CHARLES PRYOR, JR. COMMISSIONER OF HIGHWAYS

COMMONWEALTH OF KENTUCKY

DEPARTMENT OF HIGHWAYS

FRANKFORT, KENTUCKY
40601

August 21, 1972

ADDRESS REPLY TO: DEPARTMENT OF HIGHWAYS

DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508

TELEPHONE 606-254-4475

MEMORANDUM TO: J. R. Harbison
State Highway Engineer
Chairman, Research Committee
Research Report No. 332 (Final); "Operational Characteristics of Lane Drops;" KYHPR-70-63; HPR-(8), Part II

Last October we submitted an interim report (No. 313) bearing the same title as the final report now completed. Three sites have now been analyzed. The purpose of the interim report was to bring information already at hand to bear directly on the problem concerning the I 64 - I 75 route junction and combined section westward and northward - which at that time was under consideration for safety revisions. The plan under discussion then would have, involved one or more lane drops.

I shall not report here the comments offered in the transmittal for the interim report but shall merely invite attention to them.

It seems to me now that the most significant finding from the study concerns directional lane splits which are well signed and marked. The margin for improvement by innovative markings etc. is small. Mr. Cornette recognized the insensitivity of drivers to additional helpful devices. By far the greater influence seemed to be sight distance -- which was necessarily a subjective conclusion and afterthought.

Mr. Cornette plans to submit this work to the University of Kentucky as a thesis (MSCE). He transferred to the Madisonville District in May and is serving as Traffic Engineer there.

Jas. H. Havens
Director of Research

JHH:gd

Attachments
cc's: Research Committee

15. Supplementary Notes Prepar with the US Department of Transportation, Federal Highway Administration

Study Title: Operational Characteristics of Lane Drops
16. Abstract classes. These studies were composed of conflict observations (consing of buch a study was made before brakelight applications), spot-speed observations, and lane volume an attempt to determine which device was and after each different traffic control device instalatane drops. A study of conflict deviations indicates the most effective in minimizing conflicts at existing significantly effective in reducing erratic movement that no single type of traffic control device studied locations. Rather, it appears that different traffic control and brakelight rates at all seven lane-drop locations. The single-lane exit without taper constituted devices are generally most effective at each of the the lane-drop classification with the lowest studied. The lane-termination classification have higher conflict rates. No definitive relationship between poorer sight geometrics were observed to has or accident rates was found for the lane drops studied. traffic conflict rates and either traffic

[^0]Research Report
332

OPERATIONAL CHARACTERISTICS OF LANE DROPS

FINAL REPORT
KYHPR -70-63, HPR-1(8), Part II
by

Don Cornette
Formerly Research Engineer Associate

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

-

in cooperation with the U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION
Lerase

$$
2
$$

INTRODUCTION

A lane drop is defined as a location on a highway where the number of lanes provided for through traffic decreases. For purposes of this study, the broad category of lane drops has been further subdivided into three specific classes: lane exits, lane splits, and lane terminations. These subdivisions are illustrated schematically in Figure 1. A lane exit refers to a location where the number of through lanes decreases at an interchange on a multilane roadway. A lane split denotes a major bifurcation of a multilane highway where the level of traffic service provided at the terminus of either fork is approximately equal. Thus, the lane split does not have the same exit connotation which is associated with a lane exit. The third category is the lane termination which occurs where a lane ends. A lane termination leaves a driver with no choice, he must merge into the other available lane(s). A lane termination also has no connection with an exiting situation.

Associated with the first two categories, lane exits and lane splits, is the concept of driver decision.
The driver who is confident of his destination and the proper path thereto generally presents no conflict with the flow of traffic. The problem arises largely from those drivers who are inattentive, intoxicated, uncertain of how to reach their destination and(or) have improper driving habits. Further compounding the problem are those drivers who are high-expressive self-testers, applying one of the terms coined by Roberts (1), and who will knowingly remain in the "wrong" lane to take advantage of passing opportunities .- even at the possible cost of encountering higher risk when eventually merging into the correct lane (2). It is each of these types of individuals, as shown in Figure 2, who conflict with the traffic stream. Therefore, it is imperative that the driver be made aware of the necessity for an early decision regarding his course of travel. The driver who makes an errant decision and abides by it is not as dangerous as the one who makes a delayed decision and attempts, often too late, to correct it. Thus, the driver who perchance takes the wrong branch is likely to resort to desperation tactics and back up or undertake some other maneuver that is illegal or contrary to safety.

The purpose of the study reported herein was to evaluate certain operational characteristics of ane-drop situations as they are influenced by various forewarning, decision-demanding messages. The operational characteristics evaluated were traffic conflicts (both erratic movements and brakelight applications), vehicle speeds (both automobiles and trucks), and lane volumes. More specifically, the immediate purpose was to discover types of signs, pavement markings, and lane delineations which minimize or reduce traffic conflicts at existing lane drops. Such "band-aid" type improvements were chosen for study because, insofar as existing lane-drop locations are concerned, some reduction in risk can be more quickly and cheaply accomplished than can the elimination of "causes" (3). It was also hoped that an optimum design criteria for lane-drop situations might be determined.

Figure 1. Lane Drop Types

Figure 2. Typical Examples of Driver Confusion at Lane Drop Locations

Several standard and untried traffic control devices were selected for experimentation. A pilot study at a geographically advantageous location containing three lane splits was conducted, and data collection echniques were evaluated. Final studies were then conducted at four locations, each being a different lane-drop type.

LITERATURE REVIEW

The AASHO Special Traffic Safety Committee best described the undesirability of lane drops (4) when it said, "Lane drops should normally be avoided altogether by original design or later rebuilding, but where this is not practicable, fully adequate advance warning of lane-drop situations must always be provided to give drivers sufficient time to maneuver safely into the proper lanes." Others ($5,6,7$, 8, 9) are also critical of the potential hazards (vehicle entrapment, driver indecision, etc.) inherent in most lane-drop situations. Such hazards arise because lane drops are discontinuities in the highway system . Whe features, lane drops are a substantially Although recognized by many as undesiraberak by the System Development unresearched area. One lane-drop study is currently Corporation of California (10). It is essentially a study . ine present time, insufficient data have sequential aerial photographs to compute vehicle trajectories. At California Division of Highways (11), used been accumulated to reach conclusions. Another study, by the Call accident data to evaluate lane drops. Four conclusions from were alike for all three-to-two lane terminations (three land in all two-to-one lane terminations, shoulder exit without taper had the lowest overall accident rate, 3) or right-hand through lanes had accident rates only half as grea through; and 4) there was only a slight increase in accident A more recent study formulated, and validated by aerial photography, a mathematical model descring the density perturbation on a multilane freeway (12).

No completely satisfactory manner of signing lane-drop situations has yet emerged (4). Two studies concluded, insofar as nighttime conditions are concerned, that a carefully planned and executed delineator treatment is highly accepted by drivers, easily followed, and generally helpful (13, 14). The Manual on Uniform Traffic Control Devices (15) also attests to the merits of a proper reflective treatment.

In a study of lane-termination signing in California, drivers' reactions to various signs viewed from film or slides were tested. The study indicated a rectangular four-foot by eight-foot sign bearing the message LANE ENDS .- MERGE LEFT was significantly better understood than four other signs or sign combinations used in the study (16). A study in Michigan indicated some reduction in driver confusion
with a "color coding" system, consisting of edgemarking, delineation and signing (17). Another study by the Michigan Department of State Highways (18) disclosed that certain significant reductions in lane changes and erratic movements (70 and 78 percent decreases, respectively) could be attributed to a use of this panel for lane-drop situations

From two studies $(19,20)$ of the effectiveness of
effectiveness of pavement edge markings, it was concluded that edge markings reduced both the number of fatalities and the both daytime and nighttime conditions. To explain encourage drivers to look farther ahead. Other studies driver confidence provided by edge marking (21, 22 , where roadways diverge. Two recent studies $(24,25)$ indicated it was possib of a given area using the traffic conflict criterion, i.e., the traffic conflict technique provides a for an accident history to evolve. The studies also ind relatively quick test, in the form of "before and after" flict technique, according to these same studies, of traffic engineering changes. Furthermore, the traffic conflic understanding of basic causes of accidents resulted in accurate measures of accident potentials, provid . A later study employing the traffic conflict and should ultimately lead to a reduction of traffic accide simple conflicts, defined as situations involving method at rural, dual highway intersections indicater injury accidents. one or more vehicles taking evasive action, do not defined as situations involving a vehicle in at However, the same report states that serious conflicts, de collision, correlate well with reported injury least a sudden rapid deceleration or lane change to avold were also made, but no evidence was accidents both in location and time of day. Speed measurem important factor in generating accidents and indicating that vehicles traveling faster than average were an important factor

PROCEDURE

The pilot study was conducted at the I 64 - I 75 interchange in Fayette County. This is hree-leg interchange of directional design (with a three-level st was designed, projected traffic volumes and existing safety design standards did not indicate an immediate provided an excellent example of the necessary

Figure 3. 175 SB - I 64 EB Lane Split

Figure 4. $\quad 175 \mathrm{NB}-164 \mathrm{~EB}$ Lane Split

Figure 5. $\quad 164$ WB Lane Split

Conflict surveys (consisting of both erratic movement and brakelight application counts), spot-speed measurements and lane volume counts were made at each of the three approaches. Conflict studies were originally of 12 -hour duration: nine hours in daytime and three hours in nighttime. Thus, at the 1.75 northbound gore area, observations were made from noon to midnight on Sunday, the highest traffic-volume day in this direction. At the 1.75 southbound gore area, the observation period was from noon to midnight on Friday. I-64 westbound lane-split observations were made on Tuesday because no exceptionally heavy traffic day existed there. Furthermore, the extremely light volume of traffic at this site under nighttime conditions made it unnecessary to record data after sunset. This schedule was andoned because a linear multiple regression analysis failed to show any correlation between traffic volumes and erratic movement rates. The nine daytime hours were reduced to six, which were determined to be sufficient to obtain statistically significant results.

Erratic movements were grouped into six categories. These six categories -. cut across gore area, crowded weave, stopped or slowed drastically, swerved, backed at gore, and multiple error - are defined in APPENDIX A. Brakelight actuations were also recorded.

Spot-speeds were recorded at each of the three approaches to the interchange. A minimum sample of 100 automobiles and 30 trucks was observed at four points in each two-lane approach: 1) the shoulder lane at the gore, 2) the median lane at the gore, 3) the shoulder lane a distance of 500 feet back from the gore, and 4) the median lane a distance of 500 feet back from the gore. Volume counts were made of both the median and shoulder lanes at each approach.

Finally, studies were conducted at the four lane drops shown in Figures 6 through 9. Each is typical of a different type of lane drop. The four sites were: 1) $1-75$ southbound at $1-71$ southbound, a single-lane exit with taper; 2) I-75 northbound at the 5 th Street exit in Covington, single-lane exit without taper; 3) US 27.68 (Paris Pike) northbound, just north of New Circle Road in Fayette County, a lane termination; and 4) the western terminus of the Bluegrass Parkway at Elizabethtown, westbound, a single-lane split. Conflicts, erratic movements and brakelight counts, were recorded for six daytime hours and three nighttime hours. Whereas in the pilot study, "stopped or slowed arastically" was one category, it seemed more definitive at this stage to separate them. "Backed at gore" was changed to "stopped and backed." Only one set of observations was made at each site for each traffic control system utilized. Each set consisted of volume counts, conflicts, and spot-speed measurements. However, because random observers collected the conflict data for the pilot study sites, it was felt desirable to conduct "check" studies in an attempt to determine if any variability, due to observer bias, was being introduced. Three such check studies were made and the conflict results were not significantly different from the original surveys. There were a few significant (95 percent confidence level) mean speed differences, the reasons

Figure 6. $175 \mathrm{SB}-171 \mathrm{SB}$ Single Lane Exit with Taper

Figure 7. 175 NB - 5th Street Single Lane Exit without Taper

Figure 8. US 27-68 (Paris Pike) NB Lane Termination, North of New Circle Road, Fayette County

Figure 9. Bluegrass Parkway, WB Single Lane Split at Western Terminus
for which can only be speculated. Two possible explanations are offered here: 1) observers' bias in taking the radar meter readings and 2) actual speed difference due to the elapsed time (one year) between the original and check surveys. At any rate, the same observers were used whenever possible in the final surveys.

An inventory of existing traffic control devices was made. The pavement at all locations was marked with a four-inch wide, white centerline and equally wide, white edge lines. At six of the seven locations, approximately 750 feet of roadway leading to each lane drop was delineated by double amber reflectors spaced at 100 - to 200 -foot intervals. At greater distances from the lane drop, single white reflectors were used for delineation. There was no delineation at the Paris Pike lane termination. Original signing of the seven locations is shown schematically in Figures 10 through 16.

The intuitive but fundamental requirement for improving traffic flow is a fully adequate advance warning. Advance warning is necessary in order to give drivers sufficient time for decision making and subsequent maneuvering into the proper traffic lane. Three devices were used separately and in various combinations in this study: 1) five-inch wide, yellow edge lining and two-foot wide, yellow gore striping;
2) double amber reflectors on both sides of the roadway (where possible) with decreased spacing approaching the gore area; and 3) black-on-yellow exit ONLY signs. In addition, the Paris Pike lane termination was re-signed according to guidelines set forth in the new 1971 Manual on Uniform Traffic Control Devices for Streets and Highways. The new signing scheme is illustrated in Figure 17. Typical edge lining and delineator placement are illustrated in Figures 18 and 19. A black-on-yellow exit ONLY panel is shown in Figure 4.

Early in the pilot phase of this study, time-lapse still photography was utilized in an attempt to record two-dimensionally the traffic flow characteristics at a lane drop. It was felt that vehicle taillight tracings would give the reader some insight into the merging and erratic maneuvers that occur. However, difficulty was encountered in getting sufficient camera elevation for adequate viewing, and this portion of the study was terminated. Nonetheless, an overpass at the I-64 westbound lane split afforded the proper camera elevation for one location, albeit the overpass was located too close to the gore area to adequately record merging maneuvers. Figure 20 is the singular result of this phase of the study, and it does show with clarity the traffic flow at the I-64 westbound location, including one erratic movement at the gore area.

FINDINGS AND DISCUSSION

To enhance the clarity of findings, data analysis has been subdivided into six different comparisons. flicts with site geometrics, 2) conflicts with accidents, 3) erratic movement and brakelight rates

Figure 10. Original Signing Schematic of the 175 SB - I 64 EB Lane Split

Figure 12. Original Signing Schematic of the 164 WB Lane Split

hematic of the 175 SB-I 71 SB Single Lane Exit with Figure 13. $\begin{aligned} & \text { Original } \\ & \text { Taper }\end{aligned}$

Figure 14. Original Signing Schematic of the I $75 \mathrm{NB} \cdot 5$ th Street Single Lane Exit

Figure 15. Original Signing Schematic of the Paris Pike Lane Temination

Figure 16. Original Signing Schematic of the Bluegrass Parkway Lane Split

Figure 18. Typical Yellow Edgelining and Amber Delineator Placement (Schematic)

Figure 19. Typical Amber Delineator Placement

Figure 20. Traffic Flow at the 64 WB Lane Split
before and after each traffic control device combination installation, 4) spot-speed means before and after each installation, 5) conflicts with spot-speed means, and 6) conflicts with spot-speed variance. A discussion of each of these comparisons and some comments on data restrictions follow.

Erratic movement rates, brakelight rates, and average hourly volumes for all seven lane-drop locations

CONFLICTS AND STE GEOMETRICS

 are given in Tables 1 through 4. Site geometrics may be found in Figures 21 and 22. Although it has been argued that driving performance is largely dependent on inherent personal characteristics (27), these figures clearly show the direct relationship between conflicts and site geometrics. Wherever horizontal curves had the least curvature and vertical curves where either nonexistent or negative, conflict rates were the lowest. Negative vertical grades provide optimum sight relationships, which are needed to indicate to the driver that he is approaching a discontinuity (a lane drop) in the route he is traveling $(28,29)$. Positive vertical grades provide poor sight distances and are one reason for high conflict rates at such sites (30). It has been stated that a high-speed exit is best provided by a flat angle of 4° or 5° (28). s, only two (1.75 northbound at 5 th Street However, of the six lane drops having exit-type ramps, only two (1.75 northbound I-75 southbound at 1.71 southbound) met this maximum curvature requirement. It is important to note that the two which met this requirement had the lowest conflict rates.Operational characteristics of all the lane drops studied (except the Paris Pike lane termination) in fules of operational flexibility and and volume. Indeed, the Data in Tables 1 through 4 show no clear relationship betw site with the lowest average hourly volume had the high the highest average hourly volume had the lowest ond suffices to say that there are two primary reasons phenonmena may be found in the literature (33). for this seemingly paradoxical observation. First, modern high-speed highways are

table 2
THE FINAL STUDY MOR AVEAGE HOURLY VOLUMES KELIGHT RATES* AND

TABLE 4
THE FINAL STUDY GKELIGHT RATES* AND

ON TANGENT
Figure 21. Roadway Geometrics of the Pilot Study Sites

Figure 22. Roadway Geometries of the Final Study Sites
the driver of many operational judgements and decisions associated with the older type highways. This environment leads to inattentiveness and reduced alertness, particularly at low traffic volumes, which ncrease the probability of a conflict-producing situation. Secondly, at low volumes there is reduced "caravaning", wherein each driver consciously or subconsciously follows the vehicle(s) ahead. At high volumes, the opposite of these two explanations is true.

There was also no clear trend in conflict rates at sites with intermediate volumes. A partial explanation of this observation is that it is these intermediate volume conditions, particularly between approximately 2,000 and 5,000 vehicles per day, which produce inconsistent conflict rates (33).

CONFLICTS AND ACCIDENT RATES

Accident summaries of all seven lane-drop locations, as well as collision diagrams for the five location with the highest accident frequencies, may be found in APPENDIX B (34). Also included in APPENDIX B are 1971 adjusted" average daily traffic volumes

Overall conflict rates and accident rates per million vehicl of this table reveals no definitive relationship between conflict and accident rate investigated.

ATIC MOVEMENT AND BRAKELIGHT RATES BEFORE AND AFTER INSTALLATION OF

EACH TRAFFIC CONTROL DEVICE COMBINATION
A statistical analysis of all erratic movement and brakelight rate deviations was made using the Smith-Satterthwaite test (35). Significant erratic movement and brakelight rate deviations are given in

Tables 6 through 18. A summary of statistical theory and tests utilized in the analysis of data is presented in APPENDIX C .

Environmental, goemetric and traffic conditions were different at each lane drop. This is perhaps the primary reason that a study of conflict deviations indicates no single type of traffic control device was significantly effective in reducing erratic movement and brakelight rates at the seven locations. Rather, it appears that different devices were generally most effective at each of the locations, i.e., amber delineators at the 1.75 southbound lane split during both day and night conditions, exit ONLY signs split during night conditions.

At the Paris Pike lane termination, the signing scheme recommended by the 1971 Manual on Uniform

TABLE 5

OVERALL ERRATIC MOVEMENT, BRAKELIGHT,

	OVERALL ORRATIC MOVEMENT	OVERALL BRAKELIGHT RATE	ACCIDENT RATE
	RATE		
LOCATION			1.58
	34,700	222,300	1.33
I 64 WB	65,000	150,600	1.45
I 75 NB	15,700	286,900	3.56
I 75 SB	223,200	299,100	4.72
BG PARKWAY	9,000	43,500	1.12
PARIS PIKE	6,100	57,800	.77
I 75 NB @ 5th St	12,200	79,400	

TABLE 6
175 SB-164 EB LANE SPLIT (DAYTMME) DEVIATIONS*

TABLE 7
75 SB -164 EB LANE SPLIT (NIGHT RATE DEVIATIONS*
175 SB - 164 EBLAN \& BRAKELIGHT RATE DEVIATIO

 The woras rate deviations that wo
ount of the 95% confidence level.
table 8
$75 \mathrm{NB}-164 \mathrm{eb}$ Lane splt (Daytime) deviations*
SIGNIFICANT ERRATIC MOVEMENT \& BRAKELIGHT RATE DEVATION

*The words "TNCREASE" \& "DECREASE" refer that were found
*The worde rakelight rate deviatione contidence level.
erratic movement or
to be ptatibtically

TABLE 9
$175 \mathrm{NB}-164$ EB LANE SPLIT (NIGHTTMEE) DEVIATIONS*

TABLE 10
64 WB LANE SPLIT (DAYTIME) RATE DEVIATIONS*
SIGNIFICANT ERRATIC MOVEMENT

"prrease" \& "DECREASE" refer waye found to
*The words "Increase" \& deviations that were fovel.
novement of brakelight rat
table 11
bluegrass parkway lane split (DAyrate deviations bluggrass parkwr and braxelight rate deviation

fable 12
BLUEGRASS PARKWAY LANE SPLIT (NiGHTTIME)

TABLE 14
PRIS PIKE LANE TERMINATION (NIGHTTMLE DEVIATIONS* parts ake mit and brakelight rate deviations

TABLE 15
175 SB AT I 71 SB (DAYTMME) thge lane exit with taper rate deylations* Single lane ixi mrakelight rate dey

table 16
I 75 SB AT 171 SB (NGGHTTME)
,

TABLE 17
175 NB AT 5 TH STREET EXIT (DAYTIME)
SINGLE LANE EXIT WTTHOUT TAPER SINGLE LANG
SRRATIC MOVEMENT AND GRAKELIGHT RATE DEVIATIONS

TABLE 18
TREET EXIT (NiGHTTIME)
75 NB AT STH STRXT WITHOUT TAPER
SINGLE LANE EXT WD BRAKELIGHT

Traffic Control Devices for Streets and Highways was the most effective device used during daytime conditions.

At these last two locations, nighttime effectiveness of the amber delineator and yellow striping ombination was not statistically significant. However, the daytime effectiveness was statistically significant at the 95 percent confidence level. The number of interacting factors involved in the the effect of any one variable is negligible. Therefore, of traffic behavior more directly sensitive to events control of the driver. This is generally the case with vehicle speed, be therefore, one to which he is most responsive. It would seem reasonable that speed would be a primary control that a driver would employ
for any potentially hazardous traffic situation, Spot-speeds, taken during daylight hours, differences before and after each different traffic control device may be found in APPENDIX C (37). Mean speeds for each through 29. Although these speeds may appear low upon two locations have speed limits of 50 mph and several of the of from 35 mph to 45 mph . It should be recognized that horizo feature related to spot-speed characteristics (38). Furthermore operating speeds through weaving sections for a given level of
(39).

At the beginning of this study, it was hypothesized that an effective traffic control device at a lane drop would result in higher spot speeds in the immediate vicinity of the gore and in slightly lower or unchanged spot speeds at a distance of approximately 500 feet back from the gore. It was felt that speed during the final few seconds of approach. This

note : brackets denote statisticaliy signietcant mean speed deviations
Figure 24. Mean Speeds at the I 75 NB - I 64 EB Lane Split

NOTE: GRACKETS DENOTE STATISTICALLY
TRUCKS
Initial
stripes
Stripes \& Signs
S, S, \& Delineators 48 [5]
SHOULDER

SPEED LIMIT - 70

NORTHBOUND
OUND

yote: brackets denote statisticaliy sigang
Figure 26. Mean Speeds at the I 75 SB - I 71 SB Single Lane Exit win Tap

- 75 NB - 5th Street Single Lane Exit without Taper

Figure 27. Mean Speeds at the 175 NB - 5 th Street

Figure 28. Mean Speeds at the Paris Pike Lane Termination

NOTE: BRACKETS DENOTE STATISTICALLY SIGNIFICANT MEAN SPEED DEVIATIONS

Figure 29. Mean Speeds at the Bluegrass Parkway Lane Split
of 500 feet from the lane split. At the gore, the driver becomes more certain of his path of travel and resumes speed. Generally, this trend was observed at each location for each of the traffic control device installations which were the most effective in reducing conflicts.

CONFLICTS AND SPOT-SPEED MEANS AND VARIANCES
Total erratic movement and brakelight rate deviations are compared with mean speed and sample variance deviations, for each lane-drop type studied, in Tables 19 through 22. Only daylight conflict ates were compared; speed studies were made for daylight conditions only. These comparisons were made in an attempt to determine if variations in conflict rates could be related to variations in mean speeds and/or sample variances. In the case of speed variance, it was felt that if, in fact, a traffic control device causes a reduction in the variance of speed, then it would also reduce the frequency of extreme responses and their attendent possibilities for driving errors, i.e., conflicts. However, a thorough study of Tables 19 through 22 reveals that there is no apparent relationship between conflict rates and mean speeds or sample variances. The sample from which this comparison was made consisted of all conflict rates, mean speeds, and speed variances, both initially and after installation of each experimental traffic control device.

DATA RESTRICTIONS

In summary, there are limitations on the interpretation of the data obtained in this study which re perhaps indicative of some basic restrictions inherent in all such field studies of this type. First, the freedom of response available to drivers is so great that the variability in operational characteristics may be ranidom. Consequently, data taken from the roadside on a mass of motorists may be so unrealiable that definitive inferences are possible only in limited situations. Second, the time-varying characteristics, especially the "novelty effect" created by any new traffic control device within the highway system, prevent the establishment of any real experimental control in the field. There are too many uncontrolled variables. Third, observers, being human, are not capable of complete objectivity, regardless of how vigorously it is attempted. Finally, perhaps the greates limitation was that traffic conflicts at several locations were observed under volume conditions which have been shown to produce inconsistent conflict rates, i.e., in the range from approximately 2,000 to 5,000 vehicles per day (33). Such a limitation hindered the analysis of field data and the conclusions made therefrom.

CONCLUSIONS

Each of the three traffic control devices tested was effective, in varying degrees, in reducing traffic conflicts at lane drops. No single type of traffic control device tested was significantly effective in reducing

conflicts at all seven lane drops. Rather, different devices were generally most effective at different locations.

The lane drop comprised of a single-lane exit without taper had the lowest conflict rates of the different calssifications studied. The termination had the next lowest conflict rates.

Lane drops associated with poor site geometrics, i.e., high rates of curvature with attendant sight igher conflict than those associated with more optimal

No distinct relationship between traffic volumes and conflict rates, as defined herein, was found geometric features.
the lane drops studied. No definitive relationship between conflict and accident rates was found
from the outset, inasmuch as traffic control devices are not as effective in reducing conflicts as are proper site geometrics.

There are limitations on the interpretation of the data in this study which are perhaps indicative of some basic restrictions inherent in all such field studies of this type.

Although the traffic conflict criterion is well established (24,25), its usefulness in predicting acciden potential at sites where the traffic volumes are in the range of approximately $2,000 \cdot 5,000$ vehicles per day is questionable.

RECOMMENDATIONS

Different environmental, geometric, and traffic conditions may explain why different traffic contro devices were most effective in reducing conflict rates at different sites. Further study of the affecting conditions should be made to determine their relationship with the effectiveness of traffic control devices.
avoided altogether by original design or later rebuilding...
Whenever the elimination of lane drops is not practica providing superior sight distance, should be followed even throughout the entire length of a particular route. Furthermore,
de California Division of Highways (11), it is Based on the findings of this study and ecommended that the single-lane exit without taper type of lane drop be utilized at

1. Proceedings, Traffic Engineering Seminar, University of Kentucky, November 1971.
2. Perchonok, K., and Hurst, P.M., The Effect of Lane Closure Signals upon Driver Decision-Making and Traffic Flow, Division of Highway Studies, Pennsylvania State College, March 1965.
3. Baker, R.F., The Highway Risk Problem, Wiley-Interscience, 1971.
4. Special AASHO Traffic Safety Committee, Highway Design and Operational Practices Related to Highway Safety, AASHO, February 1967.
5. Oppenlander, J. C., and Dawson, R. F., Chapter 9-Interchanges, Traffic Control and Roadway Elements :- Their Relationship to Highway Safety, Highway Users Federation for Safety and Mobility, Revised, 1970.
6. A Policy on Geometric Design of Rural Highways, AASHO, 1966.
7. Lundy, R. A., The Effect of Ramp Type and Geometry on Accidents, Record 163, Highway Research Board, 1967.
8. Jouzy, N. C., and Michael, H. L., Use and Design of Acceleration and Deceleration Lanes in Indiana, Record 9, Highway Research Board, 1963.
9. Breuning, S. M., and Bone, A. J., Interchange Accident Exposure, Bulletin 240, Highway Research Board, 1960.
10. Gafarian, A. V., Private correspondence on Lane-Drop Study, NCHRP Project 3-16, System Development Corporation, 1970.
11. Tye, E. J., The Lane Drop Study -- Relating Roadway Elements to Accidents, California Division of Highways, 1970.
12. Munjal, P. K., Hsu, Y. S., and Lawrence, R. L., Analysis and Validation of Lane-Drop Effects on Multi-Lane Freeways, Transportation Research, Vol 5, No 4, pp 257-266, December 1971.
13. Darrell, J. E. P., and Dunnette, M. D., Driver Performance Related to Interchange Marking and Nighttime Visibility Condition, Bulletin 255, Highway Research Board, 1960.
14. Dart, O. K., A Study of Roadside Delineator Effectiveness on an Interstate Highway, Record 105, Highway Research Board, 1966.
15. Manual on Uniform Traffic Control Devices for Streets and Highways, Kentucky Department of Highways, October 1967.
16. Burg, A., and Hulbert, S. F., Predicting the Effectiveness of Highway Signs, Bulletin 324, Highway Research Board, 1962.
17. Roth, W. J., and DeRose, F., Interchange Ramp Color Delineation and Marking Study, Record 105, Highway Research Board, 1966.
18. Study of the Black-on-Yellow 'Exit Only" Freeway Signing, Traffic and Safety Division, Michigan Department of State Highways, May 1963.
19. Basile, A. J., Effect of Pavement Edge Markings on Traffic Accidents in Kansas, Bulletin 308, Highway Research Board, 1962.
20. Musick, J. V., Effect of Pavement Edge Markings on Two-Lane Rural State Highways in Ohio, Bulletin 266, Highway Research Board, 1960.
21. Williston, R. M., Effect of Pavement Edge Markings on Operator Behavior, Bulletin 266 Highway Research Board, 1960.
22. Thomas, I. L., Pavement Edge Lines on Twenty-Four Foot Surfaces in Louisiana, Bulletin 178, Highway Research Board, 1958.
23. McDermott, I. M., and McClean, C. H., Improving Traffic Flow at Transfer Roadways on Collector-Distributor Type Expressways, Record 59, Highway Research Board, 1964.
24. Perkins, S. R., and Harris, J. I., Traffic Conflict Characteristics -- Accident Potential at Intersections, Record 255, Highway Research Board, 1968.
25. Campbell, R. E., and King, L. E., An Investigation of Two Rural Intersections Utilizing the General Motors Traffic Conflicts Technique, Second Western Summer Meeting, Highway Research Board, 1969.
26. Spicer, B. R., A Pilot Study of Traffic Conflicts at a Rural Dual Carriageway Intersection, RRL Report LR410, Road Research Laboratory, 1971.
27. Holmes, E. H., Application of Driver Behavior and Vehicle Performance Studies, Proceedings, Vol 21, Highway Research Board, 1941.
28. Traffic Engineering Handbook, Third Edition, Institute of Traffic Engineers, 1965.
29. Mullins, B. F. K., and Keese, G. J., Freeway Traffic Accident Analysis and Safety Study, Bulletin 291, Highway Research Board, 1961.
30. Seymour, W. M., Analysis of Traffic Control on High Speed Facilities during Maintenance, Division of Research, Kentucky Department of Highways, May 1972.
31. Leisch, J. E., Designing Operational Flexibility into Urban Freeways, Proceedings, Institute of Traffic Engineers, August 1963.
32. Carroll, J. D., Campbell, E. W., et al, Chicago Area Transportation Study, Vol III, Transportation Plan, April 1962.
33. Hutchinson, J. W., and Kennedy, T. W., Safety Considerations in Median Design, Record 162, Highway Research Board, 1967.
34. Maffet, B. R., I 64-I 75 Accident Analysis, Division of Traffic, Kentucky Department of Highways, February 1971.
35. Miller, I. and Freund, J. E., Probability and Statistics for Engineers, Prentice-Hall Inc., 1965.
36. Michaels, R. M., The Effects of Enforcement on Traffic Behavior, Public Roads, December 1960.
37. Kennedy, N., Kell, J. H., and Homburger, W. S., Fundamentals of Traffic Engineering, 7th Edition, The Institute of Transportation and Traffic Engineering, University of California, 1969.
38. Oppenlander, J. C., Variables Influencing Spot-Speed Characteristics, Special Report 89, Highway

Research Board, 1966.
39. Highway Capacity Manual, Special Report 87, Highway Research Board, 1965.

APPENDIX A

ERRATIC MOVEMENT DEFINITIONS

ERRATIC MOVEMENT DEFINITIONS

Cut Across Gore Area - Vehicle crosses over the pavement markings used to delineate the gore area.

Crowded Weave - Vehicle changes lanes directly in front of a following vehicle, causing the following vehicle to apply its brakes. This type of erratic movement always directly involves at least two vehicles.

Stopped - Vehicle comes to a complete stop.

Slowed Drastically -- Vehicle undergoes a very rapid deceleration, causing "dipping" of the front end or tire squealing.

Swerve -- Vehicle abruptly veers from its straight ahead course. A swerve may or may not consist of a change of lanes for the erratic vehicle. This type of erratic movement always involves only one vehicle.

Stopped and Backed - Vehicle comes to a complete stop and then backs up.

Multiple Error .- Occurs when a vehicle commits a combination of two or more of the above errors.
APPENDIX B
ACCIDENT ANALYSES
ACCIDENT SUMMARAMS COLLISION DIAGRA TRAFFIC VOLUMES 1971 ADJUSTED AVERAGE D

ACCIDENT SUMMARIES

ACCIDENT SUMMARY

1 64 - I 75 TRI-LEVEL INTERCHANGE

STUDY PERIOD -- August 15, 1967, through December 3i, 1970 ACCIDENT RATE -- 192 accidents per hundred million vehicle miles

TOTAL FATALITIES	
LIGHT CONDITION	49
Daylight	16

Dark
PAVEMENT CONDITION 27

		67
27	76	33
22	38	

Wet
38

12	39
37	75

34

Dry

* Loss of control includes falling asleep, adverse roadway conditions (wet, ice, snow, etc.), inattention, drinking, object in roadway, etc.

ACCIDENT SUMMARY
 I. 75 NORTHBOUND AT THE 5TH STREET EXIT IN COVINGTON

STUDY PERIOD - January 1, 1971 - December 31, 197 ACCIDENT RATE - $\quad 1.12$ accidents per million vehicles INJURY RATE - 0.40 injury accidents per million vehicles

	TOTAL	PERCENT
	17	100
NUMBER OF ACCIDENTS		
		53
ACCIDENT TYPES	9	29
Rear-End	5	12
Multiple Rear-End	2	6
- Sideswipe	1	
Fixed Object		35
(6	35
ACCIDENTS INVOLVING INJURY	12	
TOTAL NUMBER INJURED		0
	0	
TOTAL FATALITIES		
		82
LIGHT CONDITION	14	12
Daylight	2	6
Dark	1	
Dawn or Dusk		
PAVEMENT CONDITION	5	29
Wet	12	7
Dry		

ACCIDENT SUMMARY

US 27.68 (Paris Pike) NORTHBOUND, JUST NORTH OF NEW CIRCLE ROAD, FAYETTE COUNTY

STUDY PERIOD - January 1, 1971 ... December 31, 1971
ACCIDENT RATE - 4.72 accidents per million vehicles
INJURY RATE - 1.57 injury accidents per million vehicles

ACCIDENT SUMMARY

WESTERN TERMINUS OF THE BLUEGRASS PARKWAY, WESTBOUND

STUDY PERIOD - January 1, 1971 - December 31, 1971
ACCIDENT RATE - $\quad 3.56$ accidents per million vehicles INJURY RATE
1.78 injury accidents per million vehicles

TOTAL

2
NUMBER OF ACCIDENTS
AGCIDENT TYPES
1
Fixed Object 1
Lost Control
ACCIDENTS INVOLVING INJURY 1
ACCIDENS 1
TOTAL NUMBER INJURED
TOTAL FATALITIES
LIGHT CONDITION
1
Daylight
1
Dark
PAVEMENT CONDITION
1
Dry
1

Icy

ACCIDENT SUMMARY

1-75 SOUTHBOUND AT 1-71 SOUTHBOUND

STUDY PERIOD - January 1, 1971 .- December 31, 1971
ACCIDENT RATE - 0.77 accidents per million vehicles
INJURY RATE - 0.46 injury accidents per million vehicles

	TOTAL	PERCENT
NUMBER OF ACCIDENTS	5	100
ACCIDENT TYPES		
Rear-End		
Multiple Rear-End	2	40
Lost Control	1	20
Sideswipe	1	20
ACCIDENTS INVOLVING INJURY	1	20
TOTAL NUMBER INJURED	3	60
TOTAL FATALITIES	6	
LIGHT CONDITION	0	0
Daylight		
Dark	3	60
Dawn or Dusk	1	20
PAVEMENT CONDITION	1	20
Wet		
Dry	0	0

COLLISION DIAGRAMS

COLLISION DIAGRAM OF THE 164
I 75 TRI-LEVEL INTERCHANGE

I 75 NB - 5th Street

1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES
1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES
LOCATION
1971 ADT (one way)
I-75 northbound at 5th Street 41,518
US 27-68 (Paris Pike) northbound 5,229
I. 75 southbound at I-71 southbound 17,718
Bluegrass Parkway wẹstbound terminus 1,540

1971 ADJUSTED AVERAGE DAILY TRAFFIC VOLUMES FOR THE I 64 - I 75 TRI-LEVEL INTERCHANGE

APPENDIX C
STATISTICAL THEORY

STATISTICAL THEORY

INFERENCES CONCERNING MEANS

The following Smith-Satterthwaite test can be used to test for equality of means when concerned with two independent random samples with normal populations whose variances are not necessarily equal:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{O}}: \mathrm{x}=\mathrm{y} \quad \mathrm{H}_{1}: \mathrm{x} \neq \mathrm{y} \\
& \mathrm{t}=(\mathrm{x}-\mathrm{y}) /\left[\frac{\mathrm{s}_{\mathrm{x}}{ }^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{\mathrm{y}}{ }^{2}}{\mathrm{n}_{2}}\right]^{1 / 2} \\
& v=\left[\frac{\mathrm{s}_{\mathrm{x}}{ }^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{\mathrm{y}}^{2}}{\mathrm{n}_{2}}\right]^{2} \div\left[\frac{\left(\mathrm{s}_{\mathrm{x}}^{2} / \mathrm{n}_{1}\right)^{2}}{\mathrm{n}_{1} \cdot 1}+\frac{\left(\mathrm{s}_{\mathrm{y}}^{2} / \mathrm{n}_{2}\right)^{2}}{\mathrm{n}_{2}-1}\right]
\end{aligned}
$$

"BEFORE AND AFTER" SPOT-SPEED STUDIES

In order to determine significant differences between the mean speeds of "before and after" studies, it is necessary to estimate the standard deviation of the differences in means by use of the equation:

$$
\hat{s}=\sqrt{s_{\bar{x}_{b}}^{2}+s_{\bar{x}_{a}}^{2}}
$$

where $\hat{s}=$ standard deviation of the difference in means,

$$
\begin{aligned}
& s_{\bar{x}_{\mathrm{b}}}^{2}=\frac{\Sigma \mathrm{f}_{\mathrm{b}_{\mathrm{i}}}\left(\mathrm{x}_{\mathrm{b}_{\mathrm{i}}}\right)^{2}-\frac{1}{n_{\mathrm{b}}}\left(\Sigma \mathrm{f}_{\mathrm{b}_{\mathrm{i}}} \mathrm{x}_{\mathrm{b}_{\mathrm{i}}}\right)^{2}}{n_{\mathrm{b}}\left(n_{\mathrm{b}}-1\right)}=\text { mean variance of "before" study, and } \\
& s_{\bar{x}_{\mathrm{a}}}^{2}=\frac{\Sigma \mathrm{f}_{\mathrm{a}_{\mathrm{i}}}\left(\mathrm{x}_{\mathrm{a}_{\mathrm{i}}}\right)^{2}-\frac{1}{n_{\mathrm{a}}}\left(\Sigma \mathrm{f}_{\mathrm{a}_{\mathrm{i}}} \mathrm{x}_{\mathrm{a}_{\mathrm{i}}}\right)^{2}}{n_{\mathrm{a}}\left(n_{\mathrm{a}}-1\right)}=\text { mean variance of "after" study. }
\end{aligned}
$$

If the difference in mean speeds is greater than twice the standard deviation of the difference in means, i.e.

$$
\overline{\mathrm{x}}_{\mathrm{b}}-\overline{\mathrm{x}}_{\mathrm{a}}>2 \hat{\mathrm{~s}},
$$

it can be said with 95 percent confidence that the observed difference in mean speeds is significant (the change in conditions has significantly affected the mean speed).

dIFFERENCES IN SPOT.SPEED SAMPLE VARIANCES

The F test is a test of the differences between variances and is the ratio of the larger variance to the smaller.

If $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$ are the variances of independent random samples of size n_{1} and n_{2}, respectively, taken from two normal populations having the same variance, then

$$
\mathrm{F}=\mathrm{s}_{1}^{2} / \mathrm{s}_{2}^{2}
$$

is a value of a random variable having the F distribution with parameters $\nu_{1}=\mathrm{n}_{1}-1$ and $\nu_{2}=n_{2}$ - 1 , where $\nu_{1}=$ degrees of freedom for the sample variance in the numerator,
$\nu_{2_{0}}=$ degrees of freedom for the sample variance in the denominator.

[^0]: Form DOT F 1700.7 (6.69)

