measurements; and, therefore, much remains to be learned. Future efforts will be directed towards refinement of measurement and analysis techniques. Proportionately higher PSN were obtained on the lower SN surfaces, as shown in Figure 22. The PSN/SN ratio for several pavement types increased with speed; this indicates that the peak friction did not decrease with speed as much as the locked-wheel friction. These trends must be viewed as positive attributes towards safer driving in wet conditions. In fact, performing driving tasks and maneuvers would be further restricted and more hazardous if it were not so.

Introduction and use of studded tires in recent years, especially on vehicles from the northern states which travel the interstate roads in Kentucky, has contributed to increased rate of pavement wear. Damage to concrete pavements must be viewed with particular concern. Because the traffic stream is rather channelized. pavement wear on all surface types occurs primarily in the wheel paths and in time develops measurable rut depth. Rutting in bituminous pavements is caused partly by wear and partly by heavy loads. During rainfall, rutted wheel tracks tend to accumulate water and further increase driving hazards associated with spray and hydroplaning. Effectiveness of the studded tire as a safety innovation has not been demonstrated (9). Because of limited benefits and the seldomness of icy conditions and because of the damage done otherwise, studded tires should be discouraged and perhaps outlawed as several states and Canadian provinces have already done.

Slipperiness of pavements remains a major problem. Success in the development of improved deslicking materials and surfacing courses will in time upgrade skid resistance of roadways and thereby reduce accidents attributable to pavement slipperiness.

Figure 23 shows the approximate stopping distances on dry and wet pavements. The stopping distance on wet pavements is based on the average skid resistance (trailer) of some 430 projects. The median Skid Number for these projects at 40 mph test speed was 40. Test data at other speeds were used to determine a representative SN versus speed relationships. The equivalent stopping distance was calculated largely on the basis of previous correlations between automobile stopping distances and trailer measurements. Curves shown for wet pavements (approximately 0.02 inch water depth), of course, demonstrate the distances an automobile, equipped with ASTM test tires, may skid in an emergency situation. Increased water thickness on the pavement and tires in poor condition (tread depth of 1/8 inch or less) would contribute to increasing stopping distances of automobiles, while automobiles equipped with good quality commercial tires (10) with significant tread depth would result in somewhat shorter distances on pavements characterized in Figure 23. Obviously, driving speeds on wet pavements would have to be reduced significantly in order to achieve the same level of safety (in terms of stopping distances) provided by dry conditions. For instance, where the speed limit is 70 mph, the dry stopping distance is 205 feet; wet-weather speed must be reduced to approximately 50 mph (for a median SN project) to be able to stop in the same distance.

Routes.

of Several Types of Comparison Bituminous Surfaces on US and KY

Public awareness of wet-pavement conditions has not been materially manifested in driver behavior. Most drivers choose to retain speeds near the legal limits regardless of weather and road conditions. This practice should be discouraged. Driver education through the broadcast media and by other means should, of course, be encouraged. Legal restraints on driving speeds remain a reasonable but untried alternative at this time. To safeguard the public from undue hazards associated with high-speed driving on wet pavements, the following speed limits are suggested:

48xth.

Posted Speed Limit	Suggested Speed Limits When Wet
70	50
60	45
50	40

Effect of Speed on Skid Resistance; Figure 21. Several Pavement Types.

Figure 22. Relationship between PSN/SN Ratio and Speed; Several Pavement Types.

REFERENCES

- Rizenbergs, R. L., Burchett, J. L. and Napier, C. T., Skid Test Trailer: Description, Evaluation and Adaptation, Kentucky Department of Highways, August 1972.
- 2. Burchett, J. L. and Rizenbergs, R. L., *Pavement Slipperiness Studies*, Kentucky Department of Highways, March 1970.
- 3. Standard Specifications for Road and Bridge Construction, Edition of 1965, Kentucky Department of Highways.
- 4. Florence, R. L., *Class I Bituminous Mixtures*, Kentucky Department of Highways, September 1966.
- 5. Florence, R. L., Kentucky Rock Asphalt Hot-Mix Surfaces, Kentucky Department of Highways, August 1968.
- Florence, R. L., Construction and Interim Performance of Silica Sand-Asphalt Surfacing, Kentucky Department of Highways, February 1965.

Figure 23. Comparison of Stopping Distances on Wet Pavements, Based on Trailer Tests of 430 Projects, with Stopping Distances on Dry Pavements.

- 7. Southgate, H. F., *Experimental Silica Sand-Asphalt Surfaces*, Kentucky Department of Highways, October 1970.
- Chamberlin, W. P. and Amsler, D. E., A Pilot Field Study of Concrete Pavement Texturing Methods, Special Report 5, New York State Department of Transportation, December 1971.
- Smith, P. and Schonfeld, R., Studies of Studded-Tire Damage and Performance in Ontario

 Winter 1969-70, Research Record 352, Highway Research Board, 1971.
- 10. Neil, A. H. and Boyd, P. L., *Research for Grading* of *Tire Traction*, Presented at ASTM F-9 Symposium on Tire Traction, Lanham, Md., May 1972.

APPENDIX

성장 전성적인 🖉 전성적 전성적

SKID TEST DATA

a de la construction de

SI	<id.< th=""><th>TES</th><th>Т</th><th>DATA</th></id.<>	TES	Т	DATA
Skid	Num	nbers	at	40 mph

Build School Street School

1

1969-0.

Ŵ

ROUTE		PROJECT		CONSTR		1066#	SKID NU	IMBER	1070	CUMULATIVE	
NUMBER	COUNTY	NUMBER	LOCATION	YEAR	LANE	1966*	967*	1969	1970	TRAFFIC X TO	
CLASS I, TYPE A SURFACES											
65	Hart & Larue	I 65-3(10)70	Bonnleville-Upton	1965	Outer Inner	51 64	37 49	39		5.0 1.0	
I 75	Madison	75-3(4)87	Richmond-Lexington	1964	Outer Inner	44 64	40 61	33 53	36 49	9.5 2.4	
BGP	Anderson	CK 15	Lawrenceburg-Versailles	1965	Outer Inner	59 72	51 66	53 65	54 62	3.2 0.3	
US 25	Madison	MP 76-5 -AH	8erea-Richmond	965	Bo†h		29	35	30	7.4	
US 27	Campbell	MP 9-2 -F	Falmouth-Alexandria	1965	8oth	44	49		42	4.0	
US 27	Pendleton	MP 96-237-M	Falmouth-Alexandria	1965	Both	49	49		40	2.1	
US 27	Pendleton	MP .96-17-T	Falmouth-Alexandria	1965	Both	46	46		4	[.9	
US 31E	Larue	MP 62-1-L	Hodgenville-Bardstown	1965	Both	56	55	49	52	1.2	
U\$ 41	Christian	MP 24-5-T	Hodgenville-Crofton	1966	Both		32	32	26	3,5	
US 41	Hopkins	MP 54-20-W	Madisonville-Slaughters	1965	Both	29	35	31	28	5,9	
US 41A	Hopkins	MP 54-340-J	Dixon-Madisonville	961	Both	31	34	33	34	4.3	
US 60	Breckingridge	MP 14-13-L	Hardinsburg-Irvington	1965	Both	45	44	40	43	2.4	
US 60	Woodford	MP 120-95-1	Versailles-Lexington	1965	Outer Inner	38 56	37 51	33 47	36 44	6.9 3.7	
US 60	Bath	MP 6-124-G	Owingsville-Morehead	1965	Bo†h	48	42	47	46	1.6	
US 60	Rowan	MP 103-2-U	Morehead-Olive Hill	1965	Both	30	23	26		2,1	
US 68	Logan	MP 71-281-0	Elkton-Russellville	1965	Both	46	51	39	42	2.7	
US 68	Barren	MP 5-52-M	Glasgow-Edmonton	965	Both	48	45	31	33	2.9	
US 68	Me†calfe	MP 85-84-H	Glasgow-Edmonton	1965	Both	52	49	42	37	1.6	
US 68	Bourbon	MP 9-59-W	Paris-Carlisle	1964	Both	54	51	48	40	3.7	
US 127	Anderson	MP_3-10 -8	Harrodsburg-Lawrenceburg	1965	Outer	52	48	55	41	3.4	
US 150	Boyle	MP 11-220-AC	Perryville-Danville	1964	Both	35	4	35	40	3,0	
US 23	Daviess	MP 30-97-V,W,Y	Hartford-Owensboro	1965	Both	4!	4	4		3,7	
KY 32	Fleming	SP 35-90.	Flemingsburg-Morehead	1965	Both	47	49	40		1.5	
KY 80	Floyd	SP 36-136	Hindman-Allen	965	8o†h	46	32	39		2.8	
KY 114	Magoffin	\$ 267(11)	Salyersville-Prestonburg	1965	Both	48	42	46		1.3	
KY 14,	Floyd	\$ 267(8)	Salyersville-Prestonburg	1965	8oth	58	56	57		1.1	
KY 678	Bourbon	RS 9-199	Clark County Line-Paris	1965	Both	54	52	50	44	0.9	
			CLASS I, TYPE A (MODI	FIED) SU	JRFACE	ES					
US 60	Rowan	MP 103-2-U	Morehead-Olive Hill	1970	Both				38	0,2	
US 460	Scott	MP 105-134-H	Georgetown-Frankfort	1969	Both				39	0.4	
KY 4	Fayette	MP 34-304	Lexington Circle Road	1970	Outer Inner				33 40	1.0 0.7	

*Computed from automobile data using automobile-trailer correlation equations.

*

r	ROUTE		PROJECT		CONSTR	[]		SKID	IUMBER			CUMULATIVE		
L	NUMBER	COUNTY	NUMBER	LOCATION	YEAR	LANE	966*	1967*	1968*] 969	1970	TRAFFIC × 100		
	SAND ASPHALT SURFACES (PROVISION 22)													
US 41 Hopkins MP 54-20-Y Madisonville-Hanson 1966 SB 25 30 27 6.0														
	US 60	Breckinridge	SP 4-333	irvington-Ft. Knox	1966	Both		44		48	43	1.7		
	US 60	Franklin	MP 37-65-Y	Frankfort	1966	Outer Inner	40	28 39	34 49	33 43	30 36	5.9 1.9		
	US 60	Meade	SP 82-423	irvington-Ft. Knox	1967	Both		47		39	33	1,6		
	US 62	Anderson	MP 3-71-P	Lawrenceburg-Versallies	1966	Both	42	45	49	51	40	1.3		
	US 431	Logan		Adairville	964	Both	36	28	32	37	39	1.4		
	KY 236	Boone	SP 8-270-5	Cinn. Airport-US 25	1966	Both	38	33	38		43	11.7		
				(PROVIS	ION 22	: A)								
	US 31W	Meade		Muldraugh	1970	Outer Inner					31 39	1.2 0.8		
	US 62	Hardin	SP 47-79-13	Elizabethtown	1970	Outer Inner					48 46	0.1		
	KY 61	Green	SP 44-16	Greenburg-KY 88	1969	Both				34	30	0.9		
	KY 121	Calloway	SP 18-123	Murray-Coldwater	967	Both		32		46	-	,4		
				KENTUCKY ROCK	ASPH	ALT SU	RFACES	3						
	US 31E	Barren	MP 5-12-N	Glasgow-Hodgenville	967	Bo†h		·		54	53	2.		
	US 31E	Hart	MP 50-40-G	Glasgow-Hodgenville	1966	Both '				57	56	0.9		
	US 31₩ & US 60	Hardin	MP 47-39-M & MP 82-3-H	Ft. Knox-Louisville	966	Outer Inner				46	48 55	4.8 2.7		
	US 31W	Warren	MP 1 4-68-T	Bowling Green-Park City	1966	Outer		•		46	46	6.2		
	US 41	Henderson	MP 51-99-K	Madisonville-Henderson	1966	Both				49		2.7		
	US 68	Christian	MP 24-65-L	Fairview-Hopkinsville	966	Both				60	56	1.3		
	US 79	Todd	MP +10-126-D	Guthie-Russellville	967	Bo†h				68	57	0.8		
	US 127	Russell	MP 104-78-J	Jamestown-Cumberland Lake	967	Both					50	1.2		
	KY 70	Barren	SP 5-292-60	Cave City-Sulphur Wells	1967	Both				54		0.5		
	KY 80	Metcalfe	SP 85-24-5	Edmonton-Columbia	967	Both				58		0.6		
	KY 101	Warren	SP 4-48-1	US 31W-Brownsville	1967	2oth				62		0.4		

W.

A Providencia Contraction (Contraction Contraction)
 A Providencia Contraction (Contraction Contraction)

ROUTE	COUNTY	PROJECT		CONSTR		1964*	1965*	SKID		1060	1970	CUMULATIVE
PORTLAND CEMENT CONCRETE SURFACES												
64	Shelby	64-3(10)42	Shelbyville-Frankfort	1961	Outer	53	49	47	48	45		10.6
1 64	, Encolution		Chailburd Lla Enceldant	1061	lnner Outor	53	50 46	54	57	41		10.6
1 64	Franklin	1 64-3(6)47	Shelbyviile-Frankfort	1901	Inner		40 49	55	54			10.0
1 64	Fayette	64-4(12)77	C. L. Lexington	1964	Outer Inner		51 53		47 52	44 47	38 52	11.5 5.4
1 64	Fayette	64-5(17)79	Lexington-Winchester	963	Inner					55		1.8
1 71	Gallatin	71-3(11)61	Louisville-Cincinnati	967	lnner						42	1.0
1 71	Gallatin	7 -3(12)66	Louisville-Cincinnati	967	Outer Inner						35 42	3.9 1.0
1 75	Madison	75-3(12)76 75-3(13)8	Richmond-Berea	ľ966 -	Outer Inner				43 43	38		4.7
1 75	Madison Rockcastle	1 75-3(23)69	Barea-Mt. Vernon	1967	Outer Inner	÷			46 46	42		2.3
75	Rockcas†le	1 75-2(23)51	Mt. Vernon-Corbin	1969	Outer Inner				· .	• •	34 50	1.4 0.6
75	Laurel	75-2(28)47	Mt. Vernon-Corbin	1969	Outer Inner						40 49	1.4 0.6
75	Laurel	75-2(25)4	Mt. Vernon-Corbin	1969	Outer Inner						44 50	1.4 0.6
75	Laurel	75-2(24)35	Mt. Vernon-Corbin	1969	Outer Inner						38 49	1.2
64 75	Fayette	64-4(7)7 75-5(9) 7	Lexington-Covington US 68 & 27-US 25	1964	Outer					41	·	8,6
1 75	Fayette- Scott	75-5(6) 7 75-6(19) 23	Lexington-Covington US 25-US 62	1963	Outer Inner					42 45		12.1
+ 75	Scott	75-6(6)123 75-6(13)129	Lexington-Covington US 62-KY 32	1962	Outer Inner					37 43		13.1 2.6
75	Scott- Grant	75-6(9) 34 75-6(14) 38	Lexington-Covington KY 32-KY 330	1963	Outer Inner					37 41		12.1
I 75	Grant	75-6(16) 42 75-7(17)15	Lexington-Covington KY 330-KY 36	1963	Outer Inner					39 46		11.5 1.3
1 75	Grant	75-7(12) 53	Lexington-Covington KY 36-KY 22	1962	Outer					32		13.1
75	Grant	I 75-7(4)157	Lexington-Covington KY 22-KY 1548	1961	Outer Inner					34 43		15.5 3,1
75	Grant - Kenton- Boone	1 75-7(15)164	Lexington-Covington KY 1548-KY 14 & 16	1961	Outer Inner					35 36		15.5
1 75	Boone	75-7(10)169	Lexington-Covington KY 14 & 16-KY 338	1961	Outer Center					33 38		6.4
1 75	Boone	1 75-7(13)173	Lexington-Covington KY 338-US 42 & 127	1961	Outer					31		15.8
1 75	Boone	1 75-7(14)178	Lexington-Covington US 42 & 127-Kenton Co. Lr	1961	Outer Center					32 36		22.1 15.1
75	Kən†on	75-8(13) 8	Lexington-Covington Kenton Co. Ln-US 25 & 42	1962	Outer Center					33 36		24.3 15.8
1 75	Kenton	75-8(7) 85	Lexington-Covington US 25 & 42-Covington	1961	Outer Center					31 30		.30.6 20.9
WKP	Grayson	WK 27-2	Leitchfield-Elizabethtowr	1963	Outer Inner	47	49 46	55 51	56 56	53		0,3
US 60	Woodford	SG 55()	Frankfort-Versailles	1959	Outer Inner	52 54	46 49	46 49	40 54	39 54	41 51	3.6

BOUTTE I	T T	PROJECT		LENGTH	CONST		SKID NUMBER	OIMULAT TVF				
NUMBER	NAME OF ROAD	NUMBER	COUNTY	IN MILES	YEAR	LANE	1971	TRAFFIC x 10 ⁶				
BITUMINOUS SURFACES												
I 64	Lexington-Ashland	е СL 164-7(19)146	.ASS I, IYPE Rowan-Carter	8.1	1969	Outer Inner	33 47	1.3 0.5				
I 64	Lexington-Ashland	164-7(17)154	Carter	7.0	1969	Outer Inner	37 49	1.5 0.2				
I 64	Lexington-Ashland	164-7(7)161	Carter	6.7	1968	Outer Inner	30 42	2.1 0.2				
I 64	Lexington-Ashland	164-8(19)168	Carter	3.2	1969	Outer Inner	32 45	1.5 0.2				
I 64	Lexington-Ashland	164-8(10)183	Boyd	4.0	1964	Outer Inner	28 44	4.6 0.5				
I 64	Lexington-Ashland	164-8(11)187	Boyd	5,8	1964	Outer Inner	27 46	4.6 0.5				
I 65	Louisville-Tenn St Line	165-3(10)70	Larue-Hart	5.4	1965	Outer Inner	30 41	9.3 2.2				
I 65	Louisville-Tenn St Line	I65 -3 (9)63	Hart	6.2	1965	Outer Inner	25 40	10.4 2.8				
I 65	Louisville-Tenn St Line	165-2(17)60 165-3(21)62	Hart	3.2	1967	Outer Inner	25 35	5.6 2.4				
I 75	Lexington-Tenn St Line	175-3(4)87	Madison	2.6	1964	Outer Inner	22 34	9.9 3.2				
I 75	Lexington-Tenn St Line	175-3(28)62	Rockcestle	3,3	1968	Outer Inner	25 43	3.6 1.9				
I 75	Lexington-Tenn St Line	175-3(24)60	Rockcestle	2.9	1967	Outer Inner	31 44	6.0 2.6				
I 75	Lexington-Tenn St Line	175-2(23)51	Rockcast le	8.1	1969	Outer Inner	23 35	3.4 1.4				
WR.	Princeton-US62	WKE 11-1	Oaldwell-Lyon	6.7	1968	Outer Inner	35 42	2.2 0.2				
WK	Princeton-Elizabethtown	WK 21-1	Galdwell	5.6	1963	Outer Inner	38 49	5.4 0.6				
₩K	Princeton-Elizabethtown	WK 21-2	Oaldwell	6.3	1963	Outer Inner	35 51	4.5 0.5				
WK	Princeton-Elizabethtown	WK 21-3	Oaldwell Hopkins	4.4	1963	Outer Inner	34 52	4.5 0.5				
₩К	Princeton-Elizabethtown	WK 28-1	Grayson Hardin	6,3	1963	Outer Inner	38 51	5.0 0,5				
WK	Princeton-Elizabethtown	WK 28-2	Hardin	7.8	1963	Outer Inner	33 48	4.9 0.5				
WK	Princeton-Elizabethtown	WK 28-3	Hardin	5.3	1963	Outer Inner	36 45	5.0 0.5				
BG	Elizabethtown-Versailles	OK 11	Hardin Nelson	16.4	1965	Outer Inner	44 53	3.9 0.4				
BG	Elizabethtown-Versailles	CK 12-1	Nelson	7,7	1965	Outer Inner	47 57	3.9 0.4				
BC.	Elizabethtown-Versailles	OK 15	Anderson Woodford	11,6	1965	Outer Inner	37 58	4.3 0.5				

SKID TEST DATA - INTERSTATE & PARKWAY Skid Number at 70 mph

in a second s

n na haran an an Albana. An an an Albana

ROUTE NUMBER	NAME OF ROAD	PROJECT NUMBER	COUNTY	LENGTH IN MILES	CONST YEAR	LANE	SKID NUMBER 1971	CUMULATIVE TRAFFIC x 10 ⁶
		CLASS	I,TYPE A	(cont.)				
JPP	US62-Fulton	JPP 11-1	Fulton- Hickman	6.3	1968	Outer Inner	37 44	2.4 0.3
JPP	US 62-Fulton	JPP 11-2	Graves	5.0	1968	Outer Inner	37 39	1.8 0.2
JPP	US 62-Fulton	JPP 12	Graves	8.2	1968	Outer Inner	36 38	1.8 0.2
JPP	US 62-Fulton	JPP 13	Graves- Marshall	14.4	1968	Outer Inner	34 51	1.8 0.2
JPP	US 62-Fulton	JPP 14	Marshall	12.8	1968	Outer Inner	40 47	1.8 0.2
JPP	Fulton-Tenn St Line	1-3	Fulton	2.1	1968	Outer Inner	50 47	1.4 0.2
· .		CLASS	I, TYPE B I	MODIFIED				
I 64	Lexington-Ashland	164-5(18)86	Clark	4.9	1963	Outer Inner	35 47	11.6 4.1
I 64	Lexington-Ashland	164-5(9)90	Clark	3.0	1961	Outer Inner	35 45	12.1 3.9
I 64	Lexington-Ashland	164-5(7)93	Clark	6.9	1961	Outer Inner	36 49	90 12
I 64	Lexington-Ashland	164~5(8)100	Montgomery	ి.4	1961	Outer Inner	38 50	8.0 0.9
I 75	Lexington-Tenn St Line	175 -4(15) 98	Fayette	2.5	1963	Outer Inner	27 45	13.3 6.2
I 75	Lexington-Tenn St Line	175-4(5)90	Madison	7.4	1962	Outer Inner	33 46	15.4 6.5
	PORT	LAND CEN	ENT CONC	RETE ȘI	IRFAC	ES		
1 64	Louisville-Lexington	164-2(40)12	Jefferson	6 .5	1964	Outer Inner	25 28	11.7 5.7
I 64	Louisville-Lexington	.164-2(6)17	Jefferson- Shelby	6.1	1961	Outer Inner	26 24	14.9 6.4
I 54	Louisville-Lexington	I6 4-2(4) 24	Sheiby	6.1	1961	Outer Inner	22 27	13.7 5.6
I 64	Louisville-Lexington	164-3(4)31	Shelby	6.3	1961	Outer Inner	23 29	14.1 5.3
I 64	Louisville-Lexington	164-3(9)37	Shelby	5.1	1961	Outer Inner	22 32	13.4 4.7
I 64	Iouisville-Lexington	164-3(10)42	Shelby- Franklin	4.3	1961	Outer Inner	23 32	12.6 4.5
I 64	Louisville-Lexington	I64-3(6)47	Franklin	5.4	1961	Outer Inner	23 32	12.8 4.0
.I 64	Louisville-Lexington	164-4(9)52	Franklin	4.3	1962	Outer Inner	23 31	11.2 3,1
I 64-75	Louisville-Lexington	I64-4(17)71 I75-5(9)117	Fayette	4.9	1964	Outer Inner	25 28	11.6 4.1
I 64	Lexington-Ashland	I64-4(12)77	Fayette	2.3	1963	Outer Inner	18 22	14.9 7.7
I 64	Lexington-Ashland	164-5(17)79	Fayette	7.2	1963	Outer Inner	25 31	11.4 3.7
I 64	Lexington-Ashland	164-6(7)109	Montgomery- Beth	10.2	1967	Outer Inner	25 34	4.4 0.5

ROUTE NUMBER	NAME OF ROAD	PROJECT NUMBER	COUNTY	LENGTH IN MILES	CONST YEAR	LANE	SKID NUMBER 1971	CUMULATIVE TRAFFIC x 10 ⁶
PORTLAND CEMENT CONCRETE SURFACES (cont.)								
I 64	Lexington-Ashland	164-6(14)123	Bath-Rowan	7.1	1968	Outer Inner	24 33	2.4 0.3
I 64	Lexington-Ashland	I64-6(15)130	Rowan	6.9	1968	Outer Inner	25 34	1.4 0.2
I 64	Lexington-Ashland	164-7(16)138	Rowan	8.8	1969	Outer Inner	30 38	1.1 0.1
I 65	Louisville-Tenn St Line	165-4(6)78	Hardin	11.5	1959	Outer Inner	28 33	16.0 5.5
I 65	Louisville-Tenn St Line	I65 -3(4) 76	Hardin-Larue	2.6	1963	Outer Inner	24 34	6.4 1.0
I 65	Louisville-Tenn St Line	165-2(16)57	Hart	3.4	1967	Outer Inner	23 31	7.7 5.1
I 65	Louisville-Tenn St Line	165 -2(12)48	Hart-Barren	10,1	1968	Outer Inner	19 26	4.0 1.7
I 65	Louisville-Tenn St Line	I65 -2(14) 3 5	Barren,Edmonson Warren	12.2	1969	Outer Inner	20 33	3.0 1.3
I 65	Louisville-Tenn St Line	165-(14)22	Warren	6.3	1966	Outer Inner	21 29	7.5 3.2
I 65	Louisville-Tenn St Line	165-1(15)28	Warren	6.8	1966	Outer Inner	24 33	5.7 1.7
I 65	Louisville-Tenn St Line	165-1(13)13	Warren- Simpson	9.1	1965	Outer Inner	22 33	7.6 2.1
I 65	Louisville-Tenn St Line	165-1(16)2 165-1(17)6	Simpson	10.9	1965	Outer Inner	21 32	7.1 2.0
I 71	Louisville-Covington	171-1(28)9 171-1(29)15	Jeff ers on- Oldham	12.6	1968	Outer Inner	19 30	5.4 2.9
I 71	Louisville-Covington	171-1(27)22	Oldham- Henry	5.8	1969	Outer Inner	22 28	3.1 1.3
I 71	Louisville-Covington	171-1(26)28	Henry	9.4	1968	Outer Inner	19 31	4.0 1.0
I 71	Louisville-Covington	171-2(15)37	Henry, Trimble Carroll	7.2	1968	Outer Inner	20 3 1	2.9 0.7
I 71	Louisville-Covington	171-2(12)48	Carroll- Gallatin	12.2	1967	Outer Inner	20 28	5.0 1.7
171	Louisville-Covington	I71-3(11)61	Gallatin	4.6	1967	Outer Inner	20 22	4.8 1.6
I 71	Louisville-Covington	171-3(12)66	Gallatin	8.1	1967	Outer Inner	20 19	5.2 1.7
I 71	Louisville-Covington	171-3(10)74	Boone	7.6	1967	Outer Inner	16 25	5.2 1.7
I 75	Covington-Lexington	175-8(7)185	Kenton	2.8	1961	Outer Middle Inner	30 31 31	35.0 49.1 28.2
I 75	Covington-Lexington	175-8(13)181	Kentoa	4.5	1962	Outer Middle Inner	22 25 26	24.6 33.5 17.4
I 75	Covington-Lexington	175-7(14)178	Boone	3.2	1961	Outer Middle Inner	24 23 25	23.8 25.5 12.0
I 75	Covington-Lexington	175-7(13)173	Boone	4.6	1961	Outer Middle Inner	21 9 27 29	18.9 19.5 8.5

ROUTE NUMBER	NAME OF ROAD	PROJECT NUMBER	COUNTY	LENGTH IN MULES	CONST YEAR	LANE	SKID NJMBER 1971	CUMULATIVE TRAFFIC x 10 ⁶
	PORT	LAND CEMENT	CONCRETE	SURFACES	(cont	.)		·
I 75	Covington-Lexington	175-7(10)169	Boone	4.0	1961	Outer Middle Inner	20 26 29	15.6 12.2 6.2
I 75	Covington-Lexington	175-7(15)164	Kenton, Boone, Grant	5.4	1961	Outer Inner	24 28	21.2 10.2
I 75	Covington-Lexington	175-7(4)157	Grant	7.4	1961	Outer Inner	22 26	18.1 8.6
I 75	Covington-Lexington	175~7(12)153	Grant	4.4	1962	Outer Inner	22 24	15.6 7.8
I 75	Covington-Lexington	175-6(16)142 175-6(17)147 175-7(17)151	Grant	9.7	1963	Outer Inner	27 30	15.4 8.8
I 75	Covington-Lexington	175-6(9)134 175-6(14)138	Grant-Scott	8.0	1963	Juter Inner	25 31	12.6 5.4
I 75	Covington-Lexington	175-6(6)123 175-6(13)129	Scott	10.5	1962	Outer Inner	2'7 29	12.0 5.8
I 75	Covington-Lexington	175-5(6)117 175-5(7)121 175-6(19)123	Scott - Fayette	7.0	1963	Outer Inner	22 26	14.2 6.8
I 75	Lexington-Tenn St Line	I75-4(19)104	Fayette	5.9	1964	Outer Inner	29 33	10.3 3.0
I 75	Lexington-Tenn St Line	175-4(17)100	Fayette	3.4	1963	Outer Inner	26 28	13.5 6.3
I 75	Lexington-Tenn St Line	175-3(12)76 175-3(13)81	Madison	11.7	1966	Outer Inner	19 27	10.4 6.9
I 75	Lexington-Tenn St Line	175-3(23)69	Madison- Rockcastle	7.0	1967	Outer Inner	25 32	6.1 3.3
I 75	Lexington-Tenn St Line	175-3(27)65	Rockcastle	3.3	1968	Outer Inner	27 28	4.9 2.7
I 75	Lexington-Tenn St Line	175-2(28)47	laurel	3.8	1969	Outer Inner	24 36	3.3 1.4
I 75	Lexington-Tenn St Line	175-2(25)41	Iaurel	6.2	1969	Outer Inner	22 32	2.7 1.1
I 75	Lexington-Tenn St Line	I75-2(24)35	Iaurel	6.3	1969	Outer Inner	25 38	2.7 1.1
I 75	Lexington-Tenn St Line	175-2(26)28	Laurel	5.4	1969	Outer Inner	22 33	2.5 0.8
I 75	Lexington-Tenn St Line	175-2(20)25	laurel- Whitley	4.0	1968	Outer Inner	25 37	3.4 0.8
I 75	Lexington-Tenn St Line	175-1(23)16	Whitley	9.4	1967	Outer Inner	21 35	4.0 1.0
I 75	Lexington-Tenn St Line	I75-1(17)11	Whitley	4.6	1966	Outer Inner	18 35	6.1 1.0
I 75	Lexington-Tenn St Line	175-1(8)4	Whitley	б.4	1965	Outer Inner	32 41	6.8 1.1
I 75	Lexington-Tenn St Line	175-1(40)0	Whitley	3.8	1962	Outer Inner	22 37	9.2 1.4

ROUTE		PROJECT	COINTY	LENGTH IN MILES	CONST YEAR	LANE	SKID NUMBER 1971	CUMULATIVE TRAFFIC x 10 ⁶
NUMBER	NAME OF ROAD	NUMERIC	000111					
	PORTLA	ND CEMENT	CONCRETE	SURFACES	(cont	.)		
PP	Hopkinsville-Henderson	Penn 12	Christian	4.1	1968	Outer Inner	34 39	0.9 0.1
PP	Hopkinsville-Henderson	Penn 13	Christian	5.2	1968	Outer Inner	31 38	0.9 0,1
PP	Hopkinsville-Henderson	Penn 14	Christian	6.6	1968	Outer Inner	31 33	1.0 0.1
PP	Hopkinsville-Henderson	Penn 15	Christian- Hopkins	6.8	1968	Outer Inner	29 35	1.0 0.1
\mathbf{PP}	Hopkinsville-Henderson	Penn 16 ·	Hopkins	8.8	1968	Outer Inner	28 36	0.7 0.1
PP	Hopkinsville-Henderson	Penn 17	Hopkins- Webster	8.4	1969	Outer Inner	31 36	0.7 0.1
PP	Hopkinsville-Henderson	Penn 18	Webster- Henderson	8.2	1969	Outer Innner	31. 35	0.7 0.1
PP	Hopkinsville-Henderson	Penn 19	Henderson	9.7	1968	Outer Inner	32 38	0.9 0,1
WK	Princeton-Elizabethtown	WK 22-1	Hopkins	11.4	1963	Outer Inner	31 40	2.6 0.3
WK	Princeton-Elizabethtown	WK 22-2	Hopkins- Muhlenberg	6.6	1963	Outer Inner	31 41	2.8 0.3
WK	Princeton-Elizabethtown	WK 23-1	Wahlenberg	5,8	196 3	Outer Inner	29 41	2.9 0.3
WK	Princeton-Elizabethtown	WK 3-2	Muhlenberg	5.4	1963	Outer Inner	27 37	3.1 0.3
WK.	Princeton-Elizabethtown	WK 23-2	Muhlenberg	3.4	196 3	Outer Inner	31 39	3.5 0.4
WK	Princeton-Elizabethtown	WK 4-1	Muhlenberg	6.6	1963	Outer Inner	33 44	3.7 0.4
WK.	Princeton-Elizabethtown	WK 25-1	Ohio	6.1	1963	Outer Inner	33 42	3.7 0.4
WK	Princeton-Elizabethtown	WX 25-2	Ohio	11,1	1963	Outer Inner	33 40	3.7 0.4
WK	Princeton-Elizabethtown	WK 26-1	Ohio, Butler Grayson	, 7.6	196 3	Outer Inner	30 42	3.8 0.4
WK	Princeton-Elizabethtown	WK 26-2	Grayson	7.6	1963	Outer Inner	32 40	3.9 0.4
WK	Princeton-Elizabethtown	WK 27-1	Grayson	8.0	1963	Outer Inner	36 45	4.0 0.5
ŴК	Princeton-Elizabethtown	WK 27-2	Grayson	10.7	1963	Outer Inner	27 36	4.2 0.5
BG	Elizabethtown-Versaille	s CK 12-2	Nelson	8.3	1965	Outer Inner	28 35	3.9 0.4
BG	Elizabethtown-Versaille	s CK 13-1	Nelson	6.7	1965	Outer Inner	28 41	3.9 0.4
BG	Elizabethtown-Versaille	s CK 13-2	Washington- Anderson	6.1	1965	Outer Inner	27 36	3.9 0.4
BG	Elizabethtown-Versaille	8 CK 14	Anderson- Mercer	14,1	1965	Outer Inner	28 42	4.4 0.5

24

n nam n steresteret 🖇

ROUTE		PROJECT	COUNTY	LENGTH IN MILES	CONST	LANE	SKID NUMBER	CUMULATIVE TRAFFIC x 106
NUMBER	NAME OF ACAD	NONDER	1	TR MT100				
	PORTL	AND CEMEN	T CONCRETE	SURFACES	(cont	.)		
MP	Winchester-Campton	EK 1-6	Clark	4.1	1962	Outer Inner	25 41	5.0 0. 6
MP	Winchester-Campton	EK 1-7	Clark	6.3	1962	Outer Inner	25 3 6	5.0 0,6
MP	Winchester-Campton	EK 1-8	Clark-Powell	5.3	1962	Outer Inner	24 34	5.0 0.6
MP	Winchester-Campton	EK 1-9	Powell	3.1	1962	Outer Inner	24 34	4.2 0.5
MP	Winchester-Campton	EK 1-10	Powell	5.5	1962	Outer Inner	25 34	4.2 0.5
MP	Winchester-Campton	EK 2-5	Powell	3.5	1962	Outer Inner	25 34	4.2 0.5
MP	Winchester-Campton	EK 2-2	Powell	4.6	1962	Outer Inner	21 3 1	2.8 0.3
МР	Winchester-Campton	EK 2-3	Powell-Wolfe	4.4	1962	Outer Inner	23 37	2.8 0.3
MP	Winchester-Campton	EK 2-4	Wolfe	5.8	1962	Outer Inner	22 35	2.8 0.3
Audubo	n Henderson-Owensboro	RVP 1-0	Henderson	8.6	1970	Outer Inner	39 36	0.1 0.1
Audubo	n Henderson-Owensboro	RVP-12	Hender son	7.6	1970	Outer Inner	37 36	0.1 0.1
Audubo	n Henderson-Owensboro	RVP-14	Daviess	7.2	1970	Outer Inner	35 36	0.1

* • •

• .17*

· •