

COMMONWEALTH OF KENTUCKY

CHARLES PRYOR, JR.

COMMISSIONER OF HIGHWAYS

DEPARTMENT OF HIGHWAYS

 March 27, 1973
ADDRESS REPLY TO DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET

H.3.33

MEMORANDUM TO: J. R. Harbison
State Highway Enginee
Chairman, Research Committee
SUBJECT: Research Report No. 361; "Fatigue Analysis of Central Bridge Deduced from Strain Gage Data and Probability Analysis"; KYP-72-33; HPR-1(8), Part III.

The Central Bridge at Newport was constructed in 1891 and modified in 1914, 1930, 1964 (stee grid floor installed), and 1968. A structural analysis made in 1947 qualified it for H-20 loading provided necessary repairs were made. An H-15 loading was assigned in 1968. Early in 1970, severe corrosio of eye-bar members was discovered where "paired" members came together at a common pin (no spacer between them). The loss of section was reported in July of 1970 (1). The greatest loss of section was

1 "Replication of Eye-Bars and Measurements of Losses in Cross Section due to Corrosion;" Indexed as Report No. 296.
23%. Not considering wind loads, cursory analysis indicated that the stresses remained within the allowab over-stress limit. However, the possibility remained that the attendant increase in dead-load stress togethe with certain live-lo point in history.

Prior to the disclosure of corrosion, we had undertaken a more general study of the fatigue life of older bridges in the State -- more particularly, six Ohio River bridges. It was necessary to statistically nearest applicable traffic wolum and 1 loadomer measuremts were made in 1968 by the Department of Motor Vehicle Trasportation ade us in this program and to guide the Department otherwise in posting load limits. In order to use traffic volumes (AADT'S) and weight data in a fatigue analysis, it was necessary to know the probability of various combinations of vehicles occurring on a span at a given time. To do this, we made spot-speed of various combinations of vehicles occurring on a span at a given time. To do this, we made spot-speed
surveys (with a radar meter) and time-interval and sequence-of-type measurements and surveys. From these surveys, we were able to totalize probability percentages -- which, when multiplied by ADT's year by year, gave us total repetitions of loadings (then converted to number of stresses in the membe considered). A model fatigue-damage diagram (equation) was constructed on the $\log \mathrm{S}$-vs-log N basi (2×10^{6} repetitions at the endurance limit -- i.e. stress below which no damage occurs, chosen fo the particular type of steel). The computations of fatigue life in this way are feasible only by use a high-speed computer. We have, on a previous occasion referred to the whole program as the "sof

synthesis" of "used up" and "remaining" fatigue life

The enabling work was started by Robert L. Lynch in 1967 (2, 3). Lynch ventured to Australia to pursue a doctoral degree but left an unfinished manuscript and the beginning of a computer program. The report was finished by R. C. Deen and me. It was issued belatedly in January 1972 (4). To that
${ }^{2 "}$ "Analysis of Traffic Loads on Bridges," February 1968; Indexed as Report No. 251.
3"Analysis of Traffic Loads on Bridges; Report II: Characteristics of Traffic on Ohio River Bridges 1968;" March 1969; Indexed as Report No. 275.
4"Bridges: Synthesis of Load Histories and Analyses of Fatigue;" Report No. 318.
time, only hypothetical problems had been solved. Meanwhile, R. J. Bruner, III, a mid-year graduate (1970-71), was assigned to the study. He has advanced through the learning process and is the author of the report being submitted herewith. The report specifically addresses the analysis of Central Bridge because the loss of section in eye-bar members brings the fatigue-life estimates into a current time domain Certain assumptions have been made to encompass extreme possibilities .. that is, to bracket possible inaccuracies in input parameters, etc. Even so, factors such as wind loads and temperature stresses have not been included. The life estimates are, therefore, conservative estimates in the sense that possibly a great number of stress cycles remain unaccounted.

It is interesting perhaps, but saddening to us, to cite an error in Equation 4, page 3, of Repor No. 318, which should have read $\left.\mathrm{P}_{\mathrm{niG}}=\mathrm{P}_{\mathrm{i}}{ }^{{ }^{\mathrm{P}}} \mathrm{G}(\mathrm{t}) \mathrm{n}-1\right)$. This error delayed the final writing of the computer program. Another error which delayed the analysis was an iterative statement which required multiplication of damage factors by zero when the probabilities of the load occurrence was zero. Until this was corrected, the computer time estimate was 2.5 hours.

Basically, the analysis considers 0.0 and 23.0% loss of section; the 23% loss of section relates to a specific eye bar. Where no loss of section is involved, the fatigue damage (or percent of fatigue life "used up") remains nil. Intuitively, we might expect similar analyses of other bridges to yield similar results. The Bridge Division has completed plans for the replacement of the affected eye bars on Central Bridge; and the analysis presented here tend to superimpose a degree of urgency upon the scheduling of the work. We do understand that work is being proposed for a letting in April. We are unable at
 we do not know how the corrosion progessed with time. Neither the linear rate nor parabolic curve prest represents the real case -- or else our other assumptions are grossly inaccurate.
pon disclosure of the losses in section of the eye bars, there was immediate concern also about the possibility of imbalance of load on the paired members. Mindful that an imbalance could, perhap critically, overstress one or the other of the members, Prewitt Scratch Gages were installed on three sets of eye-bar pairs (U15L'5L'4-3\&4, U14L6L'5-3\&4, and D14L3L2-3\&4); strain records were obtained from August 31 to November 10, 1970. These records were analyzed and reported (5) as to the number

5 "Stress Histories of Bridge Members from Scratch Gage Records;" by R. D. Hughes; Report No. 323, February 1972.
of strain events (and thus live-load stresses); however, it was not possible to compare single events on paired members. Judging from the first set of scratch records obtained, it appeared that a full yea of strains could be recorded; the gages were re-started and were scheduled to be retrieved in Septembe 1971. Unfortunately, during the month of August, the gages were removed by parties unknown and have not been recovered. A new set of gages was installed April 17, 1972; and records were obtained through $41 / 2$ nonths. These were translated into stress events and used to estimate fatigue life. Eye-bar U14L6L'5-3 would, thus, have a fatigue life of 112 years - that is, assuming loading to be constant through all years and the rate of corrosion to be constant (total $=$ rate x number of years).

Finally, in order to determine more accurately the distribution of load between paired members, SR-4-type strain gages were affixed to bars D14L3L2-3\&4. These gages were monitored (on a strip-char recorder) for 3 hours on September 15 and for 3.5 hours on September 26, 1972. Results are discussed in the attached report.

In summary, it appears that the loss of section (due to corrosion) in identified eye bars has reduced fatigue life from infinite time to a finite time base. The confidence limit (or variability) associated with the assumed value for the endurance limit of the steel remains undefined - therefore, the probabilit failure at a given calendar time remains somewhat undefined also.
This has been an interesting progression of study for us. At times, it has been difficult to maintain
 dare to speculate on how long a bridge will endure; whereas in Europe there is international committe on bridge life. Some recent studies made in this country on modern bridges (some designed for stiffness) have indicated fatigue lives of 400,1600 , and 4000 years, etc. if the present level of loading persist and if other decaying processes do not beset the structure. We may find on other bridges we started to study, as in the case of Central Bridge, that fatigue life is unlimited unless corrosion becomes the affecting factor or loads severely exceed limits set by engineering analysis.

NOTE: As a matter of interest and convenient reference, I have appended behind the report copy of the engineer's report on the design and construction of Central Bridge (from Transactions, ASCE, August 1892).

JHH:dw
Attachment
cc's: Research Conmittee

1. Report No. ${ }^{\text {a }}$	2. Goverment Accession No.	3. Recipient's Catalog No.
Fatigue Analysis of Central Bridge Deduced from Strain Gage Data and Probability Analysis		$\begin{array}{\|l\|} \hline \text { 5. Report Date } \\ \text { March } 1973 \\ \hline \text { 6. Performing Organization Code } \end{array}$
7. Author's) R. J. Bruner III		8. Performing Organization Report No. 361
9. Performing Organization Name and Address Division of Research Kentucky Department of Highways 533 South Limestone Lexington, Kentucky 40508		10. Work Unit No. 11. Contract or Grant No. 13. Type of Reportt and Period Covered
12. Sponsoring Agency Name and Address		Interim
		14. Sponsoring Agency Code
Prepared in cooperation with the US Department of Transportation, Federal Highway Administration Study Title:		
16. Abstract This report presents evaluations of the load history of the Central Bridge from both strain gage data and probability analysis. Estimation of remaining service life is made through fatigue criteria. Also included is a comparison (from strain gage data) of live load stresses carried by parallel eye bars. An appendix provides a user's manual for the computer program for probability-based analyses of load events and fatigue-life computations.		
17. Key Words	18. Distribution	ment
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price

FATIGUE ANALYSIS OF CENTRAL

 bridge deduced from strain gageDATA AND PROBABILITY ANALYSIS

KYP-72-33, HPR•1(8), Part III
by
R. J. Bruner ШI Research Engineer Associate

Division of Research DEPARTMENT OF HIGHWAYS
Conmmonwealth of Kentucky

[^0] This policles of the Department of Highways. his report does not constlute a standard secification, or regulation.

Fatigue analysis of the Central Bridge was proached in this study in two ways:-1) by use of Prewitt Scratch Gages and 2) from probability nalysis. The short-term scratch gage measurements of trains, expanded through time, indicated a remainin ervice life of 30 to 40 years; whereas, the probability analysis indicated that failure could have occurre between 1936 and 1961. The large discrepancie between two analyses arose from extremely large load (up to ten combination trucks on a 254 -foot span) synthesized by the probabiilty analysis. Such loads were ot observed on the scratch gage records. The effect (DL) stresses manifies the damea fact Equivalent Bride Loadings) Also, a small variace is the assumed or estimated endurance limit of the sted will produce great differences in predicted life

There are indications from the analysis that fatig ailure may be imminent unless loads are reduced or ertain eye bars strengthened or replaced. Plans hav been prepared by the Division of Bridges to strengthen those eye bars which have been weakened by corrosion.

NTRODUCTION

The Central Bridge, over the Ohio River between Newport and Cincinnatt, was completed in 1891 and now in danger of fatigue damage. A progression of tudies have been undertaken by the Division of Research to determine the likelihood of fatigue failur and to estimate remaining service from the standpoint of fatigue analyses. In one investigation (1,2), strains ere recorded and the loss of section due to corrosio

Duri curnty, both During the use of strain gages were utilized to valuate the fatigue damage which has been incurred by the Central Bridge Extensive sirain he Central Bridge. Extensive strain gage data wer gathered using Prewitt Scratch Gages and SR-4 resistivity ages. A computer program was developed to compute assumptions were necessary; these were evaluated by comparing results obtained from adjudged, probable extremes for paired input parameters.

STRAIN GAGE ANALYSIS

PROCEDUR

Scratch Gages -- On April 18, 1972, Prewitt Scratch Gages were placed on four members of the Centra Bridge. Two additional gages were attached on April 26 The gages were placed on the following paired eye bars:

April 18 - D14L3L2.3
D14L3L2-4
U14L6L'5-3
U14L6L5-4
U15L'5L'4
U15L'5L'4-
Bars selected for instrumentation were those which had the maximum loss of section according to a previous study (1, 2). Gages were 48-inch, use of those gase were also eported previously (1,2) Cages were attached to the eye bars with C-clamp Gages were attached to the eye bars with C-clamps provide a more permanent attachment. Restrainin straps made of aluminum foil were placed at one-foot intervals along the gage to prevent possible buckling which might induce errors in the records. The gages were then covered with plastic to provide protection (Figure 2). Two gage targets showed no record -- one indicated two complete rotations and could not be read, thus accounting for the differences in total number of days of record noted in the results. All targets were sent to Baganoff Associated, Inc. in St Louis for computer reduction and analysis.

SR-4 Resistivity Gages -- On August 23, 1972, SR-4 resistivity strain gages were placed on Bars D14L3L2-3 and D14L3L2-4. The gages were placed parallel to each other on a normal section of the eye bar so that any differences in stresses on those members.

The strain gages used were BLH Electronics, Inc. Type FAE-50-1256-ET with a gage factor of 2.06 ± 1 percent. A three-wire system was used to eliminate any error caused by the length of hthe lead wire. Three $20-$ ohm ± 1 percent resistors were used to for the wrush dual branel strain were used to balance the bridge and record strain (Figure 3). Settings used on the amplifier and recorder Figure 3). Settings used on the amplifier and recorder were as follows:
$\begin{array}{ll}\text { Volts per chart line } & 0.05 \\ \text { Gain } & 1.55 \times 10\end{array}$
Multiplier
1.55
5
bars, all

Prior to attaching gages to the bars, all paint was emoved from the bars using a grinding stone and file. Surfaces were then prepared according to gage manufacturer's specifications for chemical cleansing gages were applied using Eastman 910 Adhesive (Figure 4).

Figure 1. Method of Attaching Scratch Gage

ESULTS

Scratch Gages -- Scratch gages were monitored for approximately $41 / 2$ months. Data collected from the discs are listed in Table 1. These data were analyzed by the equivalent-bridge-load criterion and a Goodman diagram to determine fatigue damage. In the EBL calculations, it was assumed that loading was constant (at the current rate) and that corrosion occurred linearly throughout the life of the bridge. Differences in stresses on parallel bars were also determined.

To calculate stresses listed in Table II, the following equation was used:
$\mathrm{L}=100(\mathrm{DL}+\mathrm{LL}) / \mathrm{C}$
where
$\mathrm{L}=$ total stress,
DL $=$ dead-load stress from Table I,
LL $=$ live-load stress from Table I, and
LL $=$ live-load stress from Table I, and
$\mathrm{C}=$ percent of section remaining from Table II. The equivalent bridge lo from equivalent bridge load factor (3) was calculated EBL $=\mathrm{N}_{\mathrm{E}}\left(10^{\log } \mathrm{N}_{\mathrm{E}\left[\left(\mathrm{L}-\sigma_{\mathrm{E}}\right) /\left(\sigma_{\mathrm{u}}-\sigma_{\mathrm{E}}\right)\right], \quad 2}\right.$
where $\quad N_{E}=$ number of events to f_{i} dure at the endurance limit,
$\sigma_{\mathrm{E}}=$ endurance limit, and
$\sigma_{\mathrm{u}}=$ ultimate strength.
A table with predetermined EBL's can be found in APPENDIX B of Reference 3. The number of cycles of each load was found from

$$
\mathrm{N}^{\prime}=\mathrm{N} \times \mathrm{EBL}
$$

where $\mathrm{N}^{\prime}=$ number of equivalent corresponding to total stress level L and
$\mathrm{N}=$ number of events from Table I for live-load stress level LL corresponding to total stress level L.
The yearly damage caused by the recorded loads was found from

$$
\mathrm{D}=365 \Sigma \mathrm{~N}^{\prime} / \mathrm{N}_{\mathrm{E}} \mathrm{~T}
$$

where $\mathrm{D}=$ percent damage per year caused by recorded loads and
$\mathrm{T}=$ elapsed time of record in days. Since the loss of section was not known for Bar U14L6L'5-4, the above-referenced calculations could not be made. The values used in making the EBL calculations were as follows:

Ultimate strength of steel $\left(\sigma_{\mathrm{u}}\right)=60,000 \mathrm{psi}$,
Endurance limit of steel $\left(\sigma_{\mathrm{E}}\right)=16,50 \mathrm{p}$ Endurance limit of steel $\left(\sigma_{\mathrm{E}}\right)=16,500 \mathrm{psi}$, and Events to failure at endurance limit $\left(\mathrm{N}_{\mathrm{E}}\right)=$,000,000.
From data shown in Table II, it was apparent that damage caused by the recorded loads was significant when the EBL criterion was used. The most critical
member noted in the analysis was U14L6L' $5-3$, which showed a yearly loss of service life of 0.89 percent This would yield a service life of 112 years if damage remained constant over the life of the bridge. Assuming

TABLE 1
NUMBER OF EVENTS PER STRESS LEVEL

LIVE-LOADSTRESS (PSI)	BAR NUMBER					
	D14L3L2-3	D14L3L2-4	U14L6L'5-3	U14L6L'5-4	U15L'sL'4-3	U15L'5L'4.4
<200	324	338	278	513	323	44
200	597	502	462	830	543	91
400	1009	530	367	779	338	129
600	742	313	267	448	157	132
800	99	60	103	97	69	32
1000	33	25	45	29	35	31
1200	13	9	44	21	26	11
1400			9	3	9	+
1600	3	1		2	5	1
1800			3		2	2
2000	1		4		1	
2200		1			1	
2400			1		2	
2600						
2800					1	
Total Events	2821	1783	1589	2722	1507	467
Total Time						
Days 129 91 69 129 121 83 Average Stress						
Dead-Load						
Stress (psi)Percent of Original						
Section Remaining	78	85	78	NA	77	85

TABLE II
EBL LOADINGS (DL + LL) WITH LOSS OF SECTION CONSIDERED

TOTAL STRESS (PSI)	bar number				
	D14L3L2-3	D14L3L2-4	U14L6L'5-3	U15L'5L'4-3	U15L'5L'4.4
16750		372			48
17000		602			109
17250		689			168
17500		438			185
17750		92			49
18000		42			35
18250	586	16	503		20
18500	1164	8	901	630	8
18750	2159	2	785	1162	2
19000	1729		622	787	4
19250	249	2	259	395	
19500	90		122	187	
19750	26		87	70	
20000			29	85	
20250	10		21	'32	
20500			11	19	
20750	4		17	8	
21000				5	
21250			5	5	
21500				10	
21750					
22000				6	
Total	6017	2263	3362	3401	628
Damage (\%/year)	0.85	0.45	0.89	0.48	0.14

hat corrosion occurs uniformly over the life of the bridge, the loss of fatigue life which has occurred can be computed. When damage was computed in this way, it was found that 30 percent of the service life had been used. Another computation was made which extended present conditions into the future; this showed that the bridge had 40 years of remaining service life if corrosion continued to increase at the same uniform rate previously considered.

In these calculations, wind and temperature loadings were not considered. These loads could hav considerable effect on the service life of the bridge,

In Figure 5, the maximum damage stress (DL $=$ 18,500 psi and LL $=3,650$ psi of U15L'SL'4-3) was plotted on a Goodman diagram to show its relationship to the endurance limit thus determined. It can be seen that the stress is well within the safe limits according oo that criterion. Because of wind and temperature oadings, and age and condition of the steel, the more forservative EBL criterion is probably more appropriat
situation.

Comparisons were also made of scratch gage dat to determine what percent of the load was being carried beach of the paired parallel bars. Results of th
nalysis are shown in Figures 6,7 and 8 . Difference analysis are shown in Figures 6,7 , and 8 . Differences
in stresses are apparent for all pairs. These differences in stresses are apparent for all pairs. These differences higher stress levels. These differences do not appear on the figures at the higher stress levels because of the low percentage of events at those stresses.

The cause of the differences in stresses in th members cannot readily be identified but several possibilities are apparent:

1) there may be loose pin connections in the eye bars,
2) the strain gages might not have been placed on sections of equal areas, and (or)
3) the strain gages might not have been exactly parallel.
SR-4 Resistivity Strain Gages -- Further analysis of stress differences in the eye bars was made using SR-4 resistivity strain gages on Bars D14L3L2-3 and D14L3L2-4. Resistivity gages were placed on the Central Bridge to determine whether or not equal strains were) was made of strain in each bar These data were the) was in a orst squares analysis to eda wequion relating stress in one bar to that of the companion bar Channels of the recorder were then reversed and the east squares analysis was rerun. An average equation east squares analysis was rerun. An average equation
was then computed so that any differences in recorder channels would be eliminated. The equations and their plots are shown in Figure 10.

Differences in stresses in the instrumented paired members were relatively small. These differences could be attributed to any of the reasons mentioned earlier

General -- According to the equivalent-bridge-loa
General -- According to the equivalent-bridge-load is noticeable fatigue damage occurring in corroded eye bars of the Central Bridge. Although the service-life calculations are vague as to life remaining in the bars calculations are vague as to life remaining in the bars,

It was also found that strains in paral
It was also found that strains in parallel members were nearly equal. Some differences were recorded, but
this was more than likely due to gage locations and recording differences rather than actual differences in strains in the bars themselves. The only large differences in recorded strains were for Bars U15L'5L'4-3 and U15L'SL'4.4. In that case, there were also large differences in numbers of events per day and in percent of events per load increment, so it is possible that errors in the records for these bars may be present
 $\begin{array}{llll}20 & 30 & 40 & 50 \\ \text { STATIC }\end{array}$

Figure 5. Goodman Diagram Showing Maximum Recorded Stress with Section Loss

Figure 8. Cumulative Percent Vehicles vs
Live-Load Stress.

Figure 9. Equipment Utilized in Reading SR-4 Resistivity Strain Gages.

Figure 10. Stress in D14L3L2-3 vs Stress in D14L3L2-4

PROBABILITY ANALYSIS

PROCEDURE

A computer program was developed to calculate loss of fatigue life from the probability analysi presented in Reference 3. All traffic data used in this from References 4 and 5. Input data wer as follows:

Vehicle Data
Percent of Total Traffic

Cars
Trucks Combination Trucks Average Length Cars Trucks Combination Truck Average Spot Spee ADT
Gap Probabilities

Material Data
Yield Strength
Ultimate Strengt
Endurance Limit
Events to Failure at
Endurance Limit

Bridge Data

Length of Span 254 feet
Width of Span $\quad 23$ feet
$\begin{array}{ll}\text { Width of Span } & 23 \text { feet } \\ \text { Design Load } & 75 \text { psf }\end{array}$
Critical Member Data Dead-Load Stress Design Live-Load Stress

33,000 psi $60,000 \mathrm{psi}$ As Indicated

2,000,000

14,260 psi 5,950 psi
91.4 percent
7.3 percent
1.3 percent

20 feet
25 feet
47 feet
28.2 mph

See Figure 12
See Figure 12

Figure 11. Cumulative Percent Vehicles vs Gross Weight for All Vehicle Types on Central Bridge.

Figure 12. ADT vs Year for All Vehicle Types on

Figure 13. Gap vs Probability of Occurrence ($\mathbf{P} \mathbf{G}$ for All Vebicle Types on central Bridge.

All computations covered a period of 81 years (from 1891 to 1972). When corrosion was taken into account, the section was considered normal in 1891 but advanced to a 23 percent loss of section by 1972. Both uniform and parabolic aging (due to corrosion) were considered (Figure 14). For the complete computer program and an explanation of its use, see the APPENDIX. Wind and temperature stresses were not considered in this program because of the difficulty in measuring such stresses accurately

RESULTS AND DISCUSSION

Eight computer runs were made using different loads, considerations of corrosion, and endurance limits. Results of these runs are listed in Table III. In Runs Nos. 1, 2, and 3, loss of section due to corrosion was not considered, it was found that very little damage at their maximum recorded weight (Figure 11) and all recorded ADT's were doubled all other runs took corrosion into account These runs considered loading at the 50th-percentile level and ADT's as recorded Figure 12); variables were and ADTis as recorded corrosion aging From these results, it became obvious
that the most important factor is the range between the dead-load stress and the endurance limit of the steel. Also, the loss-of-section-vs-time relationship assumed, a seen from Runs 6 and 7 , greatly affects the "duration" of the range. Small changes in the assumed endurance limit caused great changes in the calculated service life of the bridge member. Inasmuch as failure was predicted in all runs where corrosion was considered, it appears that some assumptions regarding the severely corroded members in the Central Bridge are too extreme.
Failure was predicted when the dead-load stress in the member reached a value near that of the endurance limit; thereafter, all vehicles crossing the bridge became damaging loads. However, fatigue damage is a function of dynamic (live-load) stress and static stress; and the Goodman diagram, Figure 5, tends to moderate the damage attributable to the live loads in simila have not been considered in these analyses, the origina condition of the steel is not known, and insamuch a the effects of aging on the steel are not known (at this time), the calculations are somewhat overly conservative in assessing fatigue damage.

Figure 14. Percent Section Remaining vs Year for the Critical Member on Central Bridge

TABLE III
LIFE ESTIMATES FROM PROBABILITY ANALYSIS

RUN No.	PRRCENT LlFE USED	$\underset{\text { YEARS }}{\text { AGE IN }}$	$\underset{\text { YEAR }}{\substack{\text { CLLENDER }}}$	adi*	$\begin{aligned} & \text { GROSS VEHCLLE } \\ & \text { (PERCENTLIE)*** } \end{aligned}$	$\begin{aligned} & \text { PEREENT LOSS } \\ & \text { OF SECTION } \\ & \text { DUE TO CORROSION } \end{aligned}$	endurance LMIT (PSI)	DL STRESA AT CALENDER YEAR SHOWN (PSI)
1	0	81	1972	Figue 12	50,h	0	16550	
${ }_{3}^{2}$	${ }_{5}^{0}$	${ }_{81}^{81}$	1972 1972	$\underset{\substack{\text { Figure } \\ \text { figure } 12}}{\text { 12 }}$	$\xrightarrow{90 \mathrm{ath}}$ (10ih****	0	16500 16500	
				$\underset{\substack{\text { figure } \\ \text { (Doubled) }}}{\text { le }}$				
${ }_{4}^{4}$	${ }^{100^{+}}$	25 45	1916	Figure 12	${ }_{\text {Soth }}^{\text {Soth }}$	23. Linear	15000 16000	14780 1 1
6	$\underset{\substack{100^{+} \\ 100^{+}}}{ }$	45 55	1936 1946		${ }_{\text {soch }}$	${ }_{\text {23, }}^{\text {23, Linear }}$	${ }_{17000}^{16000}$	${ }_{1}^{16860}$
7	${ }_{100}{ }^{+}$	66	1957	${ }_{\text {Figure }} 12$	50,h	23, Parabolic	17000	16880
8	100^{+}	68	1959	Figure 12	soth	23, Lineas	18000	17580

REFERENCES

1. Hughes, R. D., Stress Histories of Bridge Members from Scratch Gage Records, Kentucky Department of Highways, February 1972.
2. Kentucky Obtains Bridge Load Histories with Newly Developed Scratch Gage Device, Highway Newly Developed Scratch Gage Device, Highway
Research News, Highway Research Board, No. 36, Summer 1969.
3. Havens, J. H., and Deen, R. C., Bridges: Synthesis of Load Histories and Analysis of Fatigwe, Kentucky Department of Highways, January 1972.
4. Lynch, R. L., Analysis of Traffic Loads on Bridges, Kentucky Department of Highways, February 1968.
5. Lynch, R. L., Analysis of Traffic Loads on Bridges, Report II: Characteristics of Traffic on Ohio River Bridges - 1968, Kentucky Department of Highways, March 1969.

14

APPENDIX

PROBABILITY ANALYSIS

PROGRAM INPUT
(FORMATS IN PARENTHESIS)

Card 1

Colunms 1-4 Length of bridge in feet (F4.0) " $\mathrm{A}^{\prime \prime}$ in gap probability equation for mixed traffic
(F6.4) (F6.4)
"A" in gap probability " A " equation for trucks (F6.4) " A^{\prime} in pap probabilit equation for combination trucks (F6.4) combinatio " B " in gap probability equatio
" ${ }^{\text {B }}{ }^{\prime \prime 4}$ in gap probability equation for cars (F6.4) " B " in gap probability equation for trucks (F6.4) "B" in gap probability equation for combination trucks (F6.4)

The gap probability equation is of the form

$$
P_{G}=A\left(G^{B}\right)
$$

here $\mathrm{G}=$ gap length in feet,
$P_{G}=$ probability of gap less than or equal
A, B $=$ constants (see Figure 13).
Card 2

Colurms $1-5$	Percent cars expressed as a decimal fraction (F5.4)	Cards 7, 8, ...N Colunms 1-7	ADT (F7.0)		
6-10	Percent trucks expressed as a decimal fraction (F5.4)		$8-11$		Number of years at constant
:---					
ADT (F4.0)					

PROGRAM DESCRIPTION

Caution: Run time for this program can become very long; runs should be made only after thorough study of program and input data

Initialization Section - In this section, all arrays except AGL(I) (average gross load) are initialized to zero. AGL(I) is initialized from AGL(2) $=14,500$ psi by increments of 1000 psi up to $\operatorname{AGL}(25)=37,500$ psi. AGL(1) is set equal to $10,00,000$ psi so that asterisks will be printed in the printout; these asterisks 14,000 psi. 000 psi .
Format Section I -- In this section, most of the input data are read and then printed in the printout section. The type of corrosion being considered is printed and headings for a subsequent table are prepared. See "Input Data Symbols" at beginning of program for list of variables.

Computation Section I .. In this section, probabilities of occurrence of different vehicle configurations where only one vehicle type is considered are computed. MN1 is the maximum number of auto (vehicle type 1) of length VL1 which can be placed on a span of length L.

The probability array is a four dimensional array as follows:
\mathbf{P} (Number of Autos +1 , Number of Trucks +1 , Number of Combination Trucks +1 , Lane Number)
For example, $\mathrm{P}(3,4,1,2)=\mathrm{b}$ would be interpreted as follows:
$\mathrm{b}=$ probability of indicated load occurring.
Indicated load in lane $2=2$ autos, 3 trucks and no combination trucks.
The reason for adding 1 to the number of vehicles was that 0 's cannot be used as array subscripts. Since $I+1$ I 1 was used for in as lenth for wich type , trucks and combination trucks, respectively. These are used in decicion statements and somputations whe the is less than or equal to 2 cor is less than or equal to zero.

1) Gap probability is found from PG1 $=$ $\mathrm{AC}\left(\mathrm{G} 1{ }^{\mathrm{BC}}\right) / 100$ where AC and BC are constants derived from traffic data.
2) If the value of $P G 1$ is greater than one, it is set equal to one.
Probability of load occurrence is calculated.
3) If the probability of occurrence is less than or equal to 1.0×10^{-15}, it is set equal to zero.

This procedure is then repeated for Type 2 and Type 3 vehicles.

Computation Section II - In this section, the balance of the probability calculations is made (i.e. probabilities involving two or more vehicle types). Fo this purpose, MN2 and MN3 are calculated and used along with MN1 to determine the maximum number of times each loop is run. The next computation is MN1
$=$ MN1 +1, MN2 $=$ MN2 +1 and MN3 $=$ MN3 $=\mathrm{MN} 1+1, \mathrm{MN} 2=\mathrm{MN} 2+1$, and $\mathrm{MN} 3=\mathrm{MN} 3+1$ This is done since in this section the loop counter used as the subscript for the probability array thu requig of vehicles possible. I, J, K, I , JR and KR are or and 3 vaich, , defined 1 The first decision statem K .
The first decision statement causes the program to skip all further computations in this section if the Section I. The second decision determines which gap Section I . The second decision determines which gap types are being considered (two vehicle types being considered, Statement 102 is used; three vehicle types being considered, Statement 99 is used).

Next, the gap probability (PGM) is calculated if the gap is greater than zero. If this gap probability greater than 1.0 , it is reduced to 1.0 . The probability of occurrence is then calculated in Statement 107, and as before, this value is set equal to zero when it drop below 1.0×10^{-15}. $\mathrm{FAC}(1, \mathrm{~J}, \mathrm{~K})$ is a function written into this program and is not a previously stored function

Final Data Input - In this section, average spot speed (SP), average daily traffic (ADT(I)), number of years at constant ADT (YEARSN(I)), and number of different ADT's (NYRS) are read into the program. For example, traffic data would be stored in the program as follows:

YEAR	AVERAGE A
1955	15,000
1956	15,000
1957	15,000
1958	16,000
1959	17,000

Average spot speed $=29.5 \mathrm{mph}$
for data cards as follows:

$$
\begin{array}{ll}
\text { NYRS }=4 & \text { SP }=29.5 \\
\operatorname{ADT}(1)=15,000 & \text { YEARSN } 1)=3 \\
\operatorname{ADT}(2)=16,000 & \text { YEARSN(2) }=1 \\
\operatorname{ADT}(3)=17,000 & \text { YEARSN(3) }=1 \\
\operatorname{ADT}(4)=19,000 & \text { YEARSN(4) }=1
\end{array}
$$

(Note: When corrosion is considered, accuracy can be gained by using the smallest possible values for YEARSN(I) -- i.e., yearly incrementation of ADT(I); however, this will not be possible under all circumstances due to the practical limits on run time.)

Computation Section III -- This section is composed of seven nested DO loops; therefore, any modifications requiring loops will have to be made in the form of subprograms. In this section, cross correlations are made to compute the probabilities of any possible loading in one lane occurring in conjunction
with any other loading in other lanes. Stresses and the with any other loading in other lanes. Stresses and the
number of events at that stress are also calculated and number of events at that stress are also calculated and TNCREM Finally, the percent (PERLIF) is calculated as percent life used.

Statements 126 and 130 are decision statements which prevent the program from making unnecessary, time-consuming calculations when Z (Statement 148) would equal zero. Statement 137 also causes the elimination of unnecessary calculations by skipping span.

The time-dependency calculations are used to find the probability that loads in adjacent lanes would occur within a certain time period sufficiently small to be considered as one load. Statement 138 causes this time-dependency probability (PD) to be set equal to 1.0 when vehicles are considered to be on one lane only.

The computation of load and stress is accomplished
as follows:
I) Total weight of vehicles (W) on bridge is computed.
2) W is then changed to LOAD in psf.
3) Corrosion factor (F) is then determined according to either linear or parabolic aging as specified in data inpu (Statements 151 through 157).
4) Dead-load stresses (DLSTR) and design live-load stress (DSTR) are corrected to take corrosion into account.
5) Live-load stress (LlSTR) is found as proportion of the factored desig live-oad stress (FDSTR).
6) Total stress (TSTR) is then computed as the sum of the factored dead-load stress (FDSTR) and the live-load stress. Computation of the EBL factor (FA
life used (PERLIF) occurs as follows:

1) EBL factor is computed if average gross load AGL(IS) is greater than enduranc limit. For AGL(1) and when AGL(IS) is less than endurance limit (ENDLIM) LOAD and LODFAC(IS) (the numbe f events corresponding to AGL(IS)) are efined to be zero, thus not changin OODTOT (the total number of equivalent events).
2) When AGL(IS) is greater than ENDLIM BLOAD is defined to be LODFAC(IS).
3) LODFAC(IS) is redefined to its new value, which includes the loading jus considered.
4) LODTOT is redefined to its new value which includes the loading just considered.
5) PERLIF is computed
6) If PERLIF is greater than 100 percent computation stops; if not, a new loading is considered.
Data Printout -- This section prints all the data which have been determined during the computation stages. All computations made in this section are to effect easier interpretation of data printed.

Friplosin 10 bil	RFlfase		
0 n ? 3		(1) 12 n I $=1$. ? 4	
min		$\mathrm{TR}=1$	
90?			
mon	120	conet lmue	
	\bigcirc		
	c	FGRHAT SECTILIN I STATEMENT 37 thri 53	
	c		
moe noy			
onys			
1ก\%	$1 \cap 1$		
1031			
on3?	201		
00.33			
On:\% 4	202	FGRMAT(F3.n,F6.n,F4.n,F6.0)	
00\%			
mois	$20 \cap 1$	FIRM4 T(3) Fo.n), F3. ?, 12)	
(in) ${ }^{\text {a }}$			
1038	3011		
¢037			
0 m	$3 \cap 12$		
0 O 41		WRITETG,3013) L.CTIR	
$004 ?$	3013		
0203			
(12\%4		If(afficem.-1) Glo monn	
01015		WRITE (óponill	
(i) 106	6011		
0347		50 T0 6012	
on4\%	4010	CNutane	
0 O		artielthanl 3)	
(n) 0	6013		
(1) 51	कcll?	conit tulue	
00.5		WHPITE(G,ROCO)	
0093	81901		
	${ }_{6}$		
	$\begin{aligned} & c \\ & c \end{aligned}$	CTIMPITATIUN SECTIGN 1 Statenent su trieli ne	
0954		M M 1 =1, MV1	
	$\stackrel{C}{c}$		
	c	PROAASITY WILL EGUAL 100%.	
	c		
rub		$\mathrm{P}(1,1,1,1)=1 . n$	
On5t		$P(1,1,1,2)=1.0$	
	${ }_{c}^{C}$		
veric		(1) $1001 \mathrm{I}=1$, Manl	
(in) ${ }^{\text {a }}$			
¢ ¢ ¢		I ¢ $=1$	
\%orip			
ont		$G 2=(1 .-(18 \times N / 2)$)/(IR-.5)	
0\%n?			
	\bigcirc		
	$\stackrel{C}{0}$	vehiciae type l	
		TF(G) -1-f.a) (it) T(l) R	

UUNCTIUN FAC(N1,N2,N3)
IF(NI.EO.O) GO TO 11
DO $101=1, N_{1}$
$\mathrm{J}=\mathrm{NI} 1-\mathrm{I}+1$
IFN1 $=$ IFN $1 \div$,
IFN1=IFN1
CONTINUE
11 CONTINUE
IFN2 $=1$
IF $N 2 . E O .0)$ GU TO 21
${ }_{J=N 2} 20 \quad 1=1 \cdot N 2$
IFN2=1F112:*
20 CONTINUE
21 CONTT KNUE
IFN3=1
IF (Ni3.EO.0) GO TL
31

30 CONTINJE
IFNTINUE
$N 4=N 1+N 12+N 3$
$100 \quad I=1$.
DO $40 I=1$.
$J=N 4-I+1$
IFNCOIVI IFNCOM \div J
40 CONTINUE

FACBOT=IFTUT
$F A C=F A C T O P / F A C B O T$
RETURN

Subroutine increm(a,b,C,J)
RFAL C(125),IR
$\begin{array}{ll}R O \\ I R=I\end{array} \quad I=1,24$
IF(A.GE.(14000.+(1IR-1)*1000.) I).AND.A.LT. (15000.+((IR-1)*1000.))
$1 G 0$
GO
TO
5
GO TO 6
$C(I+1)=C(I+1)+B$
$\mathrm{J}=\mathrm{I}+\mathrm{l}$
GO TO 7
continue
4 CONTINUE
7 cijntinue
RETUR
ENII)

EXAMPLE OF INPUT

254. .056 .056 . $0.401 .00911 .21 \quad 1.21 \quad .60 \quad .885$
.914 .073 .01320 .25 .47 .
4800.12000.31800.

23. 5950.75.14260.
60000.
$17000.2000000 . .230$

3028.2
3028.2
6000.
6000. 10.
6000. 10

6000 .
6400. 2
6400. 2
6400.

8000 .
9500.
10700.
10700. 1
11900.1
13200.
1
13200.
14600.
14600. 18
15800.1.

18400 . 1 .
18700 .
20700. 1
22000.

23200 .
24000.

24500 .
23000.
21700.
20000.
18600.
17200.

16200 . 1.
15900. 1 .
15800. 4.

EXAMPLE OF OUTPUT

THE CANTILEVER HIGHWAY

 BRIDGE AT CINCINNATI

AMERICAN SOCIETY OF CIVIL ENGINEERS.
instituted 1852

TRANSAOTIONS.

Nors.-This Society is not responsible, as a body, for the facts and opintons advanced

 in any of its publications.> 545.
> (Vol. EXVII.-August, 1892.)

THE CANTILEVER HIGHWAY BRIDGE AT CIN.

 CINNATI.By Gustafe Kaufman, M. Am. Soc. C. E., and F. C. Osborn, M. Am. Soc. C. E.

GENERAL DESCRIPTION OF THE WORK. By Gustafe Kaufman, M. Am. Soc. C. E.

During the years 1890 and 1891 the Cantilever Highway Bridge described in this article was built across the Ohio River, between the cities of Cincinnati, O., and Newport, Ky. The terminus in Cincinnati is at the corner of 2 d Street and Broadway, and in Newport it is at the corner of York and 3 d Streets. The roadway of the bridge is 24 feet wide in the clear, with two sidewalks each 7 feet wide. The total length of the structure is 2966 feet. The main engineering feature is the cantilever span, 520 feet from center to center of piers.

The bridge is located between the Louisville and Nashville Railroad Bridge and the Old Cincinnati Suspension Bridge, and but a short
distance above the month of the Licking River. Prior to the construction of this oridge, the highway trafic between the two cities was principally accommodated by a ferry company with two large ferry boats. The Louisville and Nashville Bridge, which is supplied with very narrow roadways and sidewalks, accommodated the street-car trafice and a portion of the other highway traffic, but was not popular on account of its location and the interruption of highway traffic during the passage of trains.
The site of the new bridge is very favorable for economical construction, from the fact that a peculiar limestone formation extends across the river at this point. The top of this formation is an irregular triangle in shape, the base of which is on the Kentucky side and the apex on the Cincinnati side. On the Kentucky side at extreme low water this formation is exposed; the base of the triangle is about 1400 feet long, and extends from the mouth of the Licking River to a point midway between the bridge under discussion and the Louisville and Nashville Bridge. The top of the formation maintains the level of extreme low water about two-thirds the distance across the river, where it drops suddenly, and for the balance of the distance across the river the top of the rock is from 5 to 7 feet below low water. The sites of other bridges built across the Ohio River at Cincinnati were by no means so favorable, and it was necessary to go to considerable depths to obtain suitable foundations for their piers; notably the Ćhesapeake and Ohio Railway Bridge, where rock was found about 52 feet below low water

For many years the fear of insufficient revenue prevented the construction of a highway bridge at this place; but the development of the electric street railway and the necessity for rapid transit between the cities of Cincinnati and Newport furnished the requisite impetus and led to the formation of the Central Railway and Bridge Company for the purpose of constructing this bridge. The preliminary surveys and the general lay-out were prepared by G. Bouscaren, M. Am. Soc. O. E., in the early part of 1887 . The general plans and the location of the channel span were approved by the Government in April, 1888, and authority at the same time was given for the construction of the bridge.

The general elevation and plan of the bridge; the gradients, lengths of spans and height above water are shown on Plate XXVII. A gen-

eral view is shown in Plate XXVIII. The approaches were located entirely on private property occupied by a large number of buildings of all kinds and descriptions, which were owned and leased by almost an equal number of individuals. All the street and alley crossings are overhead. The maximum grade, which occurs on the Cincinnati end, is $5 \frac{1}{2}$ per cent. This grade is necessary to enable the structure to give the clear height over the channel, required by the Act of Congress governing the construction of bridges across the Ohio River. Between the mouth of the Big Sandy River and the Suspension Bridge at Cincinnati, all bridges must have a channel span 500 feet wide in the clear at low water. The lowest part of the channel span must be 100 feet above low water-mark, and 40 feet above local highest water. The highest water known at Cincinnati prior to 1883, the time of the passage of the act, was in 1832, when the river reached the height of 64 feet on the Government gauge. In 1884 the river rose to the unprecedented height of 71 feet and three-quarters of an inch. Since that time the law has been construed by the Government authorities to refer to the flood of 1832 and in fixing the height of channel spans it is only necessary to have 40 feet clear above that flood. Therefore, in the case of the Central Bridge, it was required to have a clear height of 102 feet above low water-mark, which is 2 feet on the gauge.

No active work of construction was done on the bridge until March, 1890, when, through the perseverance of Mr. V. Morris, the Southwestern Agent of the King Bridge Company, arrangements for its construction were perfected with the Company which he represented. This company was to construct the bridge complete in all details by January 1st, 1891, under the specifications to be prepared by Ferris, Kaufman \& Co., who were at this time appointed Chief Engineers of the Central Railway and Bridge Company. On account of the limited time, but twenty-four hours were taken in preparing the specifications, copies of which will be found in the appendices.* The general plans adopted by the Government were of course adhered to, and many items in the original specifications of the company were adopted. On the 31st day of March, 1890, the formal contract was executed. By its terms the King lhridge Company was bound, under heavy forfeiture, to complete the structure satisfactorily to the engineers by the time mentioned.

The preliminary estimate of quantities was as follows:

Scbstrocture:

First-class masonry, Piers 4, 5, 6, 7 and $8 \ldots . .10420$ cubic yards.
، "، ، \quad ، \quad ، $1,2,3$ and $9 \ldots \ldots .1353$ "... 1
Second " " Abutments and Ramps.. 3200 "
Concrete... 2100 "
Piles in foundations . 20400 linear feet
Timber ، 152000 ft B. M.
Iron... 15000 pounds.
Excavation in coffer-dams..................... 1750 cubic yards. foundations on shore. 2750 "
Filling between ramp walls.................. . 3000 "
Granite paving. 2500 sq. yds.
SUperstructure:
Structural iron and steel...................... . . 2500 tons
Lumber for floor. 550000 ft. B. M.
Hand rail.
6000 linear feet
Toll houses, gas pipe, etc
The right of way on the Newport side was practically all secured, but nothing had been done in the way of clearing it at the time of the closing of the contract, and no property had been obtained on the Cincinnatiside. The undertaking of the King Bridge Company to complete this work in nine months was large; but, at the same time, it seemed that the contract could be successfully carried out if proper energy were used by all, and if no extraordinarily unfavorable circumstances should arise. The company, in April, sub-let the contract for the substructure and paving of approaches to Mr. J. Le Duke, of Berea, Ohio. In accordance with this contract the various parts were to be completed, as follows:

Piers Nos. 1, 2, 3, 4, 6, 7, 8, 9, pedestals and approach masonry not later than October 1st, 1890; Pier No. 5 not later than October 31st, 1890, and all the earth filling, granite paving, flagging and the entire contract not later than December 1st, 1890. The work was to be commenced not later than May 1st, 1890, and the contractor was placed under heavy bonds for the completion of the work as stated. The ordinary clause giving the contractor more time for the completion of his work, on account of delays through causes beyond his control. was
omitted in this contract, and the contractor was given to understand clearly that he was to take all the chances and finish the work in time to enable the erection of the bridge to be completed by January 1st, 1891.

The contract for the iron and steel was given to Messrs. Carnegie, Phipps \& Co.; the material was to be delivered to the King Bridge Company at Cleveland within sixty days from the time the order was placed, and this would enable the latter Company to deliver the finished material at the bridge site as agreed upon.

The contract for the erection of the superstructure and the laying of the floor, etc., was awarded to Messrs. Baird Bros., of Pittsburgh, Pa., who were to be given possession of the piers and material at the time shown in Le Duke's contract, and were to complete the work by January 1st, 1891

For a short time the work in all dopartmonts progressed very satisfactorily and according to programme; but soon delays from various causes arose, until finally, as it became evident that the bridge could not be completed as contracted for, the masonry contractors became demoralized; and it required great patience and energy to maintain the prosecution of the work.

The Ohio River has for some miles above and below the bridge site a narrow and tortuous channel; and as the mouth of the Licking River is almost directly opposite the site, it is subject to very rapid and wide fluctuations. The variation between extreme high water and extreme low water is about (99 feet. These conditions conspired to render the foundation work hazardous and expensive. The year 1890 is now noted for the number of floods which occurred in the Ohio River. A hydrograph showing the stage of the water, the condition of the weather and the temperature for each day during the construction of the work, will be found on Plate XXIX. This will indicate one of the great difficulties under which this work was carried on. Usually during the summer and fall months the water stage at Cincinnati is below 15 feet, with an occasional rise above that point, but during 1890 the reverse was the case. 'Whero were about fivo wooks of low water. During this period Piers 6 and 7 were fairly started, but Pier 5 was caught by the high water. The delay in completing this pier prevented the opening of the bridge until August, 1891, some eight months behind time.

The vear 1890, as is well known, excelled all other years in the product of steel and iron, and great difficulty was encountered in getting the structural material to the bridge shops. The mills failed in a great measure to complete their contract in this case, and the time for the delivery had elapsed by several months before the King Bridge Company obtained all the material they had ordered. The delay from this cause was not particularly noticeable on account of the fact that the masoury was not finished.

Surveys.-Surveys and locations for the construction work, and, in fact, all the substructure work, were made under the direction of Mr. A. A. Stuart, ${ }^{*}$ M. Am. Soc. C. E., who was Resident Engineer, and Mr. L. V. Rice, Assistant Engineer, to both of whom much credit is due for the accuracy and excellency of the work. The general situation was favorable for accurate triangulation work, and to this is largely attributable the excellent results obtained.

A test of the accuracy of the field operations was made by computing the distance between the base line on the Cincinnati side and a point on the bridge axis common to the two base lines on the Newport side, using the three triangles formed on the three base lines, and the results were respectively as follows: 1696.076 feet; 1696.074 feet; 1696.053 feet. With the assurance of accuracy of field work which these results gave, the remaining elements of the triangles were computed ready for use in locating the river piers.

Masonry.-The length of the structure between the termini is 2966 feet. Beginning in Cincinnati, this distance is made up as follows:

Granite paving and masonry ramp.......... 285 feet.
Steel viaduct.
.............................. 151 "
One truss span across Ludlow street 108 "
Viaduct.. 81 "
One truss span................................ 162 "
Cincinnati cantilever arm 252 "
Two river arms and suspended span 520 "
Newport cantilever arm 252 "
Two truss spans, each 254 feet................ 508 "
Steel viaduct................................... 319 "
Granite paving and masonry ramp............ 328 "

[^1]

The superstructure is supported by two abutments, twenty-eight pedestals and nine piers. The abutments and ramp walls are built of second-class masonry and entirely of Ohio River freestone, except the coping, which is of Berea sandstone. All the pedestal piers are built of first-class masonry. All the cement used on the work, with the exception of a few barrels of Portland for main coping stone and pointing, was Louisville cement, and was tested at the mills by Messrs. Mead \& Shaw, Cement Inspectors, of Louisville, and all accepted barrels which were shipped were branded by them. The ramp walls, abut ments and pedestals being far removed from the water, are founded on the natural earth upon a course of concrete 2 feet thick, the material affording ample resistance to bear the superimposed loads without the aid of piling.

Piers Nos. 1, 2, 3 and 9 are similar in all respects, exeept as to size and height, and are all fomndes on prike driven to a tirm resistance from short blows of a hammer weighing 4000 pounds. The foundation beds were from 7 to 10 foet deep, and after sawing the piles off 18 inches above the bottom of the pits, concrete was put in, varying in thickness from 3 to $4 \frac{1}{2}$ feet, thoroughly imbedding the piles in a plastic mass upon which the foundations and footing courses were started. These piers were built entirely of Ohio River freestone, except the coping which was Bedford oolitic limestone. They are rec tangular in plan throughout their height, battering one-half inch to the foot, and as they stand abovo tho average high water, no difficulties were encountered in constructing their foundations.

Piers Nos. 4 and 8 are similar in construction, but different in kind of foundations and dimensions. Pier No. 4 rests upon one hundred and fifty piles, driven to solid rock, having heavy cast-iron shoes, the points of whioh were seated in the rock by repeated light blows from the hammer. They were cut off 18 inches above the bottom of the foundation bed, and their heads were imbedded in concrete 3 feet 6 inches thick. Upon this the foundation footing courses, four in number, were laid.

Pier No. 8 is locatol at about extreme low water-line on the Kentucky shore, and rests upon solid rock. This foundation was beguu July 14th, 1890, and the laying of masonry was begun July 27th, the stage of the river being about 7 feet. A clay dam was built around the site of the pier, and with this protection from the water the exca-
vation was made. A pit 18 inches deep was excavated in the rock, and in this the footing courses were started.

These two piers have semicircular nosings up to the belt course, where they are contracted in length and become rectangular in plan. From the foundation to the belting course the face work is built of Berea sandstone, with concrete backing. The face stones were laid in Flemish bond, headers and stretchers alternating with each other in every course. The concrete backing was put in as fast as the face stones of each course were laid, and was allowed twelve hours to set before any masonry was laid upon it. Above the belting course these piers are built entirely of Ohio River freestone, except the coping, which is of Bedford limestone. The table on next page gives the complete record of the building of Pier No. 4, and it is believed by the writer that this is the first instance that such a record has been kept.

Each face stone and each backing stone was measured and its contents calculated. The sum of the two was deducted from the contents of the full course and the balance was taken as the amount of mortar in that course. In this way the column giving the cubic yards of mortar in all joints was obtained. The number of barrels of cement used for the face work and backing was obtained by actual count. The column giving the number of barrels of cement per cubic yard of backing, gives also the amount of cement in a yard of concrete, as the backing is concrete. The cost of laying up to the starling course refers only to the face stones.

Piers Nos. 5, 6 and 7 are similar in construction and are located in the river. Piers 6 and 7 are founded on the solid rock, and their foundations were put in without difficulty by the use of single wall cofferdams. The solid rock bed in the river at this point has no deposit upon it, and in landing the coffer-dams it was necessary first to sink a crib composed of timbers and stone above the pier site in order to hold the coffer-dam in place. The coffer-dams for Piers 5,6 and 7 were all alike in construction, being rectangular in plan and 30×70 feet in size out to out. The walls were built of horizontal courses of 12×12 inch timber bolted together for a height of 6 feet, and above this the walls were composed of 6×4-inch stuff. At intervals of 8 feet along the longitudinal walls 12×12-inch vertical timbers were bolted, and into each pair of verticals 12×12-inch horizontalstruts were dovetailed.

Central Bridge，Cincinnati－Newport．－Burly 1890－91．－－Data from Pier No． 4.

	Mean size of course out to out．	$\dot{0}$ 0 \vdots 0								Remarss．
	$\begin{gathered} \text { Feet. } \\ 23.18 \times 59.18 \end{gathered}$	1＇－${ }^{\prime \prime}$	30.90	46.05	1.45	$\underset{40}{\text { Percent }}$	0.26	1.70		ootings，Poly－
2	21.35×57.35	1－${ }^{\prime \prime}$	29.35	¢9．67	1.05					gonal ends－
3	19.44×55.18	${ }^{2}{ }^{\prime}{ }^{\prime} 8^{\prime \prime}{ }^{\prime \prime}$	53.34	47.37	1.30	${ }_{5}^{53}$	${ }^{0.32}$	1.52	1.90	concrete back－
4	16．44 ${ }^{13} 51.69 \times 49.44$	${ }^{2}{ }^{\prime}$ 二 ${ }^{\prime \prime}{ }^{\prime \prime}$	${ }_{28.40}$	${ }_{22.70}^{38.95}$	0．93	45 58	${ }_{0}^{0.35}$			ing．
6	13.50×49.25		26.70	23.89		53				
7	13.31×49.06		28.86	20.79	0.87	58	0.21			
8	13.12×48.87	＂	${ }_{28}^{28.74}$	2048	0.87	58	${ }_{0}^{0.25}$		＂،	oncrete back－
10	12．93 4848.688		$\stackrel{27}{28.74}$	19．34	0.86	5	${ }_{0}^{0.25}$		．．．	in
11	12.55×48.30		26.48	19.90	08	57			＂	
12	12．36 $\times 48.11$	${ }^{2}{ }^{2},-\cdots$	26.42	17．66	0.84	60				
14	12．00 $\times 47.75$	$2-0$	25.11	15.69	${ }_{0}^{0.82}$	58 62	－		＂	Semicircular
15	11.81×47.56		24.78	15.29	0.81	62				ends．
	11.62×47 ．	$2{ }^{\prime}-1$	25.74	15.1	0	63	0.31			
17	11．43 $\times 47.18$		24.84 2550	15．25	${ }_{0}^{0.82}$	${ }_{64}^{62}$	－ $\begin{aligned} & 0.36 \\ & 0.33\end{aligned}$		＂	
19	11.05×46.80		24.71	14.02	0.80	64	0.42		＂	
21	10.86×46.61		24.61	13.47	0.80	${ }^{65}$	0.45			
21	10.66×46.42	$2^{\prime \prime}$－ $0^{\prime \prime}$	24.07	11.01	0.80	69	0.29	1.63	1.65	
${ }_{23}$	11.76×47.50	$1^{\prime \prime}-10^{\prime \prime}$	23.11	12.71	6.20	65	0.42		1.96	Starling．
${ }_{24}^{23}$	10．58 $\times 35.66$	＂${ }^{\prime \prime}$	15.17	${ }^{10.46}$	${ }_{4.56}^{4.99}$	${ }_{64}^{59}$	－ $\begin{aligned} & \text { O．} 53 \\ & 0.5\end{aligned}$			Hood courses．
25	10.46×35.52	${ }^{1}{ }^{\prime}$－ $6^{\prime \prime}$	10.02	12.13	8.40	45	0.53		،	
${ }_{27}^{26}$	10．34 $\times 153.37$		12.25	7.5	3.50 3.64	62	－ $\begin{aligned} & 0.53 \\ & 0.55\end{aligned}$	\％	＂	ctangular is
28	10.10×35.08	$1^{\prime}=4^{\prime \prime}$	11.39	6.60	${ }_{3.23}$	63	${ }_{0.56}$		＂	
29	10.00×34.9		11.68	6.08		66	0.68	辰		
${ }_{31}^{30}$	${ }_{9}^{9.87 \times 34.84}$	${ }_{3}{ }^{\prime \prime}$	12.53	5.93	${ }_{2}^{2.03}$	${ }^{67}$	0．64		＂＇	Courses 22 to 38
32	9.62×3461	1^{1} 二 ${ }^{\text {a }}{ }^{\prime \prime}$	${ }_{10}^{10.23}$	${ }_{6} 6.6$	3.77	61	${ }_{0}^{0.56}$		＂	stone backing．
${ }^{33}$	9.48×34.49	${ }_{1}^{1}$－${ }^{\text {c }}{ }^{\prime \prime}$	11.07	6.62	2.98	${ }^{63}$	0.56		،	
34	9.35×34.37	${ }^{1}{ }^{\prime}$－${ }^{\prime \prime}{ }^{\prime \prime}$	11.36	7.00	4.30	62	0.54	\％		
${ }_{36}^{35}$	9.25×34.25	$3^{\prime \prime}$	9.21	5.92	2．	61	0.72		＂	
37	9.15×34.15 9.03×34.03	$\mathbf{1}_{1}^{\prime}={ }^{\prime} 3^{\prime \prime}{ }^{\prime \prime}$	${ }_{9.88}^{9.18}$	5.75 5 8	3.00 2.95	${ }_{60}^{62}$	（0．47	㽞	1.96	
	10.00×35.00		13.80	6.16	2.99		0.50		2.06	
39	11.00×36.0	$1^{\prime}-6^{\prime \prime}$	21.		0.72	100	0.50		2.06	Coping．

Nors．－From the foundation to the starling course，the manory is built of Berea and－ stone with concrete backing，but above this it is built entirely of Ohio River freestone．All face stones were required to have a width of $1 \frac{1}{2}$ times their thickness，and below the stanling concrete was mixed 1， 2 and 4，the latter bting broken stone．Louisville cement was used throughout．

The loottom edges of the walls were padded with cotton waste 6 inches thice, held in place by cotton ducking. The coffer-dams were towed into place without bottoms and sunk by loading them with stone interded for use in the piers. On July 10th, the crib for Pier No. 7 was located when the water was about 14 feet high and the current very wifit. On the 11th of July the coffer-dam was towed into place and snnt, the stage of water being about 10 feet. After sinking it was discovered to be uneven, the southeast corner being about 1 foot higher than the others, a 12×12 inch stick of timber having lodged in this cormer. This was removed by a diver. Considerable difficulty was experienced in pumping out this coffer-dam, the cotton ducking having been torm out in a number of places in launching, causing leaks which were finally: stopped by throwing in bags of sand. This work consumed considerable time, but by July 22d a bed 2.7 feet deep was excavated in the rock and the first course of masonry begun.

On July 20 th the coffer-dam of Pier No. 6 was located after considerable trouble on account of a very swift current. The stage of the water was at this time 8 feet, and a week was consumed in stopping the leake around the bottom of this coffer-dam. After excavating a bed 3.8 feet deep in the rock, masonry was started August 1st.

On August-10th the coffer-dam for Pier No. 5 was located and sunk in position, but as the rock bottom at this point was overlaid with about 2 feet of river silt, much time was taken in an effort to make the bottom edge of the coffer-dam tight. Before this was accomplished the river began to rise and all operations were suspended on August 26th. From this time the water stage fluctuated between 11 and 20 feet, until on September 18th it reached a 35 -foot stage, which was never known to occur before in the month of September. The condition of the work at this time, stasting from the Cincinnati end, was as follows: The right of way from Broadway to Giffin Street had not been entirely obtained, many suits of condemnation having made the work of securing it extremely tedious, but it had begen so far obtained as to allow the foundation of Pier No. 1 to be put in; also Piers Nos. 2 and 3. On Pier No. 4 nothing had yet been accomplished, owing to litigation as to the right of the company to condemn property at this point. Pier No. 5, as stated above, had not yet been started, but a coffer-dam had been sunk. Pier No. 6 had 33 feet of masonry yet to be laid to complete it. Pier No. 7 had yet 30 feet of masonry to be laid
on it. To complete Pier No. 8, 36 feet of masenry were required. Pier No. 9 was completer. The pedestals on the Newport side, with the exception of a few cap stones; the abutment on the Nowpor't side, and most of the ramp walls were completed. No filling between the same, however, had yet been done. Out of a total of 13000 cubic yards of masonry, 7000 yards had been laid.

During the whole season to this date, there had been but five weeks in which the stage of the water was below 10 feet, and only for one day was the water below a 6 -foot stage, and during this time there were a number of very rainy days. Themasonry contractors were becoming very much demoralized, and they realized that it was impossible for them to complete their work by the specified time. Considerable iron had been delivered on the ground and the contractors for the erection were on hand ready to proceed with their work.

As winter was rapidly approaching it became obvious that if the work was to be finished approximately on time, it was absolutely necessary that the river work be completed first. The condition of Pier No. 5 and the condition of the river made it clear that some radical move had to be made. It was therefore determined on September 15 th to use the pneumatic process in founding Pier No. 5, notwithstanding the fact that bed-rock was only about 7 feet below low water. Plans and specifications for a caisson were made as rapidly as possible.

The plan of the caisson is shown on Plate XXX and the specifications in Appendix 3. It was 12 feet high from the shoe to top of the deck, with a coffer-dam about 24 feet high, so that the work could be prosecuted in a 24 to 26 -foot stage of water after the caisson was landed on the rock bottom of the river. An examination of the records gave sufficient reasons to expect that the work could be thus carried on without interruption during the early winter months and that the pier could be finished before very cold weather set in.

Work was accordingly begun on the caisson September 23d, and on October 17th it was launched. A pressure plant belonging to Messrs. Sooysmith \& Co. was obtained from Luouisville, and this firm was contracted with to do the work. At this time another freshet came in the river, and as this pier stands in the main channel where the current is swiftest, it was deemed unwise to attempt to locate it until the water would fall somewhat. On November 7th, with about 22 feet of water in the river, the caisson was towed into position, and on November 9th
the work of laying masonry began. Owing to the rapid fluctuations in the water level, the cutting edge was not landed on the bottom until November 28th, and on November 29th the air compressor was started and the work of excavating and removing material in the working chamber was begun at once.

During the month following this date, the river stage permitted the work of excavating and sinking of caisson to go on without interruption. On account of the material being rock, the laying of masonry was subject to careful regulation so that the cutting edge would not be liable to injury from excessive pressure. On December 27th, 1890, the caisson had penetrated into the rock about 5 feet and had 38 inches yet to go. Seven full courses of masonry had been laid, and about ten or twelve working days were yet necessary to complete the sinking, seal the air chamber, and to bring the masonry up high enough to be out of the way of a 32 -foot stage of water. On that day, however. the river rose above the shafts and suspended all operations.

At this time the condition of the work was such that the contractors could work in a 28 -foot stage of water by the aid of the coffer-dam, but from December 27th until April 18th, 1891, as shown on the hydrograph, at no time did the stage of the river allow the contractors to do anything toward the completion of Pier No. 5. On April 28th the siqking was completed, and by May 8th the working chamber and shafts were filled with concrete. Laying masonry was not resumed until April 28th, from which time it was continued without further interruption from high water.

The caisson in this foundation was of the Morrison type, except that the iron shoe was omitted. The sinking was accomplished without accident or injury to any of the men engaged on it, and required'seven hundred and twenty hours actual working time to penetrate 8 feet into the solid rock, or an average of 3.2 inches for each twenty-four hours. The rock penetrated consisted of ledges of fairly hard shaly formation alternatiug with thin ledges of hard fossiliferous limestone. Where first struck it was not well adapted to make a good foundation, and in order to get the deck of the caisson 3 feet below extreme low water, it was necessary to penetrate the roek 8 feet. The last piece of coping wam set on Pier No. 5 at 9 A.m., June 18th, 1891, entirely completing the substructure within twelve months from the time of beginning the work.

Piers Nos. 5, 6 and 7 have somicircular nosings up to the belting course. The under side of each is set at water stage 66 feet, and they, from the belting course to the under side of the coping, are built entirely of Ohio River freestone. The coping is 2 feet thick on Piers Nos. 5 and 6, and 18 inches thick on the other piers, all being of Bedford oolitic limestone, from Bedford, Ind.

The following table gives data of the construction of Pier No. 5. It gives the size and thickness of each course, number of cabic yards in the face stones and number of cubie yards of bsctiog; also number of cubic yards of mortar in bed joints, the amount of cemeat required; and it also shows the cost of laying masomry, including nand and cement.
 Prim No.

									Rerean
	Toet.	Feet.							
	19.50×55.50	2.25	88.29	52.61	1.620	80.8			Polygomal smdis:
2	19.00×56.00	2.16	82.24	48.09	1.550	${ }^{40.0}$			\% ${ }^{\circ}$
8	19.00x 55.00	${ }^{\text {c. }}$	${ }_{30.08}^{28.54}$	51.01 38.79	1.825	86.0 33.6			msematiralap as
	17.07 ± 63.39	2.08	28.94	86.46	1.310	44.0			
6	16.90×5323		29.26	35.30	1.280	45.0			
8	16.73 ${ }^{1658.05} 5$	"0	29.38 29.47	36.89	1.250	43.0 47.0			
8	16.39×52.71	2.00	28.50	31.23	1.245	47.7			
10		2.16	26.00 29.40	${ }_{\text {32, }}^{32.98}$	${ }^{1.220}$	${ }_{47}^{44.1}$			
12	15.86x 62.18	2.	29.77	33.01	1.194	48.0			
	15.68×52.00	2.08	27.30	81.34	1.180	46.5			
${ }_{15}^{18}$	15.60×51.82 15.32×51.64	"	${ }^{25.23}$	82.67 30.43	${ }^{1.165}$	43.6 47.4	0. 3289		
16	15.15×51.47	2.00	26.72	27.39	1.130	49.4		\$1.127	
17	13.98 51.80	"	28.16	25. 20	1.110	52.7			
${ }_{20} 19$	14.49 1	"'	${ }_{25.00}^{25.27}$	${ }_{26.12}^{26.59}$	${ }_{1}^{1.081}$	48.7 48.8			
21	14.30 $\times 50.62$	"	25.42	24.95	1.030	60.4			
22	84.38 $\times 80.45$	"	25.22	24.40	1.035	${ }^{80.8}$			
23	18.96×80.38	1.88	21.86	22.88	1.020	49.7			
28	18.79×80.11		28.38	20.88	1.005	${ }^{6} 2.8$			
${ }_{26}{ }^{26}$	13.62 $\times 49.949$	".	${ }_{20.78}^{21.90}$	21.96	0.990 0.978	50.4 48.0			
,	13.28×49.60	1.75	21.90	18.84	0.960	${ }_{6}^{64.4}$			
${ }_{29}^{28}$	13.14 $\times 49.46$		${ }_{2}^{22.52}$	17.19	0.940	${ }^{68.6}$			
30	12.85 ${ }^{13} 49.17$	${ }_{1} 1.8$	${ }_{20.63}^{22.35}$	(18.65	0.933	${ }_{50.6}^{52.0}$			
31	12.69×49.01	1.66	20.25	16.00	0.907	62.4			
${ }_{33}^{32}$	12.54×48.86	1.58	18.47	15.53	0.897	4.0			
33	12.40×48.72	1.83	22.25	16.38	0.882	58.7			

Cenerrac Bridge, Cinoinnati-Newfort.-Bullt 1890-91.-Data prom

 PIR No. 5-(Continued).| | | | | | | | | | Remares. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\underset{18.32 \times 49.64}{\text { Fret. }}$ | Feet. 183 | 23.33 | 17.54 | 0.8 | ${ }_{5}{ }_{5}$ | | | ling course, |
| 85 | 12.26×48.20 | 1.42 | 17.97 | 11.61 | 0.863 | 61.0 | | \$1.121 | |
| ${ }^{36}$ | 12.14×46.20 | | 16.77 | 10.79 | 0.798 | 60.0 | | | Hood cours |
| $\stackrel{37}{38}$ | (12.02x 39.89 | ${ }_{6}$ | ${ }_{13}^{15.05}$ | 8.10 | ${ }^{0.677}$ | 65.0 61.0 | | | |
| 39 | 11.78×35.78 | 1.33 | 11.33 | 6.48 | 0.651 | 69.0 | | | |
| 40 | 11.66×35.66 | | 12.27 | 8.21 | 0.641 | 60.0 | | | |
| 41 | 11.54×35.54 | 1.42 | 14.81 | 6.72 | 0.632 | ${ }^{68.5}$ | | | |
| 43 | (11.30 1 ¢ 35.30 | 1.33 | 13.55 | 6:12 | ${ }_{0.618}^{0.625}$ | 69.0
 54.0 | | | |
| 44 | 11.19×35.19 | " | 12.32 | 7.13 | 0.608 | 63.0 | 0.3010 | | |
| 45 | 11.07×35.07 | " | 12.73 | 6.71 | 0.698 | ${ }_{66}^{66.0}$ | | \$1.470 | Rectangular in |
| 47 | 10.96×34.96
 10.84×34.84
 1085 | 。" | ${ }_{13.19}^{12.21}$ | $\underset{5}{6.41}$ | 0 0, | 65.0 71.0 | | | plan |
| 48 | 10.73×34.73 | \because | 13.70 | 4.71 | 0.5] | 74.0 | | | |
| | 10.61×34.61 | " | 11.96 | 6.17 | as | ${ }^{66.0}$ | | | |
| | 10.50 $\times 34.50$ | \because | ${ }^{12.05}$ | ${ }_{5}^{5.95}$ | 0.860 | | | | |
| | 10.27 $\times 34.27$ | 。 | ${ }_{12.33}$ | 5.01 | 0.540 | 71.0 | | | |
| 58 | 10.16×34.16 | | 12.85 | 4.28 | 0.537 | 75.0 | | | |
| 5 | 10.05 $\times 34.05$ | 1.16 | 10.37 | ${ }^{4} 8.33$ | 0.53 | | | | |
| | (12.00 ${ }^{125.00}$ | 2.00 | 32.00 | None. | ${ }_{0}^{0.525}$ | 72.0 100.0 | 0.348 0.349 | \$1.536 | opin |
| | | | | | | | | | |
| Percentage of face work in courses......................... 1 to 33 inclusive $=46.42$ per cent. | | | | | | | | | |
| | | ${ }^{6}$ | " | | | | . 34 to 5 | | 65.81 |
| Nores, - From top of caisson to the starling course the masonry is built of Beres eandstone with Ohfo River freestone backing ; but above this it is built entirely of Ohio River | | | | | | | | | |
| freestone. | | | | | | | | | |
| All face stones were required to have a width of one and one-quarter (1f) times theirthickness. | | | | | | | | | |
| All mortar was mised 1 cement to 20 fand, Louisville cement being used throughout. Cost of cement and sand rated at $\$ 1.20$ per barrel of cement used. | | | | | | | | | |
| | | | | | | | | | |
| labor per dat of ter modrb bated at. | | | | | | | | | |
| | | | | | | | | | |
| Masoon | | | | | | | | | |
| Cutier.. | | | | | | | | | |
| | | | | | | | | | |

It is very interesting to note in connection with this table the ratio of increase of the cost of laying as the pier increases in height. On comparing the table for Pier No. 4 with that for Pier No. 5, it will be noted that the cost of laying is higher in the former than in the latter. The reason for this is that Pier No. 4 was constructed during the winter months and the foreman in charge was not so expert as the one
on Pier No. 5. The writer believen thet the ingomation in the table is valuable, and if the cost of quarrying nid nutting for the various building stones were known, oxact ontimaton of the cost oi bridge masonry could readily be made.

Before closing the description of the aubutructure it may be well to explain why Piers Nos. 4 and 8 were constructed with Berea sendstone face, and concrete hoartings, while Piers Nos. 5, 6 and 7 were constructed with the same face stone and Ohio River freestone backing. The original specifications required that the face of the piers should be constructed of limestone obtainable in a quarry near Cincinnati and the backing should be of freestone.

Considerable difference of opinion as to the reliability of this limestone was found among engineers in Cincinnati, and as we had no experience with it, nor time to investigate the matter thoroughly, we decided to take the safe course and not permit its use. A quarry at North Vernon, Indiana, which furnished stone of undoubted quality, could not deliver the quantity as rapidly as necessary. There were then available only the Indiana oolitic limestone and the Berea sandstone quarries, each of undoubted character and of sufficient magnitude to furnish rapidly the quantity of stone required. It was lound, however, that the oolitic quarrics could give no guqrantee of prompt delivery on account of other contracts, and it was decided to obtain the face stone for the important piers from the Berea sandstone quarries. In order to reduce the cost of masonry to that originally specified, the King Bridge Company requested permission to use concrete heartings in the piers in question. The writer had no experience in constructing masonry in this way, but knowing it had been done satisfactorily in several instances of moderato-sized piers, readily granted permission to the contractors to coustruct Piers Nos. 4 and 8 as requested.

In the absence of information regarding the comparative elasticity of concrete and Berea sandstone, consent to the use of concrete in the interiors of the large Piers Nos. ${ }^{2}, 6$ and 7 , in which the pressure on the lower course is very great, was withheld. The Berea stone is comparatively soft, and if the concrete should compress more than it did, the periphery of the pier would be subjected to crushing. We did not care to take any chance in the matter. We are not aware of muy piers of this size thus constructed except some granite piers on the

Mississippi River, which no doubt could withstand a pressure of this kind.

The contract price for the substructure was as follows:
Firgh-Filling in abutments on Newport and Cincinnati sides, earth or gravel, per cubic yard, $\$ 0.22$.

Second.-Excavation of Piers 1, 2, 3, 9, pedestals and abutment foundations, per cubic yard, $\$ 0.44$.

Therd-Comerete foundations, per cubic yard, \$4.40.
Foweth.-Pile foundations, per linear foot, 30.8 cents.
Pith. -First-class masonry, including the cost of foundation excavation, etc., for Piers Nos. 4 and $8, \$ 11.43$ per cubic yard.

Siath.-First-class masonry, including the cost of foundation complete for Piers Nos. 5, 6 and 7, $\$ 12.50$ per cubic yard.

Seoenth.-First-class masonry, Piers Nos. 1, 2, 3, 9, and pedestals, per cubic yard, $\$ 9.90$.

Eighth.-Second-class masonry in abutments and ramps, per cubic yard, $\$ 7.98$.

The quantities of masonry in each part of the work is shown in the following table:

Centibai Bridae, Cinconnati-Newport.-Built 1890-91.

Superstructure. -The superstructure of this bridge consisted of the following spans as shown on the general lay-out:

Viaduct spans: one span, 36 feet; four spans, 28 leet 6 inches; one through span, 108 feet center to center of piers; three sipann, 27 leot each; one through span, 162 feet center to center of pierm one cantio lever arm, 252 feet; one cantilever arm, 156 feet; one suspended mpen, 208 feet; one cantilever arm, 156 feet; one cantilever arm, 252 leet; two through spans, 254 feet each. Viaduct spans: one, 55 feet; three, 30 feet; three, 61 feet; one, 29 feet; and one, 50 feet. The clearance is 16 feet above the top of roadway, and the clear width between trusses is 24 feet.

The specifications governing the construction of this portion of the work are very full, and contain a number of features which will be discussed by F. C. Osborn, M. Am. Soc. C. E., in his paper on the cantilever span of the bridge. A copy of the specifications will be found in Appendix 2. Full information in regard to loads and mait stresses allowed, the character of the material used and the required tests will be found therein.

The inspection of the material at the mills, the work at the bridge shops and the erection was conducted by the firm of G. W. G. Ferris \& Co., of Pittsburgh. About six hundred and fifty tests, taken from rolled sections, were made. The material proved to be of firat-olass character, all that was accepted falling within the limitations of the specifications. The full-sized eye-bars tested all brokein the body of the bar with the exception of one which failed in the head on accomnt of a flaw. The defective head was cut off and another put on. Upon a re-test this bar broke in the body of the bar.

Central Bridge.-Detamhed Weights, Etc.
Superstructure:

28-foot 5 -inch span. ... 11545
Two 28-foot 5-inch spans and bents 2, 3 and 4........ 54545
28-foot 5-inch span. 11215
108-foot truss span... . 124725
27-foot span. 14 14 0 (20
27-foot span and bents 5 and 6 35385
27-foot 2 -inch span... 12340
Carried forward.
290415

Brought forward.		$\begin{aligned} & \text { Pounde, } \\ & 290416 \end{aligned}$
162-foot truss span		202010
Shore arms of cantilever		1376978
River arms of cantilever		691360
Suspended span.		335185
Two 254-foot spans.		809160
55 -foot girder spans.		45550
30 -foot spans and bents 7 and 8.		37396
31 -foot 5 -inch span.		15025
30 -foot span and bents 9 and 10.		33568
31 -foot 5-inch span.		15235
30 -foot span and bents 11 and 12.		33396
31-foot 5-inch span.		15070
29 -foot span and bents 13 and 14.		28432
50 -foot girder.		36715
		3965483
Rivets, bolts, etc. .	31790	
Hook boilts, nails and spikes.	36945	
Finials and cresting..	17.075	
Name plates and castings.	5345	
Hand railing, Rail.	17.6695	
Braces.	2405	
Posts.	12.955	
Lamps, posts and braces.	3580	
Newel posts.	5635	
Stairways	44865	337300
		4302783
Lumber (white oak) for floor................. 551434 feet B. M. Paint, 650 gallons (two coats)............... 1 gallon for 3_{3}^{1} tons.		

Erection of Central Bridge.-About the middle of September, 1890, although the masonry was in somewhat of a sad plight, and it was clearly evident that the contractors could not complete their work agreed upon, there was sufficient work done to enable hopes to be formed that the work could be completed somewhere in the neighbor hood of February or March, 1891.

On the Cincinnati end nothing could be done owing to the right of way not yet being clear and the superstructure not yet completed. Work was therefore begun on the Newport end. In the early part of October the viaduct on the Newport side was started and was completed by the 25 th of the month. On October 30th the girders across Front Street were placed in position. On November 12th the raising of the iron span between Piers 8 and 9 was begun, the false work having been placed between these piers during the latter part of October, and by the 15 th the spans were connected. On the 24 th it was fully riveted up and the stringers and floor beams were in place. On November 25th the false work for the span between Piers 7 and 8 was started and was finished December 3d, and by December 9th this spani was fully coupled up.

The question as to whether the Newport shore arm of the cantilever between Piers 6 and 7 should be erected at this time now arose; the work on the caisson for Pier No. 5 was progressing favorably, and indications were that it would be prosecuted to a finish without interruption. The river looked very favorable (water stage 15 feet), and it was decided to erect this arm. On December 14th the work on the false work was started and was finished by the 20th, and on the 21st the raising of iron began. On the 22 d reports from the head waters of the river indicated that considerable of a rise could be expected, so that additional energy was used, and by the 23d this span was courqled up without the floor beams or stringers.

It was calculated that the trusses could stand their own weight alone, if found necessary to remove the false work before the river arms of the cantilever were erected. As the indications were that the river would reach a stage of over 30 feet, in which false work could not be held, it was determined to take it out, and this was done by the 28 th of the month. The work on the Newport side was then stopped until some reasonable assurance of the completion of Pier No. 5 could be had, and the work on the erection of the river arm was not started until the following May. When this work was begun the material for the cantilever arm was taken out in barges and hoisted into place. This work was very difficult and expensive, but it was not safe to take any material out on the shore arm without having false work to support it.

After extending the river arm three panels and hanging to it the
traveler weighing about 60 tons, permission was given the contractor for erection, to place the floor system of the shore arm in position and to carry out the material along the bridge. The erection towards the center of the cantilever was carried on slowly, as there was no occasion to push this until Pier No. 5 was completed. It, however, was finished June 18th, at the same time as Pier No. 5.

Prior to January 1st the right of way on the Cincinnati side had been fully obtained, cleared, and the substructure finished. On January 15th the Cincinnati viaduct was erected and fully riveted.* By March 11th the 162 -foot span between Piers 3 and 4 was coupled up. On May. 255th the false work on the Cincinnati shore arm was started and finished June 12th. July 3d this arm was completely coupled up, and by the 14 th the inside traveler necessary to erect the cantilever was completed, and the work of erecting the Cincinnati cantilever arm started. On July 22d the two arms of the cantilever met and were coupled up without any difficulty. The wedges and screws used gave great satisfaction and enabled the span to be readily adjusted. On August 29th, 1891, the whole work was completed and opened for the use of the public.

THE CANTILEVER SPAN.

By F. C. Osborn, M. Am. Soc. C. E.

One of the objective points in the designing of this structure w@s the eliminstion, as far as possible, of undulatory and vibratory motion from' passing loads. To this end the stringers were riveted rigidly to the floor beams, the floor beams in turn rigidly attacher to posts and suspenders, and the latter made in compression form in order to better reaist any tendency to vertical vibration. The lower lateral bracing is made angles, arranged in a double triangular system, the angles attached to stringers at all intersections and to each other at center of panel; the attachment to chords is by means of wing plates directly to main truss pins.

The portal bracing at the anchorage end of the shore arm is in box form, taking hold of both top and bottom flanges of the end post by means of large gusset plates and also attaching securely to the top and bottom flanges of the top chord. The portal rods are made double and attach to long pins passing through the gussets.

The top chord bars of the river cantilever arms are made in twopanel lengths, and are supported by the light vertical posts and top lateral struts in such a way as to clamp them securely in position and at the same time effectively transmit the wind pressure at the panel point to the top lateral bracing.

Owing to the sharp grade of the cantilever spans the proper position for the tall posts over the piers became an interesting question. If they were made vertical, the other posts and suspenders being normal to the bottom chord and grade, it would make a short panel on one side of the post and a long one on the other, and give the post the appearance of leaning up-grade, as well as an awkward look on account of not being parallel with the posts on either side of it. These objections could have been met, of course, by making all posts and suspenders vertical instead of normal to the grade. If this was done, however, it would have to be done on the adjacent spans, two of 254 feet each and one of 162 feet, and the extra expense would have been greater than was thought justifiable. After considerable study and the making of scale. drawings of the several combinations, it was decided to make all posts, including the large ones over the pier, perpendicular to the grade.

The camber calculations for the river arm of the cantilever were made on the basis of the full dead load and one-half only of the maximum live load strain. The compression members were lengthened and the tension members shortened by an amount corresponding to their change in length from the strains caused by the above loading. The lengths of members in the shore arm were calculated as though the bottom chord was perfectly straight and the posts perpendicular to it, no allowance being made for upward or downward deffection. After swinging, and before the erection of the river arm, this span would deflect downward; under the dead load alone of the completed structure it would deflect upward; with the live load covering this arm alone it would deflect downward at the anchorage end and upward at the other, the bottom chord taking the form of a reverse curve.
The calculated maximum anchorage strain is 136000 pounds at the
of omolh truss, and is taken up by a 6×1-inch steel eye-bar passing
20 toet into the masonry and attached to a box girder 7 feet square and

a foet deep

Provision for alternate strains of tension and compression in the top ohord of the anchorage arm is made by using eye-bars for the full tension strain and a built member for the full compression strain. The compression chord is prevented from taking up any tensile strain, by means of oblong pin holes which permit the compression members to separate at the joint.

APPEINDIXI.

SPECIFICATIONS FOR SUBSTRUCTURE OF THE "CENTRAL BRIDGE" OVER THE OHIO RIVER, BETWEEN

CINCINNATI AND NEWPORT, FOR THE
CENTRAL RAILWAY AND
BRIDGE COMPANY.
Abutments.-The abutments or ramps on the Cincinnati and Newport sides shall be respectively about 277 and 330 feet long; they shall be formed of two side walls of masonry capped, as shown on plans, with coping courses 12 inches thick and 2 feet wide, supporting the side railings, and form the remainder of the width of the sidewalks with Berea sandstone flags not less than 9 inches thick, laid in cement with parallel joints, and a front wall supporting the end of the iron superstructure, capped with limestone not less than 18 inches thick. The ends of the flagstone on the roadway side shall be supported on a good and suitable foundation, as the engineer may direct.

These walls shall be built of freestone ashlars not less than 10 inches thick; they shall be founded on a bed of concrete or on pile foundations, as the nature of the ground may require. The spaces between the walls shall be filled with earth, gravel or broken stone, or brick deposited in 12 -inch layers, upon which the pavement and tracks for the wagon-ways and tramways shall be laid.

Pedestals.-There shall be twelve pedestals of masonry for the viaduct approach on the Cincinnati side, and sixteen for the viaduct approach on the Newport side. The pedestals shall be built of free-

[^2]

1

SPAN 8 AND 9, NEWPORT SIDE, NOVEMBER 14TH, 1890.

KAUFMAN \& OSBORN ON CASANTLEVER

stone ashlars not less than 18 inches thick, capped with a single block of limestone notless than 18 inches thick. They shall be founded on a bed of concrete, or on a pile foundation, as the nature of the ground may require.

Piers.-Numbering from the Cincinnati side, Piers Nos. 1, 2, 3, 4 and 9 shall be founded on pile or concrete foundations, the bottom of the masonry being from 6 to 10 feet below the surface of the ground.

Piers Nos. 5, 6, 7 and 8 shall be founded on the bed rock of the river. The rock shall be excavated from 4 to 6 feet in depth, and properly dressed to receive the first course of masonry; the spaces between the side walls of the pit and the masonry of the piers shall be filled with concrete to an even elevation with the bottom of the river.

Piers Nos. 1, 2, 3 and 9 shall be rectangular in shape, in a horizontal section, with a batter of one-half inch to the foot on all faces.

Piers Nos. 4, 5, 6, 7 and 8 shall also be rectangular in shape from the top of coping down to the elevation of high water. From high water down they shall have a semi-circular nosing at each end, as shown on plans.

The general dimensions for each pier shall be approximately as follows:

Copina.	Hexgrts.		Total. 23 feet.	
Pier 1, 8×32	.	-。		
، $2,8 \times 32$	-	-	34	،
، 3 , 8×32	\cdots	\cdots	42	،
'6 $4,11 \times 36$	29	41	70	'6
'6 $5,12 \times 36$	34	79	113	،
'6 $6,12 \times 36$	34	71	105	'6
'6 7, 11×36	29	70	99	6
" $8,9 \times 32$	21	70	91	'6
9, 9×32			36	،

The masonry of Piers Nos. 1, 2, 3 and 9 shall be of freestone ashlars not less than 16 inches thick; the coping shall be no less than 18 inches thick, and of approved stone.

The masonry of Piers Nos. 4 and 8 shall be of Berea sandstone ashlars for the face, with concrete hearting below high water.

Piers Nos. 5, 6 and 7 shall be of Berea sandstone facing and Ohio River freestone hearting below high water.

The masonry of Piers Nos. 4, 5, 6, 7 and 8 shall be composed entirely of freestone ashlars above high water to the under side of cop-
ing. The depth of the courses shall not be less than 16 inches. The coping courses shall be of limestone of approved quality not less than 24 inches thick for Piers Nos. 5 and 6, and 18 inches thick for piers Nos. 4,7 and 8.

Each pier shall have one or more footing courses. The anchorage for the ends of the Cantilever spans on Piers Nos. 4 and 7, as well as the anchor bolts in pedestals of the viaducts, shall be put in by the contractor for the substructure; the iron work for the same shall be furnished by the Bridge Company.

Generai.

All coffer-dams and scaffoldings used for the construction of the piers, as well as all surplus material excavated for the foundations of the same, shall be removed by the contractor before payment of the final estimate. The material excavated from the foundations of the river piers shall be deposited in suoh a place as not to cause any obstruction in any portion of the river. The place of deposit shall be satisfactory to the proper authorities.

Piers and pedestals shall be built of first-class masonry: The abutments shall be of second-class masonry. All joints of the masonry slaall be neatly pointed off with rich cement mortar. No masonry shall be laid in freezing weather without permission of the Engineer.

All materials shall be inspected, and shall be used oaly when. approved and accepted by the engineer. All work shall be done under the direction and to the acceptance of the engineer. All defective work shall be promptly taken down by the contractor on orders from the engineer, and rebuilt properly at the contractor's expense.
 engineer shall give his orders respectiag that work to whomsoever it may be in charge of, or executing the sid work, and his orders shall be respected and obeyed. The contractor assumes rill rish arising from the weather, accidents or causualties of any kimul.

Masonry details shall be prepared by the engineer for struct ure, and a copy of the same shall be furnished the contrator before beginning the work

Masonry shatl be divided into two classes: first and second-class masonry.

Fivst-class Masonry.-For Piers Nos. 4 and 8: The thickness of the courses shall vary from 16 inches thick to 30 inches thick, and the courses shall decrease uniformly in thickness from the bottom to the top of piers. The piers shall consist of alternate courses of headers and stretchers. They shall not be less than $3 \stackrel{1}{2}$ feet nor more than 6 feet long, and shall be no less than 16 inches nor more than 30 inches thick, nor less in width than one and one-quarter times the depth of the course to which they belong.

The casings shall be of Berea sandstone and the piers shall be filled with concrete made of Louisville selected and inspected cement. The casings shall be laid in alternate courses of headers and stretchers; the face stones shall be square; the joints shall be three-eighths of an inch in thickness. The vertical joints three-eighths of an inch in thickness shall extend backward from the face of the wall no less than 12 inches, and as much more as the stone will admit. The concrete filling shall be placed in the pier upon the completion of each course of the casing. It shall be mixed and deposited in place as specified under the head of "concrete."

All face stone must hold their size back in the heart of the wall that they show on the face.

All stone must lie on their natural quarry bed, and must be cleaned carefully and dampened before setting. They must have their beds and joints well dressed, and true to the proper plane. The beds shall be made as large as the stones will admit of. All face stones shall break joints not less than 12 inches.
No hammering on the stone will be allowed after it is set, but small inequalities may be pointed off carefulls.

The masonry shall be rock faced, with no projections of more than 3 inches from the proper plane.

The belting and coping courses, as well as quoins, shall have drafts 1_{1} inches wide. The coping stones shall have parallel joints dressed throughout. . They shall be of such dimensions as may be required by the engineer. They shall be tie together with iron clamps made of seven-eighths inch square iron; they shall extend 9 inches within the edge of each stone and their points shall extend A. inches into each stone; the clamps shall be set in lead.

First-class Masonry for Piers Nos 5, 6 and 7.-The giers shall consist of headers and stretchers, and there shall be at least one header to
every three stretchers, or more frequently if necessary in the opinion of the engineer.

Headers and stretchers shall not be less than 31 feet nor more than 7 feet long, according to thickness, nor less in width than one and a quarter times the depth of the course to which they belong

The thickness of the courses shall not be less than 16 inches nor more than 30 inches, and they shall decrease uniformly from the bottom to the top of walls.

Face stones must hold the size back in the heart of the wall that they show on the face.

All stones must lie on their natural quarry bed and must be cleaned carefully and dampened before setting. They must have their beds and joints well dressed and true to their proper plane.

The beds shall be made as large as the stones will admit; the vertical joints of the face must be in contact at least 6 inches measured in from the face. The face stones shall break joints not less than 12 inches. The backing shall be of good-sized, well-shaped stones, laid so as to break joints, and thoroughly bond the work in all directions. The joints shall not be less than three-eighths of an inch nor more than five-eighths of an inch thick. There shall be no spaces larger than 6 inches between the backing stones; they shall be filled with small stones laid flush in cement mortar. The whole of the masonry shall be laid flush in cement mortar, so as to fill thoroughly all joints, beds and spaces between stones. To remove all doubts as to this point, each course shall also be grouted, if required by the engineer.

No hammering on the stone will be allowed after it is set, but small inequalities may be pointed off carefully.

The masonry shall be rock faced, with no projections of more than 3 inches from the proper line.

The belting and coping courses, as well as all quoins, shall have drafts $1 \frac{1}{2}$ inches wide. The coping stone shall have parallel joints dessed throughout. They shall be of such dimensions as may be required by the engineer. They shall be tied together with iron clamps made of seven-eighths of an inch square. They shall extend 9 inches within the edge of each stone, and their points shall extend 4 inches into each stone; the clamps shall be set in lead.

Firstoclass Masonry for Piers Nos. 1, 2, 3 and 9.-Nhall be built entirely of Obio River freestone. The pißrs shall consist of headers
and stretchers, and there shall be at least one header to every three strelichers, and more frequently if necessary in the opinion of the engineer.

Headers and stretchers shall not be less than $\frac{2 x}{2}$ feet nor more than 6 feet long, according to thickness, and not less than If feet wide, nor less in width than the depth of the courses to which they belong. In all other respects the specifications governing the construction of Piers Nos. 5, 6 and 7 shall be used in the construction of Piers Nos. 1,

2, 3 and 9

Second-class Masonry.-Face stones shall not be less in thickness than specified for on each piece of work.

Joints.-Wertical joints on the face must be in contact at least 4 inches measured in from the face, and as much more as the stone will admit of.

Backing.-Shall be of large, welloshaped stones, having good natural or scabbled beds, the thickness corresponding to the face stones of the same course. Bond of face and backing stones shall not be less than 12 inches.

In all other respects second-class masonry shall be constructed as specified under the heads of "First-class Masonry " for Piers Nos. 5, 6 and 7.

Concrete.-Ooncreteshall be composed by actual meaurement of four measures of broken stone of uniform size, not more than $2 \frac{1}{8}$ inches in any direction, free from clay and soapstone and well screened, two measures of sand and one measure of cement. The broken stone is to be well watered, and stone and mortar thoroughly turned mind mixed on a tight plank floor immediately before using until every stone is coated with the mortar.

All concrete is to be laid in sections or lmyers, not exceeding Dinches iu thickness, and is to be thoroughly rammed. It must be mixed no dry that the water will not flush to the ศuriace untill the Tamming is nearly completed. The ramming mult be completed within fitteen minutes after the water has been mixed with the coment. Ooncrete
 on it.

Pile poundutions.-The piles shall be of white ow mot lets than 8 inches in diameter at the mall ed and 12 incher at the butt ond, with the bark peeled of They shim be otraightemdearelully pointed
or shod with approved cast or wrought iron shoes, if required by the engineer.

They shall be driven to such a depth as the engineer may direct. They shall be driven with suitable rings and with a heavy hammer, with short falls, if necessary, to avoid splitting. All piles badly split or otherwise injured in driving, or driven out of place by the fault of the contractor, shall be replaced with others at the contractor's expense.

The piles shall be cut off level 2 feet below the bottom of the masonry, and 1 foot above the bottom of excavation. The pit shall then be filled with concrete to the level of the top of the piles, and the piles capped by 12×12-inch timbers of one length drift-bolted to the piles with iron drifts 1 inch in diameter. The spaces between the caps shall be filled with concrete, and the platform made of 12×12 inch timbers laid closely together.

After the first course of masonry is laid, the spaces between it and the sides of the excavation shall be filled with concrete to a height of 12 inches above the top of the platform. After the masonry has been carried above ground, the remainder of the pit shall be filled with the material excavated, well rammed in, and the pavement, if any, that was removed for the excavation, shall be carefully relaid and left in as good condition as it was before.

The spaces between the walls of ramps shall be paved, guttered and curbed with granite in accordance with the specifications in force for similar work in the City of Cincinnati.

Materials.

Stone.-The freestone shall be equal to the best quality of what is known as the Ohio River freestone, procurable on the river between Maysville and Portsmouth. The limestone shall be equal to the best quality of Indiana compact limestone, procurable near North Vernon and Greensburg, Ind.

All stone must be sound, of sufficient strength to stand the required pressure without danger of crushing, not liable to be affected by the weather, and shall be thoroughly seasoned before using.

Cement.-The cement shall be equal to the best quality of Louisville hydraulic cement. It shall stand, without breaking, a tensile strength of not less than 100 pounds per square inch in briquettes seven days old. It shall not swell or crack in the process of hardening.

Sand.-The sand shall be clean, sharp river sand, properly screened from all dirt, clay, soapstone, or other impurities.

Morlar.-The cement mortar shall be generally composed of one measure of cement to two measures sand well mixed with clear water in clear water beds and used immediately after mixing. Different proportions of sand and cement shall be used when required by the engineer.

Timber:-All the permanent timbers used in the foundations shall be of sound white oak cut from living trees, free from worm holes, dry rot, decayed and loose knots, wind shakes, and all other defects impair ing its strength and durability. It shall be sawed true and of full size. Sap angles measuring over $1 \frac{1}{2}$ inches on the face shall not be allowed.

Iron.-All wrought iron in bolts, spikes, clamps, pile-shoes and other parts used in the substructure, shall be of the best quality of tough, ductile metal, that will stand 50000 pounds tension per square inch before breaking, with 15 per cent. elongation in specimens three-quarters of an inch square, 12 inches long, and bend cold 180 degrees on a circle $1 \frac{1}{1}$ inches in diameter.

All cast iron shall be of tough, gray metal that will stand 18000 pounds tension per square inch before breaking.

APIH:NDIX II.

SPECIFICATIONS FOR THE CENTRAL RAILWWAY AND BRIDGE COMPANY'S HIGHWAY BRIDGE OVER THE OHIO RIVER FROM CINCINNATI, OHIO, TO NEWPORT, KY.

Fiorm of Thruss ${ }_{c}$-The form and dimensions of trusses shown on the general drawinge will be,sRtisfactory.

Serain Sheets.-The strain sheets stumitted mangt show. fore orch member of the truss and for cross bracing the maximum Iive and dead load stresses sustained, together with the wind stresses in tho top and bottona ohord and end braco, the dimensions and aren of crossesmetions, the kind of metal used, also the dend lond assumed in tho cullonintions, which must not be less then the aotual weight of the strueture.

Dekeil Trawings.-...Tracings of complete detail drawings must"be subuitted for approval and be approved by the engineer before work is commenced. A copy of every approved strain sheet and drawing shall be furnished the engineer within ten days after its approval, and all working drawings required by the engineer will be furnished free of cost.

Materiail.-All parts of the structure shall be of wrought iron or steel, except washers, separating spools (over 1 inch in thickness) and ormamental work, which may be of castiron, and the flooring hereinafter specified.

Clearance-All through spans shall have a clear height of not less than 16 feet above the top of roadway floor, a clear width between trusses of 24 feet and two sidewalks 7 feet in the clear. The clear width between guard rails shall not be less than 22 feet.

Temperature.-Provision must be made in all parts of the structure for the expansion and contraction corresponding to a variation of 150 degrees Fahr. in temperature.

Floor.

Depth. - The depth of floor from top of roadway to lowest point of iron work shall not exceed 5 feet.

Plar.--The floor beam may be riveted to Zee iron or steel posts by means of gusset plate above pin; or, if the posts are composed of channels or built up with plates and angles, the webs of floor beams can pass through slots in the posts and be riveted to angles on the interior of same. Tension on rivet heads must be avoided.

Bottom Laterals.-The bottom laterals must be attached directly to the bottom chord pins by wing plates or by other effective means. If a stiff system is used the members must be riveted at their intersections; if rods are used they must be securely clamped together.

Roadwow.-The roadway shall consist of six lines of iron stringers riveted to foor beams. These stringers shall be covered with cross timbers of suitable dimensions, spaced at not more than 30 inches centers. These cross timbers to be covered with two layers of planking, the lower course being 3 inches in thickness and not exceeding 8 inches in width, laid longitudinally with one-fourth-inch open joints. The top course will be $2 \frac{1}{2}$ inches thick, laid transversely and with close joints, excepting that adjacent to track rail there will be one longitud-
inal strip 8 inches in width; the remaining top course of planking must not exceed 6 inches in width. Each crossotie must be notched over the stringers at least one-half inch, and be securely fastened to the outside flanges of outside stringers by fiveeeighths-inch hook bolts and in addition at two intermediate stringers, and so arranged to alternate in each consecutive tie. These hook bolts must be provided with a wrought-iron washer under nut. The cross-ties must extend without break over all stringers. The bottom course of planking shall be securely fastened to cross-ties by wrought-iron spikes at least $7 \times \frac{8}{8}$ inches, two at each end and at alternate edges over each cross-itie. The top course of planking will be securely fastened to the bottom course by fifty-penny nails of approved quality.

Quard Rail.-The wheel guards will be 3×3 inches, supported by blocks $3 \frac{1}{2}$ inches high, 10 inches wide and 10 inches long, spaced center to center a distance of 5 feet, or the distance center to center of every other cross-tie. These blocks are to be beveled at one end to a width of 8 inches at their top; the guard rail will be beveled on lower inner edge not less than 1 inch between faces of blocks; these blocks will be supported directly on the lower course of planking. The guard rail, block, lower course of planking and cross-tie shall be securely fastened by a three-quarter-inch bolt, provided with wroughtiron washers above and below.

Sidewalk..-The sidewalk floor shall consist of one course 6×2-inch planking laid with one-fourth-inch open joints on cross-ties of suitable size, spaced not more than 2 feet on centers, and laid transversely on iron stringers; separating strips must be used at least 6 inches long, one-fourth inch thick and 2 inches in width over enoh cross-tie be tween each line of planking. These separating strips are to be securely nailed to edge of planking. The cross-ties shall be secured to top flanges of outside stringers-by five-eighths-inoh hook bolts provided with wroughtiron washers. The flooring of the sidewalk shall be fastened with forty-penny naile-two at each end of planks, and at alternate edges of each consecutive cross-tie . Suitable provision must be made for completely boxing in the lower ehord of spens.

Sidevalk Rasiling.-A substantial irom railing, not less than \& feet in height and of approved design, shall be erected on the outer line of sidewalke the entire length of the bridge and approaohes. The railings on superstructure shenl have posts resting direotly on the floor
beam, and be securely braced thereto by outside braces of proper inclination, and extending nearly to the top of posts. The railings over the approaches shall be securely fastened by bells let into the masonry and properly leaded. Intermediate stays shall be provided at center of panels.

Lighting.-Provision for lighting the entire struture must be made, using lamps and posts of design approved by the engineer.

Gas Main.-Suitable provision must be made for carrying undee the sidewalk one line of 15 -inch gas main.

Loads.

Dead Loads.-The structure shall be proportioned to carey the following load, viz.:

First.-The weight of iron and steel in the structiare, the weight of iron being assumed at $3_{3}^{\frac{1}{3}}$ pounds for 12 cubic inches and the weight of steel 2 per cent. heavier.

Second.-The weight of wooden floor, considering each foot B. M. to weigh $4 \frac{1}{2}$ pounds for white oak. No extra allowance need be made for spikes, and railings may be assumed to weigh 30 pounds per lineal foot each. Track rails may be assumed to weigh 80 pounds per lineal foot of bridge.

The total dead panel loads will be distributed at top and bottom points as follows:

1st. On loaded chords:
(a.) One-half load resulting from weight of trusses.
(b.) The panel loads resulting from weight of lateral system in the plane of the chord.
(c.) One-half the weight of sway system at panel points where occurring.
(d.) The panel loads resulting from weight of wooden floor, floor beams, stringers, sidewalk brackets, sidewalk railings and track rails.
2d. On unloaded chords:
(a.) One-half the panel load resulting from weight of trusses.
(1. .) The panel loads resulting from weight of lateral system in the plane of the chord.
(c.) One-half the weight of sway system at panel points where occurring.

Live Louds.-For all truss members receiving more than one panel load 75 pounds per square foot of clear roadway and sidewalks for. 254 . foot spans; 80 pounds per square foot for suspended span and cantilever arms; 85 pounds per square foot for 162 -foot span; 100 pounds per square foot for 108 -foot span. For stringers, floor beams, long suspenders and iron trestle 100 pounds per square foot of clear roadway and sidewalks, or an Aveling \& Porter 15 -ton steam road roller.

In the calculation of stresses the following conditions of live load will be assumed:

For main truss members, the roadway and both sidewalks will be considered loaded.

For trestle legs and long suspenders, roadway and one sidewalk only will be considered loaded, and for floor beams, the roadway will be considered loaded with sidewalks unloaded, also roadway unloaded with sidewalks loaded.

Allowed/Stresses.
Allowed stresses per square inch in pounds for different members will be as follows:
Tension Members:
$\left.\begin{array}{c}\text { Eye-bars and } \\ \text { counters, }\end{array}\right\} 10000\left(1+\frac{\text { min. stress }}{\text { max.stress }}\right) 12000\left(1+\frac{\text { min. stress }}{\text { max. stress }}\right)$
$\left.\begin{array}{c}\text { Shapes } \\ \text { angles } \\ \text { and } \\ \text { (net }\end{array}\right\} 10000$
12000
$\begin{array}{l}\text { angles } \\ \text { section), }\end{array}$ net $\} 10000$
Lateral rods, 18000
Compression Members:
Wrought Iron. Steel.
$\begin{array}{lll}\begin{array}{l}\text { Square ends, } \\ \begin{array}{l}\text { One square } \\ \text { and one pin } \\ \text { end, }\end{array}\end{array} \begin{array}{cc}9000-30 \frac{l}{\gamma^{\circ}}\end{array} & 15000-60 \frac{l}{\gamma^{\circ}} \\ \text { Pin ends, } & 9000-35 \frac{l}{\gamma^{2}} & 15000-70 \frac{l}{\gamma^{0}} \\ & 9000-40 \frac{l}{r^{\circ}} & 15000-80 \frac{l}{\gamma^{0}}\end{array}$

Lateral Struts:

In which l equals distance between supports in inches, r equals least radius of gyration in inches,

$$
11000-50 \frac{l}{20}
$$

Flanges of floor beam,
| Tension-Same formula as for eye-bars stringers and plate girders $\$$
and counters.

Compressicn:

In which l equals unsupported length in inches, b equals width of flange in inches,

$$
\frac{10000}{1+\frac{c^{2}}{5000 b^{2}}}
$$

Altemate Trensin and Compression:
For compression only. Use compression formula.
For greater stress,
Wrought
Iroult
$10000\left(1-\frac{\text { max. lesser stress }}{2 \text { max. greater stress }}\right) 12000\left(1-\frac{\text { max. lesser stress }}{2 \text { max.greaterstress }}\right)$
Use the one giving the greater area of section.
Wrought
Iron.
steel.
Shearing: On webs of floor beams, stringers and plate
\qquad
Pins and rivets. 6000 . 8000
Bearing: On diameter of pin holes. 1200018000
On diameter of rivet holes................................. . $12000 \quad 15000$
Bending: Stress in extreme fiber of pins................ 1500021000
Field Rivels.-All field rivets must beiron, and provision
will be made for 50 per cent. in excess of above requirements.
rember: On extreme fibers in bending; tension and compression.
On bearing surfaces.. 400
Wervel.-Wind strains shall be calculated:

1. For a pressure of 30 pounds per square foot on the exposed sur. faces of both trusses and railings, and a moving load surface of 6 square feet per lineal foot of bridge.
2. For wind pressure of 50 pounds per square foot on the exposed surfaces of both trusses and railings, the direction of wind givipg larger surface being assumed in the calculations. Thegreatest resultis shall be taken in the proportioning of parts.

Lateral Sitruts.-Lateral struts will be proportioned to resist the resmltant due to an initial stress of 10000 pounds. per square inch rpon. all rods attached to them, when this is in excess of wind stress. The fiber stress due to weight of strut must be considered and be dedructed from the unit stress specified.

Camiset

All spans shall have an estimated camber of $d=\frac{l^{2} s}{c h}$, in which d is camber in inches, l equals length of span in feet, s equals mean stress per square inch on chords in tons of 2000 pounds, h equals depth of truss in feet, and cequals $900+8.4$ span for spans under 250 feet, and c equals 3000 pounds for spans over 250 feet.

Pative.

All iron or steel, before leaving the shop, shall be cleaned from all loose scales and rust, and be given one good coat of pure linseed oil. All surfaces in contact with each other shall receive one coat of oxide of iron paint before assembling, and all planed or turned surfaces shall be coated with white lead or tallow. After erection all iron and steel work shall be thoroughly and evenly painted with two coats of paint of such quality and color as the engineer may select.

Platta Girderigo

Compressed Flanges.-The compressed flanges shall be stayed transversely when their length is more than twenty-five times their width.

Web Splices.-All joints in webs shall be spliced by a plate on each side of web.

Flange Area.-No part of the web will be considered as available in flange area. The web is assumed to sustain shear only.

Stiffeners.-All web plates shall have stifieners at the inner edges of end-bearing plates and at all points of local concentrated loadings. Intermediate stiffeners will be used if the shearing atress per square inch in web exceeds $\frac{10000}{1+\frac{1}{3000}\left(\frac{d}{t}\right)^{2}}$ in which at equals clear depth between flange angles or clear distance between stijerening angles, and t equals thickness of web.

DETALIS O CONETEUCTION.

-Unsymmetrical Sections.--Sections composed of two rolled or riveted channels and one plate shall have the center of pin, in all cases, in the center of gravity of the section, and any abutting members shall be so proportioned that the centers of pineshall be on the mame line. All
eccentricity of stress shall be avoided. Provision must be made in all chord sections for bending from its.own weight.

Bottom Laterals:-The bottom laterals will bo attached directly to the bottom chord pins and not to the fioor beams.

Top Lateral Struls.-The top lateral struts will have the full depth of the chord, and be securely riveted thereto.

Portals.-The portals will consist of top and botifom 活rats come nected by cross bracing. The struts will be of neat design, loe provided with ornamental brackets, and be securely attached to the trusses. The portal at each end of bridge will be provided with a name plate of approved design having such appropriate inscription as may be directed.

Top Lateral Rods.-Top lateral rods will be atteched directly to the chord pins by wing plates or other effective means.

Rollers.-All spans shall have at one end nests of turned friction rollers of wrought iron or steel bearing upon planed surfaces. The rollers shall not be less than $2 \frac{1}{2}$ inches in diameter, and the pressure per lineal inch of roller shall not exceed $700 \sqrt{d}$ for wrought iron or $900 \sqrt{d}$ for steel, d representing the diameter of roller in inches.

Bed Plates.-Bed plates shall be of sufficient thickness to transmit the pressure on them uniformly to the rollers or masonry, ws the case may be. It will be sufficient in determining this thickness to consider the plate having the load upon it uniformly distributed over its entire bearing surface, a continuous beam of uniform section over the walls of shoe as points of support, span lengths being taken as distances center to center of walls and from outer edge of plate to center of outer wall.

Bending moments must be taken at the center of each span and at a section cut by a plane normal to plate and parallel to walls of shose through center of gravity of angles supporting walls to plate. Whe maximum bending moments must be taken. An extreme fiber strain of 18000 pounds is allowed for steel and 15000 pounds for iron. In an case shall the bed plates be less than 1 inch thick. The loed plates shall be so proportioned that the pressure upon masonry will not exceed 300 pounds per square inch.

Roller Plites.-Roller plates must not loe less than seven-eighths. of an inch thick.

Bolsters.-There will be wrought iron or steel boolsters at each end
of bridge, securely anchored to the masonry, proper provision being made for expansion.

End Braces.-End braces will have pin bearings at both ends
Long Tension Braces.-Long intersecting tension braces shall be clamped together at intersections to avoid rattling.

Long Compression Members.-In built posts and struts of trusses the angles shall be of one length without break, but the web plates may be spliced at intermediate supports if desired.

Sub-struts and Diagonals.-Sub-struts and overhead diagonal bracing will be provided at each vertical post in through spans, when depth of truss center to center of pins is 30 feet or over.

Vertical Suspenders.-All vertical suspenders will be designed to resist compression. If eye-bars they will be stiffened by zigzag bracing or otherwise to avoid vibration.

Trestle T'owers.—The base of trestle bents shall be sufficient to avoid tension under the highest wind specified and sufficient anchorage shall be provided to resist not less than one-half the overturning moment. The trestle bents shall be united in pairs to form towers and each tower thus formed shall be thoroughly braced in both directions. Cross-section and longitudinal struts shall be provided at bottom and at intermediate joints; also at top in the absence of floor beam or girders acting as such.

Raising Appliances.-At the foot of all towers and under bolsters of spans provision shall be made either by lengthening the pins, or by suitable lugs, for raising the structure to make any necessary repairs. These lugs shall be designed to resist the total weight of the structure and 1200 pounds per lineal foot of bridge.

Effective Section of Members Buill of .Angles.-Whenever a member is composed of angles, both flanges of angles must be connected, else only one flange will be considered as effective.

Generar Contitions.

Punching.-In punching rivet holes in iron, the diameter of the punch shall not exceed the diameter of the rivet by more than $\frac{1}{16}$ th of an inch, and the diameter of the die shall in no case exceed the diameter of the punch by more than $\frac{1}{26}$ th of an inch.

Punching and Reaming.-All rivet holes in steel work in the canti-
lever span shall be reamed. In the other spans all holes that are not fair when parts are assembled shall be reamed at the option of the inspector. In punching steel the play between die and punch shall not be more than $\frac{1}{16}$ th of an inch. In all reamed work the size of punch shall be one-eighth of an inch less than diameter of rivet to be used, and hole shall be reamed to $\frac{1}{10}$ th of an inch larger than diameter of rivet. One-sixteenth of an inch must be taken out of all parts of the hole in reaming. Sharp edges of reamed holes shall be so trimmed as to make a slight fillet under the heads.

Effective Diameter of Rivets.-The effective diameter of the driven rivets in reamed holes will be assumed $\frac{1}{18}$ th of an inch larger than its diameter before driving, and in making dednctions for rivet holes in tension braces the same allowance will be made. In iron, this allowance must be one-eighth of an inch more than the diameter of the rivet.

Pitch of Rivets.-The pitch of rivets shall not exceed 8 inches nor be less than three diameters of the rivet. At the ends of compression members the pitch shall not exceed four diameters of the rivet for a length equal to twice the depth of the member. In stringers, where the cross-ties rest directly on the filange, the pitch of rivets must be the same throughout as at the ends.

Distance from Center of Rivet to Edge of Plate.-The distance from center of rivet to edge of plate shall not exceed eight times the thickness of plate nor be less than one and one-half times the diameter of the rivet.

Distance between Rivets in Compression Members.-The distance between centers of rivets or plates strained in compression shall not exceed twenty times the thickness of plate in line of stress nor forty times the thickness of plate at right angles to line of stress.

Len.gth of Compression Members.-No compression member shall have a length exceeding forty-five times its least width.

Heast Thickness of Plates.-No plate or shape shall be less than onefourth of an inch thick when both faces are accessible for painting, nor less than ${ }_{-1}^{-5}$ ths of an inch thick if only one face is accessible.

Bearing Plates.-All pin holes shall be reinforced, when necessary, so as not to exceed the allowed pressure on the pins, and the reinforcing plates must be provided with a sufficiont number of rivets to transfer the pressure which comes upon them.

Tie Plates and Splice Plates.-The open sides of all compression members composed of two channels only, and trough-shaped sections composed of two channels and one plate, shall be stayed by tie plates at ends and diagonal lacing bars atintermediate points. The tie plates shall be square. Intermediate joints in the top chord shall be provided with tie plates at bottom, and side plates of sufficient length to hold the parts truly in position.

Lacing.-The sizes of diagonal lacing bars shall be as follows:
On the cantilever span $4 \times \frac{3}{8}$ inches.

For other spans:

$1 \frac{1}{2} \times \frac{1}{4}$-inch for members having a depth of 6 inches and under.

1事女	"	'6	،	7 to 8 inches.	
$2 \times \frac{5}{16}$	،	6	${ }^{6}$	9 to 12	،
24^{4} x	،	'6	66	13 to 16	6
$2 \frac{1}{2} \times \frac{1}{16}$	66	،	66	17 to 20	6
$2 \frac{1}{2} \times \frac{1}{2}$	،	66	66	21 inche	nd up

The distances between connections of the lacing bars shall not exceed eight times the least width of the segments connected, and in no case shall exceed an angle of 60 degrees.

Area of Rods.-No lateral or diagonal rod shall have a less area than three quarters of a square inch.

Upset Rods.-The area at root of thread in the upset ends of rods shall be greater than the area of the rod by at least 17 per cent.

Weight of Member.-For all horizontal or inclined compression members the weight of members shall be considered, and in fixing sections the fiber stress due to weight of member shall be deducted from unit stress allowed by formula. Tensile stress shall be avoided in a transverse direction to the fiber, and shearing stress in a parallel direction to the fiber of the iron.

Effect of Wind.-If the strain from the wind in the chords or a possible temperature strain should neutralize or reverse the strain in the chord from the dead load, provision must be made for same; and if the combined strains from the dead, live and wind loads in the chords exceed 25000 pounds per square inch, additional section must be added until the above allowed unit strain is not exceeded. Again, provision must be made in all built members for bending for wind. If the strain per square inch in such members, due to bending from wind, combined with the direct strain per square inch from dead, live
and wind loads, exceeds 25000 pounds per square inch, additional section must be added until this allowed unit strain is not exceeded.

Washers and Nuts.-Washers and nuts shall have a uniform beaxing. All nuts shall be easily accessible with a wrench for the purpose of adjustment, and shall be effectively checked after the final adjustment.

Lateral Adjustment Rods.-All lateral and adjustment rods shall be provided with open turn-buckles so that the length of thread may be verified.

Wing Plates.-The amount of metal immediately in front of pin hole in wing plate is to be determined in the following manner: The shearing area is to be considered as a section of twice the thickness of wing plate multiplied by the distance parallel to line of stress, from edge of plate to a point which is the intersection of a chord, equal to one-half the diameter of pin hole and taken normal to the line of stress, with the circumference of pin hole.

Details.-Details shall be of such nature that their strength can be accurately calculated, which strength shall be at least equal to that of the member or members which they are designed to connect.

Workmansme.

Pins and Piluts.-Pins shall be turned true to size and straight. They shall be turned down to a smaller diameter at the ends and be driven in place with a pilot nut when necessary to save the thread. There shall be a washer one-half an inch thick under each nut.

Inspection.-The inspection of work shall be made as it progressew, and at as early a period as the nature of the work permits.

All workmanship must be first-class. All abutting surfaces of come pression members, except flanges of plate girders where the joints aro fully spliced, must be planed or turned to even bearings so that they shall be in such contact throughout as may be obtained by such means. All finished surfaces must be protected by white lead and tallow. The rivet holes for splice plates of abutting members shall be so accuratelly spaced, that when the members are brought into position the hole shall be truly opposite before the rivets are driven. The chord piecee must be fitted together in the shops in lengths of at least four pieces and rivet holes in splice plates reamed while in position. Wherevor it is impossible to ream together the parts which will come together in the field, the holes in both shall be reamed to an iron template.

When members are connected by bolts which transmit shearing strains, the holes must be reamed parallel, and the bolts turned to a driving fit.

Rollers must be finished perfectly round, and roller beds planed.
Rivels.-Rivets must completely fill the holes, have full heads concentric with the rivet, of a height not less than . 6 diameter of the rivet, and in full contact with the surface, or be counter sunk when so required, and machine driven when practicable. Rivets must not be used in direct tension.

Built members must, when finished, be true and iree from twists, kinks, buckles or open joints between the component pieces.

Eye-Bars and Pin Holes.-All pin holes must be accurately bored at right angles to the axis of the members, and in pieces not adjustable for length. No variation of more than $\frac{1}{3 z} d$ of an inch will be allowed in the length between centers of pin holes; the diameter of the pin holes shall not exceed that of the pins by more than $\frac{1}{3 z} d$ of an inch, nor by more than $\frac{1}{50}$ th of an inch for pins under $3 \frac{1}{2}$ inches diameter. Eye-bars must be straight before boring; the holes must be in the center of the heads and on center line of the bars. All links belonging to the same panel, when placed in a pile, must allow the pins at each end to pass through at the same time without forcing. No welds will be allowed in the body of the eye-bars, laterals or counters, except to form loops of laterals, counters and sway rods; eyes of laterals, sway rods and counters must be bored.

The heads of eye-bars shall be so proportioned and made that the bars will preferably break in the body of the bar rather than in any part of the head or neck. The form of the head and the mode of manufacture shall be subject to the approval of the engineer. A variation from the specified dimensions of the heads of eye-bars will be allowed in thickness of $\frac{1}{3 y} d$ of an inch and in diameter of a quarter of an inch in either direction.

Thimbles or washers must be used wherever required to fill vacant spaces on pins or bolts.

Punching and Reaming.-Rivet holes must be accurately spaced; the use of drift pins will be allowed only for bringing together the several parts forming a member, and they must not be driven with such force as to distort the metal about the holes; if the hole must be enlarged to admit the rivet, it must be reamed.

Steel Plodes.-All steel plates must be stiaightened in the straightening machine and not by hanmering.

Annealing.-In all cases where a stel piece in which the full strength is required has been partially heated, the whole piece must be subsequently annealed. All bends in stieel must be made cold, or if tine degree of curvature is so great as to require heating, the whole piece must be subsequently annealed.

Interpreication of Drawings and Specifications. \rightarrow The decision of the engineer shall control as to the interpretation of the drawings and specifications during the execution of the work thereunder.

```
DIgTRTBUTMON Ow' Marmruag
```

All spons of the superstructure with the exception of the 108 -foot span, the viaduct trestle legs and hoos system in all spans shall be of steel (Class A). All rivets in steel work shall be of steel (Class B).

Quamery ow Matmitari.
ETroughe Iron,-All wrought iron must be tough, ductile, fibrous and of uniform quality for each telass, straight, smooth; free from cinder pockets or injurious flaws, buckles, blesters or cracks.

The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece not less than one-fourth of aninch thiok, cut from the full-sized bar, and planed or turned parallel. The arean cross-section shall not be less than one-half square inoh. The olonge. tion shall be measured. after breaking on an original length of 8 iachen,

All iron shall have a limit of elanticity of not less than 26000 pounds per squate inch.

All iron wed in tension shall have an ultimate strength of not lees than 50000 pounds per square inoh, and elongate not leme than 18 pos cent.

Angles and other shapés, and plates 24 inches wide and under. shall have an ultimate strength of not less thai 60000 pownds pot square inch and elongate not less then 15 per cont.

Plates over 24 inches wide shall We min ultimate strongth of mot less than 46000 pounds per squmre inch and olongate not lens thente per cont:

When fill-sias tennion meabors are tested to prove the stremght
of their connections, a reduction in their ultimate strength of (500 x width of bar) pounds per square inch will be allowed.

All iron shall bend cold 180 degrees around a curve whose diameter is twice the thickness of pieces for bar-iron and three times the thickness of pieces for plates and shapes without fracture.

Iron which is to be worked hot in the manufacture must be capa ble of bending sharply to a right angle at a working heat without sign of fracture.

All rivet iron must be tough and soft, and capable of bending cold until the sides are in close contact without sign of fracture on the convex side of the curve.

Steel.-Steel may be made either by the Bessemer or by the openhearth process. All blooms, billets or slabs will be examined for surface defects, flaws and blow holes before rolling into finished sections, and such chippings and alterations must be made as will secure perfect solidity in the rolled sections.

The slabs for plates must, in all cases, be as nearly rectangular as possible and straight their whole length.

The steel must be úniform in quality for each class, and after heating to light cherry red (as seen in the dark) and quenching in cold water, shall comply with the bending requirements provided in this specification for such class of steel.

In order to grade the steel used in this work at the sreel mills, the following form of selecting the test pieces shall be rigidly enforced. From every cast of metal there shall be made one test. If this test is satisfactory the whole cast may be accepted, subject to tests made on rolled sections. This test must be made from a three-quarter-inch round rolled from a 4 -inch square billet, which has been reduced from original ingot; this billet to be taken during the blooming down of ingot, and reduced in such way that the reduction of section into threequarters of an inch round will be as nearly as possible equivalent to reduction of section on finished material when rolled from original ingot. The manner and time of selecting this billet will be left to the convenience of the manufacturer.

In addition to this tension test a bending test will be required. The pieces used in this test may be either three-quarters of an inch round or three-quarters of an inch square, preferably the latter. This piece must bend cold 180 degrees about its own diameter for steel of Class A, and

180 degrees and close down fiat upon itself for steel of Class \mathbb{B}. The tests on three-quarter-inch round specimens, above mentioned, must satisfy the following requirements:

Class A.-Ultimate strength, 62000 to 70000 pounds por square inch. Elastic limit not less than 36000 pounds per square inch. Elongation not less than 22 per cent. in 8 inches. Reduction at point of fracture not less than 40 per cent.

Class B.-Ultimate strength, 56000 to 60000 。 Elastic limit not less than 30000 . Elongation, 25 per cent. in 8 inches. Heduction at point of fracture, 50 per cent. Phosphorus in all steel Class A and Class \mathbb{B} to be not over . 085 of 1 per cent.

Tests at Rolling Mills.-The finished bars must be fre from injurious flaws or cracks, and must have a smooth, clean inish.

At least one test will be required from every heat ore furnace full of billets, slabs or blooms to prove condition of metal witer rolling it into finished sections. This test piece must be cut from some rolled section of said heat and shall be generally one-half of a square inch in area and must conform to requirements as specified for three-quarter round at steel mills in every respect, except that ultimate ${ }^{\text {strenght may vary } 2}$ per cent. below minimum, and 5 per cent. above mazimum.

The original number of heat or cast at steel mills naust be stomped on all billets, blooms or slabs, and when rolled into finished sections this same number must be stamped on every piece rolled.

Numbev of Tests on Full-sized Fiye-bars....The method of making fullsized tests on eye-bars will be as follows: One full-sized test will be required in each size of bar, and if the number of bars of any size ex. ceeds twenty, then one additional test will be required for each multiple of twenty or part thereof exceeding ten. The extra bars required for test must be ordered at the steel mills with the original order. When the Bridge Company have finished an item of bars as represente on the shop bill, the inspector shall then select from this lot of bars the bars for test, and if these tests are satisfactory the whole itan may then be accepted. Should this first test fail to stand the requirementis of this. specification, and if in this test no blame attaches to the Bridge Oom pany on account of poor work, the latter chn demand to have tero other
 satisfactory, the whole item may be accepted, and so on with other items watil the whole osder of bars is completed.

Heads of Eye-bars.-The manufacturers must provide sufficient excess of material in the heads of eye-bars to insure their breaking in the body rather than in the head, but any bar which breaks in the head at a stress higher than called for will be accepted; provided, only, that the elastic limit is up to specified requirements. The minimum ultimate strength of full-sized bars when tested to destruction will be 60000 pounds per square inch. The minimum elastic limit shall be 34000 pounds per square inch.

Castings.-All castings shall be of tough gray iron, free from injurious cold shuts or blow holes, true to pattern and of workmanlike finish. Sample pieces 1 inch square, cast from the same heat of metal in sand moulds, shall be capable of sustaining on a clear span of 4 -feet 6 inches a central load of 500 pounds when tested in the rough bar.

General Requirements.

Any full-sized tension member of iron or steel tested to destruction shall be paid for at cost, less its scrap value to the contractor, if it proves satisfactory. If it does not stand the specified test, it will be considered rejected material and be solely at the cost of the contractor. The contractor shall furnish testing machine of the proper capacity, and shall prepare and test, without charge, such specimens of iron as may be required by the engineer or inspector to prove that it comes up to the requirements mentioned; he shall also furnish, prepare and test, without charge, such specimens of the several grades of steel, at steel mills and rolling mills, as may be required by the inspectors. Every facility for inspection of material and workmanship shall be furnished by the contractor, and the engineer or inspector shall be allowed full access to all parts of the establishment in which any portion of the materials are made or workmanship executed. Timely notice will be given to the engineer by the contractors when they are ready for the inspectors, and the inspectors will test and inspect the material at the mills as rapidly as it is made. All material must be inspected, weighed and stamped by the inspector before shipment. The acceptance of my material or manufactured member by the inspector shall not preVere its subsequent rejection if found defective after delivery, and such materials or members shall be replaced by the contractor without extra charge.

Enginer:-Wherever the term engineer is used throughout these
spocincetionas, it is distinctly maderstood that such torm shall meain the chiof oughmears or their muthorived essishands.

Thmbror.-All timbor must be of the best quasity of white oals, simed true to size mad out of wiad. It munet be free from sajp, except ina sticks haviag as depth of 16 inches or upward, wher 1 inch of saip will be sllowed on two corners. It must be free from wind shakes, loose or rottoin kaots or other defocts that will impair its streagth or durebility.

Erection.-AAn wailable portion of the river thall at all times be loft opera to xamiggation, and propor lights shall bo displayed at night in accordance with the regulatione mad requireements of the United States Qoverament. The contractor will furnish all stagiag, piling, cribbing, mad material of every description required in the erection of the superstructure, and remo the same after orection is completed, leaving the river as free from obstructions when we commenced. The contrwetor shall essoume all risks frown floods and storms, damage to per sons and propertios and casualties of every description until the final anceptamee of the completed structure.

The ereotion is to be carried on sulbject to the approval and inspection of the engineer, axd is to be completed, ready for uree, to his satisfaction.
APEBITDIX III

CRNTRAT TRATIWAY AND BRTDGI COMPANY' SPECIFICA THONA FOR A CAISAON FOI PHER No. 6.
The caissose to be used in building the foumdation for Pier No. 6

 edge, thus making the bottom gig feet 11 imothes hy teet 11 inches.

All timbor used in its coastruction must bo of egood quality of sound white or popilar, free from rotion innots, shatee or other defecte, mad whall be of such dimensions as show on the plane attaohed horeto mad forming a part of these specificabionat. Co manes Nos: 1, 2, 10, 11 and
 soctured of oals, the intertion boing to une no other timber except as an onforced expedient to secure the spoedy execution of the woris. Al
framing must be accurately done so as to secure close joints throughout the work.

All the iron used in spikes, bolts, drift bolts and straps must be of a ductile, fibrous wrought iron, having a tensile strength of 50000 pounds per square inch of section. Drift bolts must be driven into holes bored their full length, and of diameter $\frac{1}{2-}$ th of an inch less than the iron.

All seams between the timbers in the walls and ceiling of the air chamber, and in the outside walls, must be thoroughly caulked with oakum, and driven in with a heavy hammer. After the 3 -inch sheathing is laid and thorougly spiked, the seams between the boards must also be thoroughly caulked with oakum, and wherever spike or bolt heads are to be exposed to the air pressure of the working chamber, they must be wrapped with oakum before being drawn up tight or driven home.

In order to decrease the leakage, and to secure more uniform bearing for the timbers, all the vertical seams in courses Nos. 9, 10, 11 and 12 must be poured full of a thin cement grout, mixed neat. After this is done, all the seams in course No. 12 must, in addition, be caulked with oakum.

Air lock and excavating shafts will be located as shown on the plans, and all seams in them must be thoroughhly caulked. Provision must be made for carrying these shafts up through the masonry as fast as laid, either by cylinders of boiler iron or by matched oak boards capable of being made watcr-tight. Some approved form of iron air lock must be provided, and also excavating apparatus equal in efficiency to the "O'Conner bucket" for removing solid materials which may be encountered during the sinking.

On the sides and ends of the caisson heavy iron rings must be secured for use in suspending it during the preliminary stages of sinking, and for attaching lines to hold it in position against a swift current.

After reaching a depth satisfactory to the engineers, the air chamber and shafts must be filled with concrete made of one part by volume of cement, two parts of sand, four parts of limestone, rock broken so as to pass through a ring $2 \frac{1}{2}$ inches in diameter, and sufficient water to bring the mortar to proper consistency, the whole to be thoroughly rammed before the setting of the cement.

The triangular apree betweor the mir chamber med owtide welle znust also be flled with conorete, misedi in the propurtione sluove
 znust be taken that each stich in woll bedded in a froshly mised mortar sulpread on top of the concrete.

[^0]: he contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarlly reflect the official

[^1]: *The report's of Mr. Stuart were frequently drawn upion in preparing this paper.

[^2]:

