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Boron-rich benzene and pyrene 
derivatives for the detection of 
thermal neutrons
Henok A. Yemam1, Adam Mahl2, Unsal Koldemir1, Tyler Remedes2, Sean Parkin3, 
Uwe Greife2 & Alan Sellinger1

A synthetic methodology is developed to generate boron rich aromatic small molecules based 
on benzene and pyrene moieties for the detection of thermal neutrons. The prepared aromatic 
compounds have a relatively high boron content up to 7.4 wt%, which is important for application 
in neutron detection as 10B (20% of natural abundance boron) has a large neutron induced reaction 
cross-section. This is demonstrated by preparing blends of the synthesized molecules with 
fluorescent dopants in poly(vinyltoluene) matrices resulting in comparable scintillation light output 
and neutron capture as state-of-the art commercial scintillators, but with the advantage of much 
lower cost. The boron-rich benzene and pyrene derivatives are prepared by Suzuki conditions using 
both microwave and traditional heating, affording yields of 40–93%. This new procedure is simple 
and straightforward, and has the potential to be scaled up.

Plastic scintillators are polymer-based detector materials for gamma radiation, fast neutrons and other 
charged particles1–3. Their  low cost, fast-timing resolution and ease of large-scale production make it a 
first-line detection method compared to inorganic crystal scintillators4,5. However, due to the absence of 
high neutron capture isotopes in plastic scintillators, they are unable to detect thermal neutrons and are 
therefore concurrently used with 3He gas detectors at international borders and airports to detect illicit 
trafficking of special nuclear materials (SNM)6. Due to 3He scarcity and increasing demand, alternative 
isotopes such as 10B and 6Li with comparable thermal neutron capture cross sections and higher natu-
ral abundances have been investigated7,8. Current developments of neutron sensitive plastic scintillators 
mainly rely on commercially available carboranes as a boron source due to their high boron content9. 
Thermal neutrons are detected via the capture reaction on the nucleus of 10B and measuring the scin-
tillation light produced by the alpha particles (4He) released by this reaction, shown in equation (1)10. 
Although carboranes have high boron content (~75% wt.), they have limited solubility in plastic scin-
tillator formulations, are very expensive, and the cost is significantly higher in their 10B enriched form.
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Alternative methods of thermal neutron detection include boron containing semiconductor crystals, 
enriched boron-10 fluoride (10BF3) gas filled proportional counters, and boron lined tube counters along 
with liquid scintillators doped with boron compounds such as trimethyl borate11–13. However, growing 
crystals in large quantities for significant area coverage is difficult and 10BF3 has severe limitations in 
deployment due to its toxicity14,15. While boron lined tubes are physically similar to 3He tubes, they suffer 
from reduced efficiencies due to the energy loss effects from having a solid boron wall coverage. Trimethyl 
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borate mixed into liquid scintillators of many varieties has a very low flash point and is required to be 
very well sealed from oxygen in order to reduce quenching effects and maintain efficiency. Other isotopic 
candidates for scintillators such as 6Li or 155Gd/157Gd are not as attractive as 10B due to higher cost, lack 
of availability, and reduced compatibility with inexpensive polymer matrices16–19. Furthermore, the price 
of 10B containing additives to these matrices needs to be comparable to that of the polymers in order to 
achieve neutron sensitivity in a cost effective manner. Alternatives to carboranes need to be produced 
with efficient synthesis methods and inexpensive reagents.

With regard to boron containing organic materials, recently direct borylation of activated C–H 
bonds of aromatic compounds has been reported using iridium-based catalysis20–25. However, high 
Ir catalyst loadings, lack of regioselectivity and longer reaction times hinder its applicability and 
scale up potential. In order to counter these disadvantages, the synthesis of 1,3,6,8-tetrakis(4,4,5,5- 
tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene was reported by Yamada and coworkers by nickel catalyzed 
direct borylation achieving a yield of 74% in two days26. Furthermore, synthesis of 1,2,4,5-tetrakis(4,4,5,5- 
tetramethyl-1,3,2-dioxaborolan-2-yl)benzene was reported by Wagner and coworkers with an overall 
yield of 64%; however, their synthetic process was a two-step reaction system achieving only partial boryl-
ation and the use of highly pyrophoric and toxic reagents such as n-butyllithium and Grignard reagents27. 
Both Aubert et al. and Gandon et al. utilized cobalt-catalyzed [2+ 2+ 2] cycloaddition of ethynyl pinacol 
borate to yield a mixture of 2,2′ ,2″ -(benzene-1,2,4-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) and 
1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene with a yield of 63%28,29. Their use of an 
expensive borylating reagent (ethynyl pinacol borate—$650/g) and a difficult separation of the product 
mixture could be detrimental to using this reaction system. Compared to cobalt-catalyzed cycloaddition 
reactions, Wang et al. achieved 85% yield by direct borylation of 1,3,5-tribromobenzene using Miyuara 
conditions30,31.

We report here the borylation of multi-halo functionalized benzene and pyrene derivatives using 
the very efficient and mature Suzuki chemistry to afford soluble materials with boron content as high 
as 7.43 wt%. Furthermore some of these materials also have strong blue luminescence properties that 
may contribute to scintillation efficiency for detecting both gamma and neutron radiation. Examples of 
polymer-based scintillators using our new materials demonstrate highly efficient scintillation and ther-
mal neutron detection.

Results and Discussion
Synthesis. We have applied traditional and microwave assisted Suzuki conditions to promote the 
borylation of bromo functionalized aromatics using commercially available and cost effective bispina-
colato diborane (B2Pin2)32. In our efforts to complete these reactions within a reasonable time, we used 
slight excess equivalents of B2Pin2 to complete the multiple borylations. Increasing the heating to 90 °C 
was crucial for completing these reactions in less than 24 hours (Fig. 1) and our microwave assisted con-
ditions resulted in similar reaction yields in much shorter reaction times (40 min vs. 24 hr).

To show applicability of the aforementioned conditions to other aromatic molecules, related boron 
containing molecules (Fig. 2) were synthesized using lower catalyst loading, shorter reaction times, sim-
pler purification methods, and comparable synthesis yields as previous literature methods33.

To our knowledge, use of microwave methods for multiple borylation has only been reported for 
diborylation, where in our approach we demonstrate multiple borylations (tri and tetra) in a significantly 
reduced time frame of 40–60 min34,35. Table  1 summarizes conditions and percent yield comparison 
between traditional and microwave assisted reactions.

The synthesis of 1 (Fig.  2, entry 1) was previously reported by Akhavan-Tafti et al. with a similar 
procedure to our traditional synthesis (except 85 °C, DMSO) affording approximately the same percent 
yield (Table 1)36. We believe we are the first to report the synthesis of this molecule by microwave-assisted 
borylation. Both 1H and 13C NMR for compound 1 are found in Figure S1. Compound 2 synthesis 
showed the biggest drop in yield when attempting microwave borylation (79% vs 63%). Several attempts 
were made by varying temperature, amounts of catalyst and B2Pin2, and reaction time, however the 

Figure 1. Conventional heating condition (Trad.) and Microwave (μW) heating condition for generating 
tetra-borylated pyrene (TBP). These conditions were used for all the reactions.
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microwave yield couldn’t be improved. Both NMR and MALDI TOF MS for this compound confirm the 
product purity and can be found in Figures S2 and S6 respectively.

The synthesis of TBP (Fig.  2, entry 3) appeared straightforward but the characterization was prob-
lematic as both 1H and 13C NMR were inconclusive, resulting in broad and featureless peaks in the aro-
matic region while showing definitive and clear peaks in the aliphatic region. This was thought to be the 
result of the presence of a paramagnetic ion or of the large difference between the number of aliphatic 
and aromatic hydrogens (48:6). As such, many attempts were made to solve this problem by varying 
deuterated solvents, increasing relaxation time, utilizing chromium(III) acetylacetonate (Cr(acac)3) as 
a relaxing agent, and attempting solid-state NMR37. Unfortunately, a conclusive NMR confirming the 
successful synthesis of TBP couldn’t be produced. Even though this problem was not stated explictly in 
the literature, we have noticed similar reports confirming our observation24. Despite this shortcoming, 
we turned our attention to analysing this molecule by MALDI TOF MS that confirmed the molecule 
as shown in Fig. 3. By utilizing 1,8,9-trihydroxyanthracene as a matrix, all the possible fragments 707.4 
(M+), 581.1, 454.8 and 227.3 Da were observed.

Encouraged by this result, TBP crystals with dimensions of 1–2  mm were prepared by slow intro-
duction of hexanes into a TBP chloroform solution. The crystals had suitable quality for single-crystal 
x-ray analysis, revealing TBP and n-hexane molecules each sitting on a 2-fold rotation axis as shown in 
Fig. 4. The pyrene ring system is essentially flat, but the Bpin rings are non-planar and disordered over 
two distinct conformations38–40. The crystal structure of TBP coupled with MALDI shows we have une-
quivocally synthesized this molecule despite our inability to obtain conclusive 1H and 13C NMR. More 
information with regard to the TBP crystal structure can be found in the supplementary information.

Figure 2. Boron containing pyrene and benzene derivatives. 

B2Pin2 [equiv] KOAc [equiv]

Yield [%]

Microwave Conventional

1 1.5 3.0 68 75

2 3.0 6.0 63 79

3 6.0 10.0 85 87

4 4.5 7.5 61 69

5 4.5 7.5 83 97

6 6.0 10.0 41 36

Table 1.  Comparison of multiple borylation by conventional heating vs microwave synthesis. 3–4 mol% 
Pd catalyst was used to synthesize 1–6.
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The synthesis of 135TrBB and 124TrBB (Fig. 2, entry 4 & 5) had significance in determining if the 
symmetry of boron containing molecules could have an effect in the detection of thermal neutrons, 
especially because these two molecules have identical amounts of boron by mass (7.11%). NMR for both 
of these molecules can be found in Figures S3 and S4. As with the TBP molecule, 124TrBB also provided 
1H NMR spectra with high integration ratios between the aliphatic and aromatic protons. We addressed 
this issue by running the NMR experiment in d6-DMSO (rather than CDCl3) at 80 °C (rather than room 
temperature). Also GC/MS results confirmed the formation and purity of 124TrBB.

Generally, the yield for conventional heating was slightly improved (except for entry 6) over the micro-
wave approach (Table 1). Entry 6 (Fig. 2, TBB) was helpful in understanding the lack of accurate NMR 
spectra for TBP since its aliphatic to aromatic proton ratio is higher (48:2 to 48:6). However, both 1H and 
13C NMR unambiguously confirmed the synthesis of this molecule (Figure S5). The crystal structure and 

Figure 3. MALDI-TOF-MS of TBP with 1,8,9-trihydroxyanthracene as a matrix. 

Figure 4. An ellipsoid plot (50% probability) for TBP. 
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two-step reaction synthesis of this molecule was published by Wagner et al.27. More detailed information 
on the synthesis and characterization of all the materials can be found in the supplementary information.

Discussion
Plastic scintillators are a composite of a matrix (PVT) that absorbs radiation energy and transfers this 
energy mainly to a primary dopant (PPO) via Förster resonance energy transfer (FRET)41. The PPO 
emission is then with nearly 100% efficiency absorbed by a wavelength shifter (POPOP) that has an 
efficient fluorescence peak matched to the photomultiplier tube (PMT) sensitivity42,43. Table 2 shows the 
composition of plastic scintillators prepared incorporating the synthesized boron materials (entry 3–6, 
Fig. 2) into the PVT matrix. The first eight samples were colorless with intense blue luminescence under 
UV excitation. As TBP has a pale yellow color, samples ix–xi were optically clear with a yellowish color 
and strong blue luminescence under UV excitation.

The light output of these samples (4.7 cm diameter ×  1.1–1.3 cm thickness) was compared to a com-
mercial scintillator (EJ-204) of approximately the same dimensions prepared by Eljen Technology. Our 
control (Table  2, sample i) resulted in 95% of the light output compared to the commercial scintilla-
tor. A summary of light output of samples i–xi compared to EJ-204 and their properties are shown in 
Table 3. The high average molecular weight (Mn and Mw) of the samples (as determined by GPC using 
poly(styrene) calibration standards) is indicative of complete polymerization of the scintillator samples, 
hence minimal inhibition of polymerization by the added components. As seen in column 5 (Table 3), 
the signal produced by the 1.48 MeV alpha and 0.48 MeV 7Li ion (products of thermal neutron reaction 

Samplea
Vinyl toluene 

[%wt]

Primary dopant Wavelength shifter Boron source

Name [%wt] Name [%wt] Name [%wt]

i 98.9 PPO 1.0 POPOP 0.1 — —

ii 98.4 PPO 1.0 POPOP 0.1 135TrBB 0.5

iii 97.9 PPO 1.0 POPOP 0.1 135TrBB 1.0

iv 93.9 PPO 1.0 POPOP 0.1 135TrBB 5.0

v 97.9 PPO 1.0 POPOP 0.1 124TrBB 1.0

vi 93.9 PPO 1.0 POPOP 0.1 124TrBB 5.0

vii 97.9 PPO 1.0 POPOP 0.1 TBB 1.0

viii 93.9 PPO 1.0 POPOP 0.1 TBB 5.0

ix 98.9 TBPb 1.0 POPOP 0.1 TBP 1.0

x 97.9 TBPb 2.0 POPOP 0.1 TBP 2.0

xi 97.9 PPO 1.0 POPOP 0.1 TBP 1.0

Table 2.  Plastic scintillator formulations. aTotal mass of each sample: 20.0 g. bTBP acting as boron source 
and primary dopant.

Samples
Comparison 

to EJ 204
B content 

[%wt]
10B content 

[%w]
Neutron capture 

[keVee] Mn [MDa] Mw [MDa] PDI

i 95 — — — 1.37 3.52 2.57

ii 74 0.035 0.007 No capture 1.20 2.36 1.96

iii 78 0.070 0.014 78.8 ±  0.8 1.29 3.44 2.66

iv 78 0.356 0.071 73.1 ±  2.0 0.69 1.54 2.24

v 77 0.070 0.014 72.1 ±  2.6 0.91 2.49 2.73

vi 81 0.356 0.071 91.9 ±  0.2 1.34 2.88 2.22

vii 87 0.075 0.015 74.9 ±  2.0 0.32 0.81 2.58

viii 76 0.370 0.074 82.6 ±  0.7 1.26 4.39 3.47

ix 36 0.065 0.013 No capture 1.35 3.38 2.51

x 31 0.130 0.026 No capture 0.79 1.96 2.49

xi 70 0.065 0.013 69.8 ±  1.1 1.72 4.72 2.75

Table 3.  Light output, boron capture and polymer properties of plastic scintillator samples.
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with 10B) is quenched to produce scintillation light equivalent in amplitude from an electron with an 
energy of 60–100 kev depending on sample composition.

Samples ii–iv (Figure S15) contain increasing amounts of 135TrBB (Fig.  2, entry 4). As expected, 
capture of thermal neutrons was not observed for the 0.5% sample of this compound due to the low 
concentration of 10B (0.007% wt) (Sample ii). Increasing the amount of 135TrBB to 1% showed thermal 
capture as well as increased light output (sample iii), while increasing the amount to 5% wt reached the 
solubility limit of 135TrBB in PVT (sample iv) resulting in an opaque sample. We speculate that the 
symmetrical nature of the compound was contributing to its crystallization in PVT at higher loadings.

To address this issue, we prepared and utilized 124TrBB that has a more unsymmetrical structure but 
the same boron content as 135TrBB. Samples v and vi both had the best optical clarity with 124TrBB 
(Fig.  2, entry 5) as the boron additive (Fig.  5) indicating enhanced solubility of 124 versus 135TrBB. 
Increasing the concentration of 124TrBB from 1% to 5% wt increased both the light output as well as 
thermal neutron capture (Table 3, entry v and vi).

Figure 6 shows a one minute collection of data using the 244Cm/13C source for 5% 124TrBB (Table 2, 
entry vi), that already shows distinct neutron capture above the background noise. This sample resulted 
in a 10B thermal neutron capture signal at approximately 92 keVee with 81% relative light output. To 

Figure 5. Left to right: Sample v and vi incorporating 1 and 5% 124TrBB respectively. 

Figure 6. Thermal neutron capture using a 5% 124TrBB plastic scintillator, sample vi. 
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our knowledge, this is the highest thermal neutron capture signal observed from a boron doped plastic 
scintillator.

Samples vii and viii both had TBB (Fig. 2, entry 6) as boron additive. The solubility limit of this com-
pound was the lowest in PVT. For example, 1% wt loadings showed crystallization as shown in (Figure 
S16). Despite its poor solubility, it showed a clearly visible boron capture signal even at 1% (Table 3, entry 
vii). Increasing the concentration to 5% wt decreased the optical clarity significantly as shown in Figure 
S16. We propose that the decrease in light output compared to our standard was due to attenuation of 
light by increased dopant concentration. This effect is in agreement with literature reports.

Utilizing TBP (Fig.  2, entry 3) as both a boron source and primary dopant resulted in lower light 
output and neutron capture likely due to unoptimized energy transfer from the matrix to TBP and 
wavelength shifter (Figure S8). The dramatic drop in light output also caused the capture reaction to be 
buried in the electronic background. The issue was resolved by only utilizing TBP as a boron source and 
using PPO as the primary dopant (Table 3, entry xi). This sample showed a dramatic increase in light 
output and the thermal neutron induced reaction signal became clearly visible (Table  3, entry xi). All 
of the samples containing TBP (Fig. 7) were slightly yellow due to its pale yellow color. Absorption and 
emission spectra for TBP can be found in Figure S7.

Conclusion
Both traditional and microwave-assisted synthesis of direct multi-borylation of pyrene and benzene 
derivatives achieved high percent yields and purity of desired products. The simplicity of these synthetic 
routes together with inexpensive starting materials and ease of scale up production could be highly 
advantageous in reducing the cost of boron-rich additives for plastic scintillators. These synthesized 
boron additives doped with commercially utilized PPO and POPOP fluorescent emitters in poly(vin-
yltoluene) matrices have demonstrated successful thermal neutron induced reactions with comparable/
improved light output compared to commercial samples using very expensive carborane derivatives. In 
the case of 124 TrBB, the 10B neutron capture signal registered a stronger signal than state-of-the-art 
boron doped plastic scintillators. We are currently working on the synthesis of 10B enriched versions 
of our boron-rich additives in order to increase thermal neutron capture probability. Additionally, we 
will attempt to differentiate the thermal neutron capture and fast neutron scattered signals from gamma 
radiation signals through pulse shape discrimination using the PPO (and newer dopants) over-doping 
method.

Methods
Both microwave and conventional syntheses are described in supporting information.

Characterization. All reagents were purchased from either Sigma Aldrich, Frontier Scientific, or TCI 
America unless otherwise noted. 1H and 13C NMR spectra were obtained on a JEOL ECA 500 liquid-state 
NMR spectrometer and data obtained was manipulated in ACD/NMR processor software.

X-ray data were collected on a Bruker-Nonius X8 Proteum CCD diffractometer using CuKα radi-
ation. The structures were solved using SHELXT and refined using SHELXL programs39. Molecular 
fragment editing, including the construction of suitable disorder models was performed using the XP 

Figure 7. Left to right: Sample ix, x and xi incorporating 1, 2 and 1% TBP respectively. 
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program of SHELXTL. Hydrogen atoms were included using a riding model. The final models were 
checked using an R-tensor38, and by validation routines of the Platon program40 as implemented in the 
IUCr checkCIF facility.

Mass spectrometric measurements were acquired in positive-ion and negative-ion modes with a 
Bruker Ultraflextreme MALDI-TOF mass spectrometer (Bruker Daltonics, Billerica, MA) equipped with 
a 355 nm Nd:YAG laser. Spectra were collected in reflector mode with a grid voltage of 50.3%, and a low 
mass cutoff of 200 Da. Five replicate spectra were collected for each analysis as 100 shot composites at a 
sampling frequency of 1 kHz using automated laser rastering.

Molecular weight and molecular weight distributions of polymer samples were determined by gel 
permeation chromatography (GPC) using stabilized tetrahydrofuran (THF) as the eluent with a flow rate 
of 1.0 mL/min (Viscotek GPC pump; PLgel 5 um MIXED-C and MIXED-D columns: molecular weight 
range 200–2,000,000 and 200–400,000 g/mol (PS equiv), respectively.

Solid scintillator samples were tightly wrapped in white Teflon tape on all sides but one and attached 
to a Hamamatsu PMT (H2431-50) with silicone optical grease. The whole assembly was wrapped in 
aluminum foil and sealed with light-tight electrical tape. The PMT was biased using standard electronics 
and read out with a custom built waveform digitizer and DAQ system controlled by a MIDAS inter-
face44. Samples were subjected to gamma radiation from a 137Cs source to quantify general scintillation 
response. A 244Cm/13C neutron-gamma source was tested in both a polyethylene cave to produce a high 
thermal neutron flux, as well as a lead cave, for fast neutron and gamma response.

Preparation of samples. Azobisisobutyronitrile (AIBN) was recrystallized twice from methanol. The 
inhibitor in 4-vinyltoluene was removed by filtering through a 100 mg plug of a potassium carbonate and 
basic alumina mixture. An example of a typical plastic scintillator disc preparation is as follows. In a 120 
mL clear glass bottle, the calculated amounts of 2,5-diphenyl oxazole (PPO), 1,4-bis(5-phenyloxazol-2-yl) 
benzene (POPOP), boron based materials, and AIBN were dissolved in the liquid 4-vinyltoluene mon-
omer. The clear solution was degassed by gently bubbling with argon gas for 15–30 min. The solution 
was then bulk polymerized in an oil bath or an argon-filled vacuum oven at 80 °C for 96 hours, followed 
by 90 °C for 12 hours. The sample was cooled to room temperature and the glass bottle was broken with 
a mallet, giving a clear polymer disk (Figs  5, 7 and S15–16) of scintillating polymer. The sample was 
machined down to one flat side (meniscus side) using 100 grit sandpaper by hand or by belt depending 
on its mechanical and thermal stability. Then, the sample was polished using 150, 220, 300, 400, 600 and 
600 wet-grit sandpapers. The final touches of polishing was done on a loose-cotton buffer wheel using 
white abrasive polishing compound and finished with blue buffing compound. Each sample has 4.7 cm 
diameter and 1.1–1.3 cm thickness.
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