

COMMONWEALTH OF KENTUCKY

DEPARTMENT OF HIGHWAYS

FRANKFORT, KENTUCKY 40601 September 28, 1972 ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508 TELEPHONE 606-254-4475 H.3.30

MEMORANDUM TO: J. R. Harbison State Highway Engineer Chairman, Research Committee

SUBJECT:

CHARLES PRYOR, JR.

COMMISSIONER OF HIGHWAYS

Research Report No. 342; "Rural Recreational Travel in Kentucky;" KYP-30; HPR-1(8), Part III.

In August 1971, we submitted a report on the "Influence of Recreational Areas on the Functional Service of Highways". The study was done under Part I (Planning) of HPR-1(7) -- by previous arrangement with the Planning Division. The results obtained then were not altogether useful in the Statewide Traffic Forecasting Model project. However, we continued the study under Part III (non-participating) because we had an opportunity to obtain continuous ATR counts through an extended period of time at some specific recreational areas. A year of data has been obtained and further analyses completed. The ultimate usefulness of the findings remains to be determined by the Division of Planning.

Respectfully submitted, Jas. H. Havens

Jas. H. Havens Director of Research

JHH:gd Attachment cc's: Research Committee

ъ

1. Report No.	2	. Government Accession No.	3. F	Recipient's Catalog 1	١٥.					
			[
4. Title and Subtitle			5, F	leport Date						
				September 1972	2					
RURAL RECREATION	JAL TRAV	VEL IN KENTUCKY	6. F	Performing Organizati	ion Code					
7. Author(s)		······································	8. F	erforming Organizati	on Report No.					
Jerry G. Pigr	nan			342						
9. Performing Organization Name a Division of Research	nd Address	, www	10.	Work Unit No.						
Kentucky Department of	Highways		11.	Contract or Grant No						
533 South Limestone				KYPR- KYP	- 30					
Lexington, Kentucky 4	0508		13.	Type of Report and f	Period Covered					
12. Sponsoring Agency Name and A	ddress									
				Final 🕹	aterim-					
			14.	Sponsoring Agency C	Code					
15. Supplementary Notes		1								
Prepared in cooperation-	with the	US Department of Transportati	on, Federa	Highway Admir	listration					
Study Titles Influence	of Recre	pational Areas on the Function	A Service	of Highwove						
Study The: Influence	OI NECLE	sational Aleas on the Function	II Service	Ji Ingilways						
The purpose of this study was to develop a methodology for predicting travel patterns on routes leading to outdoor recreational areas in Kentucky. Data were collected by means of a license-plate, origin-destination survey at 160 sites within 42 recreational areas and by means of a continuous vehicle counting program at eight of these sites. Results indicate that the method of associating similar facilities is a reliable procedure for predicting traffic characteristics. Vehicle occupancy was found to depend on the type of recreational area, distance traveled, and vehicle type. Percentages of various vehicle types were also influenced by the type of recreational areas and the distance traveled. In general, trip lengths were quite short, as evidenced by the fact that 60 percent of all vehicles traveled less than 50 miles. Analysis of the distribution of traffic over time verified that recreational travel is much more highly peaked than other forms of highway travel.										
-	· · · · · · · · · · · · · · · · · · ·									
17. Key Words		18. Distribution	n Statement							
Recreation, Travel, Vei Vehicle Classification, Time Distribution	nicle Occu Trip Lengt	pancy, ths,								
19. Security Classif, (of this report	}	20. Security Classif. (of this page)	his page) 21. No. of Pages 22. Price							
TT 1 101 1		Linchasified			[·					
Unclassified				1						

Research Report 342

RURAL RECREATIONAL TRAVEL IN KENTUCKY

Final Report KYP-30, HPR-1(8), Part III

by

Jerry G. Pigman Research Engineer

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Kentucky Department of Highways. This report does not constitute a standard, specification, or regulation.

September 1972

.

, ,

· · · ·

INTRODUCTION

Kentucky has outdoor recreational development rivaling that of any state. The highway travel generated continues to mount. Favorable access routes, together with the major highway network, and attributes of the recreational area mutually invite visitation and travel. The purpose of this study was to develop methods for predicting traffic volumes on routes leading to outdoor recreational areas and also the traffic burden induced on the major highway network by existing and future recreational facilities.

A previous study dealt with the development of travel demand models for rural recreational routes (1). Then, a single-equation regression model and a cross-classification model were calibrated and tested to verify their applicability as predictors. Data were obtained by means of license-plate origin-destination surveys at 42 major recreational areas (160 sites) and by continuous counting of vehicles at eight of the sites. Results from the first phase indicated that the cross-classification model was acceptable for simulating and predicting purposes and was decidedly superior to other single-equation models evaluated. From another phase of this same study, Kaltenbach (2) found that gravity model nor the intervening neither the opportunities model was as effective as the cross-classification model.

The objective of most previous studies of outdoor recreational travel has been to forecast annual visitation to existing or proposed recreational areas for the purpose of evaluating the economic consequences of existing or proposed investments. Techniques which have been used effectively to predict this travel demand include multiple regression models (3, 4, 5), gravity models (6, 7), opportunity models (8), and systems theory models (9, 10). There appears to be no definitive preference for any model type, and each will yield satisfactory results if applied correctly.

There has been little research on the subject of predicting seasonal travel patterns and time variations of traffic flow to outdoor recreational areas. On the other hand, considerable work has been done on the problem of estimating annual average daily traffic from short-term traffic counts (11, 12, 13). Probably all highway planning agencies have procedures for estimating average daily traffic flow, but it appears that none has specifically isolated recreation-oriented traffic.

Statewide and zonal traffic-forecasting modeling depends in a large degree on the synthesis of travel desires and composing traffic volumes from the several constitutive parts. Inversely, existing traffic may be decomposed constitutively, but only in terms of vehicle classification unless interviews are conducted. From a 1970 survey of auto-utility trailer combinations (house trailers boat trailers, camper trailers, rental trailers, etc.) on various Kentucky routes, Siria (15) isolated appendant recreational vehicles. He reported an overall average of 3.48 percent. The percentage on four-lane, limited-access roads was 4.11. The percentage on I 75 was 5.53; but the percentage on I 64 was only 1.75.

Historically, an improvement in transportation has led to an increase in recreational activity, while an increase in recreational demand has often put a major strain on the transportation system. Clawson and Knetsch (14) have recognized the dilemna which transportation engineers are likely to fact by pointing out that a projected increase of 80 percent in the number of registered vehicles from 1959 to 1976 will bring about a proportional increase in outdoor recreational travel. Clawson and Knetsch discuss three general situations in which the effect of outdoor recreational demand upon highway facilities is felt. First, the existence of an attractive outdoor recreational area requires local access roads. The number and nature of such roads vary greatly from one recreational area to another and depends upon such factors as availability of construction funds, estimates of potential travel demand, and environmental aspects. Certainly, the structural and geometric designs should include considerations of the nature of types of vehicles peculiar to recreational travel and the preservation of natural scenic sites which constitute, in part, the attraction of the area.

Second, recreational travel of all types constitutes an important part of the total traffic volumes on major highways. In many instances, the volume of recreational traffic may be so large as to require highways of improved design and capacity. Peak volumes for most rural routes now occur on the weekends; a large percentage of this travel is for recreational purposes. Often a traveler's impression of an area or state, and his desire to return, is greatly affected by the types and conditions of the route to and from the recreational area. Recreation is a demand factor and is definitely a consideration in the planning of a highway system.

Third, recreational travel has a great effect on traffic flow on arterials leading out of and into back major urban centers. In many urban areas, the desire of the city dweller to seek weekend outdoor recreational experience brings about a Friday afternoon, Saturday, and Sunday rush to leave the city and late Sunday and early Monday rush to return to the city.

According to Matson, Smith, and Hurd (16), the 30th highest hourly volume may vary from as low as 8 percent of the ADT on some urban routes to 40 percent of the ADT on highly recreational routes. The design of a roadway must be based to some extent on

peak-hour traffic; but on the other hand, it is usually uneconomical to design for the highest volume hours since they occur only a small percentage of the time.

While highways should be designed and located primarily for the efficient and safe transportation of people, other secondary purposes should also be considered. The desire to isolate and designate recreational routes apparently originates from the park and recreation profession and preservationists. Indeed, idealists may envision secondary routes through scenic, historic, and cultural areas where the recreationists may drive more slowly and stop at points of interest. Likewise, some routes may be compatible with outdoor recreational activities such as hiking, bicycling, and picnicking. One cannot help but wish that outdoor recreation-oriented routes could be designed to be interesting and enjoyable for travel and also satisfy the constraints of economics.

DATA ACQUISITION

To analyze seasonal patterns and time variations of traffic flow, it was felt a comprehensive data base representing traffic flows throughout the year would be necessary. The method chosen was continuous automatic traffic recorders located at ten representative sites. Punched-tape, automatic traffic recorders, employing a wire loop embedded in the pavement, were installed in July 1970, and data were recorded through July 1971. In the analyses, the one-year traffic counts were combined with origin-destination data collected during the summer of 1970 (1).

The principal criteria used in the selection of sites were: type of recreational area, geographical location, accessibility of recreational area, and facilities available. Type of recreational area, being the most stratifying. ranked as the criterion of greatest importance. Four types of recreational areas were represented; they were: 1) water-oriented resort park, 2) outdoor multiple-use resort park, 3) scenic attraction park, and 4) small fishing lake. Geographical settings and area types were selected so that similar recreational areas would be geographically dispersed. Ideally, only those areas having one access road should have been considered; but with the importance placed on area type, it was necessary to locate recorders at two sites where there were two access roads. At both of these sites, approximately 90 percent of the total traffic occurred on the road where the recorders were stationed. Facilities available were also inherently related to area type. It was felt that a wide range of types and sizes of area would be represented in the selections. The recreational areas chosen are identified by name, number, and area type in Table 1. Figure 1 shows the geographic location of each site.

Some problems were encountered in accumulating data. Due to the wide geographical distribution of the sites, it was impractical to check the recorders more often than once each month. Therefore, when recorder breakdowns did occur, it was sometimes several weeks before the problems were detected and corrected. Another problem resulted when one of the selected parks was closed for a significant period during the winter. For these reasons, data from two sites were discarded.

SITE NUMBER	SITE NAME	TYPE OF RECREATIONAL AREA
1	Rough River State Park	Water-Oriented Resort
2	Beaver Lake	Small Fishing Lake
3	Levi Jackson State Park	Outdoor Multiple-Use
4	Lake Barkley State Park	Water-Oriented Resort
5	Mammoth Cave National Park	Scenic Attraction
5	Boonesborough State Park	Outdoor Multiple-Use
7	Carter Caves State Park	Outdoor Multiple-Use Resort
8	Jenny Wiley State Park	Water-Oriented Resort

TABLE 1

RECREATIONAL AREA NAME, NUMBER AND TYPE

ANALYSES

The data, originally on punched paper tape, were interpreted and presented on an easy-to-read printout. Shown on the printouts were hourly volumes for each day of the week and several peak, total, and average volumes. Computer cards with hourly volumes were also available.

Because of the various problems associated with the recorder and detector units, several periods were found to have traffic volumes which were unreasonably high or low, or completely missing. To identify and replace inaccurate or missing data, a series of computer programs were written to read the data, extract data exceeding specified limits and to synthesize those data by fitting a third degree polynomial to known points. The methodology and the computer programs for the adjustments are presented in the APPENDIX.

Time Distribution of Flow

After adjustments were made, eight sets of data were produced which contained a complete year of hourly volumes. Summarized data for each site included highest-to-lowest volume rankings and percentages of average daily traffic volumes (ADT) for the 300 highest hours, 364 days, and 52 weeks. Also included in the summaries were the highest-to-lowest volume rankings and percentages of total yearly traffic volumes for the 12 months and the four seasons.

A weekend was defined as the 48-hour period between 6 p.m. on Friday and 6 p.m. on Sunday. Seasonal periods were as follows: June 20 through September 19 -- summer, September 20 through December 19 -- fall, December 20 through March 19 -- winter, and March 20 through June 19 -- spring.

Figure 2 is a graph of the highest hourly volume versus hourly volume as a percentage of average daily traffic. Three curves are shown. The upper curve represents the maximum volumes amongst the eight sites, the middle curve represents the eight-site average volumes, and the lower curve represents the minimum volumes amongst the sites. For the maximum, average, and minimum curves, the highest hourly volumes as percentages of ADT are respectively: 121, 63, and 37. Correspondingly, the 30th highest hourly volumes as percentages of ADT are respectively: 83, 40, and 25.

Figure 2. Highest Hourly Volumes

Daily volumes, expressed as a multiple of ADT, for the 100 highest volume days, are shown in Figure 3. The maximum daily volumes ranged from a high of 889 percent of the ADT at Boonesborough to a low of 332 percent at Beaver Lake. The high-volume days in Figure 3 were typically associated with summer Sundays, and the average summer Sunday volumes ranged from a high of 412 percent of the ADT at Boonesborough to a low of 156 percent of the ADT at Beaver Lake.

Figure 3. Highest Daily Volumes

Finally, Figure 4 shows the weekly volumes arranged in order of magnitude for the 52 weeks. A very wide range in weekly volumes was observed for the average summer weekly volumes -- from a high of 1300 percent of the ADT at Mammoth Cave to a low of 800 percent of the ADT at Beaver Lake.

Figure 2 is a typical curve relating peak traffic volumes to frequency. This type of graph is often used to determine the most equitable ratio between cost and service provided. The design volume is usually selected near the "knee of the curve", which, for most rural roads, is about the 30th highest hour (16).

Hourly, Daily, Monthly, and Seasonal Variations of Flow

Cyclical variations in the time distributions were also investigated. The time periods chosen were: hours, days, months, and seasons. To define hourly cyclical variations, only summer Fridays, Saturdays, and Sundays were analyzed. Peaking within these summer days is demonstrated by Figure 5 and Table 2. As was expected, a rightward skew, identifying heavy evening traffic, occurred on Fridays. This was attributable to the fact that a significant portion of weekend visitors arrive on Friday evenings. Saturday traffic was generally spread evenly throughout the day with some peaking at midafternoon. Peaking was most prominent on Sunday afternoons from approximately 1:00 to 6:00 p.m. From Table 2, it appears a majority of individual peak summer hours were between 4:00 and 7:00 p.m. on Fridays, between 3:00 and 5:00 p.m. on Saturdays, and between 2:00 and 4:00 p.m. on Sundays.

A graph of day of week versus average daily volume as a percentage of average weekly volume is shown in Figure 6. Sunday is shown to be the peak day of the week. The next highest volume day is Saturday, and there is very little difference between other days of the week. Table 3 includes a summary of days on which the peak average volume occurs and corresponding percentages of the average weekly volume.

Seasonal and monthly cyclic variations are presented in Figures 7 and 8, respectively. In addition, the peak monthly volumes and peak seasonal volumes for each site are also given in Table 3. Monthly peaks occurred in May, June, and August, and peak monthly volume expressed as a percentage of total annual volume varied from 15 percent at Beaver Lake to 24 percent at Boonesborough State Park. Seasonal peaks occurred in spring and summer and peak seasonal volume expressed as a percentage of total annual volume from 36 percent at Beaver Lake to 47 percent at Mammoth Cave National Park.

Figure 4. Highest Weekly Volumes

	T	A	B	Ĺ	E	4
--	---	---	---	---	---	---

SITE	HC	UR OF PEAK VC	LUME	PEA (PERCE	K HOURLY VOLUN	ME
NUMBER	FRIDAY	SATURDAY	SUNDAY	FRIDAY	SATURDAY	SUNDAY
5	3-4 p.m.	3-4 p.m.	3-4 p.m.	11,41	12.17	12.68
3	8-9 p.m.	2-3 p.m.	3-4 p.m.	7.75	8.85	11.14
1	4-5 p.m.	4-5 p.m.	3-4 p.m.	8,44	8.94	9.83
6	7-8 p.m.	3-4 p.m.	2-3 p.m.	6.44	7.06	8.59
4	2-3 p.m.	3-4 p.m.	4-5 p.m.	8.37	10.05	12.39
2	8-9 p.m.	7-8 p.m.	2-3 p.m.	9,90	9.11	11.31
8	4-5 p.m.	2-3 p.m.	1-2 p.m.	7,53	9.20	12.11
7	4~5 p.m.	3-4 p.m.	1-2 p.m.	8,28	7,88	9,72
Average				8,52	9,16	10.97

PEAK-HOUR VOLUMES FOR AVERAGE SUMMER FRIDAYS, SATURDAYS, AND SUNDAYS

Figure 6. Volume Variations among Days throughout Average Summer Week

TABLE 3

	PER	IOD OF PEAK V	OLUME		PEAK VOLUME	11.1/17.4.5.817.19
SITE NUMBER	DAY OF SUMMER WEEK	MONTH OF YEAR	SEASON OF YEAR	DAY (PERCENT OF AVERAGE SUMMER WEEK)	MONTH (PERCENT OF ANNUAL VOLUME)	SEASON (PERCENT OF ANNUAL VOLUME)
5	Sunday	May	Spring	26.46	16,92	38.55
3	Sunday	June	Summer	29.83	19.44	43.84
1	Sunday	August	Summer	16.82	18.51	46,41
6	Sunday	May	Spring	19,41	14.67	36.00
4	Sunday	June	Spring	35.26	23.66	42.16
2	Sunday	August	Summer	23.19	15.64	39.06
8	Sunday	August	Summer	26.30	15,39	40.54
7	Sunday	August	Summer	23.50	16.50	38.52
Average		_		25.09	17.59	40.64

PEAK VOLUMES FOR SEASON OF YEAR, MONTH OF YEAR, AND DAY OF AVERAGE SUMMER WEEK

Figure 7. Volume Variations among Seasons

Figure 8. Volume Variations among Months

Table 4 summarizes all volume characteristics for each of the eight sites. Included are 1) all time periods which were considered significant, 2) volumes for each time period expressed as the number of vehicles counted, and 3) volumes as a multiple of ADT. Table 4 revealed that total annual volumes and average annual daily traffic flows ranged from 668,312 and 1836 at Levi Jackson State Park to 109,319 and 300 at Beaver Lake. Other information of interest to the highway designer is the 30th highest hourly volume. Expressed as a percentage of the ADT, this factor varied from 24 percent at Beaver Lake to 83 percent at Rough River State Park.

Coversion Factors

The next phase of analysis involved calculating factors to convert from measured volumes to average daily traffic (ADT) and summer Sunday traffic (SST). Conversion factors, presented in Table 5, were calculated for each day of the week during each season of the year, for each month of the year, for the average week, the average weekend, and the average ten-hour (10 a.m. - 8 p.m.) summer Sunday.

The conversion factors constitute a significant development for anyone desiring to convert short duration counts from recreational routes to average daily traffic flows. Certainly one of the most beneficial applications of these factors would be in the design of a highway leading to an existing or proposed outdoor recreational area. Trends in the conversion factors indicate that considerable variation occurs from one site to another, and careful study will be required before selecting the appropriate factor.

For very short duration counts, the 10 a.m. - 8 p.m. summer Sunday period appeared to be a very reliable unit of time from which to project traffic flows. The most apparent advantage of using this time period is that it is usually the highest volume 10-hour period of the week. Forty-eight hour counts are frequently used to obtain data from which to prepare traffic flow maps. It appears that the period from 6 p.m. Friday till 6 p.m. Sunday would be the most appropriate time to obtain peak flows. For a sample of an off-peak day, any of the other days of the week would suffice.

Greatest emphasis was placed on summer recreational travel, but Table 5 also includes factors for the other seasons of the year. At some recreational developments, spring and fall visitation exceeds summer visitation; therefore, appropriate analysis should be made to determine if peaks occur at sometime other than summer. Winter recreational travel has increased in recent years; and, in those areas where it is necessary, projections should be based on peak winter volumes.

Vehicle Occupancy

The average occupancy rate, based on 1970 surveys, was found to be 3.06 persons per vehicle. However, occupancy rate was found to be a function of type of recreational area, distance traveled, and vehicle type.

Table 6 demonstrates the effect of recreational area type and distance traveled as related to vehicle occupancy. A general trend of increasing vehicle occupancy with increasing distance traveled was established. It was also apparent that vehicle occupancy rates varied among the distinctively different recreational area types.

Table 7 summarizes data indicating the effects of both distance and vehicle type on occupancy rate. Sensitivity of occupancy rate to distance is greatest for camping vehicles and least for vehicles with boats. Despite large variability in the data, occupancy rates generally increased with increasing distance of travel. The effects were most pronounced for vehicles traveling rather short distances.

Highest occupancy rates were observed for cars pulling camper trailers, and lowest rates were for the other" vehicle category -- including primarily service trucks and motorcycles. The fact that single-unit campers had much lower occupancy rates than cars pulling camper trailers is probably due to a combination of 1) failure to detect some persons riding in the single-unit campers and 2) bias caused by extensive use of pickup campers by fishermen who usually travel in rather small groups.

Vehicle Classification

As anticipated, a large proportion of the vehicles were cars (pickups included) or cars pulling trailers (a total of 96.7 percent). The remainder were single-unit campers (2.1 percent) and motorcycles, trucks, and buses (1.2 percent). Altogether, 3.4 percent of the vehicles had camping units appended and 5.8 percent had boats. Vehicle classification was found to depend on the origin of the vehicle, or the distance traveled, as well as on the type of recreational area.

					COUNTED	VOLUMES	(VEHICLES)		·	
TIME PERIOD	TYPE OF VOLUME	SITE 1	SITE 2	SITE 3	SITE 4	SITE 5	SITE 6	SITE 7	SITE 8	AVERAGE
Year	Total	268,976	109,319	668,312	324,781	617,044	387,337	234,786	395,602	376,020
Week	Maximum	14,117	4,031	28,701	12,774	29,751	23,678	9,483	16,910	17,431
Week	4th highest	12,664	3,287	22,321	11,650	24,648	20,221	6,615	13,936	14,668
Week	8th highest	10,322	3,146	20,334	10,116	22,255	16,187	7,831	10,631	12,603
Week	Summer Average	9,071	2,414	20,081	7,369	22,030	12,429	7,322	11,721	11,555
Wsek	Annual Average	5,173	2,102	12,852	6,246	11,866	7,449	4,515	7,608	7,226
Weekend	Maximum	8,655	1,846	13,036	5,903	10,617	15,715	7,418	6,168	8,670
Weekend	4th highest	7,307	1,594	10,130	4,940	9,557	12,005	4,149	6,252	6,992
Weekend	Sth highest	5,645	1,354	9,304	4,161	7,384	8,557	3,678	5,012	5,637
Weekend	Summer Average	4.645	991	9,072	3,151	7,514	6,540	3,379	5,223	5,064
Weekend	Annual Average	2,580	901	5,975	2,664	4,473	4,184	2,157	3,323	3,282
Day	Maximum	4.887	998	6,377	3,321	5,930	9,464	3,227	3,997	4,775
Day	5th highest	4.068	780	5,374	2,600	4,620	7,518	2,381	3,093	3,804
Dav	10th highest	3.015	728	4,746	2,134	4,378	5,354	1,951	2,684	3,124
Dav	Summer Sunday Average	2,706	469	4.657	1,950	3.704	4,382	1,925	2,755	2,819
Day	Annual Average	739	300	1,836	892	1,695	4,064	645	1,087	1,407
Hour	Maximum	620	149	1,124	384	630	1.290	435	462	637
Hour	15th blohest	445	82	569	312	447	971	267	384	435
Hour	30th bighest	372	72	522	270	430	882	255	319	390
Hour	50th highest	303	54	481	249	410	667	237	275	336
Hour	100th highest	237	53	398	217	377	430	188	232	267
		•	VOLU	ME EXPRES	SED AS A	MULTIPLE C	F AVERAG	E DAILY T	RAFFIC	
		264.0	254.4	364.0	364.1	364.0	364.0	364.0	364.9	364.2
Year	lotal	364.0	304.4	304.0	00111					
Week	Maximum	19,1	13.4	15.6	14.3	17.6	22.3	14.7	15,6	16.6
Week	4th highest	17.1	11.0	12.2	13.1	14.5	15.0	19.7	6.9	121
Week	8th highest	14.0	10,5	11,1	11.3	13.1	15.2	12,1	10.9	12,1
Week	Summer Average	12.3	8.1	10.9	8.3	13.0	11.7	11.4	10.4	10.6
Week	Annual Average	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7,0
Weekend	Maximum	11.7	6.2	6.9	6,6	6.3	14.8	9,6	6.8	8,6
Weekend	4th highest	9,9	5,3	5,5	5.5	5.6	11.3	6.4	5,8	6.9
Meekand	8th highest	7.6	4.5	5.1	4,7	4.4	8.0	5,7	4.6	5,6
Weekend	Summer Average	6,3	3.3	4.9	3.5	4.4	6,2	5.2	4,8	4.8
Weekend	Annual Average	3.5	3.0	3,3	3.0	2.6	3.9	3.3	3.1	3.2
Dau	Maximum	6.6	3,3	3,5	3.7	3.5	8.9	5.0	3.7	4.8
Day	5tb bigbest	5.5	2.6	2.9	2.9	2,7	7.1	3.7	2,9	3.8
Day	30th highest	4,1	2.4	2.6	2.4	2.6	5.0	3.0	2.5	3.1
Day	Summer Sunday Average	3.7	1.6	2.5	2,2	2.2	4.1	3.0	2.5	2.7
Day	Annual Average	1,0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1,0
L.	Maselmum	n.s.	0.5	0.6	0.4	0,4	1.2	0,7	0.4	0.6
Hour	Teth Stabart	0.6	0.3	0.3	0.4	0.3	0.9	0.4	0.4	0,5
Hour	Lotti ingiliest	0,0	0.5	0.3	0.3	0.3	0.8	0.4	0.3	0.4
HOUF	Soft menest	0.5	0.2	0.3	0.3	0.2	0.6	0.4	0.3	0.3
Hour		0.4	0.2	0.9	0.2	0.2	0.4	0.3	0.2	0.3
Hour	190th Highest	0.3	~~~				-			

TABLE 4

TRAFFIC VOLUME CHARACTERISTICS

taue ;

factors to convert from measured volumes to average dally traffic and summer summar traffic

		~	N 1 1 1 1 1 1 1 1 1 1	5 Pr	F	- 10	o-'-	+ on		4 80	¢.ª	- ar i	م		nos		00		e-1°0	ראיל	<u>.</u>	. 0	4 r	: =		y 10	<u>م</u> ک	•	<u>s</u> N	ĿŃ	121	22	10	7.2	06
	8	SST FACTOR	2.35	68.4	46.4	3.10	1.24	0.510	5.97	8 87	8,98	8.55	2 93	1 12	51.1	3.83	3 61	3.21	2.42	0.65	1.43		2.49	2.18	2.18	1 43	0.54	0 24	0.10	0.32	0.30	50.0	0.05	6 0 0 0	50.0
	ICATION	ADT ACTOR	0.814 1.522	1.692	1.706	1.072	164 0	1119	2.064	3.066	3.101	2.954	2.681	2.562	004-0	1.323	1.247	1.11.1	0.836	0.226	0.496	545-0	0.861	0.753	0.755	964-0	0-190	0-085	0.035	0-123	0 TO4	0.032	0.018	0.022	0.031
	2	AVG VOL F	192	381	378 578	505 2	7641	3605	313	210	208	218	241 636	252	1526	488	517	581	277	2859	1300	1868	749	851	854, 1	1300	3402	9554	18627 16660	5233	6195	20097	30415 35506	29763 36135	20648
		SST CTOR	.396 143	.868	168.	134	.210	- 112	. 885	.179	.075 883	.283	904 278	. 852	509	.657	699	446	.829	.782	935	- 000	130	.058	037	311	954.1	228	1.128	171	261	080.0	0.018	0.068	1 YU-1
	TION 7	DT TOR FAI	930 Z	501 3	510 3	216 J	470 1	231 3	119 2	625 4	581 4	274 3	127 2	495	198 0	419	346		2 860	303 505	751	388 1	826	169.	790 2	2010	209 0	880	040 0	1.40	150	040	0133	026 0	026
	LOCA	VG FAC	692	24	20 1-	:: 28	14 0.		: :2:			53 L.	- 49 - 67	27	••• •••	99	201	13	-1-0	.0.180	84	0 10	5	508 U.	575 D.	3000	195 0.		128 0.	0.83	; 6 62	359 080 -	435 0. 884 0.	127 0.	110
<u>,</u>			=	•~	~ •	- cc	- F	~~~ ~~~~		00 40		- w		J ~	5 5 5	4 m			~	- 6	-	**	:					1 12	57.0	-4-	1.4	5 5 35 35	22	9 4 1 4 1 4	5
Y TRAFF	о И	SST FACTOF	1.14	2 37	2.24	2.16	0.57	1.521	15	2 96	46 Z	2.04	2.75	3.85	0.38	L. 32	1 36	1.51	1.29	5 - 0 - 34	1.06	41 °0 °1	1.63	1 1 6B	1.51	1.48	0 48		0.01		0.10	0.00	20.02	000	0
SUNDA	UCAT [0]	401 Factor	0.745 L.475	1.549	1.465	1.413	0.377	0.992	1.513	1.981 1.936	1.920	1.72	1-795	2.516	0.252	0.861	0-892	0.659	0.843	0.210	0.696	0.100	1.06	1-097 0-97	0.990	179.0	0.31		0.030	.0.0	0.45	0.02	10.0	0.0	0.0
SUMMER	-	AVG	403	501	205	213	196	205	66T	151	156	174	167	114	1611	345	337	351	350	582	431	2997	261	274	105	906	906	2545	10641	120	6969 4303	13066 13066	16030	12855	6520
TC AND		SST ACTOR	1.734	3.143	3.098	2,607	924	2.269	3.102	5.116 5.116	5.363	4.141	3.363	4.039	0.599	1.748	1.746	1.645	1.617	1.165	1.042	0.199	2.259	2 2 2	2.202	2.304	0.611	0-260	0.074	0.156	0.161	0.098	0.035	0.068	490°0
Y TRAFF	ATEON S	ADT CTOR FI	.805 .815	4234	664	511	624	• 053	140	- 375	490	626	295	52.8	278	.812	.811	165	6.751	.215	484	-092 -444	6+0	.950	022		-284	121	034	512	1075	046	.016	.032	029
E DAIL	LOC	AVG VOL FA	108 0 492 1	514 I 611 I	620 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0802	847 1 5190 0	619	352 376 2	358	494 1 494	571 1	476 I	3211 0	0 6601	101 0	1154 0	1189 0	4156 0	1844 0	9661 0	158	845	873	834 1028 01	3144 0	7383 0	6027 C	2335	1902 0	9548 C	4942 0	8242	9198
AVERAC		۳	5 8	76	6.0	2 6	16		200	20	81	10	4 U	- 4 - 4			ç		68	<u> </u>	31	2.2	0 O	* 4	68	61	90	1 J	15		83 1	40 40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	67 2	9 60 6 60 6 60
MES TO	0N 4	E FACTO	8 5.1	8 16.7 9 17.1	2 15.7	5 13 B		7 5.7		1 16.2 0 16.9	2 17.7	5 13.6	2 10.4	 	9°0 8°0 800	, . ,	3 4 2	 	6 Z B	2 0 2		- 0-3 - 1		0.4 4		0.0 6 7	9.0		0.0		5 C C C	2.0 5	000		1.0
D VOLU	LOCATE	ADT FACTO	1.31	4.27	4.02	3.51	0.81	1.47	1.54	51.4 51.4	4.51	3 4 0 V	2.67	1.87	14.0	1.08	1.09	10.0	0.73	00	0.26	0.09	38	1.02	0.88	0.17	91 0	0.08	0 09	22	60.0	0.05	10.0	66	0.0
IE A SUR E		AVG	807 256	243	265	E0E	DET	721	69	258	5.0	307	396	1 183 5695	2543	1011	674	1006	144	2331	505	11721	1121	10401	120	1365	656	12074	13242	EE 9	1601	31171	1809	62526	22562
FRUM	ē	SST ACTOR	4.345 9.599	9.799 8.592	8.535	7.753	2.296	5.889	8.L15	8.682	8.145	5.516	7.589	3.494	1.044	4.615	4.219	3,763	2.829	1.693	1.669	0.381	3.196	2 803	2.692	2.401	0.556	0.289	0.203	0.287	0.254	0.186	0.081	0.050	0.141
CONVERT	CATION	ADT ACTOR F	1.268 2.801	2.508 2.508	164.5	2.263	0.670	1.719	2.368	2.534	2.377	1.610	2.215	5.106	0.305	1.347	1.231	1.098	0.826	0 102 0	0.487	0.111	0.933	0.818	0.786	101.0	0.162	0.084	0 059	0,084	0.074	0.054	0.023	0.015	140 O
IRS TO 1	Ľ0	AVG VOL FI	583 264	295	207	327	1103	430	312	292 308	112	424 422	334	145	2426	1961	600	673 735	895	1446 3681	1917	6041 7533	792	503	941	1454	4550	2402 8756	12494	9816 9816	8113 9948	13593	. 1416 1416	50285	17939
FACTO		51 108	282 376	170	86E	195 195	112	054	986	375 678	668	814 8	435	159	582	208	£66	190.	326	645 647	683	.335	061	851	875	, 806 350	513	212	114	138	151	108	069	150	060
	TION 2	DF FAC	915 2. 754 4.	671 4. 783 4.	763 4.	387 3.		224 3.	197 C.	155 5. 875 4.	963 4	529 4 929 4	377 3.	533 I.	233 0.	286 3.	199 2.	235 3	932 2	679 L	675 1.	0 +61	826 2.	742 F	751 L	724	206 0	087 0	046	022	056 U	043 0	028.0	020	036 0
	LOCAT	VG AI	07 0.	1 86		24	10	-1 -		22	-1	51	34 1.	46 01 1.	6 2 9	28	31 1.	87 1.	-0 61	65 67	50	61 16	22 0.	75 0.		36 0.	20	96 0	31 0	50. 85	80 80 90 90 90	06 0. 96 0.	100 105	200	29 0.
		42	10.2	9 9	23	£ .	<u> </u>	5.0	3.2	•••		12	5	* 1	7.8	4 4 4	12	4.	61	27	52	F 136	5 7	*	54	25	68	510	10;	332	283	424	192		2403 9
	-	SST FACTOR	2.912	4.613	4.591	3-910	1.481	4.095	0.547 4.028	5.736	910-9	5.063	4.102	1.874	0.715	1.430	2.375	2,379	2.049	1.466	1.850	0.294	1.4.1	1.17	1.144	R*72*1	0.48	0.166	0-114	0.185	0.190	0-064	0.06		0.066
	DCATEON	ADT FACTOR	1.311	2.077	2 06	1.760	1.011	1.844	0.246 1.814	2.582	2.703	2.280	1.847	2,367	0.322	0 644	L 069	1.071	0.923	0.660	0.833	0.132	0.435	0.529	0.605	0.562	0.219	0.564	0.051	0.085	0,085	0.052	0.029	610.0	0.030
	-	AVG VOL	1293 731	816 222	820	696	2543	616	6885	650 680	626	698 744	918	2010	5264	2634	1585	1583	1638	2568	2036	1823	2669	3203	2801	3017	1724	3007	32998	56883	20515	32540	46165	91016	57334
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AA		-	SUN		,	DAY	٩Y	AY				<u>۲</u>	747	-	¥۲.	SUN			۲ ۲	5 4 4 4 4	:	40	NUS	a i	<b>1</b> C	× ×				3Ek
		ERIDD	SUNDAY	UESUA'	THURSD	FRIDAY	NEEKEN	10-HK	SUNDAY	TUESDAY	NEDNE SI	FRIDAY	SATURD	N D D D D D D D D D D D D D D D D D D D	HEFKLY	SUNDAY	TUESDA	MEDNES THOUSON	FRIDAY	SATURD	NECKEN 10-HR	HEEKLY	YAUNUS YAUNUA Y	TUESDA	THUR5D	FRIVAY	N H H H H H H H H H H H H H H H H H H H	10-14P #EEKLY	0C TOBE	DECEMB	J ANUAR FEBRUA	MARCH AD211	MAY MAY	7017	AUGUS1 StPTEM
		TIME	۲۲						NTER							RING							мнек												
			FΑ						IM						•	5							S												

To illustrate the effect of origin, 2.1 percent of the Kentucky vehicles had camping units and 6.0 percent had boats; respective percentages for Michigan vehicles were 10.4 percent and 3.9 percent. These and similar data are summarized in Table 8 for the eight primary states contributing to Kentucky recreational travel. Origin effects are most probably due in large part to the intervening distances (Figure 9). Decreasing percentage of cars with increasing distance reflects the increasingly greater use of single-unit campers over the longer distances. As distance increases, a greater percentage of recreationists use camping vehicles. Boat usage peaks in the distance range of 60 to 90 miles.

The effects of recreation-facility type on vehicle usage are quite clear. A high percentage of vehicles with boats were observed at water-based facilities (a high of 12.3 percent at Corps of Engineers' facilities compared to a low of 0.6 percent at the national parks). The percentage of vehicles with camping units depended in large part on the nature of available camping facilities (a high of 11.2 at the Land-Between-the-Lakes compared to a low of 3.0 percent at state parks). Table 9 summarizes these data.

#### Trip-Length Distribution

Examination of trip origins revealed that most of the recreationists came from Kentucky. This suggested that travel to Kentucky outdoor recreational facilities is predominantly of the short-distance type. The average trip length for all vehicles was found to be 109 miles. However, 60 percent of all vehicles traveled distances less than 50 miles, and 72 percent traveled less than 100 miles.

Trip lengths were found to be a function of the type and location of the recreational area. Figure 10 shows trip-length distributions for the following three state parks: Cumberland Falls, My Old Kentucky Home, and Jenny Wiley. Mean trip lengths for Cumberland Falls, My Old Kentucky Home, and Jenny Wiley were 182, 140 and 57 miles, respectively. Corresponding percentages of trips having lengths less than 50 miles were 28.2, 39.5, and 79.5 percent, respectively.

Also of considerable interest was the influence of vehicle type on the distribution of trip lengths. Figure 11 demonstrates this effect. Cars pulling camper trailers generally traveled the greatest distances. Single-unit campers traveled somewhat shorter distances due, in part, to the considerable use of single-unit campers by fishermen. Cars without either boats or trailers generally traveled the shortest distances.

#### TABLE 6

EFFECT OF RECREATIONAL AREA TYPE AND DISTANCE TRAVELED ON VEHICLE OCCUPANCY RATES

					DISTAN	CE INTER	VAL (MI	LES)				
SITE NUMBER	1- 20	21- 40	41- 50	61- 80	81- 100	101- 150	151- 250	251- 400	401- 700	701- 1300	1301- 3000	AVERAGE (ALL DISTANCES
1	2,68	3.30	3.02	3.10	3.02	2.86	2.80	2.93	2,74	2,96	3.00	2.70
2	2,23	2.98	3,56	2,00	2.00	3,00	2,67	0.0*	3,00	2.50	0.0*	2.00
3	2,49	2,91	3.00	2,44	2,85	2.87	3,14	2,87	3,27	3.52	3.75	2.76
4	2.46	2,91	2,99	3,34	3.16	3.16	3,05	3.48	3.34	3,21	3.74	2,90
5	2,73	3.57	3,27	3.85	3,76	3,71	3.54	3,55	3,67	3.26	2.70	3.13
6	3.12	3.29	3,43	3,32	3.78	3.25	3,34	3.69	3.42	3.17	4,30	3.18
7	2,92	3,69	3,82	3,41	3,76	3,81	4,04	3,80	3,52	3.42	2.67	3.24
В	2,95	3,22	3.08	3.09	3.03	3.35	3.32	3.11	3.45	3,25	4.22	3,01
AVERAGE												
(ALL SITES)	2,70	3,23	3.27	3,07	3,17	3,25	3,24	2,93	3,30	3.16	3.05	2.87

*No observations within this distance interval

## TABLE 7

## EFFECTS OF DISTANCE AND VEHICLE TYPE ON AVERAGE VEHICLE OCCUPANCY

					DISTAN	NCE INTERVA	L (MILES)					AVERAGE
VEHICLE TYPE	1- 20	21- 40	4 1- 60	61- 80	81- 100	101- 150	151- 250	251- 400	401- 700	701- 1300	1301- 3000	(ALL DISTANCES)
Car	2.78	3,02	3,28	3,27	3.31	3.29	3.20	3.45	3.39	3.25	3.11	3.07
Car with Spat and Trailer	3.02	3.14	3.12	3.25	3.13	3.15	3.45	3.19	3.16	3,18	3,60	3,16
Car with Bobt on Too	2.72	3.14	3.05	2.79	3.00	3.09	3,92	3.31	3.00	2,50		3,04
Car with Camper Trailer	3.06	3.20	3.28	3.45	3.44	3.61	3.63	3.86	4,06	3,60	3,82	3.63
Single-Unit Camper	2.70	2.55	2.83	3.11	3,05	3,00	2.92	2.99	3,39	3,48	3.36	2.97
Single-Unit Camper with Boat	2.75	2.79	2.71	2.71	2.70	3.27	2.65	3,38	2.94	3.30	4.25	2.96
Other	2.16	1.61	1.92	2.19	5.30	1.63	1.69	4.78	1.57	1.75	20.50	2.67
Average (All Vehicles)	2,78	3,02	3.25	3.25	3.30	3.28	3.21	3.45	3.41	3.26	3.28	3,06

#### TABLE 8

#### EFFECT OF LOCATION OF ORIGIN ON PERCENTAGES OF VARIOUS VEHICLE TYPES

ORIGIN	CAR	CAR WITH BOAT AND TRAILER	CAR WITH BOAT ON TOP	CAR WITH CAMPER TRAILER	SINGLE UNIT CAMPER	SINGLE Unit camper With boat	OTHER
Kentucky	90.89	5.27	.40	.61	1.08	.37	1.38
Ohio	86.46	5.34	.63	3,35	2.62	.62	.97
Indiana	87.57	4.51	.62	2.38	3.15	.87	.90
Illinois	88.31	3.36	.88	3.20	2.72	.86	.88
Tennessee	90.99	3.44	.32	1.59	1.62	1.05	.99
Michigan	85.74	2.28	.70	6.08	3.33	.94	,94
Missouri	88.67	4.03	.77	2,82	2.63	.51	.58
W Virginia	88.51	2.31	.79	5.61	1.45	.46	.86
Ail Origins	89.95	4.91	.46	1.36	1.58	.48	1.26

### TABLE 9

## EFFECT OF TYPE OF RECREATIONAL AREA ON PERCENTAGES OF VARIOUS VEHICLE TYPES

TYPE OF Facility	PERCENTAGE OF CARS ^a	PERCENTAGE OF Camping vehicles ^b	PERCENTAGE OF Vehicles with boats
State Parks	97.36	2.95	3.22
National Parks	95.56	6.51	0.58
Corps of Engineers	95.71	3.29	12.31
Facilities			
Kentucky Lake (TVA)	96.31	3.81	6.14
Land-Between-The- Lakes (TVA)	90.84	11.24	12.02
Daniel Boone National Forest	96.22	2.99	3.25
Other Areas	97.84	2,59	7.15
All Areas	96.67	3.42	5.84

^aincludes cars with boat and camper trailers.

 $^{\mbox{b}}$  includes cars with camper trailers and single-unit campers.



Figure 9. Effect of Distance on Percentage of Various Vehicle Types

#### TABLE 10

## RECREATIONAL CLASSIFICATION OF RECORDER SITES

CAKE.	DAY USE	OVERNIGHT	RECREATIONAL AREA	TOTAL ANNUAL	AVERAGE ANNUAL DAILY VOLUME	IDHOUR SUMMER	SUMMER SUNDAY AVERAGE VOLUME	WATER ACRES	NO, OF PICHIC TABLES	ND. OF OVERNIGHT FACILITIES	GDLF HOLES	OUTODOR DRAMA SEATS	SWIMMING POOL OR BEACH ^d
	L	L	Janny Weity 5.P. (8) Lake Barkley 5.P. (4) Rough Alver 5.P. (8)	395,607 324,781 266,976	1087 892 739	2102 1694 2092	2801 1922 2532	),146 58,000 5,100	245 100 144	133 105	9 13	009	5P, 58 5P, 58 5P, 58
LARGE		5											
	쳐	M			_								
	s	L M S											
	L	ь м 5	Carlor Carlos S.P. (2)	234 786	645	1011	1008		131	125	a		SP. SD
SMALL	м	L M											
	5	L					440	170	8	٥٢			
			Braver Laxe (2) Leyn Jackson S.P. (3)	668,312	1930	35.32	4581		400	200			517
		5	Mammonth Cave N.P. (5)	617.044	1695	3007	3765		50	293			5P 50
NONE	м	м 5	Fail Reginationaugh 5.4. 16)	387,337	1864	3659	4179		104				·
	5	L M											
		5											

⁴Large ≈ 500 Arres

 $B_{\rm b} \ge$  150 picmic lattes 44 workshilly of gott courses M = 1-150 picnic capies and no gold courses S = 40

 $L \ge 20$  umits dualities - ladge rooms - camping sites);  $M \le 90$  units and  $\ge 16$  units:  $5 \le 15$  units

^dSP - wimping pook SR - wimming be

#### PREDICTING RECREATIONAL TRAFFIC VOLUMES

The foregoing results may be used as a basis for a predictive criterion. This may be done most simply by association. Certainly, limitations and constraints must be respected inasmuch as only eight facilities were studied. However, the time period covered by data collection was rather extensive; indeed, few traffic surveys cover a full year.

Assume that traffic volumes or travel patterns are needed for a proposed, new, or existing recreational area. Regardless of the kind of information desired, the initial step should be to select a similar facility from the facility classification scheme shown in Table 10. To utilize Table 10, the following attributes of the recreational area must be known or assumed water acreage, number of picnic tables, number of overnight facilities (lodge rooms, cottages, camp sites), number of golf holes, number of outdoor drama seats, and availability of a swimming pool or beach. These attributes, plus two additional ones (miles of horseback and hiking trails), were used in the first phase of this study (1) to estimate attraction factors with considerable accuracy (squared correlation coefficient  $R^2 = 0.93$ ). Traffic volumes may be estimated from Table 4 by choosing a comparable recreational site. Other traffic characteristics in Table 4 are directly applicable to highway planning and design processes. Table 11 summarizes the available information and lists the figure or table from which a specific statistic can be read. Traffic flows may be estimated for any recreational route in the Kentucky area.

#### SUMMARY AND CONCLUSIONS

Significant findings and results were:

1. A simplified method of predicting travel patterns to outdoor recreational areas has been defined. Most of the data base is valid only for recreational travel in Kentucky or in areas similar thereto.

2. To investigate time variations in recreational traffic flow, it is desirable to conduct long-term, continuous volume surveys. A method was developed and applied herein to detect and correct erroneous data from the long-term, continuous, traffic recorders. With minor modifications, this method should prove useful in all long-term, continuous, vehicle counting programs.

3. Time variations of flow for recreational traffic depends on the type of recreational area and the location of the area in relation to population centers. Recreational travel seems much more variable timewise than other forms of highway travel. Evidence of this peaking is presented in terms of highest hourly volumes, highest daily volumes, and highest weekly volumes.

4. The maximum hourly volumes averaged 63.2 percent of the average daily traffic (ADT) while the 30th highest hourly volumes averaged 38.8 percent of the ADT. The 30th highest hourly volume criterion appears in many cases to be inadequate for the design of recreational access roads. A more practical basis for design would be the peak-hour volume on the average summer Sunday. This volume on the average corresponds with the 70th to 75th highest hourly volume. It should be emphasized, however, that proper selection of a design hour volume is complicated by desire and economic analyses and may vary from situation to situation. During the summer weeks, hourly volumes averaged 1080 percent of the ADT; during the summer weekends, they averaged 480 percent; on summer Sundays, they averaged 270 percent.

5. The peak seasonal volume averaged 40.6 percent of the total annual volume and occurred in either May, June, or August. Sunday was always the peak day of the summer week, except for holidays; and, on the average, 25.1 percent of the weekly volume was observed on Sunday. The peak hourly volume on summer Sundays occurred within the interval of 1 to 5 p.m. and averaged 11 percent of the 24-hour Sunday flows.

6. Short-duration counts used to project traffic volumes on recreational routes should include 10-hour summer Sunday volumes (10 a.m. - 8 p.m.) and 48-hour summer weekend volumes (6 p.m. Friday - 6 p.m. Sunday). These two time periods were representative of high-volume, short-period counts; and

they appear to be reliable for long-term projections.

7. Vehicle occupancy averaged 3.06 persons per vehicle and was a function of type of recreational area, vehicle type, and distance traveled. Low occupancy rates were generally associated with day-use areas. Highest occupancy rates were observed in cars pulling camper trailers. Sensitivity of occupancy rate to distance was greatest for camping vehicles and least for vehicles with boats.

8. Vehicle classification was dependent upon type of recreational area and distance traveled. A decreasing percentage of cars with increasing distance suggested a greater use of single-unit campers over longer distances. Boat usage was associated with day-use activity in Kentucky and peaked in the range of 60 to 90 miles. In many cases, type of recreational area and available facilities determined vehicle classification.

9. With the exception of a few major attractors having large regional impact, most outdoor recreational areas in Kentucky attract visitors from relatively short distances. The average trip length for all vehicles was found to be 109 miles. Moreover, 60 percent of all vehicles traveled less than 50 miles and 72 percent traveled less than 100 miles.



Figure 10. Trip-Length Distribution for Different Recreational Areas



Figure 11. Trip-Length Distribution for Different Vehicle Types

TABLE	1	1	
-------	---	---	--

SUMMARY	OF	AVAILABLE	OUTPUT
---------	----	-----------	--------

••••••••••		FIGURE	TARIE
		FIGURE	
1.	Volume for any time period (number of vehicles counted)		4
2.	Volume for any time period (multiple of ADT)		4
з.	Summer, hourly cyclical variations of flow for Fridays	5	
4.	Summer, hourly cyclical variations of flow for Saturdays	5	
5.	Summer, hourly cyclical variations of flow for Sundays	5	
6,	Summer, peak-hour occurrences on Friday, Saturday, and Sunday		2
7.	Peak average hourly volume (percentage of the average Friday, Saturday, or Sunday volume)		2
8.	Summer, daily cyclical variations of flow	6	
9.	Summer day in which peak average volume occurs		3
10.	Monthly cyclical variations of flow	7	
11.	Month in which peak volume occurs		з
12,	Seasonal cyclical variations of flow	8	
13.	Season in which peak volume occurs		3
14.	Factors to convert from measured 10-hour Sunday, daily, weekend, weekly, and monthly volumes to average daily traffic and summer Sunday traffic flows		5
15.	30th highest hourly (or any other hour) volume (percentage of ADT)	2	
16.	Highest daily volume (multiple of ADT)	3	
17.	Highest weekly volume (multiple of ADT)	4	
18.	Average trip lengths for various vehicle types	11	
19.	Vehicle occupancy rates as a function of recreational area type and distance traveled		6
20.	Relationship between vehicle type and location of origin		7
21.	Relationship between vehicle type and recreational area type		8
22,	Vehicle occupancy rate as a function of vehicle type and distance traveled		9

- 1. Pigman, J. G., Influence of Recreational Areas on the Functional Service of Highways. Division of Research, Kentucky Department of Highways, 1971.
- 2. Kaltenbach, K. D., Application of Gravity and Intervening Opportunities Model to Recreational Travel in Kentucky. Masters Thesis, University of Kentucky, Lexington, 1972.
- Pankey, V. S. and Johnston, W. E., Analysis of Recreational Use of Selected Reservoirs in California. Prepared for the U. S. Army Engineer District, Sacramento. University of California, Davis, 1969.
- 4. Matthias, J. S. and Grecco, W. L., Simplified Procedure for Estimating Recreational Travel to Multi-purpose Reservoirs. Record 250, Highway Research Board, 1968.
- Tussey, R. C., Jr., Analysis of Reservoir Recreation Benefits. University of Kentucky Water Resources Institute, Research Report No. 2, Lexington, 1967.
- Schulman, L. L., Traffic Generation and Distribution of Weekend Recreational Trips. Joint Highway Research Project, Purdue University, 1964.
- Ungar, A., Traffic Attraction of Rural Outdoor Recreational Areas. NCHRP Report 44, Highway Research Board, 1967.
- 8. Smith, B. L. and Landman, E. D., *Recreational Traffic to Federal Reservoirs in Kansas*. Prepared for the State Highway Commission of Kansas, Kansas State University, 1965.
- 9. Thompson, B., Recreational Travel: A Review and Pilot Study. Traffic Quarterly, 1967.
- Ellis, J. B. and VanDoren, C. S., A Comparative Evaluation of Gravity and Systems Theory Models for Statewide Recreational Traffic. Journal of Regional Science, Vol. 6, No. 2, 1966.
- 11. Votaw, D. F., Jr. and Levinson, H. S., *Elementary* Sampling for Traffic Engineers. The Eno Foundation for Highway Traffic Control, 1962.
- 12. Drusch, R. L., Estimating Annual Average Daily Traffic From Short-Term Traffic Counts. Record 118, Highway Research Board, 1966.
- Bodle, R. R., Evaluation of Rural Coverage Count Duration for Estimating Annual Average Daily Traffic. Record 199, Highway Research Board, 1967.

- Clawson, M. and Knetsch, J. L., *Economics of* Outdoor Recreation. Resources for the Future, Inc. Baltimore: The Johns Hopkins Press, 1966.
- 15. Siria, B. S., Operational Effects of Auto-Utility Trailer Combinations on Rural Highways in Kentucky. Division of Research, Kentucky Department of Highways, 1971.
- Matson, T. M., Smith, W. S. and Hurd, F. W., Traffic Engineering. McGraw-Hill Book Company, Inc., 1955.

#### Security and the second se Second seco

## APPENDIX

## DATA ADJUSTMENT PROCEDURE

#### DATA ADJUSTMENT PROCEDURE

#### Step 1

Interpretations and summaries performed in Step 1 are part of he standard procedures used by the Division of Planning to process data from permanent traffic counters. Data were retrieved in the form of hourly volumes recorded on punched paper tape. Paper tape data were mechanically interpreted and transferred to punch cards; the card format is shown in Figure A-1. A computer program, available from the Division of Planning, was used to summarize and tabulate the data in a convenient form as shown in Figure A-2.

#### Step 2

A computer program (Figure A-3), requiring hourly volumes for each site as input, was written. Output from this program was a weekly tabulation printout and card deck which included site location number, year, month, day, day of week, and hourly volumes for each day. Missing data in this output could be detected by blank spaces (representing missing hours of a day) or by weeks having less than seven days (representing a full day of missing data).

#### Step 3

Data were rearranged so that the first card contained data for the first day of the fall period, September 20. Output from the program prepared to do this ordering included a printout and new card deck of location number, week of year (numbered with September 20 as the first day of week No. 1), day of week, card number (necessary because two cards were required for each 24 hours of data), and hourly volumes for each day. For entire days of missing data, two cards were inserted with location number, week of year, day of week, and card number. Partial days of missing data were represented by blank spaces. A listing of this computer program is presented in Figure A-4.

#### Step 4

Using card output from Step 3, computer programming was prepared to detect errors and adjust suspected erroneous data. The logic supporting this procedure was based on the premise 1) that hourly volumes at a given location for a particular hour of the day and a particular day of the week should demonstrate much consistency throughout the year and 2) that such volumes should reach a minimum in the winter months and a maximum in the spring or summer months. All hourly volume data for a given site were therefore rearranged into 168 groups of 52 volumes each. Each group represented a particular hour of a particular day and was analyzed independently of other groups. Each of the 52 hourly volumes corresponded to a particular week of the year. Figure A-5 is a plot of one such group of data for Levi Jackson State Park

Error detection proceeded as follows: Let  $V_i$  represent the hourly volume corresponding to the ith week and AV represent the average of the 52 hourly volumes. First, grossly inaccurate data were identified when either of the following two sets of inequalities was satisfied:

or

$$V_i > 6.0$$
 AV and  $/V_i - AV / > 80$ 

 $V_i < 0.05$  AV and  $/V_i - AV / > 80$ 

Erroneous data so identified were automatically removed from the data set and seven-item moving averages  $(MAV_i)$  were calculated. The second comparison to detect erroneous data were based on the following two sets of inequalities which relate each hourly volume with the corresponding moving average:

$$V_i < 0.2 \text{ MAV}_i \text{ and } /V_i - \text{MAV}_i / > 20$$

or

$$V_i > 2.0 \text{ MAV}_i$$
 and  $/V_i - MAV_i / > 20$ .

Figure A-5 shows, for the group of data at Levi Jackson State Park, four erroneous volumes that were detected in this way.

After identifying the set of "correct" data, it was necessary to provide more reasonable estimates of the "incorrect" data. This was accomplished by fitting a third-degree ploynomial to the correct data and obtaining the desired estimates by interpolation. Figure A-5 also shows such a polynomial used to make the required four estimates for this group of data.

The procedure for error detection and correction was found to be invaluable to this study even though there was some risk that all erroneous data were not detected and some lesser risk that some correct data were identified as being erroneous. Identical procedures may be used for other types of hourly volume data collected on an annual basis if suitable modifications are made to the limiting constants in the above inequalities. The text of the computer program used to identify erroneous data is presented in Figure A-6. The program used to fit a third-degree polynomial to the correct data so that erroneous data could be replaced is given in Figure A-7.

ITEM	BLANK	SITE NUMBER	BLANK	VEAR	MONTH	CAVINE MONTH	DAT OF MONTH	DAY OF WEEK	TIME PERIOD:	01=12 MIDNIGHT TO 12 NOON	13 = 12 NOON TO 12 MIDNIGHT	CUMULATIVE HOURLY	VOLUMES	(12 HOURS WITH FOUR DIGITS	PER HOUR)																											
COLUMN	1 - 4	5-6	5	0.0			21-11	E /	14-15			16-75																									·				<u>.</u>	~• ~-
		000 	ງດູ່ດູ T	10	714	19	2:		.34	30	13	5z	<u>м</u> /	СН	510) Ine 1	1.3 Raf	6) F10	S) C RE	COF	S C C	)   RE	41 Cor	50 <b>- о</b> ног	14 IVIS	72) 10N	01 0F	ۍ ر Pla	U)[ NN1	16	, r., l	<u>)</u> 0	17	66 	.01	8	(3)	)1	93 	) <del>)</del> )	ய 1	յց	90
		County	Station	and ha	Year	Month Day of	Day of Y	Read Intervel	; ;	1 3		2 14			3 15		4 16			5 7		6 18			7 9		20			9 21			10 22			1-1 23		12 24	! !	]		. – ,
				0	0 0	0 0	0	0		) () .	00		[	) ()	00 28 29 3	<b>Q D</b> 31 <b>1</b>	0	0 34 35	0 0 36 37	1 0 38 39 4	0 18 41	0 0 42 43	0 44 45	0 0 46 47	0 0 48 49	0 50 51	<b>0</b> (	3 54 5	0 5 56 1	0 0 57 58	59 60	0 0 61 62	0 0 63 64	 	0 6 67	0 0 68 69	0 70 71	0 ( 72 )	1 0 13 14 1	15 75	91 FF	79 80
		11	1 1 1	1	1	ו ונים ו	1	1	1	111	1	111	11	1	1 1	1	1	11	1	11	1	1	11	1	11	1	1	11		11	11	1	11	1	1	11	1	1	11	1	11	11
		<b>л</b> 1														2.4						<b>n</b> 1	2 2	2 2	2	2 2	2 3		1.							2 2		2	29	2 2	22	22
		22.	2 2 2	2 2	2 2	2 2 2		22	22	223	2 2 2	22	_ <b>2</b> ∣.	Z Z	2 2 2	2.4	4	22	22	2	2 2	22	~ ~		<b>6</b> .	* *			4Z	22	22	11	2.7	: 2 2	2	2 2	2 2	Ζ.				
		33	222	22	22	2 2 2	3	2233	22	223	222	2233	2 3 3 3	2 Z 3	2 Z Z 3 3 3	3	3	Z Z 3 3	22 3	2 33	2 2 3 3	33	33	33	33	3 3	3 :	13	3 3	2 Z 3 3	33	33	33	333	22	3	33	3:	33	3 3	33	33
		33	2 2 2 3 3	22	22	2 2 2 3 3 3	3	22 33	22 3 44	223 33	2 2 2 3 3 4 4 4	2 Z 3 S 8 A A	2 33.	2 Z 3 4 A	2 Z Z 3 3 3 4 4 4	3	2 Z 3 4 4	ZZ 33 44	22 3 44	2 33 44	2 2 3 3 4 4	33	33	33	33 44	33	:3: :4:	3	33	22 33 44	2 Z 3 3 4 4	2 2 3 3 4 4	2 2 3 3 4 1	2 2 4 1 3 3 1 4 4	2 2 3 3 4 4	2 2 3 4 4	2 2 3 3 4 4	3 3 4	33	33 44	33 44	33
		2 2 . 3 3 4 4	222 333 444	22	22 33 44	2 2 2 2 3 3 3 4 4	3	22 33 44	22 3 44 5 5	222 3 : 4 :	2 2 2 3 3 4 4	2 Z 3 : 4 4 <i>4</i>	2 3 3 4 4	2 Z 3 4 4 5 5	2 Z Z Z 3 3 3 4 4 4 5 5 4	3	: 2 3 4 4 5 5	22 33 44 55	22 3 44 55	2 33 44 55	22 33 44 55	33	3344	33	33 44 55	33344	3     4   	1 3 : 1 4 :	2 2 3 3 4 4 5 5	22 33 44 55	2 Z 3 3 4 4 5 5	2 2 3 3 4 4 5 5	2 2 3 3 4 4	2 2 2 3 3 3 1 4 4 5 5 1	22 33 44 55	2 3 4 4 5 5	2 2 3 3 4 4 5 5	2 3: 4: 5	33 44 5	33 44 55	33 44 55	33 44 55
		22 33 44 55	2 2 2 3 3 3 4 4 4 5 5 5	22 33 44 55	22 33 44 55	2 2 2 3 3 3 4 4 5 5 4	3	22 33 44 55	22 3 44 55	22: 3: 4: 5:5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 3: 444 5:	2 3 3 4 4 5 5	2 Z Z 3 4 4 5 5	2 Z Z Z 3 3 3 4 4 4 5 5 {	3	2 3 44 55	ZZ 33 44 55	22 3 44 55	2 33 44 55	2 2 3 3 4 4 5 5	22 33 4 55 55	33 44 5	33455	33 44 55	3 3 4 4 5 5	: 3 : ; 4 : ;	13 14 55	2 Z 3 3 4 4 5 5	zz 33 44 55	2 3 3 4 4 5 5 5 5 5	2 2 3 3 4 4 5 5 6 6	2 2 3 3 4 4 5 1	2 2 2 3 3 3 1 4 2 5 5 1	233 33 44 55 55	2 2 3 4 4 5 5	2 2 3 3 4 4 5 5	. 3 : : 4 . : 5 : 6	33 44 5 66	33 44 55	33 44 55 66	33 44 55 65
		2 2 3 3 3 4 4 5 5 5 5 5 5	2 2 2 3 3 3 4 4 4 5 5 5 5 6 1	22 33 44 55 56 6	22 33 44 55 56	2 2 2 3 3 3 4 4 5 5 5 6 6 6	3   4   5   5	22 33 44 55 55 55	22 3 44 55 65	222 3 : 55 56	2 2 2 3 3 4 4 5 5 6 6	22 3: 44: 53: 56:	2 3 3 4 4 5 5 6 6	22 3 44 55 66	2 Z Z Z 3 3 3 4 4 4 5 5 1 6 1	3	2 3 4 4 5 5 6	ZZ 33 44 55 66	22 344 55 56	2 33 44 55 66	z z 3 3 4 4 5 5 6 6	22 33 4 55 56 6	33 44 5 66	3345566	33 44 55 66	33344	3     4       6	13 14 55 66		zz 33 44 55	2 Z 3 3 4 4 5 5 6 6	22 33 44 55 66	2 2 3 3 4 4 5 1	2 2 4 3 3 3 1 4 4 5 5 1 5 5	2 2 3 3 4 4 5 5 6 6	22 3 44 55 -56	2 2 3 3 4 4 5 5 6 6	3: 4;5;5;5;5;5;5;7;7;7;7;7;7;7;7;7;7;7;7;7;	33 44 5 66 7 7	33 44 55 66	33 44 55 66	33 44 55 66
		22 33 44 55 55 55 77	2 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7	22 33 44 55 56 6 777	22 33 44 55 66 7	2 2 2 3 3 3 4 4 5 5 4 6 6 1 7 7	3 5 5 5 5 7 7 7	22 33 44 55 56 77	22 3 44 55 65 77	222 3 : 55 56 77	2 2 2 3 3 4 4 5 5 6 6 7 7	2 2 3 : 4 4 / 5 : 6 6   7 7 ]	2 3 3 4 4 5 5 6 6 7 7	ZZZ 3 44 55 66 77	2 2 2 2 3 3 3 4 4 4 5 5 ! 6 ! 7 7	2 2 3 1 4 4 1 5 1 5 5	2 3 4 4 5 5 5 6 7 7 7	ZZ 33 44 55 66 77	22 3 44 55 56 77	2 33 44 55 66 77	2 2 2 3 3 4 4 5 5 5 5 6 6 7 7	2 2 3 3 4 5 5 5 6 6 7 7	2 2 3 3 4 4 5 6 6 7 7	33 4 55 66	33 44 55 66 77	3 3 4 4 5 5 6 1	3     4     6   7	1 3 1 1 4 - 5 5 5 7	2 3 3 5 5 5 5 6 6 6 7 7	z z 3 3 4 4 5 5 7 7	2 Z Z 3 3 4 4 5 5 6 6 7 7	2 2 3 3 4 4 5 5 6 6 7	2 2 2 3 3 4 4 7 5 1 7 1 7 1	2 2 2 3 3 3 1 4 4 5 5 1 5 5	2 2 3 3 4 4 5 5 6 6 7 7	2 2 3 4 4 5 5 6 6 7	2 2 2 3 3 3 4 4 4 5 5 5 6 6 7 1	: 2 : 3 : 4 : 5 : 6 : 7	33 44 5 66 77	3 3 4 4 5 5 6 6 7 7	33 44 55 66 77	33 44 55 66 77
		22. 33 44 55 55 55 77 88	2 2 2 2 3 3 3 4 4 4 5 5 5 5 5 5 6 1 7 7 1 8 8 1	22 33 1444 155 566 67777 888	22 33 44 55 66 7 88	2 2 2 2 3 3 3 3 4 4 5 5 5 4 6 6 6 1 7 7 7 8 8	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 3 3 4 4 5 5 5 6 6 6 7 7 8 8	22 3 44 55 65 77 88	2 2 2 3 3 3 4 4 5 5 5 6 6 7 7 8 8	2 2 3 3 3 5 5 5 5 5 5 5 7 7 7 7 8 8	2 2 3 : 4 4 4 5 : 5 : 6 6 1 7 7 8 8	2 3 3 4 4 5 5 5 5 6 6 7 7 8 8	ZZZ 3 444 555 666 777 88	2 Z Z Z 3 3 3 4 4 4 5 5 1 5 5 1 5 1 5 1 7 7 7 8 8	3 4 5 1 7 7 8 8	2 3 4 4 5 5 5 6 7 7 7 8 8	2 2 2 3 3 4 4 5 5 6 6 7 7 8	22 3 44 55 56 77 88	2 3 3 4 4 5 5 6 6 7 7 8	z z 3 3 4 4 5 5 6 6 7 7 8 8	3 3   4   5 5   5 6 6   7 7   8 8	2 2 3 3 4 4 5 6 6 7 7 7	33 4 55 66 71 88	33 44 55 66 77 88	3 3 4 4 5 5 6 1 7 7	3     4     6     7     8   8	1 3 1 1 4 - 5 5 - 5 6 7 8 8	2 3 3 5 5 5 5 5 6 6 6 7 7 7 8 8 8	2 2 2 3 3 4 4 5 5 7 7 8 8	2 2 2 3 3 4 4 5 5 6 6 7 7 8 8	2 2 3 3 4 4 5 5 6 6 7 8 8	2 2 2 3 3 4 4 5 1 5 1 5 1 5 1 5 1 6 7 1 6	2 2 2 2 3 3 3 3 3 1 4 <i>1</i> 4 <i>1</i> 5 5 5 1 5 5 5 1 5 5 5 1 5 5 1 5 1 5 1	2 2 3 3 5 5 5 5 6 6 7 7 8	2 2 2 3 4 4 5 5 5 5 6 6 6 7 8 8	2 2 2 3 3 3 4 4 5 5 6 6 7 1 8 1	13 14 15 16 17	2 2 3 3 4 4 5 6 6 7 7 8 8	3 3 4 4 5 5 6 6 7 7 8 8	33 44 55 66 77	33 44 55 66 77 88

Figure A-1. Format of Traffic Recorder Data on Punch Cards

		KENTUCKY AU	TOMATIC TRA	FFIC RECORD	ER REPORT		
ROUTE	PARK	LEV	I JACKSON	COUNTY		STA2	
WEEK	SEP	13	۳o	SEP	19	1970	
13	14	15	16	17	18	19	
SUN	MON	TUE	WED	THU	FRI	SAT	TOTAL
540	200	220	250	199	200	400	2000
140	100	139	80	160	100	160	870
160	110	100	130	90	90	130	810
170	120	110	100	70	70	110	750
110	90	120	100	80	90	90	680
110	130	190	130	150	100	140	950
120	220	250	290	250	220	150	1490
310	709	780	710	680	650	450	4280
360	540	580	470	520	470	470	3410
710	510	360	350	360	410	590	3290
860	650	590	470	460	490	690	4210
1440	620	560	610	520	510	940	5200
2780	580	550	810	620	380	1090	6810
3640	500	540	570	390	550	1060	7250
3980	570	420	510	450	630	1130	7690
3880	810	1040	800	880	860	1140	9410
3060	700	950	92.0	870	720	1010	8230
2450	800	810	750	780	650	1270	7510
2190	910	1010	860	940	910	1630	8450
1880	970	1160	86.0	1060	1370	2310	9610
1110	700	950	990	1030	1150	1580	7510
770	790	660	860	880	1180	1440	6580
750	470	540	650	620	1040	1340	5410
390	350	370	410	600	970	990	4080
31910	12140	12990	12670	12650	13810	20310	116480
	ROUTE WEEK 13 SUN 540 140 160 170 110 120 310 360 710 860 1440 2780 3640 3980 3880 3060 2450 2190 1980 1110 770 750 390	ROUTE  PARK    WEFK  SEP    13  14    SUN  MON    540  200    140  100    160  110    170  120    110  130    120  220    310  700    360  540    710  510    860  650    1440  620    2780  580    3640  500    3980  570    3880  810    3060  700    2450  800    2190  910    1880  970    1100  700    750  470    390  350    31910  12140	RENTOCRY AL    ROUTE  PARK  LEV    WEFK  SEP  13    13  14  15    SUN  MON  TUE    540  200  220    140  100  130    160  110  100    170  120  110    110  90  120    110  130  190    120  220  250    310  700  780    360  540  580    710  510  360    860  650  590    1440  620  560    2780  580  550    3640  500  540    3980  570  420    3880  810  1040    3060  700  950    2450  800  810    2190  910  1010    1880  970  1160	ROUTE  PARK  LEVI JACKSON    WEFK  SEP  13  TO    13  14  15  16    SUN  MON  TUE  WED    540  200  220  250    140  100  130  R0    160  110  100  130    170  120  110  100    110  100  130  130    170  120  110  100    110  130  190  130    120  220  250  290    310  700  780  710    360  540  580  470    710  510  360  350    860  650  590  470    1440  620  560  610    2780  580  550  810    3640  570  3980  570  420    3880  810  1040	ROUTE  PARK  LEVI JACKSON  COUNTY    WEEK  SEP  13  TO  SEP    13  14  15  16  17    SUN  MON  TUE  WED  THU    540  200  220  250  190    140  100  130  80  160    160  110  100  130  90    170  120  110  100  70    110  130  190  130  150    120  220  250  270  250    310  700  780  710  680    360  540  580  470  520    710  510  360  350  360    1440  620  560  610  520    2780  580  550  810  620    3640  500  550  810  620    3640  500  570	ROUTE  PARK  LEVI JACKSON  COUNTY    WEEK  SEP  13  TO  SEP  19    13  14  15  16  17  18    SUN  MON  TUE  WED  THU  FR1    540  200  220  250  190  200    140  100  130  80  160  100    160  110  100  130  90  90    170  120  100  80  160  100    160  130  190  130  90  90    110  130  190  130  190  100    120  200  250  220  250  220    310  700  780  710  680  650    310  700  780  710  680  470    10  510  360  350  360  410    860  550	ROUTE  PARK  LEVI JACKSON  COUNTY  STA 2    WEEK  SEP  13  TO  SEP  19  1970    13  14  15  16  17  18  19    SUN  MON  TUE  WED  THU  FRI  SAT    540  200  220  250  190  200  400    140  100  130  80  160  100  160    160  110  100  70  70  110    110  100  130  90  90  130    110  100  130  150  100  140    120  110  100  70  70  110    110  30  190  200  470  470    710  510  360  350  360  410  590    310  700  780  710  460  490  690

AVERAGE DAY OF WEEK 16640

PEAK HOUR 3980 SUN BETWEEN 2 3 PM

# Figure A-2. Summary Format of Data Taken from Paper Tape

RTRAN IV	GLEVEL 20.1 MAR	N DATE = 72032	16/49/21
001	INTEGER STA.PREC.YR.MO.	DAY . DOW. AC(24). R(24). PP	REC [ 7 ]
002	INTEGER LOC1, LUC2, LOC3,	AND, COUNT, A(80), BLANK, ZERO,	ROUTE, JGP
003	DATA BLANK.ZERO,ROUTE,J	GP/1 1,101,121,121/	
004	CALL REREAD		
005	4 I=0		
006	5 READIS.1101 A		
007	110 EORMAT(90AL)		
r.r.o		00	
000	TELALLY CONDUCTS CO TO	77	
010			
010	1014(1)+CQ+LERU1 00 10 -	00	
011	IFLALZISCUSDLANKI GU IU	90	
012			
014	MK11E133+1101 V		
J14	READ(99,100) STA, PREC, L	UCI LUCZ LUC3	
015	100 FORMAT(13X,12,15,3A4)		
016	GO TO 6		
117	85 [F(A(14) NE.ZERO) GO TO	9	
118	WRITE(99,110) A		
)19	RFAD(99,200) STA, YR, MO.	DAY, DOW. (R(N), N=1, 12)	
120	GO TO 5		
JZ 1	9 WRITE(99,110) A		
022	READ(99,200) STA. VR. MO.	DAY,DUW,[R(N),N=13,24]	
123	200 FORMAT(4X.12.1X.12.A1.1	2 . [1.2X.12[5]	
024	GO TO 7		
125	90 WRITE(99-110) A		
126	READING 2051 AND COUNT		
027	205 EORNATIAL 144.751		
021	203 TORMATCAL 1144 1127		
720 C2C			
127	UDITE/4 1601 CTA 0050 ()	061 1062 1063	
010	WRITE(0,150) STA, PREC, LI	18 12 28 IBREWIDUE COUNT A	
011	I DU FORMATTINU DA STATION	*IX*IS*3X***KEALOO2 COONT	, 15, 3X, LOCATION
0 7 0	1" # 1 X # 3 A 4 F		
032	WRITE(6,250)		
	2 50 FURMAILLA, SIA 4, TR 4 1, 2X, 4 4, 2X, 5 4, 2X, 6 22 4, 13 4, 14 4, 15 3, 4 22 4, 12 4, 12 4 23 4, 12 4 4)	*,2X,*7 *,2X,*8 *,2X,*9 *,6 *,16 *,* 17 *,* L8 *,* 19	10 *,* 11 *,* 1 *,* 20 *,* 21 *
034	GO TO 5		
035	7 1=1+1		
36	DO 40 K=1,24		
37	40 CONTINUE		
38	UO \50 K=1,23		
39	IF(R(K+1).LT.R(K)) R(K+)	1)=R(K+1)+L0000.	
140	AC(K+1)=R(K+1)-R(K)		
41	50 CONTINUE		
42	IF(1.E0.1) GD TD 94	9	
41	PPREC(1) ≠R(24)	· · · · · ·	
44	1F(R(1), 1, PPREC(1-1)) 4	R(1) = R(1) + 10000	
45	<pre>{</pre>	N12) = N(1) 100001	
	AULIJ-BILJ"FFFKEULIT11		
40	00 IL 101 00 IE(0(1) IT 00701 0111- 1		
54 f	99 [F(R(1).L1.PREC] R[1)≠ F	KEII+10000.	
48	AC(1)=R(1)-PREC		
49	PPREC([)=R(24)		
:5 C	101 WRITE(6,300) STA,YR,MO,I	DAY,DOW,{AC(M),M=1,24}	
51	300 FORMAT(2X,12,1X,12,2X,A)	1,2X,12,2X,11,2X,2414)	
52	WRITE(7,40C) STA,YR,MD,	DAY,DOW,(AC(M),M=1,24)	
· C 3	400 EDRMAT(213.43.213.1614.	/.15%.8141	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

PAGE 0001

FORTRAN IV G LEVEL	20.1	MAIN	DATE = 72032	16/43/27	PAGE 0002
0055 0056 999 0057	GO TO 5 STOP END				

.

## Figure A-3. Data Adjustment Program No. 1

FORTRAN	[] (	Gι	EVEL	20.1	MAIN	DATE = 72033	09/46/02	PAGE 0001
0001				DIMENSION 4	(15),B(16)			
0002				DATA ZERU,F	OUR/*0*,*4*/			
0003				DATA AST, ZE	RUS/*****,'0000'/			
0004				00 10 I=1,5	52			
0005				DO 20 J=1.7	,			
0006				DU 30 K=1,2	2			
3007				READ(5,100,	END=99) LOC,8			
8000			100	FORMAT(13,1	2X,1644)			
0009				1F(LOC.EQ.C	)) LOC=1			
0010				UG 50 L=1,1	. 6			
UO11			50	IF(8(L).EQ.	AST) B(L)=ZEROS			
0012				WRITE(6,L10	H LOC, I, J,K,B			
0013			110	FORMAT(213	212,1644)			
0014				WRITE(7,110	)) LOC,I,J,K,B			
0015			30	CONTINUE				
0016			20	CONTINUE				
0017			10	CONTINUÉ				
0018			99	STOP				
0019				END				

Figure A-4. Data Adjustment Program No. 2





FORTRAN	IV	Gι	EVEL	19	MA	IN	DATE = 72012	12/25/08	PAC	GE (	0001
0001				INTEGER LOC.	V150	8.7.24).	M(58,7,24),AST,BLANK				
0001				INTEGER WK155	J. DAY (7)	A(55,24)					
0003				DATA AST, BLAN	K/¶#1,¶ ¶,	/					
0004				DO 20 I=4,55							
0005				00 10 J=1,7							
0006				READ(5,100,EN	D=400) LO	C,WK(I),DAY	J) + (V(I,J,K),K=1,24)				
0007			100	FORMAT(213,12	2X,16I4,	/.10X.814}					
0008			10	CONTINUE							
0009			20	CONTINUE							
0010				00 60 J=1,7							
0011				00 5 L#1,24							
0012				DD 0 JGP=1,55	N1/2						
0013			4	CONTINUE	IN IN						
0014			0 a	CONTINUE							
0015				DO 50 K=1.24							
0013				V(1.J.K)=V(53	• J • K )						
0018				V(2, J, K)=V(54	, J, K)						
0019				V(3, J, K) = V(55	.J.K)						
0020				V156, J, K)=V14	J.K)						
0021				V{57,J,K}≠V(5	∎J∎KI						
0022				V(58,J,K)=V(6	, J, K)						
0023			50	CONTÍNUE							
0024				00 500 K=1,24	•						
0025				AVG = 0							
0026				00 505 1=4,55							
0027			505	AVG = AVG + V	'Lig JeKi						
0028				AVG = AVG/32.							
0029				00 510 L=4155	K = AVG						
0030				DIFF = VIII01	NT - AVO						
0031				16/0166.15.8(		510					
0032				$\Pi I F = V(I_{\bullet})$	KI – AVG						
0034				DIFF = DIFF//	VG						
0035				2 = -0.95							
0036				IF(DIFF+LT-Z-	OR.DIFF.G	5T.5.) V(I,J	,K] = −V[[,J,K]				
0037			510	CUNTINUE							
0038			500	CONTINUE							
0039				DO 515 K=1,24	÷						
0040				DO 520 l=4.5	5						
0041				IF(V(I,J,K),	.1.01 60 1	0 535					
0042				AVG = 0.							
0043				0 = 0+	,						
0044				N = T + 10 +	۰ د						
0045				IEIVIN. 4-K)-4	T.O. 1 GD	TO 525					
0040				D = D + 1							
0041				$\Delta VG = \Delta VG + V$	/(N.J.K)						
0040			525	CONTINUE							
0050				AVG = AVG/D							
0051				DIFF = V[1, J]	K) - AVG						
0052				$DIFF = ABS{D}$	(FF)						
0053				IF (DIFF+LT+2	3.1 GO TO	520					
0054				$DIFF = V[I_{1}]$	,K) - AVG						
0055				DIFF = DIFF/	AVG						
0056						ST.1.01 GO T	0 530				
0057				CO TO 520	•UK•UIFF•\	0, 11401 00 1	5.250				
0058				00 IU 920							

FUR TRAN.	IV G LEVEL	19	MAIN	DATE = 72012	12/25/08	PAGE 0002
0059	535	V(I,J,K) =	-V([,J,K)			
0060	5 30	A(I,K) = A	ST			
0061	520	CONTINUE				
0062	515	CONTINUE				
0063		DO 160 I=4	, 55		-	
0064		WRITE (6,20	OI LOC, WK(I), DAY(J), (V	(1,J+K);A(1+K);K=L+24)		
0065	200	FORMAT(213	,[2,24(I4,A1))			
0066		IF(1.80.55	) GO TO 300			
0067		GO TO 160				
0068	300	WRITE (6,20	1)			
0069	201	FORMATELHI	3			
0070	160	CONTINUE				
0071		DD 170 JAD	= 4,00			
0072		00 175 K≍L	+24 	-1		
0073		IFLACJAD,K	1.50.42(1 A(140)1+4) =	-1		
0074	175	CONTINUE		AVE (AD ) K1.K=1.261		
0075		WRITELY, 10	0) LUCIMK(JAD) DATUJ)	[4[340]316316-11541		
0076	170	CONTINUE				
0077	60	CONTINUE				
0078	400	STOP				
0079		END				

Figure A-6. Data Adjustment Program No. 3

FORTRAN	1V G	(EAEI	. 20-1 H/	IN	DATE = 72018	35/02/19
0001			REAL V(52)-W(52)			
0003			RFA1 E(4)	+,321,A14,4/,814,	4 <i>]</i> , <b>L1</b> 4,32 <i>]</i> ,014/	
0004			REAL VOL152,7,241,PRE( INTEGER BADWK(52)	152;,VN(104},#N(	104)	
0006			INTEGER NVOL(52,7,24)			
0008			00 101 1=1.52			
0009		101	READ(5-1001LDC+(VDL11- FORMAT(13-7X-16+4-0/10	J•K)•K=1+24) X•HF4.0)		
0011			DO 400 K=1,24			
0013			NG=0			
0014 0015			N8=0 DC 201 1=1.2			
0016			IF(VOL(1, J,K).GE.0.) 0	O TO 301		
0018			BADWKINBI=1			
0019		301	GU TU 201 NG=NG+1			
0021			V{NG}≖VOL(I.J,K) W NG]=I			
0023		201	CONTINUE			
0025			1F((NG/21*2.EQ.NG) GD	TD 40		
0026 0027			li=((52→NG}/2)+1 SO TO 41			
0028		40	[T={52-NG}/2 DO 501 [=1.[T			
0030			V(NG+I)=V(I)			
0032		501	CONTINUE			
0033			JA=53-I <b>I</b> D() 6 I=JA+52			
0035			V(1)=V(1-(2+11)) W(1)=W(1-(2+(1))-57			
0037		6	CONTINUE			
0038		41	38=[T-1			
004U 0041			DO 51 I=1.J8 V(NG+1)=V(1)			
0042		51	W(NG+1)=W(1)+52			
0044		21	JC=53-1T			
0045			DU 61 I=JC,52 V(1)=V(I-(2*IT)+1)			
0047 0048		61	W(1)=W(I-(2*IT)+L)-52 CONTINUE			
0049		42	CONTINUE.			
0051			DQ 2 [=1,52			
0052		2	WN(1+1D1V)=W(1) VN(1+1D1V)=V(1)			
0054			00 3 [=1,IDIV WN([]=W(53-1)			
0056		3	VN(I)=V(53-I)	1		
0058			W(I)=WN(I)			
0059		4	V{[]=VN[]} 00 1 [=1,4			
0061		1	E([) = 1. CONTINUE			
0063			J0=52 08 15 L=1, D			
0065			Y(1) = V(1)			
0067		15	DO 20 [#I+JD			
0068			X([,1] = 1. X(],2) = W(]}			
0070			X([+3) = W{])*W{}} X([+4) = X([+3)*W{}])			
0072		20	CONTINUE DD 25 I=1. D			
0074			DE 25 L=1,4			
0076		25	CONTINUE			
0077			NE = 4 NJ = JD			
0079			NK = 4 NN = .i0			
0001			CALL MAMULT(Z,X,A,NI,N	J.NK.NN]		
0082			N = C			
0084			NN = 4 CALL MATINV (A,N,E,M,D)	T,NN)		
0086 0087			DO 30 I≠1.4 DO 30 L≠1.4			
0086		20	B(I,L)=A(1,L)			
0096		50	NI = 4			
0091			NK = JD			
0093 0094			NN = JD CALL MAMULT(8,2,C,NI,N	J, NK, NN J		
0095			NI = 4 NI = 40			
0097			NK = 1			
0095			CALL MAMULT(C,Y,0,NT,N.	I, NK, NN)		
010C 0101			DO 200 JZ=1.NB 00 200 I=1.52			
0102			PRFD(JZ)=D(1)+D(2)+BAD4 (E(PRED(JZ)-1)-0.1 PRED	#K{JZ]+Ð[3]*BÅD₩K D{JZ}=0.	(JZ)**2+D(4)#BADWK(J.	2}##3
0104		200	IF(I.EQ.BADWK(JZ)) VOL	1,J,K)=PRED(JZ)		
0106		43	CONTINUE			
0107 0108		400	CONTINUE DO 302 J=1,7			
0109			DO 302 I=1,52 00 302 K=1,24			
0111		202	NVOL(I,J,K)=VOL(I,J,K)			
0113		302	DO 303 J=1.7			
0114 0115			00 303 1=1,52 WRITE(7,304)LOC,[,J,(N\	0L([,J,K),K=1,24	ŀ	
0116 0117		304 303	FORMAT(213+12,2X,1614/1	0X,814)	41	
0118		100	FORMAT( +213,12,2415)			
0120			END			

Figure A-7. Data Adjustment Program No. 4