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Cyclic di-GMP-Dependent Signaling Pathways in the
Pathogenic Firmicute Listeria monocytogenes
Li-Hong Chen1¤a, Volkan K. Köseoğlu1, Zehra T. Güvener1¤b, Tanya Myers-Morales2, Joseph M. Reed1¤c,

Sarah E. F. D’Orazio2, Kurt W. Miller1, Mark Gomelsky1*

1 Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America, 2 Department of Microbiology, Immunology, and Molecular

Genetics, University of Kentucky, Lexington, Kentucky, United States of America

Abstract

We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria
monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation,
and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in
listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L.
monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess
diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that
possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (DpdeB/C/D) or expression of a
heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this
exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth
listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis.
The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in
semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly
enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L.
monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet
unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen
load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an
overall negative role in listerial virulence.
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Introduction

Cyclic dimeric GMP (c-di-GMP) [1] is one of the most common

bacterial second messengers. Over the last ten years our

understanding of c-di-GMP-mediated signal transduction path-

ways has rapidly expanded (reviewed in [2–6]). However, this

expansion has been dominated by studies of Proteobacteria, and to

a lesser extent Actinobacteria and Spirochetes, while studies of c-

di-GMP signaling in Firmicutes have lagged behind. In the

Proteobacteria, elevated levels of intracellular c-di-GMP are

associated with inhibition of motility and increased synthesis of

biofilm components, e.g. exopolysaccharides (EPS), pili and/or

surface adhesins. In pathogens that propagate extracellularly,

elevated c-di-GMP levels have been found generally detrimental

for acute infections (reviewed in [2,5–7]), although individual

components of c-di-GMP signaling networks may play different

roles during various stages of infection [8,9]. In contrast, during

chronic infections, c-di-GMP-induced biofilms greatly increase

pathogen survival in vivo [10–12]. In intracellular proteobacterial

pathogens, c-di-GMP signaling pathways are required for full-scale

virulence in those species that form biofilm-like intracellular

structures [13–15], but appear to be detrimental, at least in some

species, that do not form such structures [16].

In this study, we used the foodborne pathogen Listeria
monocytogenes [17] as a model to gain insight into c-di-GMP-

based regulation in Firmicutes in general. L. monocytogenes is

widespread in the environment. It has been isolated from soil,

silage, groundwater, sewage and vegetation and actively grows at a

broad range of temperatures (from 0 to 44uC), oxygen levels, pH

(from 4.4 to 9.6), and salt concentrations (up to 10% w/v NaCl),
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and is capable of utilizing a variety of carbohydrates as well as

other organic molecules as carbon sources. Listeriosis is a relatively

infrequent disease but it has the highest mortality rate, ,20%,

among foodborne diseases in the developed world. The compli-

cations of listeriosis, common in immunocompromised patients,

include encephalitis, meningitis, and stillbirths or infection of the

central nervous system in newborns [17–20].

Common sources of listerial contamination include unpasteur-

ized milk and milk products, raw meat, and packaged cooked meat

products. In plants processing meat and milk products listerial

biofilms can persist for years and even decades and cause repetitive

contamination of processed foods [21,22]. In recent years,

listeriosis caused by contaminated fresh produce has become a

significant concern. According to The Centers for Disease Control

and Prevention, the 2011 outbreak caused by Listeria-contami-

nated cantaloupes resulted in 33 deaths and was the largest

foodborne disease outbreak in US history in almost 90 years

[23,24]. Our understanding of how listeria attach and grow on the

surfaces of produce is surprisingly poor, and so is our knowledge of

the mechanisms ensuring long-term listerial survival. EPS is one of

the common components that facilitate bacterial attachment to

plant surfaces and increases their tolerance to desiccation and

disinfection [25,26], both of which are critical parameters for food

safety. However, the ability of L. monocytogenes to synthesize EPS

has remained controversial [27,28].

In Proteobacteria, EPS synthesis is commonly induced via c-di-

GMP signaling pathways, yet studies of such pathways in

Firmicutes are just beginning to emerge [29–32]. It is peculiar

that distribution of c-di-GMP signaling pathways in Firmicutes is

very uneven. Several major genera of pathogenic firmicutes,

Staphylococci, Streptococci and Enterococci, lack these altogether.

However, staphylococci retain remnants of c-di-GMP signaling

enzymes, which are involved in biofilm regulation but are no

longer associated with c-di-GMP [33]. On the other extreme of

the spectrum are certain clostridial species, e.g. Clostridium
difficile, that have numerous enzymes involved in c-di-GMP

synthesis and hydrolysis [29]. A recent study by Tamayo and

colleagues [30] showed that elevated levels of c-di-GMP inhibited

motility and induced cell aggregation in C. difficile. The c-di-

GMP-dependent riboswitches from C. difficile expressed in a

heterologous host were shown to affect gene expression in a c-di-

GMP-dependent manner. One riboswitch is located upstream of

the C. difficile flagellar biosynthesis operon [34]; the other one is

part of the riboswitch-ribozyme system predicted to control

adhesin gene expression [35]. Other recent studies [31,32]

characterized enzymes involved in c-di-GMP synthesis and

degradation in Bacillus subtilis and uncovered the role of c-di-

GMP in regulating motility and biofilm formation in this species.

Here, we present a genome-wide view of c-di-GMP signaling in

L. monocytogenes. We used bioinformatics analysis to identify

genes involved in c-di-GMP synthesis, degradation and signal

transduction, and subsequently applied genetic and biochemical

approaches to characterize functions of these genes in EPS

synthesis, motility inhibition, tolerance to disinfection and

desiccation, invasiveness in mammalian cells, and virulence in a

mouse model of listeriosis.

Results

Bioinformatic analysis of the c-di-GMP signaling system
in Listeria

C-di-GMP is synthesized by diguanylate cyclases (DGCs), which

contain GGDEF domains [36,37], and degraded by c-di-GMP-

specific phosphodiesterases (PDEs), which contain either EAL

[38–40] or HD-GYP [41] catalytic domains. The currently

sequenced strains of L. monocytogenes, and the majority of related

listerial species encode four GGDEF domain proteins, three EAL

domain proteins and no HD-GYP domain proteins (Pfam

database [42]) (Fig. 1).

Our sequence analysis predicted that three of the four GGDEF

proteins from L. monocytogenes EGD-e, Lmo1911 (DgcA),

Lmo1912 (DgcB) and Lmo2174 (DgcC), contain conserved

residues associated with DGC activity, and therefore they likely

possess DGC activities [4,43]. The three predicted DGCs have

similar domain architectures with a GGDEF domain preceded by

either six or eight transmembrane helices (Fig. 1). This domain

architecture suggests that c-di-GMP synthesis is regulated by

external signals or signals derived from the cell wall or cytoplasmic

membrane. The three proteins share approximately 30% identity

to each other over their entire lengths, and may have resulted from

ancient gene duplications. The EAL domain proteins in strain

EGD-e, Lmo0131 (PdeB), Lmo1914 (PdeC) and Lmo0111 (PdeD),

have conserved residues required for c-di-GMP binding and

hydrolysis [4,44], and therefore were expected to possess PDE

activities (Fig. 1). These putative PDEs contain only single EAL

domains suggesting their cytoplasmic localization.

The dgcA and dgcB genes are codirectional and separated from

each other by 20 bp, which indicates that they likely form an

operon. The pdeC gene appears to belong to the same dgcA-dgcB-
lmo1913-pdeC (lmo1911-1914) operon. Tiling microarray ex-

pression data support an operonal structure of this gene cluster

[45]. The intervening gene, lmo1913, encodes a protein of

unknown function. Based on structural predictions, Lmo1913

belongs to the six-hairpin glycosidase superfamily [46] (Fig. 1).

Therefore, DgcA, DgcB and PdeC may represent a signaling

module involved in c-di-GMP synthesis and degradation, and this

module may be involved in controlling synthesis of an unknown

EPS.

The GGDEF domain of the fourth GGDEF protein, Lmo0531,

is clearly degenerate. The signature GG(D/E)EF motif in Lmo531

is 208DKDDA, which should make this protein incapable of c-di-

GMP synthesis (Fig. 1). Five amino acids upstream of the signature

Author Summary

Listeria monocytogenes is ubiquitously present in the
environment, highly adaptable and tolerant to various
stresses. L. monocytogenes is also a foodborne pathogen
associated with the largest foodborne outbreaks in recent
US history. Signaling pathways involving the second
messenger c-di-GMP play important roles in increased
stress survival of proteobacteria and mycobacteria, yet
roles of c-di-GMP signaling pathways in L. monocytogenes
have remained unexplored. Here, we identified and
systematically characterized functions of the proteins
involved in c-di-GMP synthesis, degradation and sensing.
We show that elevated c-di-GMP levels in L. monocyto-
genes result in synthesis of a previously unknown
exopolysaccharide that promotes cell aggregation, inhibits
motility in semi-solid media, and importantly, enhances
bacterial tolerance to commonly used disinfectants as well
as desiccation. These properties of the exopolysaccharide
may increase listerial survival in food processing plants as
well as on produce during transportation and storage.
Elevated c-di-GMP levels also grossly diminish listerial
invasiveness in enterocytes in vitro, and impair bacterial
accumulation in selected mouse organs during oral
infection.

Cyclic di-GMP Signaling Pathways in Listeria
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motif is an RxxD motif that represents a part of a c-di-GMP-

binding sequence known as an I-site [43,47]. Therefore, we

hypothesize that Lmo0531 acts as a c-di-GMP receptor/effector

protein similar to the I-site containing degenerate GGDEF

domain proteins described earlier [48,49]. It is peculiar that

Lmo0531 is the only c-di-GMP receptor that can be predicted

based on genome sequence analysis [2].

To test functions of the predicted L. monocytogenes DGC and

PDE proteins and a single identifiable c-di-GMP receptor, we

cloned and expressed these genes in E. coli indicator strains that

respond to changes in intracellular c-di-GMP concentrations in a

predictable fashion, and, where necessary, purified proteins to test

their activities in vitro.

L. monocytogenes PdeB-D proteins possess c-di-GMP PDE
activities

We expressed L. monocytogenes pdeB, pdeC and pdeD in E. coli
MG1655 DyhjH. This mutant lacks a major c-di-GMP PDE,

YhjH [50,51], and as a result, is impaired in motility in semi-solid

agar [52]. We found that expression of any one of the pde genes

was sufficient to partially restore swim zones of MG1655 DyhjH in

semi-solid agar (Fig. 2A). These results are consistent with the

possibility that all three proteins, PdeB, PdeC, and PdeD, function

as c-di-GMP PDEs. However, overexpressed but enzymatically

inactive EAL domain proteins that retain the ability to bind (but

not to hydrolyze) c-di-GMP also can lower intracellular c-di-GMP

concentration thus mimicking the phenotypes of overexpressed

PDEs [53].

To resolve the ambiguity regarding the enzymatic activity of the

PdeB-D proteins, we purified each protein and tested its ability to

hydrolyze c-di-GMP in vitro. The PdeB and PdeD proteins were

overexpressed and purified as N-terminal His6-tagged fusions.

Since the His6-tagged PdeC fusion proved to be insoluble, PdeC

was purified as a fusion to maltose-binding protein (MBP)

(Fig. 2B). The ability of purified PdeB, PdeC, or PdeD to

hydrolyze c-di-GMP was assessed by measuring the substrate

and products of reactions over time using HPLC, as described

previously [38]. Fig. 2C shows that all three recombinant proteins

possess c-di-GMP PDE activities in vitro.

L. monocytogenes DgcA-C proteins possess DGC activities
The functionality of putative L. monocytogenes DGC proteins

was assessed by monitoring swim zone sizes in semi-solid agar. The

three dgc genes were cloned into the pBAD/Myc-His vector under

the control of an arabinose-inducible promoter. Each of the three

dgc genes decreased, to various degrees, the sizes of the swim zones

Figure 1. In silico analysis of genes and proteins involved in c-di-GMP signaling in L. monocytogenes. Depicted are genes predicted to
encode DGCs (DgcA-C), c-di-GMP PDEs (PdeB-D), a c-di-GMP receptor (PssE), and listerial EPS biosynthesis machinery. Protein domain architectures
are taken from the Pfam database: 5TM, a conserved five-transmembrane module; unmarked red box, transmembrane domain; crossed GGDEF
domain, enzymatically inactive GGDEF domain.
doi:10.1371/journal.ppat.1004301.g001

Cyclic di-GMP Signaling Pathways in Listeria
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of strain MG1655, which is highly motile in the absence of

heterologous DGCs (Fig. 3A).

To exclude the possibility of nonspecific motility inhibition (e.g.,

due to protein toxicity), we assessed a second c-di-GMP-dependent

phenotype that is independent of motility inhibition. In E. coli
BL21 (DE3), c-di-GMP induces synthesis of curli fimbriae that can

be detected by staining with Congo red dye [47]. As shown in

Fig. 3B, BL21 (DE3) strains expressing each of the three Dgc

proteins individually exhibited more intensely colored colonies on

Congo red agar compared to the negative control expressing an

empty vector. Together, these results support the prediction that

the DgcA-C proteins possess DGC activity.

L. monocytogenes phenotypes associated with perturbed
intracellular c-di-GMP levels

Having established that L. monocytogenes EGD-e possesses

functional components for c-di-GMP-mediated signaling, we

examined phenotypes associated with elevated and decreased

intracellular c-di-GMP levels. To perturb c-di-GMP levels, we

expressed in the EGD-e strain two c-di-GMP metabolizing

enzymes characterized by us previously, i.e., DGC (Slr1143 from

Synechocystis sp. [37]) and PDE (YhjH from E. coli [51]), and

assessed their role in swimming motility and EPS production. The

use of heterologous proteins allowed us assess the effects of

changing intracellular c-di-GMP levels without undesired changes

in protein-protein interactions that may have been occured if we

were to overexpress listerial DGC and PDE enzymes.

L. monocytogenes uses flagella for motility [54]. Expression of

Slr1143 blocked swimming of strain EGD-e in semi-solid agar,

whereas expression of YhjH had no effect (Fig. 4A top).

Expression of Slr1143 also resulted in more pigmented L.
monocytogenes colonies on Congo red agar, whereas expression

of YhjH had no observable phenotype (Fig. 4B, sectors 10 versus 1

and 9). Later in this work we show that YhjH is expressed and

functional as a PDE in L. monocytogenes. Therefore, we

interpreted the lack of a phenotype associated with YhjH

overexpression as an indication that intracellular c-di-GMP levels

in strain EGD-e are already low, and that c-di-GMP does not play

a significant role under the conditions used in these assays. Since

L. monocytogenes is not known to synthesize pili, and the genome

of strain EGD-e has no candidate pili genes, we hypothesized that

Congo red staining was indicative of EPS production. An EPS has

been suspected in some naturally occurring L. monocytogenes
isolates [28]. Further, Tiensuu and colleagues have recently

observed Congo red staining rings within L. monocytogenes
colonies exposed to dark-light cycles [55], however the nature of

the Congo red-binding extracellular polymer was not investigated.

Construction and characterization of the L.
monocytogenes dgc and pde mutants

Having identified two phenotypes associated with elevated c-di-

GMP levels, we proceeded to inactivate, individually and in

combination, the L. monocytogenes pdeB-D genes. Based on the

inhibition of swim zones in semi-solid agar by the heterologous

DGC, Slr1143, we expected pdeB-D mutations to result in smaller

swim zones. However, inactivation of individual pde genes did not

significantly affect swim zone sizes (Fig. 4C). Inactivation of pairs

of pde genes produced relatively minor decreases in swim zones

sizes, while simultaneous deletion of all three pde genes, DpdeB/C/
D, produced a mutant severely impaired in swimming in semi-

solid agar (Fig. 4C). This phenotype is similar to the phenotype of

the wild type EGD-e expressing the heterologous DGC, Slr1143

(Fig. 4A top). These results suggest that the PDEs have at least

Figure 2. PDE activities of the L. monocytogenes proteins PdeB-
D. A: Restoration of motility in semi-solid (0.25%) agar of strain MG1655
DyhjH by L. monocytogenes PdeB, PdeC and PdeD is indicative of their c-
di-GMP PDE activities. PdeB-D were expressed as C-terminal His6-fusions
downstream of the T7 promoter from vector pET23a. Although MG1655
does not encode a T7 RNA polymerase gene, the pde genes were
expressed from a fortuitous promoter at sufficiently high levels to
partially restore the swimming defect of MG1655 DyhjH in semi-solid
agar. pET, empty vector (pET23a). B: Affinity purified L. monocytogenes
PdeD (PdeD::His6), PdeB (PdeB::His6) and PdeC (MBP::PdeC) proteins
used in the PDE assays. MW, molecular weight, kD. C: PDE activities of
PdeD::His6, PdeB::His6 and MBP::PdeC monitored by the rates of
formation of pGpG, the product of c-di-GMP hydrolysis. Nucleotides
were measured by HPLC as described earlier [38].
doi:10.1371/journal.ppat.1004301.g002

Figure 3. DGC activities of the L. monocytogenes proteins DgcA-
C. A: Inhibition of motility in semi-solid (0.25%) agar of strain MG1655
by L. monocytogenes DgcA (plasmid pBAD-dgcA), DgcB (pBAD-dgcB)
and DgcC (pBAD-dgcC) is indicative of their DGC activities. DgcA-C were
expressed from the vector pBAD/Myc-His-C (pBAD). LB agar contained
0.1% arabinose. B: Congo red staining of the fimbriae producing strain
BL21(DE3) caused by L. monocytogenes DgcA, DgcB and DgcC is
indicative of their DGC activities. LB agar contained 0.001% arabinose.
doi:10.1371/journal.ppat.1004301.g003

Cyclic di-GMP Signaling Pathways in Listeria
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partially overlapping functions in degrading intracellular c-di-

GMP.

As expected, expression of Slr1143 in the triple DpdeB/C/D
mutant did not affect the already inhibited motility any further

(Fig. 4A bottom). However, expression of YhjH in this mutant

fully restored the swim zone to the size of the wild-type strain, thus

showing that YhjH is expressed and functional in L. monocytogenes
(Fig. 4A bottom), and that motility inhibition in semi-solid agar

was due to elevated c-di-GMP levels in the triple DpdeB/C/D
mutant.

We proceeded to test the effects of L. monocytogenes pde
mutations on Congo red binding. The triple DpdeB/C/D mutant

showed significant accumulation of Congo red (Fig. 4B, sector 2

versus 1), similar to the wild type strain expressing Slr1143

(Fig. 4B, sector 10). Expression of YhjH, but not Slr1143, in the

triple DpdeB/C/D mutant, inhibited Congo red accumulation

(Fig. 4B, sector 6 versus 5 or 7). Individual pde mutants did not

affect Congo red staining, while among double mutants, the pdeB/
C mutant showed some staining (Figure S1).

In addition to Congo red binding, the colonies of the DpdeB/C/
D mutant were found to have rough edges, compared to smooth-

edged colonies of the wild type strain (Fig. 4D). The observed

changes in colony morphology in the DpdeB/C/D mutant were not

as pronounced as the wrinkled or rough colony morphologies

reported in the proteobacterial species overexpressing EPS [56–

59], however, when combined with enhanced Congo red binding,

these changes are indicative of EPS production.

Inactivation of the dgc genes, individually or in combination,

resulted in no observable phenotypes, just like the expression of

YhjH in the wild type strain produced no phenotype. We therefore

conclude that c-di-GMP plays little, if any role, in strain EGD-e

grown under these laboratory conditions.

Bioinformatics-based identification of the putative EPS
biosynthesis pssA-E operon in L. monocytogenes

We searched the L. monocytogenes genome for EPS biosynthesis

genes potentially responsible for c-di-GMP-induced Congo red

binding. The lmo0527-0531 operon, designated here pssA-E
(polysaccharide synthesis) (Fig. 1), emerged as the prime candidate

for this role based on the following reasoning. The last gene of the

operon, pssE (lmo0531), encodes a degenerate GGDEF domain

protein, hypothesized to function as a c-di-GMP receptor (Fig. 1).

If this assumption is correct, PssE may be involved in a c-di-GMP-

dependent activation of EPS synthesis, similar to activation of

cellulose [1,51], alginate [60] and Pel EPS synthesis [48] in

Proteobacteria. An additional reason to implicate the pssA-E
cluster in EPS biosynthesis was based on the presence of the

putative glycosidase gene, lmo1913, in the dgcA-dgcB-lmo1913-
pdeC operon that encodes enzymes for synthesis and hydrolysis of

c-di-GMP (Fig. 1). Glycosidases counterbalance glycosyltransfer-

ases and are integral components of EPS synthesis and degrada-

tion apparati.

The pssA-E operon appears to encode enzymes associated with

biosynthesis of poly- -1,6-N-acetyl-D-glucosamine (PNAG) or

poly- -1,4-D-glucopyranose (cellulose), either of which is capable

of binding Congo red, or yet another EPS. The key player in this

operon is PssC (Lmo0529), which is predicted to function as type 2

glycosyltransferase responsible for the polymerization reaction.

PssC shows the highest (,30%) identity (over an ,300 amino acid

region) to the N-acetylglycosyltransferases involved in PNAG

synthesis from S. aureus (IcaA) and Yersinia pestis (HmsR) [61,62].

However, no other genes found in the staphylococcal ica or

yersinial hms gene clusters are present in the pssA-E operon.

Instead, the gene downstream of pssC, pssD (lm0530), encodes an

ortholog of the BcsB subunit of bacterial cellulose synthases [63].

The BcsB proteins have thus far been associated exclusively with

cellulose synthases, yet they are involved in the membrane passage

of the polysaccharide polymer not its synthesis [64], therefore BcsB

can possibly accommodate polymers of different composition than

cellulose. It is noteworthy that the glycosyltransferases catalyzing

cellulose synthesis also belong to type 2 glycosyltransferases, like

the PNAG synthases [63]. Further, PssC shares ,25% identity

with the type 2 glycosyltransferase BcsA of the cellulose synthase

complex of Rhodobacter sphaeroides [64]. The almost equal

similarity of the listerial glycosyl transferase to PNAG- and

cellulose synthases makes predictions of the composition of the

listerial EPS unreliable.

The pssA-E gene cluster is indeed responsible for listerial
EPS synthesis

To test the involvement of the pssA-E gene cluster in EPS

biosynthesis, we deleted the predicted glycosyltransferase gene,

pssC, in the DpdeB/C/D background. We found that the

constructed DpdeB/C/D DpssC mutant no longer bound Congo

Figure 4. Inhibition of motility and activation of EPS production in L. monocytogenes by elevated levels of c-di-GMP. A: Top, Inhibition
of swimming of the wild-type L. monocytogenes in semi-solid agar by a heterologous DGC, Slr1143. Bottom, Restoration of swimming in semi-solid
agar of the L. monocytogenes DpdeB/C/D mutant by a heterologous PDE, YhjH. WT, wild type, EGD-e; A/B/C, DpdeB/C/D mutant; pIMK, WT::pIMK2
(vector control); slr, WT::(pIMK2::slr1143); yhjH, WT::(pIMK2::yhjH). B: Congo red staining of EPS in L. monocytogenes. 1, WT, wild type; 2, DpdeB/C/D; 3,
DpdeB/C/D DpssE; 4, DpdeB/C/D DpssC; 5, DpdeB/C/D::pIMK2; 6, DpdeB/C/D::pIMK2::yhjH; 7, DpdeB/C/D::(pIMK2::slr1143); 8, WT::pIMK2; 9,
WT::(pIMK2::yhjH); 10, WT::(pIMK2::slr1143). C: Deletion of all three c-di-GMP PDEs drastically inhibits motility of L. monocytogenes in semi-solid
agar. WT, wild type strain, B, DpdeB; C, DpdeC; D, DpdeD; B/D, DpdeB DpdeD; C/D, DpdeC DpdeD; B/C, DpdeB DpdeC; B/C/D, DpdeB/C/D. D: Rough
colony morphology and increased Congo red staining of the L. monocytogenes DpdeB/C/D mutant and rescue of the wild-type colony morphology by
the DpssC mutation (DpdeB/C/D DpssC). E: Restoration of motility of the DpdeB/C/D mutant by the DpssC or DpssE mutations.
doi:10.1371/journal.ppat.1004301.g004
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red (Fig. 4B, sector 4). This result supports the hypothesis that the

pssA-E operon is responsible for c-di-GMP-induced EPS

biosynthesis. To verify it further, we tested another bioinfor-

matics-based prediction, i.e. that inactivation of pssE in the

DpdeB/C/D background will also impair EPS synthesis. Indeed, the

constructed DpdeB/C/D DpssE mutant did not bind Congo red

either (Fig. 4B, sector 3). We conclude that PssE, a putative c-di-

GMP receptor, plays a critical role in EPS synthesis. Comple-

mentation of the DpdeB/C/D DpssC and DpdeB/C/D DpssE
mutants with individually cloned pssC and pssE, respectively,

restored Congo red binding (data not shown) verifying that the

DpssC and DpssE mutations were responsible for the mutant

phenotypes. The DpssC and DpssE mutations in the DpdeB/C/D
mutant background reversed the rough colony phenotype back to

a smooth appearance (Fig. 4D and data not shown).

Biochemical evidence that the PssE protein is a c-di-GMP
receptor

To test the prediction that the PssE protein acts as a c-di-GMP

receptor, we overexpressed its GGDEF domain containing the I-

site as an MBP fusion (MBP-GGDEFpssE), purified this protein

(Fig. 5A) and analyzed its ability to bind c-di-GMP in vitro using

equilibrium dialysis. MBP-GGDEFpssE was found to bind c-di-

GMP with an apparent Kd of 0.7960.17 mM (Fig. 5B). This value

falls within the range of physiologically relevant intracellular c-di-

GMP concentrations measured in other bacteria that are believed

to be in the submicromolar to low micromolar range [5]. The

binding capacity of the MBP-GGDEFpssE protein, Bmax, was

calculated to be 2.0360.12 mM c-di-GMP (mM protein)21

indicating that each PssE molecule can bind two c-di-GMP

molecules at saturation. This result is consistent with the

observation of an intercalated c-di-GMP dimer bound to the I-

sites of crystallized GGDEF domain proteins [2,3]. Therefore,

PssE is a bona fide c-di-GMP receptor that is predicted to transfer

the c-di-GMP signal to activate synthesis of the listerial Pss EPS.

C-di-GMP-induced listerial EPS promotes cell aggregation
but plays limited role in biofilm formation on abiotic
surfaces

PNAG and cellulose increase biofilm formation by the

proteobacterial species on abiotic surfaces. To test the effect of

c-di-GMP-induced EPS in L. monocytogenes, we performed a

conventional Crystal violet dye-binding assay that measures the

biomass of cells attached to the wells of microtiter plates following

removal of liquid cultures [65]. Surprisingly, we did not observe an

increase in biofilm levels in the DpdeB/C/D mutant, compared to

the wild type, when these strains were grown in LB medium

(where biofilm formation of strain EGD-e is low). We observed

only a marginal increase in surface-attached biofilm levels in LB

supplemented with glycerol (where biofilms are greatly stimulated)

(Fig. 6A). Interestingly, this increase in biofilm levels was observed

in all DpdeB/C/D strains grown in LB plus glycerol, whether or not

they produced EPS (Fig. 6A). These results suggest that, instead of

the anticipated stimulation of biofilms, listerial EPS may actually

inhibit biofilm formation, at least under certain conditions. They

also implicate a c-di-GMP-activated non-EPS component in

biofilm stimulation. Similar to the results on polystyrene surfaces,

the DpdeB/C/D mutant produced no more biofilm in LB medium

on glass or metal (aluminum foil or steel coupons) surfaces than did

the wild type (data not shown).

We noticed that incubation of the DpdeB/C/D mutant (but not

the wild type, DpdeB/C/D DpssC or DpdeB/C/D DpssE mutants) in

liquid glucose-rich minimal HTM medium resulted in cell

clumping (Fig. 6B). This suggests that listerial EPS strengthens

intercellular interactions but not bacterial interactions with abiotic

surfaces. The pssC and pssE gene deletions in the DpdeB/C/D
background completely abolished clumping, just like they

decreased Congo red binding in BHI plates. This result confirms

that listerial EPS is responsible for clumping.

C-di-GMP-dependent EPS impairs L. monocytogenes
motility in semi-solid agar

Since the EPS producing DpdeB/C/D mutant was impaired in

swimming in semi-solid agar (Fig. 4C), we set out to explore the

effect of EPS on motility. Surprisingly, inactivation of EPS

synthesis by the pssC or pssE mutations, restored swimming of

the DpdeB/C/D mutant in semi-solid agar to the wild-type levels

(Fig. 4E). It therefore appears that swimming in semi-solid agar

was impaired exclusively due to listerial EPS.

To gain additional insight into this issue, we analyzed the

motility of the wild type, the DpdeB/C/D mutant and the DpdeB/C/
D DpssC mutant in liquid medium where clumping is minimal and

not detectable by the naked eye. Phase contrast microscopic

observations revealed that single cells of the DpdeB/C/D and

DpdeB/C/D DpssC mutants were as motile as the wild-type cells.

These results favor the scenario whereby EPS accumulated on cell

surfaces results in cell aggregation, which inhibits spreading of the

cells in semi-solid agar.

C-di-GMP-induced EPS significantly enhances L.
monocytogenes tolerance to disinfectants and
desiccation

EPS is known to protect bacteria from environmental insults

(27). Here we evaluated the role of L. monocytogenes EPS in

providing tolerance to disinfection and desiccation. The wild-type

strain EGD-e as well as its DpdeB/C/D mutant synthesizing EPS

and grown under clump-forming conditions were subjected to

selected disinfectants commonly used in the food-processing

industry and produce storage facilities: sodium hypochlorite

Figure 5. In vitro assay of c-di-GMP binding by the PssE
receptor. A: The MBP-PssE protein purified via affinity (amylose resin)
chromatography. The GGDEF domain of PssE (residues 107-285)
containing the putative I-site was fused downstream of MBP,
MBP::GGDEFpssE, and used in c-di-GMP binding assays. B: Saturation
plot of equilibrium binding of c-di-GMP to the PssE receptor
(MBP::GGDEFpssE). Shown is the dependence of the ratio of bound c-
di-GMP per protein in the dialysis chamber, where protein alone was
loaded, versus concentration of free c-di-GMP at equilibrium.
doi:10.1371/journal.ppat.1004301.g005
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(bleach), benzalkonium chloride (a quaternary ammonium com-

pound) and hydrogen peroxide [66]. To distinguish between the

contribution of EPS versus EPS-independent c-di-GMP-respon-

sive agents, we included in the tests the DpdeB/C/D DpssC mutant

characterized by elevated intracellular c-di-GMP levels but

defective in EPS production.

The sodium hypochlorite treatment applied here was highly

effective in killing the wild-type strain, but not the EPS producing

DpdeB/C/D mutant, whose survival was approximately .106-fold

higher than the survival of the wild type (Fig. 6C). Tolerance of

the DpdeB/C/D mutant to hydrogen peroxide and benzalkonium

chloride treatments was also highly, approximately 102-fold,

higher, compared to the wild type or the EPS-deficient DpdeB/

C/D DpssC mutant (Fig. 6C). These observations suggest that the

c-di-GMP-induced EPS is a critical factor responsible for increased

tolerance to these agents.

EPS also enhanced survival of L. monocytogenes to long-term

desiccation. In this experiment, the liquid-grown cultures were

centrifuged, and the pellets were kept in a desiccator for 7 or 21

days. We found that the desiccation survival rates of the EPS

producing DpdeB/C/D strain were significantly higher, compared to

those of the wild type or the DpdeB/C/D DpssC mutant (Fig. 6D).

These results suggest that EPS provides superior protection not only

against various commonly used disinfectants in food processing

plants but also to desiccation, which may enhance listerial survival

during food transportation and storage.

Figure 6. Role of the c-di-GMP-induced EPS in biofilm formation, cell aggregation, and tolerance of L. monocytogenes to
disinfectants and desiccation. A: Biofilm formation of L. monocytogenes in 96-well polystyrene plates (measured using a Crystal violet dye-
binding assay). Cultures were grown for 6 days at 30uC in LB (top panel) or LB supplemented with 3% glycerol (bottom panel). Shown are average
results from two biological replicates, where each strain was grown in six wells in a replicate (i.e., six technical replicates). Black circle, wild type; red
square, DpdeB/C/D; green triangle, DpdeB/C/D DpssC; blue cross, DpdeB/C/D DpssE. B: EPS-dependent L. monocytogenes cell aggregation (clumping) in
HTM medium. Overnight cultures grown in BHI were inoculated into HTM liquid medium at A600 of 0.01 and incubated at 30uC with gentle shaking
(rotary shaker, 125 rpm) for 48 h. 1, DpdeB/C/D; 2, wild type; 3, DpdeB/C/D DpssC; 4, DpdeB/C/D DpssE; C: Protective role of the c-di-GMP-inducible EPS
in disinfection. Aliquots of the HTM-grown cultures were mixed with disinfectant solutions for 10 min at room temperature. Disinfection was stopped
by adding a D/E neutralizing broth (Difco); the cultures were vortexed vigorously (5 min) with glass beads to break clumps and plated on BHI agar.
Colonies were enumerated after a 48-h growth at 37uC. SH, sodium hydrochloride (1600 ppm); HP, hydrogen peroxide (200 mM); BC, benzalkonium
chloride (100 ppm). White background, EGD-e; black, DpdeB/C/D; grey, DpdeB/C/D DpssC. SH, sodium hypochlorite; HP, hydrogen peroxide; BC,
benzalkonium chloride. The absence of the bar for the EGD-e strain treated with SH indicates the lack of survivors. D: Protective role of the c-di-GMP-
inducible EPS in desiccation. Aliquots of overnight cultures grown in HTM at 37uC were spun down, the supernatants were removed, and cell pellets
were stored in desiccators at room temperature for the indicated periods. The pellets were rehydrated, vortexed with glass beads for better
suspension and plated on BHI agar. The numbers of surviving colonies after incubation at 37uC for 24 h are plotted. In panels C and D, bars denote
mean values for data from three biological replicates. *, significantly different (p,0.002), **, significantly different (p,0.02), according to Tukey test
(Minitab 16 statistical software; http://www.minitab.com/).
doi:10.1371/journal.ppat.1004301.g006
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Elevated c-di-GMP levels inhibit L. monocytogenes
invasion into mammalian cells

As a foodborne pathogen, L. monocytogenes is expected to use

gut epithelial cells for primary invasion [17–20]. We examined

the consequences of elevated c-di-GMP levels on bacterial

invasion into HT-29 human colon adenocarcinoma cells. As

shown in Fig. 7A, the strains with elevated c-di-GMP levels were

significantly impaired in invasion, whether elevated c-di-GMP

was caused by expression of the heterologous DGC, Slr1143, or

by the DpdeB/C/D mutations. Consistent with the inhibitory

role of c-di-GMP, invasion was increased, by approximately 2-

fold, in the L. monocytogenes strain expressing a c-di-GMP PDE,

YhjH.

Next, we tested what role the c-di-GMP-induced EPS may

have played in invasion inhibition. We observed that the DpdeB/
C/D DpssC and DpdeB/C/D DpssE mutants showed approxi-

mately 2–2.5-fold greater invasiveness compared to the DpdeB/C/
D mutant (Fig. 7B), but remained approximately 10-fold less

invasive than the wild type strain. These results suggest that while

EPS moderately inhibits invasion, the major reason for the

defective invasion is a c-di-GMP-induced component(s) different

from EPS. The nature of this component(s) and the mechanisms

through which it inhibits listerial invasion remain to be

investigated.

Elevated c-di-GMP levels reduce systemic spread of L.
monocytogenes in mice infected via an oral route

To assess the role of c-di-GMP signaling in vivo, we used a

newly developed mouse model of foodborne listeriosis [67].

Groups of BALB/c/By/J mice were fed either wild-type EGD-e

or the DpdeB/C/D mutant, and the bacterial load in various tissues

was assessed 60 h post infection. There was no significant

difference in colonization of the ileum, colon or spleen at this

time point (Fig. 8). However, the DpdeB/C/D triple mutant was

significantly impaired in colonizing both the liver and the

gallbladder. The decreased bacterial load in the liver appears to

be linked to EPS, since the DpssC mutation in the DpdeB/C/D
background restored the bacterial load to the wild-type level

(Fig. 8). In fact, no significant differences in bacterial loads in the

liver were observed when the same L. monocytogenes strains were

injected intravenously (Fig. S2), suggesting that increased levels of

c-di-GMP may alter the ability of the bacteria to disseminate from

the gut.

Discussion

We predicted that the L. monocytogenes EGD-e genome

encodes three GGDEF domain DGCs, one inactive GGDEF

domain protein and three EAL domain PDEs, and verified this

prediction by a combination of genetic and biochemical tests.

Interestingly, all of the enzymes involved in c-di-GMP metabolism

are highly conserved not only in the genomes of L. monocytogenes
isolates but also in other Listeria species, e.g. L. innocua, L.
ivanovii, L. seeligeri, and L. welshimeri. The high conservation of

these proteins implies that c-di-GMP signaling pathways play

important roles in the evolutionary success of Listeria. Such

conservation is striking in light of the flexibility in the organization

of c-di-GMP signaling pathways observed in other Firmicutes. For

example, in the genus Bacillus, the number of enzymes involved in

c-di-GMP synthesis and hydrolysis varies from three to eleven; it

varies from eight to forty in the genus Clostridium (http://www.

ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html).

We discovered that c-di-GMP regulation affects at least two

targets in L. monocytogenes. One of these targets is a novel EPS

(Fig. 4B, 4D, 6B). This finding resolves the long-standing

controversy regarding the ability of listeria to produce EPS

[27,28]. The second (and possibly additional) target of c-di-GMP

regulation, whose identity remains unknown, appears to be

responsible for the drastic inhibition of listerial invasiveness in

mammalian cells (Fig. 7), modest stimulation of biofilm formation

on abiotic surfaces in LB supplemented with glycerol (Fig. 6A) and

lower pathogen accumulation in certain mouse organs following

oral infection (Fig. 8).

Here, we revealed that the c-di-GMP induced EPS is

synthesized by the pssA-E operon. The composition of the listerial

EPS is difficult to predict because, while some Pss proteins share

similarity to the components of cellulose synthases and PNAG

synthases, other components are unique. Interestingly, in contrast

to cellulose or PNAG, both of which promote biofilm formation on

Figure 7. Impaired invasion of L. monocytogenes in HT-29 human colon adenocarcinoma cells by elevated c-di-GMP levels. A:
Expression of the heterologous DGC, Slr1143 (WT::slr; blue bar), or deletion of the native PDEs (DpdeB/C/D; black), strongly inhibit listerial invasion,
compared to EGD-e containing an empty vector (WT::pIMK; white), while overexpression of the heterologous PDE, YhjH (WT::yhjH; yellow), improves
invasion. B: High intracellular c-di-GMP levels inhibit invasion more significantly than the presence of EPS. Strains shown are WT (white bar); DpdeB/C/
D mutant (black); DpdeB/C/D DpssC (dark-grey) and DpdeB/C/D DpssE (light-grey). Plotted are values of relative invasion, compared to those of
WT::pIMK (panel A) or WT (panel B). Average results from three independent tests, each performed in three replicates are shown. *, significantly
different (p,0.001). Prism 5 for Mac (GraphPad) was used to perform unpaired Student’s t-tests.
doi:10.1371/journal.ppat.1004301.g007
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abiotic surfaces [61,62,64,68], listerial EPS either does not affect

or inhibits biofilm formation on abiotic surfaces. Instead, it

promotes cell aggregation, in minimal media (Fig. 6B). These

observations favor the hypothesis that the composition of listerial

EPS is different from cellulose or PNAG.

In this study, we identified the mechanism through which c-di-

GMP activates EPS synthesis in L. monocytogenes. C-di-GMP

binds to the I-site receptor PssE, whose gene is located in the pss
operon, and whose function is essential for EPS biosynthesis.

Bacterial cellulose synthases studied thus far are activated via c-di-

GMP-binding PilZ domains linked to the C-termini of BcsA

subunits [1,51,64]. The PNAG synthase of E. coli is activated by c-

di-GMP binding to two subunits, PgaD and PgaC, one of which,

PgaD, is proteolytically degraded in the absence of c-di-GMP [69].

Perhaps the most similar c-di-GMP-dependent mechanism to that

operating in L. monocytogenes Pss synthase involves the Pseudo-
monas aeruginosa Pel EPS synthase, which is activated via an I-site

c-di-GMP receptor protein [48,70].

We showed that the L. monocytogenes Pss EPS is responsible

for multiple phenotypes, i.e., cell aggregation, decreased motility

in semi-solid media, moderate inhibition of invasiveness in

mammalian cells, and drastically elevated tolerance to disinfec-

tants and desiccation. The latter effects of c-di-GMP-induced

listerial EPS are particularly noteworthy in light of the increasing

frequency of listerial outbreaks associated with produce. EPS may

contribute to enhanced survival of listeria on produce surfaces

during washing with disinfectants as well as during transporation

and storage of listeria-contaminated produce. It is also possible

that listerial EPS contributes to bacterial survival in food-

processing facilities. It will be interesting to investigate whether

listerial strains from the recent outbreaks synthesize EPS, and

what role, if any, it may have played in their survival and disease

causing abilities.

C-di-GMP-induced motility inhibition is common in Proteo-

bacteria. One of the best-understood mechanisms of c-di-GMP-

induced motility inhibition involves YcgR, the PilZ-domain c-di-

GMP backstop brake that operates in E. coli and related enteric

bacteria. YcgR binds to the flagellar switch complex and, at

elevated c-di-GMP concentrations, introduces a rotational bias

that decreases the frequency of flagella reversals and therefore, the

frequency of changes in swimming direction [52,71,72]. The

smooth, almost unidirectional, swimming results in bacteria being

trapped in blind alleys of semi-solid agar [73]. YcgR may also slow

down rotating flagella [74]. A similar mechanism has been

proposed for a PilZ domain protein in B. subtilis, however

important details have yet to be elucidated [31]. A different

mechanism of c-di-GMP-induced motility inhibition was described

in Caulobacter crescentus, where a PilZ domain receptor affects the

abundance of a flagellum assembly regulatory subunit [75]. B.
subtilis has yet another mechanism of motility inhibition that

involves a bifunctional protein EpsE that acts as a glycosyl

transferase involved in EPS synthesis and as a molecular clutch

that disengages the flagellum rotor from the membrane-localized

energy-supplying stator [76,77]. Whether an EpsE-like clutch

operates in L. monocytogenes remains unknown, however it is clear

that no clutch or break is induced by c-di-GMP because liquid-

grown cells show no obvious motility defects. The most striking

observation is that inactivation of Pss synthesis is sufficient to

restore motility in semi-solid agar. Therefore, listerial spreading in

semi-solid agar appears to be inhibited due to cell aggregation and

possibly flagella trapping in the EPS. Recently, a similar

mechanism has been described in S. enterica, which at high c-

di-GMP levels, secretes cellulose [78].

Listerial EPS inhibits bacterial invasiveness in mammalian cells,

however, only modestly, 2–2.5-fold, whereas an as yet unidentified

c-di-GMP pathway is responsible for a much larger component of

Figure 8. Impaired spreading of the L. monocytogenes DpdeB/C/D mutant to the liver and gallbladder in a foodborne model of
infection. Groups of BALB/c/By/J mice were fed 5.9–7.56108 CFU of the indicated L. monocytogenes strains and bacterial loads were assessed 60 h
post-infection. Dashed lines indicate the limit of detection for each tissue. Bars denote mean values for pooled data from three separate experiments.
**, significantly different (p,0.05). Prism 5 for Mac (GraphPad) was used to perform unpaired Student’s t-tests.
doi:10.1371/journal.ppat.1004301.g008
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invasiveness inhibition. The composition of this new c-di-GMP

signaling pathway remains unknown. In this regard, it is

noteworthy that PssE is the only c-di-GMP receptor that can be

predicted based on the genome sequence analysis. Listeria lack

other identifiable c-di-GMP receptor proteins or c-di-GMP-

sensing riboswitches (reviewed in [2,3,6]).

In addition to uncovering the role of c-di-GMP in vitro, we

tested its role in virulence using a recently developed food

borne mouse disease model that closely mimics human

infection (67). We found that elevated c-di-GMP levels

decreased listerial infection in the liver, and that this defect

could be restored by abolishing EPS biosynthesis. Thus, it is

possible that c-di-GMP induced EPS impairs the ability of L.
monocytogenes to either efficiently disseminate from the

intestine or to replicate and spread from cell-to-cell in

hepatocytes. While we observed a significant defect in the

ability of the DpdeB/C/D mutant to invade HT-29 colon

carcinoma cells in vitro, there was no difference in the ability

of the DpdeB/C/D mutant to colonize the murine intestines,

compared to the wild type strain. Thus, increased c-di-GMP

levels may impair the direct invasion of intestinal epithelial

cells mediated by InlA/E-cadherin interactions, but does not

significantly impede the ability of L. monocytogenes to

translocate across the gut mucosa barrier, presumably because

the bacteria use alternate mechanisms of invasion. L. mono-
cytogenes can transcytose across M cells, specialized epithelial

cells that are found both overlying Peyer’s patches and

scattered elsewhere throughout the epithelium [79–81]. It is

also possible that specialized subsets of dendritic cells in the

intestinal lamina propria can engulf L. monocytogenes by

extending dendrites into the gut lumen, a process that has been

demonstrated during oral S. enterica infection [82,83].

Another issue pertaining to this study concerns the role of

cyclic dinucleotides as bacterial biomarkers recognized by the

innate immune system and in the stimulation of the host

intracytoplasmic surveillance response. Recently, the listerial

second messenger c-di-AMP, which is structurally related to c-

di-GMP, has been shown to be secreted into the cytosol of

infected mammalian cells where it triggers interferon (IFN)

production via the STING-signaling cascade [84–86]. A robust

IFNb response promotes the growth of L. monocytogenes
administered intravenously [87]. We showed here that the

DpdeB/C/D mutant, which likely has the highest c-di-GMP

production achievable during L. monocytogenes intracellular

growth, was overall less infective following oral infection. This

suggests that elevated c-di-GMP levels play a negative role in L.
monocytogenes virulence, in an apparent contrast with the role

of c-di-AMP [87]. However, it is premature to draw definitive

conclusions because (i) while c-di-AMP secretion enhances

intracellular growth and spread of L. monocytogenes, overpro-

duction of c-di-AMP suppresses listerial virulence [88], and (ii)

individual c-di-GMP signaling pathways often play different,

even opposite, roles in host-pathogen interactions [reviewed in

ref. 2]. Therefore, more detailed analysis of c-di-GMP synthesis

and secretion during listerial intracellular growth will be

required to figure out the roles of c-di-GMP signaling pathways

in L. monocytogenes virulence.

In addition to questions regarding intracellular growth and

spread of listeria in different organs, our study raises numerous

other questions pertaining to c-di-GMP signaling in listeria.

How does c-di-GMP signaling inhibit cell invasion? What

signals control c-di-GMP synthesis? Can c-di-GMP signaling

pathways be manipulated to inhibit listerial cell invasion?

What is the composition of the Pss EPS? Does this EPS

contribute to listerial colonization of produce surfaces? Is it

made by the L. monocytogenes strains from recent produce-

associated outbreaks? Does it affect survival of such strains

during disinfection in food processing facilities and desiccation

during transportation and storage? These questions will have

to be addressed in the future.

Materials and Methods

Ethics statement
This work was performed in accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals

published by the National Institutes of Health. All procedures were

approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Kentucky (permit number A-3336-01).

Bacterial strains, plasmids and growth conditions
The bacterial strains and plasmids used in this study are listed in

Table 1. The primers used in this study are listed in Table S1. E.
coli was routinely grown in LB medium supplemented with

appropriate antibiotics at 25, 30 or 37uC, as indicated. L.
monocytogenes was grown in Brain Heart Infusion (BHI) medium

(Difco), HTM (minimal medium containing 3% glucose) [89] or

LB, supplemented with appropriate antibiotics at 25, 30, 37 or

42uC, as indicated.

Plasmid and mutant construction
Genomic DNA of L. monocytogenes EGD-e was purified

from bacterial cells using a Bactozol kit (Molecular Research

Center, OH). L. monocytogenes genes were PCR amplified

using genomic DNA, Vent DNA polymerase (New England

Biolabs), and gene-specific primers (Table S1). PCR fragments

were gel purified with the Gel Purification kit (Qiagen), digested

with the appropriate restriction enzymes, and cloned into vector

pMAL-c2x (New England Biolabs) in strain DH5a or into vector

pET23a (Invitrogen) in strain BL21(DE3) containing pLysS

(Invitrogen).

In-frame deletions in the pdeB/C/D, dgcA/B/C, pssC and pssE
genes were generated by site-directed mutagenesis by splice-by-

overlap extension PCR. The PCR products containing genes with

in-frame deletions were cloned into the temperature-sensitive

shuttle vector pKSV7 [90]. The recombinant sequences were used

to replace the corresponding wild type sequences in the

chromosome of the L. monocytogenes EGD-e strain by allelic

exchange, as previously described [90]. L. monocytogenes was

electroporated as described earlier [91].

Motility and Congo red dye binding assays
The analysis of swimming in semi-solid agar was performed

essentially as described [51]. Briefly, 2 ml of overnight cultures was

inoculated onto soft agar plates containing 0.25% agar, 1%

tryptone and 0.5% NaCl. Diameters of the swimming zones were

assessed after 6-h incubation at 37uC for E. coli and 12–18-h

incubation at 30uC for L. monocytogenes.
For Congo red binding assays, LB (E. coli) or BHI (L.

monocytogenes) agar plates containing 40–80 mg ml21 Congo red

were incubated at 30uC for 48–72 h.

Biofilm assays
Surface-adhered biofilm formation was assayed in a 96-well

format using a modified version of a previously published

protocol [92]. Briefly, overnight cultures grown in BHI at 30uC
(A600, 2.5–3.5) were diluted into freshly made BHI, LB or LB

supplemented with 3% glycerol to an initial A600 of 0.05–0.1,
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Table 1. Strains and plasmids used in this study.

Strain and plasmid Relevant genotype or description Reference or source

Strains

Escherichia coli

DH5a Strain used for plasmid maintenance and overexpression of MBP-fusions Lab collection

BL21(DE3) pLysS Strain used for overexpression of the His6-fusions Invitrogen

MG1655 Wild type ATCC 700926a*

MG1655 DyhjH MG1655 DyhjH::Kmr [72]

Listeria monocytogenes

EGD-e Wild type ATCC BAA-679

DdgcAB In-frame deletion of the dgcAB genes This study

DdgcC In-frame deletion in dgcC This study

DdgcA/B/C Deletion of the dgcAB and dgcC genes This study

DpdeB In-frame deletion in pdeB This study

DpdeC In-frame deletion in pdeC This study

DpdeD In-frame deletion in pdeD This study

DpdeB/C Deletion of the pdeB and pdeC genes This study

DpdeB/D Deletion of the pdeD and pdeB genes This study

DpdeC/D Deletion of the pdeD and pdeC genes This study

DpdeB/C/D Deletion of the pdeB, pdeC and pdeD genes This study

DpdeB/C/D DpssC DpdeB/C/D and in-frame deletion in pssC This study

DpdeB/C/D DpssE DpdeB/C/D and in-frame deletion in pssE This study

DpdeB/C/D::pIMK DpdeB/C/D::pIMK2 This study

DpdeB/C/D::yhjH DpdeB/C/D::(pIMK2::yhjH) This study

DpdeB/C/D::slr DpdeB/C/D::(pIMK2-slr1143) This study

WT::pIMK EGD-e::pIMK2 This study

WT::slr EGDe::(pIMK2::slr1143) This study

WT::yhjH EGDe::(pIMK2::yhjH) This study

Plasmids

pAD1-cYFP Plasmid for L. monocytogenes labeling [96]

pBAD/Myc-His-C Vector for arabinose-inducible expression Invitrogen

pBAD-dgcA pBAD::dgcA This study

pBAD-dgcB pBAD::dgcB This study

pBAD-dgcC pBAD::dgcC This study

pET23a Vector for T7-inducible His6-fusion protein overexpression EMD Biosciences

pET-pdeD pET23a::pdeD This study

pET-pdeB pET23a::pdeB This study

pET-pdeC pET23a::pdeC This study

pIMK2 L. monocytogenes chromosome integrated expression vector [97]

pIMK::slr pIMK2::slr1143 This study

pIMK::yhjH pIMK2::yhjH This study

pKSV7 Vector for gene replacements in L. monocytogenes [90]

pKSV7-DdgcAB Plasmid for in-frame deletion of dgcAB This study

pKSV7-DdgcC Plasmid for in-frame deletion of dgcC This study

pKSV7-DpdeB Plasmid for in-frame deletion of pdeB This study

pKSV7-DpdeC Plasmid for in-frame deletion of pdeC This study

pKSV7-DpdeD Plasmid for in-frame deletion of pdeD This study

pKSV7-DpssC Plasmid for in-frame deletion of pssC This study

pKSV7-DpssE Plasmid for in-frame deletion of pssE This study

pLysS Lysozyme expressing plasmid for T7-expression systems Invitrogen

pMAL-c2x Vector for MBP-fusion protein overexpression NEB

pMAL-pdeC pMAL-c2x::pdeC This study
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and 150 ml aliquots of each culture were inoculated into each of

six wells. Biofilms attached to wells were measured following

growth for 1–6 days at 30uC. Biofilms were stained with a 0.1%

aqueous solution of Crystal violet dye, which was subsequently

dissolved in 33% acetic acid and quantified by measurement of

A595 [65].

Protein overexpression and purification
For purification of PdeB::His6 and PdeD::His6, isopropyl-b-D-

thiogalactopyranoside (IPTG) (final concentration, 0.2 mM) was

added to exponentially (A600, 0.6–0.7) growing cultures of E. coli
BL21 (DE3) pLysS containing appropriate overexpression plasmids.

After 2 to 4 h of induction at 30uC, the cells were chilled to 4uC and

collected by centrifugation. The cell pellets were resuspended in

buffer (pH 8.0) containing 300 mM NaCl, 50 mM NaH2PO4, and

10 mM imidazole and protease inhibitors (phenylmethylsulfonyl

fluoride and P8849 protease inhibitor cocktail) at the concentrations

specified by the manufacturer (Sigma-Aldrich). The cell suspensions

were passed through a French press mini-cell (Spectronic Instru-

ments, NJ), followed by a brief sonication using a Sonifier 250

(Branson Ultrasonics, CT). The crude cell extracts were centrifuged

at 15,0006g for 45 min. Soluble protein fractions were collected and

mixed with preequilibrated Ni2+ resin (Qiagen) for 1 h at 4uC, which

was placed into a column and extensively washed with the

resuspension buffer containing 20 mM imidazole. The proteins were

subsequently eluted using 200 mM imidazole. The buffer was

exchanged with PDE buffer [38] using desalting columns according

to the instructions of the manufacturer (Pierce Biotechnology).

Protein purity was assessed by SDS-PAGE and protein concentration

was determined using a BCA protein assay kit (Pierce Biotechnology).

For purification of MBP::PdeC and MBP::GGDEFpssE fusions,

IPTG (final concentration, 0.2 mM) was added to exponentially

(A600, 0.6–0.8) growing E. coli DH5a containing appropriate

plasmids. After 2-h induction, cells were collected by centrifugation.

Cell pellets were resuspended in a buffer containing 200 mM NaCl,

0.5 mM EDTA, 5 mM MgCl2, 20 mM Tris-HCl (pH 7.6), and 5%

glycerol that also contained protease inhibitors. Following cell

disruption and clearing of the crude cell extracts, as described above,

soluble protein fractions were mixed with pre-equilibrated amylose

resin (New England Biolabs) for 1 h at 4uC, which was subsequently

extensively washed with the resuspension buffer. MBP fusions were

eluted with maltose and the buffer was exchanged for PDE or c-di-

GMP binding assay [51] buffer using desalting columns.

PDE assays
Assays were performed essentially as described by Schmidt et al.

[38]. Briefly, a PDE enzyme (1–5 mM) was added to PDE reaction

buffer (final volume, 100 ml) containing 250 mM c-di-GMP, and

the reaction was allowed to proceed at 37uC. Aliquots were

withdrawn at various time points; the reaction was stopped by

addition of CaCl2 (final concentration, 10 mM), and the sample

was boiled for 3 min and centrifuged. The supernatant was then

filtered through a 0.22-mm filter, and the reaction products were

analyzed by reversed-phase HPLC (Summit HPLC system;

Dionex) using a Supelcosil LC-18-T column (Sigma-Aldridge).

The buffer system and gradient elution program were described

previously [37].

Equilibrium dialysis
Equilibrium dialysis experiments were performed as described

earlier [51]. Briefly, MBP-GGDEFPssE (20 mM) was injected into

one of the two chambers of a Dispo-Biodialyzer cassette (10 kD

cutoff, The Nest Group, MA) filled with dialysis buffer. c-di-GMP

(concentrations from 1 to 50 mM) was injected into the opposite

cell of the cassette. The cassettes were maintained for 25 h at room

temperature under agitation, after which samples from each

chamber were withdrawn, boiled for 3 min, centrifuged, and

supernatants were filtered through a 0.22-mm microfilter. The

nucleotide concentrations were quantified by HPLC. Binding

constants were calculated by the GraphPad Prism software,

version 4.03 (GraphPad Software, San Diego, CA) using a

nonlinear regression model.

Invasion assay
L. monocytogenes invasion properties were analyzed using a

gentamicin-based assay with HT-29 human colon adenocarcino-

ma cell monolayers in 24-well plates, essentially as described

[93,94]. Briefly, overnight cultures of L. monocytogenes grown in

BHI at 37uC were centrifuged, washed and resuspended in

DMEM medium. Monolayers of HT-29 cells were inoculated with

100 ml of the L. monocytogenes suspensions (,56108 CFU ml21)

at a multiplicity of infection of 100 and incubated for 1.5 h at

37uC in a 7% CO2 atmosphere. The monolayers were then

washed and incubated in the presence of 100 mg gentamicin ml21

(final concentration) for 1.5 h. Following this incubation, the cell

monolayers were washed again and lysed with 0.1% Triton X-100.

Appropriate dilutions were plated on BHI plates for enumeration

of intracellular bacteria. Each experiment was done in triplicate,

and experiments were performed at least three times indepen-

dently. Statistical analysis was performed by using Tukey’s test at p
of ,0.05.

Foodborne infection of mice
Female BALB/c/By/J mice were purchased from The Jackson

Laboratory (Bar Harbor, ME) at 5 weeks of age and used in

experiments when they were 6–9 weeks old. Mice were maintained

in a specific pathogen free facility at the University of Kentucky

and all procedures were performed in accordance with IACUC

guidelines. Aliquots of early stationary phase bacteria were

prepared and stored at 280uC. To prepare the inoculum, aliquots

were thawed on ice, cultured standing in BHI broth for 1.5 h at

30uC, washed once in PBS and then suspended in 5 ml of melted,

salted butter (Kroger) and used to saturate a 2–3 mm piece of

white bread (Kroger). Infection by the natural feeding route was

carried out at night as described [67]. Briefly, mice were given

unrestricted access to water but denied food for 22 h, then placed

in an empty cage, and given 5–10 minutes to pick up the

contaminated bread piece and eat all of it. Mice were then

Table 1. Cont.

Strain and plasmid Relevant genotype or description Reference or source

pMAL-GGDEFpssE pMAL-c2x::pssE(GGDEF domain) This study

*ATCC, American Type Culture Collection.
doi:10.1371/journal.ppat.1004301.t001
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returned to their original cages with raised wire flooring to prevent

coprophagy, and normal mouse chow was replenished.

Processing of tissue samples
Colon contents were removed by squeezing with sterile forceps

and then flushing with 8 ml of PBS through a 25 g needle.

Washed tissues were cut longitudinally and homogenized for

1 min in 2 ml of sterile water using a PowerGen 1000

homogenizer (Fisher) at 60% power. The total number of cell-

associated (adherent plus intracellular) L. monocytogenes cells was

determined by plating serial dilutions on BHI agar supplemented

with 15 g LiCl l21 and 10 g glycine l21 (BHI/L+G). Colonies

were counted after 48 h incubation at 37uC. This selective agar

inhibited the growth of most intestinal microbiota; suspect colonies

were confirmed to be L. monocytogenes by plating on CHRO-

Magar Listeria plates (Becton Dickinson). Spleens and livers were

harvested aseptically and homogenized for 30 sec in 2 ml of sterile

water. Gallbladders were ruptured with sterile scissors in a

microfuge tube containing 1 ml of sterile water and vortexed for

30 sec. Dilutions of each tissue were plated on BHI/L+G agar.

Disinfection and desiccation tolerance
Solutions of sodium hypochlorite, hydrogen peroxide and

benzalkonium chloride (Sigma-Aldrich and Sigma Life Sciences)

were prepared in sterile phosphate-buffered saline with disinfec-

tion concentrations of 1600 ppm, 200 mM, and 100 ppm,

respectively. Cultures were grown in HTM with 3% glucose at

37uC for 24 h, at which point small uniform clumps are formed by

the DpdeB/C/D strain. Aliquots (250 ml; 108 cfu/ml) of these

cultures were mixed with disinfectants at 1:1 vol ratios in small

glass tubes that also contained 0.1 g of acid washed glass beads

(Sigma Life Sciences). Following a 10-min exposure to disinfec-

tants at room temperature, D/E neutralizing broth (500 ml; Difco)

was added [95]. Samples were vigorously vortexed (for 5 min) and

clumps of the DpdeB/C/D strain were dispersed due to the action

of the glass beads. Serial dilutions were plated on BHI agar and

colonies were counted following a 48-h incubation at 37uC.

To assess desiccation tolerance, strains were grown as described

above. One milliliter of cultures (56108 cfu/ml) was centrifuged in

1.5 ml eppendorf microtubes containing 0.1 g glass beads. After

supernatant removal, the tubes were stored at room temperature

in a desiccator jar containing anhydrous calcium sulfate. After 7

and 21 days, the pellets were resuspended in phosphate buffered

saline, vigorously vortexed, and plated on BHI agar. Colonies

were counted following 48-h incubation at 37uC.

Supporting Information

Figure S1 Congo red staining of EPS in the L. monocy-
togenes pde mutants. Congo red staining shows partially

redundant functions of PDEs. Presence of at least one PDE is

sufficient to prevent full-scale induction of the EPS synthesis. 1,

WT, wild type; 2, DpdeB/C/D; 3, DpdeB/C; 4, DpdeC/D; 5, DpdeB/
D; 6, DpdeD; 7, DpdeB; 8, DpdeC.

(PDF)

Figure S2 Effects of c-di-GMP on intravenous L. mono-
cytogenes infections. Cyclic di-GMP levels do not affect

growth in the liver and spleen of L. monocytogenes delivered

intravenously. A: Female BALB/c/By/J mice (n = 4) were co-

infected intravenously with a 1:1 mixture of wild type made

chloramphenicol-resistant (CmR) by chromosomal insertion of

pAD1-cYFP (Table 1) and DpdeB/C/D mutant (,600 CFU of

each for a total inoculum of 1.26103 CFU). Three days post-

infection, spleens and livers were harvested aseptically, homoge-

nized, diluted and plated on BHI agar with or without the

presence of 7 mg/ml of chloramphenicol. The number of

chloramphenicol-sensitive (CmS) DpdeB/C/D CFU was deter-

mined by subtracting the number of (CmR) colonies from the

total CFU found on plates without antibiotic. Competitive index

(CI) ratios were determined by dividing the number of CmS

DpdeB/C/D CFU by the number of CmR wild type CFU recovered

from each tissue. B: A competition experiment performed with the

CmR wild type and the strain expressing the E. coli PDE, YhjH.

WT, chloramphenicol-resistant (CmR) derivative of strain EGD-e;

pIMK::yhjH, EGD-e with integrated plasmid pIMK2 expressing

E. coli PDE, YhjH (Table 1).

(PDF)

Table S1 Primers used in this study.
(DOC)
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