TRAFFIC CONTROL FOR MAINTENANCE ON HIGH-SPEED HIGHWAYS

by

W. M. Seymour, R. C. Deen, and J. H. Havens
Kentucky Bureau of Highways

Abstract

Observations were first made at lane closures on interstate highways where yellow warning signs were erected routinely in conjunction with contract work. Later data provided direct comparison between new yellow and new orange signs. One sign scheme was used throughout the study. Driver obedience improved when new signs of either color were used; this finding implies that signs should always be maintained in good condition. Orange signs were slightly more effective than yellow signs in reducing traffic conflicts and merges near the traffic cones. Results of the study tend to support the adoption of orange as the standard color for signing construction and maintenance sites. However, differences between the two colors were rather small. Driver preference polls supported the orange signs more strongly. A degree of driver insensitivity toward signing was shown. In general, variables such as short sight distances, high volumes, poor condition of signs, and driver insensitivity produced unsafe situations at lane closures. However, the scope of the study did not permit observations at sufficient sites and(or) at sufficient times to serve as a definitive exploration of such variables as weather, terrain, vertical and horizontal alignment, or level of service.

Research Report

 380
TRAFFIC CONTROL FOR MAINTENANCE

 ON HIGH-SPEED HIGHWAYSby
William M. Seymour
Formerly Research Engineer
Robert C. Deen
Assistant Director
and
James H. Havens
Director
Division of Research
Bureau of Highways DEPARTMENT OF TRANSPORTATION
Commonwealth of Kentucky

Offered for publication to the

 Highway Research Board
INTRODUCTION

Maintenance work which requires barricading one or.more lanes of a high-speed roadway creates a potential hazard to the unwary traveler and to the worker. The problem is twofold: first, the proper messages must be presented to the approaching driver far enough in advance to allow him time to decelerate and merge before reaching the actual work site; and second, the driver must obey the messages.

Standards for temporary signing have been rather difficult to develop and implement. Even well-prepared standards do not supplant judgement, discretion, and ingenuity in specific instances. Effective signing and barricading will surely cause a minimum of interference with the flow of traffic. A lane closure where all lanes operate at capacity during peak hours cannot operate effectively unless some of the traffic is diverted onto alternate routes. Public announcements and advice to travelers have proven to be helpful in managing these situations.

This study was concerned only with left and right lane closures; shoulder closures and other maintenance activities were not observed. All data were taken during favorable weather conditions. The scope of the study did not permit observations at sufficient sites and(or) at sufficient times to serve as a definitive exploration of such variables as weather, terrain, vertical and horizontal alignment, or level of service. It was inevitable that data from the several sites be combined for purposes of comparison, even though different circumstances existed at most sites. The possibility of signing a "dummy" maintenance site was rejected from the outset of the study due to the urinecessary risks created for motorists and consequent liabilities.

PROCEDURE

During the summer of 1971, safety improvements were made on I 75 in Scott and Grant Counties and on I 64 between Frankfort and Louisville, Kentucky. Research personnel were able to observe and collect data at various lane closures. Cooperation of the contractors was excellent.

In Phase 1, observations were made at sites signed by contractors. In Phase 2, contractors' signs were replaced with new yellow signs and then with new orange signs. Phase 2 also included observation of the new signs at sites where other research activities required lane closures. Phase 2 provided direct comparison between yellow and orange signs. The new yellow signs were hung over the contractors' signs (Figure 1); traffic was observed for one hour; then new orange signs were superposed; and observations continued for another hour. Care was taken to position signs according to the scheme shown in Figure 2. At all times, observers attempted to be inconspicuous to the motorists. Tables 1 through 4 summarize these data indicated below.

SPOT SPEEDS

Radar spot speeds were taken at the first sign ($2500-\mathrm{ft}(760-\mathrm{m})$ sign) and again at the first traffic cone (see Figure 2). Walkie-talkies were used by the forward radar meter operator to relay identification of each vehicle to the second meter operator.

TRAFFIC CONFLICTS

Traffic conflicts were categorized and defined as follows:
Abnormal Brake Application -- A very rapid deceleration causing "dipping" of vehicle's front end (tire squealing noted separately).

Forced Merge - A vehicle changing lanes directly in front of a following vehicle, causing the following vehicle to apply its brakes; first vehicle forces-in, risking possible contact.

Complete Stop -- Driver waits too long to merge and is forced to come to a stop and wait for a gap.

MERGING MANEUVERS

Observers were able to record the location of merging maneuvers to the nearest hundred feet (30 meters). For consistency of observation, the point of merging was considered to be where the left front tire crossed the centerline stripe when merging to the left and where the right front tire crossed the centerline stripe for merging to the right. These observations were later grouped according to percentages occurring in $500-\mathrm{ft}(150-\mathrm{m})$ intervals.

TURN SIGNALS

Turn signals were counted and converted into percent of total lane changes.

FINDINGS

SPOT SPEEDS

Tables 5 and 6 show the mean speeds and mean decreases in speeds. The contractors' signs (Phase 1) were the least effective; drivers did not decrease speed as much and were therefore less obedient to the contractors' signs than they were to new signs. There was no significant difference in driver obedience toward the new yellow and new orange signs. Thus, the color of the signs had very little effect on speed. This is shown graphically in Figure 3. In general, other graphs not included here were similar. The total effect is attributed to differences in quality or condition of the signs. Indeed the condition of the contractors' signs was inferior to the new signs shown in Figure 4. Unfortunately, such signs are usually not adequately maintained if the construction or maintenance continues in time and if the same signs are moved from one place to another.

Auto speeds at the first cone (Table 5) were approximately 6 to $10 \mathrm{mph}(2$ to $4 \mathrm{~m} / \mathrm{s}$) higher than the advisory speed limit, that is, $45 \mathrm{mph}(20 \mathrm{~m} / \mathrm{s})$, posted $500 \mathrm{ft}(150 \mathrm{~m})$ before the first cone. The mean 85 th-percentile speed of all cars at the first cone was a little over $59 \mathrm{mph}(26 \mathrm{~m} / \mathrm{s})$. Table 7 shows all mean 85 th-percentile speeds.

TRAFFIC CONFLICTS

Figures 5 and 6 show conflicts per hundred vehicles at each site (Phase 2) for right and left lane closures, respectively. With volume effects excluded and everything else constant, it appears that orange signs involved fewer conflicts than yellow signs. When conflicts at sites signed by contractors were included in the analysis (Table 8), there was a statistically significant increase in the number of conflicts at right lane closures. At left lane closures, only orange signs were significantly lower. Here again, new orange signs were associated with fewer conflicts than new yellow signs, but this difference was not statistically significant. Signs used in Phase 2 yielded greater consistency of results; and according to Hurst, Perchonok, and Seguin (1), greater consistency in these statistics indicates less driver confusion.

Most of the conflicts (about 87 percent) occurred within the half of the signed area nearest the cones. The most frequently recorded conflicts were abnormal brake applications.

MERGING MANEUVERS

Merging maneuvers were difficult to analyze because driver behavior and predisposition are so
integrally involved. Ideally, if motorists were adequately warned in advance of a lane closure, there would be relatively few merges within the last few hundred feet (meters) approaching the barricade. Adequate warning enables a driver to choose his own gap rather than be forced into the through lane at the last second. Fewer merges near the cones complement the safety of the work crew and flagman as well as the motorist. However, as traffic volume increases and as gaps become smaller, more and more drivers will be trapped in the closed lane -- thereby delaying otherwise normal merging and very likely causing an increase in forced merging. Also, there are always some drivers who will stay in the closed lane longer than they should just to pass one to two more cars .. that is to say, the more aggresive driver might remain in the closed lane to take advantage of the reduced lane volume at the cost of encountering higher risk when he ultimately changes lanes (2). Consequently, where traffic is not congested, those drivers who deliberately disobey the messages and those who are not attentive may account for most of the merging within the last $500 \mathrm{ft}(150 \mathrm{~m})$ approaching the barricade. Indeed, dangers increased at those sites where the merging in this last $500 \mathrm{ft}(150 \mathrm{~m})$ was unusually high (see Tables 1 through 4). In general, those sites were complicated by short sight distances, high volumes, or poor traffic control; but no one factor was consistently dominant. For example, in Phase 2 there were five instances wherein more than 20 percent of all merges occurred within $500 \mathrm{ft}(150 \mathrm{~m})$ of the barricade. The hourly volumes varied from 188 to 757 ; sight distances ranged between 0.2 and 0.8 mile (0.4 and 1.5 kilometers); percent trucks varied from 9.5 to 28.7 ; the lengths of the sites were generally about $2500 \mathrm{ft}(760 \mathrm{~m})$, but one was $5000 \mathrm{ft}(1525 \mathrm{~m})$ in length; and various design features were included. It may be of interest to note that yellow signs were in use during four of the periods of observation, whereas orange signs were used during only one. Table 9 shows again that new signs are an improvement over the contractors' signs. Orange signs seem to be slightly superior to yellow signs in Phase 2 but not to a statistically significant extent.

Various frequency distributions were obtained by plotting distances (measured from the first cone) against the percent of merges occurring at each distance. There were peaks in these distributions at or near the $1000 \cdot \mathrm{ft}(300-\mathrm{m})$ sign and near the first sign ($2500 \mathrm{ft}(760 \mathrm{~m})$). Some distributions showed three peaks. No explanation for these behavioral modes is offered here, but some interesting possibilities may be found in the work by Roberts, Hutchinson, and Carlson (3) on high, intermediate, and low expressive self-testers (risk takers). At sites where both sign colors were used, the two distributions roughly followed the same pattern (Figures 7 through 9). Orange signs sometimes reduced the number of merges nearer the cones and, therefore, in some cases tended to skew the distribution slightly more to the right (see Figures 10 through 12).

TURN SIGNAL INDICATIONS

Table 10 shows the mean number of turn signal indications for the various sites. The smaller percentages of turn signal actuations in Phase 2 may merely indicate the superior quality of the signs. There was no significant difference in turn signal usage with respect to yellow and orange signs in Phase

2.

DRIVER INTERVIEWS

A total of 62 drivers were interviewed after they had passed through a lane closure. Sign colors were alternated $(2500-\mathrm{ft}(760-\mathrm{m})$ and $1000-\mathrm{ft}(300-\mathrm{m})$ signs were yellow; $1500-\mathrm{ft}(460-\mathrm{m})$ and $500-\mathrm{ft}$ ($150-\mathrm{m}$) signs were orange) so drivers could make comparisons. Of course, total recall would be most unlikely. The questions and replies are shown in Table 11. Of the 62 people interviewed, 38 (61 percent) noticed two different colored warning signs. Of the 38 who noticed two colors, 27 (71 percent) said orange was more effective. This is assuming the four people who said red was more effective were actually referring to the orange signs. Ten people responded to Question 6 with one or more complaints. The most common complaint (given six times) was that there was not enough prior notice or advance warning. Two complaints were against flagmen. Others, each occurring once, were: signs are spread out too much, flashing arrow should be nearer the beginning of the cones, and signs are often in place when no lane closure or maintenance is in progress. This last complaint could account for the fact that in Question 8 almost 20 percent of the people interviewed said they wait until they see the actual lane blocked before merging.

DISCUSSION

No one factor was consistently responsible for undesirable conditions at the lane closures examined. High incidences of traffic conflicts and last-second merges were generally attributed to 1) short sight distances, 2) high volumes, 3) poor quality signs, and 4) driver insensitivity.

Adoption of the new AASHO Manual on Uniform Traffic Control Devices (4) provides for the first time a standard scheme for signing single-lane closures on interstate highways. The manual specifies the use of orange signs at construction and maintenance sites. Results of this study tend to substantiate the change in color.

An example of deceptive signing is depicted in Figure 13. These signs literally say there is road construction XXX feet (YYY meters) ahead. However, this distance is actually measured to the beginning of a project or to the white "Your Highway Taxes at Work" sign, and thus convey a false message
to the road user since there may be no construction visible for several miles (kilometers). This may cause a driver to doubt the validity of or to unconsciously disregard the next set of warning signs at an actual lane closure. The "Road Construction Next XX Miles (YY Kilometers)" sign (Figure 13), or several signs to this effect, would be adequate for the beginning of an extensive project. On several occasions during the course of this study, research personnel noticed warning signs in place but no maintenance or lane closure ahead. This practice also creates disrespect for maintenance signs. Such signs should be neatly covered or removed when work is suspended.

Other common errors in traffic control were observed during the data collection. Adjusting sign placement, i.e., lengthening distances between signs and between signs and cones, to compensate for poor sight distances is practical only to a certain extent. If the distances indicated by the signs are not within reason, drivers may tend to disbelieve the messages. Cone placement can be used to compensate for short sight distances. At one site (R 1.7), the contractor positioned a flashing arrow on the downhill side of a hill, and it did not come into view until the driver reached the crest of the hill. This accounted for the large number (45) of traffic conflicts recorded at that site.

The situation presented in Figure 14 could prove confusing. The overlay message had become unfastened on one side and presented an ambiguous choice as to where the construction actually was. It is a foregone conclusion that such errors must be avoided if safety and respect for warning signs are to be improved.

Since the new Manual on Uniform Traffic Control Devices (1971) specifies the use of orange signs for construction and maintenance sites, a distinction has been made from the standard, stationary, yellow warning signs (Merging Traffic, Fallen Rock Zone, Bridges Freeze Before Roadway, etc.) in more common use on highways. The new manual should also create a higher degree of uniformity in traffic control at lane closures. However, it is the responsibility of field personnel to enforce the standards and to insure the signs are highly legible.

Perhaps the most astonishing finding from this research issued from the driver interviews. Approximately 20 percent admitted or confessed they deliberately delayed merging. This is willful disobedience and may be related to a driver attitude which results in speeds 5 to 10 mph (2 to 4 m / s) greater than posted limits. Unfortunately, the conflict involvement rate of these drivers was not determined specifically and separately when field observations and interviews were conducted.

CONCLUSIONS

1. Orange signs produced a slight improvement over yellow signs in reducing traffic conflicts and merges
near the barricade.
2. New signs of either color produced a significant improvement over signs of lesser quality. Presumably signs maintained in a like-new condition, or nearly so, would suffice as well.
3. Driver attitudes toward lane-closure signs appear to have compounded and confounded the total problem of effective signing. Other, more daring innovations may be needed. Temporary rumble strips, chatter bars, or other disquieting devices may be necessary to adequately impress the message on some drivers.

REFERENCES

1. Hurst, P. M., Perchonok, K., and Seguin, E. L., Measurement of Subjective Gap Size, Division of Highways Studies, Institute for Research, State College, Pennsylvania, February 1965.
2. Hurst, P. M. and Perchonok, K., The Effect of Lane Closure Signals upon Driver Decision-Making and Traffic Flow, Division of Highways Studies, Institute for Research, State College, Pennsylvania, March 1965.
3. Roberts, J. M., Hutchinson, J. W., and Carlson, G. S., Traffic Control Devices and Self-Testing Values: A Preliminary Note, Traffic Engineering, August 1972.
4. Manual on Uniform Traffic Control Devices for Streets and Highways, U. S. Department of Transportation, Federal Highway Administration, 1971.

TABLE 1
DATA FOR RIGHT-LANE CLOSURES
PHASE 1

		DATA SET NUMBERS								
\because		R 1.1	R 1.2	R 13	R 1.4	R 1.5	R16	R 1.7	R 1.8	R 1.9
Sign Color		YELLOW	YELLOW	YELIOW	YELLOW	YELLOW	YELLOW	YELLOW	YELLOW	YELLOW
응	Cars Trucks Total	271	261	616	395	374	578	509	421	540
		67	86	64	85	59	54	67	88	68
		338	347	680	480	433	632	576	509	608
	First Sign (miles)	0.25	0.85	0.60	0.65	0.65	0.50	0.50	0.30	0.40
		0.40	1.37	0.97	1.05	1.05	0.80	0.80	0.48	0.64
	Flashìng Arrow				1.15	0.30	0.40	0.25	0.55	0.70
					1185	0.48	0.64	0.40	0.89	1.13
Design	Elements - Grade		+	$+$	4	Level	$+$	$+$	$\text { to }+$	Level
		Lt	Tan	Rt	Tan	Rt	Rt^{2}	Tan	Rt to Tan	Tan
盛	Cars $\begin{array}{r}(\mathrm{mph} \\ (\mathrm{m} / \mathrm{s})\end{array}$	64.6	62.7	66.7	67.5	64.5	66,2	66.0	70.4	67.2
		28.9	28.0	29.8	30.2	28.8	29.6	29.5	31.5	300
	Trucks (mph)	57.4	58.6	50.3	66.9	52.4	602	60.5	65.1	60.0
		25.7	26.2	22.5	29,9	23:4	26.9	27.0	29.1	26.8
	Cars$(\mathrm{mph})$$(\mathrm{m} / \mathrm{s})$	52.0	51.9	52.8	54.5	56.4	551	55.4	59.0	53.4
		23.2	23.2	23.6	24.4	25.2	24.6	24.8	26.4	23.9
	$\begin{aligned} & \text { Trucks }(\mathrm{mph}) \\ &(\mathrm{m} / \mathrm{s})\end{aligned}$	53.3	49.9	42.5	56.5	50.6	46.9	49,0	54.7	50.2
		23.8	22.3	19.0	25.3	22.6	21.0	21.9	24.5	22.4
近	Cars \quad (mph)	12.6	10.8	13.9	13.0	8.1	11.1	10.6	11.4	13.8
			4.8	6.2	58	3.6	5.0	4.7	5.1	6.1
	$\begin{array}{rr}\text { Trucks } & (\mathrm{mph}) \\ & (\mathrm{m} / \mathrm{s})\end{array}$	4.1	8.7	7.8	10.4	18	13.3	11.5	10.4	98
		1.9	3.9	3.5	4.6	0.8	5,9	5.1	4.6	44
4488	Abnornal Braking Forced Merges Complete Stops Total	2	16	44	14	32	18	28	14	10
		1	3	21	9	15	15	16	5	3
		1	0	0	0	0	0	1	0	0
		4	19	65	23	47	33	45	19	13
Turn Signals		44	46	91	68	63	108	98		
Percent Merges with Turn Signajs		16.9	20.9	20.9	23.1	20.3	27.8	25.4	26.0	27.8
Distance between First (ft) Sign and First Cone (meters)		2200	1970	1925	2600	2085	1825	2000	2958	2430
		670	600	586	792	636	556	610	902	741
\%		25.7	9.6	46.8	12.9	36.0	14.4	31.6	9.2	5.6
	$501-1000 \mathrm{ft}(153-304 \mathrm{~m})$	17.6	28.6	15.2	18.4	17.4	35.5	24.9	16.2	21.1
	$1001-1500 \mathrm{ft}(305-457 \mathrm{~m})$	18.0	20.5	27.5	11.7	12.9	41.4	23.3	29.2	26.7
	$1501-2000 \mathrm{ft}(458.609 \mathrm{~m})$	36.0	41.3	10.5	17.3	30.8	8.7	20.2	27.6	25.5
	$2001-2500 \mathrm{ft}(610-762 \mathrm{~m})$	2.7	0.0	0.0	39.7	2.9	0.0	0.0	17.8	21.1
	*Measured from first cone back toward first sign.				\therefore	\cdots	-		-	

TABLE 2

DATA FOR LEFT-LANE CLOSURES PHASE 1

TABLE 3
DATA FOR RIGHT-LANE CLOSURES
PHASE 2

TABLE 4
DATA FOR LEFT-LANE CLOSURES
PHASE 2

TABLE 5

AUTO SPEEDS

| | | | LANE | MEAN SPEED | | MEAN SPEED | MEAN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Significance and level of significance are indicated by brackets.
Left and right lane closures were not tested together.

TABLE 6

TRUCK SPEEDS

			LANE	MEAN SPEED		MEAN SPEED		MEAN	
PHASE	COLOR	CLOSED	AT FIRST SIGN (mph)		AT FIRST CONE $(\mathrm{m} / \mathrm{s})$	DECREASE (mph)	$(\mathrm{m} / \mathrm{s})$	(mph)	$(\mathrm{m} / \mathrm{s})$

Significance and level of significance are indicated by brackets.
Left and right lane closures were not tested together.

TABLE 7

MEAN 85th PERCENTILE SPEEDS

PHASE	COLOR	$\begin{aligned} & \text { LANE } \\ & \text { CLOSED } \end{aligned}$	AUTOS				TRUCKS			
			SPEED AT FIRST SIGN (mph) (m/s)		SPEED AT FIRST CONE (mph) (m/s)		$\begin{aligned} & \text { SPEED AT } \\ & \text { FIRST SIGN } \\ & (\mathrm{mph}) \quad(\mathrm{m} / \mathrm{s}) \end{aligned}$		SPEED AT FIRST CONE (mph) $\quad(\mathrm{m} / \mathrm{s})$	
1	Yellow	Right	70.7	31.6	60.5	27.0	64.6	28.9	55.3	24.7
2	Yellow	Right	73,3	32.8	58.8	26.3	65.5	29.3	55.6	24.9
2	Orange	Right	74.4	33.3	58.8	26.3	64.4	28.8	55.7	24.9
1	Yellow	Left	71.6	32.0	61.0	27.3	63.3	28.3	57.1	25.5
2	Yellow	Left	73.8	33.0	58.4	26.1	65.3	29.2	53.0	23.7
2	Orange	Left	73.4	32.8	58.1	26.0	64.8	30.0	56.1	25.1

TABLE 8
MEAN CONFLICTS PER 100 VEHICLES

PHASE	COLOR	$\begin{aligned} & \text { LANE } \\ & \text { CLOSED } \end{aligned}$	MEAN C PER 100	CONFLICTS VEHICLES
1	Yellow	Right		5.64 ,
2	Yellow	Right		$2.33 \ldots 0$
2	Orange	Right		1.37 .
1	Yellow	Left		2.59 ,
2	Yellow	Left		2.25 , 20
2	Orange	Left		1.37 ,

Significance and level of significance are indicated by brackets. Left and right lane closures were not tested together.

TABLE 9

PERCENT OF MERGES WITHIN 500 FEET (152 METERS) OF THE FIRST TRAFFIC CONE

Significance and level of significance are indicated by brackets.
Left and right lane closures were not tested together.

TABLE 10
TURN SIGNAL INDICATIONS

PHASE	COLOR	$\begin{aligned} & \text { LANE } \\ & \text { CLOSED } \end{aligned}$	MEAN PERCENT OF MERGES WITH TURN SIGNAL
1	Yellow	Right	23.2
2	Yellow	Right	$14.0-0001$
2	Orange	Right	$13.1 \longrightarrow$
1	Yellow	Right	17.1
2	Yellow	Left	$12.3 \longrightarrow 10$
2	Orange	Left	12.7 -

Significance and level of significance are indicated by brackets.
Left and right lane closures were not tested together.

TABLE 11

RESPONSES TO DRIVER INTERVIEW

1. Did you notice two different colored warning signs prior to the lane closure?
Yes
38
No $\quad 24$
2. If yes, what colors did you notice?

| Yellow | $\ddots 34$ |
| :--- | ---: | ---: |
| Orange | 25 |
| Red | 23 |
| Other | \ddots |

3. If only one color noticed, what was it?

Yellow	6
Orange	1
Red	1
Red-Orange	1
Other	1
Uncertain	14

4. If two colors were noticed, which one seemed more effective? (Only asked people who replied "yes" to question one).

Yellow	9
Orange	23
Red	4
Uncertain	2

5. Do you think you are adequately made aware that a lane is closed ahead at sites like this?
Yes 56

No 6
6. What is your biggest complaint about these sites?
Nothing 52
7. Do you think the warning signs are usually spaced properly so you can rely upon what they say?

Yes	58
No	3
Uncertain	1

8. Do you actually merge into the open lane when you see the first warning sign, whenever you can, or when you actually see the lane blocked off?

| First Sign | 31 |
| :--- | ---: | ---: |
| Whenever | 19 |
| Actual Lane Blocked | 12 |

LIST OF FIGURES

Figure 1. Research Personnel Positioning New Signs over Contractor's Signs.

Figure 2. Lane Closure Detail Showing Sign Scheme Used.

Figure 3. Cumulative Distributions of Speeds at a Site where Both Sign Colors Were Used.

Figure 4. Contractor's Sign (top) as Contrasted with Test Sign.

Figure 5. Conflicts per 100 Vehicles at Each Study Site (Right Lane Closures, Phase 2).

Figure 6. Conflicts per 100 Vehicles at Each Study Site (Left Lane Closures, Phase 2).

Figure 7. Merge Distributions at Site R 2.1.

Figure 8. Merge Distributions at Site R 2.2.

Figure 9. Merge Distributions at Site R 2.4.

Figure 11. Merge Distributions at Site \mathbf{R} 2.6.

Figure 10. Merge Distributions at Site R 2.5.

Figure 12. Merge Distributions at Site R 2.10.

Figure 13. Sign Scheme Preceeding an Extensive Maintenance Project. Top Photo Shows No Maintenance or Construction in Sight.

Figure 14. Errors Which Cause Confusion and Disrespect for Waruing Signs.

Figure 1. Research Personnel Positioning New Signs over Contractors' Signs.

Figure 2. Lane Closure Detail Showing Sign Scheme Used.

Figure 3. Cumulative Distributions of Speeds at a Site Where Both Sign Colors Were Used.

Figure 4. Contractor's Sign (top) as Eontrasted with Test Sign.

Figure 5. Conflicts per 100 Vehicles at Each Study Site (Right Lane Closures, Phase 2).

Figure 6. Conflicts per 100 Vehicles at Each Study Site (Left Lane Closures, Phase 2).

Figure 7. Merge Distributions at Site R 2.1.

Figure 8. Merge Distributions at Site R 2.2.

Figure 9. Merge Distributions at Site R 2.4.

Figure 10. Merge Distributions at Site R 2.5.

Figure 11. Merge Distributions at Site R 2.6.

Figure 12. Merge Distributions at Site R 2.10.

Figure 13. Sign Scheme Preceeding an Extensive Maintenance Project. Top Photo Shows No Maintenance or Construction in Sight.

Figure 14. Errors which Cause Confusion and Disrespect for Warning Signs.

