

harles pryor, JR.

 COMMISSIONER OF HIGHWAYSCOMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FRANKFORT, KENTUCKY 40601 April 5, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS 533 SOUTH LIMESTONE STREET 533 SOUTH LIMESTONE STREET
LEXINGTON, KENTUCKY
4050 NGTON, KENTUCKY
H.3.36

Memorandum to: C. G. Grayson

Assistant State Highway Engineer
Planning and Programming

Subject:
The I 64, I 65, I 71 Route Junction, Louisville
References: 1) Research Division memo to E. B. Gaither, November 19, 1971.
2) Your memo to J. T. Anderson, December 29, 1971.

In response to your memo of November 11, 1971, we agreed to conduct a preliminary study of he prevailing conditions at the Kennedy Bridge Route Junction in Louisville. The brief report, submitted her suffice as a basis for risions needed there to relieve a severe, peak-hour bottleneck t Ramps 3 and 4

All accident reports for calendar year 1971 were obtained and analyzed. Each loop and leg in All accident reports for calendar year 1971 were obtained and Ramps 3 and 4 were filmed. These the interchange was filmed; conflict movements at the juncture of Ramps 3 and made throughout.

The film is a supplemental but necessary part of this report.
It was not our duty in this instance to present conclusions or recommendations. Originally, we ad intended to monitor and film each bifurcation and merging site; however, the terminus of Ramp 3 commanded our full attention. All other points were deferred in order to bring the most obvious problem into more timely consideration.

Our report on "...Lane Drops," October 1971, may have some bearing on the problem at Louisville. he 3 traffic forward, as has already been discussed and proposed The a by others, would surely allow short length, a 3-lane existing 2 -lane weaving zone would (destination) were weaving situation would seem frightening. On the other hand, if lane assignments (destination) were made at the entrance to Ramp 4 (2 lanes), the leftward-bound traffic could proceed without further weaving. The centex lane would necessarily branch rightward and leftward - that is to say, the 3 -lane

JHH: dw
Attachment
cc's: J. R. Harbison
W. B. Drake
J. T. Anderson
E. B. Gaither
J. W. Fehr
G. Ethington
A. R. Romine
an operational analysis of the I 64, I 65, I 71 ROUTE JUNCTION IN LOUISVILLE

KYP-72-36
by

Jerry G. Pigman Research Engineer

Wiliam M. Seymour
Research Engineer
Kenneth R. Agent Research Engineer Associate
.
Don L. Cornette

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

The Kennedy Interchange in Louisville is the most eometrically complicated of any in Kentucky; it is the junction of three interstate routes, 164,165 , and 71. The many diverging, weaving, and merging movements demand a driver's attention. One merging situation collapses into an impasse during peak-hour raffic. This study is responsive to certain inquiries by the Department concerning safety and possible discovery of design deficiencies at this interchange. It was not intended to be an in-depth study but rather a exploratory identification of problems and their locations, more comprehensve studes, by ohers, would ansue if needed. The specic obets and to bcate onflicts high-frequency accident sites.

METHODS

All accident records were obtained for the entire interchange for calendar year 1971. Accidents were ummarized, coded, and then plotted on aerial presented in APPENDIX A, and the collision diagram in APPENDIX B. Coded information placed on the photograph included type of accident, severity, time and date, weather, and pavement conditions. To further define the pavement conditions, skid tests were conducted with a skid trailer, and the resulting friction measurements were noted on the aerial photographs.

The second phase involved photologging all loops and legs of the interchange. A $16-\mathrm{mm}$ movie camera was mounted on a tripod in the front seat of an automobile, and the driver's view of the roadway was recorded while traveling at the speed of the traffic stream. In order to cover the entire interchange, fourteen separate ilming excursions were made. All of hese sections of film were spliced together and tited to comprise a twenty-minute
film. In the third phase, visually and with the camera during a peak-hour period. This location was the merging point of two lanes from I 65 northbound to I 71 - I 64 eastbound, and the single lane ramp from I 65 southbound leading to $171-164$ eastbound. Data were collected on March 2, 1972, for 35 minutes between 4:00 and 5:00 p.m. A $16-\mathrm{mm}$ Bolex movie camera with a zoom lens was positioned so that the merging of these lanes of traffic could be photographed. Visual monitoring of the location supplemented the filmed data. Included in this visual monitoring phase were traffic counts and observations of brakelight applications and erratic movements. Erratic movements were categorized as "crowded weave", "swerve", "slowed drastically, and fintion alisted APPENDIX C

Accident Summary
The accident statistics for the calendar year 1971 are presented in APPENDIX A. There were 134 accidents during the year. The summary indicated there was no predominant day or month in which accidents occurred. Most accidents occurred on Mondays and Fridays and in October and November. The erratic
vehicle in the great majority of accidents was a passenger vehicle in the great majority of accidents was a passenger car, and the erratic driver was most frequently male and Jefferson County, but a large number of the drivers resided in Indiana.

Of the 134 accidents, 103 involved property damage. There were 42 nonfatal injuries and one fatal injury involved in the remainder of the accidents.
The majority of accidents occurred during dry roadway conditions during daylight hours. Only six accidents occurred during darkness outside the lighted area of the interchange. Although the majority of accidents occurred during dry roadway conditions, a significant portion (34 percent) occurred during wet or icy roadway conditions.

A predominance of rear-end and multiple rear-end accidents (66) indicates a high degree of congestion. There were also several fixed-object accidents (32) and oblique or sideswipe accidents (28).

The contributing circumstances listed in most of the accident reports was a statement that the vehicle was not under proper control. Therefore, the majority of the accidents were placed in the "other" category of contributing circumstances. Other main items listed were failure to yield right of way and inattention of the driver. In a few cases, the driver was following too closely and (or) speeding

HIGH ACCIDENT LOCATIONS
From the collision diagrams (APPENDIX B), the five highest accident locations were isolated. A brief summary of the number and type of accidents at each summary of the number and type of accidents at each
location follows.. The locations are in the order of highest-to-lowest number of accidents.

1. The merge of the ramp from $I 65$ southbound to I 64 - I 71 eastbound with the ramp from I 65 northbound to I 64 - I 71 eastbound.
There were 18 accidents at this location during the study period. Of these 18 accidents, 13 wer rear-end type, and 3 were multiple rear-end collisions. There was also one oblique accident and one fixed-object-type accident. Of the 18 accidents 17 involved property damage, and there was only one injury reported. Friction measurements on the ramp from I 65 southbound and from I 65 northbound were 34 and 40, respectively. These compare with a recommended minimum frictio value of 37 as presented in National Cooperativ Highway Research Program Report 37. Thi
minimum value corresponds to that required for normal driving needs at a mean speed of 50 mph . The speed limit for this section of the interchange is 50 mph . Normal needs encompass all driving, cornering, and braking maneuvers by the majority of drivers under normal traffic conditions. Report 37 further states that the friction level should be higher whenever it is economically or technically feasible. The friction measurements at the four other high accident locations can also be compared with the minimum friction value. It is interesting to note that only one of the rear-end collisions occurred during wet weather conditions. Of the 16 rear-end collisions at this site, 14 occurred on the ramp from 165 southbound. This indicates that It should also be noted that the majority of those accidents occurred during the evening rush hour, which points to congestion as the probable cause of accidents. Another possible contributing factor is the short acceleration lane of the ramp from I 65 southbound.
2. I 65 southbound, just south of the Kennedy Bridge, 165 southbound, just south of the Kennedy Bridge, eastbound.
There were 14 accidents at this location during the study period. Of these, five were the rear-end type four were with fixed objects, three were sideswipes, and two were combination rear-end and sidewise encounters. (involving three vehicles). These accidents were generally spread throughout the day, but several occurred during the evening rush hour. Eleven of the accidents involved property damage; three caused injuries (four persons). There, 10 of the 14 accidents occurred during wet weather. This tends to indicate that pavement conditions might have played a significant role in these accidents. Friction measurements for the outer and inner lanes were 34 and 36 , respectively. Kennedy Bridge the outside-lane traffic must turn right: the middle hane is optional with respect to I 65 , south or I 64 and I 71 , east, traffic in the innermost lane must continue on I 65 , Apparently innermost lane must continue on I 65 . Apparently, conflicts arise when unwary drivers desiring to exit
toward 3rd Street find themselves in the innermost lane and when those trapped in the outermost lane desire to continue southward on I 65. A possible desire to continue southward on I 65. A possible
remedy might be to improve the advance signing remedy might be to improve the advance signing
(north of bridge) to emphasize lane assignments.
3. I 64, westbound, between Story Avenue and the I 71 overpass.
A total of 13 accidents occurred on this 0.2 -mile section during the study period. Of these, six involved fixed objects, four were rear-end collisions, and three were sideswipes. Eight caused property damage, and five resulted in 11 personal
injuries. Five occurred in wet weather; three of the six fixed-object accidents were during wet weather conditions. Three of the four rear-end accident occurred during the morning rush hour when traffic was backed up on the expressway. Two of the thre sideswipes involved vehicles which were mergin into traffic from the Story Avenue ramp. Th friction measurements in the outer and inner lane were 31 and 33 , respectively. Ramp from I 64 westbound to I 65 southbound. Nine accidents occurred on this 0.2 -mile section of road during the study period. Six involved fixed objects, two were sideswipes, and one was a
rear-end collision. Only two occurred during wet rear-end collision. Only two occurred during wet
weather; they were sideswipes. Friction weather; they were sideswipes. Friction
measurements in the outer and inner lanes were 40 and 44 , respectively. The problem at thi location is caused by the sharp curvature of this ramp, which was the probable cause of the fixed-object accidents. There are dual-mounted warning signs advising motorists to reduce speed to 35 mph and there are two sets of rumble strips however, drivers continue to lose control.
4. I 65 , northbound, at the exit ramp to Third Street and I 64 - I 71 eastbound.
Eight accidents occurred at this location during the study period. Three were rear-end collisions, thre were sideswipes, and two involved fixed object Three of the accidents occurred during wet weather. The friction measurements in the outer and inner lanes were 33 and 39 , respectively. Th accidents did not occur at any particular time of the day. No pattern could be found from accident reports.
ERRATIC MOVEMENT STUDY AT THE HIGHEST ACCIDENT- FREQUENCY LOCATION

The merging of the ramp from I 65 , southbound to I 64 - I 71, eastbound, with the ramp from I 65 , northbound, to $164-17$, eastbound, was idencied frequency location in the Kennedy Interchange Therefore, it was felt that this would be an appropriate location for both camera monitoring and an erratic movement study.

On March 2, between 4:00-5:00 p.m. (a peak hour), this site was monitored with a tripod-mounted 16 mm movie camera. Brakelight applications and volumes were recorded for both ramps. Erratic movements, classified as "crowded weave", "swerve",
"slowed drastically", and "stopped", were recorded for the ramp from I 65, southbound, to I 64 - I 71, eastbound. The periods of observation of erratic movements coincided with periods of filming. These periods were $4: 10$ to $4: 25$ p.m., $4: 33$ to $4: 43$ p.m., and 4:52 to $5: 02 \mathrm{p} . \mathrm{m}$. This 15 -minute period and the two-10 minute periods coincided with the amount of time
required to expose three, 100 -foot rolls of film. An verage of 13 percent of the vehicles issuing from 165 outhbound, into I 64 - I 71, eastbound, committed a crowded weave, 2.5 percent committed a swerve" 6 percent "slowed drastically", and 33 percent stopped . These percentages indicate the magnitude of he problem at this location. It is important to note that the erratic movement classifications of "slowed drastically" and "stopped" were mutually exclusive of ach other, as were "crowded weave" and "swerve". In other words, if a vehicle had "stopped" or committed "crowded weave", it was never classified as having "ow drastically nor counted as have "
 mited " . Era " oth. Erratic movements and brakelight applications are abulated in APPENDIX C, as both numbers and rates Volumes and APPENDIX C. Each of the high coident site oud in AFigures 1 through 5, respectively, An aerib
 wiros is presented in APPENDIX D.

Figure 2. I 65 Southbound just South of the Kennedy Bridge at the Ramp to Third Street and I $64-171$ Eastbound.
 Cerge of the Ramp from I 65 wh the Ro 64 - 11 Eastbound 164 I 71 Eastbound

ERRATIC MOVEMENT DEFINITIONS
CROWDED WEAVE -- A vehicle changes lanes directly in front of a following vehicle, causing the following vehicle to apply its brakes. This type o erratic movement always directly involves at leas two vehicles.
SWERVE .- A vehicle abruptly veers from its straight ahead course. A swerve may or may not consist ahead course. A swerve may or may not consis
of a change of lanes for the erratic vehicle. This type of erratic movement always involves only one vehicle

SLOWED DRASTICALLY -- A very rapid deceleration, causing "dipping" of the front end or tire squealing.

COMPLETE STOP -- Vehicle comes to a complete stop.

Figure 5. I 65 Northbound at the Exit Ramp to Third Street and I 64-I 71 Eastbound

SUMMARY OF ACCIDENTS

Kennedy Interchange

1. Total Number of Accidents (1-1-71 through 12-1-71)

134

	Tuesday
	Wednesday
	Thussday
	Friday
	Saturday
	Sunday

b) Month of Year January 12
$\begin{array}{lr}\text { February } & 3 \\ \text { March } & 14\end{array}$
May
$\begin{array}{lr}\text { June } & 6 \\ \text { July } & 13\end{array}$
August
August
September
September
October
$\begin{array}{ll}\text { October } & 21 \\ \text { November } & 20\end{array}$
December 11
3. Type of Erratic Vehicle Four-Tired Truck Truck (six or more tires)
Bus
Motorcycle
4. Sex of Erratic Driver
5. Age of Erratic Driver $\quad 16-20 \quad 19 \quad 46-50 \quad 12$ $\begin{array}{lll}21-25 & 39 & 51-55\end{array}$ $\begin{array}{lll}26 \cdot 30 & 18 & 56.69 \\ 31.35 & 10 & 61.65\end{array}$ $\begin{array}{rrr}36 \cdot 40 & 7 & \text { Over } 65\end{array}$ $41-45 \quad 10$
$\begin{array}{ll}\text { Over 65 } & 4 \\ \text { Unknown } & 5\end{array}$
6. Accident Involvement Rate by Residence of Erratic Driver In Oounty County in State
Out of State
Unknown
7. Seriousness of Injury Among Car Occupants

A - Visible signs of injury, as bleeding, distorted member, or had to be carried from the scene of the accident.
Other visible injury, as bruises, abrasions, swelling, limping, etc.
B - Other visible injury, as bruises, abrasions, swelling, limping, etc.
C - No visible injury but complaint of pain or momentary
o - No indication of injury.
K - Fatal
Road Surface Condition
9. Light Condition
0. Weather Conditions

1. Type of Accident
2. Contributing Circumstances
$\begin{array}{ll}\text { Dry } \\ \text { Wet } & 88\end{array}$
Wet
Daylight 89
Darkness $\quad 6$
Dawn or Dusk
Highway Lighted 36
Rear End
Right Angle
Right Angle
Oblique or Sideswipe
Fixed Object
Single Vehicl
Huad On
Other

Drinking

0
Speeding $\quad 10$
Failed to Yield Right of Way 23
Ran Stop Sign
$\begin{array}{ll}\text { Ran Stop Sign } & 0 \\ \text { Discegard Traffic Signal } & 0\end{array}$
$\begin{array}{lr}\text { Disregard Traffic Signal } & 0 \\ \text { Followed Too Closely } & 13\end{array}$
$\begin{array}{lr}\text { Followed Too Closely } & 13 \\ \text { Improper Passing } & 0\end{array}$
Improper Passing
Improper Turn
Failed to Signal
Other
0
57
1

COLLISION DIAGRAM LEGEND

COLLISION DIAGRAMS

號

APPENDIX C

ERRATIC MOVEMENTS, BRAKELIGHT APPLICATIONS, AND LANE VOLUMES AT THE MERGE OF RAMP FROM I 65 SOUTHBOUND TO I 64171 EASTBOUND WITH RAMP FROM I 65 NORTHBOUND TO

I 64I 71 EASTBOUND

TABLE C-1. NUMBERS OF ERRATIC MOVEMENTS, BRAKELIGGT APPLICATIONS, AND LANE VOLUMES.

TIME	ERRATIC MOVEMENTS				BRAKELIGHT APPLICATIONS			VOLUMES		
	$\begin{aligned} & \text { CROWDED } \\ & \text { WEAVE } \end{aligned}$	SWERVE	SLOWED DRASTICALLY	STOPPED	RAMP A	RAMP B		RAMP A	RAMP B	
						MEDIAN LANE	$\begin{aligned} & \text { SHOULDER } \\ & \text { LANE } \end{aligned}$		MEDIAN LANE	SHOULDER LANE
$\begin{aligned} & 4: 10- \\ & 4: 25 \end{aligned}$	13	7	34	36	149	51	34	238	219	350
$\begin{aligned} & 4: 33- \\ & 4: 43 \end{aligned}$	30	4	20	87	100	53	49	198	264	324
$\begin{aligned} & 4: 52- \\ & 5: 02 \end{aligned}$	40	5	50	83	146	86	28	210	250	300
								1,100*	1,260*	1,680*

TABLE C-2. 1) ERRATIC MOVEMENTS EXPRESSED AS A PERCENTAGE OF THE RAMP A VOLUME.
2) BRAKELIGHT APPLICATIONS EXPRESSED AS A PERCENTAGE OF THE RESPECTIVE LANE VOLUMES.

TIME	ERRATIC MOVEMENTS				BRAKELIGHT APPLICATIONS		
	CROWDEDWEAVE	SWERVE	SLOWED DRASTICALLY	STOPPED	RAMP A	RAMP B	
						MEDIAN LANE	SHOULDER LANE
$4: 10$	5	3	14	15	63	23	10
$\begin{aligned} & 4: 33- \\ & 4: 43 \end{aligned}$	15	2	10	44	51	20	15
$\begin{aligned} & 4: 52- \\ & 5: 02 \end{aligned}$	19	2	24	40	70	34	9
AVERAGES	13	2.5	16	33	61	26	11

APPENDIX D

$$
+x+1
$$

