

COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS

CHARLES PRYOR, JR. COMMISSIONER OF HIGHWAYS

FRANKFORT, KENTUCKY 40601 August 21, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET 40508 LEXINGTON, KENTUCKY TELEPHONE 606-254-4475 H.2.63

MEMORANDUM TO:

J. R. Harbison State Highway Engineer Chairman, Research Committee

SUBJECT:

: [] :

Research Report No. 332 (Final); "Operational Characteristics of Lane Drops;" KYHPR-70-63; HPR-(8), Part II

Last October we submitted an interim report (No. 313) bearing the same title as the final report now completed. Three sites have now been analyzed. The purpose of the interim report was to bring information already at hand to bear directly on the problem concerning the I 64 - I 75 route junction and combined section westward and northward -- which at that time was under consideration for safety

revisions. The plan under discussion then would have, involved one or more lane drops. I shall not report here the comments offered in the transmittal for the interim report but shall

It seems to me now that the most significant finding from the study concerns directional lane merely invite attention to them. splits which are well signed and marked. The margin for improvement by innovative markings etc. is small. Mr. Cornette recognized the insensitivity of drivers to additional helpful devices. By far the greater influence seemed to be sight distance -- which was necessarily a subjective conclusion and afterthought. Mr. Cornette plans to submit this work to the University of Kentucky as a thesis (MSCE). He

transferred to the Madisonville District in May and is serving as Traffic Engineer there.

espectfully sybmitte

Jds. H. Havens Director of Research

JHH:gd

Attachments cc's: Research Committee

					ORT STANDARD TI	TLE PAGE
			TE	Recipient's C	atalog No.	
	2 Governmei	nt Accession No.	3.	Kecipien -		
	2, 00,00		l l	_		
				Report Date		
			ļ	August	1972	
e and Subtitle			6	. Performing O	rganization Code	
	o t un Dr	ane.			instian Report	٧٥.
Operational Characteristics	of Lane Di	s	8	. Performing O	Irganization Report 1	
			ł	332		
7. Author(s)				10. Work Unit I	No.	
Don Cornette						
9. Performing Organization Name and Add	1622		F	11. Contract a	r Grant No.	
Division of Research	ways		4	K VHPI	R 10-03	
Kentucky Department of High	•		ľ	13. Type of R	eport and Period Co	V8160
533 South Limestone 40508		······································		4	Interim	
Lexington, Kentucky 40508 12. Sponsoring Agency Name and Address				Final	FILLE	
12. Sponsoring Agency Haws				14 Samporin	ng Agency Code	
				14. Sponsorn		
				1		
			i i'an F	Coderal Highy	vay Administratio	on
15. Supplementery Notes Prepared in cooperation with	h the US De	partment of Tra	nsportation, r	CUCIUM 2008	·	
Prepared in cooperation with	II the ob					
	Characteristi	cs of Lane Drop	S			
16. Abstract Traffic behavior studies			1 locatio	ns represent	ing four lane-dro	p
t to studies	were conduc	cted at seven lar	e-drop locatio	of both erra	itic movement an	đ
Traffic behavior studies classes. These studies were co brakelight applications), spot	omposed of a	conflict observati	ons (consisting	Such a stud	y was made befor	
classes. These studies were	-speed observ	ations, and lane	in an attempt	to determin	e which device wa	13
classes. These studies were co brakelight applications), spot and after each different traf	fic control de	evice installation	drops. A study	y of conflict	deviations indicat	nt
brakelight applications), spot and after each different traf the most effective in minim- that no single type of traffic	izing conflict:	s at existing lane	ificantly effect	tive in reducir	ig erratic movement	ol
		1				cu
		1. of the IOCSLICE	S. 1110 04-0		Jupph Algestiticativ	0110
		- A contlict talls	01 01 010		- a hone (1000)	1.011
I the long-drop classification		an had the NUX	[1044000		Intionchin DELWS	
and blacking are generally most eff devices are generally most eff the lane-drop classification studied. The lane-termination poorer sight geometrics were flipt rates and eff	on classificat.	o have higher co	nflict rates. N	o definitive i	lane drops studi	ed.
poorer sight geometrics we	re observeu t	olumes or accide	nt rates was f	ound for the	, juito un l	
studied. The lane-termination poorer sight geometrics we traffic conflict rates and end	ther traffic v	d.				
traffic conflict fates and of Certain data limitations w	ele unscotore					
			18. Distribution	Statement		
			18. Distribution	1 0.0.0		
17. Key Words		1				
Lane Drops Erratic Movements	5					
Drokelight Applica	tions	•				
Traffic Control D	evices		ļ		- Pages	22. Price
Traffic Conflicts		20. Security Clas	sif. (of this page	e)	21. No. of Pages	
19. Security Classif. (of this rep	port)					
		Unclassif	ied		l	L
Unclassified		1				

Form DOT F 1700.7 (8-69)

Research Report 332

OPERATIONAL CHARACTERISTICS OF LANE DROPS

FINAL REPORT KYHPR-70-63, HPR-1(8), Part II

by

Don Cornette Formerly Research Engineer Associate

> Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

in cooperation with the U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

The opinions, findings, and conclusions in this report are not necessarily those of the Department of Highways or the Federal Highway Administration.

 $\left\{ \left| j \right| \right\}$

August 1972

INTRODUCTION

A lane drop is defined as a location on a highway where the number of lanes provided for through traffic decreases. For purposes of this study, the broad category of lane drops has been further subdivided into three specific classes: lane exits, lane splits, and lane terminations. These subdivisions are illustrated schematically in Figure 1. A lane exit refers to a location where the number of through lanes decreases at an interchange on a multilane roadway. A lane split denotes a major bifurcation of a multilane highway where the level of traffic service provided at the terminus of either fork is approximately equal. Thus, the lane split does not have the same exit connotation which is associated with a lane exit. The third category is the lane termination which occurs where a lane ends. A lane termination leaves a driver with no choice, he must merge into the other available lane(s). A lane termination also has no connection

Associated with the first two categories, lane exits and lane splits, is the concept of driver decision. with an exiting situation. The driver who is confident of his destination and the proper path thereto generally presents no conflict with the flow of traffic. The problem arises largely from those drivers who are inattentive, intoxicated, uncertain of how to reach their destination and(or) have improper driving habits. Further compounding the problem are those drivers who are high-expressive self-testers, applying one of the terms coined by Roberts (1), and who will knowingly remain in the "wrong" lane to take advantage of passing opportunities - even at the possible cost of encountering higher risk when eventually merging into the correct lane (2). It is each of these types of individuals, as shown in Figure 2, who conflict with the traffic stream. Therefore, it is imperative that the driver be made aware of the necessity for an early decision regarding his course of travel. The driver who makes an errant decision and abides by it is not as dangerous as the one who makes a delayed decision and attempts, often too late, to correct it. Thus, the driver who perchance takes the wrong branch is likely to resort to desperation tactics and back up or undertake

some other maneuver that is illegal or contrary to safety. The purpose of the study reported herein was to evaluate certain operational characteristics of lane-drop situations as they are influenced by various forewarning, decision-demanding messages. The operational characteristics evaluated were traffic conflicts (both erratic movements and brakelight applications), vehicle speeds (both automobiles and trucks), and lane volumes. More specifically, the immediate purpose was to discover types of signs, pavement markings, and lane delineations which minimize or reduce traffic conflicts at existing lane drops. Such "band-aid" type improvements were chosen for study because, insofar as existing lane-drop locations are concerned, some reduction in risk can be more quickly and cheaply accomplished than can the elimination of "causes" (3). It was also hoped that an optimum design criteria for lane-drop situations might be determined.

Typical Examples of Driver Confusion at Lane Drop Locations

Figure 2.

Several standard and untried traffic control devices were selected for experimentation. A pilot study at a geographically advantageous location containing three lane splits was conducted, and data collection techniques were evaluated. Final studies were then conducted at four locations, each being a different

lane-drop type.

C

LITERATURE REVIEW

The AASHO Special Traffic Safety Committee best described the undesirability of lane drops (4) when it said, "Lane drops should normally be avoided altogether by original design or later rebuilding, but where this is not practicable, fully adequate advance warning of lane-drop situations must always be provided to give drivers sufficient time to maneuver safely into the proper lanes." Others (5, 6, 7, 8, 9) are also critical of the potential hazards (vehicle entrapment, driver indecision, etc.) inherent in most lane-drop situations. Such hazards arise because lane drops are discontinuities in the highway system

Although recognized by many as undesirable highway features, lane drops are a substantially - misfits in the driver's environment. unresearched area. One lane-drop study is currently being undertaken by the System Development Corporation of California (10). It is essentially a study of traffic operations at several sites utilizing sequential aerial photographs to compute vehicle trajectories. At the present time, insufficient data have been accumulated to reach conclusions. Another study, by the California Division of Highways (11), used accident data to evaluate lane drops. Four conclusions from this study were: 1) accident experiences were alike for all three-to-two lane terminations (three lanes transitioning to two lanes); 2) the single-lane exit without taper had the lowest overall accident rate; 3) in all two-to-one lane terminations, shoulder or right-hand through lanes had accident rates only half as great as the higher-speed median lanes continued through; and 4) there was only a slight increase in accident rates as the volume of traffic increased. A more recent study formulated, and validated by aerial photography, a mathematical model describing

No completely satisfactory manner of signing lane-drop situations has yet emerged (4). Two studies the density perturbation on a multilane freeway (12).

concluded, insofar as nighttime conditions are concerned, that a carefully planned and executed delineator treatment is highly accepted by drivers, easily followed, and generally helpful (13, 14). The Manual on Uniform Traffic Control Devices (15) also attests to the merits of a proper reflective treatment. In a study of lane-termination signing in California, drivers' reactions to various signs viewed from

film or slides were tested. The study indicated a rectangular four-foot by eight-foot sign bearing the message LANE ENDS -- MERGE LEFT was significantly better understood than four other signs or sign combinations used in the study (16). A study in Michigan indicated some reduction in driver confusion

with a "color coding" system, consisting of edgemarking, delineation and signing (17). Another study by the Michigan Department of State Highways (18) disclosed that certain significant reductions in lane changes and erratic movements (70 and 78 percent decreases, respectively) could be attributed to a black-on-yellow EXIT ONLY panel and that the continued use of this panel for lane-drop situations

From two studies (19, 20) of the effectiveness of pavement edge markings, it was concluded that edge markings reduced both the number of fatalities and the number of accidents at intersections during would be advisable. both daytime and nighttime conditions. To explain these findings, it was suggested that edge markings encourage drivers to look farther ahead. Other studies describe the beneficial psychological effects on driver confidence provided by edge marking (21, 22). Another study (23) related the usefulness of

pavement markings in reducing hazardous lane changes where roadways diverge. Two recent studies (24, 25) indicated it was possible to objectively measure the accident potential

of a given area using the traffic conflict criterion, i.e., to evaluate the area dynamically -- not waiting for an accident history to evolve. The studies also indicated the traffic conflict technique provides a relatively quick test, in the form of "before and after" conflict counts, for determining the effectiveness of traffic engineering changes. Furthermore, the traffic conflict technique, according to these same studies, resulted in accurate measures of accident potentials, provided an understanding of basic causes of accidents and should ultimately lead to a reduction of traffic accidents. A later study employing the traffic conflict method at rural, dual highway intersections indicated that simple conflicts, defined as situations involving one or more vehicles taking evasive action, do not correlate closely with reported injury accidents. However, the same report states that serious conflicts, defined as situations involving a vehicle in at least a sudden rapid deceleration or lane change to avoid collision, correlate well with reported injury accidents both in location and time of day. Speed measurements were also made, but no evidence was found indicating that vehicles traveling faster than average were an important factor in generating accidents

(26).

Ç9

The pilot study was conducted at the I 64 - I 75 interchange in Fayette County. This is a standard three-leg interchange of directional design (with a three-level structure). At the time this interchange was designed, projected traffic volumes and existing safety design standards did not indicate an immediate need for constructing two-lane ramps on the legs. Therefore, this interchange provided three lane splits (Figures 3 through 5) which could be investigated as a pilot effort. The single-lane aspects of the legs provided an excellent example of the necessary decisions drivers must make.

Figure 3. I 75 SB - I 64 EB Lane Split

 $\{ j \}$

Figure 4. I 75 NB - I 64 EB Lane Split

Figure 5. I 64 WB Lane Split

Conflict surveys (consisting of both erratic movement and brakelight application counts), spot-speed measurements and lane volume counts were made at each of the three approaches. Conflict studies were originally of 12-hour duration: nine hours in daytime and three hours in nighttime. Thus, at the I-75 northbound gore area, observations were made from noon to midnight on Sunday, the highest traffic-volume day in this direction. At the I-75 southbound gore area, the observation period was from noon to midnight on Friday. I-64 westbound lane-split observations were made on Tuesday because no exceptionally heavy traffic day existed there. Furthermore, the extremely light volume of traffic at this site under nighttime conditions made it unnecessary to record data after sunset. This schedule was abandoned because a linear multiple regression analysis failed to show any correlation between traffic volumes and erratic movement rates. The nine daytime hours were reduced to six, which were determined

to be sufficient to obtain statistically significant results. Erratic movements were grouped into six categories. These six categories -- cut across gore area, crowded weave, stopped or slowed drastically, swerved, backed at gore, and multiple error -- are defined

in APPENDIX A. Brakelight actuations were also recorded.

Spot-speeds were recorded at each of the three approaches to the interchange. A minimum sample of 100 automobiles and 30 trucks was observed at four points in each two-lane approach: 1) the shoulder lane at the gore, 2) the median lane at the gore, 3) the shoulder lane a distance of 500 feet back from the gore, and 4) the median lane a distance of 500 feet back from the gore. Volume counts were

made of both the median and shoulder lanes at each approach. Finally, studies were conducted at the four lane drops shown in Figures 6 through 9. Each is typical

of a different type of lane drop. The four sites were: 1) I-75 southbound at I-71 southbound, a single-lane exit with taper; 2) I-75 northbound at the 5th Street exit in Covington, single-lane exit without taper; 3) US 27-68 (Paris Pike) northbound, just north of New Circle Road in Fayette County, a lane termination; and 4) the western terminus of the Bluegrass Parkway at Elizabethtown, westbound, a single-lane split. Conflicts, erratic movements and brakelight counts, were recorded for six daytime hours and three

nighttime hours. Whereas in the pilot study, "stopped or slowed drastically" was one category, it seemed more definitive at this stage to separate them. "Backed at gore" was changed to "stopped and backed." Only one set of observations was made at each site for each traffic control system utilized. Each

set consisted of volume counts, conflicts, and spot-speed measurements. However, because random observers collected the conflict data for the pilot study sites, it was felt desirable to conduct "check" studies in an attempt to determine if any variability, due to observer bias, was being introduced. Three such check studies were made and the conflict results were not significantly different from the original surveys. There were a few significant (95 percent confidence level) mean speed differences, the reasons

Figure 6. I 75 SB - I 71 SB Single Lane Exit with Taper

 $\xi_{i}^{\dagger} \in$

Figure 7. 1 75 NB - 5th Street Single Lane Exit without Taper

Figure 8. US 27 - 68 (Paris Pike) NB Lane Termination, North of New Circle Road, Fayette County

ŝ

Figure 9. Bluegrass Parkway, WB Single Lane Split at Western Terminus

for which can only be speculated. Two possible explanations are offered here: 1) observers' bias in taking the radar meter readings and 2) actual speed difference due to the elapsed time (one year) between the original and check surveys. At any rate, the same observers were used whenever possible in the

An inventory of existing traffic control devices was made. The pavement at all locations was marked final surveys. with a four-inch wide, white centerline and equally wide, white edge lines. At six of the seven locations, approximately 750 feet of roadway leading to each lane drop was delineated by double amber reflectors spaced at 100- to 200-foot intervals. At greater distances from the lane drop, single white reflectors were used for delineation. There was no delineation at the Paris Pike lane termination. Original signing of the seven locations is shown schematically in Figures 10 through 16.

The intuitive but fundamental requirement for improving traffic flow is a fully adequate advance warning. Advance warning is necessary in order to give drivers sufficient time for decision making and subsequent maneuvering into the proper traffic lane. Three devices were used separately and in various combinations in this study: 1) five-inch wide, yellow edge lining and two-foot wide, yellow gore striping; 2) double amber reflectors on both sides of the roadway (where possible) with decreased spacing approaching the gore area; and 3) black-on-yellow exit ONLY signs. In addition, the Paris Pike lane termination was re-signed according to guidelines set forth in the new 1971 Manual on Uniform Traffic Control Devices for Streets and Highways. The new signing scheme is illustrated in Figure 17. Typical edge lining and delineator placement are illustrated in Figures 18 and 19. A black-on-yellow exit ONLY

Early in the pilot phase of this study, time-lapse still photography was utilized in an attempt to panel is shown in Figure 4. record two-dimensionally the traffic flow characteristics at a lane drop. It was felt that vehicle taillight tracings would give the reader some insight into the merging and erratic maneuvers that occur. However, difficulty was encountered in getting sufficient camera elevation for adequate viewing, and this portion of the study was terminated. Nonetheless, an overpass at the I-64 westbound lane split afforded the proper camera elevation for one location, albeit the overpass was located too close to the gore area to adequately record merging maneuvers. Figure 20 is the singular result of this phase of the study, and it does show with clarity the traffic flow at the I-64 westbound location, including one erratic

movement at the gore area.

FINDINGS AND DISCUSSION

To enhance the clarity of findings, data analysis has been subdivided into six different comparisons: 1) conflicts with site geometrics, 2) conflicts with accidents, 3) erratic movement and brakelight rates

Figure 10.

Figure 12.

Figure 13.

1992

Taper

Figure 14. without Taper

 $\frac{1}{2} \leq 1$

nangan sebelah 🖄

 $\tilde{V}_{i,k}^{(0)}$

Figure 18.

Figure 19. Typical Amber Delineator Placement

Figure 20. Traffic Flow at the I 64 WB Lane Split

before and after each traffic control device combination installation, 4) spot-speed means before and after each installation, 5) conflicts with spot-speed means, and 6) conflicts with spot-speed variance. A discussion of each of these comparisons and some comments on data restrictions follow.

Erratic movement rates, brakelight rates, and average hourly volumes for all seven lane-drop locations CONFLICTS AND SITE GEOMETRICS are given in Tables 1 through 4. Site geometrics may be found in Figures 21 and 22. Although it has been argued that driving performance is largely dependent on inherent personal characteristics (27), these figures clearly show the direct relationship between conflicts and site geometrics. Wherever horizontal curves had the least curvature and vertical curves where either nonexistent or negative, conflict rates were the lowest. Negative vertical grades provide optimum sight relationships, which are needed to indicate to the driver that he is approaching a discontinuity (a lane drop) in the route he is traveling (28, 29). Positive vertical grades provide poor sight distances and are one reason for high conflict rates at such sites (30). It has been stated that a high-speed exit is best provided by a flat angle of 4° or 5° (28). However, of the six lane drops having exit-type ramps, only two (I-75 northbound at 5th Street and I-75 southbound at I-71 southbound) met this maximum curvature requirement. It is important to note

that the two which met this requirement had the lowest conflict rates. Operational characteristics of all the lane drops studied (except the Paris Pike lane termination) may be negatively affected by its non-conformance to certain rules of operational flexibility and expressway connection-system design. According to principles of operational flexibility, any change in the basic (minimum) number of lanes, in this case four, should occur at an intersection with another freeway; and then only if the exiting volume is sufficiently large to permit a change in the basic number of lanes beyond this point on the freeway route as a whole (31). Two other deficiencies of the lane splits investigated may be enumerated: 1) "T" intersections between expressways should be avoided, particularly when the top of the "T" faces toward a region of higher average traffic density, and 2) two facilities should not reduce to one in areas of increasing traffic density; instead, they should merge

Data in Tables 1 through 4 show no clear relationship between conflicts and volume. Indeed, the as traffic loads become higher (32). site with the lowest average hourly volume had the highest overall conflict rate, while the site with the highest average hourly volume had the lowest overall conflict rate. A detailed explanation of this phenonmena may be found in the literature (33). It suffices to say that there are two primary reasons for this seemingly paradoxical observation. First, modern high-speed highways are designed to relieve

TABLE 1

PILOT STUDY ERRATIC MOVEMENT AND BRAKELIGHT RATES* AND TRAFFIC VOLUMES DAYTIME CONDITIONS

				E	RAIN	HIO (L.		DATH	arto o-											-		1
				-								_						AVEBAG	E HOURI	V TRAFFIC	VOLUMES	-
								_				T	- 11	BRA	ELIGB BHOU	LDER	- 11	LANE	8 510	LANE	OTAL	7
							ERRATIC		BATES		NULTIPLE		TAL	EDIAN LANE	IA	NE	OTAL	137		219	356	-1
	_							SVERVI	BA BA	CKED AT	ERRORS			27.86	24.0	»V		157	-	274	431	
	STUDY	TRAT	FIC CONTROL CE(5) EMPLOYED	CUT ACRO	SS CF	NEAVE	STOPPED	SVENU		,05	.33	_		26.57	18.	01	20.69	13/		207	35B	
LOCATION	NUMBER	DEV1	CE(S) ENGLISH	1.30		.40	1.92	1	56	,26	.36			22.83	14	38	17.03	151				
		ORI	GINAL		+-	.24	1.74	+		.02	.17	11	.60	22.83	+	+		1		246	413]
	<u> </u>		LOW STRIPING	1.37	-+	,02	.07	1 -	75	.02		-+		35.62	18	.59	25.30	167			1034	=
		-#	PICNS	.74						.06	.40	- 1	3.18		-+		14,12	837	2	262	885	
164 WB	3	YE	LLOW STRICT	1		1,0	1.30		.60		1.23	-+	6.11	8.91	·	4.97	12.61	-11-	6	220		
	1		ONLY SIGNS	1 .7			+	5	.92	-04	1.2.		4.10	6.9	0 2	9.32	+	-11-	18	253	1101	
	4	A	MBER DECIMINATION	2.6	9	.81	-t	,	.30	.04	4		4.69	6.6	18	29.27	11.0	_#			491	
	+	10	RIGINAL		62	.01			.16	,00	.9	1	4.02		-+		15.	12 3	19	172	491	
	1 2		ELLOW STRIPING		32	1.19		10			T.	79	5,19	1 3.	60	37.70	1-	-#-		295	474	
	IT.		VELLOW STRIPING			+		.39	.91	.20				#=	.93	7.92	27		179	689	108)	<u> </u>
175 NB	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	.27	.66				.01	-	43	2.35	-	.00	8.40	28	,95	392	+	62	.a }
	- 11	4	YELLOW STRIPING AMBER DELINEATOR	5				.25	42	.02		.29	2.1			5,50	23	.19	234	390		
			ORIGINAL		.70		5	.45	.22	-		.14		1 5	1.56		-+-			535	e	27
		<u>-</u>	YELLOW STRIPING		.57	-+		.08	.03	.00			+-	-11		5.13	2	4.25	292	1		
	11-	2	The second secon		,40		25			1.15		.16	1 -	60	0.45				226	32	a 5	550
11	15	3	IL ANDER DEDITION			_	09	.as	.14				-+-	-11	67.81	3.35	· 1	29.05	11			
	58		VELLOW STRIPIN	G	.17							,29		.21			P TEAF	TC VOI	LUMES			
	- 11	. 4	AMBER DELINEAT	ORS			.22	,19		·		UT AP	PLICAT	IONS BY	THE A	рръісані	Б					
			- ONLY" SIGN	s	,25			AN ERRA	TIC MOV	EMENTS OR	BRAKELIC	Mark										
	1	5	YELLOW STRIKE	ADDA INED	BY DIV	IDING TH	E NUMBER PERCENTAG	1E .														
<u>ا</u> ـــا			ONLY SIGNS YELLOW STRIPIN AMBER DELINEAT ONLY SIGN YELLOW STRIPIN RATES WERE AND EXPRES	BING THIS	QUOTIE	Nr np																

TABLE 2

FRAGE HOURLY VOLUMES FINAL STUDY

THE FINAL DAY AND AVERAGE HOUSE ERRATIC MOVEMENT AND BRAKELIGHT RATES AND AVERAGE HOUSE DAYTIME CONDITIONS	
--	--

				en p A TI	MOVE	WEIGI IN	D/	ATIME	00										1
				CRAN												_	COLUMN AND	URLY VOLUMES	
																$\Gamma \perp$	VERGIGE	SHOULDER	
													RAKELICHT RAT	E\$		HEDIAN	MIDDLS		TOTAL
									_				RAKILLO	SINGLE			LANE	LANE	
						THE ATLE	HOVEHENT	RATES				MIDDLE	SHOULDER	LANE	TOTAL	LANE			1283
		_				EKRATI		STOPPED			MEDIAN	LANE	LANE	Projen			899	341	· · · · · · · · · · · · · · · · · · ·
			1					AND	MULTIPLE	TOTAL	LANE	1	1		6,91	143	1	333	1094
			CUT			st.owen	1	BRAKED	ERROR5	101.1-	1		12.05		1.93	101	934	346	2098
		F '	ACROSS	CROWDED		DRASTICALLY	STOPPED	-			4.55.	6,79	12.52		1	842	910	1	2415
r 11		TRAPEIC CONTROL		WEAVE	EVIEKVE	U.C.	h		28	.12	5.03	6.18	1	+	5.42	11 -	1046	354	
1 11	SL/DJ	DEVICE(5) ENTLOYED	CORE	L			0	1		.61	11	+ 10	10.67		3.59	1015	1 -	+	712
LOCATION	NUMBER	BRAICTER	#		.02	.97	.02	0	1	.49	3.71	6.23	8.24	1	1	++	156	239	
LOCATION			.28	.14	.02	,05	1		.13		3.96	1	1	-	3,412	1 178	1	710	905
	- ,	ORIGINAL	26	.14		0	0		.14	1	1	1	23.91				394		- 927
175 148		ANBER DELINEATORS	1 32	.10			-		1	+	-11 .78	1,46			7.67	11	392		819
AT STR	2	A STREET, STRE			.01				.23	2.0		181	10.42	_	9,6		36	5 256	
STREET EXIT	_ <u>_</u>	ALLOW STRIPING	-u "	1	+		.04	0			911		24.80		5.5	197		-	
SLKer:		A YELLOW STRIVING	-			96					36					_	_	31	82
(COVINGTON)	L		- 1 u			.11		- 05	- 31			n , "		-+	- 30	. 11 5	i 1	45	
	1	ORIGINAL		8 4					,m		~ 11		63.32				2		- 91
j 15 S₽	l-	ANBER DELINEATON	s ll - i		3 .0	06		a ('	- learner			.85		-+	24.	· · · · ·	И	21	
74		STRIPING	1	_		a	_		3.20	-, ,	033	.14	43.54		21	10		26	
17158	1	AMBER DELINEATO	19	02	-		_	38			18,62		19.42	_	-+-	.93	64		
1 1/1.34	1	A YELLOW STRIPH	~-+ <u>+</u>			2) 1.00			0 1.72		1677 11	.64	72.9					24	389
1 _	11			ut		14 50			0 1.9		13.55	5.44	1		====	1.17	102		402
	H	ORIGINAL		6.45	2			.16	0 1.3	0	·····				3,0 1 _		114		287
WESTERN	1	AMAER DELINEAT	≫ <u>s</u>	1.66			-	0				4.30			\$33	167	104	1	184
TERMINUS	1	ATTELLOW STRIPH	*C		0	•	- t-				2.63	2.80	,		2,36	133		1 2	420
OF UG	16			1.25				. 1 12	• • • • •	26	-14 ³			64	2,37	0.11	104		20
PARKWAY	1	4 AMBER DELING			90	32	10				.62	3.39		.16		3.39	131		197 434
PARKHAR	_		- 11	1		P	11		0	<u></u>	111	2.87		.68	1.84	3.0 11	138	1	1 1
		ORIGINAL			1.09		n		D	• _		2.55		1.07	1.61	- H	1	1	
US 27-68 N	·	AMUER DELINE	TORS		.46		25	.03		0		1,91		1	- 1	- 11			-
(TARIS PIK	s IL_	"INTER" SIG	s		.82	.18		,03		-	58 []		i i	1			_		
NOBTH O		3 NEW" SIGN	S A Dec		- 49	D1		.06	D		- 11	1							
		3 4 AND SIGN 4 AND SIGN 5 YELLOW STR 5 YELLOW STR 5 YELLOW STR 5 YELLOW STR 5 YELLOW STR	ST.			.03	.03	1	1			_							
NEW CIRC		S YELLOW STR	IPING			1	- 1	_		trasions by the									
ROAD		6 STRIPING	AND	•	1			ile moremente	of brakelight app										
(LEXING	rom	AMOER DELIN	EVIO 4			by diskiding the nikemats and expression	umber of the	et as a percenta	4e.										
1 "	- 11		_	Ratel	wete phising	kents and expression	it itse alees												
1	مسلق			1002	104														

TABLE 3

PILOT STUDY SOVEMENT AND BRAKELIGHT RATES* AND TRAFFIC VOLUMES NIGHTIME CONDITIONS

			ERRA	FIC MOVEM	IENI ALTO	IGHTTIME	CONDITIO	110								
			Linke											HOURLY TRAP	FIC VOLUMES	
							_		T		LIGHT RATE	<u>s</u>	MEDIAN	SHOULDER	TOTAL	
								_		MEDIAN	SHOULDER	TOTAL	LANE		462	
						TEMENT RATE	BACKED AT	MULTIPLE	TOTAL	LANE	LANE	18.53	378	84		
				5	BRATIC MU	(action	GORE	ERRORS		11.80	48.13			134	390	4
		TRAFFIC CONTROL	CUT ACROSS	CROWDED WEAVE	STOPPED	SWERVED	.00	1.33	7.38		39.65	15.70	256		783	1
	STUDY	TRAFFIC CONTROL DEVICE(5) EMPLOYED	GORE	WEAT	.59	.13	,00	1.42	7.90	6.48		17.03	649	134	18.5	4
LOCATION	NUMBER	00.0	4,21	.45		.68	,00	1.9	+	13.67	34.40	17.05	1	+	T	1
L	⋕	ORIGINAL		1.10	,41		.08	1.93	0.52	1				59	235	1
F	1	YELLOW STRIPING	3,26	L	,22	.30	.00		+	1	50.80	15.59	176	1		7
1	2	YELLOW STATE	4.17	1.86				1.30	8.10	3.27		1	+	263	389	-
1	1	YELLOW STRIPING	11			1,14	.12	1.50	1	+	16.27	36.10	126	719	1016	1
1,75 NB	3		11-	.68	1.21	1	1	.26	2.33	78.13		31.0	7 297			1
1 ~~		* ONLY SIGNS	3.70			.56	,05		2.50	75,B8	12.17		97	163	260	
- {	4	YELLOW STRIFTING AMBER DELINEATORS		.18	,31	.06	.00	.64	_		2.60	30.5				- 1
	1	ORIGINAL	1	,23	.32	.00		.00	5	74.8		-+		300	472	- 1
F	1	ORIGIAND	1.12		+	- 1.13	.00	1				27.	10 172	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1	2	YELLOW STRIPING	.36	.00	.00			_	1.3	1 68.7	7 3.35	1			250	
}	1	YELLOW STRIPING	6 II				.00	.00		_		20	.31 9	160		
1	3	AMBER DEDING	-	1.15	, 10	a .º.	· .		, T.	a1 77.	20 3.23		_ <u>_</u>			
175 5B	-	" ONLY" SIGNS	.47		1		.15	4	1 **				_			
1	11 4	YELLOW STRIPING AMBER DELINEATO	RS			n -3					- APPLICABL	E TRAFFI				
1	1	1 AND	.41	.22	1			TROTING	APPLICATI	DNS BY 15						
۱,	T_	S VELLOW STRIPING	·			UBATIC MOV	EMENTS OR B	SALTURA								
ł	1			DING THE N	UNDER OF A	NTAGE										
L		A ONLY SIGNA YELLOW STRIPING AMBER DELINEARO AMER DELINEARO YELLOW STRIPING YELLOW STRIPING YELLOW STRIPING YELLOW STRIPING YELLOW STRIPING	BTAINED BY DIVI EXPRESSING THIS	S QUOTIENT .	n											
		VOLUMES AND														
			-													

An average
 An average

a para sere - se

			EF	RATIC MO	VEMENT AN	id BRAI	TA THE FII KELIGHT IGHTTIM	ALE 4 NAL STUE RATES* E CONDIT	Y AND AV YONS	ERAGE	HOURLY	VOLUMES	5			TALER HOVE	LY VOLUMES	
					EHRABIC	NOVEMENT	STOPPED AND	MULTIPLE		MEDIAN	B MIDDLE LANE	RAKELIGHY RATE SHOULDER LANE	SINGLE LANE	TOTAL	MEDIAN LANE 556	MIDDLE LANE 665	LANE 239	10TAL 1453
	STUDY	TRAFFIC CONTROL DEVICE(\$) EMPLOYED		WDED EAVE SWERVE	SLOWED DRASTICALLY	STOPPED	BRAKED	.14 .92	10TAL .67 .49	1.25 4.36 1.89	2,44 10,45 3,18 4,32	E34 1533 9,21 9,94		2.99 E.84 3.72 485	559 443 542	690 601 694	221 251 235	1319 1431 434
LOCATION I 75 HB AT STH STREET EXIT		ONGINAL AMDER DELINEATORS YELLON STRIPING AMBER DELINEATORS & YELLOW STRIPING	19	.05 6. .08 .02 .04 .02	.02	A1 0		.26	1.14		1,75	0 23.73		1.65 9.5 8.6	47 98 A BI	209 244 221 216	193 170 136	535 418 461
(COVINGTOR) 1 TS SP AT		ORIGINAL AMBER DELINEATORS	91 80 91	.03 00 .05 .0 .14 .2 .0	.07			01, 13 0	40	29		1 16.91 44.76 49.59 71.36			.06 2		23 31 13	55 31 33
1 71 SP WESTERN TERMIN			38.54 NS 22.35 21.19	41 e	48 ,48 0 0 0 0 0 0	1		554	2	3.65 3.68 L	39 309 1.54	65.40 2.37		1.21 2.15	424	50 79 35	105 58 127 161	154 258 183 728
OF BC PARKW US 27-6		VELLOW STRIPIN AMBER DELINEAT E VELLOW STRIPI	ŇĠ	35	50		0	6 0 0	0 16 0 	.16 .71 .40 .98	31 4.90 95 1.65 45		4	1.00 2.38 1.83 	4,83	63 5) 48	13	171
(PARIS NORT NEW C	ике) Н 07-	3 "NEW" SIGNS 3 "NEW" SIGNS 4 AMEER DELINE 5 YELLOW SIGNS 5 YELLOW SIGNS	NHC ELLOW		.45	0	.43 0	0 brakelight applie	,21	49								
	NGTON)	6 STRIPING A AMPER DELINE	ATORS	Rater were obtainen applicable traffic v	d by dividing the nul plurost and explosion	nbis of creation this quablent	at a becceding	τ.										

Figure 22.

the driver of many operational judgements and decisions associated with the older type highways. This environment leads to inattentiveness and reduced alertness, particularly at low traffic volumes, which increase the probability of a conflict-producing situation. Secondly, at low volumes there is reduced "caravaning", wherein each driver consciously or subconsciously follows the vehicle(s) ahead. At high

volumes, the opposite of these two explanations is true. There was also no clear trend in conflict rates at sites with intermediate volumes. A partial explanation

of this observation is that it is these intermediate volume conditions, particularly between approximately 2,000 and 5,000 vehicles per day, which produce inconsistent conflict rates (33).

Accident summaries of all seven lane-drop locations, as well as collision diagrams for the five locations CONFLICTS AND ACCIDENT RATES

with the highest accident frequencies, may be found in APPENDIX B (34). Also included in APPENDIX B are 1971 adjusted average daily traffic volumes used in calculating accident rates. Overall conflict rates and accident rates per million vehicles may be found in Table 5. Careful study

of this table reveals no definitive relationship between conflict and accident rates at the lane drops

investigated.

4

ERRATIC MOVEMENT AND BRAKELIGHT RATES BEFORE AND AFTER INSTALLATION OF EACH TRAFFIC CONTROL DEVICE COMBINATION A statistical analysis of all erratic movement and brakelight rate deviations was made using the

Smith-Satterthwaite test (35). Significant erratic movement and brakelight rate deviations are given in Tables 6 through 18. A summary of statistical theory and tests utilized in the analysis of data is presented

Environmental, goemetric and traffic conditions were different at each lane drop. This is perhaps in APPENDIX C. the primary reason that a study of conflict deviations indicates no single type of traffic control device was significantly effective in reducing erratic movement and brakelight rates at the seven locations. Rather, it appears that different devices were generally most effective at each of the locations, i.e., amber delineators at the I-75 southbound lane split during both day and night conditions, exit ONLY signs at the I-64 westbound lane split during day conditions, yellow striping at the I-75 northbound lane split during day conditions, and amber delineators and yellow striping at the Bluegrass Parkway location under both day and night conditions. No device was particularly effective at the I-75 northbound lane

At the Paris Pike lane termination, the signing scheme recommended by the 1971 Manual on Uniform split during night conditions.

TABLE 5

OVERALL ERRATIC	TABLE 5 MOVEMENT, BRAKELIGH (PER MILLION VEHICL	r, and accident es)	RATES
LOCATION I 64 WB I 75 NB I 75 SB BG PARKWAY PARIS PIKE I 75 NB @ 5th St I 75 SB @ I 71 SB	OVERALL ERRATIC MOVEMENT RATE 34,700 65,000 15,700 223,200. 9,000 6,100 12,200	OVERALL BRAKELIGHT RATE 222,300 150,600 286,900 299,100 43,500 57,800 79,400	ACCIDENT RATE 1.58 1.33 1.45 3.56 4.72 1.12 .77

TABLE 6

I 75 SB - 1 64 EB LANE SPLIT (DAYTIME) SNIFICANT ERRATIC MOVEMENT & BRAKELIGHT RATE DEVIATIONS®

	SIGNIFICANT													
							TATE				T .	ł		
				_	YPE OF ERP	ATIC MOVEM	ENT R			1	SHOULDER	TOTAL		
		- 11		1	YPE OF A				1	MEDIAN LANE	LANE	TOTAL		
	COMP	ARISON				1	BACKED	MULTIPLE	TOTAL	INCREAS	E			
TERAFFIC CONTROL			CUT		. 1		AT GORE	ÉRRORS		INCREME		DECREASE		
	FROM	TO	ACROSS	CROWDED	STOPPED	SWERVED				11		Distor		
index in the second sec	STUDY	STUDY	GORE	WEAVE		DECREASE		DECREASE	DECREASE	11				
1 ORIGINAL	1					DECREASE		DEcident		1[-			
	1-1	2	L	DECREASE	DECREASE			DECREASE	DECREASE	1		·		
YELLOW SIL	1	3				DECREASE	INCREASE		DECREASE	INCREA	SE DECREASE	+		
TNRATORS	<u> </u>	L		DECREASE	DECREASE	Date			DECKEROL		ASE DECREASI	E DECREASE	i i	
	1	Τ 4	DECREASE		+	1		_	DECREASE	DECREM			4	
4 YELLOW STRIPING,	11		- mangas	e decreasi	\$			DECREASE		-1r	DECREAS	E DECREASE	1	
AETPON DATE	1	5	DECREMO			DECREAS	8	-	DECREASE	3 11			1	
THE TRUE TO ATTORS	-11	+	1	DECREAS	BDECKER		INCREAS	Е			DECREAS	SE	1	
IL ONLY BLOW	1 2	3	11		E DECREAS	E			DECREAS	E			ł	
5 &	11	+	DECREAS	SE DECREAS			.]			INCR	EASE		1	
YELLOW STRIFING	2	1 4		- TONEA!	E DECREAS	E		SE INCREA	SE			SE INCREASE	1	
	h	1 5	DECREA	SE DECREA		TNCREA	SE INCREAD			TNCR	EASE DECREA		٦	
	2	1		DECREA			_	INCREA	SE INCREAC				1	
				Distant		_				SE INCE	REASE DECRE			
	3	_			-		DECRI	TASE INCREA			. wate			
	3	1 5			- NORE	SE	DECK			brakeligh	lovel			
	<u> </u>	-+		-	INCREA		al	n erratic m	ovenion 25%	confidence	16 veri			
	4	5			- SDECREA	SE" refer	to der si	an licant a	C LUG !					
3 5 DECREASE INCREASE														
		*	Acriations	that were	1.04.14							•		

TABLE 7

I 75 SB - 1 64 EB LANE SPLIT (NIGHTTIME) SIGNIFICANT ERRATIC MOVEMENT & BRAKELIGHT RATE DEVIATIONS®

										TYPE OF	BRAKELIGHT	RATE
		-11-			E OF ERRA	IC MOVEMEN	T RATE		=============	T	HOULDER	ł
TRAFFIC CONTROL	COMPARIS	0	CUT CROSS C	RONDED				MUL/TIPLE ERRORS	TOTAL	MEDIAN S	LANE	TOTAL
NUCHERS 1 ORIGINAL 2 YELLON STRIPING 3 YELLON STRIPING	FUDY ST	YOUY 7	GORE	WEAVE	<u>STOPICS</u>							
AMBER DELINEATORS		3 4							DECREASE		DECREASE	
4 YELLOW STRIFING, AMBER DELINEATORS COLLY" SIGNS	1	5	DECREASE		DECREAS	8		DECREAGE	DECREASE		DECREASE	
YELLOW STRIPING	2	4	DECREASE			1		DECREASE				1=
		5	DISCRIME	1==				INCREASE		1=		
	3	5				-		INCREAS	·			-
	4	5			and the second secon				of			

*The words "INCREASE" & "DECREASE" refer to cartain erratic movement or brakelight rate deviations that were found to be statistically signifi-dant at the 95% confidence level.

a na manana da kanana da sa ka siya

TABLE 8

I 75 NB - I 64 EB LANE SPLIT (DAYTIME) SIGNIFICANT ERRATIC MOVEMENT & BRAKELIGHT RATE DEVIATIONS*

	SIGN	FICANT EXA									7				
	2017														
STUDY TRAFFIC CONTROL MUMBER DEVICE (S) EMPLOYED	1 4 2 3 2 4	CUT ACROSS GORE DECREASE	CROWDED WEAVE		SWERVED DECREASE DECREASE DECREASE E E E SE INCREASE	BACKED AT GORE	DECREASE	TOTAL DECREASE	MEDIAN LANE	DEOREASE	FOTAL				

"The words "INCREASE" & "DECREASE" refer to certain erratic movement or brakelight rate deviations that were found to be statistically significant at the 95% confidence level.

TABLE	9

1 75 NB - 1 64 EB LANE SPLIT (NIGHTTIME) • ERRATIC MOVEMENT & BRAKELIGHT RATE DEVIATIONS*

	SIGNIFICANT ERRATIC MOVENLOW													
	SIGNIFU	ANI LIN								F BRAKELIC	HT RATE			
								- 1	TIPE					
fi fi					LIC WOARW	ENT RATE			F=	- 1				
			TYPE	OF ERRA	LIC MOAN			- 1		SHOULDER	1			
			1212				MULTIPLE		I MEDIAN I	LANE	TOTAL			
	COMPARISON							TOTAL	LANE		1			
		CUT			SWERVED	AT GORE	ERRORD							
DEVICE (S) DEVICE (F)	ROM TO	ACROSS	CROWDED	STOPPED	SWERVED				DECREASE					
115	1 00-1 1	GORE	WEAVE						1	DECREASE				
ORIGINAL	¥#		INCREASE						11		+			
1 ORIGINAL 2 YELLON STRIPING 2 YELLON STRIPING 3 YELLON STRIPING 4	2		INCREMO	+		1			DECREAS	el				
2 YELLON STRAND	1 1	1		1					DECRONO	1				
VELLON STRIFT		II												
ONLY STOTAT	1 1	11				_		-	-					
YELLOW STRIFTING		11				- 1			DECREAS	3E	·			
AMBER DEDITION								-	- 11					
	2 3	11				-		-+	DECREA	SE				
					·			-	- []					
	2 4	11	-	INCREA	9E	-1		and and						
	1 °			- INCREA		and a second								
	3 4	11												
	1	ويتحدث والمحد					refer t	o ceru	aund					
					ICREASE" &	"DECREAC	ions that	were 1	1.					
ł			*The atic movement	words "N	kalight ra	te devid	confidenc	ie Teve	*•					
C.			tic moveme	ent of the	nificant B	t the see								
1		50 3	*The atic movement ce statist	ically and										
		2.0												

TABLE 10

1 64 WB LANE SPLIT (DAYTIME) SIGNIFICANT ERRATIC MOVEMENT & BRAKELIGHT RATE DEVIATIONS*

SIGNAL						_ ì
					TYPE OF BRAKELIGH	I. RATE
			RRATIC MOVEMENT R	ATE		
	COMPARISON	TYPE OF BE		MILTIPLE	MEDIAN SHOULDER LANE LANE	TOTAL
STUDY TRAFFIC CONTROL	TO CUT	CRONDED MEANE STOPPED	SWERVED AT GORE		DECREASE	
1 ORIGINAL 2 YELLOW STRIPING 2 YELLOW STRIPING 3 YELLOW STRIPING	UDY STUDY ACROSS	WEAVE STOPPED	INCREASE	DECREAS	DECREASE	DECREASE
	1 2	DECREASE		DECREAS	SE DECREASE	
3 <u>YELLOW STRIPING</u> 4 "(ONLY SIGNS, 4 YELLOW STRIPING, 5. YELLOW STRIPING, 5.		E DECREASE DECREASE		DECREA	DECREASE	
AMBER DELINEATIONS	1 4 DECREAS	DECREASE	E DECREAS	DECREA	ISE	INCREASE
	2 3 DECREAS		DECREA	SE INCRE	ASE INCREASE	
	2 4 DECREAS	TNCREAS	SE			
	3 6			r to certain erratio	3	

*The words "INCREASE" & "DECREASE" refer to definit- novement or brakelight rate deviations that were found to be statistically significant at the 95% confidence level.	
--	--

TABLE 11

BLUEGRASS PARKWAY LANE SPLIT (DAYTIME) SIGNIFICANT ERRATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS®

COMPABISON TRAFFIC CONTROL FROM 70 STUDPY STUDPY ND, NO, DEVICE(\$) EMPLOYED ND, NO, ORIGINAL 1 2 AMBER DELINEATORS 1 4 YELLOW STRIPNG 2 3	CUT ACROSS CROWDED GORE WEAVE SWEE DECREASE DECREASE	SLOWED STOPPED	STOPPED AND MULTIPLE BACKED ERRORS TOTAL DECREASE DECREASE DECREASE DECREASE	INCREASE INCREASE INCREASE
YELLOW STRIPING 2 3 AMBER DELINEATORS 2 4 AND 3 4	DECREASE			

The words "INCREASE" and "DECREASE" refer to certain erratio movement or bracklight rate deviations that were found to be statistically significant at the S5 percent confidence level.

TABLE 12

BLUEGRASS PARKWAY LANE SPLIT (NIGHTTIME) • FERATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS*

SIGNIFICANT ERRATIC MOVEMENT AND BRANDTON	
COMPARISON TYPE OF ERRATIC MOVEMENT RATE BROM TO CUT STOPPED STUDY STUDY ACROSS CROWDED SLOWED AND MULTIFILE NO. NO. GORE WEAVE SWERVE DRASTICALLY STOPPED BACKED ERRORS TOTAL II 2 DECREASE DECREASE II 3 DECREASE DECREASE DECREASE II 4 DECREASE DECREASE DECREASE II 4 DECREASE DECREASE III 4 DECREASE	E DECREASE INCREASE

"The words "INCREASE" and "DECREASE" roles to certain evails movement or brakelight rate deviations that were found to be statistically significant at the 95 percent confidence level.

TRAFFIC CONTROL STUDY DEVICE(S) EMPLOYED NUMBER -ORIGINAL AMBER DELINEATOR 2 YELLOW STRIPING 3 ANBER DELINEATOR AND 4 YELLOW STRIPING

YELLOW STRIPING

STUDY

NUMBER

2

3

4

TABLE 13

PARIS FIKE LANE TERMINATION (DAYTIME) ICANT ERRATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS*

		SIG	NIFICANT E	KKAIIC									1	t t
		-							T				1	1
											YTE OF BRAKEL	IGHT RATE		4
					TYPE OF ERRAT	IC MOVEMEN	T RAIL					SINGLE		1
					ITTE OF		STOPPED		1	MEDIAN	SHOULDER	LANE	TOTAL	1
	COMPA		T	- 1			AND	MULTIPLE		LANE	LANE	LANG		4
	FROM	то	CROWDED		SLOWED		BACKED	ERRORS	TOTAL					1
	STUDY	YOUTS		SWERVE	DRASTICALLY	STOPPED						·		-
TRAFFIC CONTROL	NO.	NO.	WEAVE	Sweatte					DECREASE		DECREASE	DECREASE	DECREASE	_
DEVICE(S) EMPLOYED	1101		1		DECREASE	DECREASE		TODEASE	DECREASE				DECREASE	
	F	2	1	DECREASE		DECREASE	T	DECREMEN	DECREASE			DECREASE	DECREASE	٦Į
		+	1		DECREASE	DECREASE		DECREAS	DECREASE	1	DECREASE	UDOINT ASS	DECREASE	-
ORIGINAL	- T - L	3	1		DECREASE	DECREASE		T		DECREAS	E DECREASE			
AMBER DELINEATORS	1	4			DECREASE	DECREMAN			DECREASE			DECREASE		
"NEW SIGNS		- 5	11	+	DECREASE		+		DECREASE	1=		DECREAS	<u>ا</u> د	
NEW SIGNS	1	6	7[DECREA	SE	11		DECREAS	E DECREASE	
AND			DECREAS	E				_	DECREASE	7		DECREAS	E DECREAS	Æ
AMBER DELINEATORS	2	_		INCREAS			T		DECREASE				1	
"NEW" SIGNS	1 2		-11										+	_
		2 5	DECREA	SE	- 1								+	
AND		2 6	DECREM											
YELLOW STRIPING	1	3 4												
"NEW" SIGNS.	\	3 5						-+	DECREAS					
YELLOW STRIPING.	1	1 6							DECREAS	E DECR	SASE			
AND														
AMBER DELINEATORS			6 DECRU	ASE								· · ·		
AMBER DUSITE	<u>רן ר</u>			_1_										
	ſ	5	6			-			nikelight rate devis	tions				

1

* The words "INCREASE" and "DECREASE" refut to certain erratio movement or brakelight rete deviations that were found to be statistically significant at the 95 percent confidence level.

TABLE 14

PARIS PIKE LANE TERMINATION (NIGHTTIME) SIGNIFICANT ERRATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS*

		SIGN	IFICIALI										1
											YPE OF BRAKE	LIGHT RATE	
					TYPE OF ERRAT	TIC MOVEMEN	STOPPED	7		MEDIAN	SHOULDER	SINGLE	TOTAL
	COMPA FROM	RISON	7		SLOWED		AND	MULTIPLE	TOTAL	LANE	LANE	LANE	
_		STUDY	CROWDED	SWERVE	DRASTICALLY	STOPPED	BACKED	ERRORS					
ED	NO.	NO.	WEAVE						DECREASE				
=	F====	2		$\mid =$					DECREASE	1		+==	
TORS		3	$\parallel =$	1=		1==	1=	==		1=			1=1
				1==	+==			1=	INCREASE	INCREAS	INCREASE		1==
°	1		$\parallel \equiv$	1==		1=		1=	DUDREAS			7=	
TORS		2 4	1=	-+==		1=			-	1=			
		2 5							+=				
IPING NS,	-	3 4][==	1=			나는			DECRE	ASE		DECREASE
IPING,		3 5						===	INCREA		DECREA	SE	
IEATORS		4 5					=+=			-1[
)			=[=	REASE" and "DECR	EASE" refet to	certain erratic	movement of b	nakciigin rate de evol.	viations			
			• 17 th	e words "INC at were found	REASE" and "DECR 1 to be statistically	significant at	the 95 percen						

_	
STUDY NUMBER	TRAFFIC CONTROL DEVICE(S) EMPLOYED
	ORIGINAL
1	AMBER DELINEATORS
h	"NEW" SIGNS
have	"NEW" SIGNS
4	AND AMBER DELINEATORS
	"NEW" SIGNS
	AND
	YELLOW STRIPING
	"NEW SIGNS,
1 6	YELLOW STRIPING.
Ì	AND
	AMBER DELINEATORS

STUDY

NUMBER

ī

2

3

4

5

6

The words "INCREASE" and "DECREASE" refer to certain create movement or backet that were found to be startistically significant at the 95 percent coefficience level.

	SIGNIFICANT BRRATIC HAR			- I
COMPARISON TRAFFIC CONTROL FROM TO DEVICE(S) EMPLOYED NO. ORIGINAL 1 AMBER DELINEATORS 1 YILLOW STRUPNO 2 AMD 2	CUT CUT CROWDED	D NULTIPLE KED ERNORS TOTAL 	MEDIAN PRIDZEZ	AT RATE JLDER ANE TOTAL DECREASE DECREASE EEREASE DECREASE
YELLOW STRIPING		 or brakelight rate deviations		

TABLE 16 I 75 SB AT 1 71 SB (NIGHTTIME) Single Lane exit with taper Brratic Movement and Brakelight rate deviations*

ſ	STUDY	TRAFFIC CONTROL DEVICE(S) EMPLOYED		NO.	ND.
Į	NUMBER			1	2
j	- 1	ORIGINAL	{	1.	3
	2	AMBER DELINEATORS	4		4
		YELLOW STRIPING	4	2	3
		AMBER DELINEATORS		2	4
	4	AND YELLOW STRIPING		3	4
	L	TECLOW	<u>ر</u>	L	
	_				

STUDY NUMBER _

 $\langle \cdot, \cdot \rangle$

 $d_{i_{i_1}}(x)$

an tradición de defensa 👘

	the movement of the state
	and a far to partic cristic motore level.
	and "DECREASE" refer to certain erratic movement of oncompari- tatistically significant at the 95 percent confidence level.
INCREASE	and Determinent at the 95 purcent
The worus	tatistically post to and
at a mark found to be	
IDEL HOLD	

Stortheore			
COMPARISON FROM TO STUDY STUDY NO. NO. 1 2	SLOWED WERVE DRASTICALLY STOPPED B. DECREASE	AND MULTIPLE ACKED ERRORS TOTAL 	DECREASE DECREASE
1 2 1	DECREASE DECREASE DECREASE	DECKEMAN	DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE

I 75 SB AT I 71 SB (DAYTIME) SINGLE LANE EXIT WITH TAPER SIGNIFICANT ERRATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS*

TABLE 15

1 75 NB AT 5TH STREET EXIT (DAYTIME) SINGLE LANE EXIT WITHOUT TAPER IRRATIC MOVEMENT AND BRAKELIGHT RATE DEVIATIONS*

SIGNIFICANT ERRATIC MOVEMENT AND SIGN	
SIGNIFICATOR TYPE OF ERRATIC MOVEMENT RATE COMPARISON CUT SLOWED STOPED FROM TO CUT SLOWED STOPED NO NO. NO. ACROSS CROWDED SLOWED SLOWED AND NO NO. NO. NO. ACROSS CROWDED SLOWED SLOWED ARD AND 1 2 Image: State of the st	INCREASE DECREASE DECREASE DECREASE DECREASE ASE DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE DECREASE

٦

STUDY NUMBER	TRAFFIC CONTROL DEVICE(8) EMPLOYED
2	ORICINAL AMBER DELINEATORS YELLOW STRIPING
3	AMBER DELINEATORS
	YELLOW STRIPING

STUDY

NUMBER

1

2 3

- 22

.....

- 4 - 11	12	18	

I 75 NB AT STH STRBET EXIT (NIGHTTIME) Single lane exit without taper Significant erratic movement and brakelight rate deviations*

 	1	

						_							1	
									- 11		- OF BRAS	ELIGHT RATE		
					OF ERRATIC MOV	- CONT PAT	16			_ τ		DEP.		1
					OF SHRATIC MON	TEMENT TOT			1		MIDDLE	SHOULDER		ί
		T		TYPE	OF CINCLE		STOFFED			MEDIAN	have	LANE	TOTAL	1
		1						MULTIPLE	. 1	1	LANE	Dure		i i
	COMPARISON	1		1	1		AND			LANE	· - ·			1
		CUT	1		SLOWED		BACKED	ERRORS	10.1-0	1			INCREASE	<u>۱</u>
	FROM TO	11	CROWDED			STOPPED	BACKLO					INCREASE	Increation	1
	VILLEY	ACROSS		SWERVE	DRASTICALLY				Τ -	INCREASE	INCREASE		T	1
	STUDY STUDY	GORE	WEAVE	31000-				DECREASE	1				+	٦
TRAFFIC CONTROL	NO. NO.	1 BOKE						DECIMAN	+	INCREASE				4
LINKS THE AVED	NU.			_	DECREASE		+	T		1	INCREASE			1
DEVICE(S) EMPLOYED			DECREASE				1			11			DECREASE	_
					T	1		1			DECREASE			
	1 2		DECREASE				1		-T	-11		DECREASE	1	-
ORIGINAL		ll			DECREASE			1	+	1				1
Uldative	ستسرا ا		DECREASE	1			1		1	-11		1		1
AMBER DELINEATORS	4	11								7				
AMBER		-1	1	1			_	_		-11	1		-	
YELLOW STRIPING	1 3	11			-			- 1						
TORS						1	-			-				
AMBER DELINEATORS	2 4	1				1								
AND				-										
			1					ight rate deviate) iis					
YELLOW STRIPING						in entitic mov	ment of organized							
YELLOW COL	J L			ar	REASE" refer to certs	s percent co	HIGGROUP ICTOR							
		• 71 • VI	rds "INCREASE	and instally	REASE" refer to certa									
		Chest W	ere found to b	C SUBURY COUNTY										
		Ital a	•••											

Traffic Control Devices for Streets and Highways was the most effective device used during daytime conditions, and the amber delineators were most effective during nighttime conditions. At the I-75 southbound - I-71 southbound single-lane exit with taper, the combination of amber

delineators and yellow striping was the most effective combination for both daytime and nighttime. At the I 75-5th Street single-lane exit without taper, the combination of amber delineators and

yellow striping was again the most effective combination tested under both daytime and nighttime At these last two locations, nighttime effectiveness of the amber delineator and yellow striping combination was not statistically significant. However, the daytime effectiveness was statistically significant conditions.

at the 95 percent confidence level.

SPOT SPEEDS BEFORE AND AFTER EACH INSTALLATION The number of interacting factors involved in the generation of a conflict may be so large that the effect of any one variable is negligible. Therefore, it would seem reasonable to examine a feature of traffic behavior more directly sensitive to events occurring in traffic and which are under the conscious control of the driver. This is generally the case with vehicle speed, for this is one of the basic modes of vehicle control available to the driver and should be, therefore, one to which he is most responsive. It would seem reasonable that speed would be a primary control that a driver would employ to compensate for any potentially hazardous traffic situation, as when approaching lane drops (36).

Spot-speeds, taken during daylight hours, were analyzed to determine significant mean-speed differences before and after each different traffic control device installation. The statistical method used

may be found in APPENDIX C (37). Mean speeds for each of the locations are given in Figures 23 through 29. Although these speeds may appear low upon initial inspection, it should be noted that two locations have speed limits of 50 mph and several of the other locations have posted advisory speeds of from 35 mph to 45 mph. It should be recognized that horizontal alignment is the principal roadway feature related to spot-speed characteristics (38). Furthermore, it has been noted that, on the average, operating speeds through weaving sections for a given level of service will fall from 5 to 10 mph below

those for the same level on adjacent roadway sections (39). At the beginning of this study, it was hypothesized that an effective traffic control device at a lane drop would result in higher spot speeds in the immediate vicinity of the gore and in slightly lower or unchanged spot speeds at a distance of approximately 500 feet back from the gore. It was felt that a driver recognizing the lane-drop situation ahead would either slow down slightly or keep a constant speed during the final few seconds of approach. This decision making was estimated to occur at a distance

Figure 23.

Figure 24.

 $\langle\!\!\langle \hat{f}_{i}\rangle\!\rangle$

 $\mathcal{N}_{i,j}$

Mean Speeds at the I 75 SB - I 71 SB Single Lane Exit with Taper

Figure 26.

in sectore d

0.000

Figure 28. Mean Speeds at the Paris Pike Lane Termination

Υ.

Figure 29. Mean Speeds at the Bluegrass Parkway Lane Split

of 500 feet from the lane split. At the gore, the driver becomes more certain of his path of travel and resumes speed. Generally, this trend was observed at each location for each of the traffic control device installations which were the most effective in reducing conflicts.

CONFLICTS AND SPOT-SPEED MEANS AND VARIANCES

Total erratic movement and brakelight rate deviations are compared with mean speed and sample variance deviations, for each lane-drop type studied, in Tables 19 through 22. Only daylight conflict rates were compared; speed studies were made for daylight conditions only. These comparisons were made in an attempt to determine if variations in conflict rates could be related to variations in mean speeds and/or sample variances. In the case of speed variance, it was felt that if, in fact, a traffic control device causes a reduction in the variance of speed, then it would also reduce the frequency of extreme responses and their attendent possibilities for driving errors, i.e., conflicts. However, a thorough study of Tables 19 through 22 reveals that there is no apparent relationship between conflict rates and mean speeds or sample variances. The sample from which this comparison was made consisted of all conflict rates, mean speeds, and speed variances, both initially and after installation of each experimental traffic

control device.

 $\langle \rangle$

i, s

In summary, there are limitations on the interpretation of the data obtained in this study which DATA RESTRICTIONS are perhaps indicative of some basic restrictions inherent in all such field studies of this type. First, the freedom of response available to drivers is so great that the variability in operational characteristics may be random. Consequently, data taken from the roadside on a mass of motorists may be so unrealiable that definitive inferences are possible only in limited situations. Second, the time-varying characteristics, especially the "novelty effect" created by any new traffic control device within the highway system, prevent the establishment of any real experimental control in the field. There are too many uncontrolled variables. Third, observers, being human, are not capable of complete objectivity, regardless of how vigorously it is attempted. Finally, perhaps the greatest limitation was that traffic conflicts at several locations were observed under volume conditions which have been shown to produce inconsistent conflict rates, i.e., in the range from approximately 2,000 to 5,000 vehicles per day (33). Such a limitation hindered the analysis of field data and the conclusions made therefrom.

CONCLUSIONS

Each of the three traffic control devices tested was effective, in varying degrees, in reducing traffic conflicts at lane drops. No single type of traffic control device tested was significantly effective in reducing TABLE 19

BLUEGRASS PARKWAY LANE SPLIT

COMPARISON OF TOTAL ERRATIC MOVEMENT AND TOTAL BRAKELIGHT RATES WITH MEAN SPEEDS AND SPOTSPEED SAMPLE VARIANCES

	2034 CORE 2010 CARE 2010 THE LAVE 2010 THE AND 2016 - 1.4.2 2.3.6 2.3.6 2.3.6 2.3.6 1.4.2	
TBILLKS	MEERIAN MAEERIAN MAERIAN	
	018. A28.6 8101110533 LAV 8 AA82.6 0 164.26 116.26	
	MEDANN L NEDAN L VARIANCE VARIANCE 2.507 13.51 13.55 15.55 1	
	CORE SHOULDER LA SHOULDER LA SAMPLE 128 1.69 1.69 1.287 1.287 1.287 1.287	
	AUTOS AU	mean speed are not differences between the two studies being compare
WITH MEAN STATES	AT CONE AREA AT CONE AREA MEAN MEAN NEAN NEAN NEAN NEAN NEAN NE	and mean speed are not different
	инализация на полнания на по	
	COMPARIZON COMPARIZON FEORM FEORM COMPARIZON FEORMATIC FEORM FEORMATIC COMPARIZON FEORMATIC FEORM FEORMATIC F	
	F H Z Z	VELLOW STRUPING
	AUMBER NUMBER NUMBER	

" Figures down for sample valuers and mean posel are net tel fufferences between the two stud *Sectionenty significant alterence at the 95% confidence level.

TABLE 20

PARIS PIKE LANE TERMINATION

COMPARISON OF TOTAL ERRATIC MOVEMENT AND TOTAL BRAKELIGHT RATES WITH MEAN SPEEDS AND SPOTSPEED SAMPLE VARIANCES

Υ.

T	REAN 1.1.23 1.1.23 1.1.23 1.1.23 1.1.23 1.1.23 1.1.23 1.1.23 1.1.23 1.1.25 1.1.23 1.1.25
	ON SINGLE LANE AMPLE
3.000	2.00 2.00
	ME MARTIN
	ALTOS ALTOS MEDAN LANCE MEDAN LANCE MEDAN LANCE MEDAN LANCE MEDAN LANCE MEDAN LANCE MEDAN LANCE MEDAN LANCE SIGUEL MEDAN LANCE SIGUEL
	9 8 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1
WITH MEAN SPEEKS IN	SINGLE LAVE SINGLE LAVE SECTON BEETON NGCB Sol 1.27 1.23 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.4
HIIW	ани станарана с с с с с с с с с с с с с с с с с с
2	
	COMPARISON FROM TTO STUDY STUD
	AFFIC CONTROL AFFIC CONTROL AFFIC CONTROL ORIGINAL ORIGINAL WEW SICKS WEW SICKS WEW SICKS WEW SICKS WEW SICKS TELOW STRUNG TELOW STRUNG AUBER DELINEATORS AUBER DELINEATORS
	TRAFFIC CONTROL DEVICE(S) BURLOYED ONGONAL ONGONAL NEW" SIGNS "YEW" SIGNS "YEW" SIGNS "YEW" SIGNS TRUNOS YELLOW STURNOS YELLOW STURNOS YELLOW STURNOS YELLOW STURNOS YELLOW STURNOS

1

Pigness shown for sample relations and areas speed as an differences between the two studies being comparisa- - "Figures shown for sample relations at the 50% confidence lovel.
 - "Simulation difference at the 50% confidence lovel.
 - Simulation difference at the 50% confidence lovel.

ψ

ŝ

4

STUDY

ť,

 $\sum_{i=1}^{n}$

TABLE 21 1 75 SB AT 1 71 SB ABER SINGLE LANE EXTY WITH TAPER

COMPAUSON OF TOTAL ERRATIC MOVEMENT AND TOTAL BRAKELIGHT RATES WITH MEAN SPEEDS AND SPOTSPEED SAMPLE VARIANCES

j,

Mark Total Mark Mark Mark Total Mark Mark Mark Total Mark Mark Mark Mark Mark Mark
Marcal Marca Marca Marca
900 900 900 900 900 900 900 900
Alter Status Status </td
10000000000000000000000000000000000000
Control Control <t< td=""></t<>
ATTUY TAAPIC CNYRDA RAMES INCORES BUGORDA RAMES INCORES BUGORDA A ALBRE RELATES A ALBRE RELATE

Ç-

TABLE 22

20

 ξ

Ę.

1 75 NB AT 5TH STREET EXIT SINGLE LANE EXIT WITHOUT TAPER

COMPARISON OF TOTAL ERGATIC MOVEMENT AND TOTAL BRAKELIGHT RATES WITH MEAN SPEEDS AND SPOTSPEED SAMPLE VARIANCES

1004 1004 100 100 100 100 100 100	
201001 10000 10000 11	
All Control of Control	
RA NAME 1000 10	
20 0.000 million (2014) 2010	
14000 14000 14000 14000 14000 1400 1400	
100 million 100 mi	
2017 2017 2017 2017 2017 2017 2017 2017	The same will prove the same same
Taonic confidence Taonic confid	

struor routeer

a ser a ser a se

conflicts at all seven lane drops. Rather, different devices were generally most effective at different The lane drop comprised of a single-lane exit without taper had the lowest conflict rates of the locations.

four different calssifications studied. The lane termination had the next lowest conflict rates. Lane drops associated with poor site geometrics, i.e., high rates of curvature with attendant sight

distance restrictions, were observed to have higher conflict rates than those associated with more optimal

No distinct relationship between traffic volumes and conflict rates, as defined herein, was found geometric features. at the lane drops studied. No definitive relationship between conflict and accident rates was found. Lane drops must be designed properly from the outset, inasmuch as traffic control devices are not

as effective in reducing conflicts as are proper site geometrics. There are limitations on the interpretation of the data in this study which are perhaps indicative

of some basic restrictions inherent in all such field studies of this type. Although the traffic conflict criterion is well established (24, 25), its usefulness in predicting accident

potential at sites where the traffic volumes are in the range of approximately 2,000 - 5,000 vehicles

per day is questionable.

RECOMMENDATIONS

Different environmental, geometric, and traffic conditions may explain why different traffic control devices were most effective in reducing conflict rates at different sites. Further study of the affecting conditions should be made to determine their relationship with the effectiveness of traffic control devices. The principal objective should be the preparation of guidelines for the installation of traffic control devices at lane-drop locations whenever the elimination of lane drops is not practicable. In the words of the Special AASHO Traffic Safety Committee, "Lane drops should normally be

avoided altogether by original design or later rebuilding...". Whenever the elimination of lane drops is not practicable, optimum design criteria, i.e., those providing superior sight distance, should be followed even though such criteria may not be followed throughout the entire length of a particular route. Furthermore, the principles of operational flexibility,

as expressed in the literature (31), should be followed at all times. Based on the findings of this study and one by the California Division of Highways (11), it is recommended that the single-lane exit without taper type of lane drop be utilized at all single-lane exits

LIST OF REFERENCES

- 1. Proceedings, Traffic Engineering Seminar, University of Kentucky, November 1971.
- 2. Perchonok, K., and Hurst, P.M., The Effect of Lane Closure Signals upon Driver Decision-Making and Traffic Flow, Division of Highway Studies, Pennsylvania State College, March 1965.
- 3. Baker, R.F., The Highway Risk Problem, Wiley-Interscience, 1971.
- 4. Special AASHO Traffic Safety Committee, Highway Design and Operational Practices Related to Highway Safety, AASHO, February 1967.
- Oppenlander, J. C., and Dawson, R. F., Chapter 9 Interchanges, Traffic Control and Roadway Elements - Their Relationship to Highway Safety, Highway Users Federation for Safety and Mobility, Revised, 1970.
- 6. A Policy on Geometric Design of Rural Highways, AASHO, 1966.
- Lundy, R. A., The Effect of Ramp Type and Geometry on Accidents, Record 163, Highway Research Board, 1967.
- Jouzy, N. C., and Michael, H. L., Use and Design of Acceleration and Deceleration Lanes in Indiana, Record 9, Highway Research Board, 1963.
- 9. Breuning, S. M., and Bone, A. J., Interchange Accident Exposure, Bulletin 240, Highway Research Board, 1960.
- 10. Gafarian, A. V., Private correspondence on Lane-Drop Study, NCHRP Project 3-16, System Development Corporation, 1970.
- 11. Tye, E. J., The Lane Drop Study -- Relating Roadway Elements to Accidents, California Division of Highways, 1970.
- Munjal, P. K., Hsu, Y. S., and Lawrence, R. L., Analysis and Validation of Lane-Drop Effects on Multi-Lane Freeways, Transportation Research, Vol 5, No 4, pp 257-266, December 1971.
- 13. Darrell, J. E. P., and Dunnette, M. D., Driver Performance Related to Interchange Marking and Nighttime Visibility Condition, Bulletin 255, Highway Research Board, 1960.
- 14. Dart, O. K., A Study of Roadside Delineator Effectiveness on an Interstate Highway, Record 105, Highway Research Board, 1966.
- 15. Manual on Uniform Traffic Control Devices for Streets and Highways, Kentucky Department of Highways, October 1967.
- 16. Burg, A., and Hulbert, S. F., Predicting the Effectiveness of Highway Signs, Bulletin 324, Highway Research Board, 1962.
- 17. Roth, W. J., and DeRose, F., Interchange Ramp Color Delineation and Marking Study, Record 105, Highway Research Board, 1966.

- 18. Study of the Black-on-Yellow "Exit Only" Freeway Signing, Traffic and Safety Division, Michigan Department of State Highways, May 1963.
- 19. Basile, A. J., Effect of Pavement Edge Markings on Traffic Accidents in Kansas, Bulletin 308, Highway Research Board, 1962.
- Musick, J. V., Effect of Pavement Edge Markings on Two-Lane Rural State Highways in Ohio, Bulletin
 266, Highway Research Board, 1960.
- 21. Williston, R. M., Effect of Pavement Edge Markings on Operator Behavior, Bulletin 266 Highway Research Board, 1960.
- 22. Thomas, I. L., Pavement Edge Lines on Twenty-Four Foot Surfaces in Louisiana, Bulletin 178, Highway Research Board, 1958.
- 23. McDermott, I. M., and McClean, C. H., Improving Traffic Flow at Transfer Roadways on Collector-Distributor Type Expressways, Record 59, Highway Research Board, 1964.
- 24. Perkins, S. R., and Harris, J. I., Traffic Conflict Characteristics -- Accident Potential at Intersections, Record 255, Highway Research Board, 1968.
- Campbell, R. E., and King, L. E., An Investigation of Two Rural Intersections Utilizing the General Motors Traffic Conflicts Technique, Second Western Summer Meeting, Highway Research Board, 1969.
- 26. Spicer, B. R., A Pilot Study of Traffic Conflicts at a Rural Dual Carriageway Intersection, RRL Report LR410, Road Research Laboratory, 1971.
- 27. Holmes, E. H., Application of Driver Behavior and Vehicle Performance Studies, Proceedings, Vol 21, Highway Research Board, 1941.
- 28. Traffic Engineering Handbook, Third Edition, Institute of Traffic Engineers, 1965.

()

- 29. Mullins, B. F. K., and Keese, G. J., Freeway Traffic Accident Analysis and Safety Study, Bulletin 291, Highway Research Board, 1961.
- 30. Seymour, W. M., Analysis of Traffic Control on High Speed Facilities during Maintenance, Division of Research, Kentucky Department of Highways, May 1972.
- Leisch, J. E., Designing Operational Flexibility into Urban Freeways, Proceedings, Institute of Traffic Engineers, August 1963.
- 32. Carroli, J. D., Campbell, E. W., et al, Chicago Area Transportation Study, Vol III, Transportation Plan, April 1962.
- 33. Hutchinson, J. W., and Kennedy, T. W., Safety Considerations in Median Design, Record 162, Highway Research Board, 1967.

- 34. Maffet, B. R., I 64 I 75 Accident Analysis, Division of Traffic, Kentucky Department of Highways, 35. Miller, I. and Freund, J. E., Probability and Statistics for Engineers, Prentice-Hall Inc., 1965. 36. Michaels, R. M., The Effects of Enforcement on Traffic Behavior, Public Roads, December 1960.
- 37. Kennedy, N., Kell, J. H., and Homburger, W. S., Fundamentals of Traffic Engineering, 7th Edition,
- The Institute of Transportation and Traffic Engineering, University of California, 1969. 38. Oppenlander, J. C., Variables Influencing Spot-Speed Characteristics, Special Report 89, Highway
- 39. Highway Capacity Manual, Special Report 87, Highway Research Board, 1965.

APPENDIX A

ERRATIC MOVEMENT DEFINITIONS

÷.

£____

ERRATIC MOVEMENT DEFINITIONS

Cut Across Gore Area - Vehicle crosses over the pavement markings used to delineate the gore area.

Crowded Weave - Vehicle changes lanes directly in front of a following vehicle, causing the following vehicle to apply its brakes. This type of erratic movement always directly involves at least

two vehicles.

Stopped - Vehicle comes to a complete stop.

Slowed Drastically -- Vehicle undergoes a very rapid deceleration, causing "dipping" of the front end

or tire squealing.

Swerve -- Vehicle abruptly veers from its straight ahead course. A swerve may or may not consist of a change of lanes for the erratic vehicle. This type of erratic movement always involves only

one vehicle.

Stopped and Backed - Vehicle comes to a complete stop and then backs up.

Multiple Error -- Occurs when a vehicle commits a combination of two or more of the above errors.

ACCIDENT SUMMARIES COLLISION DIAGRAMS 1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES

\$3

ACCIDENT ANALYSES

APPENDIX B

ACCIDENT SUMMARIES

ξ.

₹, s

I 64 - I 75 TRI-LEVEL INTERCHANGE

STUDY PERIOD August 15, 1967, ACCIDENT RATE 192 accidents p	per hundred minio			
INIURY RATE 101 accidents p	er hundred million	n vehicle miles SOUTHBOUND	TOTAL	PERCENT
	65	49	114	100 51
NUMBER OF ACCIDENTS MULTIPLE VEHICLE ACCIDENTS Sideswipe	28 10 18	30 12 18	58 22 36	51
Rear-End	37 2	19 0	56 2 54	49
Mechanical Failure Loss of Control* ACCIDENTS INVOLVING INJUR	35 Y 17	19 17	34	30
TOTAL NUMBER INJURED	29 0	31 0	60 0	
TOTAL FATALITIES	49	27	76 38	67 33
Daylight Dark	16	22	39	34
PAVEMENT CONDITION Wet Dry	27 38	12 37	75	66

*Loss of control includes falling asleep, adverse roadway conditions (wet, ice, snow, etc.), inattention, drinking, object in roadway, etc.

30

I-75 NORTHBOUND AT THE 5TH STREET EXIT IN COVINGTON

January 1, 1971 - December 31, 1971 STUDY PERIOD -1.12 accidents per million vehicles ACCIDENT RATE -0.40 injury accidents per million vehicles INJURY RATE -PERCENT TOTAL 17 CODENTS

NUMBER OF ACCIDENTS		
ACCIDENT TYPES Rear-End Multiple Rear-End Sideswipe Fixed Object	9 5 2 1 6	53 29 12 6 35
ACCIDENTS INVOLVING INJURY TOTAL NUMBER INJURED TOTAL FATALITIES	12 0	0
TOTAL FATABLE LIGHT CONDITION Daylight Dark Dawn or Dusk	14 2 1	82 12 6
PAVEMENT CONDITION Wet Dry	5 12	29 71

100

US 27-68 (Paris Pike) NORTHBOUND, JUST NORTH OF NEW CIRCLE ROAD, FAYETTE COUNTY

	January 1, 1971 December 31, 1971
STUDI I LIGO-	idents per million vehicles
ACCIDENT RATE -	1.57 injury accidents per million vehicles
INJURY RATE -	1.57 mjury access

INJURY RATE		PERCENT
	TOTAL 9	100
NUMBER OF ACCIDENTS ACCIDENT TYPES Rear-End Multiple Rear-End Oblique Fixed Object ACCIDENTS INVOLVING INJURY TOTAL NUMBER INJURED TOTAL FATALITIES LIGHT CONDITION Daylight Dark PAVEMENT CONDITION Wet	4 1 2 2 3 3 0 5 4 3 6	45 11 22 22 33 0 56 44 33 67
Dry		

 $\langle \cdot \rangle$

WESTERN TERMINUS OF THE BLUEGRASS PARKWAY, WESTBOUND

	January 1, 1971 - December 31, 1971
ACCIDENT RATE -	3.56 accidents per million vehicles
INJURY RATE -	1.78 injury accidents per million vehicles

TOTAL

1

0

1

1

1 1

2 NUMBER OF ACCIDENTS ACCIDENT TYPES 1 Fixed Object 1 Lost Control 1 ACCIDENTS INVOLVING INJURY TOTAL NUMBER INJURED TOTAL FATALITIES LIGHT CONDITION Daylight Dark PAVEMENT CONDITION Dry Icy.

 $\left\{ \cdot \right\}$

I-75 SOUTHBOUND AT I-71 SOUTHBOUND

	January 1, 1971 - December 31, 1971
STUDY PERIOD	0.77 accidents per million vehicles
ACCIDENT RATE -	0.77 accidents per million vehicles
INJURY RATE	0.46 mjury 2000

IN COLOR	TOTAL	PERCENT
THE ACCIDENTS	5	100
NUMBER OF ACCIDENTS ACCIDENT TYPES Rear-End Multiple Rear-End Lost Control Sideswipe	2 1 1 1 3	40 20 20 20 60
ACCIDENTS INVOLVING INJURY TOTAL NUMBER INJURED TOTAL FATALITIES	6 0	0
LIGHT CONDITION Daylight Dark Dawn or Dusk	3 1 1	60 20 20
PAVEMENT CONDITION Wet Dry	0 5	0 100

ê.,

COLLISION DIAGRAMS

Ç.

 $C^{(1)}$

 $\{ j_{i,j} \}$

COLLISION DIAGRAM OF THE I 64 I 75 TRI-LEVEL INTERCHANGE

I 75 NB - 5th Street

. . . . - - 1

· _ .

1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES

1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES

LOCATION	1971 ADT (one way)
1-75 northbound at 5th Street	41,518
US 27-68 (Paris Pike) northbound	5,229
I-75 southbound at I-71 southbound	17,718
Bluegrass Parkway westbound terminus	1,540

 $\{ : \}$

1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES FOR THE I 64 - I 75 TRI-LEVEL INTERCHANGE

APPENDIX C

STATISTICAL THEORY

STATISTICAL THEORY

INFERENCES CONCERNING MEANS

The following Smith-Satterthwaite test can be used to test for equality of means when concerned with two independent random samples with normal populations whose variances are not necessarily equal:

H₀ : x = y H₁ : x ≠ y
t = (x - y) /
$$\left[\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2} \right]^{1/2}$$

$$y = \left[\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}\right]^2 \div \left[\frac{(s_x^2/n_1)^2}{n_1 - 1} + \frac{(s_y^2/n_2)^2}{n_2 - 1}\right]$$

"BEFORE AND AFTER" SPOT-SPEED STUDIES

In order to determine significant differences between the mean speeds of "before and after" studies, it is necessary to estimate the standard deviation of the differences in means by use of the equation:

$$\hat{s} = \sqrt{s_{\bar{x}_b}^2 + s_{\bar{x}_a}^2}$$

where $\hat{s} =$ standard deviation of the difference in means,

$$s_{\bar{x}_b}^2 = \frac{\sum f_{b_i}(x_{b_i})^2 - \frac{1}{n_b} (\sum f_{b_i x_{b_i}})^2}{n_b(n_b \cdot 1)} = \text{mean variance of "before" study, and}$$

$$s_{\bar{x}_a}^2 = \frac{\sum f_{a_i}(x_{a_i})^2 - \frac{1}{n_a} (\sum f_{a_i} x_{a_i})^2}{n_a(n_a \cdot 1)} = \text{mean variance of "after" study.}$$

If the difference in mean speeds is greater than twice the standard deviation of the difference in means, i.e.

$$\mathbf{\bar{x}}_{\mathbf{b}} - \mathbf{\bar{x}}_{\mathbf{a}} > 2\mathbf{\hat{s}},$$

it can be said with 95 percent confidence that the observed difference in mean speeds is significant (the change in conditions has significantly affected the mean speed).

DIFFERENCES IN SPOT-SPEED SAMPLE VARIANCES

The F test is a test of the differences between variances and is the ratio of the larger variance to the smaller.

If s_1^2 and s_2^2 are the variances of independent random samples of size n_1 and n_2 , respectively, taken from two normal populations having the same variance, then

$$F = s_1^2 / s_2^2$$

is a value of a random variable having the F distribution with parameters $v_1 = n_1 - 1$ and $v_2 = n_2 - 1$, where $v_1 =$ degrees of freedom for the sample variance in the numerator,

 ν_2^1 = degrees of freedom for the sample variance in the denominator.