

COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FRANKFORT, KENTUCKY 40601 November 22, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508 TELEPHONE 606-254-4475

H.2.24

MEMORANDUM TO: J. R. Harbison State Highway Engineer Chairman, Research Committee

FROM:

CHARLES PRYOR, JR.

COMMISSIONER OF HIGHWAYS

Jas. H. Havens Director Division of Research

SUBJECT:

Research Report 339; "Accidents on Rural Interstate and Parkway Roads and Their Relation to Pavement Friction"; KYHPR-64-24; HPR-1(8), Part II.

Our recent report on the "Skid Resistance of Pavements" related the performance of types of surfaces from the standpoint of time and traffic. During 1971, we purposefully made close-interval skid tests over the entire interstate and parkway systems. These measurements, together with computerized, accident reporting and retrieval procedures now provided by the Department of Public Safety and traffic counts provided by the Division of Planning, made it possible for the first time to determine relationships between accident frequencies and skid resistance -- on a grand scale. The fact that accidents increase as pavements become slippery is a priori; but the question, How slippery can a pavement become before it is considered unsafe? has been a matter of contention for many years. We have studied many so-called high-accident sites and associated them with skid measurements. Somewhat intuitively, we have advocated coefficients of friction of 0.40 (40-mph value) and have considered values in the order of 0.40 as being critical. Speeds have increased, and it seemed necessary to test at high speeds, also.

On the basis of the analyses made, it appears that disproportionate increases in accident rates should be expected when the 70-mph skid resistance, SN_{70} , falls below 26. This is equivalent to a PSN_{70} of about 50 and an SN_{40} of about 40.

The use of 1970 accident data with 1971 friction measurements and 1969 traffic volumes was expedient to the analysis. The analysis is being checked against later statistics.

It is somewhat reassuring to know that the results obtained here are in close agreement with findings from studies in Virginia and Tennessee -- although the methods differed.

The FHWA has recently advanced a proposal to establish minimum levels of skid resistance as a requirement of compliance (in the form of a PPM). Surely our report will have direct bearing on pending decisions -- whether minimums are to be considered as advisory or as requirements. The challenge, of

course, is to achieve a due margin of safety.

Respectfully submitted, anens 10 Jas. H. Havens

Director of Research

JHH:dw Attachments cc's: Research Committee

ADDENDUM

After this report was being reproduced, preliminary results from analyses using accident rates calculated for the two-year period 1970-1971 became available. The graph appended hereto shows a confirming relationship between wet-weather accident rates and 70-mph Skid Numbers. The graph is specific for ADT's greater than 4000 vehicles per day; it may be compared directly with Figure 19 in the report. Eventually, 1972 accident data will be added; and attempts will be made to explain variances by inspection of the sites.

			TECHNICAL REPORT STANDARD TITLE PAGE
1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog No.
·			
4. Title and Subtitle			5. Report Date Sentember 1972
Accidents on Interstate and Parkway Roads and Their Relation			
to Pavement Friction			o. Performing Organization Code
7 Author(s)			8 Performing Organization Report No
			330
C. T. Napier			507
9. Performing Organization Name and Address Division of Research			10. Work Unit No.
Kentucky Department of Highwa	VS		11 Contract or Grant No.
533 South Limestone	,,,		KYHPR- 64-24
Lexington, Kentucky 40508			13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address			
			Final Interim
			14. Sponsoring Agency Code
15 Eurojania Notos			
Prepared in cooperation with the	e US Department o	of Transportation, F	ederal rugnway Administration
Study Title: Pavement Slipper	riness Studies		
16. Abstract	· · · · · · · · · · · · · · · · · · ·		
Printing approximate the	ro modo with a ski	trailer at 70 mph	on 820 miles of rural four-lane
Friction measurements we	re made with a skie	I Hanel at /0 mph	on 820 miles of future, four-mile,
controlled-access routes on th	ne interstate and p	arkway systems in	Kentucky. These facilities were
subdivided into test sections at	nd half-mile sites. A	ccident experience, i	friction measurements and traffic
volumes were obtained for ea	ch subdivision.		
The expression of acciden	nt occurrence which	correlated best wit	h skid resistance was wet-surface
accidents per 100 million vehic	le miles. There was	a definite trend exhib	oiting a rapid decrease of accidents
with increasing Skid Number	(70 mph) to 26 ±	1; thereafter, with in	ncreasing Skid Numbers, the rate
of decrease was considerably le	ssened. This trend w	as developed using to	est-section data and verified using
half-mile sites. Analysis of Pea	k Slip Numbers and	accident occurrences	s indicated similar trends to those
	-		
developed with Skid Numbers	•		
17. Key Words		18. Distribution State	ment
Strid Desistance Inc	iniant Printian		
Accident Rates	apient ruction		
Friction Needs			
Pavement Friction			
19. Security Classif, (of this report)	20. Security Clas	sit. (ot this page)	21. No. of Pages 22, Price

Unclassified

Form DOT F 1700.7 (8-69)

Unclassified

Research Report 339

ACCIDENTS ON RURAL INTERSTATE AND PARKWAY ROADS AND THEIR RELATION TO PAVEMENT FRICTION

INTERIM REPORT KYHPR-64-24, HPR 1(8), Part II

by

Cass T. Napier Former, Research Engineer

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

in cooperation with the U.S. DEPARTMENT OF TRANSPORTATION Federal Highway Administration

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Department of Highways or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

September 1972

INTRODUCTION

To assure safety of highway travel in wet weather, pavements must be designed, constructed, and maintained with sufficiently high skid resistance to enable drivers to perform "normal" driving tasks and maneuvers without risk of skidding and/or loss of vehicle control. In emergency situations, a driver may be compelled to brake hard and, with conventional braking systems, may experience skidding regardless of how skid resistant the pavement may be. Anti-locking brake systems minimize the risks of skidding and permit the driver to retain directional control of the vehicle. With or without such systems, a vehicle will slip, with potential loss of control, when the demand for braking force exceeds the tractive force. As friction (traction) is increased, maximum permissable deceleration is also increased, thereby increasing a driver's chances of avoiding collision or skidding off the road. Wet pavements ideally should have the highest possible friction, preferably equal to that of dry pavements. In a practical and realistic sense, however, the question remains as to what minimum level of friction a pavement should provide to safeguard the public from undue hazards associated with driving on wet pavements. Surely, excellence is to be sought; little satisfaction derives from maintaining a friction level at the established minimum. The minimum requirement, however, may serve as an indicator of slippery roadways and may provide criteria for design of surface courses and for-posting speed restrictions, etc.

Investigators elsewhere have not been altogether successful in establishing minimum friction requirements. Efforts to do so generally fall into two categories: 1) studies of driver behavior and, therefore, frictional demands attending driving tasks, and 2) analysis of accident data and accident experience as related to pavement friction. Studies in the first category represent a logical approach but involve extensive monitoring of representative driver populations under realistic roadway conditions and situations. Interpretations as to what constitutes "normal" as opposed to "emergency" reactions or situations present a problem. Friction factors thus derived cannot easily be related to skid resistance measured with conventional testers (such as trailers) operated under prescribed procedures and conditions of test.

Accident rates have been recognized as being higher on wet than on dry surfaces; many statistics are available to support this intuitive conclusion. Furthermore, research has shown that accident rates tend to increase as wet skid resistance diminishes. This relationship is now considered to be intuitive and *a priori*. However, the interaction of many contributing factors such as roadway geometrics, traffic characteristics, driver behavior, etc. together with uncertainties concerning reliability and availability of accident data, type of friction measurements, and type of analysis have heretofore obscured relationships between accident rates and wet skid-resistance measurements.

The primary objective of this study was to discern a relationship between accident experience and pavement friction for rural, four-lane, controlled access roads on the interstate and parkway systems in Kentucky. These highways were purposely chosen for this initial analysis because many of the usually confounding variables could be assumed to have minimal influence. A similar study of other rural routes is planned. Subsequent evaluations of such a relationship in conjunction with economical and technical considerations will assist in the establishment of acceptable minimum levels of friction.

To define a relationship between accidents and skid resistance, the effect of all other parameters must be known or held constant insofar as possible. By limiting the study to rural, four-lane, interstate and parkway facilities, some of the parameters, such as road geometrics, access control and speed, may be assumed to remain reasonably constant. Traffic characteristics (volume and density) and pavement surface conditions (wet or dry, and available friction when wet) could be rather readily considered as variables.

Data were accumulated in three categories. Annual average daily traffic volumes were obtained for 1969. Accident data were those reported during the calendar year 1970. Pavement friction measurements were made between June and October 1971 on 814 miles of the interstate and parkway systems. Measurements were obtained for both locked-wheel skid resistance and peak slip resistance. Skid resistance reaches a maximum somewhere between 10 and 20 percent of tire slip (apparent, may not be true slip) on the pavement. This peak resistance is often referred to as incipient friction and exceeds the resistance measured by the locked-wheel method. Therefore, both locked-wheel skid resistance and peak slip resistance is often referred to as incipient friction and exceeds the resistance measured by the locked-wheel method. Therefore, both locked-wheel skid resistance and peak slip resistance at various speeds -- or some other type of measurement -- may be needed to fully characterize pavements. The measurement(s) which best correlate(s) with accidents remains to be established.

PAST STUDIES

In Great Britain, Giles (1) and Sabey (2) noted that the percentage of wet-road accidents involving skidding correlated linearily with skid-resistance (Figure 1) as measured with the British Portable Tester. Minimum acceptable friction levels, based in part on this correlation, were recommended. Those recommendations of minimim skid resistance were: 1) 55 for tangent, level roads and 2) 65 for curves, intersections, grades, and roundabouts.

Minimum friction requirements (Table 1), as measured with the skid trailer (locked-wheel) for different mean traffic speeds, were proposed by Kummer and Meyer (3). In that study, driver behavior and skidding accidents were correlated with pavement friction. However, recommended minimum Skid Numbers (SN) were based on driver behavior only and were intended to satisfy tractional demands for normal vehicle maneuvers, encompassing all driving, cornering, and braking maneuvers performed by a

TABLE 1

RECOMMENDED MINIMUM INTERIM SKID NUMBERS^a (From Reference 3)

	SKID	NUMBER
SPEED, V(MPH)	SND	SNC
0	60	
10	50	
20	40	
30	36	31
40	33	33
50	32	.37
60	31	41
70	31	46
80	31	51

а

Skid Number measured in accordance with ASTM E-274 Method of test.

Ъ

SN - Skid Number measured at mean traffic speed.

c SN_{40} - Skid Number, measured at 40 mph, including allowances for Skid Number reduction with speed using a mean gradient of G = 0.5 SN/mph.

Figure 1. Relationship Found in Great Britain between Monthly Frequency of Wet-Road Accidents Involving Skidding and the Mean Skidding Resistance in the Month Concerned (from Skidding Accidents, Institute for Road Safety Research SWOV, The Netherlands, 1970).

majority of drivers under normal traffic conditions. Kummer and Meyer also recommended that friction measurements be made at the mean traffic speed, thus eliminating uncertainties of using predetermined skid resistance-speed gradients to extrapolate skid resistance values to other speeds.

McCullough and Hankins (4) studied skid resistance and accidents to set guidelines for surface improvements on Texas highways. They investigated 517 road sections and measured skid resistance with a trailer at speeds of 20 and 50 mph. Accidents were expressed in terms of both fatal and injury accidents per 100 million vehicle miles as well as total accidents (including property damage accidents) per 100 million vehicle miles. McCullough and Hankins also considered measures of accidents in other terms but indicated three reasons for choosing the final expressions:

- 1. Virtually no differences were observed in the preliminary investigation using the different measures of accidents i.e. total accidents, wet-road accidents, or skidding accidents.
- 2. Classification of accident data so as to obtain the other measures of accidents was time consuming, and the number of skidding accidents was unreliable because it was difficult to determine a skidding accident from available accident statistics.
- 3. Fatal and injury accidents were selected to avoid incomplete reporting of accidents since these were virtually always reported.

From graphs of accidents per 100 million vehicle miles versus coefficient of friction (such as Figures 2 and 3), McCullough and Hankins concluded that, even though there was a wide scatter of points, the data indicated accidents were, in general terms, inversely proportional to the coefficient of friction. Similar trends and observations were determined by comparing both fatal and injury accident rates with coefficient of friction. Based on these findings, McCullough and Hankins recommended minimum friction levels of 0.40 at a speed of 20 mph and 0.30 at 50 mph.

Mahone and Runkle (5) studied 521 road sections and 2,727 accidents on 313 miles of interstate highways in Virginia to determine relationships between the percentage of wet accidents and Predicted Stopping Distance Number (PSDN). Friction measurements were made with a skid trailer (locked-wheel) at 40 mph and were converted to PSDN by correlation. Accidents were expressed as a ratio of wet-surface accidents to total accidents (including property damage accidents) (Figure 4). Two reasons were cited in justification of the choice of this ratio as a measure of accidents:

- 1. It was undesirable to be limited to the use of skidding accident statistics, since inadequate friction could promote accidents not involving skidding.
- 2. It is sometimes impossible to determine from accident reports if skidding was a major contributing factor.

Mahone and Runkle observed that, in most cases, the percent of wet accidents decreased as the

Figure 2. Comparison of Total Accidents and Coefficient of Friction at 20 mph (from Reference 4).

σ

Figure 3. Comparison of Total Accidents and Coefficient of Friction at 50 mph (from Reference 4).

-1

Figure 4. Comparison of Percent Wet-Surface Accidents with Predicted Stopping Distance Number for Traffic and Passing Lanes (from Reference 5).

Ë

PSDN increased and that, if volume was a factor, apparently the percent of wet accidents was lower with increased volumes, on the average. From these data, they concluded that for interstate roadways with a mean traffic speed of 65 to 70 mph the minimum PSDN should be 42 for the through lane and 48 for the passing lane.

Moore and Humphreys (6) studied 75 high-accident sites (each one-half mile long) in Tennessee. The sites involved 450 accidents in 1967. Skid-test (trailer) measurements were made in 1969, 1970 and 1971, and the analysis was based on 40-mph test data. Percentages of wet-pavement accidents were related to coefficient of friction. They concluded that accident reports do not adequately indicate whether skid resistance is a significant factor in a particular accident. However, pavements with coefficients of friction of 0.41 and less have almost twice as many wet-pavement accidents than surfaces with higher skid resistances. It was recommended that the minimum acceptable level of skid resistance should be a coefficient of friction of 0.40, as measured by the locked-wheel skid tester at 40 mph.

In instances where speeds and/or highway facilities were comparable, minimum levels of friction recommended by different investigators have been in general agreement. For a mean traffic speed of 70 mph, Kummer and Meyer (3) recommended a Skid Number of 46 at 40 mph. Mahone and Runkle (5) provided a means of converting measured PSDN to SN at 40 mph. Using an assumed speed gradient of 0.5 SN per mph, they recommended 40-mph SN test values of 40 for traffic lanes and 47 for passing lanes on facilities to be traveled at speeds of 65 or 70 mph. Moore and Humphreys (6) suggested a minimum coefficient of friction of 0.40 (SN = 40) when measured at 40 mph for highways with posted speeds of 50 mph and higher. McCullough and Hankins (4) recommended a minimum coefficient of a speeds of 50 mph, and this is approximately equivalent to a Skid Number of 35 at 40 mph (speed gradient of 0.5 SN per mph). Unfortunately, McCullough and Hankins did not measure mean traffic speeds. If mean speeds were 50 mph, their Skid Number agrees closely with the recommendation by Kummer and Meyer, i.e., a Skid Number of 37.

In normal driving, the vehicle operates in the non-slip and cornering modes. Slip resistance reaches a maximum somewhere between 10 and 20 percent of tire slip (apparent, may not be a true slip) on the pavement. This peak resistance is referred to as incipient friction. It exceeds the resistance measured by the locked-wheel method. Therefore, both locked-wheel skid resistance and peak-slip resistance at various speeds -- or some other type of measurement -- may be needed to fully characterize the skid resistance of pavements. Measurements which best correlate with accidents remain to be established.

Efforts to determine minimum frictional demands based on driver behavior studies are being pursued by the Franklin Institute. The study is being sponsored by the National Cooperative Highway Research Program, Highway Research Board, under NCHRP Project 1-12(1) entitled "Pavement Friction Coefficients in Driving Tasks". A final report on the study is under review by NCHRP. Findings should greatly enhance the understanding of minimum frictional requirements for normal driving tasks under various roadway geometrics, speeds, etc.

DATA AQUISITION AND COLLATION

Traffic Volumes

Since traffic volumes vary with time, any measurement of volume not obtained at the time and location of an accident would not precisely represent the volume associated with the accident. In studies such as this, which cover a system throughout a state, that type of volume measurement is highly impractical. The measurement of traffic volume which is generally available is an annual average daily traffic (ADT). The latest ADT data available at the time of this study was for 1969; these were used in these analyses.

Friction Measurements

Friction measurements were obtained using a Surface Dynamics Pavement Friction Tester (Model II) developed by the General Motors Proving Ground and manufactured by K. J. Law Engineers, Inc., Detroit, Michigan. This skid trailer complies with ASTM E 274-70 (7). The measurements represent friction developed between a standard test tire (ASTM E249-66 (8)) and a wetted pavement. The locked-wheel measurements are expressed as Skid Numbers (SN); incipient or peak friction is expressed as Peak Slip Number (PSN). A description of the skid trailer and procedures applicable to the method of test were presented in a previous report (9).

Measurements were obtained during the summer of 1971 on all rural, four-lane, interstate and parkway routes in Kentucky having a posted speed limit of 70 mph. Tests were made in the left wheel path only and at one-mile intervals in each lane; no less than five tests per lane were made on each construction project. The basic test speed was 70 mph. Additional tests were conducted on selected pavements at 40 mph. Comparison between the Skid Numbers obtained at the two speeds are presented in Figure 5.

Accident Information

Accident data were obtained from computerized records maintained by the Department of Public Safety. The source for these files were State Police records. All accidents reported during the calendar year 1970 were analyzed. Information available from the computer files for each accident is detailed in APPENDIX A. A summary of all accidents on rural, interstate and parkway routes is presented in Table 2. Accidents totaled 2825 -- of which 2803 occurred on four-lane roadways. The accident rate for rural, four-lane routes averaged 98 accidents per 100 million vehicle miles. This was comparable to a nationwide average of 94 accidents per 100 million vehicle miles on the same type of facility during the same year (10).

From these accident records, many expressions of accident occurrence may be calculated. Rates of wet-surface accidents, dry-surface accidents, fatal and injury accidents, and total (including property damage accidents) are commonly calculated. Expressions used in other investigations have included 1) ratio of wet- to dry-surface accidents, 2) ratio of wet-surface to total accidents, 3) wet-surface accidents per 100 million vehicle miles, 4) total accidents per 100 million vehicle miles.

Test Sections

A test section is defined as "a section of pavement of uniform age and uniform composition which has been subjected to essentially uniform wear along its length" (7). Almost all construction projects fit this definition. In a few cases, the projects were subdivided so that the "test sections" reflected uniform traffic and skid resistance throughout their lengths. Inasmuch as the direction of travel for a vehicle involved in an accident was not given in the accident reports, sections included both directions of travel. There were 122 test sections. These are presented in APPENDIX B along with 1969 ADT's and other relevant data.

On four-lane roadways, most traffic travels in the outer lanes (approximately 80-85 percent), and a large percentage of maneuvers begin or terminate there. The outer lane, left wheel-path Skid Numbers were selected, therefore, to characterize the skid resistance of the test sections. Distributions of these values, SN and PSN, for the 122 test sections are exhibited in Figures 6 and 7, respectively. The relationship between SN and PSN is shown in Figure 8. Minimum, average, and maximum values for each test section are presented in APPENDIX B.

Milepoints were used to describe the location of accidents to the nearest tenth of a mile. Each accident was thereby positioned within a section. The number of wet-surface accidents, dry-surface accidents, total accidents, and the ratios of wet- to dry-surface accidents and wet-surface to total accidents for each test section are presented in APPENDIX B. Rates of wet-surface accidents and total accidents, in terms of 100 million vehicle miles (total vehicle miles traveled under all pavement conditions), were calculated for each test section. These rates were based upon the lengths of sections and the 1969 ADT's. These values are also presented in APPENDIX B.

		<u></u>
ROUTE	ACCIDENTS	FATALITIES
Interstate 64 Interstate 65 Interstate 71 Interstate 75 Ky. Turnpike Mountain Parkway Blue Grass Parkway Western Ky. Parkway Pennyrile Parkway Purchase Parkway	231 414 285 1111 443 85 76 107 56 17	23 18 8 51 18 4 6 5 2 0
Total	2825	135

TABLE 2

SUMMARY OF 1970 RURAL ACCIDENT OCCURRENCE BY ROUTE

Figure 5. Correlation of Trailer Tests Conducted at 40 mph and 70 mph on Bituminous and Portland Cement Concrete Pavements on Interstate and Parkway Routes.

Figure 6. Skid Number Distribution for 122 Test Sections on Rural Interstate and Parkway Routes.

*

Figure 7. Peak Slip Number Distribution for 122 Test Sections on Rural Interstate and Parkway Routes.

Figure 8. Relationship between Skid Number and Peak Slip Number at 70 mph on Interstate and Parkway Routes.

Half-Mile Sites

Because of bias that might result from averaging data over a test section, another basis of relating skid resistance to accident history was sought. Half-mile sites were selected on the basis of accident experience, and friction levels for the sites were related to the wet-surface accident rates. Accident records for each route were searched to locate the half-mile segment which contained the largest number of wet-surface accidents. Records were again searched to determine the half-mile segment having the second largest number of wet-surface accidents. The search was repeated in this manner until 257 half-mile sites with one or more wet-surface accidents and 1302 half-mile sites with no wet-surface accidents (Table 3) were identified. Traffic volume and skid resistance were determined for each site. Data on the 257 wet-pavement accident sites are presented in APPENDIX C.

SKID NUMBERS AND ACCIDENTS

Analysis of Test Sections by Cross Classification

To aid in determining the relationship between different combinations of traffic volume, Skid Numbers and accidents, data for test sections were arrayed as shown in Table 4. Elements of the array are average wet-surface accident rates for all test sections within Skid Number and traffic volume categories. Similar arrays were prepared for other expressions of accident occurrence, including: 1) ratio of wet-to dry-surface accidents, 2) ratio of wet-surface to total accidents, and 3) total accident rate.

Analysis of the arrays led to the conclusion that the data needed to be stratified with respect to ADT to better define the relationships between accidents and pavement friction. Separation of the data arbitrarily into two data sets (0-4,000 vehicles per day and 4,001-25,000 vehicles per day) proved best for this analysis. For other years, however, analysis might indicate that stratifications should occur at some other levels. This separation was complemented by a plot of wet accident rate versus Skid Number for each test section (Figure 9) which illustrates the need for separation of the data. The resulting relationship between accidents and pavement friction with the data stratified at 4,000 vehicles per day are presented in Figures 10, 11, 12 and 13. Although a trend was indicated for the test sections with ADT's less than 4,000 vehicles per day, there was not sufficient data to justify continued analysis. However, it is interesting to note that accident rates were higher on the lower volume than on higher volume roads. Fee, et al, (10) and Hutchinson and Kennedy (11) also found a higher rate of accidents for lower-volume, rural, four-lane roads. Some of Fee's data are shown in Table 5. Fee had postulated from an earlier report by Solomon (12) that higher accident rates for roads with low ADT's were not intuitively expected. However, the increase in accident rate was slight and may be due to a more relaxed attitude

TABLE 3

See the second se

220-

1.1.1.1.1.4

NUMBER OF HALF-MILE SITES WITH NO WET-SURFACE ACCIDENTS

70-MPH	ADI (VENTOLES	PFR DAY)
SKID NUMBER	0-4000	>4000
16		11
17	800 800	
18		1 E
70		47 97
20	6	15
22	12	83
23		77
24	m m	87
25	7	94
26	l	64
27	40	28
28	51	54
29	51	1
30	31	40
31 22	03 37	28
33	75	20
34	15	
35		7
36	25	22
37	27	814 827
38	21	38
39		
40		
41	67 -	
42		
43	Ţ	
₩4 ЦБ	21	
45 46		
47	11	

		ender (E	AD	r (VEHIC	LES PER 1	DAY)		
SKID NUMBER	0 4000	4001 8000	8001 12000	12001 16000	16001 20000	20001 25000	0 25000	4001 25000
18 19-23 24-27 28-33 34-40 41-50	61.9 17.5 18.5 15.2	12.3 0.0 5.8	55.3 21.9 9.8 0.0	17.0 18.0 12.0 0.0	42.7 32.7 6.8	0.0	55.3 25.7 16.4 11.6 10.0 15.2	55.3 25.3 16.4 9.2 3.6

TABLE 4 WET-SURFACE ACCIDENT RATES*

*Accidents per 100 million vehicle miles

Figure 9. Test Section Averages: Wet Accident Rate versus Skid Number with ADT Stratification.

Figure 10. Comparison of Wet-Surface Accidents/Dry-Surface Accidents Ratio to Skid Number with Volume Stratification at ADT of 4000 Vehicles per Day.

SKID NUMBER (70 mph)

Figure 11. Comparison of Wet-Surface Accidents/Total Accidents Ratio to Skid Number with Volume Stratification at ADT of 4000 Vehicles per Day.

Figure 12. Comparison of Wet-Surface Accident Rate to Skid Number with Volume Stratification at ADT of 4000 Vehicles per Day.

Figure 13. Comparison of Total Accident Rate to Skid Number with Volume Stratification at ADT of 4000 Vehicles per Day.

on the part of the driver on traffic-free roadways or may be attributed to larger speed variances under such low-volume conditions. There is reason to believe that either of the above situations might lead to this higher accident rate. Fee's data for rural, four-lane roads, presented in Table 5, also indicated that accident rates on roadway sections with higher ADT's were not related to traffic volume. Kentucky data presented in Table 6 indicated a slight increase in accidents with increasing ADT. Considerable variability in the data, indicated in Figure 9, remained after elimination of test sections having ADT's less than 4,000. But a definite trend of decreasing wet-surface accident rate with increased Skid Numbers was apparent.

Analysis of test section data continued, seeking that expression of accident occurrence relating best with pavement friction. This was accomplished by taking elements in the arrays as predicted values. Actual accident occurrence calculations for each test section were then compared to this "predicted" value to obtain deviations. This enabled computation of a coefficient of correlation for each accident expression. The correlation coefficients ranked the expressions in the following order:

- 1. Wet-surface accidents per 100 million vehicle miles
- 2. Ratio of wet- to dry-surface accidents
- 3. Total accidents per 100 million vehicle miles
- 4. Ratio of wet-surface to total accidents.

The degree of correlation was not sufficiently encouraging to enable a final selection of the best expression. Analysis to determine the relationship between accident occurrence and pavement friction was therefore continued using all four expressions. However, further analysis was confined to ADT's over 4,000 vehicles per day.

Analysis of Test Sections by Averaging Techniques

Three averaging methods were used to reduce variability and, thereby, to more clearly demonstrate general relationships already apparent in the data set for test sections having volumes above 4,000 vehicles per day. A discussion of these methods and the resulting trends follow.

Cumulative Averages: Two techniques were used to calculate cumulative averages. The first involved calculating the average of each expression for accident occurrence for all test sections having a Skid Number less than or equal to a given value. The second procedure involved calculating average accident occurrence -- for each method of expression -- of all test sections having a Skid Number greater than a given value. These average values are plotted in Figures 14, 15, 16, and 17.

In the first procedure of calculating averages, accident rates for low Skid Numbers had the greater influence upon the average value obtained. Extreme values of the expressions for accident occurrence

TABLE 5

ACCIDENT RATES* BY ADT GROUPINGS (From Reference 10)

		ADT (VEHICLES PER DAY)							
TYPE OF ROAD	100 1900	2000 3900	4000 7900	8000 15900	16000 23900	24000 35900	36000 51900	52000 75900	
Urban (4 Lane)		141	134	124	128	158	244	387	
Rural (4 Lane)	122	92	94	93	91	93			

*Accidents per 100 million vehicle miles

TABLE 6

ACCIDENT RATES* BY ADT GROUPINGS

* *****		ADT (V	THICLES	PER DAY)	
TYPE OF	0	2001	4001	8001	16001
ACCIDENT	2000	4000	6000	16000	25000
Total	208	80	71	94	103
Wet-surface	32	14	11	17	19

*Accidents per 100 million vehicle miles

Figure 14. Cumulative Averages of Wet-Surface Accident Rate versus Skid Number.

Figure 15. Cumulative Averages of Wet-Surface Accidents/Dry-Surface Accidents Ratio versus Skid Number.

Figure 16. Cumulative Averages of Wet-Surface Accidents/Total Accidents Ratio versus Skid Number:

Figure 17. Cumulative Averages of Total Accident Rate versus Skid Number.

for a test section at high Skid Numbers were attenuated through division by the large number of test sections with lower Skid Numbers. Thus, the second procedure, which yielded opposite weightings, was necessary to verify the trends and to insure that large deviations at high Skid Numbers were not being masked by the averaging process. Fortunately, the resulting trends were all similar. Average accident rates and proportions of wet-surface accidents decreased significantly as the Skid Numbers increased to approximately 27; further increase in Skid Numbers resulted in only a slight reduction in accidents.

Since all trends were similar, and because of the ranking of accident expressions discussed previously, subsequent analyses were restricted to wet-surface accidents per 100 million vehicle miles as the method of expressing accident occurrences.

Average Wet-Surface Accident Rates Grouped by Skid Number: In the second method, test sections were grouped by Skid Number. The average wet-surface accident rate was calculated for each group. These averages are tabulated in Table 7 and plotted in Figure 18. Again the trend indicated a rapidly decreasing accident rate with increasing Skid Numbers up to about 25. The variability was greater than that obtained by the first method because several groups included only one or two test sections, each having equal weighting as groups containing a larger number of test sections. Still, the trends by the two methods were very similar.

Moving Averages: The third method involved calculation of an average wet-surface accident rate and an average Skid Number for progressively-ordered sets of five test sections. The first average was of the five test sections with the lowest Skid Numbers. The test section with the lowest Skid Number was then dropped, and a test section with the next highest Skid Number added. This was repeated until all test sections had been averaged in a group of five. In cases where more than one test section had the next highest Skid Number, one of these was randomly added each time. Test sections were dropped in the same sequence as they were added. Resulting averages are plotted in Figure 19.

The trend was similar to those developed by the previous two methods. However, this method indicated a more distinct change in the slopes of the two branches of the curve. At a Skid Number below 26, the wet-surface accident rate increased by about five per Skid Number, whereas above 26 the wet-surface accident rate decreased by less than one-half per Skid Number.

Analysis of Half-Mile Sites by Averaging Techniques

To verify trends developed for the test section data, average wet-surface accident rates for half-mile sites were analyzed. The averaging of sites grouped by Skid Number was tested first. This method had shown the greatest variability (poorest correlation) in the analysis of test sections. It gives equal weighting to each group regardless of the number of sites in each group. Data were not stratified initially by

TABLE7

S CARRENDO CONSIDER DE RECENS

server representation of the server

WET-SURFACE ACCIDENT RATES* FOR TEST SECTIONS GROUPED BY SKID NUMBER

70-MPH SKID NUMBER	NUMBER OF TEST SECTIONS	WET ACCIDENT RATE
NUMBER 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	SECTIONS 1 0 2 8 1 10 10 9 10 6 4 4 4 0 3 0 2 1 0 2 1 0 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	49.5 22.7 25.6 13.9 21.4 21.3 22.3 14.5 6.5 8.1 5.8 8.1 5.8 8.5 9.5
35 36 37	1 2 0	0.0
38	2	8.6

*Accidents per 100 million vehicle miles

Figure 18. Average Wet-Surface Accident Rate of Test Sections -- Grouped by Skid Number -- versus Skid Number.

Figure 19. Five-Point Moving Averages: Wet-Surface Accident Rate versus Skid Number.

ADT in this analysis since there might be a different level for separation for the half-mile sites.

Plots of unstratified, site averages again indicated considerable variability; no definite trend was evident. Consequently, sites having ADT's less than 4,000 vehicles per day were eliminated and accident-rate averages were recalculated for the remaining sites (Table 8 and Figure 20). The resultant trend was similar to that obtained from the test sections after sorting (Figure 18), that is, a large rate of decrease in wet-surface accident rate with increasing Skid Numbers up to about 25 and a lesser rate of decrease above 25. Site averages showed greater variability (scatter) than the longer test sections (test sections averaged about seven miles in length). Also, half-mile sites were defined on the basis of accident occurrence; test sections were defined by similar traffic and construction characteristics. Even so, the similarity of results was significant.

To define a trend specifically for locations which seemed to be susceptible to wet-pavement accidents, half-mile sites which had experienced at least one wet-surface accident were grouped by Skid Number; the average wet-surface accident rate was calculated for each group (Table 9, Figure 21). The trend there indicated that increasing the skid resistance of high-accident locations would decrease the accidents proportionally. Development of trends similar to those obtained with test section averages was not possible because there was an insufficient number of high-accident sites having a Skid Number greater than 28.

PEAK SLIP NUMBERS AND ACCIDENTS

As discussed previously, there is a need to analyse different measurements of pavement friction to determine which correlates the best with accident experience. The peak friction force was measured routinely during all tests; thus this data was available for analysis. Its relevance as an index to accident potential was not fully explored here mainly because measurements of peak frictional forces yielded somewhat less consistent results than the locked-wheel measurements (SN).

The test section averages were arrayed as shown before. Peak Slip Number (PSN) was substituted for Skid Number. The arrays again indicated the necessity for sorting the data by ADT into two groups (0-4,000 and 4,001-25,000 vehicles per day). Wet-surface accident rates again appeared to be the best expression for accident occurrence. The wet-surface accident rates, for each of the two ADT groups, were plotted against the Peak Slip Numbers, as shown in Figure 22. As before, the test sections having ADT's less than 4,000 vehicles per day had accident rates which were high compared to those with ADT's above 4,000 vehicles per day. There was not sufficient data in this set to justify further analysis. Therefore, analysis was continued only for sections having ADT's greater than 4,000 vehicles per day.

The test sections with over 4,000 ADT were grouped by Peak Slip Number and average wet-surface

TABLE 8

WET-SURFACE ACCIDENT RATES* FOR HALF-MILE SITES GROUPED BY SKID NUMBER

70-MPH SKID NUMBER	NUMBER OF SITES	WET ACCIDENT RATE
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	14 0 0 22 142 17 118 113 109 121 71 33 69 0 43 0 30 15 0 7 22 0	42.6 27.6 26.8 12.4 21.4 27.1 21.1 17.7 6.5 6.2 11.7 3.5 6.5 13.1 0.0 0.0
30	33	0.0

*Accidents per 100 million vehicle miles

Figure 20. Average Wet-Surface Accident Rate of Half-Mile Sites -- Grouped by Skid Number -- versus Skid Number.

TABLE 9

WET-SURFACE ACCIDENT RATES* FOR HALF-MILE SITES (WITH ONE OR MORE WET-SURFACE ACCIDENTS) GROUPED BY SKID NUMBER

	the second s	
70-MPH SKID NUMBER	NUMBER OF SITES	WET-SURFACE ACCIDENT RATE
16 17 18	3 0 0 7	199
20 21 22	45 2 35	85 115 64
23 24 25	37 22 ' 26	75 75 69
26 27 28	7 5 15	73 67 49
29 30 31	0 3 0	59
32 33 34	2 3 0	104 31
35 36 37 38	U 0 0 1	289
30	<u>+</u>	200

*Accidents per 100 million vehicle miles

Figure 21. Average Wet-Surface Accident Rate of Half-Mile Sites with One or More Wet-Surface Accidents - Grouped by Skid Number - versus Skid Number.

Figure 22. Comparison of Wet-Surface Accident Rate to Peak Slip Number with Volume Stratification at ADT of 4000 Vehicles Per Day.

accident rates were calculated for each Peak Slip Number (Table 10 and Figure 23). The plot indicates considerably more scatter than was obtained with Skid Numbers (Figure 18). The greatest change of slope occurred at a Peak Slip Number of about 50.

DISCUSSION AND CONCLUSIONS

On rural, four-lane, interstate and parkway facilities, accidents were found to be related to traffic volume. Accident rates on low volume sections decreased with increased ADT. Above 4,000 vehicles per day, accident rate appeared to be insensitive to variations in traffic volume. No data were available to indicate trends for highways with volumes in excess of 25,000 vehicles per day.

All four expressions of accident occurrences, when related with pavement friction, exhibited similar trends yet with different variability. Of the four expressions analyzed, wet-surface accidents per 100 million vehicle miles correlated best with skid resistance. Even using the best accident expression, scatter and spurious variability in data seem inevitable. Averaging methods are a means of developing trends and removing variability between the variables in the study. Of the averaging methods investigated, the "moving average method" yielded the better results. Definite trends were established in regard to the relationship between wet-surface accident rates and Skid Numbers. Wet-surface accident rate decreased rapidly as the Skid Number increased to 26; further increases in Skid Number beyond this point resulted in only a slight reduction in accidents.

In respect to friction measurements other than Skid Number, either the incipient friction measurement (Peak Slip Number) yielded less reliable data (measurement and chart analysis errors) or else the locked-wheel skid resistance (Skid Number) provided a better index of accident potential. A Peak Slip Number of 50 (the point of greatest change in the slope of the curve in Figure 23) is equivalent to a Skid Number of approximately 24 (Figure 8); analysis relating Skid Numbers and accidents yielded as Skid Number of 26 as the point of greatest slope change (Figure 19). This indicates that if friction requirements for locked-wheel conditions are met, peak friction needs are also satisfied.

Findings cited here should be viewed as preliminary because 1) data was for only one year and the sample size may be too small to adequately define relationships, 2) sampling one year's data may be influenced by climatic conditions, and 3) data types used (accident, friction and volume measurements) were obtained for different time periods. The analysis described herein should be repeated with all data, i.e. accidents, skid resistance and traffic volumes, applicable to the same year.

It should be pointed out, however, that repeat analyses (using all data for one year) still may not be sufficient to provide a proper indication as to minimum friction needs based on accident analysis alone. First, no consideration was given to the geometrics of roadways nor to points of traffic conflicts.

TABLE 10

WET-SURFACE ACCIDENT RATES* FOR TEST SECTIONS GROUPED BY PEAK SLIP NUMBER

PEAK SLI P NUMBER *	NUMBER OF TEST SECTIONS	WET-SURFACE ACCIDENT RATE **
38 39 40 41	1 2 0 0	35.1 47.4
42 43 44 45 46	0] 3] 0	26.1 20.1 12.3
47 48 49	4 2 0	22.2 14.7
50 51 52 53 55 56 57 58 59 60 61	4 4 5 4 4 8 5 1 1 4 6 3 2	16.9 29.4 26.2 14.2 6.7 14.7 22.4 21.5 6.3 10.0 10.2 17.7
63 64 65 66 67 68	0 0 1 1 0 3	0.0 0.0 7.8
69 70 71	0 1 0	0.0
72 73 74 75	0 1 0 0	0.0
76 77	l l	17.3 0.0

*PSN for 70-mph tests **Accidents per 100 million vehicle miles

Figure 23. Average Wet-Surface Accident Rate of Test Sections -- Grouped by Peak Slip Number -- versus Peak Slip Number.

In dividing the roadways into half-mile sites according to a highest accident experience, it was found that 1302 sites out of 1559 experienced no wet-surface accidents at all. A cursory inspection of the 257 wet-surface accident sites revealed that many accidents occurred either at interchanges or on curved sections. However, a large number of accident sites were in tangent sections. Wet-surface accident locations need to be investigated in detail to determine what variable or combination of variables may be the causative factors.

The analysis herein involved accident data for the entire year while skid resistances were measured in the summer and fall when pavements exhibit lower friction values. The measured values, however, may not be assumed to represent the lowest friction during the year for a particular pavement or site nor for the road system as a whole. The rapid change in the slope of the curve in Figure 19, for instance, may occur at some higher or lower Skid Number value depending on when friction measurements are obtained. Wet-pavement accidents were more frequent during the period from June to November (shown in Table 11) even though the roads were wet during a lesser proportion of time. Lower friction during this period obviously contributed to increased wet-pavement accidents. Therefore, separation of accident data into subsets for two periods of the year may indicate somewhat different minimum friction needs for pavements.

The findings cited here, even though preliminary, are nevertheless significant. It was demonstrated that there is a relationship between accident experience and pavement friction; this relationship could be utilized in helping to establish minimum friction requirements for pavements. The established trends, relating wet-surface accident rates with skid resistance, indicated a definite value of skid resistance below which the accident rate increased rapidly. The methods described herein should be employed in future analyses involving accident histories and pavement skid resistance.

TABLE 11

SEMIANNUAL ACCIDENT SUMMARY

PERIOD (1970)	TOTAL ACCIDENTS	WET-SURFACE ACCIDENTS	WET/TOTAL (PERCENT)	PRECIPITATION (PERCENT)*
Jan - May, Dec	1,473	213	14.5	21
June - Nov	1,352	277	20.5	11

*Percent of total time of precipitation (trace or more) in the Lexington area for the six-month period.

REFERENCES

- 1. Giles C. G., The Skidding Resistance of Roads and the Requirements of Modern Traffic, Proceedings, Institution of Civil Engineers, Vol 6, February 1957.
- 2. Sabey, B. E., Road Surface Characteristics and Skidding Resistance, Journal of British Granite and Whintone Federation, Vol 5, No 2, Autumn 1965.
- 3. Kummer, H. W., and Meyer, W. E., Tentative Skid Resistance Requirements for Main Rural Highways, National Cooperative Highway Research Program Report No. 37, Highway Research Board, 1967.
- 4. McCullough, B. F., and Hankins, K. D., Skid Resistance Guidelines for Surface Improvements on Texas Highways, Departmental Research Report No. 45-2, Texas Highway Department, May 1965.
- 5. Mahone, D. C., and Runkle, S. N., *Pavement Friction Needs*, Virginia Highway Research Council, August 1971 (Draft).
- 6. Moore, A. B., and Humphreys, J. B., A Study of Pavement Skid Resistance at High Speed and at Locations Shown to be Focal Points of Accidents, The University of Tennessee, Department of Civil Engineering, April 1972.
- 7. Skid Resistance of Paved Surfaces Using a Full-Scale Tire, E 274-70, Annual ASTM Standards, Part II, 1971.
- 8. Standard Tire for Pavement Tests, E 249-66, Annual ASTM Standards, Part II, 1971.
- 9. Rizenbergs, R. L., Burchett, J. L., and Napier, C. T., Skid Test Trailer: Description, Evaulation and Adaptation, Division of Research, Kentucky Department of Highways, August 1972.
- 10. Fee, J. A., Beatty, R. L., Dietz, S. K., Kaurman, S. T., and Yates, J. G., Interstate System Accident Research Study, Federal Highway Administration, October 1970.
- Hutchinson, J. W., and Kennedy, T. W., Safety Considerations in Medians Design, Highway Research Record No. 162, Highway Research Board, 1967.
- 12. Solomon, David, Accidents on Main Rural Highways Related to Speed, Driver, and Vehicle, Government Printing Office, July 1964.

APPENDIX A

an alterna a service e service

1.46.1.1.1.1.1.1

- CTC -

2007 N. Contra a succession and a succession of a succession of a succession of the succession of the

ACCIDENT RECORD FORMAT AND CODING

.

÷

	ACCIDENT CODE GUIDE	CODE	INTERSTATES
Col 1-5	Code the case number as given on	9064	I-64
0011 1 5	the accident report	9065	I-65
	the accident report.	9264	1.264 - Waterson Expressway
0-1-6	TYDE OF HICHWAY	0071	L71
COI. 6	IFE OF MONWAI	9071	175
	1. State and Federal Highway	9075	1-75
	3. County and Local Roads	CODE	THENER AND OP TOLL RDS
		CODE	TURNFIRES AND/OR TOLL TOD.
Col. 7	INVESTIGATED		March 1 and Transmittee
	5. Investigated by other than	0000	Kentucky Tumpike
	State Police	9000	Eastern Ky. Turnpike - Mountain
	7. Investigated by State Police		Pkwy.
	9. Not Investigated	9001	Western Ky. Turnpike
		9002	Central Ky. Turnpike - Blue Grass
Col. 8	TYPE OF ACCIDENT		Pkwy.
	0. Pedestrian	9003	Pennyrile Parkway
	1. Other motor vehicle	9004	Jackson Purchase Parkway
	2. Railroad train		
	3. Animal-drawn vehicle	CODE	U. S. HIGHWAYS
	4. Bicycle		
	5. Animal	0025	US 25 - Dixie Highway, Kenton Co.
	6. Fixed Object	0025	US 25 - Winchester, Madison Co.
	7 Overturned in roadway	0025	US 25 - Richmond Road
	8 Ran off roadway	2025	US 25E
	9 Other non-collision	4025	US 25W
	y. Other non-common	4023	US 27 Nicholasville Road
	This column shows the type of	0027	US 31E - Bardstown Road
	accident. For example, two motor	2031	US 31W - Divie Highway
	accident, For example, two motor	4031	
	venicies that confide would be coded	5041	US 41A US 60 Fovette Co
	as No. 1, one car that ran off	0060	US 60 - Fayette CO.
	roadway would be coded as No. 8,	0061	US 61 - Fleston Inghway
	etc.		VENTUCEV HICHWAVS
		CODE	KENTUCKI MGHWAIS
Col. 9-12	ROUTE NO.		771 1 //1 -/·
	Record the exact numerical	0001	Highways #1, etc.
	designation of the highway making	0017	Ky 17 LLL
	sure that the last digit of the	0004	Ky 4, Beltline in Lexington, Ky.
	highway number goes in Col. 12.	0155	Ky 155, Taylorsville Road
	When the highway has a direction	0008	Mary Ingles Highway
	designation, i.e. 31 W the direction		
	should be coded in Col. No. 9 as		
	follows:	Col. 13-14	MILES
	1 - North		
	2 - East	Col. 15	TENTHS OF MILES
	3 - South		
	4 - West	Col. 16	RECORD DIRECTION
			1. North
	Highway No. 31E would be coded		2. East
	as follows:		3. South
	In Column #9, a code number for		4. West
	East (2) , then put an (0) in Column		
	#10 a (3) in Column $#11$ and a	Col 17-20	CITY CODE
	(1) in Column $\#12$ In cases where	001. 17-20	City code is found in code index.
	the numerical designation of the		
	highway does not fill the given	Col 21.23	COUNTY CODE
	achumne the ones not used will	001. 21-23	County Code is found in code
	have an A in them		index.
	nave an o in them.		MAUN,

Col. 24	RURAL - URBAN	Col. 30-31	MONTH
	Code the population of the city		01. January
	1. 2,500 10,000		02. February
	2. 10,000 25,000		03. March
	3. 25,000 50,000		04. April
	4. 50,000 100,000		05. May
	5. 100,000 250,000		06. June
	6. 250,000 and over		07. July
	8. All rural accidents		08. August
	This includes all accidents		09. September
	happening in cities of less than		10. October
	2500 population.		11. November
			12. December
Col. 25-26	CODE TIME OF DAY	0.1.00	Y/E A D
	00. Midnight to 12:59 a.m. (0001-0059)	Col. 32	YEAK
	01. 1:00 a.m. to 1:59 a.m.		Code the last digit of the year.
	02. 2:00 a.m. to 2:59 a.m.		
	03. 3:00 a.m. to 3:59 a.m.	Col. 33	SEVERITY
	04. 4:00 a.m. to 4:59 a.m.		0. Fatal Accident
	05, 5:00 a.m. to 5:59 a.m.		1. Non-Fatal (Injury)
	06. 6:00 a.m. to 6:59 a.m.		3. Property Damage
	07. 7:00 a.m. to 7:59 a.m.	a 1 a 4	
	08. 8:00 a.m. to 8:59 a.m.	Col. 34	KIND OF ROAD
	09. 9:00 a.m. to 9:59 a.m.		1. 1 driving lane
	10. 10:00 a.m. to 10:59 a.m.		2. 2 driving lanes
	11. 11:00 a.m. to 11:59 a.m.		4 Four large or more
	12. $12:00$ noon to $12:59$ p.m.		5 Divided Roadway
	13. 1:00 p.m. to 1:59 p.m.		6 Expressively toll road
	14. 2:00 p.m. to 2:59 p.m.		Parkway, ton Toau Parkway
	15. 5.00 p.m. to 5.59 p.m.		7 Unpaved any width
	10, 4.00 p.m. to 4.59 p.m.		8 Not Stated
	17. 5.00 p.m. to 5.59 p.m.		o, not blatte
	19. $7:00$ p.m. to $7:59$ p.m.	Col. 35	KIND OF LOCATION
	20 8:00 pm to 8:59 pm		1. Built Up
	20.000 p.m. to 0.59 p.m.		2. Not Built Up
	21, 9,00 p.m. to $9,09$ p.m. $22, 10,00$ p.m. to $10,59$ p.m.		3. Not Stated
	23. $11:00$ p.m. to $11:59$ p.m.		•
	24. 12:00 midnight	Col. 36-37	VEHICLE ACTION
	00 or 24 is exactly midnight	&	01. Go straight ahead
		71-72	02. Overtake
Col. 27	DAY OF WEEK		03. Make right turn
	1. Sunday		04. Make left turn
	2. Monday		05. Make U turn
	3. Tuesday		06. Slow or stop
	4. Wednesday		07. Start in traffic lane
	5. Thursday		08. Start from parked
	6. Friday		09. Backing up
	7. Saturday		11. Remain parked
0-1 - 18- 10	DAY OF MONTH		12. Uther
COI. 28-29	DAI UF MUNIH Code the event day of month		13. INUL DIALEO
	Example:		14. Car in motion (Driverless)
	Accident on 22nd day of		
	month -22		
	Accident on 7th day of month		
	07		

a second second to the second s

Col. 38-39	PEDESTRIAN ACTION	Col. 47	ROAD DEFECTS
	01. Crossing or entering at an		1. Defective shoulders
	intersection		Holes, deep ruts, bumps
	0.2. Crossing or entering not at		3. Loose materials on surface
	intersection		4. Road under construction
	03. Getting on or off vehicle		5. Specify other
	04. Walking with traffic		6. No defects
	05. Walking against traffic		7. Not stated
	06. Standing		
	07. Push, work on vehicle	Col. 48-49	DIRECTIONAL ANALYSIS
	08. Other working		
	09. Playing		PEDESTRIAN ACCIDENTS
	10. Other		01. Car going straight
	11. Not in roadway		02. Car turning right
	12. Not stated		03. Car turning left
			04. Car backing
Col. 40	ROAD CHARACTER		05 All others
	1. Level		06 Not stated
	2. On grade		INTERSECTION TWO
	3 On hill crest		VEHICI ES
	4 Not stated		07 Entoring at apple
	T. Rot Stated		07. Entering at angle
Col 41	1 Straight road		vo. From same direction - both
COI. 41	2 Curve		going straight
	A Not stated		09. From same direction - one
	4. Not stated		turn, one straight
Cal 40	1 Internation		10. From same direction - one
COI, 42	2 Alley on drivewett		stopped
	2. Alley of driveway		 From same direction - all
	3. Kaliroad		others
	4. Other of not stated		From opposite direction - both
0 1 40			going straight
Col. 43	ROAD SURFACE		From opposite direction - one
	1. Dry		left turn, one straight
	2. Wet		14. From opposite direction - all
	3. Snowy or icy		others
	4. Other and not stated		15. From opposite direction - not
			stated
Col. 44	LIGHT		NON-INTERSECTION, TWO
	1. Daylight		VEHICLES
	2. Dawn or dusk		16. Going opposite direction
	3. Darkness		both moving
	4. Not stated		17. Going same direction - both
			moving
Col. 45-46	TRAFFIC CONTROL		18. One car parked
	01. Stop sign		19. One car stopped in traffic
	02. Stop and go signal		20. One car entering parked
	03. Officer or watchman		nosition
	04. Railroad gates or signals		21 One car leaving portrad
	05. Yield sign		position
	06. Flash becaon		22 One car entanic- 11 - 1
	07. Center line		driveway
	08. No passing zone		23 One con land
	09. Curve sign		drivourou
	10. Speed zone		uriveway
	11. Advisory speed sign		24. All others
	12. Other		25. NOI SIAICO

		 ALL OTHER ACCIDENTS 26. Collision with non-motor vehicle, train, streetcar, bicycle, etc., at intersection 30. Same - not at intersection 27. Collision with fixed object in roadway at intersection 		07. 35-44 08. 45-54 09. 55-64 10. 65-74 11. 75 and over 12. Not stated
		 Same - not at intersection Overturned in roadway at intersection 	Col. 56 & 79 & 68 &	SEX 0. Male
		32. Overturned in roadway not at intersection	Col. 57 &	SAFETY BELTS
		 Left roadway at intersection Left roadway at curve - not at intersection 	80 & 69 & 92	 No safety belt in vehicle Safety belt in vehicle in use
		34. Left roadway on straight road not at intersection		9. Salety belt in vehicle not in use
		35. Fell from moving vehicle	Col. 58 &	INJURY
		36. All others 37 Not stated	70 & 81 & 93 & 99	1. K - Death
Col.	50&73	DRIVER RESIDENCE	7 5 0 77	member, or had to be carried from scene
		1. Local Resident		3. B - Other visible injury as
		3. Non-resident of state		bruises, abrasions, swelling,
		4. Not stated		4. C - No visible injury, but
Col.	51-52 &	VIOLATION 01 Speeding		
	74-75	02. Under influence or ability	Col. 59 & 82	LICENSE TYPE
		impaired		0. Licensed in state - operator
		22. Not impaired		2. Licensed in state - chauffeur
		04 Ran ston sign		3. Resident - No license
		05. Other improper passing		4. Non-resident - License in other
		06. Passing on curve		state 5 Non-resident No license
		07. On wrong side of road		6 Resident - Licensed in other
		08. Following too closely		state
		10 Inattentive		7. Not stated
		11. Failure to signal	0 1 (0 0 00	
		12. Other - Public Drunks	Col, 60 & 83	LICENSE STATE
		13. No operator license		1. Illinois
		14. Not stated		2. Indiana
		15. Hit and fun		3. Ohio
		17. Reckless driving		4. West Virginia
				5. Tennessee 6. Virginia
Col.	53&76	DRIVER CITED		7. Missouri
		If driver is cifed - code U	,	9. Other states and not stated
Col.	54-55	AGE OF DRIVER	[/] Col. 61-62	VEHICLE TYPE
	8C 77.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	&	01. Passenger car
	//*/0	03. 17	84-85	02. Passenger car and trailer
		04. 18-19		03. Truck or truck-tractor
		05. 20-24		04. If uck-if a clor and semi-trailer 05. Other truck combination
		06. 25-34		of. Other mack combination

	06. Farm tractor and/or farm equipment		10. 65-74 years	
	07. Taxicab		12. Not stated	
	09. School Bus 10. Motorcycle 11. Motor-scooter or motor-bike	Col. 94	PEDESTRIAN VIOL If pedestrian arreste	ATION d, code ''0''
	 Other and not stated Emergency vehicle (including 	Col. 95	1. Public drunk	
	privately owned) 14. Military vehicle	Col. 100-101	Post - Blank	
	15. Other publicly owned vehicle 16. Go cart	Col. 102-105 Example:	MILEPOST MARKE	R
	When a bicyclist is involved in an accident, injured or killed,	Col. .1 miles 1.1 miles	102 103 0 0 0 0	104 105 0 1 1 1
	through 93. Do not code as a driver or vehicle but code	11.1 miles 111.1 miles	0 1 1 1	1 1 1 1
	vehicle type (Col. 84-84) as a 17.	Col. 106	AID Must be Alpha	
	Always code as passenger number two.	Col. 107-108	TRAILERS	aarda aa aash
Col. 63 & 86	VEHICLE STATE REGISTRATION Same code as license state, Column 60.		accident using No. etc., using No. 01 case there is a trai	cards on each 01, 02, 03, 04, on first card in ler.
Col. 64 & 87	 VEHICLE DEFECTS 0. Defective brakes 1. Improper lights 2. Defective steering 3. Defective tires 4. Puncture or blow out 5. No trailer brakes 6. No defects 7. Not stated 			
Col. 64 & 88	 INJURY - LOCATION IN CAR 0. Driver 1. Passenger - front seat 2. Passenger - back seat 3. Passenger outside 4. Pedestrian 5. All others - not stated 			
Col. 66-67 & 89-90 & 96-97	AGE OF INJURED 01. 0-4 years old 02. 5-9 years old 03. 10-14 years 04. 15-19 years 05. 20-24 years 06. 25-34 years 07. 35-44 years 08. 45-54 years			

09. 55-64 years

APPENDIX B ACCIDENT AND FRICTION DATA FOR 122 TEST SECTIONS

ROUTE	LENGTH (MILES	(ADT	ACC	IDENTS WET D	RY	ACCID WET/DRY	ENT RATIO		IDENT ATEA TOTAL	70-1 SKID NU Min Av	TH MBERAT	PEAK SI Min	70-MPH JP NUMBER** Avg Max
I 64	5593243792905421081388315 55454436821088768345 107888768345	12480 11670 12970 9780 10580 13610 24170 13860 13840 13840 4360 3320 3320 3490 4360 5470 4360 5470 4360 5470 4360 5410 3540 5510 5610	4460 229 130 1222 288 1735 144335 1144335	017251350100033010310102	137847541121237373523232	$\begin{array}{c} 0.00\\ 0.33\\ 0.41\\ 0.28\\ 0.36\\ 0.14\\ 0.50\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\$	0.00 0.25 0.12 0.10 0.10 0.11 0.21 0.27 0.17 0.17 0.17 0.17 0.17 0.17 0.10 0.00 0.0	0.0 3.8 21.4 7 26.9 5.8 18.8 25.1 0.0 3.2 5.8 18.8 25.1 0.0 0.0 0.0 17.3 14.0 7.0 30.6 10.0 30.6 10.0 22.8 0.0 22.8 0.0 21.4 4 7.0 9 5.8 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	$\begin{array}{c} 13.5\\ 15.4\\ 10.2\\ 67.1\\ 150.6\\ 69.0\\ 150.6\\ 2.3\\ 8.4\\ 2.5\\ 150.6\\ 8.2\\ 150.6\\ 8.4\\ 150.6\\ 150.6\\ 150.6\\ 150.6\\ 150.6\\ 102.1\\ 156.3\\ 102.1\\ 126.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 126.3\\ 102.1\\ 102.1\\ 102.3\\ 102.1\\ 102.3\\ 102$	24 2 21 1 222 1 17 2 21 2 21 2 21 2 21 2 2	5.63333357655685440370387 34266569333357655685440370387334443291511336137	531545538 53153860 53860 53405 874 874 874 874 874 874 874 874 874 874	$\begin{array}{c} 52\\ 52\\ 50\\ 55\\ 56\\ 60\\ 55\\ 56\\ 56\\ 56\\ 55\\ 56\\ 55\\ 55\\ 55\\ 55$
I 65	11.0 9.4 5.7 7.1 12.2 9.6 3.9 6.8 5.1 2.6 13.3	103D0 10950 11690 11290 11860 11880 11830 14840 14840 12340 12340 12990	33 124 57 157 157 137 183	5 2 3 5 11 16 4 5 11 2 7	19 6 11 15 33 29 10 6 9 29 10 6 9 2 5 3	0.26 0.33 0.27 0.33 0.62 0.62 0.83 0.62 0.83 0.62 0.40 0.83 0.40 0.13	0.15 0.16 0.12 0.21 0.24 0.24 0.24 0.24 0.29 0.31 0.31 0.14 0.08	12.1 5.3 12.3 12.4 21.9 45.2 29.3 17.4 10.0	79.8 34.5 98.7 59.4 115.4 185.9 102.2 101.0 98.3 74.0 122.0 118.4	15 2 19 2 18 2 16 2 16 2 16 2 16 2 16 2 16 2 17 2 21 2 21 2 21 3 21 3 2 15 2	224200345048	31 35 31 31 31 44 49 51 31 34	S0 S3 S0 S3 45 56 51 63 39 50 51 59 50 66 50 66 50 66 50 66 50 66 59 84
1 71	12.7 8.1 8.5 7.9 12.1 6.3 8.1 6.7	11730 8830 8590 8750 10520 9920 10610 8260	46 24 31 30 21 20	12 6 7 3 5 11	24 21 25 16 16 10	0.60 0.54 0.33 0.44 0.17 0.62 1.00	0.26 0.25 0.13 0.28 0.10 0.24 0.21 0.38	22.0 30.5 26.0 27.7 8.5 26.1 95.5	84.5 122.1 196.5 122.9 64.8 108.4 168.8 138.6	17 2 13 2 17 1 16 2 14 2 16 2 15 2 15 2 14 1	0 28 2 28 0 28 0 28 0 28 0 28 0 29 0 29 0 29	37 352 35 35 35 35 35 32	51 68 54 64 54 58 44 72 44 59 43 52 38 49 38 49 39 45
I 75	9548882288822888228882288822888228882288	93660 93660 94880 102220 1114700 114700 114700 114700 114700 114700 1148080 221567 800 221567 800 114780 1148080 221567 800 114780 114780 114800 114800 11480 114800 114800 114800 114800 114800 114800 114800 110	81373076888850088884812322713 1087388 1087388	41342214267224##800004#1888###	26539191662884381884297868124		C.509 G.029 G.029 G.029 G.020	359179429582712290000859381 3059794295827210190000859381 305979429582710190000859381	65607651199902478007104384 16410657199002478007104384 10854120854120043844 10854120854127043844 10951208584127043844	2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3	229153824326760237602858224322222222222222222222222222222222	1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2	4746287228929802818284608380428
驪	12.8 12.8 12.5	16100 16100 16100	101 178 169	21 92 41	40 87 78	0.44 0.57 0.62	0,21 0,18 0,24	20.1 49.2 85.8	180,7 241.7 280,1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6 80 4 28 9 29	64 14 42	60 67 58 72 51 60
n an	4 8 8 8 8 8 8 4 0 8 8 8 8 8 8 4 0 8 8 8 8 8 8 4 0	11111112220000 11111111222220000 11111112222200000000	1274247	192,00,140	127034264	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	0,28 0,12 0,15 0,00 0,00 0,29 0,29 0,29 0,29	18,2 21,6 21,6 0,0 40,6 144,0	48,7 768,2 444,8 100,0 1220,6 1220,6 1200,8	1221114080 1221114080 1221222122	564468813788137	64444444 887 828 800	52275558444 5522755888 5585522755 5585522755 5585522 558555 558552 558555 558552 558552 558552 558555 555555
ALSTRUE REPUBLICE PARAMETER	572241658617786675 5722416586177786675 59736644319188177188	20110 20110 20110 2010 2010 2010 2010 2	6870958881409675152 1409675152	0 # 0 2 1 1 0 1 4 0 2 1 2 4 0 1 0 1	677424324147034034	010008000840000 	5.0120 5.0120 5.0120 5.0023 5.0023 5.0023 5.0023 5.0023 5.0003 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.00000 5.00000 5.000000 5.000000 5.00000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 121, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ 0, \\ $	80222222222222222222222222222222222222	88411871333027768364448334480	64 年 19 19 19 19 19 19 19 19 19 19 19 19 19	09 7.1 04 7.7 04 7.7 05 6.7 05 0.6 05 0.6 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.7 05 0.5 <td< td=""></td<>
BLØECKASS PARKHAT	16.4 7.7 10.0 8.0 6.1 14.1 11.8	8820 9820 4000 4000 4700 4700	11 11 7 24 8	2912020	945 5977	0.22 0.75 0.20 0.40 0.00 0.12 0.00	0,10 0,27 0,14 0.20 0,00 0,00 0,00	8.7 27.9 6.8 17.1 0.0 8.9 0.0	48.1 102.5 59.8 78.6 99.2 46.2	40 4 49 4 25 2 29 2 22 2 23 2 32 3	5 51 7 56 8 33 8 33 7 35 6 31 8 48	568 47 48 48 48 57	72 87 81 86 68 74 69 73 69 70 80 70 86 79
PENNYRILE	5,0 5,3 8,8 7,8 7,8 7,8	2000 2180 2130 2130 1000 1000 1000	8 23 87 16 8 5	1011	5 2 3 6 10 6	0,20 0,00 0,20 0,17 0,10 0,17 0,10	0,17 0,00 0,12 0,14 0,06 0,12 0,12	27.4 0.0 19.0 31.1 38.6 34.7 55.5	164.4 51.4 61.2 161.4 217.9 617.4 277.4 169.5	30 3 22 3 24 2 27 3 24 2 27 3 24 3 27 3 24 3	4 37 1 38 9 33 8 36 1 38 1 38 1 33	63 62 59 51 55 55	67 77 68 72 65 74 65 72 61 89 59 85 60 84 63 69
JACKSON PURCHASE PARKHAY	2.0 6.4 5.4 8.2 14.4 12.8	1100 1100 1100 1100 1100 1100	0 6 8 0 4	000201	030503	0.00 0.00 0.00 0.40 0.00 0.00 0.33	0.00 0.00 0.26 0.25 0.25	0.0 0.0 0.0 80.7 0.0 19.8	0.0 194.6 0.0 243.0 0.0 77.8	46 5 26 3 26 3 28 3 28 3 28 3 28 3 28 3	0 58 7 46 7 41 6 41 4 40 0 47	53 55 62 52 57	68 77 70 80 71 74 67 76 68 77 72 80

*Apoidents per 100 million vehicle miles **Minimum, average and maximum values in outer lanes independent of direction of travel

APPENDIX C ACCIDENT AND FRICTION DATA FOR 257 HALF-MILE SITES

ROUTE	WET-SURFACE ACCIDENT RATE*	70-MPH SKID NUMBER	MIDPOINT MILE MARKER	ROUTE	WET-SURFACE ACCIDENT RATE*	70-MPH SKID NUMBER	MIDPOINT MILE MARKER
I 64	RATE* 2.89 1.65 1.65 1.61 1.57 1.50 1.25 1.12 1.07 1.07 0.96 0.96 0.94 0.84 0.66	NOMBER 38 33 34 37 33 24 23 27 25 25 25 25 23 23	MARKER 103.4 149.3 145.3 151.7 158.5 168.4 130.5 38.9 189.4 186.8 115.6 114.2 111.0 55.1 26.1 52.2	I 65	CATE* 0.48 0.48 0.48 0.46 0.46 0.46 0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.44 0.38 0.37 0.37	NOMBER 20 20 20 24 24 23 23 24 24 24 30 30 24 28 25	43.6 42.0 37.9 36.5 63.0 61.5 60.3 58.7 79.1 77.0 75.8 74.5 65.0 90.2 84.8 67.7
-	0.56 0.56 0.56 0.50 0.50	23 23 23 23 23	42.9 42.2 40.4 53.2	Ϊ 71	0.35 0.35 0.35 0.35	23 22 22 22 22	32.6 30.3 29.0
	0.47 0.46 0.46 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	23 27 26 23 23 23 23 23 23 23 23	54.3 79.8 23.8 36.9 31.8 30.1 29.5 28.1 27.1		2.58 1.86 1.26 1.26 1.25 1.25 1.25 1.10 1.10 1.04 1.03	10 22 19 20 20 20 20 20 20 20	23.9 35.8 32.6 44.2 41.1 59.0 57.9 53.5 62.8
I 65	2.41 1.94 1.17 1.13 1.12 1.12 1.12 1.12 1.12 1.12 1.12	20 20 22 28 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	54.0 47.7 55.2 92.2 92.7 69.6 82.5 56.2 427.3 12.2 56.7 427.3 56.2 57.1 25.2 22.2 2.3 873.1 22.2 2.3 873.1 22.2 2.3 2.3 2.2 2.3 2.3 2.3 2.3 2.3 2.		1.03 0.93 0.93 0.93 0.93 0.66 0.66 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.55 0.51 0.46 0.46 0.46	20 20 20 20 20 20 20 16 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	62.2 18.5 18.0 16.5 11.7 73.9 70.9 34.9 34.2 28.7 42.9 40.0 38.8 28.0 26.7 25.2 58.5 45.1 67.2 21.2 16.0 14.1 9.5
	0.48 0.48 0.48	20 20 20	50.4 49.9 44.3	1 75	1.66 1.33 1.20	32 20 22	59.4 82.1 158.8

.....

en et de la construction d'un en la construction de la construction de la construction de la construction de la

ROUTE	WET-SURFACE ACCIDENT RATE*	70-MPH SKID NUMBER	MIDPOINT MILE MARKER	W. ROUTE	ET-SURFACE ACCIDENT RATE*	70-MPH SKID NUMBER	MIDPOINT MILE MARKER
I 75	1.20 1.17 1.15 1.15 1.14 1.07 0.90 0.90 0.90 0.90 0.77 0.77	22 28 21 21 19 23 22 22 22 25 25 25	155.6 62.7 3.3 21.6 15.8 13.4 30.8 162.2 156.8 155.1 140.3 136.6 133.4	I 75	0.33 0.30 0.30 0.30 0.30 0.30 0.30 0.30	2,0 20 24 22 22 22 22 22 22 22 22 22 33 33	86.3 77.6 165.0 161.5 160.3 159.8 157.6 156.3 89.9 87.9 95.5 90.6
	0.77 0.75 0.74 0.73 0.73 0.73 0.66 0.66 0.666 0.666 0.660 0.60 0.53 0.53 0.48 0.441 0.38 0.37 0.3	25 26 23 22 22 20 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} 133.4\\ 74.0\\ 53.6\\ 52.7\\ 153.3\\ 152.0\\ 85.5\\ 83.2\\ 79.5\\ 158.1\\ 94.2\\ 94.4\\ 35.0\\ 148.0\\ 144.9\\ 148.7\\ 1376.1\\ 1376.1\\ 1376.1\\ 135.9\\ 73.7\\ 67.9\\ 67.0\\ 52.2\\ \end{array}$	KENTUCKY TURNPIKE	2.38 2.04 1.70 1.70 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	2 3 4 3 4 3 3 3 4 4 5 3 3 3 4 4 5 5 3 3 3 4 5 5 3 3 3 4 4 4 4	130.1 114.2 118.0 109.0 122.0 122.0 119.4 115.8 94.4 129.6 127.4 100.2 107.7 103.9 95.8 128.7 120.8 120.1 116.3 101.2 100.1 126.8 126.2 124.7 111.2 108.5 107.2 105.0 103.4 102.0 100.7 97.3 96.4
	0.37 0.37 0.37 0.36 0.33 0.33 0.33 0.33 0.33	23 24 22 22 28 28 28 28 28 28 28	48.1 44.5 42.2 39.3 153.9 128.8 127.8 127.0 125.5	MOUNTAIN PARKWAY	0.34 6.37 3.18 3.18 1.75 1.32 1.32 1.32	25 23 22 23 21 24 25 25	95.3 34.1 36.0 35.5 31.1 14.8 10.2 6.3

ROUTE	WET-SURFACE ACCIDENT RATE*	70-MPH SKID NUMBER	MIDPOINT MILE MARKER
WESTERN KENTUCKY PARKWAY	3.83 3.83 3.43 2.09 2.09 2.09 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1	37 33 29 31 35 33 32 30 33 33 33 33 33 33 33 33 33 33 33 33	92.1 49.2 98.2 26.2 19.4 13.6 89.8 82.7 76.8 72.2 71.4 68.2 55.3 52.7 46.7 36.0 33.5 124.2 112.0
BLUEGRASS PARKWAY	2.88 2.33 1.43 1.43 1.43 1.38 1.36 1.36	45 26 47 47 47 28 28 28 28	0.7 49.9 21.0 20.0 18.4 41.9 39.8 32.5
PENNYRILE PARKWAY	5.47 5.47 5.47 2.73 2.57	32 32 31 34 29	74.6 72.6 62.8 7.0 29.5

*Accidents per million vehicle miles