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INTRODUCTION

BACKGROUND

The problem of settlement has long been a concern
to civil eagineers. The Leaning Tower of Pisa remains
a monumental reminder. Before Karl Terzaghi disclosed
the mechanics of the settlement process in
Erabaumechaaik in 1925, only parts of the process had
been understood -- no one had put it all together.
Terzaghi described in an analytical fashion the process
associated with the compression of a mass of discrete
irregular particles into a denser material. This process
became known_as consolidation. The test developed by
Terzaghi to study the characteristics of the consolidation
process consisted of encasing a cylindrical specimen of
particulate material in a ring to prevent lateral
deformations, bounding the top and bottom of the
specimen with porous stones to permit the escape of
water from the soil specimen, and applying a vertical
pressure to the sample. Deformations of the sample were
measured and plotted as a function of stress. Because
deformation is permitted only in the vertical direction,
this test is commonly referred to today as the
one-dimensional consolidation test. Test data have been
studied using semilogarithmic graphical representations
of the stress-deformation  (time-independent)
characteristics of the data. Such a representation yields
the stress history and compressibility of the material.
Knowledge of these material characteristics is of great
practical value in the prediction of settlement associated
with loadings where the effects of immediate settlement
and lateral consolidation may be neglected.

The principle event in the stress history of a soil
is that of the maximum, past, vertical pressure, the
largest stress experienced by the material in its natural,
subsurface environment. It is usually the result of loads
imposed by past or present overlying materials and(or)
the result of dessication. Today, the maximum, past,
vertical pressure is referred to as the ''preconsolidation
stress.” In 1936, Arthur Casagrande (1) devised an
empirical, graphical procedure to determine the
preconsolidation presssure from the semilogarithmic
representation  of  time-independent, laboratory
consolidation data. This method has come to be known
as the ""Casagrande construction.” Figure 1 (2) illustrates
the essential characteristics of this well known
procedure.

Before 1955, the compressibility characteristics of
particulate materials were expressed as the aritlunetic

slopes of the line representations of the
semilogarithmic, laboratory consolidation curves.
However, these lines did not account for the effects of
disturbance on the consolidation curves. In 1955,
Schmertmann (3) developed a procedure which
accounted for the effect of sample distrubance and
estimated in situ compressibility characteristics Figure
2 (4) shows the essential characteristics of the
Schmertmann procedure.

Analyses of time-independent, one-dimensional
consolidation data by empirical, graphical techniques
such as the Casagrande and Schmertmann constructions
have several drawbacks in their practical applications.
Graphical procedures require a certain amount of time
and effort from competent personnel oftentimes require
subjective judgements which are somewhat susceptible
to various graphical or computational errors. Results of
a survey conducted by Sallfors (5) of 28 geotechnical
engineers emphasized these difficulties. Figure 3 shows
the scatter among engineers asked to determine the
preconsolidation pressure of a given set of
time-independent consolidation data. Values reported
ranged from about 47 to 73 kilopascals. At the
80-percent confidence interval, the values ranged from
approximately 55 to 65 kilopascals. Twenty of the 28
values fell in that range. The results show not only the
difficulty in determining the preconsolidation pressure
but also reflect the fact that different methods were
used. Sallfors' survey, while not directly pertinent to
the graphical procedures under discussion, again suggests
there is a need for some means to alleviate the problems
associated with the analysis of time independent
consolidation data.  According to the Geodex
Information Source (1973), the only published attempt
involving a computer analysis of time-independent
consolidation data is that of Schiffman (6). As
documented in 1973, the program developed by
Schiffman does not consider the graphical procedures
discussed above and considers only data obtained from
the standard, laboratory consolidation test. In essence,
his program determines the coefficients for
one-dimensional compression and expansion by
calculating the arithmetic slope between consecutive
data points on the void ratio-logarithm of effective-stress
consolidation curves. The effect of specimen disturbance
is not accounted for in the determination of the
compression coefficients.



Figure 1. Casagrande Construction for the Determination of the Preconsolidation
Pressure (after Ladd, 1968).




Figure 2. Reconstruction of in situ Compression Curves Using Schmertmann’s
Construction (after Ladd, 1968).



Figure 3. Distribution

confidence interval) (after Sallfors, 1975).

of Evaluated Preconsolidation Pressures (80-percent

In May 1975, the Kentucky Department of
Transportation's Division of Research began the
development of a computer program which would
completely reduce, analyze, and plot data obtained from
three types of laboratory consolidation tests. The
material presented herein is a detailed description of the
computer program which was achieved during an ensuing
year of research and development. Included are coding
instructions and examples of input and output. The
computer program contains several innovative features
which provide for the mathematical application of the
Casagrande and Schmertmann constructions and the
determination of the preconsolidation pressure and in
situ coefficients of compressibility. The program also
provides for complete reduction and plotting of the
time-independent consolidation data obtained from
three laboratory tests: standard, controlled-gradient, and
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controlled-rate-of-strain. A discussion of the latter two
has been presented elsewhere (7, 8 9). The following
discussion also includes a description of the algorithm
used to study the time-independent consolidation data,
the use of the algorithm for determining the point of
maximum curvature and the preconsolidation pressure,
a new procedure for determining maximum curvature
and preconsolidation pressure, and the computer
program capabilities and limitations. The computer
program in APPENDIX A does not consider
time-dependent (compression as a function of time) data
obtained from the various consolidation tests. Future
efforts will be devoted to plotting and analyzing
time-dependent consolidation data and to determining
coefficients of consolidation, Cv' This second phase will
be in a future report.



ALGORITHM FOR TIME-INDEPENDENT,
LABORATORY, CONSOLIDATION TEST DATA

The algorithm presented herein is a means of
automating the current, manual, graphical procedures to
analyze the time-independent, laboratory consolidation
data. Four main points will be discussed in the
description of this algorithm: the type of numerical
analysis employed, the reasons for choosing this type
of numerical analysis, a brief description of the
analytical procedures, and a general description of how
they are wused to automate the Casagrande and
Schmertmann graphical constructions with respect to
the semilog, time-independent, one-dimensional
consolidation data.

TYPE OF NUMERICAL ANALYSIS

The central element of the algorithm is the use of
analytical curve-fitting procedures to represent the

standard, graphical, semilog representation of test data.
An ordinary least-squares polynomial (10) is used to
represent the compression curve characteristics; a linear,
least-squares representation is used for the rebound or
expansion data. [t is important to understand that these
two functions are applied to the logarithms, base ten,
of the abscissae. In other words, the raw data points
which originally span logarithmic cycles are now reduced
to a common, narrow, arithmetic range of values.

CRITERIA FOR SELECTION OF ORDINARY
POLYNOMIAL

Three criteria were considered in selecting ordinary
polynominals: functional shape, functional simplicity,
and analytical accuracy. Any analytical function which
is used for curve fitting must satisfy the all-important
criteria of functional shape or form. Implied in this
statement is the requirement that the function have the
flexibility to accurately duplicate the wide range of
shapes or forms to be expected from a given set of data.
The ordinary polynomial satisfies all of these
requirements amazingly well. Other types of functional
fits have been investigated. Exponential and logarithmic
functions are not satisfactory because their seemingly
appropriate shapes are too extreme and inflexible to
provide an accurate estimate of the point of maximum
curvature and linear portion of virgin compression. In
contrast, rational functions based on Chebyshev
(Tchebycheff) polynomials are much better for fitting
curves than exponential or logarithmic functions.
However, these types of rational functions still have the
general characteristic of being too inflexible to
satisfactorily describe some of the finer, yet essential.
shape characteristics. Example fits of the rational
function to data are given in Figure 4. It is obvious

from the figure that there are significant variations
between rational functions of different orders. In
contrast, the ordinary polynomials shown in Figure 5
do not vary significantly in their fit to the same data
points shown in Figure 4. In view of this comparison,
the shape of the ordinary polynominal has less
dependence on the functional order used. This is very
important from the standpoint of reducing the
subjectivity involved in the choice of an appropriate
order of the curve-fitting function.

The choice of any curve-fitting function should
take into account the difficulty of manipulating the
analytical expression. Differentiation and the use of
related analytical expressions may become cumbersome
for many types of functions. Exponential and
logarithmic functions are especially cumbersome in a
general operational sense because their related analytical
operations are wholly dependent on the particular
functional expression at hand. In other words, these
types of functions are usually not derived from any
particular recurrence relationship which can be used to
obtain greater flexibility in functional shape. On the
other hand, rational and polynomial functions do have
desirable recurrence relationships. From the standpoint
of mathematical manipulations, the ordinary polynomial
is the most desirable of these functions because its
recurrence relationships provide simpler analytical
expressions. This fact is especially true from the
standpoint of differentiation and generation of the
functional expressions. The expressional forms of these
two functions easily demonstrate this fact. The ordinary
polynomial has the form

plx) = cp + opx * c3x2 + cnxn'l, 1
where p(x) is the given polynomial with terms having
constant coefficients ¢ for the abscissa terms x with
integer powers n. The rational function using the ratio
of two Chebyshev polynomials, T, {(x) and T 10,
has the form

u()v(x) = Ty () Tpy () =
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where T (x) = 1, Tl(x) = x, Tp(x) = 2x? - 1, and n
and m are the degrees of the Chebyshev polynomials
in the numerator and denominator, respectively.
Derivatives are easily obtained on the ordinary
polynomial using the product rule of differentiation,

d(p(x))/dx = ncx(n'l), 3
on the quantity
p(x)=cx™. 4

In contrast, derivatives of the rational function will

involve a nontrivial consideration of its individual terms
which have the somewhat peculiar recurrence relation
shown in Equation 2. These derivatives are obtained
using the quotient rule of differentiation,

duE))vX))dx = (vdu/dx) - u(@v/dx)v3, 5

which in this case is nontrivial. In view of these
differences in simplicity and the indications of fit found
in Figures 4 and 5, the benefits gained using a rational
function as opposed to an ordinary polynomial would
be questionable at best.

Figure 4.

Examples of Curve Fits by Rational Functions Having the Form u(x)/x),

where u(x) and v(x) are Chebyshev Polynomials Having Orders k and

m, respectively.



Figure 5.

Examples of Curve Fits by Ordinary Polynomials p(x) Having Different
Orders n.

The final reason for choosing the ordinary
polynomial as the curve-fitting function is the accuracy
which can be obtained in the first and second derivatives
of the analytical expression. This is due more to the
functional characteristic than to a shape characteristic.
As pointed out in the discussion of functional shape,
the ordinary polynomial usually will provide a very good
fit of the semilog representation of compression data.
Consequently, differentiation based on the mathematical
definitions of Equations 3 or 5 will yield accurate
estimates of the first and second derivaties. When a finite

difference approach is used as a check on the derivatives
of the generated ordinary polynomial (Equation 3), the
same results can be obtained if the increments are
sufficiently small. The derivatives obtained by the two
mathematical definitions will be legitimate if the
polynomial curve provides a good representation of the
data. In contrast, as the functional representation of the
data becomes less accurate (as in the cases of rational
functions and low degree polynomials), the legitimacy
of the first- and higher-order derivatives becomes
increasingly questionable.

7



ANALYTICAL PROCEDURES

This algorithm employs a variety of analytical
procedures to represent the geometrical characteristics
of the semilog, stress-deformation, consolidation curves.
To begin with, the equation of the fitted ordinary
polynomial is used to evaluate ordinate values at various
abscissa locations on the curve. Slopes at these abscissa
locations are determined using Equation 3. It should be
noted that the rebound data are fitted only with a
straight line. These analytically determined slopes are
used with associated abscissa and ordinate values to
produce equations of straight lines. Another geometrical
quantity represented by analytical procedures is the
radius of curvature. After the mathematical definition
of Equation 3 is applied twice to evaluate the second
derivative, the radius of curvature can be analytically
determined at various abscissa locations through the use
of the following mathematical definition:

R = (1 + (dy/dx)?y*/2)d2yjdx?), 6

where R ‘is the radius of curvature. The point of
maximum curvature is given by the minimum value of
the radius, 'R'. Another means of determining the point
of maximum curvature is by approximating other
geometrical characteristics of the curve. A combination
of the procedures which set up equations of straight
lines form the basis of this new method to determine
the point of maximum curvature. A more complete
discussion of this method follows in the section entitled
"Graphical Method to Select Point of Maximum
Curvature"'.

AUTOMATION OF THE CASAGRANDE AND
SCHMERTMANN CONSTRUCTIONS

The analytical procedures described in the
preceeding section form the basis for the mathematical
representation of the two most widely used methods
in the analysis of time-independent settlement. In
review, the Casagrande construction is used by this
algorithm to estimate the probable preconsolidation
pressure, and the Schmertmann construction is
employed to account for the effects of disturbance on
the compressibility of the specimen. Steps in the two
empirical constructions are described here to illustrate
the various analytical procedures.

The first step in the Casagrande construction is the
selection of the point of maximum curvature on the
polynominal representation of the compression data. In
the manual application of this step, a subjective decision
is made on the basis of the appearance of the curve.
In the analytical application of this step, the point of
maximum curvature may be selected by one of two
possible  methods. One method employs the
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mathematical definition of the radius of curvature given
in Equation 6 and is called the Analytical Method. The
other is the newly developed Graphical Method, and the
pictorial characteristics of the compression curve are
used to choose the point of maximum curvature. This
method is discussed further in the section entitled
"Graphical Method to Select Point of Maximum
Curvature''. After the point of maximum curvature has
been selected, lines horizontal and tangential to the
fitted polynominal are mathematically determined at
this point as shown by lines A and B, respectively, in
Figure 6. The angle between these two lines is then
bisected and mathematically represented by another line
as shown by line C in Figure 6. The final step in the
Casagrande construction comes in the selection of the
line representation of the virgin compression curve. The
polynomial representation of the compression curve is
analyzed for a representative slope and suitable
intercept, as shown by line D in Figure 6. The
preconsolidation pressure, P (PROBABLE), is then
determined at the intersection point of lines D and C,
as shown in Figure 6, by taking the antilog of the
abscissa at that point.

Following the Casagrande construction, the
Schmertmann construction employs similar procedures
to estimate .the in situ compressibility characteristics
implied by the geometrical nature of the consolidation
curves. The mathematical steps exactly parallel those in
the manual construction. In situ compressibility
characteristics of the compression curve are
approximated by two straight lines. First, the initial
portion of the compression curve is represented by a
line going through the in situ state of stress and strain
having the slope of the rebound curve, line E in Figure
6. Finally, the in situ, virgin compression curve is
represented by a line going from the end point of line
F at the preconsolidation pressure to the point where
the virgin curve, line D, intersects the ordinate value
of strain at 42 percent of the initial void ratio. This
is line G in Figure 6.

A minimum preconsolidation pressure,
P.(MINIMUM), is shown in Figure 6. This lower limit
of preconsolidation pressure is determined in accordance
with a procedure reviewed and modified by
Schmertmann (4). This minimum preconsolidation
pressure is found simply by extending the virgin curve
represented by line D in Figure 6 until it intersects either
the €, = 0 line or the in situ recompression curve
represented by line F.



GRAPHICAL METHOD TO SELECT
POINT OF MAXIMUM CURVATURE

Equation 6 can not be used successfully on curves
having ill-defined curvature. The conceptual basis of this
graphical method is the idealization of the
recompression and virgin compression curves as straight
line segments which have a transitional curve between
them. Several assumptions are made. The first is that
the recompression curve has the same slope as the
rebound curve. Note that the Schmertmann construction
employs a similar assumption. Second, the transitional
curve between the two straight-line segments is to be
smooth, evenly distributed, and have its point of
maximum curvature at the center of its variance from
the straight-line segments. An analogous situation can
be found with the spiral highway curve and the
principle, there, of gradual transition. Finally, the center
point of the transitional curve is found by bisecting the
interior angle formed by the intersection of the line
representations of the recompression and virgin portions
of the compression curves to obtain the point of
maximum curvature as shown in Figure 7.

Combined Use of the Casagrande and Schmertmann Constructions.

The implementation of this graphical method
follows procedures outlined below. Consult Figure 7 for
each of the following steps:

1. A line with the slope of the rebound curve is
placed tangent to the recompression curve. If it is
impossible to locate a tangent with this slope on the
recompression curve, the line is arbitrarily drawn
through the recompression curve at some point -
preferably the earliest possible point on the curve which
is free from any irregular effects possibly produced
during initial loading.

2. The virign compression curve is then represented
by a line having the slope of its straight portion.

3. Extend the tangent of the recompression curve
and the straight-line representation of the virgin
compression curve until they intersect.

4. Bisect the interior angle formed by the
intersection of these two lines.

5. Extend the angle bisector until it intersects the
compression curve. This point of intersection is selected
as the point of maximum curvature.



Figure 7.

Graphical Procedure to Select Point of Maximum Curvature,

Most consolidation (compression) curves will not
rigorously follow the assumption that their points of
maximum curvature will be located at the center of their
transitional curves. If the point of maximum curvature
can be chosen accurately by visual inspection, it may
be located slightly before or after the graphically
selected point, and its location depends entirely on the
characteristic =~ shape = of the time-independent
compression curve., Nevertheless, this graphical approach
is a more rational procedure to the determination of
the point of maximum curvature on curves having
ill-defined curvature than the traditional method of
selecting this point by visual inspection. This method
also provides more consistent results with curves having
ill-defined curvature. In adddition, it is obvious from
the nature of the Casagrande construction that the
selection of the point of maximum curvature is less
critical to the determined value of the preconsolidation
stress than the selection of the virgin compression curve.
And since this graphical approach determines the
midpoint of the range of the possible points of
maximum curvature, it is a reasonably good
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approximation to the midpoint of the range of possible
values for the preconsolidation stress as determined by
the Casagrande construction. Consequently, even though
Casagrande does not use the construction which bears
his name (11), the graphical approach to the selection
of the point of maximum curvature is in keeping with
his statement that the preconsolidation pressure should
always be considered in terms of a range of values (12).

INFLUENCE OF POLYNOMIAL
DEGREE ON ANALYSIS

The polynomial degree has been found to have a
range of effects on three particular considerations: the
shape of the fitted curve, the selected point of maximum
curvature, and the values of the preconsolidation
pressure and compression ratio. Similarly, since the
effects of polynomial degree are largely dependent on
the size of the data set being fitted, the three preceding
points must be considered in terms of standard
consolidation data versus controlled consolidation data.



EFFECT OF POLYNOMIAL DEGREE ON THE SHAPE
OF FITTED POLYNOMIAL CURVE

For controlled test data, the polynominal degree
has been found to have a small effect on the
polynominal curve's shape for two reasons. First, the
large number of data points involved in the controlled
consolidation test usually gives a well-defined curve
which can be easily duplicated by high-degree
polynomials, Secondly, since the large number of data
points allows the use of higher degree polynomials, the
undulatory characteristics of low-degree polynomials
cited by Hastings (13) are automatically avoided.

In contrast, consolidation curves derived from
standard tests do not have the benefit of a large number
of data points. The scarcity of data points introduces
a reasonable amount of ambiguity into the shape of the
curve. This ambiguity appears in the analysis of these
standard compression curves irrespective of any
curve-fitting process which is used, manual or analytical.
Because of this ambiguity, a certain amount of variation

in the shape of the compression curve results for
polynomials of different degrees.

In addition, the small number of data points from
the standard test limits the curve-fitting procedure to
use of low-degree polynomials which have a certain
undulatory characteristic. These shape characteristics of
low-degree polynomials can sometimes introduce
frustrating variations into the curve. These variations
usually arise in cases where the curves assumes an almost
horizontal character in the initial portion followed by
a sharp angular break into the virgin compression
portion. As Hastings (13) points out, the low-degree
polynomials cannot turn sharply and go as straight as
it is sometimes required by curves like the ones shown
in Figure 8 (14). Figure 9 shows the best possible,
low-degree polynomial fit on Crawford's ''End of
Primary" curve of Figure 8. From this figure, one can
get an idea of the shape limitations of low-degree
polynomials.

Figure 8.

Crawford’s 1964 Illustration of the Influences of Secondary Compression

on the Preconsolidation Pressure.

11



Figure 9.

Best Low-Degree Polynomial Fit on Crawford’s ’End of Primary Curve”
in Figure 8.

EFFECT OF POLYNOMIAL DEGREE ON THE
SELECTION OF POINT OF MAXIMUM CURVATURE

The point of maximum curvature can be selected
either by the Analytical or Graphical Methods discussed
earlier in the section entitled '"Algorithm for
Time-Independent, Laboratory, Consolidation Test
Data". As far as the controlled test data curves are
concerned, both the Analytical and Graphical Methods
give very consistent choices for the point of maximum
curvature for polynomials of degree nine or greater when
these twp methods are considered separately. Figures 10
and 11, which will be discussed in greater detail later
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in this section, show that an acceptable consistency is
obtained within cach method to select a point of
maximum curvature for polynomials of degree six or
greater. Consistency occurs in each of these two
methods after the sixth degree; there are two reasons:
the shape of the well-defined compression curves are
accurately duplicated with higher degree polynomials,
and the undulatory characteristics more often found in
low-degree polynomials are avoided, particularly in the
initial portions of the compression curve and area of
maximum curvature.



Preconsolidation Stress Plotted as a Function of Polynomial Degree of
the Analytical and Graphical Methods to Select a Point of Maximum
Curvature, Controlled-Gradient Test 13.

Figure 11.  Compression Ratio Plotted as a Function of Polynomial Degree for the
Analytical and Graphical Methods to Select a Point of Maximum

Curvature, Controlled-Gradient Test 13.
13



In contrast, the effect of changing polynominal
degree on the selection of the point of maximum
curvature from polynomial fits of standard consolidation
data is significantly greater. The number of data points
involved restricts one to the use of low-degree
polynomials on data groups that already admit a
reasonable amount of ambiguity into their curve
representations.  Hence, given the undulatory
characteristics of low-degree polynomials and the
ambiguities inherent from few data points, selection of
the point of maximum curvature can be affected in three
ways: by localized undulations in the initial portion of
the compression curve representations, by changes in the
location of the point of maximum curvature with
different polynomial degrees, and by special problems
caused by a nonexistent or ambiguously defined point
of maximum curvature. For the Analytical Method, the
presence of localized irregularities in the initial portion
of the polynomial representation of the compression
curve can cause an erroneous point of maximum
curvature to be chosen. Secondly, changes in the
polynomial degree used in fitting a group of standard
data can shift the point of maximum curvature from
one location to another because of the ambiguities
possible when fitting a few data points and the
undulatory nature of low-degree polynomials. An
example of the effects of the undulatory nature of
low-degree polynomials on the selection of the point
of maximum curvature can be realized through a
comparison of the analyzed consolidation curves of
Standard Test 24 in Figures 12a and 12b with Figure
12c. Thirdly, special problems occur when the
Analytical Method is wused on a polynomial
representation of a set of consolidation data lacking a
distinct and unique point of maximum curvature. In
other words, the curve may lack a unique point of
maximum curvature due to the nature of the data or
because of the poor representation afforded by the
low-degree polynomial. An excellent example of the
nature of the data contributing to the ill-defined point
of maximum curvature is shown in Figure 13 of
Standard Test 12. Even though the third, fourth, fifth,
and even sixth degree polynomials provide excellent
representations of the data, the small differences in
shape between these polynomials overshadow the
ambiguous information furnished by the data points
concerning the point of maximum curvature and give
rise to significant differences in the location of the point
of maximum curvature.
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In contrast to the selection of the point of
maximum curvature by the Analytical Method, the
Graphical Method is influenced differently with varying
amounts of significance for the three problems discussed
above with respect to standard data. It may be helpful
here for the reader to re-acquaint himself with the earlier
description of the Graphical Method, with special
attention to Figure 7, in the section entitled "Graphical
Method to Determine Point of Maximum Curvature".
As for the first problem, localized irregularities in the
initial portion of the polynomial for the initial
compression curve can disturb the Graphical Method by -
causing slight displacements or offsets up or down in
the initial tangent line shown in Part 1 of Figure 7.
An actual example of an upward displacement of this
tangent line can be seen in the sixth degree polynomial
fit on Standard Test 24 in Figure 19c. This upward
displacement of the initial tangent line causes the angle
bisector of Part 4 of Figure 7 to intersect the.
compression curve at a point further back up the curve.
A downward displacement of the intitial tangent line
will cause the point of maximum curvature to be located
at a point further down on the compression curve. As
for the second problem, the location chosen by the
Graphical Method as the point of maximum curvature
is largely unaffected by small changes in the shape of
the fitted curve in the general area of the point of
maximum curvature with changing polynomial degree.
In other words, the point chosen remains essentially the
same with changing polynomial degree. Basically, this
fact comes about because the point selected by the
Graphical Method is determined mostly by the interior
angle formed by the intersection of the straight-line
representations of the recompression and virgin
compression curves shown in Figure 7. Hence, the
Graphical Method is largely unaffected by changes in
the characteristics of the fitted polynomial between the
straight-line representations of the recompression and
virgin compression curves.

Finally, the special problems encountered by the
Analytical Method with an ill-defined point of maximum
curvature are largely avoided by the use of the Graphical
Method. When the data are responsible for these
problems, as in the case in Figure 13 for Standard Test
12, the Graphical Method becomes more consistent and
gives just as reasonable results by pictorially taking the
midpoint of the range of possibilities for the point of
maximum curvature, as shown in Figure 14.



Figure 12.

Stendard Test 24, Analytical Method Used to Determine the Point of
Masmum Curvature: (a) 4th-Degree Fit; (b) Sth-Degree Fit; (c)
6th-Degree Fit.
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Figure 13.

Standard Test 12, Analytical Method Used to Determine a Point of
Maximum Curvature: (a) 3rd-Degree Fit; (b) 4th-Degree Fit; (c)
5th-Degree Fit; (d) 6th-Degree Fit.
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INFLUENCE OF POLYNOMIAL DEGREE ON THE
VALUES OF THE PRECONSOLIDATION STRESS
AND COMPRESSION RATIO

Variations caused by polynomial degree in the
shape of the fitted curve and selected point of maximum
curvature affect the values of preconsolidation stress, P,
and the compression ratio, CR. Many observations to
be made herein have already been mentioned. For
controlled test data, the large number of data points
allows the use of higher degree polynomials which give
consistent results for the preconsolidation stress and
compression ratio after the sixth degree. This
consistency primarily reflects a lack of change in the
shape of the fitted curve with increasing degree. Figures
10 and 11 demonstrate this point for the values of
preconsolidation  stress and compression ratio,
respectively. The most representative values for these
two parameters are usually obtained when the highest
polynomial degree of 11 is used; but of course, the
polynomial representation of a compression curve must
be smooth and well defined by sufficient data points
from a controlled consolidation test. The obvious trend
of lower values for P, and CR in Figures 10 and 11
for the Analytical Method is due only to the character
of the data and its fitted polynomial but not because
the Graphical Method always gives a trend of higher
values for P, and CR. In other words, for differently
shaped compression curves, the Graphical Method could
give a trend of lower values for P, and CR.

In contrast, since the standard test data allow
greater variation in the shape of the fitted polynomial
and the selected point of maximum curvature with
changing polynominal degree, the wvalues of
preconsolidation  stress and compression ratio
consequentially show less comsistency with changing
polynomial degree. However, fair consistency in the
determination of P, and CR is retained for certain
polynomial degrees within each of the two methods to
select a point of maximum curvature. In Figures 15 and
16 for Standard Test 24, good consistency is obtained
by the fourth and fifth degree polynomials. In Figures
17 and 18 for Standard Test 12, satisfactory consistency
is obtained in the third, fourth, and fifth degree
polynomials, Note that in both sets of figures for
Standard Tests 12 and 24, this consistency breaks down
at the sixth degree. At the sixth degree, this breakdown
in consistency can be expected since there is no
least-squares smoothing afforded by the fitting
polynomial when the polynomial degree is equal to the
number of data points minus one.

Changes in the shape of the fitted polynomial with
changing polynomial degree, particularly in the initial
portion of compression data curve, are primarily
responsible for the sudden changes in the determined
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values of P and CR. In Figures 15 and 16 for the use
of the Analytical Method on the data of Standard Test
24, the change in the shape of the fitted polynomial
at the sixth degree occurs because the few data points
in the initial portion of the compression curve cannot
prevent the polynomial from curving in this region.
Curving of the polynomial in the initial data causes the
point of maximum curvature to move further down the
curve and thereby cause an increase in P, and CR shown
at point C in Figures 15 and 16, respectively. This effect
can be seen by comparing the analyzed consolidation
curves for the fourth, fifth, and sixth degree polynomials
in Figures 12a, b, and ¢, respectively. In contrast, the
curving of the sixth degree polynomial in the initial data
of the compression curve of Standard Test 24 produces
an opposite effect on the determined values of P, and
CR when the Graphical Method is used. This undulation
in the fitted curve causes an upward displacement of
the initial tangent found by the Graphical Method The
effect of this undulation can be noted by comparing
the analyzed consolidation curves for the fourth, fifth,
and sixth degree polynomials in Figures 19a, b, and c.

In Figure 19c¢ the upward displacement of the initial
tangent moves the selected point of maximum curvature
back up the compression curve with a consequential
reduction of PC and CR at point E' in Figures 15 and
16, respectively.

The effect of changes in the shape of the fitted
polynomial at the sixth degree is quite different for the
data of Standard Test 12. Here again there is no
least-squares smoothing at the sixth degree. For the
Analytical Method's determination of P. and CR for
standard test 24, there was an increase in their values
at the sixth degree, as shown in Figures 17 and 18 and
point C. However, for Standard Test 12, the values of
Pcand CR show instead a decrease at the sixth degree.
This change in the values of P, and CR for Standard
Test 12 is also caused by a small shape aberration of
the sixth degree polynomial fit in the initial data points
of the compression curve. The decrease of the values
of P, and CR occurs because the point of maximum
curvature is moved back up the curve instead of down
the curve, as in the case of the previously discussed
example of Standard Test 24. The backward shift of
the point of maximum curvature can be easily seen by
comparing the analyzed consolidation curves of
Standard Test 12 for the third, fourth, fifth, and sixth
degree polynomials in Figure 13a, b, ¢, and d,
respectively. As for the effect of this sixth degree
polynomial shape aberration on the values of P. and
CR determined with the use of the Graphical Method
to select the point of maximum curvature, there is not
as large a change as accompanied the previously
discussed example of Standard Test 24 of the preceeding
discussion concerning the Analytical Method and



Figure 15.  Preconsolidation Stress Plotted as a Function of Polynomial Degree for
the Analytical and Graphical Methods to Select a Point of Maximum
Curvature, Standard Test 24,
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Figure 16. Compression Ratio Plotted as a Function of Polynomial Degree for the
Analytical and Graphical Methods of Selecting a Point of Maximum
Curvature, Standard Test 24.
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Figure 17. Preconsolidation Stress Plotted as a Function of Polynomnal Degree on
Compression Data which Lack a Well-Defined Point of Maximum
Curvsature, Standard Test 12.

Figure 18, Compression Ratio Plotted as a Function of Polynomial Degree on
Compression Data which Lack a Well-Defined Point of Maximum

Curvature, Standard Test 12.
21
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Standard Test 12. Hence, values of P, and CR for the
sixth degree Graphical Method's determination remain
fairly consistent with respect to the other degrees as
shown in Figures 17 and 18 for Standard Test 12. In
spite of the excellent polynomial representations of the
data furnished by all degrees of three or greater on the
data of Standard Test 12, the scatter obtained in the
values of P, and CR when the Analytical Method is used
illustrates the difficulties involved with selecting the
point of maximum curvature on data which ambiguously
define curvature. Whether the data from Standard Test
12 are accurate or not is not an issue here. Instead,
the problem of selecting the point of maximum
curvature on certain types of curves illustrates some
basic limitations inherent in the use of empirical,
graphical procedures to determine properties of
stress-strain consolidation data. Sometimes, use of
empirical, graphical procedures may raise some questions
in their applicability to the analysis of certain types of
data. With this in mind, the use of the Graphical Method
as opposed to the Analytical Method to determine the
point of maximum curvature on the data curves from
Standard Test 12 gives just as reasonable choices for
this geometrical quantity and, in addition, much more
consistent values of P, and CR. This can be seen by
inspection of the analyzed consolidation curves for the
third, fourth, fifth, and sixth degree polynomial fits in
Figures 14a,b,c,and d, respectively.

SUMMARY

Changing the degree of the polynomial has a greater
effect on the shapes of the curves fitted to standard
data than on those fitted to controlled consolidation
data. Usually, the best curve representation of the data
will be obtained when the highest polynomial degree
that provides some least-squares smoothing is used.
However, there is one situation where any polynomial
representation may not be adequate for either standard
or controlled compression data curves. In Figure 8, there
are curve shapes which are difficult to produce through
the use of ordinary polynomials, particularly low-degree
polynomials. This difficulty results because it is hard
for polynomials to make sharp turns or to go straight
horizontally for any great distance, especially when
there are few data points to sufficiently constrain the
polynomial fit as in the case of Figure 9. Secondly,
changing polynomial degree does change the location for
the point of maximum curvature. At low-degree
polynomial fits, changes in the polynomial degree can
adversely affect both the Analytical and Graphical
Methods to select the point of maximum curvature
because of possible undulations in the fitted curve in
the initial portions of the data and region of maximum
curvature. When the curvature of the fitted curve is
ambiguously defined, despite an excellent polynomial

representation of the data at most degrees, the Graphical
Method to select the point of maximum curvature will
be less susceptible to small variations in the fitted curve
than the Analytical Method. And, considering the broad
spectrum of shapes possible with most stress-strain
consolidation data, the Graphical Method will give more
consistent results with changing polynomial degree.

It is important to compare qualitatively the
influences of polynomial degree with other external
difficulties which can affect the analysis of consolidation
test data irrespective of the procedures which are used.
It will be shown herein that the variations incurred with
different degree polynomials are usually less than the
variations caused by effects extemnal to the analysis of
the data itself. For standard data, there are two
significant sources of variations which can have a larger
influence on the analysis than changing the polynomial
degree. A very important factor is specimen disturbance,
which can have a very appreciable influence on the
values of P, and CR and far outweigh any variations
incurred by the -curve-fitting functions. Also, such
factors as load-increment ratio and load-increment
duration can affect the determined values for P, and(or)
CR much more than changing polynomial degree,
especially when data on highly sensitive clays are
considered. (Crawford (14) showed in Figure 8 the
extreme but valid case of a 50-percent reduction in the
value for P, for incremental loading programs of
different durations.) In addition, Sallfors(3) pointed out
that it is possible to represent the compression data with
a number of different curves when there are only six
or seven data points. This last type of variation accounts
for most discrepancies between the values of P and CR
for different degree polynomials. Hence, these variations
in the shape of the fitted curve are just as much a result
of the limitations imposed by standard consolidation
tests as from the use of different polynomial degrees.
For the controlled consolidation tests, this problem of
choosing the appropriate curve representation of the
compression data is greatly alleviated by the greater
amount of .data involved. However, this type of
consolidation data can be influenced by some other
factors external to the analysis. For instance, the effect
of specimen disturbance is just as significant for the
controlled consolidation tests as it is for the standard
test. In addition, there are the special effects caused by
pore pressure lag and strain rate which can change the
nature of the compression curves and the determined
values for P, and CR. These special effects are generally
far more significant than those incurred through the use
of different polynomial degrees. In summary, variations
incurred with the use of different degree polynomials
are usually less than the inaccuracies incurred by such
things as sample disturbance, few data points, loading
procedures, and measurement of pore pressures.
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THE COMPUTER PROGRAM

The computer program, CASAGR-O, analyzes the
time-independent, one-dimensional strain consolidation
data associated with consolidation tests. The program
determines the preconsolidation stress and the in situ
compressibility characteristics. The results derived from
this program are used in the time-independent,
one-dimensional strain analysis of settlement. The main
characteristics of the program to be discussed herein
include a description of its methods of solution,
capabilities and limitations, data inputs, program
options, program output, flow-chart outline, and sample
runs.

METHOD OF SOLUTION

The computer program employs a numerical
curve-fitting procedure with a least-squares ordinary
polynomial to facilitate the analytical application of the
Casagrande (1) and Schmertmann {3) constructions,

Several procedures have Dbeen developed and
incorporated into the program to carry out the

analytical application of these constructions. The poirits
to be discussed herein are the application of the
curve-fitting procedure, a criterion for distinguishing
between compression and rebound data, the selection
of the point of maximum curvature, the selection of
the virgin compression curve, and constants built into
the program.

Application of the Curve-Fitting Procedure -- The
compression and rebound curves are separated and fitted
by two different polynomial functions. The compression
data are fitted by a wuser-specified, least-squares
polynomial. The rebound data are fitted by a
least-squares straight line. These two functional
representations provide the basis for the approach
proposed in the section entitled "Algorithm to Study
Time-Independent Laboratory Consolidation Test
Data."

Criteria for Distinguishing between Compression
and Rebound Data Curves — This criterion is predicated
on the fact that compression data are read into the
computer in an order such that the values of effective
stress are increasing. Once this compression data have
been read in, they are followed by the rebound data
distinguished from compression data on the basis that
there is a decrease in the value of effective stress. This
criterion for distinguishing between compression and
rebound data is applied differently to the data obtained
from different types of consolidation tests. For standard
consolidation test data, the computer program
distinguishes between compression and rebound data
when it encounters a data point having an effective stress
less than the one previous to it. When this occurs, the
computer program treats all subsequent data points as
rebound data.
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In contrast, controlled consolidation data are
defined by a similar but less order-bound criterion.
Compression data still must be entered first and in order
of increasing effective stress. The difference is that small,

| local decreases in the values of effective stress in
compression data will not cause the computer program
to treat all subsequent data points as rebound data, As
long as localized decreases are not greater than 0.7 tons
per square foot (67 kPa), the computer program will
continue to treat all subsequent data as compression
data. When this amount of change occu'ts, all subsequent
data points are treated as rebound points in the
curve-fitting process. Finally, the data point which
provokes this decrease in effective stress is dropped from
the analysis entirely to avoid any effects it may have
on the polynomial representation of the compression
data,.

Selection of the Point of Maximum Curvature --
The Casagrande point of maximum curvature is
determined by the computer program by two methods,
both of which have previously been described. The
Analytical Method uses the mathematical definition of
the radius of curvature given in Equation 6 to find the
point of maximum curvature. The location of the point
depends primarily on the arithmetic ratio of the scale
factors. Hence, with a different ratio for the horizontal
to vertical scale factors, the point of maximum curvature
will be located at a different abscissa location on a given
curve. The ratio of the horizontal to vertical scale factors
must be multiplied times the first and second derivatives
before Equation 6 can be used to select the point of
maximum  curvature based on the pictorial
characteristics of the fitted curve. To find the point of
maximum curvature, the Analytical Method tests for a
minimum value for the radius of curvature within a
90-percent midportion of the search area as defined by
the user-specified, abscissa search boundaries. If a
discrete minimum value for the radius of curvature is
not found within this 90-percent interval, the minimum
value of the radius is not considered to be unique. In
such a case, the computer program will default to select
the peint at which the second derivative is a maximum
as the point of maximum curvature.

The second method to determine the point of
maximum curvature is the Graphical Method. Procedures
for this method have already been described in detail
in the section entitled "A Graphical Method to Select
Point of Maximum Curvature'. The computer program
uses the Graphical Method in several steps. First, the
program searches between the user-specified boundaries
for a point on the compression curve having the same
slope as the line representation of the rebound curve,
If this point is found, the line representation of the
initial portion of the compression curve will be drawn
through this point. If this point is not found, the



computer program defaults and uses the first search
boundary as the point through which to draw the line
representation of the initial recompression curve. Note
that this line will have the slope of the rebound curve
line representation. Next, the pictorial appearance of the
interior angle formed by the intersection of the line
representations of the initial compression and virgin
compression curves is bisected. Note that the pictorial
appearance of this interior angle is directly related to
the scale factors in the horizontal and vertical directions.
Finally, having bisected this interior angle, the
intersection of the angle bisector line with the
compression curve is determined by comparing the
incrementally generated ordinates of the angle bisector
line and the polynomial representation of the
compression curve. The ordinate values are computed
at incrementally generated abscissae which are increasing
in magnitude. When the ordinate of the angle bisector
is greater than that of the compression polynomial, the
point of intersection has been passed. The determination
of the intersection point is refmed by several iterations
using .the same procedure. This intersection is the
graphically selected point of maximum curvature.

Selection of the Virgin Compression Curve -- The
selection of an appropriate straight-line representation
of the virgin compression curve uses the concept of
percent difference. The percent-difference criterion is a
procedure which is used to find that portion of the
compression curve on which the slope is relatively
constant. If the slope is relatively constant, the percent
difference between slopes of consecutively generated
search points will be very small and that portion of the
curve will be nearly a straight line. In the use of this
concept, the computer program incorporates the
additional = requirement that the  straight-line
representation of the virgin compression curve be
selected at the point having the largest slope of those
points whose slopes have passed the percent-differrence
criterion. However, the percent-difference criterion will
not always be satisfied. Hence, some kind of backup
criterion is needed. The criterion to be outlined herein
depends on the type of test data being analyzed. For
controlled data, the computer program uses a simple
default procedure when the percent-difference criterion
is not satisfied. If the criterion is not satisfied for
controlled data, the program selects the point at which
the maximum slope occurs. This point and the slope
of the curve at this point will be used to construct the
straight-line representation of the virgin compression
curve.

In the case of standard data when the
percent-difference criterion is not satisfied, the
procedures are slightly more complicated than those
used on controlled data. When the percent-difference

criterion is not satisfied on standard data, the
representation of the virgin compression curve will be
selected on the basis of the two procedures illustrated
in Figures 20 and 21. In the case of a compression curve
similar to the one in Figure 20, the line representation
of the virgin compression curve will be selected at the
point of maximum slope. In the case of a compression
curve similar to the one in Figure 21, a much different
procedure will be used because use of the tangent to
the compression curve at its maximum slope would lead
to a very unconservative estimate of the
preconsolidation stress. Also, use of a line through the
last two compression points as the representation of the
virgin compression curve can be inappropriate because
the next to last point may not be on the straight-line
portion of the virgin compression range, as indicated by
the trend of compression points in Figure 21. Hence,
some median is needed between these two possible
extremes. A way to obtain this median is simply to
select a line having a slope averaged from the two
extremes just discussed and going through the last
compression curve point. This line is shown as a dashed
line in Figure 21.

Constant Values Built Into Program -- Several
constant values are built into the computer program for
use in various steps of the analysis. There are constants
for the Schmertmann construction and for matching of
increasing dial readings with downward deflection
(decreasing specimen length). For the Schmertmann
construction, the computer program takes the
intersection of the line representation of the in situ
compression curve with the line representation of the
laboratory virgin compression cuive as occurring at 42
percent of the initial void ratio, as suggested by
Schmertmann (3).

Next, the program is set up to accept increasing
dial readings of standard and controlled-rate-of-strain
data as indicating downward deflection (decrease in
specimen length). This has been accomplished by setting
the variable name 'IDIAL' equal to '+1' during the data
reduction for these two test types. Similarly,
controlled-gradient data reduction is handled in much
the same way with the exception that 'IDIAL' is set
equal to '-1' when this type of data is being considered.
The reason for this is that the dial gauge used for the
controlled-gradient test apparatus has increasing dial
readings indicating specimen lengthening:

SAMPLE HEIGHT = INL HEIGHT - IDIAL*(DIAL
RDG. - ZERO RDG.).
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Figure 20,  Standard Data for which the Line Representation of the Virgin
Compression Curve Is Selected at Location of Maximum Slope.

Figure 21.  Standard Data for which the Line Representation of the Virgin Curve
Is Selected by Averaging Slopes of Two Lines: One Tangent to the Curve
at Its Maximum Slope and the Other Going through the Last Two Points.
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By inspection of Equation 7, one can easily see that
the use of this kind of procedure avoids the necessity
of having different deformation equations for different
types of dial gauges. The advantage of this scheme
readily becomes apparent when dial gauge equipment
varies within a laboratory for a given type of
consolidation test. Finally, the user has the ability of
overriding these built-in relationships through an option
that changes the sign of the value for IDIAL in Equation
7.

PROGRAM CAPABILITIES

Ranges of Assigned Values - Quantities involved
in the computer program which require certain.
limitations on the range of input values fall into three
basic categories: array storage space, effective stress
values, and polynomial degree specification. First, the
amount of array storage space limits the amount of data
which can be considered at any given time. These arrays:
have been set up to hauuwe a maximum of 300
compression data values and 100 rebound data values.
Next, the effective stress values are limited to stresses
greater than or equal to 0.1 ton per square foot (9.6
kPa). Any data having a value of effective stress less
than 0.1 ton per square foot (9.6 kPa) will be changed
to 0.1 ton per square foot (9.6 kPa). As for the
polynomial degree specification, the program is limited
in two ways, one internal and one external. Internally,
the program can not handle any polynomial degree
greater than 11. Externally, the user must make sure
that the polynomial degree is not larger than the number
of data points being fitted minus one. Otherwise, the
user will receive an error message from the curve-fitting
subroutine in the. program.

‘Limitations on the Formulation of a Test Problem
- Two points must be made herein to defime what
constitutes a test problem. First, a given set of
consolidation test data must have both compression and
rebound data as shown in Figure 22. Otherwise, the
program cannot analyze a data set which consists only
of compression curve data as shown in Figure 23.
Secondly, the program is set up to handle only one load
cycle at a time. A load cycle consists of loading
(compression) and unloading (rebound) as shown in
Figure 22. The single load cycle illustrated in Figure
22 is considered by the computer program as one
problem. Hence, the three load cycles displayed in
Figure 24 will be considered as three separate problems
by the computer program.

In considering the family of curves in Figure 24
as three separate problems, confusion will arise in the
analysis if the initial void ratio, e, is not changed for
load cycles two and three. First and foremost, the use
of Schmertmann's construction in the later load cycles
with the original initial void ratio will lead to
unjustifiably large increases in the in situ
compressibility, as shown by curve A in Figure 25. In
addition, since the initial void ratio is not scaled by the
computer in relation to the rest of the data before it
is plotted, the output will become disturbed when the
computer attempts to plot the determined position of
the initial void ratio outside the limits of the plot page
in the vertical direction. Hence, it is necessary in the
analysis of load cycles two and -three in Figure 24 to
use different values for the initial void ratio. For load
cycle two, it is suggested_that the final void ratio for
load cycle one, e be used as the inmitial void ratio.
For load cycle three, it is suggested that the final void
ratio for the load cycle two, eg), be used as the initial
void ratio. Following this procedure, a more reasonable
determination of the in situ compressibility can be
made, as shown by curve B in Figure 25. The reader
should be well aware that these problems concern both
the void ratio and vertical strain deformation analyses.
Results of each deformation analysis is intimately
involved witn the value of tne initial void ratio.
However;, one should also realize that the vertical strain
results lend readily to the comparison of the
compressibility characteristics of soils having different
initial void ratios. This enables a settlement analysis
without knowledge of the in situ void ratios on layers
of otherwise homogeneous materials which have the
same compressibility characteristics.

DATA INPUTS

The data are input from punched cards using the
format shown on the coding sheet forms in Figure 26a,
b, and ¢ in APPENDIX A. Detailed instructions are also
contained in APPENDIX A along with a description of
the job control cards.
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Figure 22.  Both Compression and Rebound Data necessary for Computer Program;
Single Load Cycle Shown.

Figure 23. Compression Data only, Not Sufficient for Computer Program.
28



Figure 24. Three Load Cycles.

Figure 25. Use of e instead of eg as the Initial Void Ratio on Later Load Cycles
Leads to Unjustifiably Large Increases in Compressibility Coefficients.
This Is Shown by a Comparison of In Situ Curves A and B.
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PROGRAM OPTIONS

There are several run options available to the user
of the computer. program, CASAGR-0. All options are
user specified. The user specifies the type of
consolidation data being analyzed, the type of
deformation analyses to be performed, and the method
to select the point of maximum curvature. No debugging
options are provided since the normal output of the
program provides sufficient information for debugging.

Type of Consolidation Test - The user may specify
analysis on data from three different types of
consolidation tests. These are the standard,
controlled-gradient, and controlled-rate-of-strain
consolidation tests.

Deformation Analyses -- The user may obtain
results in terms of a void ratio and(or) vertical strain.
Both yield essentially the same determination of the
preconsolidation pressure. Also, the program enables the
user to use deformation data from dial gauges with
different calibration factors and directions of dial gauge
movement,

Methods to Select Point of Maximum Curvature -
The user can choose either the Analytical or Graphical
Method to select the point of maximum curvature.
Details of these two methods have already been
discussed. In review, the Graphical Method generally is
less susceptible to anomalies caused by undulations in
fitted compression curves and by irregularities in the
data, The Analytical Method is better suited to
consolidation curves which have relatively well-defined
and undisturbed points of maximum curvature.

OUTPUT

Printed Output - All input information and final
results are printed to facilitate checking results. The user
has the option of specifying whether or not the
calculated radii from the analytical determination of the
point of maximum curvature should be printed.

Plotted Output -- An example of plotted output
is referred to in the discussion of the sample run in
APPENDIX B. The plots produced by the computer
program show data points, fitted curves, numerical
results, and all the steps involved in the graphical
analyses. The plot information is stored on
800-bytes-per-inch magnetic tape used in conjunction
with the Calcomp 663 drum plotter.
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CASAGR-0
TIME-ENDEPENDENT CONSOLIDATION
TEST DATA ANALYSIS
PROGRAM CODING SHEET

NOPRORB

Number of problems, columns 1-2, right justified.

If NOPROB is greater than one, all of the remaining
cards must be repeated for each problem.

For NPLOTS place a '1' in column 2.

IPRINT - output option_for.the Analytical method
to determine the point of maximum curvature.
CODE '0' - Calculated radii printed out
'I' - Calculated radii not printed out

’-RUNTYP ZDEPTH s SECOND

13f14]15116]17{18]19 20121 iaa[aa[aqlzsIzsln[aalza!.’so

NDEG Degree of polynomial used in curve fitting.
RUNTYP . Type of consolidation test
In COL. 13: CODE  '0' - standard data
'1' - controlled gradient data
'2' - controlled rate of strain data
ZDEPTH Approximate field depth from which sample was recovered, in feet.
KRAD - Option for method to select point of maximum curvature.
In COL. 31 : a Blank or '0' causes the Graphical method to be used.
: a-'2' causes the Analytical method to be used.
KIND - Type of deformation analysis. .
In COL. 33 : '0' is for both void ratio and strain analyses.
: 1" is for void ratio analysis only.
: '2' is for strain analysis only.
SECOND Stress at start of secondary compression (controlled tests only).
If left blank, SECOND has default value of 31.2 Tsf.
1IDIAL Option to override the assumed dial reading-versus-deflection relationship specified by

computer program for each type of consolidation test.
In COLS. S50 : a blank or '0' changes none of the assumed relationships.
< '1' will specify that increasing dial readings indicate
specimen shortening. .
49-50 : '-1' will specify that increasing dial readings indicate
specinien lengthening.

BOUND!

BOUND2

BOUND3

BOUND4

[e]s e e]rie]s 0

e 73 [ lis 161718 ] [20

21]22[23]24]25]26]27]28 |29 |30

31132]33[34] 25]36]37]38[39]40

11-1! L.|IiFII\k_I_1\ilIIi!IJ_.IIllt\_I__.

L

BOUNDI, BOUND?2 - search boundaries for selection of point of maximum curvature using Analytical
or Graphical methods.

BOUND3, BOUND4 - search boundaries for selection of the line representation of the virgin compression
curve.
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¢V

CASAGR -0
LABORATORY CONSOLIDATION TEST DATA

SAMPLE AND TEST DESCRIPTION TO BE USED AS PLOT TITLE (BCD)

vialste]sia]z]edls 0lumjn]u! \5Jis[t? 18] 19120121 f22|2a |eafes |25 |27 |oa |25 [30) 51 | 32|33 |34 | 35| 36} 57| 3] 0] 40] a1 |4z 43| 4ala5 | a6 |a7 |48 49]50] 51 |52 | 53| 58} 58] 56| 57 58] 53 |60 e1 |62 63| 6a| 5| se|av]sa |63 |70 71 [ 72] raj 14 | 75) 6 | 77| 78| 10 8O,
_1,11_A .AILALLILE_' Il|1|!||J‘A_IA1||FIIJ_L’J"‘ IEI!III\liIIEIlrII_
SAMPLE NO.
HOLE NO. (HOL)
LOCATION (LOC} I\ |(T ES)I DATE (DAT) SAMPLE DESCRIPTON (DES)
elslelslslr IBJEJIﬂlwiliz[ln!ln‘lﬁ 15 |7||a 8 20 H] zz[zaleqlzﬁ 25'27[28 29 30\3: 32|31[3n 35[35]37]33]39340% 42‘43|441145‘45]47]45119[50‘5\Isa|53154‘55|56!57 (b)
,l,!_;_! P ] v i LLA t L J..{_ 48 L 1l ‘ t 1 !J__,L_l__} 1 ‘ I I 1.._1_J;‘L_I_I_A_L_L-
SPECIMEN WEIGHTS DEFLECTION RDGS.
SP GR.| INl. WET FIN. WET | FIN. DRY INI.
(SPG) (WTIW) (WTFW) (WTFD) (DEF1) | FIN. (DEFF)
Ilzlalals sE l 1 IUlul1z ﬁin[lsllellrlla[ﬁ 20[21[22[23124-[25{25 z?lze[zsbo-[;l 32!33{34[35[35
b bl e s b e L I L1 WATER CONTENT DATA
INITIAL FINAL
CALIBRATION FACTORS DIAM. SAMPLE
DEFLECTION PORE PRESS BLANK = default Can No. l
(DCF) LOAD (LCF) (PCF) to 2.5".(DIA) Wt can + wet soil

|’i3[3i“J5|5‘7‘5|9|‘0 it

Jie] 8 [1a]is 8] 17 18] 19 |20f21 |22]23|eaes

26|27 |28 |20 |30]31 | 52| 33 {34 | 35]35| 373839 ] 0

[ R S N Y SR

i
VN SN T G Y ) O

Lo lﬁl_L_LJ_.‘_l._J

BACK ZERO READINGS Ni. SAMPLE HEIGHT
PRESS.| DEFL. |LOAD PP (SAMPHI)
(BP) | (DEFZ) |(WRZ)] (PPZ) | BLANK= default to I
|[zl3[4fs 6 E7§ ls IIO HIIE @_[wa |5Ln;|lnl|a 19,20 zllzzlza[aa[zslzs[ﬂlzaLzsliﬂl
S R R 3 P i . s l L [N 1oan ‘L—.L...l.....l_._l_i;

Wt can + dry soil

Wit. of can

Wt of water

Wt. dry soil

Mois. cont.

NOTE: P P ZERO

READING should be taken after B. P application.

‘9z a1ndtd

(penunjuo))



CONTROLLED GRADIENT OR CONTROLLED
RATE OF STRAIN CONSOLIDATION TEST

CASAGR-0

l.LABORATORY CONSOLIDATION TEST DATA

DATA FORMAT

LABORATORY READINGS

TIME | DEFL. | ® P | LOAD TIME DEFL. | P P |LOAD
TR (}|DEFR ()|PPR { }WRD () TR () | DEFR ()|PPR ()|WRD (
1]z]z]a s T6 {76 [ [ T e ialisie] 7]k 1 Jz13]a]s [e[7[8]s [io]uTre]i3]:4]:sfre[ 7| ie]io
VI SFUPETES O MUY SR P SO NFRFI RS
et Ao | a1 ) . L T L M bem
L N PR P PP (PRI VI SR I
Lokl 3l 1) b P 1 I Y P R Lk, i £ A
S ) T UV J0000 WORUY PUE Y R 1 Ltk L JOVON TV PR Y S | L1 I 1
Lo do—d, [ U T . bl L) 1 T | | W 3
Lol [ T Lobo Loudana] 1 i § T T 1 L [ ST i
SN ISR NN DRI NV - NEFETWEE SFES EUEP N
USROS S S R bt L xlnn}%---.;+
ldod TSI O o | 1L kool T - Ll 1 1 L i i
v L L 1 NS BRI NP AN
RTINS JAVEEE WAPURT W MRS S SOOI B VI RS NPT NI
- ST S SR P PR, i EPEPRTEN
Ly bedod il VI SR I T Y
ISP ISR O RRTUO T AP . IV AR NP AP I
T SRR VTN SR R o I SPEVEN RPN PRV A
[RURR NN T YO NUWURRY S SR Loty ) ! TS B R R T Lol 1
JSESRVNTNN NS S U B SN S00 PRI ST I S WS RN DU B
(LAST CARD OF DATA BLANK ,LAST CARD OF DATA BLANK

Figure 26.

(Continued)

STANDARD
CONSOLIDATION
TEST
DATA FORMAT

EFR STRESS
P()
(TSF)
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1z l}lldllSkG‘lYlGlB‘!a

)

-

—_ 01 et PRI RS T S YW

—_—l — U hedd

TR PR T U W S T

Lot P Lk

Y L1 Lo, P S

......... FUW Y bk
T (N TRt PRI

—_— i i T S S N T S N

oo L i )

R N S WV U N T T 'S i1

Al SR B S L b ddnd.

------ L PRI ST N T O B

' L P T S S S T T B

—_ P I P L

f

' . s PRV B S

P ST S 1 IR YO SR S S U §

--------- Lo g

1 i W BV T T T WY WP |

—_ U T WOV R R B

,LAST CARD OF DATA, BLANK




CASAGR-0

INPUT INSTRUCTIONS

TIME-INDEPENDENT LABORATORY
CONSOLIDATION DATA ANALYSIS

COLUMNS NAME FORMAT
1. NUMBER OF PROBLEMS CARD

1-2 NOPROB 12

2. OUTPUT OPTION CARD
1-2 NPLOTS 12

34 IPRINT 12

3. DESCRIPTION OF ANALYSIS CARD
1-3 NDEG I3

13 RUNTYP I1

Note:  Repeat cards 2 through 10 for each additional
problem.

A4

REMARKS

This card defines the number of problem sets to be
solved. The number of problems equals the number of
stress-strain axes which will be used in plotting the data.
If card number two has NPLOTS equal to one, the
number of problems will simply be the number of
consolidation tests to be analyzed.

For NPLOTS, place a '1' in column 2. This parameter
is used only in program version CASAGR-I.

Output  option for the Analytical Method's
determination of the point of maximum curvature (see
CARD 3). A '0' or blank in columns 3-4 will cause the
calculated radii of curvature at the generated
incremental search abscissae to be printed out. A '1'
in column four will eliminate this printed output.

These columns specify the degree of the ordinary,
least-squares polynomial to be used in fitting the
consolidation compression curve. The maximum possible
degree is 11. Use the highest possible degree in most
cases. For cases having few or scattered data points, a
lower-degree polynomial must be used. A low
polynomial degree of four or five generally provides a
good fit.

For data sets having less than 12 points, the
maximum polynomial degree which can be used is equal
to the number of data points minus 1. However, the
best polynomial representation of the data will usually
be obtained when the highest polynomial that provides
some least-squares smoothing is used (number of data
points minus 2). If this degree polynomial is found to
provide an undulating representation of the data, the
user can use a lower-degree polynomial in another
computer run.

Place in column 13 a

'0' for standard consolidation data reduction,

'1' for  controlled-gradient  consolidation  data
reduction, or

'2' for controlled-rate-of-strain consolidation data
reduction.



21-30

31

33

36-40

49-50

ZDEPTH

KRAD

KIND

SECOND

IIDIAL

F10.0

Il

Il

Fs.0

12

Place in columns 21-30 the approximate depth in
decimal feet at which the sample was recovered in the
field. This depth is used to calculate the approximate
overburden pressure in tons per square foot from the
wet unit weight of the laboratory test specimen. The
calculation of this overburden pressure does not take
into account the effects of the water table or layers
of different materials. The user may compensate for
these situations by using a depth which will produce
the desired effective stress for a given wet unit weight
of the specimen. The following relationship is used to
calculate the overburden stress:
Overburden stress = (DEPTH (ft)) * (1 ton/2000 1bf)
* (Wet Unit weight (grams)) / (453.6 grams/lbf)
* (1728 in3/ft3)/(lab sample volume (in)).

This parameter determines the method used to select
the point of maximum curvature in Casagrande's
construction. A '2' placed in column 31 causes the
program to use the Analytical Method shown in Figure
27a. A blank in column 31 will cause the program to
employ the Graphical Method to determine the point
of maximum curvature as shown in Figure 27b. The
Graphical Method is well suited to handling anomalies
in data, ill-defined points of maximum curvature, and
undulations in the fitted curve.

Option for type of deformation analysis in terms of void
ratio and(or) vertical strain, A '1' placed in column 33
specifies that the analysis be performed in terms of void
ratio. A '2' placed in column 33 specifies that the
analysis be performed in terms of vertical strain. If a
'0' or a blank is in column 33, the deformation analysis
is performed in terms of both void ratio and vertical
strain.

This parameter is used to remove the secondary
compression points shown in Figure 28. This is done
specifying the stress in Tsf at which secondary
compression begins in controlled consolidation tests. If
columns 32-40 are left blank, the program will default
to a value of 31.2 Tsf. Note that this parameter is not
used in the analysis of the standard consolidation test
data.

Option to override the assumed dial
reading-versus-deflection relationships found in the
computer program for each type of consolidation test.
A 'l'" in column 50 will specify that increasing dial
readings indicate specimen shortening. A '-1'in columns
49-50 will specify that increasing dial readings indicate
specimen lengthening. If columns 49-50 are left blank
or filled with zeros, the program will default to use the
dial reading-versus-deflection relationships specified in

A-5



4. SEARCH BOUNDARY CARD

1-10

11-20

21-30

3140

BOUNDI1

BOUND2

BOUND3

BOUNDA4

F10.0

F10.0

F10.0

F10.0

the program. The program assumes, unless the above
override option is used, that increasing dial readings
indicate specimen shortening for standard and
controlled-rate-of-strain test data. For
controlled-gradient test data, the program assumes that
increasing dial readings indicate specimen lengthening.

Stress search boundaries used for finding the point of
maximum curvature by either the Analytical or
Graphical Methods. These boundaries are especially
useful in choosing the representative portions of the
curve and avoiding the localized effects of poor data
and undulations in the fitted curve. These kind of
choices are not possible when the user lacks knowledge
of data's appearance during the first computer run. In
the first run of the data, the user can make rough
estimates for these search boundaries. A list of suggested
values for BOUND1 and BOUND?2 is provided at the
conclusion of these remarks. These values will usually
provide acceptable results in the absence of disruptive
anomalies in the data.

When these boundaries are used in conjunction
with the Analytical Method shown in Figure 29, the
user must have them span the expected range of
locations for the point of maximum curvature. In
contrast, these boundaries are used by the Graphical
Method to locate a tangent to the consolidation
compression curve having the same slope as the rebound
curve shown in Figure 30.

BOUNDI is the most important search boundary
for the graphical method. BOUND2 is of no
consequence if it is located well into the steep portion
of the compression curve. If a tangent to the
consolidation compression curve cannot be found
between BOUND1 and BOUND?2, the line having the
slope 'E' of the rebound curve is drawn through the
compression curve at BOUNDI as shown in Figure 31.

SUGGESTED PRELIMINARY
VALUES FOR BOUNDI AND BOUND?2

ANALYTICAL GRAPHICAL
SPECIMEN BOUNDI BOUND2 BOUNDI BOUND2
CHARACTER (tsf) (tsf)
Very soft 0.5 4.0 0.5 16.0
Very stiff 0.5 8.0 0.5 16.0

These stress search boundaries are used to select the
straight-line portion of the virgin compression curve
shown in Figure 32. BOUND4 is the most important
of these two search boundaries. BOUND4 usually is
taken as the last or nearly last value of effective stress,
but never greater than the last value of effective stress.
BOUND3 is of no consequence if it is before the



5. PLOT TITLE CARD
1.80 BCD 20A4

6. PRINTOUT DATA CARD

1.16 LOC 4A4
17-18 HOL 12
19-21 SAM A3
2225 TES 14
26-29 OPR A4
30-41 DAT 3A4
42-57 DES 4A4

7. INITIAL SOIL. PROPERTIES CARD

straight-line portion of the virgin compression curve. If
the need arises, these search boundaries may be used
to select a more representative portion of the virgin
compression curve data.

Alphanumeric information which will serve as the plot
title and description of the test. The test description
should include test type and series number, borehole
location and number, sample number, and any other
information pertinent to the data and testing
procedures.

General name of site from which sample was taken.
Borehole number entered as a right justified integer.

Alphanumeric identification of the sample,

Test number in a particular consolidation testing
program.

Initials of the consolidation test operator.
Alphanumeric identification of testing period.
Alphanumeric  information  concerning  material
characteristics of sample.

Specific gravity of solids for the specimen.

Initial wet weight, in grams, of specimen.

Final wet weight, in grams, of specimen at end of test.
Final dry weight, in grams, of specimen after dessication.
Dial reading just before start of test.

Dial reading at conclusion of cnnsolidation test.
Deflection calibration factor expressed with a decimal
(inch/division). '

Load calibration factor expressed with a decimal
(lbs/division).

Pore-pressure calibration factor expressed with a decimal
(psi/division).

1-5 SPG F5.2
6-12 WTIW F7.2
13-19 WTFW F7.2
20-26 WTFD F7.2
27-31 DEFI F5,2
32-36 DEFF F5.2
§, CALIBRATION FACTORS AND SAMPLE DIAMETER CARD
1-10 DCF F10.0
11-20 LCF F10.0
21-30 PCF F10.0
3140 DIA F10.0

Diameter of sample in inches. If these columns are left
blank, a default value of 2.5" . used.

A-7



9. ZERO INFORMATION CARD

1-5 BP F5.1 Back pressure reading (psi).

6-10 DEFZ F5.2 Dial reading taken when sample is at its initial height.
11-14 WRZ F4.0 Load reading corresponding to zero applied load.
15-18 PPZ F4.0 Pore-pressure reading taken after application of back

pressure and before loading of specimen.

21-30 SAMPHI F10.0 Height of sample in inches after placement in
consolidation ring and placement of end platens, or
previously measured height. If left blank, a default value
of 1" is assumed.

10A. CONTROLLED-GRADIENT OR CONTROLLED-RATE-OF-STRAIN CONSOLIDATION DATA FORMAT
1-4 TR( ) F4.0 Time reading.

5-9 DEFR( ) F5.2 Defection reading; increasing for controlled-rate-of -strain
and decreasing for controlled-gradient tests.

10-13 PPR( ) F4.0 Pore-pressure reading.

14-17 WRD( ) F4.0 Load reading.
(Add an additional card for NOTE: Consolidation compression points must be read
each test reading) in with the effective stress increasing. A drop in effective

stress of greater than 0.7 tsf will cause the computer
to treat all subsequent readings as rebound-expansion
data.

10B. STANDARD CONSOLIDATION TEST DATA FORMAT
1-10 P() F10.0 Place in these first ten columns the effective stress in
tons per square foot applied for a given load increment.
Express the stress as a decimal number. Any stress less
than 0.1 tsf will be automatically changed to 0.1 tsf.

11-20 E() F10.0 Dial reading at 100-percent primary consolidation for
effective stress shown in columns 1-10. Dial readings
should increase with increasing deflection and describe
the change in inches in the specimen height. All dial
readings must be expressed with a decimal.

(Add an additional card NOTE: Standard consolidation test data cards must start

for each data point) with compression data points and increasing effective
stress. Rebound or expansion curve data cards follow
the last compression data point in order of decreasing
effective stress.

EFFECTIVE STRESS ORDER
(tsf)

0.25
0.50

1.0
A-8



11. END OF DATA SET CARD

1-80

BLANK

F10.0

32.0
1.0
0.5
0.25

This is the last card to be enclosed with each particular
set of test data. The entire card is blank and signals
to the program the end of the current set of test data.

A9



JOB CONTROL CARDS

The following groups of job control cards apply when the University of Kentucky's IBM 370 at
McVey Hall is used. These cards describe the JCL necessary for a source deck run, object deck run,
source deck run with production of an object deck, and a source or object deck run in which the

plot output is suppressed.

A standard JOB card which includes the waste paper option is the following:

/[P74EGM

FOR RUN WITH SOURCE DECK

//standard JOB card
//P74EGM EXEC FORTGCLP
//FORT.SYSIN DD *

FORTRAN SOURCE DECK

[*
//GO.SYSIN DD *

DATA

/*

To produce an object deck from a source deck run,
change the second JCL card to the following:

//[P74EGM EXEC FORTGCLP,PARM.FORT=DECK

NOTE: See Figure 33

A-10

JOB(1009,51001,1,,,,,W), MCNULTY ,MSGLEVEL=1, REGION=268K

FOR RUN WITH OBJECT DECK
//standard JOB card

//[P74EGM EXEC FORTGLP
//LKED.SYSIN DD *

FORTRAN Object Deck

/*
//GOSYSIN DD *

DATA

/*

To run either source or object deck versions of programs
without production of plotted output, add the following
card before the //GO.SYSIN DD * card:

//GO.PLOTTAPE DD DUMMY



PLOT OUTPUT NOTATION

DEG
PO
EQ
PC
EC
OCR
CcC

CS
CR

SR

Degree of polynomial fit

In situ vertical stress

In situ void ratio or vertical strain
Vertical presonsolication stress, P
Vertical preconsolidation strain
Overconsolidation ratio
Compression ~ coefficient, C, (void-ratio
analysis)

Expansion coefficient, Cq (void-ratio analysis)
Compression coefficient for strain analysis,
usually referred to as the compression ratio
Expansion coefficient for strain analysis,
usually referred to as the swell ratio

C

TEST DESIGNATIONS

STD
CG
CRS

Standard consolidation
Controlled-gradient consolidation
Controlled-rate-of strain consolidation

A-11



Figure 27. Two Methods to Select the Point of Maximum Curvature.
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VERTICAL EFFECTIVE STRESS, 07'
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Figure 28. Procedure for Removing Secondary Compression Effects of Controlled
Data on Curve-Fitting Process.
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VERTICAL STRAIN, €,
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Figure 30. Search Boundaries for the Graphical Method to Select the Point of
Maximum Curvature. BOUND2 Is Located in Straight Portion of Virgin
Compregsion Curve.
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Figure 31.

Special-Case Use of BOUNDI1 by the Graphical Method as a default
Location for the Initial Tangent Line when the Initial Portion of the
Compression Curve Has a Slope Greater than E.
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LOGARITHMIC SCALE, 03’
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Figure 32. Use of Search Boundaries to Select Straight Portion of Virgin
Compression Curve.
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Figure 33. Approximate Computer Processing Time versus Number of Problems for
Source and Object Deck Program Versions.
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APPENDIX B

SAMPLE PROBLEM






CASAGR-0
TIME-ENDEPENDENT CONSOLIDATION
TEST DATA ANALYSIS
PROGRAM CODING SHEET

NOPROR

Number of problems, columns 1.2, right justified.

If NOPROB is greater than one, all of the remaining
cards must be repeated for each problem.

NPLOTS
. ]Z stals|e|z]sl|s 0 For NPLOTS place a 'l' in column 2.
1 IPRINT - output option _for.the Analytical method
o7 to determine the point of maximum curvature,
| [PRINT CODE '0' - Calculated radii printed out
'1' - Calcutated radii not printed out
’;NDEG "RUNTYP ZDEPTH ’ KRAD ’ SECOND "DIAL‘

t2fiz f1al1s el iy u 19 20 21Iza‘zaizajﬁ‘as‘n[aslzsho
III—zI L) 101 4 L ‘ A

NDEG . Degree of polynomial used in curve fitting.

RUNTYP . Type of consolidation test
[n COL. 13: CODE '0' - standard data
'1" - controlled gradient data
'2' - controlled rate of strain data

ZDEPTH  Approximate field depth from which sample was recovered, in feet.

KRAD - Option for method to select point of maximum curvature,
In COL. 31 : a blank or '0' causes the Graphical method to be used,
: a '2' causes the Analytical method to be used.

KIND - Type of deformation analysis.
In COL. 33 : '0' is for both void ratio and strain analyses.
: '1' is for void ratio analysis only.
: '2" is for strain analysis only.

SECOND Stress at start of secondary compression (controlled tests only).
[f left blank, SECOND has default value of 31.2 Tsf.
IIDIAL . Option to override the assumed dial reading-versus-deflection relationship specified by

coniputer program for each type of consolidation test.
In COLS. 50 : a blank or '0' changes none of the assumed relationships.
. '1" will specify that increasing dial readings indicate
specimen shortening.
49.50 . '-1' will specify that increasing dial readings indicate
speciruen lengthening.

BOUNDI BOUND2 BOUND3 BOUND4
TT2]3 ] s]s]7]elo[0]nlen]u]s]w]n]e]w200 [z2]23]2a]es 2s]27]en 2]30 31 32[33]3a]35]36] 37[3839]40

11'10)_0! W 'zia'loiowl I | lwa'rowoa F| ] 1 ZIBI,‘QOE I b T}

BOUNDI, BOUND?2 - search boundaries for selection of point of maximum curvature using Analytical
or Graphical methods.

BOUND3, BOUND4 - scarch boundaries for sclection of the line representation of the virgin compression
curve.
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¢d

CASAG

R-0

LABORATORY CONSOLIDATION TEST DATA

SAMPLE AND TEST DESCRIPTION TO BE USED AS PLOT TITLE (BCD)

—u——" " A Tu . T T T T T
[ESEIEIE N !r HI! 100 1Hs HENENE w?‘m 3 20|2|Jzz|25 24 25|26121J-38-!—29‘30i3!‘!2!35|34H‘5J35‘,37]33"59—1r40

T - —r r
a1 ;42]43]4:::45_::5 arqu‘ulfsﬁ!m352}51;54]55155]57(5&;59‘60}61Isz

ss‘salsagss e715a|59|70‘[7! f?zanu|?:§ 75{11113]79130

HOLE NO. (MOL)

LLOCATION (LOC)

c6-r3 &4t 2A.a£mﬁo.mm 73,

SAMPLE NO.

(SAM) TEST

J‘S:—;glg‘ ,12‘.', s

N e

.LRS,)-Z. | P

OPERATOR (OPR)
// DATE (DAT)

SAMPLE DESCRIPTON (DES)

T T
ietylersielra

ISTIOI :]lZ]v! |4 |5||s s 19 20 |

202 lza 25 o6 2728 29[3013¢ 32 8 [3e, 35]35|37|3a,59|40{«

qe 43 aa\qmsln‘as‘aslsols\\ z‘sslsuss\ss[sr

SP GR. IN
(SPG)

&L/ 2ABETHTOWA | | 3__2_5 )

(WTIW)

SPECIMEN WEIGHTS

FIN. DRY INI.
(WTFD)

I WET FIN. WET
(WTFW)

43

DEFLECTION RDGS.

(DEFI) |FIN. (DEFF)

—T T T T T T T T M e vel
tlzistacs sgrwlals \IOXHL: 15||4115!|5 4?}\3‘& 20|2nxz?\23];4[25=26 27i28 29130 5:[32$53]34.35]36

2.7015¢.65

RETAITW

CALISBRATION FACTORS

123 .62

/3. 6/ l0. 99

DIAM. SAMPLE’

DEFLECTION PORE PRESS BLANK = default
(DCF) LOAD {LCF) | (PCF) to 2.5"(DIA)
b e w s r a[g 0 ;‘j.zln wz‘:sv,slulwa‘.gl"() 2 [zzlu.wu!zs!zs 27\‘25'29330 ,\w:m{ﬁjlm m,\sfu X} 59;401
©.039397  |$.070. . 0.1@e6?7 | ., . ... .|
BACK ZERO READINGS INl. SAMPLE HEIGHT
PRESS.| DEFL. |LOAD PP (SAMPHI}
(BP) | (DEFZ) |(WRZ)| (PPZ} BLANK= default to I"

™7 i — T
»"2;:%?5 s{!;a]_q I !leulm rglws-[s‘

. — —r
021 lzz]zaaza]?sizsizr\zslzs 130

/4.0 [/3.

O 855756,

CTGRL3/~+/10-25RED SAMEY QLAY |

oL I,J PU

WATER CONTENT _DATA

INITIAL

FINAL

Can No.

Wt. can + wet soil

Wt can + dry soil

Wt. of can

Wt. of water

Wt. dry soil

Mois. cont. |

NOTE: P P ZERO READING should be taken after

B. P application,



LABORATORY CONSOLIDATION TEST DATA

CASAGR

-0

CONTROLLED GRADIENT OR CONTROLLED
RATE OF STRAIN CONSOLIDATION TEST
DATA FORMAT

LABORATORY READINGS

TIME | DEFL. | P P {LOAD TIME | DEFL. | P P |LOAD
TR()|DEFR ()|FPR{}WRD ( TR() DEFR(JPPR()WRD()‘
1 [2[]4|5 [s 17 [s] e Ti0]u]iz]13]14]iskie] 7k eio T3 fa]s [ez¥8 o Ti0]u ]r2] 3] i4]i5]i6]i7]ials
L A2A. a0 996 S0/ _35/8..25 P79 25
243,60 2 Pazl . _37/3.22 P99 5

L 3143, 59 5,’?2 Fodl AT 18 /000 Phb |
. #s3.58 .9.9%2&4& #3s2. /2002 978
L S350 5246 PoS5 L SO043,02//006 26
o Bl/3 iﬁ WA ALY | S3/2, FF 00008 |
L AHe3..83 P96 FORB , Se/s2. 9S\radsl/00?!
12|45.53 997 S0 59\42.82\s0s0\/605]
_/3|43,.852 997 241 8212, 807049
549,50 997 P4 L8842, 8% /0/0 /027
WHITER VIR A X IN L048.8370¢4¢/036
AR 3.E5 FET 220 25 2u 1O/ 2//039 |
2018 .42 598 929 L8072, 20000240588
L 23143 .40 996 928 _ 888, 79/a1 /072 | |
L 25|4:3.89 F28 73 _Po/2. N2 103
243, 38] 298| F36 P2 eB/AI#EI082 |
298, 33 P28 Fea LOQIE, 6/ OfH (IS,
L 363,80 P8 PS5, L5 (2. 6514043 /05
L.B3/3.27 999 949 L2 627083108,

STANDARD
CONSOLIDATION

TEST

DATA FORMAT

EFE STRESS
P()
(TSF)

DIAL RDG.
£()
(IN)

|]z]s 4 5[5[7!3 9||0n|ua||3||4||5||e||r||§nlw

IR T R T N 1

.....

IS U SR T S N T T |
lTAS'ITC:QRDIIOF

L
i

LAS)’ C‘ARD OF DATA ?LANK
PRt S A A

.LIAST (CARD OF DATA BLANK

DAT.A. BLANK

B-3



LABORATORY CONSOL.IDATION TEST DATA

CASAGR

-0

CONTROLLED GRADIENT OR CONTROLLED
RATE OF STRAIN CONSOLIDATION TEST
DATA FORMAT

LABORATORY READINGS

STANDARD
CONSOLIDATION
TEST
DATA FORMAT

EFE STRESS DIAL RODG.
P() E()
(TSF) (IN)

I aNa0DENRDEEDELT T

TIME | DEFL. | P P |LOAD TIME DEFL. P P | LOAD
TR () | DEFR ()| PPR () RD()‘ TR () |DEFR ()|PPR ( }|WRD (
12]3 [ ]x Te [ TeTa Lol lielaialisliel: Aelis] 1[2¥=]a]s Je [7[e[a o[ n [r[i3]1]ts]:e]17]ifi)
| fs B2 e Nfal3 083 Bfol/2. /5| Lol 3]
| /252, SR /OL2 /066! _35512. /2| /arolls38] .
3042 SH/Ql2/0.7828 220/42.40 /0087737
LSS A2 B3 AQ /07 _g9a/2 .07 /a0, /83
| £SO L2 S\ ,04L /025! FHOL2 OF\0rs 1178 |
WA o AV A=Y VA= YA F2OLE.Cl|rost il 52
L S ES S R0 0B 85 L8704 5
| L2842 RS lerd/e8S) . B 4, ANl L8
L85 2. #3088 FIL AL Fe s00 11164
LS8 A2 K ralso ladt! . S0844. SO0 N 67
| Zo8| L2 G\ ar O aFE| | OFG f1. B2 0L/ F28
225 (8. BE/ 0O 00 SHBALBE|fasd\llBs|
23042, a3 lero 03| &2/l 2840477283
ZPR5\ /2 B0l Ol0& LEIF 4 2310747200
LeSWEZ28|lord il | P2 200 pl 21207,
28042 .28 /0sO0 il || PIHIL . 610 2121 F
25512, 2% or0l1 119 22214483 /012/220
ez l9 /00l 2F BRI ft e 610427226, |
3251123 N0 0ihi28 BPS 14 .50l l0r 2423/

LAS;I CARD OF DATA BLANK

LAST CARD OF DATA BILANK

mhak O S S S S Y L
L Lol i1 a 1 L
L Ll el bt L Lud o
i 1 L D ool 8
T T P T S Ll
L L4 i L
L L Lok L L1 i
| | 1 | . 11 1) I
i I T W B I 14
L TR T T T ) X PR
L I | 11 ' L "
||||| 1 | |
RN W W Joa 1| PR R T
LAST CARD OF DATA BLANK
YD TN GOSN Ve Y W S SIS T N T IS |
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TIME"
TR()

DEFL.
DEFR ()

LABORATORY CONSOLIDATION TEST DATA

CASAGR -0

CONTROLLED GRADIENT OR CONTROLLED
RATE Of STRAIN CONSOLIDATION TEST
DATA FORMAT

PP

PPR (}WRD {}

LABORATORY READINGS

LOAD

gann

STel7Tals]

1o 1213

14]is]16]17

EE

883

Llnﬁj

A=Y

1237

A

722

998
(033
/073
st
YA -
£

GO L BT

L1500

£, 2

4,243 .

002

1. 24F

AT

[O4E

1254

PR, .14

lo1 2

/257

,-/-1 g }?j

e

4

fidor 37
PN

‘are
ef2

/. 269
4 2P

L3532

o742

{280

£ 22

i34

f0/2

4,285

TIME
TR()

DEFL.
DEFR ()

PP

LOAD)[

PPR ()|WRD {

T2[a]e]s

Isizie]s

lO|u|lz||3

LEDIE

ia]is|

/800

L4 B

1oL

/334

Ve W]

/. 23

Lol #H

[ 3253 |

548

4Ll 2

Lare

1327,

/564

L. A

Laré

/4334

/585

4d

27,

lof

[35%

/262

i 2B

£042]

/290

1299,
4337

TN A

Q42

4. 298]

423

40/ 2)

€30/

{375

£l 21

zar3

/3p7

Ik il

NN,

/045

/307,

/. 20

Ll 1S

£e/3

12 4.2

1 #50
125

/.4.48
Ld i 5

fos3

{315

f0f3

/317

A

/%90

A0
[
b Ak

( Vol

A=t T,

£Ba

Sarl; OF UATA BLANK
SRS VRN WP S W N W T S

e &

£d 28

Le/ALS

/o0

£ 22

ol F S0

/ 60

L7 25

214

'3

e

o OF

a7,

R at il

1 2EC

Alss OF

/048]

2o

Wile

L 20

L1249

7362 ,

STANDARD
CONSOLIDATION
TEST
DATA FORMAT

/829

029

/046

R7O

(.52

(s N4

1%

(PG |

{909,

0.0

{=td%

(288

PATWi

fa. .88

Lol b

VALY,

PAel

lo0. 56

I#=¥4%

/o2

284 T

Ka le

1046

4 Fof

205/

/a8

{

EFE STRESS DIAL RDG.
P () E()
(TSF) (IN)
i [2[3]e]s Je[7Te]alO|uli2]is] 4 o]t oh of e
1 | I T T N | X, .
1 1 L1 | - T DV S0 T T N S 1 -
1 V| | I N N B § -
Ll . P
L L 1 Fl VU I T T N N | T
i S Tt N L 1 1 b
M B R IO RN WA A
§ W T N T TN N S T T S | A I .
R N T T J R T WS | 1L 5
L 1 L1 1 L L 1o L.
‘‘‘‘‘ . e gy

2055

/4. ?9

Bilroy/, ¢¥4
S 01N /EE

LAST CARD OF DATA BLANK

..................

PRSI S S WS T R U _
LAS'II’ CIARD OF DATIA @LANK.
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LABORATORY CONSOLIDATION TEST DATA

CASAGR-0

CONTROLLED GRADIENT OR CONTROLLED
RATE OF STRAIN CONSOLIDATION TEST
DATA FORMAT

LABORATORY READINGS

STANDARD
CONSOLIDATION
TEST
DATA FORMAT

EFF STRESS DIAL RDG.
P() E()
(TSF) (IN)
[z]s]aTse]2]e]s]i0] n]lzlls[u[u;]is]n]lm

boabind L

TIME | DEFL. [P P |LOAD |’ TIME | DEFL. [ P P [LOAD
TR({) [DEFR ()|PPR () RD(PI TR() DEFR()PPR()WRD()]
C DT TR el el el liahe e el RNBNEOBENRRREREDE
2426, 10, 27,/0.4.7 /1 #23 28407.0. 67/ F30]
2463\ /0. 78404 2|/%20| . 28550 620 Ao #+54
220/\4a. 234076 (528 286000 62/ 00 1L FLG,
2239 /0. 220015\, 53F| B EHeS /0. 67 6dof i FOF|
229 40.72|/0/ F/#27 REZOV L. 62 /000350
L34 0. Bl o) 3/ E2T 282540. £Blrpool 385 |
1235240, 7014Q L8 E30 288070, 68|/000/ 325
239011.0.20//.009 /838 | 28BS\ /0. 68 foads360 |
2¢22/0-65,/008 [E30 2870|/0. 68| P75 398
2RGSO, P (4007, F70 éﬁﬁm& Se#/335]
ZI03/0. 68|/006/F3C Podio. 6P $PH/E23|
25444068008 (£33 2908 /0 .20, 22873038
2328 /6. 6.8/00F F50! 29/0 70,70, 398283
26l b /0. 657003830 298 /0.20 92N/282
2eTHALA. 681002/ F30 | 2920/0.7/) §o04.224
26200, 624002 /83D Z2528[40.27 F96/E59
27230 eRroddl+30 P/, 22| 8561286
2962/0. 62/ 00//#30 29S|/ 22 PPaL23S],
2808/0,. 67 rood |/ #30) 29%40. 23 2851/220| |
,LAST CARD OF DATA BLANK  LAST CARD OF DATA BLANK

T T WO R S N W1
LAST CARD
T I N T

OF DATA BLANK
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TIME
TR{)

DEFL. |
DEFR {)

LABORATORY CONSOLIDATION TEST DATA

CASAGR

-0

CONTROLLED GRADIENT OR CONTROLLED
RATE OF STRAIN CONSOLIDATION TEST
DATA FORMAT

PR P
PPR ()

LABORATORY READINGS

LOAD
RD()!

Jz15]s

s[e]7]e]s

10fu fizia

1af1s[16] 1 7Jialig)

ZY#ES]

o .23

RP* /208 |

IEF.50

/0.7

793

193] ..

L2 955]

£a ’.ZS

722

/£ E3

2760
2765

1/ P

95/

/{68

/0. ‘|7|7

550

LI5S

25,20

/0..98

Ni-Fd

IPK -

28751/0.

28

PEF/ 33

2780

/0.29

988/7/8

TIME
TR()

DEFL.
DEFR ()

PR P

LOAD )l

PPR ( }|WRD (

[2]3]«

sie[7[6]e

101 ]i2]13

14]18]16}i7]

e]ig]

3105 /0. 88

982

Jod3]

Rs28l1a,. 89

liaﬂ?'

103D

2 LP01.0 . B9

) ?.&2

1037

3485810, - 30

&2

/433

212014620

282

/ 030

13430/ 34

782

f 0,27

3208)//0..5/

F82

/02

JZ2840,. P2

GRa‘old

2.955]

£0..80

787

{443

3235110 P2

952/042| ,

2980

/o. 8

989

/{07

2975

/. 8¢

786

/402

3285/0.73

282

LA

3270\/0. 73

582

.40

2099

lo.82

2 1A

[086

32831/0. 8% B2

(207

3005;

{’161’ 8L2

P83

Y OBY

LTO/ 5

/QL' B:a

285

/083

3.325| /0. F&

- 98/

/003

ROl Q. 2T

723

30,25

[0..8

IEF

/0.28

bed

0.0

fo. .85

783

L020

]

3055

2070

1087

£a.86 983

7063

Lo b

dl

325]

T SO T Y WO T B

k11

53

3020

/4.8

F82

o

P |

PR |

LAS;F CJARD _CF DATA I?LANK
PR R T I S S Saniir)

LAST CARD PF DATf\ ?LANK

STANDARD
CONSOLIDATION
TEST
DATA FORMAT

EFF STRESS
P{)
(TSF)

DIAL RDG.
E()
(IN)

il2lalafs [s]z]a]alio]

L

n|.=|.;|.4[.sps]n|.a]§1%

OF DITA BLANK




CONTRCLLET GRADIENT CONSOLIDATION TEST
CATA REDUCTION

S
0

CG-13 ELIZABETHTOWN H=3 S-28 2.5 PSI

TEST NOe. 13 HOLE NO. 3
LOCATION ELIZABETHTOWN SAMPLE NO. 2B
CATE 3/31-4/10/75 OPERATOR CTG

SCIL TYPE - RED SANDY CLAY
BACK PRESSURE 10400 PSI

INITIAL FINAL
WATER CONTENT 2667% 23.4%
VOID RATIC 0.80 0.62
DEGe OF SATURATION 906 4% 102:3%

CEGREE POLYNOMIAL =11
PTe CF MAXe CURVATURE SELECTED BY THE ANALYTICAL METHOD
SEARCH BOUNDARIES FOR PTe UF MAXe CURVATURE: 1.00 TSF 13.00 TSF
SEARCH BOUNDARIES FOR VIRGIN COMPRESSION CURVE: 10.0C TSF 28.G0 TSF
CEPTH FOR INSITU STRESS CALCULATION: 1100 FEET SECONDARY COMPRESSION AT 31.20 TSF

B X

VOID RATIO ANALYSIS

2 3t 2t 0o o
SRLRLP RS

INSITU VERTICAL STRESS = 0.653 TSF INITIAL VOID RATIO {EOQ) = 0.799

RANGES OF STRESS-VOID RATIO SETTLEMENT PARAMETERS

PROBABLE - MINIMUM
VERTICAL PRECCNSOLIDATION STRESS eeeeccecccccses 7.545 TSF = B.112 TSF
PRECONSOLIDATION STATE®S VOID RATICececececcccccccs 0.764 - 0.766
OVERCCNSCLIDATION RATIO fOCR) cececesecsecscesccscsecs 1&4a613 ~— 12419
COMPRESSICON INDEX {{C) cescvsecescsescscenssssasscnse —0s291 - -0e279

SWELL EXPANSION INDEX 'CS) ® 0 000 0002000000300 000000 -0.030



wy
—
v
>
-
<
=
<

STRATN

Ce 719G

(EQ)

INITIAL VvOID RATIQ

0.653 TSF

INSITU VERTICAL STRESS

RANGES OF STRESS-STRATIN SETTLEMENT PARAMETERS

- MINTMUM

PROBAGBLE

del:ii TSF

TSF
0.019

9.44]

VERTICAL PRECUNSOLIOATION STRESS

0.013

12¢31ly

PRECCNSGLICATICN STATE'S VERTICAL STRAIN

eececceccccescesceeasce lUad54
-0.1€1
-0.017

{GCR)

OVERCCNSOLIDATIUN RATIO

—0e155

(CR)

CCMPRESSICN RATIG
SWELL RATIC

{SK?

INPUT OATA

LCAD RDGe.

RDG.

PePos

RCG.

CEFL.

TIME

@ © @ © 0 9 ¢ 0 g O 7 O P g O O 0 g O 98 O O @ g e a ® 0O 9 O ¢ O T O G @O I O O T OO O O ¢ O O OO e e e O
—HOFINSDO—FFOTOENIONT D ONDMINTNOITODNIN T ONOVNTIN AN —ANOMO— ORI —~N
OCOOCO—~A~A—~—~NANNOOTI TN OO0~ T I OO C T DT OSSO~ —~—NNMmM
TP ITOCOCOCCITRRCOCIEIIIITIOODDODOIIDNDDINIODDODTDIODD it i

el el et e ek el e et ot i et ] et il o ot ot od e e el el o e el el el el e )

® @€ ® ¢ D ® 9 D 0O ® @ P S O @ @ D OO 3 e 8 00 ® e 9 0O ® g 9 g T O OO @ ® @ e G 0 9 e 08 T OO0 00 9 o O O©
VOOV OOV OO CONL NGO~ —~NNNNTI O NN —— = OO0 CUC
PIROPPETRARNEIPIIDIOTIPPPO DD DO A At rd b e ed o e b e A
(o Yoo Yo N oMo NodoallaYo Ned el oo Yoo o d o elal sl dlolalolgieisl ol oldlolslol oY blol Aolaled ol H dl ol ol i eI Sl Sl SR & [ S o)

el el b e ok et el e el ek et ek ek el el el el ot ek ek ek it et

GOV~ VMAONONNOSLMONNNTINOUN SO~ G A0 OGNNSO~ MO0 M NG N
DN NN N F ST TN MAINN—A D0 DODIOSSS~ IOV NI NNNNT T ITFTMM™M MO N O
® @ ® 0 0 0 0 0 0 9 0 *® 9 0% 0 000 9 % 99 0 D0 G OO O 0 0 e e O 9 0O e 9 0" O 03 ® 9 e DO 0O g o0
MAOMAMAOMMAMMOAMEOOMAMAMEOE0 NN AN AN AN AN AN AN A AN AN AN NN NN NN NN NN
e el e el el el el el el e e e e e e el e e e e el e e e el el e e el el el e ek et e e P el el et el b el e i e e e e e —t

© © b 00 0 0 3 0 ¢ 0 ® e 9 % 0% e 000 D00 e 00 e 0 a9 0 e 00 &0 90009 9 0 ee 00 e ° 300 90
AT O —~NMNSO—ONN~C—OO~OMOMOCNNONONOVCNON oLy Gy YN Conon
HAA A A ANNNNNNOOAT O NNN QOO DROD ~—NAFON NN DI ONMT NDO —~TN

e et e e = NN AN N M M N ™
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COMPUTER SYSTEM DESCRIPTION

Computer
Manufacturer
Model number
Word length

Core access speed
Virtual storage

Peripheral Equipment
Line printers

Card readers

Card punch
Magnetic tape drives

Plotters

Source Program’s Storage Requirements

IBM

System/370 Model 165 II

Single Precision - 4 bytes, 32 bits
Double Precision - 8 bytes, 64 bits
700 nano seconds

16 mega bytes (maximum)

IBM/3211 Chain Printers
IBM/2821-5 I/0 Control Unit
IBM/3505 Card Reader
IBM/029 Card Key Punch

IBM Tape Unit 2401 processes tapes at 75 inches/second

Uses 800 bytes per inch density magnetic tape
Processes 60,000 bytes/second
Uses either 9 or 7 track tapes
Calcomp 663 Digital Incremental Drum Plotter

Total storage requirements of program around 268K

MAIN 42556
ANARAD 44760
GRARAD 4490
CASPLT 15308
CONSGRA 5858
FLSQFY 958
FGEFYT 1904
FCODA 928

Plot buffer - up to 74K
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CASAGR - O

1ST VERSION,s MAY 1976

UPDATESs VERSIONS: NCNE
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COMPUTER APPLICATION
OF THE
CASAGRANDE AND SCHMERTMANN

CONSTRUCTIONS

BY

EDMUND GREGORY MCNULTY

% 2 3% e e e e e sie e el

THIS COMPUTER PROGRAM EMPLOYS A
MATHEMATICAL ALGORITHM TQO ANALYZE
THE SEMI-LOGARITHMIC REPRESENTATION
OF THE TIME INDEPENDENT STRESS-
OEFORMATION CURVES FOR THE CON-
VENTIONALy CONTROLLED GRACIENT,

AND CONTROLLED RATE OF STRAIN CON-
SCLIDATION TESTS. THE CASAGRANDE
ANO SCHMERTMANN CONSTRUCTIONS ARE
EMPLOYED 7O DETERMINE THE PRECCN-
SCLIDATION PRESSURE AND THE COEFFI-
CIENTS GF COMPRESSIBILITY FOR THE
COMPRESSION AND EXPANSICON-REZBOUND
OATA CURVESe.
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0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
Cc470
0480
0490

El
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THIS PROGRAM IS WRITTEN IN FORTRAN IV AND PRGDUCES PLCT~
TED OUTPUT USING THE IBM 370/165 II1 AND CALCCMP 663 DRUM PLCTTER.
THIS PRCGRAM WAS DEVELJPED BY

THE KENTUCKY OEPARTMENT OF TRANSPORTATION

SUREAU CF HIGHWAYS

DIVISION OF RESEARCH
SGILS SECTION
533 Se. LIMESTONE STe.
LEXINGTONy KENTUCKY
40508
PHe 606 254-4475 EXT 28

AVAILABILITY OF THE PROGRAM*S CARD DECK AND/OR LISTING WILL
BE CONSIDERED ON THE MERITS GOF EACH INOIVIDUAL INCUIRY, THE USER
IS TOTALLY RESPCNSIBLE FOR THE RESULTS DERIVED FROM THIS
PROGRAM'S USE.

THIS PROGRAM HAS THE CAPABILITY CF EMPLOYING A VOID RATIO
AND/OR VERTICAL STRAIN DEFORMATION ANALYSISe. ALSDe THE PRCGRAM
PROVIDES FOR THE SPECIFICATION CF CALIBRAIGON FACTORS CCMMONLY USED
AND A MEANS OF MATCHING A DIAL GAUGE'S INCREASING DIAL READINGS
WITH INCREASING DOWNWARD DEFLECTION.

THE PROGRAM ALSO DETERMINES THE INITIAL AND FINAL TEST
PROPERTIES OF THE CONSOLIDATION TEST SPECIMEN.

THE METHOD OF ANALYSIS IS BASED ON A LEAST SQUARES CURVE
FITTING SCHEME 8Y ORDINARY PJLYNOMIALSe THE CCMPRESSICN CURVE
DATA IS FITTED WITH A USER SPECIFIEC POLYNCMIAL OF UP TO THE
ELEVENTH DEGREE. THE EXPANSION-REBOUND CURVE DATA IS FITTED
WITH A LEAST SQUARES STRAIGHT LINE. USING THE MATHEMATICAL
CHARACTERISTICS OF THESE TWO FUNCTIONSe THE CASAGRANDE AND
SCHMERTMANN CONSTRUCTIONS ARE EMPLOYED.

THE POINT OF MAXIMUM CURVATURE FCR CASAGRANDE®*S CONSTRUCTION
MAY BE DETERMINED BY TwO COMPLETELY DIFFERENT METHODSes THE
ANALYTICAL METHCO USES THE MATHEMATICAL DEFINITION OF THE RADIMS
OF CURVATURE TO SELECY THE PJ3INT OF MAXIMUM CURVATURE. THE
GRAPHICAL METHOD IS A NEWLY PROPOSED METHGCD WHICH USES THE
GEOMETRICAL CHARACTERISTICS OF THE CONSCLIDATICN CURVES TO
SELECT THE POINT OF MAXIMUM CURVATURE.

DATA POINTSs FITTED CURVESy AND THE INTERMEDIATE
CONSTRUCTIONS INVOLVED IN THE CASAGRANDE AND SCHMERTMANN
PRPCCEDURES ARE SHOWN IN THE PLOTTED OUTPUT ALONG WITH THe
FINAL RESULTS.

0500
09510
0520
0530
0540
0550
0560
0570
0580
0590
600
Q610
0620
062390
0640
0659
0668
0670
o680
0670
Q700
0710
orec
0730
0740
0750
0760
0770
0780
0790
0800
0310
0820
0830
0840
0850
0860
0870
0880
0890
0500
051u
0920
0930
0940
0950
0960
0970
0980
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1000
1C10
1020
1030
1040
1350
1060
107y
1080
10en
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i

1110

THE PRCGRAM USES THE FOLLOWING SUBROUTINES AND COMPUTER 1120
SUPPLIED BUFFERS: 1130
1140

le MAIN PROGRAM 1150
1160

2. SUBROUTINE CONGRA - INPUT AND REDUCTION OF 1170
CONTROLLED CONSCLIDATION 1180

CATA. 1190

1200

3. SUBRCUTINE FLSQFY - LEAST SQUARES CURVE 1210
FITTING BY CRDINARY 1220

POLYNOMIALS. 1230

1240

4. SUBRCUTINE GRARAD - GRAPHICAL METHCD TO 1250
DETERMINE PCINT OF MAX 1260

CURVATURE. 1270

1280

5. SUBRCUTINE ANARAD - ANALYTICAL METHCD TC 1290
DETERMINE PCINT OF MAX 1300

CURVATURE. 1310

1320

6o SUBRCUTINE CASPLT - PLOTTING OF RESULTS 1330
1340

7. SUBRGCUTINE PLOTS - SETS UP PLOT LIBRARY 1350
BUFFER FOR IBM 370/165 I1I 1360

COMPUTER. 1370

1380

8o PLOT LIBRARY SUBROUTINES: AXIS 1390
DASHLN 1400

LINE 1410

LCGAXS 1420

NUMRER 1430

PLOT 1440

SCALE 1450

SYMBOL 1460

1470

9. LIBRARY FUNCTIONS: ABS 1480
ATAN 1490

ASIN 1500

DSQRT 1510

SIN 1520

TAN 1530

1540

b ks 12 308 e e sie s sl s a2 3l sy sl sje sy sle e e se sl e sk ke 1550
1560

POSSIBLE DIFFICULTIES WITH RESULTS: 1570
1580

1} IF UNDULATIONS PRESENT IN FITTED CURVE; 1590
1600

PCSSIBLE CAUSES: - LOW DEGREE POLYNCMIAL LIMITATION DUE 1610
TO FEW DATA POINTSe IF THIS IS 1620

THE CASEs THE ONLY PCSSIBLE COURSE 1630

OF ACTION IS TO TRY A LOWER 1640

DEGREE POLYNOMIAL. 1650

1660

HARC TO FIT DATAsy EITHER SCATTERED 1670

DATA CR SHAPE CHARACTERISTICS OF DATA 1680

TOO EXTREME TC BE FITTED BY A POLYNOMIALt. 1690

E-3



aNalalaNelaNalalalaNalalalalaleNealalaNalalalaNelalalelaNalalalalalolaNalalaNalaNalalaNalalaNeaNaNaloaNalalalaNakaliaNaNaNe!

E-4

- TC3 LOA A DEGRE® POLYNOMIALy USE HIGHEST
POSSIBLE DEGREE.

2) IF POINT OF MAXIMUM CURVATURE DOES NOT EXIST WHEN ANALYTICAL
HMETHCD IS USED;

PGSSIBLE CAUSES: - SEARCH BOUNDARIES NEED TC Bt CHANGED.

- POINT 0OF MAX CURVATURE NCT WELL ENOUGH
OEFINED TO BE AMALYTICALLY OETERMINED.

- SIMPLY COES NCT EXISTe
POSSIBLE SOLUTIGN IS T3 USE GRAPHICAL
METHQOD.

3
€

sl 308 3ie sl sl e sle sl afe sie slk sl e stk sl afe sie stk sl se ik sl afe e stk sl se ik sl sfe e slk sl sl afe sle sl afe sie sl sfe e sl sle e sl sl sle sl sl sl sle sl sl sk sl e sl sl sl sl sk sl sl ke

VARTIABLE ODEFINITIONS

A
HORIZONTAL PEN POSITION AT WHICH LETTER *A*® IS PLOTTEDe. THIS
VARIABLE IS COMPUTED IN SUHROUTINE CASPLT.
ALPHA( )
SCRATCH ARRAY FOR SUBROUTINE FLSQFY.
AR
AREA OF TEST SPECIMEN IN INCHES.
AY
SEE CEPTA.
g
HORIZONTAL PEN POSITION AT WHICH LETTER 'B® IS PLCTTEC.
ey
INCREMENTAL ABSCISSAE GENERATEC ON THE FITTED PCLYNCMIAL IN
SEARCHING FOR THE VIRGIN COMPRESSION CURVEs
BCD 2044
PLOT TITLE AND COMPUTER PRINTOUT HEADING.
BETA( )
SCRATCH ARRAY FOR SUBROUTINE FLSQFY.
BISECT(
STCRAGE LOCATION OF GENERATED INCREMENTAL ORDINATES USEO IN
PLOTTING THE LINF REPRESENTING THE ANGLt BISECTCR USED IN THE
GRAPHICAL METHCO TO SELECT THE POINT OF YAXIMUM CURVATURE.
BIG

THE SELECTED SLCPE FCR THE LINE REPRESENTATION CF THE VIRCIN COM-~
PRESSIQON CURVE.

1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1520
1930
1940
1950
1960
1970
1980
1990
2G00
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2120
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2230
2290
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ROUNC
TEMPORARY STGRAGE LOCATION FOR BOUNDOL IN SUBROUTINE GRARAD.

BOUNDLl, B1

BOUND2, B2

BOUND3,s B3

BOUND4s R4

BOUNDSs BS

BOUND6& s B6
BOUNDARIES 1 AND 2 ARE ABSCISSA SEARCH BOUNDARIES FCR POINT OF
MAXIMUM CURVATUREe BOUNDARIES 3 AND 4 ARE ABSCISSA SEARCH BOUND-
ARTES FOR THE SELECTION OF LINE REPRESENTATION OF THE VIRGIN COM-
PRESSION CURVEe BOUNDARIES 5 AND 6 ARE GENERALLY USED AS
TEMPORARY STGRAGE LOCATIONS FOR BOUNDL AND BOUNDZ IN SUBROUTINE
ANARAD.

BOVER( )
STORAGE VARIABLE FOR THE LOGARITHMs BASE TENy OF THE OVERBURDEN
PRESSURE AND THE ARGUMENTS NEEDED IN PLOTTING THE OVERBURDEN

PRESSUREe
B8P
BACK PRESSUREs
ey
VERTICAL INTERCEPT AT THE ZERO ABSCISSA OF LINE °B'.
Bl = B( )
B2 = B( )2
B3 = B( )==3
B4 = B )4
BS = Bl )%%5
B6 = B( )6
B7T = B{ )==7
B8 = B( }xu8
B9 = B )39
B10 = B( =10
VARIABLES USED TO SET UP THE TERMS OF THE SPECIFIED POLYNOMIAL FOR
PAIRING WITH THEIR RESPECTIVE COEFFICIENTSe THE RESULTANT
EQUATION IS USED TO COMPUTE THE SLOPE AT EACH OF THE GENERATED
ABSCISSA.
cte )
COEFFICIENT VARIABLE USED FOR SETTING UP ALL POLYNOMIAL EGQUATIONSe.
cce )
COEFFICIENT ARRAY USED FOR STORING THE COEFFICIENTS OF THE COM-
PRESSION DATA*'S FITTED POLYNOMIAL.
ccl
COMPRESSION INDEX AS DETERMINED BY SCHMERTMANN®S CONSTRUCTION.
CEPTA
CEPTB
CEPTBI
CEPTC
CEPTD
CEPTE
CEPTF

2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2310
2820
2830
2840
2850
2860
2870
2880
2890
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CEPTG

CEPTAN
VERTICAL INTERCEPTS AT THE ZERO ABSCISSA FOR LINES Ay R8s BISCECT,
Cy Cv Ey Fy Gy AND TANGEN RESPECTIVELY.

CHECK
USED TO CHECX IF PERCENT DIFFERENCE CRITERIA FOR SLOPE CCNSTANCY
HAS REEN SATISFIEDe. IFf CHECK IS NOT SFT EQUAL TO ONEs THE PERCENT
OIFFERENCE CRITERIA HAS NIOT ZEEN SATISFIED AND THE MAXIMUM SLOPE
FOUND IS USEC.

CR
COMPRESSIGON RATIO.

CRMIN
MINIMUM VALUE OF COMPRESSICN RATIO OR CCMPRESSICN INDEX ( IeEe
THE SLOPE F LABORATORY VIRGIN CURVEs LINED).

Cs
SWELL-EXPANSION-REEBJUND COEFFICIENT.

CSEVT( )
DUMMY VARIABLE USED PRIMARILY FOR STGRAGE OF VRID RATIOS UF COM-
PRESSIGCN CURVE ODATA PJUINTS PRIOR TO CUTPUT.

CSEVTE( )
DUMMY VARIABLE USED PRIMARILY FCR STCORAGE OF Vv0OID RATIOS CF
REBCUNC-EXPANSION DATA POINTS PRIUR T3 CUTPUT.

CURVEL ) .
COMPUTED ORDINATES AT THE GENERATED ABSCISSA LOCATICNS ALCNG THE
COMPRESSION CURVE®S FITTED POLYNOMIAL.

CURVFTI( )
COMPUTED ORDINATES OF THE FITTELU POLYNOMIAL WHICH ARE USED FOR
PLOTTING PURPOSESe

cX
HORIZONTAL PEN POSITION AT WHICH THE LETTER *C* IS PLOTTEDe THIS
VARTIABLE IS CCMPUTED IN SUBRCUTINE CASPLT.

cy
VERTICAL INTERCEPT OFf LINE *C* AT THE ZERU ABSCISSA.

D
HORIZOMTAL PEN POSITION AT WHICH THE LETTER ¢*D* IS PLGTTEDe. THIS
VARIABLE IS COMPUTED IN SURRCUTINE CASPLT.

DASH( )
GENERATED ABSCISSA VALUES WHICH wILL SE USED IN PLOTTING DASHED
LINES.

DASHY ()
GEMERATEC ORCINATE VALUES WHAICH WILL BE USED IN PLOTTING DASHEDR
LINES.

DAT( ) 3A4
TEST DATE.

DATA{ )

E-6

2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3009
3010
3c2v
3C30
3C40
3050
3060
3070
30830
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
33,40
3350
3360
3370
3320
3390
3400
3410
3420
3430
3440
3450
3469
3470
3480
3430
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PRINCIPLE SCRATCH ARRAY USED FCR PLOTTING PURPOSES.

OCF
DEFLECTION CALIBRATION FACTOR.

DEFF
FINAL DEFLECTION READING TAKEN AT END QOF TEST.

DEFI
INITIAL DEFLECTION READING TAKEN JUST BREFORE START CF TEST,

DEFR( )
DEFLECTION READING ARRAY OF COMPRESSION DATA FROM CONTRCLLED CON-
SCLIDATION TESTSe

DEFRE( )
DEFLECTICN READING ARRAY JF EXPANSION-REBOUND DATA FRCM CONTROLLED
CONSOLIDATION TESTS.

DEFZ
DIAL READING TAKEN WHEN SAMPLE IS AT ITS INITIAL HEIGHT,

DELLOG
PORTION OF LGCG CYCLE PER INCH OF PLOT PAPERe IN PLCTTING SUB-
PROGRAM CASPLTs DELLOG IS SET EQUAL TO C.300 FOR THREE LQG CYCLES
OVER TEN INCHES OF PAPER.

DELTA
INCREMENT TO BE USED IN GENERATION OF EVENLY SPACED VALUES OF A
GIVEN PARAMETER,

DES 4A4
SAMPLE DESCRIPTION.

DFLIC )
CALCULATED DEFLECTION IN INCHES FOR CONTROLLED CONSGLIDATION TEST
COMPRESSION DATA.

DFLIE( )
CALCULATED DEFLECTION IN INCHES FOR COMTROLLED CONSCLIDATION TEST
EXPANSION-REBUUND DATA.

DIA
DIAMETER OF CONSOLIDATION TEST SPECIMEN IN INCHES.

DIFF
PERCENT DIFFERENCE BETWEEN CONSECUTIVE SLJOPES ON THE COMPRESSION
DATA'S PCLYNCMIAL REPRESENTATION.

DIFFy DIFFL
DIFFERENCE IN EFFECTIVE STRESS BETWEEN CONSECUTIVE CONTROLLED
CONSCLIDATION TEST CCMPRESSICN DATA POINTS.

DY
SEE CEPTD

E( )
VARIABLE WHICH STAORES DIAL READINGSy VOID RATIOSs AND VERTICAL
STRAIN OF COMPRESSION DATA PCINTS AT VARIOUS TIMES DURING THE
PROGRAM®S EXECUTION.

3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
38690
3870
3830
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4C00
4010
4020
4030
4040
4050
4060
4C70
4080
4090
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EC
VOIC RATIO OR VERTICAL STRAIN AT THE PRECONSCLICATICN STATS AS
IDEALIZES £Y THE SCHMERTMANN CCNSTRUCTION.

ECMIN
ORDINATE VALUE OF VOID RATIO OK VERTICAL STRAIN AT THE
MINIYUM PRECCNSGCLIDATION STATE.

EEC )
VARIASLE WHICH STORES DIAL READINGS,s VOID RATIOSe AND VERTICAL
STRAIN CF EXPANSION-REBOUND DATA POINTS AT VARICUS TIMES DURING
PROGRAM®S EXECUTION.

EEC
VOIO RATIO FCR FIRST DATA POINT ON STANDARD TEST®S EXPANSION-
RERCUND CURVE.

EF
FINAL VOID RATIQ.

EI
INITIAL VOID RATIC.

EO
INITIAL VOID RATIQ.

FACTOR
THE CORRECTICN NEEDED TD TAKE INTO ACCOUMT THE SCALE FACTCRS THAT
MODIFY THE APPEARANCE OF ANGLES CN THE PL3OT OUTPUT.

FIRLCG
THE INITIAL STARTING EXPONENT OF TEN FRQCM WHICH THE LOG AXIS wILL
BE DRAWN IN PLOTTING SUbBPROGRAM CASPLTe (IeEes FIRLGCG IS £QUAL
T3 -1.0)

FY
VERTICAL INTERCEPT OF LINE *F* AT THE ZERC ABSCISSA,

GY
VERTICAL INTERCEPT DF LINE °*G* AT THE ZERD ABSC1SSAa.

H{ )
HEIGHT OF SPECIMEN FOR CONTROLLED COMPRESSICN DATA. STGRAGE
VARTABLE FOR INPUT DIAL READINGS FOR STANDARD TEST CCMPRESSION
DATA.

HEL( )
PEIGHT CF SPECIMEN FOR CONTROLLED EXPANSION-REBOUND DATA. STORAGE
VARIABLE FOR INPUT DIAL READINGS OF STANDARD TEST EXPANSION-
RERCUND CATA.

M
INITIAL HEIGHT OF SPECIMEN AT START CF TE>Te.

HOL IZ
BORE HCLE NUMB3ER.

HS

HEICHT CF SOLICSe

4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4249
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
43¢€0
4370
4399
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
46R0
4690
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HV
INITIAL HEIGHT OF VOIDS.
I
DO LCOP PARAMETER.
IBIG
ARRAY LOCATICGN FOR THE ABSCISSA VALUE CORRESPONDING TO THE
LOCATION OF THE LARGEST RADIUS OF CURVATURE.
ICHECK
THIS VARIABLE IS SET EQUAL TG ONE IN SUBROUTINE ANARAD WHEN A
DISCRETE LOCALIZED POINT OF MAXIMUM CURVATURE HAS BEEN FOUND. IF
A DISCRETE PGINT OF MAXIMUM CURVATURE HAS NCT BEEN FOUNDy ICHECK
HAS A VALUE CF ZERO AND THIS CAUSES A DEFAULT TC SELECT THE
POINT WHERE THE SECOND DERIVATIVE IS A MAXIMUM.
IDERV?2
ARRAY LOCATICN FOR THE ABSCISSA VALUE WITH THE LARGEST VALUE OF
THE SECOND DERIVATIVE.
IDIAL
VARIABLE TO SPECIFY WHETHER DIAL READINGS INCREASE CR DECREASE
WITH INCREASING DOWNWARD DEFLECTIONe. IDIAL EQUALS +1 FCR DIAL
READINGS WHICH INCREASE WITH INCREASING DOWNWARD DEFLECTION.
IDIAL EQUALS -1 FOR DIAL READINGS WHICH DECREASE WITH INCREASING
OOWNWARD DEFLECTION.
IIDIAL
OPTION VARIABLE WHICH CAN BRE USED TG OVERRIDE PROGRAM!'S
BUILT IN VALUES FOR IDIALe.
IMIN
ARRAY LOCATICN FOR THE ABSCISSA VALUE OF THE POINT GF MAXIMUM
CURVATURE .
IN
COMPUTER INPUT UTILITY DEVICE NUMBER FQR READ STATEMENTS.
INUM
DUMMY ARGUMENT IN SUBROUTINE GRARAD THAT ASSIGN CORRECT ARRAY
LOCATION FOR THE GRAPHICALLY SELECTED PCINT OF MAXIMUNM CURVATURE.
10UT
COMPUTER OUTPUT UTILITY DEVICE NUMBER FCR WRITE STATEMENTS.
IPRINT
CPTION PARAMETER FOR REDUCING THE AMOUNT OF OUTPUT PRODUCED IN
SELECTING THE POINT OF MAXIMUM CURVATURE BY THE ANALYTICAL METHOD.
ISTR
DO LOOP PARAMETER WHICH IS MANIPULATED TO GIVE EITHER A VOID RATIO
OR VERTICAL STRAIN ANALYSIS. IF KIND EGQUALS le ISTR EQUALS 1.
IF KINO EQUALS 29 ISTR EQUALS 2.
IVOID

DO LCOP PARAMETER WHICH IS MANIPULATED TC GIVE EITHER A VOID RATIO
OR VERTICAL STRAIN ANALYSIS. IF KINO EQUALS 1ls IVOID DQUALS 1ls
IF KING EQUALS 25 IVCID EQUALS 2.

4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290

E-9



J
O LCIP PARAVMETER,

JPRINT
OPTICN PARAMETER FOR QOUTPUT WAICH IS PRESENTLY NCT USED.

KIND
OPTINN VARTARLE FOR SPECIFYING eITHER VCID RATIC OR VERTICAL
STRAIN ANALYSIS.

KK
D0 LCUP PARAMETER FGR CISTINGUISHING HETWEEN VCID RATIO AND
VERTICAL STRAIN MODES OF ANALYSIS.

KRAD
OPTICH PARAMETER FOR SELECTICN OF CESIRED METHOD TO SELECT POINT
OF MAXIMUM CURVATURE. IF KRAD IS NOT EQUAL TO *2%e« PROGRAM
DEFAULTS TO USE THE GRAPHICAL METHOD TQ SELECT THE POINT OF
MAXIMUM CURVATURE,

KSLOPZ
PARAMETER USED IN TELLING THE PRCGRAM HOW THE VIRGIN CURVE LINE
REPRESENTATICN wAS SELECTEC FUR STANDAROD CONSOLIDATION DATA.
IF KSLOPE IS NOT EGUAL TO '0O'sy THE LINE WAS SELECTED ON THE BASIS
NF AN AVERAGE SLOPE BETWEEN THE TANGENT OF MAXIMUM SLOPE AND A
LINE GOING THROUGH THE LAST TwO COMPRESSION DATA POINTSe

L
oUMMY PARAMETER PRESENTLY NGT USED.

LCF REAL
LENGTH CALIBRATION FACTOR.

LINEA( ) REAL

LINEB( )} REAL

LINEC( ) REAL

LINED( 1} REAL

LINEE( ) REAL

LINEF({ )} REAL

LINEG( ) RFAL
REAL VARIA®LES wHICH ARE USED IN SUBROUTINE CASPLT TO STCRE THE
INCREMENTALLY GENERATED ORDINATES VALUGS USED IN PLCTTING LINES Ay
Bv C’ QOQG.
L INEA - FPURIZONTAL LINE THROUGH PJOINT CF MAXIMUM CURVATURE.
L INEB - TANGENT TO CCMPRESSICN CURVE AT POINT OF MAXIMUM
CURVATURE»
LINEC - LINE B3ISECTING ANULE BETWEEN LINES 'A® AND 'B'.
LINED - LINE REPRESENTATION OF VIRGIN CCMPRESSION CURVE.
LINEE - LINE REPRESENTATION CF EXPANSINN=~REBOUND CURVEe.
LINEF = LINE IN SCHMERTMANMN®S CONSTRUCTION GUSED TO REPRESENT
INITIAL COMPRESSION CURVEs IT HAS THE SLOPE OF LINEE AND GOES
THRCUGH THE POINT HAVING ITS ABSCISSA AT THE INSITU VERTICAL
STRESS AND OROINATE AT THe INITIAL VOID RATIO OR VERTICAL STRAIN,
LINEG - LINE DERIVED FRCM SCHMERTMANN®'S CONSTRUCTION AS REP-
RESENTATION CF THE INSITU VIRGIN COMPRESSION CURVE.

LL
NU LCOP PARAMETER USED IN DUING THE SPECIFIZED NUMBER (0OR PROBLEMS.

E-10

5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5620
5640
5650
566U
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5380
5890
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LOC( ) 4A4
GENERAL LOCATION OR NAME OF SITE FROM WHICH SAMPLE WAS TAKEN.

mDC
WATFIVE PARAMETER THAT REPRESENTS THE CCMPRESSION CURVE®S NUMBER
OF DATA POINTSs PLUS THE DEGREE OF POLYNOMIALs AND PLUS ONE.

MOE
SAME AS MDCs BUT FOR EXPANSION-REBOUND CURVE DATAe
NC
NUMBER OF COMPRESSION CURVE DATA POINTS.
NDC
WATFIVE PARAMETER WHICH SPECIFIES THE NUMBER OF POLYNOMIAL CO-
EFFICIENTS NEEDED FOR THE POLYNOMIAL FITTED THRCUGH THE CQM-
PRESSION CURVE DATAe
NDE .
SAME AS NDC BUT FOR EXPANSION-REBOUND CURVE DATA.
NDEG
DEGREE POLYNCMIAL FOR COMPRESSION CURVE e
NDEGE
EQUALS ONE AND IS DEGREE POLYNOMIAL FOR EXPANSICN=-REBOUND CURVE
DATA.
NE
NUMBER OF EXPANSION-REBOUND DATA POINTS.
NOPROB
THE NUMBER OF PROBLEM SETS TO BE SOLVED. IN PROGRAM VERSION
CASAGR-Iy THIS QUANTITY IS SYNOMOUS WITH THE NUMBER OF STRESS-
STRAIN AXES WHICH WILL BE USED IN THE PLOTTING OF THE DATAe
NPLCTS
IN PROGRAM VERSION CASAGR-0s NPLOTS IS A DUMMY INPUT PLACE HOLDER.
IN THE PROGRAM VERSION CASAGR-I,y THIS QUANTITY IS THE NUMBER OF
PLOTS TO APPEAR ON ONE SET OF STRESS~STRAIN AXES.
NUMPTC
NUMBER OF COMPRESSION CURVE DATA POINTS.
NUMPTE
NUMBER OF EXPANSION-REBOUND CURVE DATA POINTSe
ORCMIN
MINIMUM POSSIBLE OVERCONSOLIDATION RATIGe.
CPR( ) A4
INITIALS OF TEST OPERATORe
ORDINA
VARIABLE USED IN PLOTTING SUBROUTINE CASPLT TO CHANGE LINES WHILE
THE REDUCED STANDARD TEST DATA IS BEING PLOTTED IN TABULAR FORM.
PL )

EFFECTIVE STRESS OF COMPRESSION DATA POINTS.

5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
5420
6430
6440
6450
6460
6470
6480
6490
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c prC 6500
C PRECONSCLICATICN PRES5URE. 6510
C 6520
C PCF 6530
C PRESSURE CALIBRATION FACTOR (PSI/DIVie 6540
c 6550
C PDUMMY( ) 6560
C ODUMMY VARIABLE FOR PLOTTING THE TA3LE OF EFFECTIVE STRESS VALUES. 6570
C 6580
C PEC 6590
C EFFECTIVE STRESS OF EXPANSIOMN-REBJUND DATA PCINTS. 6600
C 6610
C PI 6620
C 30141592 6630
C 6640
C PINSTU 6650
C OVERBURDEN PRESSURE. 6660
C 6670
C PO( )s PCVEs POVER 6680
C (SEE PINSTU) 6690
C 6700
C PPP( ) 6710
C PDRE PRESSURE IN PSI FOR COMPRESSION DATA. 6720
C 6730
C PPPECL ) 6740
C PORE PRESSURE IN PSI FOR EXPANSIGN-REBOUNC DATA. 6750
C 6760
C PPR( } 6770
C PORE PRESSURE READING FOR COMPRESSION DATA. 6780
C 6790
C PPRE( ) 6800
C PORE PRESSURE READING FOR EXPANSION-RERCUND DATA. 6810
C 6820
C PPTC ) 6830
C PORE PRESSURE IN TSF FOR COMPRESSION DATA. 6840
C 6850
C PPTECL ) 6860
C PORE PRESSURE IN TSF FOR EXPANSION-REBOUND CATA. 6870
C 6880
C PPZ 6890
C PORE PRESSURE READING TAKEN AFTER BACK PRESSURE APPLICATION AND 6500
C BEFCRE LOADING OF SPECIMEN. 6610
C 6920
C PRECON 6930
C PRECONSGLIDATION PRESSURE. 6540
C 6950
C PREMIN 6560
C MINIMUM POSSIBLE PREOCONSULIOATION STRESS DETERMINED BY EXTENDING 6970
C THE LABCRATORY VIRGIN SLOPE UNTIL IT INTERSECTS EITHER THE INITIAL 6980
C THE INITIAL VOID RATIO OR Z2zRO STRAIN LINE CR LINEAR 6990
C REPRESENTATICN OF RECOMPReSSION CLRVE (LINE Flo 7000
C 7010
C RADI( ) 7020
C CALCULATED RADIUS OF CURVATURE. 7030
C 7040
C RADMIN 7050
C MINIMUM RADIUS CF CURVATURE. 7060
C 7070
C RADMX 7080
C ABSCISSA AT POINT OF THE MINIMUM RADIUS OF CURVATURE (J1eEes POINT 7090
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OF MAXIMUM CURVATURE.

RUNTYP INTEGER
TYPE OF CONSCLIDATION DATA:

CODE O0: - STANDARD
COCE 1: ~ CONTROLLEO GRADIENT
CODE 2: ~ CONTROLLED RATE OF STRAIN
St )
SCRATCH ARRAY FOR SUBRCUTINE FLSQFYe.
SAM A3
IDENTIFICATION OF SAMPLE.
SAMPHI
INITIAL HEIGHT OF SAMPLE IN INCHES.
S8
SEE SLOPEB
sC
SEE SLOPEC
SO
SEE SLOPED
SE
SEE SLOPEE
SECCND
STRESS IN TSF AT WHICH SECONDARY COMPRFSSION BEGINS IN CCNTROLLED
CONSCLIDATION TEST DATA.
SEVT( )
VERTICAL EFFECTIVE STRESS FOR COMPRESSICN DATA POINTS.
SEVTE( )
VERTICAL EFFECTIVE STRESS FOR EXPANSION-REBCUND DATA POINTSe
SF

SEE SLOPEF

SFAC INTEGER
ARRAY LOCATIGN OF THE COMPRESSION DATA'S SCALE FACTCRSe.
SFAC = NUMPTC + 2

SFACUR INTEGER
ARRAY LOCATICN FOR THE SCALE FACTOR FOR VARIABLES WHICH ARF USED
IN PLOTTING THE FITTED POLYNOMIAL CURVE SFACUR = 101 + 2.

SFAE INTEGER
ARRAY LOCATICN FOR THE EXPANSION-REBOUMND DATA®*S SCALE FACTORS.
SAFE = NUMPTE + 2

SG
SEE SLCPEG

SGMSO{ ) 3
SCRATCH ARRAY USED BY SUBROUTINE FLSQFY.

7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7350
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570
7589
7590
7600
7610
7620
7630
7640
7650
T660
7670
7680
7690
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C SI 7700
C INITIAL DEGREE OF SATURATION. T7L0
C 7720
C SLOPBI 7730
C SLCPE QOF ANGLE BISECTJUR LINE USEDL &Y THe GRAPHICAL METHOD TO 71740
C DETERMINE POINT OF MAXIMUM CURVATURE. 7750
C 71760
C SLOPE 7770
C SLOPE GF LINE GOING THROUGH LAST TWO POINTS 0OF THE STANDARD TEST'S 7780
C CONSOLIDATION COMPRESSION CURVE . 7750
C 7800
C SLOPEL( ) 7810
C - FIRST CERIVATIVE OR SLOPE AT GENERATED ABSCISSA VALUES ALONG THE 7820
c COMPRESSION DATA'S FITTECL POLYNOMIAL CURVEe. 7830
C 7840
C SLOPE2( ) 7850
C SECCND CERIVATIVE AT GENERATED ABSCISSA VALUES ALONG THE COM- 7860
C PRESSION DATA*S FITTED POL YNCMIAL CURVE . 7870
C 7880
C SLOPEB 7890
C SLOPE OF LINEB. 7900
c 7910
C SLOPEC 71920
C SLCPE OF LINECe 7930
C 71940
C SLOPED 7950
C SLOPE OF LINED. 7960
c 7970
C SLOPEE 7980
C SLOPE CF LINEE. 7990
C 8000
C SLOPEF 8010
c SLOPE CF LINEFe. 8020
c 8030
C SLOPEG 8040
C SLOPE OF L INEG. 8050
C 8060
C SLOPEM 8070
C AVERAGE OF TwO LINESs ONE TANGENT TO THE CURVE AT ITS MAXIMUM 8080
C SLOPE AND THE OTHER GOING THROUGH THE STANCARD CCMPRESSION 8090
C CURVE'S LAST TWO DATA POINTSe 8100
C 8110
C SPG B120
C SPECIFIC GRAVITY OF SGLIDS. 8130
C 8140
C SR 8150
C SWELL RATIO. 8160
C 8170
C STARE INTEGER 8180
c ARRAY LOCATICN OF THE STARTING VALUE THAT WILL BE USED IN PLOTTING 8190
C THE ABSCISSA AND ORDINATE POSITIONS OF THE EXPANSION-REBOUND 8200
C CURVE®S DATA POINTS. 8210
C STARE = NUMPTE + 1 8220
C 8230
C START INTEGER B240
C ARRAY LOCATICN OF THE STARTING VALUE THAT WILL BE USED IN PLOTTING 8250
C THE ABSCISSA AND ORDINATE PQOSITIONS OF THE COMPRESSION CURVE'S 8260
C DATA POINTSe. 8270
C START = NUMPTC + 1 8280
C 8290
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STARX INTEGER :
ARRAY LOCATIGN GF THE STARTING VALUE THAT WILL BE USED IN PLOTTING
THE ABSCISSA AND ORDINATE P3SITICNS CF THE GENERATED SEGMENTS OF
THE POLYNOMIAL CURVE.
STARX = 101 + 1

STR( )
VERTICAL STRAIN ARRAY FQOR COMPRESSION CATA POINTS.
STRE( )
VERTICAL STRAIN ARRAY OF TH:Z EXPANSICN-REBOUND DATa POINTS.
STVT( )
TOTAL VERTICAL STRESS ARRAY FOR COUMPRESSICN CATA POINTS.
STVTE( ) .
TOTAL VERTICAL STRESS ARRAY FOR EXPANSICN-REBUUND DATA POINTS.
L :
TIME AT WHIChH COMPRESSION DATA PCINT wAS ACQUIRED DURING CON-
TROLLED CONSCLIODATION TEST.
TANGEN( )
STCRAGE LUCATIGN OF THE GENERATED INCREMENTAL ORDINATES USED IN
PLOTTING THE LINE TANGENT TQ THE COMPRESSION CURVE AT THE POINT
(XTANg YTAM)a
TE( )
TIME AT WHICH EXPANSION-REBOUNC CATA POINT wWAS ACQUIRED DURING
CONSCLIDATION TESTa
TES A3
TEST NUMBER IN A PARTICULAR CCNSOLIDATION TESTING PROGRAM,
TR )
TIME READING AT WHICH A COMPRESSIUON DATA PCINT wAS ACQUIRED QURING
A CCNTRCLLED CONSOLICATICN TEST.
TREL )
TIME READING AT WHICH AN EXPANSION-REBOUND OATA POINT WAS ACQUIRED
DURING A CCNTRCLLEC CONSCLIDATIUGN TEST.
voIoc
THE V3OIOD RATIO AT THE PRECONSOLIDATION STATE AS IDSALIZED RY
SCHMERTMANN® S CONSTRUCTION.
VOIDEOC( )
INITIAL VOIO RATIO VARIABLE USED FOR PLCTTING.
Wi o}
ARRAY IN wHICH THE WwEIGHTS OF INDIVIDUAL CATA POINTS ARE PLACED
FOR SUESEQUENT USE 3Y SUBROUTINE FLSRFYe. ALL DATA POINTS ARE MADE
T HAVE EWUAL WEIGHTS (IeEase w{ ) = 1la0)e
WF
FINAL WATER CONTENT.
Wi

INITIAL WATER CONTENT.

8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8400
8410
8420
8430
8440
8450
8460
8470
84RO
8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
8640
8650
8660
8670
8680
8690
8700
8710
8720
8730
8740
8750
8760
8770
8780
8790
8300
8810
8320
8830
8840
8850
8860
8870
8880
8890

E-15



C WRD( 1} 8900
C LOAC REAQING FOR CONTROLLEC TEST COMPRESSIOGN DATA. 8910
C 8920
C WRDEL( ) 8930
C LOAD READING FOR CONTROLLED TEST EXPANSION-RESBOUND CATA. 8940
C B950
C WRZ 8960
C LOAD REARING CNRRESPONDING TC ZERT APPLIED LOAD. 8970
C 8980
C WTFO 8990
C FIMAL DRY WEIGKRT OF CIONSOLIOATICN SPECIMEN. 9000
C 9010
C WiFw 9020
C CINAL WET WEIGHY OF CONSOLISATION SPECIMEN. 90320
C 59040
C wTIW 9050
C INITIAL WEY WEIGHT ®F CONSOLIDATION SPECIMEN. 9060
C 5070
C Xt 4 ) 9080
C ARRAY VARTABLE IN WHICH THE INCREMENTALLY GENERATED ABSCISSA 9090
C VALUES ARE STHRED. 9100
C 9110
C XANGLE 9120
C ABSCISSA OF THE POINT OF INTERSECTION FETWEEN THE GRAPHICAL 9130
C METHOD'S INITIAL TANGENT LINE AND THE VIRGIN COMPRESSION LINE. 9140
C 9150
C X8 9160
C ABSCISSA THRCUGH WHICH THE LINE REPRESENTION OF VIRGIN CURVE WILL 9170
C BE CRAWN {Ile¢Ees LINED). 91e0
C 9190
C XBIG 9200
C SAME AS XBe 9210
C 9220
C XBl = 9230
C xB2 = A24Q
C XB3 = 9250
C XB4 = 9260
C xXBs5 = 9270
C xXB6 = 9280
C X871 = 9290
C XBg = 9300
C XB9 = 9310
C X810 = 9320
C XB1ll1 = * 9330
C THESE VARIABLES SET UP POLYNCMIAL TERMS FROM THE ARSCISSA VALUE 9340
C OF A POINT ON REPRESENTATIVE PORTION QF VIRGIN COMPRESSICN CURVEs 9350
C THESE TERMS WILL 8E PAIRED WITH APPRCPRIATE COEFFICIENTS 10 9360
C COMPUTE AN ORDINATIE VALUEZ AT A PJUINT 2N THE RFPRESENTATIVE 9370
C PORTIQON OF VIRGIN CCMPRESSION CURVE. 9380
C 9390
C XS 94900
C ABSCISSA OF THE POINT OF MAXIMUM CURVATURE. 9410
C 9420
C XSl = XS 9410
C XS2 = s 2440
C XS3 = 94590
C XS4 = 9460
C XS5 = 9470
C XS6 = 9489
C XST7T = 9490
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XS8 = XS
XS9 = XS

XS10 = XSu=

XSil = XS#%ll

THESE VARIABLES SET UP THE POLYNCMIAL TEPMS FROM THE ABSCISSA
VALUE OF THE POINT QF MAXIMUM CURVATURE . THESE TERMS WILL BE
PAIRED WITH THE APPROPRIATE €COEFFICIENTS TO COMPUTE THE ORDINATE
OF THE SELECTED POINT OF MAXIMUM CURVATURE.

XSLee
SAME AS XSa.

XTAN
ABSCISSA OF THE POINT OF TANGENCY GOiv THe INITIAL PORTION GF THE
COMPRESSION CURVE AND IS DETERMINED 8Y SULRCUTINE GRARAD.

XVIRGI
ABSCISSA OF THE POINT OF INTERSECTION SETwEEN LINE *D® AND THE
ORCINATE VALUE OF Oa42 = EQO.

X1d X ¢

» ) 0= v)
X2( s ) = X( ik
X30 » 3 = XU %
X4( ¢ ¥ = X( 4
X5(0 ¢ 1 = X{
X6 ¢ ¥y = XU -
X7 & } = X 9
X8C ¢« 3 = X{ %
X9t ¢ F = X({
X100 ¢ } = XU
XL1( 9 ) = XU
THESE VARIABLES SET UP THE POLYNCMIAL TERMS FROM THEIR INCREMENTAL
ABSCISSAE SA THAT THEY MAY BE PAIRED WITH THEIR RESPECTIVE CO-
EFFICIENTS.
Y{ ¢ )
OUMMY SCRATCH ARRAY.
YLINE( )
INCREMENTALLY GENERATED ORDINATE VALUES CF THE ANGLE 8ISECTOR
LINE USED IN SUBROUTINE GRARAD.
YSLP2
ORDINATE OF THE PQINT OF MAXIMUM CURVATURE.
YTAN
ORCINATE OF THE POINT OF TANGENCY ON THE INITIAL PORTION (F THE
COMPRESSION CURVE AND IS DETERMINED BY SUBRCUTINE GRARAD.
YVIRGI
EQUALS 0e42 = EQ.
ZDEPTH
APPROXIMATE FIELD DEPTH AT WHICH SAMPLE WAS RECQOVEREDe
ZERO

DIAL READING CORRESPONDING TC FIRST DATA POINT ON THE EXPANSION-
REBOUND CURVE.

9500
9510
9520
9530
9540
9550
9560
9570
9580
9590
9600
9610
9620
9630
9640
9650
9660
9670
9680
9690
3700
9710
9720
9730
9740
9750
9760
97170
9780
9790
9800
9810
9820
9830
9840
9850
9860
9870
9880
9890
9900
9910
9920
9930
9940
9950
9960
9970
9980
9990
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100

E-17
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COMMON /BLOK1/ P{303)+E(303)4PE(103)9EE(103)4CC(103)

DOVUBLE PRECISION CC

COMMON /BLOK2/ CEPTAsSLOPEBGCEPTRySLOPSCyCEPTCeSLOPEDLCEPTD,
LSLOPEEYyCEPTZ9SLCPEFsCEPTFySLOPEGYyCEPTGy BOUNDL yROUND24y50UND34yBOUNDG
29BOUNDSyBOUNC &9 NUMPTC yNUMPTE«PINSTU9XSLP2yPCyECyED9yCCR9yCCL9CSyCRy
3SR4NDEGyINsICUT,LIDIAL
COMMON /BLOK3/ POVEJPRECONSPRENMINgVOIDCyECMINyOCRMINSCRMIN
COMMON /BLOKS4/ TR(303),4TRE(103) +DEFR(303)4DEFRE(103)4PPR(303),
LPPRE(103)4yWRC(303)9yWRDE(L1U3)eLsSTVTI(303),
2STVIE(103) 4PPP(303)+PPPE(103)4PPT(303)4yPPTE(103),
3CSEVT(303)+CSEVTE(103) yDFLI(303)yDFLIE(103)4STR(303),
4STRE(L1O03)9yH(303)yHE(123)4yDCFyLCF4PCF

COMNMON /ELOKS/ LOC(4)9HCLySAMyTESIOPR(L)9DAT(3)4DES(4)4+8CD(20),
1KK yRUNTYP

COMMON /BLOKE/ SPGyWTIWIWTFWeNTFD9yODEFI9yDEFF¢BPyDEFZ yWRZ yPPZ yHSeHIy
IHV9SI9EI9EF9sSFeWI yWF9eSECONDyAR

COMMON /8LOKAR/ RAD(LO3) yRADMINGRADOMX 9 IMINGIPRINT9JPRINTSKIND

COMMON /&LOKS/ X{103y 4)9SLIOPEL(103)9SLCPE2(103)

COMMON  X1(1C3y 4)9X2(103y 4)9X3(103y 4)9X4(123y 4)+XS5(1034 4},
L1X6{103y 4)9XT7{103y 4)9X8(103y 4)9X3(103y 4)9X10(103y 4)eX11{103y 4
21

DOUBLE PRECISION W(303)14C(12)sALPHA(314)9SETA(314)49S(314),
1SGMSR(314) 9PR(314)+P0O(314)98(324)sY(103,y 4)

REAL LCF

INTEGER RUNTYP,TES,HOL

INTEGER START,SFAC

DINMENSICN CATA(1024)

CALL PLCTS (CATA+4096)

CALL PLCT (QeQ9-1lsy-3)

CALL PLOT (0eQ9le09-3i

INPUT AND QUTPUT UTILITY DEVICE CODE NUMBERSe

IN=5
I0UT=6

KK=1

NOPROS - NUMBER OF PROEBLEMS TU BE ANALYZED

READ (INy1000) NOPROB

FORMAT(2I2)

D0 400 LL=19MNOPROB

NPLCTS IS EQUAL TO ONE ALWAYS FUR THIS PROGRAM VERSION.
IPSINT - OUTPUT OPTION FOR CALCULATED RADII FROM SUB AMARAD.
READ (IN+100GC) NPLOTSyIPRINT

IF (NPLOTS.EGQeC) NPLOTS=1

READ OATA FOR CCMPRESSION CURVESe.

NDEG = POLYNCMIAL DEGREE

RUNTYP = TYPE OF CONSOLIDATION TEST CATA

IDEPTH = OEPTH FOR CALCULATICN OF INSITU STRESS BASED ON SPECIMEN
WET UNIT WEIGHT.

INSERY ¥(ULLOWING IN COLe 31 FOR RADIUS METHOD

GRAZFHICAL RADIUS METHOD - SET KRAD=OC
ANALYTICAL RAOIJUS METHOD - SET KRAD=2

KIND - OPTION VARIABE FOR SPECIFYING EITHER A VCID RATIC GR
VERTICAL STRAIN ANALYSIS. PLACE IN CCLe33 ONE QOF THE
FOLLOWING VALUES FOR ¥ KIND ‘s
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1010

1020

1030

KIND=Cy DODES BOTH VOID RATIO AND VERTICAL STRAIN ANALYSES.
KIND=1y ONLY VOID RATIO ANALYSIS PERFORMED,.
KINDO=2y ONLY VERTICAL STRAIN ANALYSIS PERFORMED.

SECCND - PRESSURE AT WHICH SECONDARY COMPRESSION OCCURS.

IIDIAL -~ GPTION VARTIABLE TO CVERRIDE PROGRAM®S BUILT-IN VALUES
FOR IDIAL. IIDIAL MUST BE MADE EQUAL TO EITHER ®+«1°* OR
*-1* TO OVERRIDE BUILT-IN VALUES OF IDIALe. SEE
DESCRIPTION OF IDIAL BELOW.

READ(INy1010) NDEGyRUNTYP4+ZDEPTHyKRADyK INDySECCONDy I IDIAL
FORMAT(2(I39y7X)eFl0eO9yILlylX9I1e2X9yF5.098XyI2)
IF (SECOND«LT«0.001) SECOND=31.2

IDIAL IS USED TO MATCH DIAL GAUGE READINGS WITH DEFLECTION.

NOTE: INCREASING DEFLECTION IS SPECIMEN SHORTENINGe.

IDIAL IS EQUAL TO +1 WHEN DIAL READINGS INCREASE WITH DEFLECTION.
IDIAL IS EQUAL TO -1 WHEN DIAL REACINGS DECREASt WITH DEFLECTION.
IF THE RELATIONSHIP BETwEEN DIAL REAOING AND DEFLECTION IS CHANGED
FOR A PARTICULAR TEST TYPEy THE TEST'S RESPECTIVE ARGUMENT FOR
IDIAL WILL BE SET EQUAL TO THE VALUE OF TIDIALe.

STDe DIAL RDGSe INCREASING WITH INCREASING DEFLECTICN (DEFI-DEFZ)e
IF (RUNTYP.EC.O0) IDIAL = +1

CONTROLe GRAD. DIAL RDGSe. DECREASING w/ INCRe. DEFLe (DEFZ~-DEFI}e
IF (RUNTYP.EQel) IDIAL = -1

CONTROLe RATE CF STRAIN RDGSe INCRe W/ INCRe DEFLe. (DEFI-DEFZ)e
IF (RUNTYP.EQs2) IDIAL = ¢1

CHECKING IF PROGRAM IS TO OVERRIDE BUILT-IN VALUE OF IDIALe.
IF (IIDIAL.NE.O) IDIAL=IIDIAL

READ IN SEARCH BOUNDARIES FOR SELECTION OF POINT OF MAXIMUM
CURVATURE AND LINE REPRESENTATION OF VIRGIN COMPRESSION CURVE.

READ (INy1020) BOUND1+B0OUND2+8B0UND3+BOUND4
FORMAT (4F10.0)

THE FOLLCOWING ARGUMENTS ARE THE DIAMETER AND AREA OF THE SAMPLE
BEING SPEICIFIED IN INCHES AND INCHES SQUARED.

DIA=2.50

AR=4.3087

READC PLOT TITLE

READ (INy103C) BCD
FORMAT (20A4%)

READ LOCATIONy HCLEs SAMPLEy TESTy OPERATORy DATE AND SAMPLE
DESCRIPTION.

0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
€870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

E-19



1C40

[aNeNeNaleal

1050

aNaNeloleoNaEeaNaNel

1060

o

aNeNeNalal

1070

aNaNe

[aNeal [aNeNaNe]

eEaleal

E-20

READ (INy104G) LOCo+HOL+SAMTESsOPRyDAT 4+ BES
FORMAT (4A44129A29149A493A444A4)

READ SPECIFIC GRAVITYsy INITIAL WET WEIGHT,
FINAL DRY WEIGHTs INITIAL DEFLECTION,

REAC (INs1CSC) SPG;WTIW,WTFNOWTFO!OEFIODEFF

FORMAT {(F5e2+¢3F7e292F5e2)

DEFLe CALe FACTGR - DCF (INCH/CTIV)
LOAD CALe FACTOR - LCF (L>S/DIV)

PRESSURE CAlL. FACTOR ~ PCF
OI4 - DIAMETER OF SOIL SAMPLE
REAC IN CALIERATION FACTCRS FUOR DEFLECTICN,
AND DIAMETER OF SOIL SPECIMEN IF

REAC {INs106C) DCF4LCFsPCFy0IA

FORMAT (4F10Q.2)

IF (DIA«LT«0.001) DIA=245

AR=(3554/1136)(DIA/240) %2
READ BACK PRESSUREs 2ERU DEFLECTION,
INITIAL HEIGKRT OF SAMPLE IF NOT EQUAL TC UNE INCHe.

REAC (INs10OTC) 2P9DEFZyWRZyPPZsSAMPHI
FORMAT (F5419F5e6292F4.092X9F10.0)

IF (SAMPHI«LT«0.001) SAMPHI=1.000

COMPUTE INITIAL ANC FINAL SOIL PROPERTIES

HS=wTFO/(SPG*AR*:1643871)

HI=SAMPHI-IDIAL*{(DEFI-DEFZ)*DCF)

HV=HI-HS

SI=(WTIW-WTFC)*100e/({HV=AR%*1643871)

EI=HV/HS
EQ=€EI

EF=(HV-IDIAL*(DEFF-DEFI )*0CF)/RS
SF=(WTFW-WTFC)*100e/((HV-IDIAL*(DEFF-DEFI)*=DCF)*AR*1643871)

WI=(WTIW-wTFC)/WTFD*100
WF=(WTFW-WTFC)/WTFD%100

PINSTU=(WTIWx1T728=*ZDEPTH)/ (AR*HI%*453.6%2000.0)

CONTR

IF (RUNTYP.EG.1) CALL CCNGRA
IF (RUNTYP.zCe2) CALL CONGRA

IF (RUNTYP.EQ.l} GC TJ 50
IF (RUNTYP.EQ.2) GC TO %9

B

STANDARD TEST DATA INPUT

WET WEIGHT,
AND FINAL DEFLECTICN.

(PSI/DIV)

PRESSURE
IT IS NOT EQUAL TO 2.5%.

LERO LCADs ZERC PORE»

CLLED TEST DATA INPUT AND REDUCTICN,

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1310
1820
1330
1840
1350
1360
1870
18RQ
1899
1500
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10
20

30
40

50

STANDARD TEST DIAL READINGS ARE BEING PLACED IN PROPER ARRAY

LOCATICNS.
00 10 I =1+26

COMPRESSIUN CURVE DIAL READINGS.
READ (INy102C) P(IVeE(I)
STR(I)=€(1)

HI)=e(1}

IF (I.€EGel) GJ TC 10

HAS EFFECTIVE STRESS OECREASED BETWEEN CONSECUTIVE DATA POINTS?
IF SCy CONSICER ALL SUBSEQUENT DATA AS EXPANSION-REBOUND DATA.

IF (P{1)eLTeFP(I-1)} GO YO 20
CONTINUE
CONTINUE

NUMPTC=1I-1
DO 30 1I=3y20

READ IN REBOUNC-EXPANSION DATA
DIAL READINGS ARE BEING PLACED IN PRCPER ARRAY LOCATIONS.

REAC (INs102C) PE(I)sEE(T)
STRE(I)=EE(I)

HE(I}=EELI])
PE(1)=P(NUMPTC)
EE(1)=E(NUMPTC)
STRE(L1)=E(NUNMPTC)
HETL1)=E(NUMPT()

ZERC=EE(1)
PE(2)=P(NUMPTC+1)
EE(2)=E(NUMPTC+1)
STRE(2)=E(NUMPTC+1)
HE(2)=E(NUMPTC+1)

IF (PE(I)elLT«0.001}) GOTO 40
CONTINUE

CONTINUE

NUMPTE=I~1

CONTINUE

IF (RUNTYPoEGeO) WRITE (IOUT»1080)

IF (RUNTYP.EGel) WRITE (IDUT»109C)

IF (RUNTYPaEGe2) WRLTE (IOUT»1100)
WRITE{IOUT+1210) BCO

WRITE (IOUT+1110) TESsHOLsLOCs»SAMyDATOPR
WRITE (IOUT+1120) DESHBP

WRITE (I0UT+1130) WIsWFyEIyEFsSIeSF

IF(BOUNDlefWeda0) BOUND1=0.l
TF(BOUND2eaEQeJ.0) BOUNCZ2=0el
IF(BCUND3.£We0s0) BOUND3=0.1
IF(BCUND4eERQaD0) BOUND4=0al
IF(PINSTU.EQeDeO) PINSTU=0.1
BOUND1=ALOGLOC(B0UNDL)
BOUNDZ2=ALJGLC{(ROUND2)
BOUND3=ALJGL1C(BOUND 3)
BOUND4=ALOGLO(BOUND4}
PINSTU=ALGGLO(PINSTU)

IFf (RUNTYP.EQLGC) SECOND = 99999

1910
1920
1930
1940
1950
1960
1970
1980
1690
2000
2010
2G20
2030
2040
2050
2060
2070
20e9
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2239
2240
2250
2260
2270
2230
2290
21n0
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2473
2480
2490
2500

E-21



C
60
C
C
C
C
C
C
C
C
C
.
C
C
C
C
C
70
C
C
C
C
80
C
C
90
100
C
C
C
C

E-22

SBOUNCL

, 3 ROUNC4
IF (KRAC.EQe2) WRITE(IOQUTy1140) NDEG+Bl ¢82+83 4844 Z0EPTH,SECONG
IF (KRADGNE2) WRITE(IOUT,y1150) NOEGyBl +B2s83yP4s20EPTH,SECGND

DO 60 I=1y4NUMPTC '
W(I)=1l.0
CONTINUE

SEMI-LOGARITHMIC STRESS CEFORMATION ANALYSIS =

VOID RATIO AND STRAIN ANALYSIS CF CONSOLIDATIUN CATA TO EE
PERFORMEC IF SPECIFIED PREVICUSLY BY USER.

IVCIC=1

ISTR=2

IF (KINCo.EQs1l) LVOID=1
IF (KIND.EGQel) ISTR=1
IF (KIND.EQe2) IVOID=2
IF (KIND.EQes2) ISTR=2
DO 390 KK = IVCIDsISTR

RERDUCE DEFORMATION DATA,

COMPRESSION CATA POINTS.

DO 1CO I=1sNUMPTC

IF (RUNTYP.EG.1) GO TO 80

IF (RUNTYP.EZe2) GO T3 80

IF (KK+.EQe2} GO T2 70

E(I)=E0 - IDIAL*{E(I}-CEFI)/HS

CONTINUE

IF (KKeEQ.1) 30 TO 80

CONVENTIONAL DEFLECTION READINGS ARE INMCREASING.
E(I)=IDIAL*=(STR(I)-DEFI)*DCF/HI

PURPOSES.

VALUES CF VERTICAL STRAIN ARE MADE NEGATIVE FOR CURVE FITTING
E(I)=-E(I)

G3 T2 90

CONTINUE

IF (KKezRel) GC TO YO

VALUES CF VERTICAL STRAIN ARE MADE NEGATIVE FOR CURVE FITTING
PURPCSFSe

E(I) = =STRI(I)
CONTINUE

IF (KKeEQo.1) CSEVTI(I)
IF (P{I)elEsCel) PI(I)
PtIN=ALCCLIO(FR(I))
CONTINUE

)

E(I
Oel

NOW CALLING FLSJFY FOR NUMERICAL
ANALYSIS BY {EAST SQUARES CURVE

2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2649
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3080
3060
3070
3080
3090
3100
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120

130

140

15C

16C

170

FITTING TO OETAIN POCLYNOMIAL CGeEFFICIE™TS.

MUST INITIALIZE VALJES FOR CCEFFICEINTS
T3 AVOID UNDEFINED VARIALBE ERRCR Uv-0
UPON RETURN FORM SUBRUOUNTINE FLSQFY.

DO 110 I=1lel2
C(I)=0.0
CONTINUE

NDC=NDEG+1
MDC=NDEG+NUMPTC+1

FIT SPECIFIEC LEAST SQUARES POLYNOMIAL TO SEMI-LOG REPRESENTATIOGN
OF COMPRESSICN DATA.

CALL FLSQFY{NCEGyNUMPTCoPyE9WyC yALPHAR2ETA$SesSGMSQyPRyPCeNDCoMDC)

DO 120 I=14y12
CCc(Iy=Cccr)
CONTINUE

REBOUNC-EXPANSION DATA POINTS.

FIND THE SLOPE OF THE SWELL-RECOMPRESSICN CULRVE
AND CALL IT SLOPEE.

DO 130 I=1¢NUMPTE
W{Il=1le0
CONTINUE

DO 170 I=14NUMPTE

IF (RUNTYP.EQel}) GO TO 150

IF (RUNTYP<EQe2) GO TO 150

IF (KKeEQe2) GO TO 140
EEO=E(NUMPTC)

EE(IV=EED -IDIAL=( EE(I)-ZERO )/KHS

CSEVTE(I) = EE(I)

GATC 160

CONTINUE

EE(I)=I0IAL*(STRE(I )-DEFI)*OCF/HI
EE(I)=-EE(I)

GJ TO 160

CONTINUE

IF (KXKeEQel) CSEVTE(II=EE(I)
IF (KKet&Ge2) EE(I)==STRE(I)
CONTINVE

IF (PEl{)elEeUal) PEII} = Coal
PE(I) = ALOGIO(PE(I))
CONTINUE

CALLING FLSQFY TO O8TAIN LINEAR COEFFICEINTS.

NDEGE=1
NDE=2

3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3259
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700

E-23
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180

190

20C

E-24

MOE=NUMPTE+2

FIT LEAST SQUARES STRAIGHT LINE TO EXPANSION REBOUNC DATA.

CALL FLSOFY(NDEGE yNUMPTEsPE+EEswsCoALPHAIBETA»S9SGMSQ9PRyPO9NDE yMD

1E)
LINEE=C(1)«C(2)=XP

SLOPEE=C(2)
CEPTE=CI(1) -

FIND SLOPE OF VIRGIN COMPRESSION CURVE.

e 2o 2l

* SELECT STRA

XP AR X PP AP AP X

CHECK=0.0

X8I1G=0.0

BIG=0.0
DELTA=(BOUND4-BOUND3}/100.
B{1)=BOUND3

DO 200 J=19101

Bl=B(J)

B2=8(J)*8(J)

B3=B(J)=B(J)=B(J)

B4=B(J)xB(J)=3(J)xB(J)
B5=B(J)*B(J)=B(J)*B(J)=B(J)
B6=B(J)=B(J)#B(J)=B(J)*B(J)=B(J)
B7T=2{J1*B(u)=B(J)=B(J)*B(J)=B(J)=B(J)
B3=B(J)xB(J)=B(J)*B(J)=B(I)*B(J)*B(J)*R{J)
BO=B(J)xB(J)=B(J)=B(J)=BLI)I=BLI)#B(J)=B(J)=B(J)

BLC=B(J)=B(J)HB(J)EB(J)=B(I)#B(I)=B(J)IEB(JI)I=B(I)*5(J)

SLOPEL(J)=CCI2)+2%C(3)%BLl  +3%C(4)%B2 +4uC(5) %83
15%C(6) B4 +6%C(T)%BS «T5C (8) %B4 +3%C(9)%BT
294C(10) B8 #105C(11)%89 “11#C(12)%B10

IF (JeEQel) GO TO 190
DIFF=ABS((SLCPEL1{J)~-SLOPEL(J-1))/SLOPEL(J))
IF(DIFFeLE«000019) CHECK=140

IF (DIFFeaLEC.03019) GO TS 180

IF ((RUNTYPoEQe2) e ANDe (DIFFolLE«0eOdC25)) CHECK = 1
IF ({RUNTYP.EQe2) e ANDe(DIFFeLEL0.0025)) GO TO 180
GO 710 190

IFCABS(SLOPEY(J))eGTARS(BIG)) XBIG=B(J)
IF(ABS(SLCOPEL(J))eGTaABS(BIG)) BIG=SLOPEL(J)
CONTINUE

B{J+1)=B(J)+ZELTA
CIONTINUE
IFICHECKaGTW0a50) GO TO 230

00 220 I=1l+¢10C1

IGHT LINE REPRESENTATION OF VIRGIN COMP

sesfesiesieslesiesiesiasie st

+

20 352 202 e 2o sfe afe e e sfe e e ne e

RESSION CURVE:

+

3710
3720
3730
3740
3750
3760
3770
3780
3790
3300
3810
3820
3830
3840
3850
3360
3870
3880
3890
3900
3610
3920
3930
3940
3950
3660
3970
3680
3990
4000
4Cl0
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4279
4280
4290
4300
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210

220

230
240

250

IF (ABS{SLOPEL1(I))GE.ABS(BIG)) GO TO 210
GOTC 220

SI1G=-ARS(SLOPEL(I))

X8IG=8B(1I)

CONTINUE

GO TO 240

CONTINUE

CONTINUE

XB=XBIG6

XBl1=X8
XE2=XB=XE
XB3=X3:=XPEXB
X84=Xa3=XBaXB=XB

X8

EXBHXB

=XBEXBEXB
EXBEXBAXBEXD
EXBEXGHXBEXBEXBHEXB
X31L=XEuXBuXEXXBEXBAXSuXBEXBEXBAXBEXB

CALCULATE A LINE *0* REPRESENTING THE
STRAIGHT PORTION OF VIRGIN CCMPRESSICN CURVE.

YBIG=CC(1l)+CC{2)=XBLl+ C{3)=XB2 +Cl4)=XB3 +C(51%:x84 +
LC(61=XBS +C(T)=XB6 +C(B)=XBT +C{9)=X88 +
2C(10)=X29 +C(11)*XxB810 +C(l12)=XB11

FOR STANDARD TEST DATA ONLY!I!!'!

IF MAXIMUM SLOPE TANGENT IS PETWEEN LAST TWC COMPRESSION CURVE
POINTS AND HAS A GREATER SLOPE THAN A LINE GOING THROUGH LAST TWO
COMPRESSION CURVE POINTSs TAKE THE AVERAGE SLOPE OF THE TWO

ANC ORAW THE LINE THROUGH THE LAST CCMPRESSICN CURVE POINTe

KSLGPE=0

IF (RUNTYPeNE.O) GO TO 2593

IF (YBIGeGTeE(NUMPTC~1)) GO TO 250
SLOPE=(E(NUMPTCI-E(NUMPTC-1))/ (P(NUMPTC)—-P(NUMPTC-1})
IF (ABS(SLOPE) «LT<ABS(BIG)) SLOPEM=SLOPE-ABS(SLCPE-BIG})/?2
IF (ABS(SLOPE).LT«ABS(BIG)) KSLCPE = 999

CIONTINUE

SLOPED=RBIG

IF (KSLCPE<EQ«a999) SLOPED=SLOPEM

IF (KSLOPE.EQe999) YBIG=E(NUMPTC)

IF (KSLOPE«ET«999) XBIG=P(NUMPTC)
CEPTD=YBIG-SLJIPED*(XBIG)

LINED=SLQOPED=X+ CEPTD

CALL USER SPECIFIED METHOD TG SELECT POINT OF MAXIMUM CURVATURE::

TESTING NOW FOR POINT OF MAXIMUM

4310
4320
4330
4340
4350
4360
4370
4320
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
46790
4680
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4370
4880
4890
4500

E-25
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CURVATURE BETWEEN X VALUES OF BOUNDL AND BOUND2.

35t sfe ol afe ste sie afe sfe sie sfe sfe sle sl sfe sfe sl slesfe sle siesle

IF (KRAD.EQe2) CALL ANARAD
IF (KRADeNEo-2) CALL GRARAD

XS=RADMX
XSLP2=RACMX
X22=RADMX

DETERMINE OROINATE VALUE AT POINT OF MAXIMUM CURVATURE.

XS1=XS

XS2=XS#XS

XS3=XS#HXSHXS

XS4=XS%XSukXSuXS

XS5=XSEXSEXSEXSHXS
XSE6E=XS#XSuXSuXS#XSuXS

XST=XSuXSuXSuXSuXSuXSXS

XSB=XGuXSu XS XSmXSuXSuXS=XS

XSY=XSEXSHEXSHXSEXSHXSHXSEXSEXS

XS1C=XSHEXSHEXSHXSEXSHEXSHXSHXSEXSEXS

XSLE=XSuXSu XS XS XS XS XSt XS XS XS:XS

YSLP2=CC(1)+CC2)%XSL  +C(3)%XS52 +C(4)%X53 +C(5) %X 54
L+C(€)%XSS +CUT)EXS6 +CUBI%EXST +C(91%X58
2+C(10)%#XS9 +C(L1Y%XS1D +C(12)%XS11

2 O < B

CASAGRANDE®*S CONSTRUCTION

ORO)

CALCULATE A HORIZONTAL LINE CALLED *A*' THROUGH
(XSLP2sYSLP2)y POINT OF MAX CURVATURE.
CEPTA=YSLP2

LINEA=YSLPZ2
CALCULATE A LINE TANGENT TO CURVE AT

[XSLP2yYSLP2)yPCINT OF MAX CURVATURES
ANC CALL IT LINE ‘8B°%.

SLOPEB=CC{2)+2%C(3)%XS1+3%C(4)%XS2 +4%C(5)%XS3e 5%C(6)%XS4
163C(T)%XSS  +T#CIB)%EXS6 +8%C(9)%XST +9%C(10)%XS8 .
L10%CE11)%XS9 +11%C{12)%XS10

CEPTR=YSLP2-SLOPEB*(XSLP2)

4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5C60
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
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260
270

280

LINER=SLOPEB=XP+CEPTH

SISECT DIFFERENCES IN SLCPE BETwWEEN
LINE *A® AND LINE *B* AND CALCULATE
LINE *C* THRCUGH POINT OF -MAX CURVATURE .

SLOPEC=SLGPEE/2
CEPTC=YSLP2-SLOPEC=(XSLP2)

LINEC=SLOPEC*XP+CEPTC

FIND INTERSECTIOMN OF LINES *D' ANOD 'C* TO GET
THE VALUE FOR PRECONSOLIDATIGN PRESSURE.

PC=(CEPTC-CEPTC)/(SLOPED-SLOPEC)

SCHMERTMANN'S CONSTRUCTION

COMPUTE A LINE *F*% THAT HAS A SLOPE OF
*SLCPEE® AND GOES THROUGH INTIAL PRESSURE
AND INITIAL VOID RATIO OR ZeERO PERCENT STRAIN.

IF (KK.EQe2) 40 TO 260
CEPTF=EO-SLOPEE=(PINSTU)
GO TC 270

CEPTF = —~SLOPEE=PINSTU
CONTINUE

SLOPEF=SLOPEE

LINEF=SLOPEE=XP+CEPTF

COMPUTE PRECCNSGLIDATION VOID RATIO CR PRECCNSOLIDATION VERTICAL
STRAIN TO DEFINE INSITU PRECONSOLIDATICN STATE.

EC=SLOPEE*PC+CEPTF

NOW CCMPUTE A LINE 'G' THAT WILL REPRESENT
TRUE VIRGIN COMPRESSION LINE.

YVIRGI=0642%ED

IF (KKeEQel) GO TQO 280
YVIRGI=-(EO-Ce42%ED)/{1+ED)
CONTINUE
XVIRGI=(YVIRGI-CEPTO)/SLOPED
SLOPEG=(YVIRGI =-EC)/(XVIRGI =-PC)

CEPTG=EC-SLOPEG*PC

LINEG=SLOPEG*XP+CEPTG

OUTPUT OVER CONSOLIDATION RATIO AND PRECONSCLIDATION VERTICAL
EFFECTIVE PRESSURE WITH EITHER THE VOID RATIO OR VALUE CF STRAIN.

5510
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
57490
5750
5760
5770
5780
5790
800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
56910
5920
5930
5940
5950
5960
5970
5980
5990
6000
4010
6020
6030
6040
6050
6060
6C70
6080
6090
6100

E-27
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290

300

C
1080
1090
1100
1110
1120

1130

1140

E-28

!

POVE=10e=%=PINSTU

PRECCN=1040%::PC

CC1=SLOPEG '

CS=SLOPEE

vOIDC=EC

CCR=PRECCN/PCVE

IF (KKeEQel) CR = CCl1

IF (KKeEQel) SR = CS

IF (KKeEQel) CRMIN=SLOPED
PCMIN=(CEPTO-CEPTF)/(SLOPEF~-SLOPED)
ECMIN=SLOPEE*=PCMIN+CEPTF

IF (KKeEQoeleANDECMINGTSEQ) PCMIN=(CEPTD-EC)/(-SLGPED}
IF (KKeEQeleANOCECMINGT.EQO) ECMIN=ED

IF (KKoeECe2 e ANCECMINCGT0) PCMIN=-CEPTD/SLOPED
IF (KKoeEQa2eANCeECMINGGTeO) ECMIN=0.0
PREMIN=10e=2PCMIN

OCRMIN=PREMIN/PQOVE

IF (KKeEQe2) CR = CC1

IF (KK<ERe2) SR = CS

IF (KKsERe2) CRMIN=SLOPED

CALL PLOTTING SUBROUTIME CASPLT

CALL CASPLT

PINSTU=10%=PINSTU
DO 290 I=14NUMPTC

CONTINUE
DO 300 I=14NUMPTE
PEtI)=10e0%xPE(])
CONTINUE

FORMAT (*1%9//14Xe*STANDARD CONSOLIDATICON TEST'/20Xy
1DUCTION'/ /)

'DATA RE

FORMAT ('1'9//14Xy'CONTROLLED GRADIENT CONSCLIDATION TEST'/25X,y °F

IDATA REDUCTIGN'//)

FORMAT (*1'9//14Xy*CONTROLLEO RATE OF STRAIN CONSOLIDATION TEST?

1/28X9*DATA REDUCTIGON'//)

FORMAT (1HO9O9Xy"TEST NOa'914919Xs*HOLE NOa *9I2/1HO 99Xy *LOCATICN *
194A496 X' SAMPLE NOe *9A3/1HO99X9*'DATE '43A4914Xy'OPERATOR *9A4)

FCRMAT (1HO9SXy'SOIL TYPE =~ '94A4/1H099 Xy *BACK PRESSURE

1'PSI*///91HO934Xe *INITIAL® 93Xy 'FINAL")

FORMAT (1HO99X ' WATER CONTENT ®914X9F4al 9" %' 910X9F4aly®%*/1HO99IX 9"V

Y 9FEa291Xy

1CID RATIO'+17X9F402911X9F4e2/1HO99X9*'DEGe OF SATURATION®9y8XyFSaly®

2% 99XeF5e19'%")
FORMAT(LIHO///25Xy *DEGREE POLYNOMIAL ='sI2/1HCy5X,

1*'PTs OF MAXe CURVATURE SELECTED BY THE ANALYTICAL METHOD®'/1HO,

25X ¢*'SEARCH BGUNDARIES FOR PTe OF MAXe CURVATURE: ',
A2X9F5e29' TSF'q2X9F5e29"' TSF*

3/1H095Xy *SEARCH EOUNDARIES FOR VIRGIN CCMPRESSIECN CURVE:'yF6e29' T
4SF®92X9F5629' TSF'/1KGCe5Xy 'DEPTH FCR INSITU STRESS CALCULATION:*®,

52X+F5429" FEET' 94Xy 'SECONDARY CCMPRESSIGN AT' 41Xy
6F5e29" TSF*)

6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
5400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520

. 6530

6540
6550
6560
6570
6580
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700



115C FORMAT(1HG///25X« "DEGREE POLYNOMIAL ='912/1HCy5X,
1*PTe OF MAXe CURVATURE SELFCTED BY THE GRAPHICAL METHGOD'/1HO,
25X 9 *SEARCH BCUNCARIES FOR INITIAL TANGENT :'92XeFSe29' TSF'e2XeFS5.2
349 TSF*/1HC95Xe ' SEARCH BOUNDARIES FOR VIRGIN COMPRESSION CURVE:®,
A2X9F5e29' TSF*'92XeF5.2
49¢ TSF'/1HO+5X+'DEPTH FOR INSITU STRESS CALCULATION:®,
52X9FSe29? FEET'44X9*SECONDARY CCOMPRESSIGN AT'9elXs
6FSe29¢' TSF')
IF (KINDeNEo2e ANDeKKeEQala ANDeKRADeNES2) WRITE(IQUT,1180)
IF (KINDeEQoe2 e ANDeKKeEQo2cANCeKRADeNES2) WRITE{IOUTyL18C)
IF (KKeEQel}) WRITE(IDUT41190)
IF (KKeEGa2) WRITE (IJUT ¢1200)
IF(KKeFEQal) WRITELIGUT+1220) PINSTU9EDs PRECCNgPREMINYVOIDC9ECMING
1CCR+OCRMINSCRCRMINGSR
IF (KKeEQe2) VCIDC=-VQOIDC
IF (KKeEOe2) ECMIN = -ECMIN
IF [KKeFQa2) WRITE(IOUT91230) PINSTUEO4PRECCNyPREMINGVCIDCyECMINY
1CCRyCCRMINYCRyCRMIN SR
I (KKeEQe2) VOINDC=-VOIOC
[F (KKeEGe2) ECMIN = -ECMIN
IF (RUNTYP«EC.0) GO TO 340
IF ((KKeEQel)eANDLIKINDEQ.0)} GO TO 33C
WRITE (ICUT,1160}
116C FOIRMAT (1H1929Xe"INPUT ODATA*//1HO 99Xy 'TIME® #+3Xy'CEFLe RDGe'99Xy'Ps
1Pe RDGe'y4X9'LOAD ROGa'/1H )
C3 210 I=14,NUMPTC
WRITE (IDUY$1170) TRII)$DEFR(II) ¢PPR(I) 9 WRD(I)
L1700 FORMAT (1 9GXeF5eC 95X 3F6a2910X9F5.0410XeF540)
31C CONTINUE
DO 320 I=1+NUMPTE
WRITE (IOUTeL17Q) TRE(I)sDEFRE(I)sPPRE(I)yWROE(TI)
320 CONTINUE
WRITE(ICUT»1180)
1180 FORMAT(*'1")
330 CONTINUE
1190 FORMAT (L1X//1Xe T

v/ 1Xe®

VOID RATIJ ANALYSIS

(4. 3KC I SR PO ]
. — 3
>
-
-

v/ LXy!

120C FORMAT {1X//1Xs *

v/ 1Xe!

STRAIN ANMALYSIS

[0 NN SIS S UV U
—
)
-
-

'/ 11X s nTAr TN as S e nee s el slo e s sl me sl n ol dla sl e e el el el e e e e
o o v /)

340 CONTINUE

1210 FORMAT (16Xy20A4/}

1220 FORMAT(1IHO/1X +'INSITU VERTICAL STRESS ='yF6a34+" TSF'y9X,
LC*INITIAL vCID RATIO (EQ) ='9F6e3//1HC910X s 'RANGES DF STRESS-',
2°VOID RATIO SETTLEMENT PARKAMETERS®/1HO¢50X ¢ *PROBABLE - 'y
3'MINIMUM'/1HC o *VERTICAL PRECCONSCLIDATION STRESS cooeooscescvac’y
4FBa39* TSF  -'9F8.34" TSF'/1HOs 35HPRECONSOLIOATICN STATE®S VCID

5 RATIO p160te ), FBe392X9'~"9F843/1HOy*'OVERCONSCLIDATION',
6' RATIO (OCR) *921l(* ') 9F8e392Xe"'—*9F8.3/1HCy *CCMPRESSICN *,
TYINDEX (CC) *428('.") 17°8e392X 9" ="yFBe3/1HOs 'SWELL

BEXPANSION INCEX (CS) '924("e"') sFB8a342X//)

6710
6720
6730
6740
6750
€760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6500
6910
6920
6930
6940
6950
6960
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
1260
7270
7280
7290
7300

E-29



1230

350

1240

1250

1260
1270
1280

360

37¢C
380

[aNeNaNalea)

1290

E-30

FORMAT(1HO 9/1X #*INSITU VERTICAL STRESS ='y3F6e39* TSF'¢9Xy
L*INITIAL VOIC RATIO (EQ) ='4F6e3//1H0513Xys 'RANGES OF STRESS-STRAIN
2 SETTLEMENT PARAMETERS'/1HCySOX ¢ *'PROBARLE - MINIMUM®*/1HO,
3'VERTICAL PRECONSOLIDATIDN STRESS .-oc-oooooooaa'iFBoa" TSF "'
4FBe3y*' TSF'/1HO9y41HPRECONSOLIDATION STATE®'S VERTICAL STRAIN 410("
Se') 9FBa342Xs"~*9FBe3/1HC+*'OVERCONSOLIDATION RATIO (GCR) *421( o)y
6 F3e342X9'-*9FB.3/1HO+*COMPRESSICN RATIO (CR) 'y
T28( e ') 3FBe342Xe'=*'9FBe3/1HOy *SWELL RATIO (SR} *,
834('e')9FBe392X ///)

IF ((KINDeEQeQ)eANDe(KKeEJsl)) GO TO 380

IF (KINDeEQCeOsANDeRUNTYP.EQeOsAND.KRADEQs2) GO TO 350

IF (KINDeEQCeUeANDeRUNTYPeEQeO) WRITE(IOUT+1180)

CONTINUE

IF ((KKeEWlde2)e ANDe (RUNTYPeNESO)) WRITE (IUUT41250)

IF ((KKeEQe2) e AND(RUNTYPeERQeD)) WRITE (IOUT41240)

IF ((KKeFQel)oANDe (RUNTYPeNE«O) e ANDe (KINDeNEsO)) WRITE(IQUT§1250)

IF ((KKeEWel) e ANDe{RUNTYPeEQeO) e ANDe(KINDeNEO)) ARITE(IOUT$1240)

FORMAT (B8X9'EFFe VERTe '99Xy'VOID RATIO's9Xs*VERT. STRAIN'/
11HO 98X+ *STRESS* 934Xy * (IN/IN)*3y13Xy*OIAL RDOG&*/1H0+48Xy*(TSF)*//)

FORMAT (8X9*'EFFe VERTe *99X9'VOID RATIO*+9Xy'VERT. STRAIN'/
11HO 98X s *STRESS " 934X s *{IN/IN) g1 3Xs*TIME(MIN)'/1HOsBXy* (TSF)*//)

D8 360 I=14NUMPTC

IF (NUMPTCeGT«10) E(IN=-E(I)

IF((KINDeEQel) e ANDe (RUNTYPeEQeO) )WRITE(IOUT912TO)P(I)9CSEVT(I}sH(I
1)

IF((KINDsEQel) e ANDe (RUNTYP «iNEeO) )WRITE(IOUT912TOIP(I)9CSEVT(I} TR
11)

IF({KINDeEQe2) e ANDe (RUNTYPEQeO) JWRITE(IOUT91280)P(I)eE(I)yH(I)

IF((KINDeEQRe2) e ANDe (RUNTYP eNE«O ) JWRITE(IOUT31280)P(I)9E(I)sTR(I)

IF (KINDeNE.G) GO TO 360

IF (RUNTYPeEGeO) WRITE (IOUT91260) P{I)4CSEVT(I}sE(I)eH(I)

IF (RUNTYPeNEeO) WRITE (IOUT91260) P(I)4CSEVT(INsE(I)sTR(I)

FORMAT (LH 95X96(F10e54910X))

FORMAT (lH 95X92(F10e5910X)920X9F1l0e5}

FORMAT (1H 95X9F10e59430X92(F10e5910X))

CONTINUE

DO 370 I=14NUMPTE :

IF (NUMPTC.GTe10) EE(I)=-EE(I)

IF((KINDeEQel) e AND(RUNTYP ¢EQeO ) IWRITE(IOUT22TO)PE(I)9CSEVTE(I),
1 HE(TI)

IF((KINDeEQel) e ANDe (RUNTYP eNE«O ) )WRITE( IOUT912T70)PE(I)9CSEVTE(T )
1 TRE(I)

IF((KINDeEQe2) e ANDe (RUNTYP eEQeO) )JWRITE(IOUTs12B0)PE(I)9EE(I}sHE(T)

IF((KINDeEQe2) e ANDe (RUNTYPeNEO) ) WRITE(IOUT91280)PE(I)sEE(I )

1 TREC(I)

IF (KINDeNEeC) GO TO 370 ,

IF (RUNTYPeEQeO) WRITE (IDUT+1260) PE(I)9CSEVTE(I)GEE(I)yHEL(TI)

If (RUNTYPeWNEeO) WRITE (IOUT91260) PE(I)sCSEVTE(I)sEE(I)sTRE(I)

CONTINUE

CONTINUE

IF THE PT. OF MAXe CURVATURE HAS GREATER ABSCISSA VALUE THAN THE
PRECONSOLIDATION STRESS BY CASAGRANDE'S CONSTRUCTIONs THE PROCEDUR
HAS FAILED.

IF (PCelLTeXSLP2) WRITE (IOUTs1290!
FORMAT (LX///1X g e ATTENTION ANALYTICAL PROCEDURE WITH
1CASAGRANDE CCNSTRe HAS FAILED. CHECK DATA AND ASSUMPTIONS!!! =i A
2 kv /)

PINSTU=ALSGLC(PINSTU)

7310
7320
7330
T340
7350
7360
7370
7380
7390
7400
7410
1420
7430
7440
1450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
1560
7570
7580
7590
7600
7610
7620
7630
1640
7650
71660
ToT0
7680
7690
7700
7710
7720
7730
1740
7750
7760
7770
1780
7790
7800
7810
7820
7830
7840
7850
7860
7870
T8RJ
7890
7900
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390 CONTINUE
WRITE (IQUT+1300) CCFsLCF4PCF

1300 FCRMAT(1HO 95Xy "ADDITIUNAL INPUT DATA'//6Xs*CALIBRATION FACTORS: '/
16 X9 *OEFLECTICN =%9yFB8.545X9'LOAD =*9F%e5 95X 9 PRESSURE ='4F8.5)
WRITE (I0QUT41310) QCEFZ4WRZ4PPZ

1310 FORMAT(1HO95Xy "EQUIPMENT ZERQ READINGS: */6X9*"DEFLECTION =17,
L1FBe395X9"LIAD =1 4yFB:s3495Xy*PORE PRESSURE =¢4F804)
WRITE (ICUTs1320) DIAsSAMPHI

1320 FORMAT(1HO 95X 9 "DIAMETER OF SPECIMEN =%4yF6e39* INCHES®* 15Xy
L*INITIAL HEIGHT CF SAMPLE ="4F6e34°* INCHES')

40C CCONTINUE
WRITE {(IOUT,1180)
CALL PLOT (1%.090.0¢-3)
CALL PLOT(CeC+0.09999)
STQOP
END
SURRQUTINE CCNGRA

7910
7920
7930
7940
7950
7960
7970
7980
7990
8000
8010
3020
8030
8040
8050
8060
CONGOO1l0
CONGOOZ20

THIS SUBRUUTINE READS AND REDUCES THE TEST OATA FOR THE CUONTRGLLEDCONGOO3O0

GRACIENT AND RATE OF STRAIN CUONSCLIDATION TESTS.

COMMON /RLOKL1/ SEVT(303)4E(303)9SEVTE{103)4EE(103)4C(103)
DOUELE PRECISION C
COMMCN /BLOKZ2/ CEPTA 4SLOPEBsCEPTBySLOPECYCEPTCySLOPEDYCEPTD

CONGOO040
CONGOO0S0
CGNGOO060s
CONGOO070
CONGOO0B80

1SLCPEE+CEPTE+SLOPEFyCEPTFySLOPEGsCEPTG+BOUNDL¢BOUND2yBOUND3yBJUND4CONGOOS0

2¢BOUNDS ¢ BOUNDG o NUMPTC y NUMPTE ¢ PINSTU 9XSLP29PCoECWEU9CCR9CCL9yCSeCRy
3SRyNDEGINSICUT,IDIAL

COMMCN /BLOK4/ TR(303)49TRE(103)+CEFR(303)9DEFRE(103)9PPR{303)y
LPPRE(103) yWRE(303)9ywRDE(103)9LeSTVT(303),
2STVTE(103)+PPP(303)+PPPE(103)4PPT(303)4PPTE(103),
3CSEVT(303)9CSEVTE(103)4OFLI(303)+DFLIE(103)9ySTR(303),
4STRE(L1Q3)4yH(303)4HE(103)40CFsLCF4PCF

COMMON /BLOKE/ LOC(4)9yHCOL9SAM9TESyOPR{1)9DAT(3) yDES(4)+8C0(20),
1KK yRUNTYP

CONGO 100
CONGO11v
CONGO120
CONGO130
CONGCl40
CONGC150
CONGO160
CONGO170
CONGO 180

CIMMGN /BLGKSE/ SPGoywTIWeWTFWIWTFDyDEFI2CEFFoBPyDEFZ yWRZ9yPPZ9yHS9HI9CINGOL90

IHV ST EL9EFsSFeyNIowFyeySECONNHAR
DIMENSION T(S503)9Tc(503)

REAL LCF

INTSGER RUNTYP

REAC IN CINTROLLED TEST COMPRESSIUN DATA -- TIME,y DEFLECTIONS
PORE PPESSUREy AND LCAC.

80 30 I=1,30C
READ (INsL1COC) TRII}yOEFR(II9PPRII)IesWRDL{I) L
10C60 FORMAT (F4e09F5e292F440412)

COMPUTF &LL CUTPUT

T(IN=TR(I)-TR(1)+1,D
STVTLI)I=t(WRE(I)-wRZ)#=LCF*14440)/(20004 AR )
PPPIT)=({PPR(I)~PPZ):xPCF)
PPT(I)=PPP(I)#*0.072
SEVTL{I)=STVT({I)~(0.6666T=PPT(I))
CSEVTLTI)=SEVT(I)
CELICI)=IDIAL*=(DEFR(I)~-DEFI}*DCF
STR{I)=DFLI(I)/HI

HUI)=HI-CFLILI)

E(I)=tHV=-OFLI{I))/HS

CONGO0200
CONGP210
CONG0Q 220
CONGO0230
CCNGO0240
CONGO 250
CONG0260
CONGO270
CONGO 280
CONGO290
CONGO300
CCNGO310
CONGO32y
CONGO0330
CONG0340
CONGO 350
CONGQ360
CONGO370
CONGO 380
CONG0390
CONGQ400
CONGD410
CGNGO420
CCNGO430
CUNGC44D

E-31



C
C
C
C
C
10
C
20
30
C
40
C
C
C
c =
C
C
C
C
C
C
C
C
50
60
C
C
C

E-32

IF (SEVT(I)eGTWSECOND) TR(I)=TRI(I-1) CONGO0450
IF (SEVT(I)eGE«SECOND) STRI(I)=STRI(I-1) CONGO460
IF (SEVT(I)eGESSECOND) E(I)=E(I-1) CONGO470
IF (SEVT(I)eGESSECOND) SEVTI(I) = SEVT(I-1) CONGO420
IF (KKeEGal) CSEVTI(I)=EI(I) CONGO0490
MUST DETERMINE WHEN EXPANSION POINTS START. CUNGO 500
IF(I.EQs1) GCTO 20 CGNGOS510
CONGO520

HAS EFFECTIVE STRESS OECREASED MCRE THAN Oe7 TSF BETWEEN CONGOS30
CONSECUTIVE CATA POINTS? IF SOs CONSIDER ALL SUBSEGUENT CUNGO540
DATA AS EXPANSION-REBOUND CATA. CONGO550
IF(SEVT(1)eGTe1ls0) GO TO 10 CONGO560
OIFF=SEVT(I)=-SEVT(I-1) CAONGQ570
IFII.£EC.2) GG TO 10 CONGO580
OIFFI=SEVT(I-1)=-SeVT(I-2) CONGN590
CONTINUE CONGO¢00
IF (SEVT{I)eLTe(SEVT(I-1)-0e7)) GO TO 40 CONGO61l0
IF (SEVT(i)elLTeOel}) SEVTI(I)=0.1 CONGO620
CONTINUE TG READ COMPRESSION DATA. CONGO0630
CONTINUE CGNGO&40
CONTINUE CONGO650
CONGO660

CONTINUE CONGO670
CONGO680

IGNCRING LAST POINT (SECCNDARY CCMPRESSION PRORBRABLY} TO avoID CONGO0690
FITTED CURVE 3ENOING BACK TRYING TO FIT ITe. CONGO 700
NUMPTC=I-1 CONGOT710
%% THIS POINT HAS NCW BEEN MADE INVISIBLE TO ANALYSIS. CONGO 720
CONGO730

CONGUO 740

READ IN CONTROLLED TEST EXPANSION-REBOUND CATA -~ TIME.DEFLECTIONyCONGO750
PORE PRESSUREsy AND LCAD. CONGO760
CONGO770

D0 50 I=14103 CONGO 780
READ (INs100C) TRE(I)9WDEFRE(I)9PPRE(I}eWRDE(I) WL CONGO 790
CONGO8O00

HAS A BLANK CARD BEEN ENCOUWTERED? IF NOT, CONTINUE TO LCOK FOR CUNGOB10
MORE DATA. CONGO820
IF(TRE(I) «EQe0) GOTO 60 CAONGO0830
TE(I)=TRE(I)-TRE(1l)+1.0 CAONGO840
TE(I)=TRE(I)=TR(1)+1leD CONGO8S0
TRE(I)=TE(I) CONGO860
STVTE(I )=((WRDE(I)-WRZ)*=LCF%144.0)/{2000.0%AR) CONGO8T0
PPPE(TI)=((PPRE(I)-PPZ)*PCF) CONGOB880
PPTE(I)=PPPE(I)*0s072 CONGO0890
NUMPTE=I CONGOS00
SEVTE(I)=STVTE(I)-(0.66667*PPTE(I)) CONGOS910
CSEVTE(II=SEVTEI(I) CONGO0920
DFLIE(I)=IDIAL=(DEFRE(I)-DEFI)*=DCF CONGOS30
STRE(I)=DFLIE(T}/HI CONGO0S940
HE(I)=HI-DFLIE(I) CONGO 950
EE(I)=(HV-DFLIE(I))/HS CONGO960
IF (KKeERQel) CSEVTEI(I)=EE(T) CONGOS70
CONTINUE CONGOS80
CONTINUE CONGO0990
RETURN CONG1 0090
END CONG1010
GRAROO1O

GRAROOZ20

GRAROQO30
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GRAROO040

GRAPHICAL VMET

GRAROOQS0
GRARQO0O60
SURROUTINE GRARAD GRAROO70
GRAROQ20
THIS VERSION EMPLOYS MCNULTY'S CONSTRUCTIOM TO DETERMINE GRAROQOO0S0
THE POINT OF MAXIMUM CURVATURE. GRARO100
COMMON /8LOK1/ P(303)+sE(303)sPE(103)4EF(10U3)sC(L103) GRARO110
DOUEBLE PRECISION C GRARO120
COMMON /BLOK2/ CEPTA ySLOPEB«CEPTBy SLOPECyCEPTC9SLOPEDyCEPTDy GRARO130

L1SLCPEEsCEPTE 9 SLOPEFsCEPTF9SLOPEGYCEPTGyBOUNDLyBCUND29BOUND34BOUND4GRAROL140
29BOUNDS ¢yBOUNTS 9 NUMPTC ¢yNUMAPTEsPINSTU9X5LP29yPCyECYED9CCR9yCL19yCSyCRy GRAROLSO

3SR9yNDEGsINSsICUT4IDIAL GRARO160
COMMON /BLCKS/ LOC(4) 9HOLy SAMGTES9QOPR(1)9DATI3) 4DES(4)sECD{20), GRARO170

LKKyRUNTYP GRAROBO
COMMCN /BLOKE/ RADO(103) yRADMINsRADMX yIMINGIPRINTyJPRINTGKIND GRARO190

COMMON /BLCKS/ X(1C3¢ 4)9¢SLOPEYI(103)4SLCPE2(103) GRARO0200

COMMON X1(103y 4)9X2(103y 4) 9X31103y 4)¢X4(1039 4)9X5(1039 4)9 GRAROZ210

LX6(1039 4)9X7(103y 4)9X3(103s 4)4X9(103y 4)9yX10(1034y 4)9X11{103y 4GRAROZ220
2) GRARO0230
COMMON /RISEC/ XTAMNGYTANGCEPTAN ¢XANGLEsSLUPBISCEPTRI GRARO0Z240

INTEGER RUNTYP GRARO250

INTEGER START4SFAC GRARO260

DIMENSION CURVE(LO1)eyYLINE{(LOL) GRAROQO270

GRARO0Z280

ROUND IS USED AS TEMPORARY STORAGE LOCATION FOR BUUNDLle GRAR0290

BOUND=BOUND1 GRARO300

BOUNDS=BOUNDZ GRARO310

GRARO0320

BOUND6 IS SET EWJUAL T3 0.0 SO THAT PLOTTING SUBROUTINE CASPLY WILLGRARO330
USE APPROPRIATE STATMENTS WHICH WILL PLCT MCNULTY®S CONTRUCTION. GRARO340

80UND6=040 GRARO350

GRARO360
IMIN=T GRARN370
RADMIN=100. GRARO380
RADMX=0,.0 GRARO0390

GRARO400
FINC A UINE TANGENT TO INITIAL CCMPRESSION CURVE HAVING SLOPE OF GRARO410
EXPANSION-REEJQUND CURVE. GRARO420
D0 30 J=143 GRARO0430
DELTA=ABS(BOUND2-BOUNDL) /1000 GRARO0440
RADMIN=100.0 GRARC450
DC 10 I=14101 GRARO460
X{leJ)=BOUNDIL GRARO470

GRARO0480
X1{IeJ)=X{IsJ)i®™1leQ GRARO0490
X2(Ioed)=X(IeJd)=X(14J) GRAROS0O0
X3(Ied)=X(IgJd)X(I9Jd)ixX(Igd) GRAROS10
X4(Ted)=X(TgdVuX(Iogd) X Iod)#X(Iyd) GRARNS20
XSUTed)=X(T gd)isX(Tod)aX(TegJd)uX(Tgd)aX(T4J) GRARO0S530
Xo(Ied)l=X(I od)=X(Tod)X(I9d )X (Igd)uX(Igd)=X(19d) GRAR0OS540
XT(Iogd)=X(Ted) X TeddX{IoddaX(Ted)aX(T ed) X Led)aX(Ied) GRARO5%0
X8(Iod)=X(I o) XATod) =X (Tod )X {Tod) XTI od)HX(Ied)HX(I9gd)iX(Igd) GRARO560
XO(Ted)=XlIeJd)X(Tod)u=X(Ied)=X(Tod)a XTI gd)EX(T9d)sX(Igd)=X(I9Jd) GRARCS570
L3:X(Ied) GRARODS580
X1C(TeJd)=X(Tod XL od)=X(I gd) X (T od)=X(Tgd)uX(IgJ)HX(Ted)=X(19d) GRARNSSGO

GRARO600

GRARO610

GRARO0620

SLCGPELAI}=C(2}+2:4:C{3)=X1(Ted) + 3%C(4)=X2(1ed) + &:C(5)1EX3(1eJ)+ GRAROS630

E-33
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10
20

30

40

KSHC(6) X4 (Tod) e 6%CITI=X5(T9d)e THCUE)=Xo(I9J) +83C(IEXT(IoJ)+
KO#C(10)#X8(IsJd)+ 10%C(LLIHFXG(T9Jd) +11%C(L2)4XLC(I9d)

TRYING TCO FIND TANGENT TGO CURVE WITH SLCPE GF REBOUND-EXPANSION
CURVE.
IF (SLCPE1(I)eLT«SLOPEE) GO TO 20

X(I+l9J}=X(IyJ)+DELTA

CONTINUE

IF (T.EQel) GO TO 40

BOUND2=X(I14J)

BOUNDL=X(I-1yJ)

CONTINUE

J=3

XB=X(IyJ)

CONTINUE

IF A TANGENT TO INITIAL COMPRESSIUN CU%VE IS NOT FCUNDy CDEFAULT
TD USE FIRST SEARCH BUUNCARY (BCUNDOL) AS ABSC1SSA VALUE CN
COMPRESSIJN CUKRVE THROUGH WHICH LINE HAVIANG THE SLOPE WILL BE
DRAWN.

IF (I.EQsl ) X2=oCUND

XTAN=XB

XBl=X8

XB2=XB=XR

XB3=X8xXB: X8

X34=X3%:XRXBaXB

XBSE=XBuXBuXBuXBHXB

XBO6=XB=EXBEXBRXEwXB#XB

XBT7=XB#XBE#XBuXB#XBEXBHXB

XpBE=XBEXBAXBEXBEXBEXBEXBEXR

XBG=XBuXBAXBAXBAXBEXBEXBAXBEX3
XB10=XBEXSEXBAEXBUXBEXZEXBEXBEXPEXB
XBlL=XBaX8uEXBEXBRXBEXBEXBHXBEXBEXBHXE

YTANSC(1)+C(2)#XB1l+ C(3)%XB2 +C(4)%XB3 +C(5) X84 +
1C(6)%X85 +C{T)5XB6 +C(8)=XBT +C(9)::X88 +
2C(1CI1%XB9 +C(11)%X810 +C(12)%x811

CEPTAN=YTAN-SLOPEE=*XEB
TAMGENT LINE HAS BEcN CEFINED.
FING INTERSECTIOM WITH LINE *D°' (VIKGIN COMPRESSION LINE),

XANGLE=(CEPTAN-CEPTO)/(SL3PED-SLOPEE)
YAANGLE=SLUPEE=XANGLE+CEPTAN

PI=355./113.

SFAC=NUMPTC+2

IF (KKeERel) E(SFAC)=0.04

IF (KKetQe2) E(SFAC)I=0.02

DELTA=E(1)-2(NUMPTCY)

[F (KKoeEleloe ANCoABS(DELTA) «GTe0632) E(SFAC)=0,03
IF (KXetRNe2eANDABSINELTA) «GTa0a16) E(SFAC)=0s04
T 570 {S oDy RUMPTC, 1)

P{SFAC)=0.30C2

FACTCR=P(SFAC)/E(SFAC)

GRAROQ640
GRARO650
GRARQ660
GRARQ6T70
GRARO680
GRARO690
GRAROT00
GRAROT10
GRAROT20
GRARO730
GRAROQO740
GRAR2750
GRAROT60
GRAROT70
GRAROT80
GRARNT790
GRARO800
GRAROd10
GRAROQ820
GRARO3B30
CRAROB40
GRARO850
GRAROB60
GRAROQOBTO
GRARO880
GRARO0B9DQ
GRAROS00
GRAROQS10
GRAR0S20
GRARO0930
GRARO0G4D
GRAROS950
GRAR0960
GRAROQOST0
GRARO9%20
GRARO0990
GRAR10090
GRAR1010

"GRARL1020

GRAR1030
GRAR1040
GRAR1 050
GRAR1060
GRAR1 070
GRAR1C8O
GRAR1090
GRARL100
GRARL1 119
GRAR1120
GRAR113v
GRAR11490
GRAK1150
GRAR1160
GRARI1TO
GRAR1 120
GRARI1190
GRAR1200
GRAR1210
GRAF1220
CRAR1230
GRAR1240
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50
60

RISECT PICTORIAL REPRESENTATION OF INTERICR ANGLE FCRVMED

BY INTERSECTION OF INITIAL TANGENT AND VIRGIN CCMPRESSION
CURVE LINE REPRESENTATION.
SLCPEI=TAN(PI-AQS(ATAN(SLUPED*FACTOR))—ABS(ABS(ATAN(SLOPEE*
LFACTCOR) ) ~ABS(ATAN(SLOPED*FACTUOR))+PI)/2.0)

SLOPBI=SLUPBI/FACTOR
CEPTBI=YANGLE-SLOPBI+XANGLE

LINE JF ANGLE BISECTOR HAS BEEN DEFINED.
BOUND1=BOUND

BOUNOZ2=P(NUMPTC)

FIND INTERSECTION OF ANGLE BISECTOR LINE WITH CCMPRESSICN CURVE'S
POLYNOMIAL REPRESENTATION.

DO 70 J=143

DELTA=ABS(BOUND2-BOUND1})/100.0

00 50 I=1y101

X(1yJ)=BOUND1

XL(Ugd}=X(IyJ)*1e0

X2(Ied)=X(Todi=X(I4J)

X3(TeJ)aX(Tedi=X(Ted):X(TeJ)

XG{TaJ)=X{(ToJ i uX(Lod)=X(TeJ)EX(TsJd)
XS(0Ted)=X{Ted)EX{Tod)SX(Tgd)EX(Ied)aX(T 9d)

XE(Tod) =X(Tgd) XA Tod )X (T X{T o) aX(Tod)=X(Ted)
XTCLodb=X(Tgd)X{TgdbX(Ted)X{Tgd)uX(T 9d) 5 X{(TeJVX(TyJ)
XB(IoJ)=X{IoJ) X Ted) X{Tgd) XL o) XTI gd) X Led)X(T9d)EX(1sd)
X9(Iod)=X(Tad)aX(Ted)aX{Tpd)eX{Tod) X (I 9d) 5 X 19 d)X(I9J)&EX(Tsd)
L¥X(Ted)
X1O(TIod)=XCadVaXAToddaX(TodIaX (T 9l X IodIEX(T9d) =X Tod)=X{T9J)
LEX(Led)=X(T 9 J)

XILUIod)=XtTod )i X(Tod)a=X(T o) XtTod)EX{Tod)EX(T o) EX(Ted)EX(T9d)
15X (Ted)EX(Ted}1uX(Ted)

CURVE(I)N=C(1)+ C2)#=X1(Ied)+ C(3):=X2(19d)+ Cla) x=X3(T1yJ)+
1C(5)=XG(TyJd)+ ClBIEXS(Iyd)+ ClT1EX6(I9J)+ C(BI=EXT{Isd)+
2C{9)1XB(IyJd)+ ClLlO)=X9(IeJ)+ Cl1L)HX10(Led)+ Cl121%X11(IyJ)
YLINE(I)=SLOC3I=X(I4J)+CEPT3I

INUM=Y

FINDING THF INTERSECTION OF ANGLE RISECTOR wITH COMPRESSION CURVE
By CCMPARING OROINATES @OF COMPRESSION CURVE'S POLYNCMIAL AND

GRAR1250
GRAR1260
GRARL 270
GRAR1280
GRAR1290
GRAR1300
GRAR13}0
GRAR1320
GRAR1 330
GRARL 340
GRAR1350
GRAR1 360
GRAR1370
GRAR1380
GRAR1390
CRAR1400
GRAR1410
GRAR1420
GRAR1430
GRARL 44D
GRAR1450
GRARL 460
HRAR1470
GRAR1480
GRAR1490
GRAR1500
GRAR1S10
GRAR1520
GRARL1530
GRAR1540
GRAR1SS0
GRARLS60
GRAR1570
GRAR1580
GRAR1590
GRAR1 600
GRAR1610
GRAR1620
GRAR1630
GRAR1640
GRAR1650
GRAR1660
GRARL670
GRAR1680
GRAR1690
GRARL 700

ANGLE BISECTCR LINE WITH INCREASING ABSCISSA VALUESe INTERSECTIONGRAR!710

IS FOUND WHEN THE ORDINATE VALUE OF THE ANGLE BISECTOR LINE IS
GREATER THAN THE CORRESPONCING CRDINATE VALUE OF THE COMPRESSICN
CURVE POLYNOMIAL.

POINT OF INTERSECTIUN IS GRAPHICALLY SELECTED PCINT CF MAXIMUM

CURVATURE,

IF (YLINE(I)aGToCURVE(I)) GG TO 60
X(T+1lyJ)=X(IyJ)+DELTA

CONTINUE

CONTINUE

IF (IeLEol) GO TO 70
BOUND2=X(T4+J)

GRAR1720
GRAR1730
GRAR1740
GRAR1750
GRAR1760
GRAR1 770
GRAR1780
GRAR1790
GRAR1800
GRAR1810
GRAR1820
GRAR1830
GRAR13840
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70

10

BOUND1=X(I-1sJ) GRAR1850

CONTINUE GRAR1860
IF (IeNEal) J=3 GRAR1870
IF ((INUMeEdoel}sANDolIolEal)) J=1 GRAR1880
IF ((INUMeEQe2) eANDel IolLEsl)) J=2 FRAR1890
IF ((INUMeFUGe3) oANDol(IalLEsl)) J=3 GRAR1900
ROUND1=BOUND GRAR1910
BOUND2=80UNDS GRAR1920
GRAR1930

THE GRAPHICALLY SELZCTED POINT OF MAX. CURVATURE. GRAR1940
RAOMX=X(T1yJ) GRAR1950
GRAR1960

RETURN CRAR1970
END GRAR1G80
SUBROUTINE ANARAD ANAROOOL
ANAROO10O

ANAROOZ2UL

SR ANAROO30

ANALYTICAL METHQOD ANAROO4Q
W R o R ANAROOSO
ANAROO60O

ANAROOG6L

THIS VERSION EMPLOYS THE MATHEMATICAL DEFINITION OF THE AlNARO062
RACIUS OF CURVATURE IN SEARCHING FOR THE POINT OF MAXIMUM ANAROQOO63
CURVATURE ANAROOG64
ANARQQTO

THE PICTORIAL LCCATION OF THE POINT OF MAXIMUM CURVATURE DEPENDS ANAROOSO
PRIMARILY ON THE ARITHMETIC RATIC OF THE SCALE FACTORS USED IN ANAROOSO

THE HORIZONTAL AND VERTICAL DIRECTIONS. HENCE,y WITH A DIFFERENT ANAROLOO
RATIO FOR THE HORIZONTAL TO VERTICAL SCALE FACTORS, THE POINT OF ANAROLl1lO
MAXIMUM CURVATURE WILL BE LOCATED AT A DIFFERENT ABSCISSA LOCATIONANAROL20
ON A GIVEN CURVEe THE RATIO OF THE HORIZONTAL TO VERTICAL SCALE ANARO130
FACTORS »UST HE MULTIPLIED TIMES THE FIRST AND SECOND DERIVATIVES ANARD140

REFCRE THE MATHEMATICAL DEFINITION Of THE PCINT OF MAXIMUM CUR- ANARO150
VATURE CAN BE USED TC SELECT THE POINT OF MAXIMUM CURVATURE BASED ANARO160
ON THE PICTORIAL CHARACTERISTICS OF THE FITTED CURVE. ANAROLT70O

ANARO1BO
REAL8 DSQRT ANARO190
COMMON /BLOKY/ P(303)4E{(303)4PE(L103)4EE(103)+CC(103) ANAROZ200
DOUBLE PRECISION CC ANAROZ210
COMMON /BLOKZ2/ CEPTAySLOPEByCEPTBySLCPEC+CEPTCySLOPEDYCEPTD, ANAROZ220

L1SLOPEEYCEPTEySLOPEFWCEPTF9SLOPEGYCEPTG9yBOUNDL sBOUND29yBOUNO3yBOUND4ANAROZ30
29y BOUNDS 9y BOUNCG 9 NUMPTC 9y NUMPTEZPINSTU9XSLP29yPCyECYEO9CCRyCC L9y CSyCRy ANARNZ240

3SRyNDEGsINsICUTyIDIAL ANARO250
COMMON /BLOKS/ LOC{4)9yHOLySAMyTESyOPR{1)}4yDAT(3)sDES(4)yBCD(20), ANARO260
1KK y RUNTYP ANAROZ7Q
COMMCN /RLOK8&/ RAO(103) ¢RACMINGRADMX 9 IMINGIPRINT¢JPRINTKIND ANARO280
DOURLE PRECISION C(L12)yX(103y 4)sSLOPEL{103) ANARC290
DIMENSION SLCPE2(103) ANARO300
DSUBLE PRECISION X1{103y 4)9X2(103y 4)¢X3(103y 4)eX4({103y 41}, ANARO310
1XS{10394)9yX6(103y 4)9XT(103y 4)+X8(103y 4)yX9(103y 4)yX10(103s 4)9yANARO320
KX11(103s4) ANARO330
DO 10 I = 1,412 ANARO340
ClI)=0.0 ANARO 350
C(I)=CC(I1} ANARO360
CONTINUE ANARO370

ANARC 38U
BOUNDS=80UND] ANARO390
SOUND6E=BOUND2 ANARO40OD

ANARO410
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DERIVZ2=0.0

IMIN=T7

IDERVZ2=T7

RADBIG=0.C

ICHECK=0

J=1

IF (KKeEQel) E(NUMPTC+2)=2.04

IF (KKeEQe2) E(NUMPTC+2)=0.02

DELTA=E(LI-E(NUMPTC)

IF (KKeEQol eANDoABS(DELTA)«GTe0e32) E(NUMPTC+2)=0.08
IF (KKeEQe2+AND<ABS(DELTA)eGTe0o16) E(NUMPTC+2)=0.04
CALL SCALE(E+8¢09NUMPTCo1)

FACTOR=0.3000/E(NUMPTC+2)

ANARO420
ANARO430
ANARO440
ANARQO4S0
ANARO460
ANARO4T0
ANARO48BO
AINARO490
ANAROS500
ANAROSLO
ANAROS520
ANAROS30
ANARNS40
ANAROSS0

COMPUTE RADII OF CURVATURE AT GENERATEC ABSCISSA BETWEEN SEARCH ANAROS60

BEOUNDARIES.

DO 40 J=1,2

IF (IPRINT.EGCeO0) WRITE(IOUT,1030)

IF ((IPRINTeEQel)oANDel(JeEQe2)) WRITE(ICUT,1030)
DELTA=ABS(BOUND2-80UND1)/100.0

RADMIN=100,0

00 30 I =1+1C1

X(149J)=EOUND1

X10I9J)=X(I9J)*l a0

X2(IaJ)=X(TeJ)=X(T9d)

X3(I9d)=X{TeJ)EX(T9Jd)=X(I9J)
XalIod)=X(IeJ)EX(TeJd)iX(IaJd) X (I6J)
XS(Ied)=X(Iod) X TeJd)eX(TaJd)uX(Ted)=EX(Ted)
X6UIgyJ)=X{Tod)mX(Ted)=xX(IeJ) XTI aJd)EX(Tad)=X(19J)
XTUIeJd)=X(T 9d )X (Ted)asX(Tegd)X(T 9Jd)EX(T od)X(Iad)%uX(I9J)

X8(IoJ)=X(T o)X Iod)EXtTogd) X(Tod) XTI o) EX(TIod)aX{Tyd)X(IgJ) ANARO730

ANAROSTO
ANAROS580
ANAROS90
ANARO603
ANAROG610
ANARQ620
ANARO630
ANARQ640
ANARO6S0
ANARO660
ANARO&GTO
ANARO680
ANARO690
ANARO 700
ANARQ710
ANARQO720

XO(IgJ)=X(Ted)uX{Igd)X{TIod )X (T gd)EX(I 9d)=X(Ied)EX(IeJIEX(T0d) ANARQ740

L#X(Ied)

ANARO 750

X1O0(TaJd)=X(Igd)X(Tgd)aXOLgd)=X(TIead )X Lgd) XL 9J)%X(IeJd)X{IsJ) ANAROT60

15X TeJ)EX(I 9d)

SLOPEL(IN=C(2) +2e%C (3P X1(TI9J)+3aC(4)%X2(T9d) + 443C(5)%:X3(T9yJ)+ ANAROBIO

ANAROQT70
ANARO780
ANARO790
ANAROBOO

KSe#ClE)#XG (T 9J) #+60#CUTIXS(T9J) +T axC(B)#XO6(I9J) +8e%CIF)=XT(I9J)+ ANAROB20

K#C (101#X8(IgeJ)+ 10HCOLLI%XG(I9J) +11C(L12)X10(I4J)

ANAROB30
ANAROB40
ANARO8S5Y
ANARO860

SLOPE2(I)=25C(3)+6%C(4)5=X1(TeJ)+12=C(5)5X2 (19 J)+20%C(E)EX3(I4J) ANARDBTO

L4305C (T X4 {9 ) +42a:C(BIRXS{T 9 ) +56%C(Q):X6(14J)
2+T724C{10)=XT(Lod)+90=C(1L)=XB(T 9J)+110%C{12}%=XF(I4J)

SLOPEL(I)=SLCPEL(I)=FACTOR
SLOPEC(I)=SLCGPEZ2(I)=*FACTOR

THIS NEXT EQUATION IS USED TG CALCULATE

THE MINIMUM RADIUS OF CURVATURE,

THESE RADII ARE THEN COMPARED TQO OBTAIN THE
SMALLEST ONE PRESENT.

ANARO 8R0
ANAR0890
ANAROSOO
ANAROS10
ANAROSZ20
ANARCS30
ANAR0O940
ANARO9S50
ANAROG6O
ANARQOST70

RAD(I)=DSQRT((1+SLOPEL(I)*SLOPEL(I))*(1+SLOPEL(I)=SLOPEL(I))*(1+ ANAROG9EO

LSLOPEL(I)=SLCPEL(I)))/SLOPE2(I)

ANAROSS 0

IF (IPRINTEGeD) WRITE(IQUT1000) T4X(IyJ)9sRAD(I)SLOPE2(TI) ANAR 1000

1000 FORMAT (lX,IB,ZX,'X :'vGXSQSvSXQ'RAD :"6150575X9'SLOP52

=y F10.5)ANARL1OQ1O
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IF(ABS(RAD(I))eGE<ABS(RADBIG)) RADBIG=RAD(I) ANAR1 030
IF(ABS(RAD(I))eGE«ABS(RADBIG)) IRIG=I ANAR1040
IF(ABS(RAD(I))eGEoASBS(RADBIG)) XBIG=X(IsJ) ANAR1050
IF(ABS (SLOPE2(T))«GT«ABS(DERIV2)) IDERV2=1 ANAR1 060
IF(ABS(SLOPE2(I))eGT«ABS(DERIV2)) DERIV2=SLCPE2(I} ANAR1070
IF (I.EQe1) GO TO 30 ANAR1080
IF (ABS(RAD(I)) «GTeABS(RACI(I-1))) GO TO 20 ANAR1090
GO TO 30 ANAR1100

20 CONTINUE - ANAR1110
IF (1.£3.2) GO TO 30 ANAR1120
IF (ABS(RADMIN)<LE<ABS(RAD(I-1))) GO TO 20 ANAR1I30
IF (ABS(RAD(I=2))<LE.ABS(RAD(I-1))) GO TO 30 ANAR1140
ICHECK=1 ANAR1150
IMIN=I-1 ANAR1160
IF(IMINGLE«5) GO TO 30 ANAR1170
IF(IMIN.GE«96 ) GO TO 30 ANAR1180
RADMIN=RAD(I-1) ANAR1190
RACMX=X(I-14J) ANAR1200
30 X{I+1yJ)=X(I,4J)+DELTA ANAR1210
IF (IMIN.EQe7} GO TG 40 ANAR1220
IF (IMIN.EQel) GO TO 40 ANAR1230
IF (IMIN.EQ.101) GO T3 40 ANAR1 240
BOUNDI=X(IMIN=14J) ANAR1250
BOUND2=X({ IMIN+14yJ) ANARL 260
40 CONTINUE ANAR1270
J=2 ANAR1280

C ANAR1 290

o IS THERE A DISCRETE POINT OF MAXIMUM CURVATURE IN 90( MIOPORTION ANAR1300

o OF SEARCH BOUNDARIES? IF THERE IS NOT, DEFAULT TO USE LOCATION ANAR1310

C OF THE MAXIMUM VALUE FOR THE SECOND DERIVATIVE AS CHOSEN POINT ANAR1320

C OF MAXIMUM CURVATURE. ANAR1330
IF (ICHECKeEQeO) IMIN=IDERV2 ANAR1340
IF (ICHECKeEQeO) RADMX=X(IMINgJ) ANAR1350
IF(IMINeLEe6) RAOMX=X(IDERV2yJ) ANAR1360
IF(IMINGGE«94) RADMX=X(IDERV24J) ANAR1370
IF(IPRINT«EQeO) WRITE(IOUTs1010) X(IMINgJ) ¢ IMINyDERIV2yIDERV2 ANAR1380

1010 FORMAT(5X 9 *XMIN =*'93F10e595X 9 IMIN =*4y1349Xy'DERIV2 ='4yF10e595Xs ANAR1390
K*IDERV2 =%413) ANAR1400
IF(ICHECK«EQ«D) WRITE(IOUT,1020) ANAR1410
IF(IMINGLE«6) WRITE(IQUT,1020) ANAR1420
IF(IMINGGE«94)WRITE(IOUT,1020) ANAR1430

1020 FORMAT('0" 95Xy " =WARNING##: PTe MAXe CURVATURE NOT WITHIN 90( ' ANAR1440
1y *MIDPORTION OF BOUND1 AND BOUNDZ2.°'/1HO9S5Xs*LOCATION OF MAXIMUM ' ANAR1450

2y "SECOND DERIVATIVE TAKEN AS DEFAULT FOR PTe OF MAXe CURVATURE®'//)ANARL 460
IF(ICHECK «EQe0) WRITE(IOUT41030) ANAR1470
IF(ICHECKoeNE«OoANDeIPRINT«EQeO) WRITE(ICUT+1030) ANAR1480

1030 FORMAT ('1°) ANAR1490
BOUND1=BOUNDS ANAR1500
BOUNC2=BOUND6 ANAR1510

C ANAR 1520

C BOUND6 IS SET EWQUAL T2 999 SO THAT PLOTTING SUBROUTINE ANAR1530

C CASPLT WILL SKIP ARGUMENTS RELATING TO THE GRAPHICAL ANAR1549D

C METHOD. ANAR1550
BOUND6=999.0 ANAR1 560

C ANAR1S70
RETURN ANAR1SR0O
END ANARL 590

C 00000010

C 00000020
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20

30

40

LEAST SQUARES CRDINARY PCLYNOMIAL CURVE FITTING SUBROUTINE

NUMALIB
UNIVERSITY OF XENTULKY
COMPUTER CENTER

MCVEY HALL
LEXINGTUONy KENTUCKY

SUBRQUTINE FLSQFY(NsMyXsYaWsCoALPHAZBETA9SsSCMSGIPRyPOSNL9MNT)

IMPLICIT REAL=8 (A-HyU-hel)

00000030
00000040
00000050
00000050
00000070
000000180
00000090
00000100
C00U21L10
00000120
00000133
00000140
000001%0
COCuU0160
Q000C170
oooonleo

DIMENSION CUNL) 9y ALPHA(MNL) 9BETA(MNL) 9 SEMNL) 9 SGMSQ(IMNL) 9y PRIMNL) »PO(QO00CM193

SMNL oW (M) g X (M) oY (M)

GAVOA=1.

NO=C

CALL FGEFYT(NINOsXeYowesBETA9SySGMSQeALPHAZPRyPOyMyaMNL)
CALL FCODA(NsCsPCyPRyALPHAGSETA yGAMDAyS 9N+ 1)

RETURN

END

SUBROUTINE FCUDA(N9Co9PMyPRIALPHAVBETA9GAMIA ¢S oNN)
IMPLICIT REAL%8 (A-Hol~nsl}

DIVMENSTIOM CUNN) gALPHAINMNN) g BETAINN) s PMINN) 9 PRENN) o S NN

Nl=N+1

DO 10 IB=1lsN1
C(IB)=0,
PM(IR) =0.
PR(I®) =0,
PR{1}1=1,
Ctly=S(1)

N3 20 T=14MN
T2=C.

N1=T+1

0J 2C IB=1eN1
T1=(T2~-ALPHA(I}#PR(IB)-BETA(I)%=PM(IB))/CAMCA

T2=PR(IB)
PM(IB)=PR(IB)
PRUIR)=T1}
CUIB)=C(IB)+TL%S(1+1)
RETURN

END

SURROUTINE FGEFYT(MyNOsXsYsWeBETA9SeSGMSOHyALPHAWPRyFOIMyNI)
IMPLICIT REAL=8 (A-HyU-hel)

DIVMENSTION X(M) oY (M) 9BETAINI) sALPHAINTI) 9S(NT )9 SGMSUINI) 9PR( M),
PO (M) e W(M)

FCRMAT (32H THERE IS AN ERROR IN YOUR DATA)

IF (N -NO -M) 10+30420

ITF(N-ND)20¢3CG9320

PRINT 1000

GUOTC 210

BETAIND+L1) =0,

DSC=0Cs

WPP=0,

LXACT=0

IF(N-NO~-M+1)50940+40

LXACT=1

00000200
£0000210
00000220
00000230
00000240
00000250
00000260
00000010
00000020
00000030
00000040
0000”050
00000069
00000070
oocooo0®0
N00L0090
00000100
00000110
00000120
cooonl3o
000001492
00000158
00000160
0000Nn170
oooooleo
00000190
00000200
00000210
0coo00ly
00000020
00000030
00000040
00000050
00N00060
00000070
00000080
00000090
00000100
ooooC110
¢0000Ci290
0000130
cooudls0
000001sV

E-39
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60

70
30

S0
100
110
120

130
140
150

160
170
180

180

200
210

aNeaNaNaNel

aNeleolalalolaNaNaNaNe!
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00 80 J=1¢M

PR(JI=1e

PO(J)=0.

WPE=WPP+W(J)
IF(LXACT)8Cs70+980
0SQ=DSQ+W(J)=Y(JI=Y (J)
CONTINUE

NON=NO+1

NN=N+1

N0 200 I=NONy NN
LREEDO=M-T+NO

WYP=0e

WXPP=0,

D0 120 J=1l¢M

TEMP=wW (J)=PR(J)
IF(I-NN)90s1G0s100
WXPP=WXPP+TEMP=X(J) PR (J)
IF(LREEDO)L204110¢110
WYP=WYP+TEMP=Y(J)
CONTINUE
IF(LREEDC)14Cy1305130
St1)=WYP/WPP
IF(LXACT)I1609150+160
DSQE=0SQ-SH{I =S (I)=WPP
BR=LREEDC
SGMSQUI)I=DST/8BR

GATC 17¢C

SGMSQIII=GCoe
IF{I-NNM)180y2004y20C
ALPHA({ I )=aXPP/WPP
WPPC=WPP

WPP=0.

D0 190 J=1+M
TEMP=(X(J)=-ALPHA(I) }=PR{J)—-BETA(I)=PC(J)
WPP=WPP+W (J)TEMP D
PO(JI=PR(J)
PRUJ)=TEMP
BEVA(I+1)=wPP/WPPO
CONTINUE

RETURN

ENC

oot PP SIS

= PLOTTIMNG SUBRQUTINE

SUBRCUTINE CASPLT

STRUCTIONS.

THIS SUBRCUTINE PLOTS THE RESULTS OF THE ANALYTICAL APPLI-
CATIONS OF THE MCNJULTYs CASAGRANDEs AND SCHMERTMANN CCN-

COMMCN /BLCKL/ P(303)4E(303)9PE(103)9EE(10G3)5C(103)

npovusLe PRECISION C

00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
0oo0oc370
000003R0
00000390
00000400
00000410
00000420
00000430
00000440
00000450
00000«60
0000C«70
00000420
C0000490
00000500
00000510
00000520
00000530
00000540
00000550
00000560
CASPOOlO
CASP0OO2Z20
CASPOO30
CASP0OO0O40
CASPOOSO
CASP0O0O6O
CASPOOTO0
CASPO0O8BO
CASP0OO090
CASPO100
CASPO110
CASPO120
CASPO130
CASPO140
CASPO150
CASPO160
CASPOL170
CASPOLBO
CASPOLSO
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COMMON /BLUKZ/ AY+SBeBYeSCsCY s SOsDY e SEvEYSFeFY oSG CYyB1leB29B3:B4CASPO200

2B5S9BCUND6 9NC9yNE 9POVER 9 XSLP29yPCyEC 9yEQ9OCRyCCL9CSyCRySRyNDEGIN

3+ICQUTLIDIAL

COMMON /BLOK3/ POyPRECONSPREMINGVOIDC9ECMINGOCRMINGCRVMIN
COMMON /BLOKE/ LOC(4)9HOLy SAM9TESyOPR(1)9DAT(3)+DES(4)9BCO(20),

IKKsRUNTYR

COMMCN /BLOKE&/ RAD(L1031}9RADMINGRADMXy IMIN¢IPRINTsJPRINTKIND
COMMCON /SISEC/ XTAN9YTAN9CEPTAN ¢XANGLE s SLUPSIZCEPTHI
DIMENSION DATA(1024)9X(103)4CURVFT(103)

OIMENSION BOVER(3)4VOIDEO(3)4DASH(13)9DASHY(13) ¢PDUMMY(103)
REAL LINEA{(103)9LINEB(103)LINEC(103)9LINED(103)9LINEE(103),

LLINEF(103)4LINEG(103)

CIMENSION TANGEN(103)4BISECT(13)

INTEGER START,ySFAC

INTEGER STARE9SFAEsSTARXy»SFACUR

INTEGER RUNTYP

CALL SCALE (E98e09NCs1)

BOVER(1)=POVER
VOIDED(1)=E0

IF (KKeEQe2) VOIDEO(1)=0.0

DASHY (1)=PC:=:SD+0DY
VOIODPC=DASHY (1)

SETTING UP STARTING ANO SCALE FACTCR POSITICNS
FOR EACH OF THE RESPECTIVe PLUT VARIABLES.

START=NC+1
STARE=NE+1
STARX=101+1
SFAC=NC+2
SFAE=NE+2
SFACUR=101+2

P(START)=-1.000
PE(STARE)=P(START)

IF (KKeEQe2) E(START)=0.0

EE(STARE)=E(START)
X(STARX)=P(START)
CURVFT(STARX)=E(START)
LINEA(STARX)=E(START)
LINEB(STARX)=E(START)
LINEC(STARX)=E(START)
LINED(STARX)=E(START)
LINEE(STARX)=E(START)
LINEF(STARX)=E(START)
LINEG{STARX)=E(START)
BOVER{2)=P(START)
VOIDEO(2)=E(STAKRT)
DASH(12)=P(START)
DASHY (12)=E(START)
TANGEN(STARX)=E(START)
BISECT(12)=E(START)

P(SFAC)=0.39CO
PE{SFAE)=P(SFAC)
EE(SFAE)=E(SFAC)
X(SFACUR)=P(SFAC)
CURVFT(SFACUR)=E(SFAC)

CASPO210
CASP0Q220
CASPO230
CASPD240
CASP0250
CASP0260
CASPO0O2T70
CASPO280
CASP0O290
CASP0O300
CASPO310
CASP0320
CASPO330
CASP0340
CASP0O350
CASPO360
CASPQ370
CASP0380
CASP0390
CASPO40U
CASPO410
CASP0420
CASP0430
CASPO440®
CASP0O450
CASP0460
CASPO470
CASPO4BO
CASP04S0
CASP0O500
CASPOS10
T ASP0520
ZASP0OS30
CASPO0540
CASPO550
CASP0O560
CASPOST0
CASP0OS580
CASPO590
CASPO6&00
CASPO610
CASP0O&20
CASP0630
CASP0&40
CASPO65SU
CASPO6EU
CASPO670
CASPO&80
CASPO6S0
CASPQT00
CASPOT10
CASPOT720
CASPOT734
CASPO740
CASPO750
CASPC 760
CASPOT70
CASPO780
CASPOT790
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LINEA(SFACUR)=E(SFAC) ! CASP0O80OO

LINER (SFACUR)I=E(SFAC) ' CASPO310

LINEC(SFACUR)=E(SFAC) CASPO0&20
LINcD(SFACUR)=E(SFAC) CASPNB30
LINES(SFACUR)=E(SFAC) ) CASPOB&4O”"

LINEF({SFACUR)=E(SFAC) CASP0O850

LINEG(SFACUR)=E(SFAC) ) : ) CASP0O860

BOVER(3)=P(SFAC) ’ CASPO8T70

VOIDEQ(3)=F(SFAC) CASP0O880O

DASH(13)=P(SFAC) CASP0O890

DASHY(13)=E(SFAC) CASPO900

TANGEN(SFACUR)=E(SFAC) CASPO910

BISECT(13)=E(SFAC) CASP0920

c CASP0930

FIRLOG=-1.000 CASP0940

DELLOG=0.30000 CASP0950

CALL LOGAXS(CeO9BeO9*LOG( VERTICAL EFFe STRESSy TSF)'943191009004CASP0960

1-1.C004030000) ] CASPO970

IF (KKeEQe2) GO TO 10 ’ CASP0O980

CALL AXIS(OeQ9y0s09*VOID RATIO (E)*914986009906049E(START)I9E(SFAC)) CASP0O990

GO TO 20 CASP1000

c CASP1010

10 CONTINUE CASP1020

CALL PLOT (0<398e09-3) CASP10O3Y

CALL AXIS (0e090eQ9*VERTICAL STRAIN (IN/IN)®9-2398¢092706090e0 CASP1040

1 sE(SFAC)) ] CASP1050

20 CONTINUE ' CASP1060

c CASP1070

C GENERATE THE PLOTS CASP1080

C CASP1090

c CASP11i00

C COMPRESSION CURVEeJ=la ONLY SYMBOLS FOR EACH PCINT PRODUCED. CASP1110

CALL LINE(P9yE9NCylo=141} CASP1120

CALL LINE(PEyYEEJNEsL9=1s1) CASP1130

c EXPANSION CURVEy J=1y ONLY SYMBOLS FOR EACH POINT PRODUCED. CASP1140

C CASP1150

c CASP1160

X(1)=P(1) CASP1170

DELTA=(P(NC)-PI(1))/100 CASP1183

DO 30 I=24101 CASP1190

30 X(I)=X(I-1)+DELTA ' CASP1200

DO 40 I=1,101 CASP1210

c CASP1220

X1=X(I) CASP1230

X2=X(I)=X () CASP1 240

X3=X(I)&EX(T)X(]) CASP1250

X4=X1I)=X(Tr=X(Th#XTI) CASP1260

XS= XTI IeX (T )X (DX ()X (]) CASP1270

X6=X(IT)aXCT)EXCD =X )X(I)=X(T) CASP12R0

XT=XCI )X (I X (D)X CI) X (D)X (T )aX(]) CASP1290

XB8=X(I)AX (D)X (T e X(T)AXCD )X (T )X (L)X () CASP1300

XO=X(I)aX (I)AX(T )X (T )%X D )aX (T peX ()X ()X () CASP1310

X10=X(I )X (D)X (D) ==X (D)X (D)X (L)X (D)X )%X(I1=X(]) CASP1320D

XL11=XCD )X AT )X (D)X O D)X O e XCDYaX (D) e X D)X (D)X (T)*=X(]) CASP1330

CURVFT(I)=C{1l)+ C(2)%X1l+ C(3)%X2+ Cl4)%X3+ C(5)r=X4+ C(6):X5 CASP1340

1+C(7)%=X6+ C(B)=XT+ C(9)::X8B+ C(10)#X9+ C{ll)=X10+ C(l2)=X11l CASP1350

c CASP1 360

40 CONTINUE CASP1370

C CASP1380

C FITTED CURVEs J=0e ONLY A LINE PLOT PRCDUCEDy NO SYMBOLS. CASP1390
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aNeNel

aNaNeaNaNal

o

alalalaNalaNaksl

50

60

70

80

90

100

120

130

CALL LINE(X+CURVFT410L5150:0)

NOW PLOTTING EXPANSION~REBOJND CURVE LINE REPRESENTATION.

X{1l)=PE(L)
DELTA={PE(NE)=PZ(1))/100

DO 5S¢ I=24101
X{I)1=X(I-1)+DELTA

COMNTINUE

DO €0 I=1lyl01
LINEE(T)=SE=X(I)+EY
CONTINUE

CALL LINE(XyLINEEs10lsl90+0)

IF (BOCUND6.GT.998) GO TO 110

EE S A I

MCNULTY*S GRAPHICAL,

2

v e e wr w3 s
O T L G I CHE SR L

X{1)=XTAN=0Q.1
DELTA=ABS({XANGLE-X1{1))/100.0
20 70 I=2+101

X{I)=X(I-1)+CELTA

CONTINUE

DO 80 I=14101
TANGEN(I)=SE*X(I)+CEPTAN
CONTINUE

CALL LINE (XeTANGEN9+1OlslsOs0)
DASH(1)=XSLP2-0.05
DELTA=ABS(XANGLE-DASH(1))/10.0
DO 90 I=2,11
DASH(I)=DASH(I-1)+DELTA
CONTINUE

DO 100 I=1.11
BISECT(I)=SLCPBI=DASH{I)+CEPTSI
CONTINUE

CALL DASHLN (DASHsBISECTs1lls})

CONTINUE

CASAGRANDE*S CONSTRUCTICGN

% sz 3t s st % 3% 3% s%e 3% 3% s % 3% 3 o' 3% 3% s % 3% 3% 5% 3%

X(1)=XSLP2
DELTA=ABS{PC+0s05-XSLP2)/100
DO 120 I=24101
X(I)=X(I-1)+CELTA

CONTINUE

00 130 I=1sl1C1l
LINEA(I)=AY+Ce0=X{(1)

CONTINUE

CALL LINE(XsLINEAy131l9140490)

A =(X(101)-X(102))/X(103) + Q.l

LINEA(LOL)=(LINEA(LOL)-LINEACLO2})/LINEA(L103)

CONSTRUCTION TO DETERMINE PTn-OF MAXe. CUR

CASP1400
CASP1410
CASP1420
CASP1430
CASP1440
CASP1450
CASP1460
CASPL1470
CASP1480
CASP1490
CASP1500
CASP1510
CASP1520
CASP1530
CASP1540
CASP1550
CASP1560

: CASP1570

CASP1580

: CASP1590

CASP1600
CASP1610
CASP1620
CASP1630
CASP1640
CASP1650
CASP1660
CASP1670
CASP1 680
CASP1690
CASP1700
CASP1710
CASP1720
CASP1730
CASP1740
CASP1750
CASP1760
CASP1770
CASP1 780
CASP1790
CASP1800
CASP1810
CASP1820
CASP1830
CASP1840
CASP1850
CASP1860
CASP1870
CASP1880
CASP1890
CASP1900
CASP1910
CASP1920
CASP1930
CASP1940
CASP1950
CASP1960
CASP1970
CASP1980
CASP1990
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[alal

140

aNeaNeal

150

a¥elalaNeEaKal

160

170

asNealalaialaEaEekaEel

[aNe Nl

E-44

CALL SYMEOL(ASLINEA(101)+0el49*A"90.091)
LINE TANGENT TO CURVE AT POINT OF MAX CURVATURE.

DO 140 I=1ly¢lO01
LINER(II=SBXX(I)+BY
CONTINUE .

CALL LINE(XsLINEBy10Olsls040)

B =(X(101)~X(102})/X(103) + 0.l0
LINEB(101)=(LINEB(1OLI-LINEB(102))/LINEB(103)
CALL SYMBOL{EBsLINEB(LOL)9Oel4s*2®90e0s1l)

BISECT LINES *A* AND 'BY.

DO 150 I=1s101

LINEC(I)=SCHX(I}+CY

CONTINUE

CALL LINE(XsLINEC910Lls1+4040)
CX={(X(1011=X(102))/X{(103}) + 0.l0
LINEC(LC1)=(LINEC(101)-LINEC(102))/LINEC(103)
CALL SYMEOL(CX9LINEC(10L)90Oel49*'C*90.091}

PRGJECT LINE *D* BACK FROM STRAIGHT PJORTION
OF VIRGIN COMPRESSION CURVE TO GET AN INTERSECTION
WITH LINE *'C* TO SHOW THE PRECONSOLIDATION PRESSURE.

X(L)=XANGLE

IF (BOUND6.GT«998) X{1l)=PC
DELTA=(PINC)-X(1))/10060
DO 160 I=2,1C1
X(I)=X(I-1}+DELTA

CONTINUE

DO 170 I=1,101

LINED(II=SD=X(I)+DY

CONTINUE

CALL LINE(XyLINED91Oly140+0)
X{L)=(X(L}=X{102))/X(103)
LINED(L)=(LINED(1)-LINED(102})/LINED(103}) + Oel
CALL SYMBOL(X(1)9LINED(L)9yOal49*D*¢0e0sl)

SCHMERTMANN®S CONSTRUCTION

PLOT OVERBURCEN PRESSURE (BOVER,VOIDEO!} .
CALL LINE(BOVER+VOIDEOslele-1s0)

PLOT PRECONSCLIDATICN COMPRESSION CURVE 'F*.

X(1)=80VER(L)
DELTA=(PC-BOVER(L))/100

CASP2000
CASP2Cl10
CASP2020
CASP2030
CASP2040
CASP2050
CASP2062
CASP2070
CASP2080
CASP2090
CASP2100
CASP2110
CASP2120
CASP2130
CASP2140
CASP2150
CASP2160
CASP2170
CASP2180
CASP2190
CASP2200
CASP2210
CASP2220
CASP2230
CASP2240
CASP2250
CASP2260
CASP2270
CASP2280
CASP2250
CASP2300
CASP2310
CASP2320
CASP2330
CASP2340
CASP2350
CASP2360
CASP2370
CASP2380
CASP2350
CASP2400
CASP2410
CASP2420
CASP2430
CASP2440
CASP2450
CASP2460
CASP2470
CASP2480
CASP2490
CASP2500
CASP2510
CASP2520
CASP2530
CASP2540
CASP2550
CASP2560
CASP2570
CASP2580
CASP2590



aNaNaKe)

D3 180 I=241C1
X(I)=xXx(I-1)+CELTA
180 CONTINLE

D0 190 [=1.+1G1
LINEF{TI=0F=X{])+FY

190 CONTINUE
CALL LINELXeLIMNEFgLlUls1l 40s0)

PLOT THE STEPS cMPLOYED IN THE CETERMIMATION OF A MINIMUM

PRECONSOLIDATION PRESSURE.
CASH(1)=ALOGLD (PREMINI
CASH(11)=XANGLE
IF (BAUNC6«GT998) DASH(11)=PC
DELTA=(DASH(11)-DASH(1))/10409
N3 200 I=2y11
DASH{I}=DASH{I-1)+DELTA

200 CONTINUE
DO 210 I=1lsll
DASHY (I )=SDO*DASH(I) +DY

210 CONTINUE
CALL DASHLN(CASHyDASHYy11e1)
DASHY(1)=ECMIN
DASH(1)=ALOGLO(PRENMIN)
DELTA=(VGCIDEG(1)-ECMIN)/10e0
IF (ABS(DELTA) eLTe0eQ3CCleANDaKKeEQel}
IF (ABS(DELTA) elTe0e0C00LeANDeKKeEQSR)
IF (ECMINCEV.VQIDEOC(1l)) DELTA=-DELTA
DO 220 I =2511
DASH{I}=ALOGI3(PREMINY
DASHY(I)=DASHY(1~1) + DOELTA

220 CONTINUE
CALL DASHLN(CASHyDASHYel1ls1)
PLOT TRUE VIRGIN COMPRESSICN LINE *G°.

X{1)1=pPC
DELTA=(P(NC)+e13-PC)%SG/LINEG(103)
BS=£C+DELTA

CHECKING ARGUMENTS TC MAKc SURE LINEG
IF (ABS(B5)eGTe840) DELTA=8.0~ABSI(EC)

DELTA=ABS((DELTASLINEG(1C3)1/SG)/1004D

DO 230 1=2+1C1
X{I)=X(I-1)+CELTA
23C CONTINUE
00 240 I=1,101
LINEG(IN=5G:X(1)+GY
240 CONTINUE
CALL LINE{XsLINEG+1CLlslsGCe G}
DELTA=ABS(VOIDEO(1)-VIIDPC)I/10
DASH(1)=PC
DASHY(1)=VvOICPC
00 250 I=2+11
DASH(I)=¢C
DASHY(I)=0DASHY(I-1)+0ELTA
250 CAONTINUE

DELTA=0.C001%
DELTA=0.C0075

IS NOT DRAWN TOU FARe

CASP2600
CASP261C
CASP2620U
CASP2630
CASP2¢e4D
CASP265U
CASP2660
CASP26T0
CASP2680
CASP2690
CASP2700
CASP2710
CASP2720
CASP2720
CASP2740
CASP2750
CASP2760
CASP2770
CASP2 780
CASP 2790
CASP230C
CASP2810
CASP2320
CASP2830
CASP2840
CASP2850
CASP2860
CASP2870
CASP23880
CASP2390
CASPZ2900
CASP2910
CASP2920
CASP2930
CASP2940
CASP2950
CASP29¢60
CASP2970
CASP2980
CASP2990
CASP3000
CASP3010
CASP3020
CASP3030
CASP3040
CASP3050
CASP3060
CASP3Q70
CASP3GR20
CASP3U90
CASP3100
CASP311C
CASP3120
CASP3130
CASP3140
CASP3150
CASP2160
CASP3170
CASR3120
CASP3190
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260

270

280

290

300

E-46

CALL DASHLN(DASHyDASHYs11ls1)

IF (KKeEGe2) CALL PLOT (0e09—8e0¢~3)

CALL SYMBOL(2e599C90e14¢8CD9y0.0480)
FPN=NDEG+G.01

CALL NUMBER (10e97e¢090e109FPN90e09~1)
CALL SYMBOL (3497090109 '0EG = '906046)
CALL SYMBOL (9496590109 °'P0O0 = *5060945)
CALL NUMBER (94990¢5904109P090s093)

CALL SYMBUOL (10e596e¢590<109°*TSF*'490.043)
CALL SYMEBOL (11e396a5+06109'EQ = *90.095)
CALL NUMBER (11e896e¢5904109E09040194)

CALL SYMBCOL (1039640904109 °RANGE OF VALUES'90eGCy15)
CALL SYMRBGOL (10el95¢759Cel09*PROBABLE — MINIMUM®*40.0918)

CALL SYMBOL (9e¢495¢4+00109 'PC TSF -
CALL NUMBER (10e95¢490¢109PRECONY0e092)

CALL NUMEER (11e295e490s109PREMIN9y0s092)
CALL SYMROL (904950904109 *EC -
IF (KKeEQe2) VOIDC=-Vv3IDC

TSF* 90,0427}

900427}

IF (KKeEQol) CALL NUMBER (10e4954090.1iC9VOIDCy0e0493)
IF (KKeEQe?2) CALL NUMBER (10439540904109VGIDC90e094)

If (KKeEQe2) VOIDC=-VAIDC
IF (KKeEQe2) ECMIN=-ECMIN

IF (KKeEQal) CALL NUMBER{11e¢2956090e109CMIN90a0y3)
IF (KKeEQoe2) CALL NUMBER (116295009010 4yECMIN30e0y4)

IF (KKeEQe2) ECMIN=-ECMIN

CALL SYMBOL (9e494¢6904109 *0OCR -
CALL NUMBER (1Ce594e69041090CR90.091)

CALL NUMPER (11e294e¢690e1090CRMIN9O«091)

IF (KKeEQRe2) GO TO 260

CALL SYMBOL (9449402490010, °'CC -
CALL SYMBOL (9¢493.8904109°CS*90.01+2)
CONTINUE

IF (KK+EQol) GO TO 270

CALL SYMBOL (9e494¢2904109°'CR -
CALL SYMBOL (9¢493¢3900109'SR*906042)
CONTINUE

CALL NUMBER (10e394e2904109CR9040+3)

CALL NUMEBER (1le294e¢290+109CRMIN90«0193)

CALL NUMBER (10e293¢890.109SRy0.094)
IFI(NC.GT.10) GO TO 320

IF (KKeEQe2) GO TO 280

CALL SYMBOL (9¢493¢590.109'EFFe STRESS VOID RATIO
IF (KKeEQel) GO TO 290

CONTINUE

CALL SYMVMBOL (9¢493e3+00109 *EFFs STRESS VERT.
CONTINUE

CRDINA=3.0

DO 300 I=1l9NC

POUMMY (I)=10e05%=P (1)

CALL NUMBER (9¢79ORDINA9O«109sPDUMMY (I)90.0¢3)
IF (KKeEQe2) E(I)=-E(I)

CALL NUMEER (113 90RDINA9yGalOsE(I)9s0a094)
ORDINA=0ORDINA-0Q0.2

CONTINUE

DO 310 J=1sNE

PDUMMY (J)=10e0%:=PE(J)

CALL NUMBER (9e790RDINA$O«109PDUMMY(J) 900093}
IF (KKeEQe2) EF(J)=—EE(J)

CALL NUMBER (11e39y0RDINA9yOCel09EE(J)90e094)
ORCINA=0ORDINA-0.2

19000427}

?90.0427)

"9060427)

STRAIN®'+0.0+27)

CASP3200
CASP3210
CASP3220
CASP3230
CASP 3240
CASP3250
CASP3260
CASP3270
CASP3280
CASP3290
CASP3300
CASP3310
CASP3320
CASP3330
CASP3340
CASP3350
CASP3360
CASP3370
CASP3380
CASP3390
CASP3400
CASP3410
CASP3420
CASP3430
CASP3440
CASP 3450
CASP3460
CASP3470
CASP3480
CASP3490
CASP3500
CASP3510
CASP352G
CASP3520
CASP3540
CASP3550
CASP3560
CASP357)
CASP358R0
CASP3590
CASP3600

(E)'+0.0430)CASP3610

CASP3620
CASP3630
CASP 3640
CASP3650
CASP3660
CASP3670
CASP36%0
CASP3690
CASP3700
CASP3710
CASP3720
CASP3730
CASP3740
CASP3750
CASP3760
CASP3770
CASP3780
CASP3790



310 CONTINUE CASP3800

320 CONTINUE CaSP3810
CALL PLOT(15e04+0.09~3) CASP3820
RETURN CASP3830
END CASP334u
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