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Neurobiology of Disease

Closed Head Injury in an Age-Related Alzheimer Mouse
Model Leads to an Altered Neuroinflammatory Response
and Persistent Cognitive Impairment

Scott J. Webster,1 Linda J. Van Eldik,1,2,3 X D. Martin Watterson,4 and Adam D. Bachstetter1

1Sanders-Brown Center on Aging, 2Department of Anatomy and Neurobiology, 3Spinal Cord and Brain Injury Research Center, University of Kentucky,
Lexington, Kentucky 40536, and 4Department of Pharmacology, Northwestern University, Chicago, Illinois 60611

Epidemiological studies have associated increased risk of Alzheimer’s disease (AD)-related clinical symptoms with a medical history of
head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is
one outcome observed in patients after a single head injury. Neuroinflammation is also present early in relevant brain regions during AD
pathology progression. In addition, previous mechanistic studies in animal models link neuroinflammation as a contributor to neuro-
pathology and cognitive impairment in traumatic brain injury (TBI) or AD-related models. Therefore, we explored the potential interplay
of neuroinflammatory responses in TBI and AD by analysis of the temporal neuroinflammatory changes after TBI in an AD model, the
APP/PS1 knock-in (KI) mouse. Discrete temporal aspects of astrocyte, cytokine, and chemokine responses in the injured KI mice were
delayed compared with the injured wild-type mice, with a peak neuroinflammatory response in the injured KI mice occurring at 7 d after
injury. The neuroinflammatory responses were more persistent in the injured KI mice, leading to a chronic neuroinflammation. At late
time points after injury, KI mice exhibited a significant impairment in radial arm water maze performance compared with sham KI mice
or injured wild-type mice. Intervention with a small-molecule experimental therapeutic (MW151) that selectively attenuates proinflam-
matory cytokine production yielded improved cognitive behavior outcomes, consistent with a link between neuroinflammatory re-
sponses and altered risk for AD-associated pathology changes with head injury.
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Introduction
Approximately 1.5 million people in the United States seek emer-
gency medical treatment annually for a traumatic brain injury
(TBI) (Faul et al., 2010). Among the various TBI morbidities is an
increased risk for later-in-life development of dementias, such as
Alzheimer’s disease (AD). For example, even a self-reported his-
tory of head injury has been found to be associated with earlier
onset and increased risk of cognitive impairment and dementia
(Abner et al., 2014). However, our knowledge of the pathophys-
iology progression attributes common to TBI and AD is limited.
This knowledge could facilitate insight into the temporal pro-
gression of key pathophysiological mechanisms, thereby provid-

ing a rational foundation to the search for new intervention
strategies.

A number of TBI studies in AD-relevant animal models have
documented injury effects on cognition and changes in amyloid
or tau pathology (Nakagawa et al., 1999, 2000; Uryu et al., 2002;
Abrahamson et al., 2006; Laskowitz et al., 2010; Schwetye et al.,
2010; Tran et al., 2011; Tajiri et al., 2013; Washington et al., 2014).
However, activation of microglia and astrocytes and injurious
overproduction of glia products have not been studied in detail.
This is a critical knowledge gap, as glia activation and upregula-
tion of glia inflammatory mediators have been directly linked to
pathophysiology progression in both TBI (Lloyd et al., 2008; Ku-
mar and Loane, 2012; Woodcock and Morganti-Kossmann,
2013; Bachstetter et al., 2015) and AD relevant models (Bachstet-
ter et al., 2012). Therefore, we examined the temporal profile of
key neuroinflammatory responses following TBI in the context of
an AD-relevant model in which glia activation and upregulation
of proinflammatory cytokine levels are linked to neurologic out-
comes, including cognitive behavior. We used a closed head in-
jury (CHI) protocol for mild TBI in an APP/PS1 knock-in (KI)
mouse model of AD that exhibits an age-related increase in pro-
inflammatory cytokine production and AD-related pathophysi-
ology. We leveraged previously reported (Lloyd et al., 2008;
Bachstetter et al., 2012) time courses of the pathophysiology end-
point changes in either TBI or the KI model to focus our analysis
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on 9 h, 1 d, 7 d, 1 month, and 2 month time points after CHI in the
KI mouse.

We found that a single mild TBI in the KI mouse led to a
delayed onset of neuroinflammatory responses and a more per-
sistent glia activation compared with injured wild-type (WT)
mice. In addition, CHI in the KI mouse induced chronic behav-
ioral impairments that did not resolve even at the 2 month time
point. We explored mechanistic linkage among the correlative
findings by using intervention with MW151, an experimental
anti-neuroinflammatory drug that restores excessive proinflam-
matory cytokine production back toward normal with a resultant
improvement in neurologic outcomes in either TBI or AD mouse
models. We found that MW151 treatment of KI mice subjected to
CHI prevented cognitive impairment when given during the pe-
riod of heightened neuroinflammation. Overall, our data support
the hypothesis that TBI in the context of AD susceptibility can
lead potentially to greater cognitive impairment via mechanisms
that involve glia neuroinflammatory responses.

Materials and Methods
Mice. The Institutional Animal Care and Use Committee of the Univer-
sity of Kentucky approved all procedures, which were conducted in ac-
cordance with the principles of animal care and experimentation in the
Guide for the Care and Use of Laboratory Animals. The mouse model
APP NLh/NLh � PS1 P264L/P264L (APP/PS1 KI) was developed (Flood et al.,
2002) and characterized as previously described (Webster et al., 2013).
Experiments used both male and female mice at 50/50 ratio where pos-
sible. Mice were randomized to assigned groups before the start of the
experiments.

Surgical procedure. The CHI surgical procedures were as previously
described (Lynch et al., 2005; Lloyd et al., 2008) with slight modification.
Mice were anesthetized with 5% isoflurane before stabilizing the head
using ear bars in a digital mouse stereotaxic frame (Stoelting). Anesthesia
was maintained with continuous inhalation of isoflurane (3.5%, 1
L/min).

A midline sagittal scalp incision was made. A 1 ml latex pipette bulb
(Fisher Scientific) was placed under the head and filled with water to
displace the force of the impact. Any animal with damage to the ear from
the ear bars, resulting in rolling or bleeding, was eliminated. The stereo-
taxic electromagnetic impactor (Brody et al., 2007) with a 5.0 mm steel
tip impounder (Leica Biosytems) was used to deliver a single controlled
midline cortical impact, delivered (at coordinates: mediolateral, 0.0 mm;
anteroposterior, �1.5 mm) with a controlled velocity (5.0 � 0.2 m/s),
dwell time (100 ms), and impact depth (1.0 mm). Mice with depressed
skull fracture or visible hemorrhage were excluded from the study.
Sham-injured mice underwent identical surgical procedures as the
trauma group, but no impact was delivered. The time elapsed until the
animal spontaneously rights was recorded as an acute neurological as-
sessment and defined as the righting reflex time. For our mild injury
model, the mortality rate for brain-injured rodents during our last 500
CHI surgeries was 1.4% of the animals dying as a result of the injury
within the acute post-traumatic period. We have found that in young
mice (3–5 months old), the mortality rate is �0.9%, whereas in this study
with older mice (8 months old at time of CHI), the mortality rates were
slightly higher (2.3% for KI mice, 2.7% for WT mice). Following each
surgery, animals were visually monitored every 10 min to ensure safe
recovery.

Nesting behavior. The nesting followed established protocols (Deacon,
2006, 2012) as previously described (Bachstetter et al., 2013a). Briefly,
nesting was measured in four separate cohorts of mice (cohorts 2–5) at
four different time points after injury as indicated in Figure 1a. A nestlet
consisting of a 5 cm � 5 cm pressed cotton square (Ancare, UK agent,
Lillico) was added to the cage between 5:00 PM and 6:00 PM. The fol-
lowing morning between 9:00 AM and 10:00 AM, two observers blind to
the experimental conditions scored the quality of the nest following a
semiquantitative 5-point scale (1, �90% of nestlet intact; 2, 50%–90% of
nestlet intact; 3, 10%–50% of nestlet intact but no identifiable nest site; 4,

�10% of nestlet intact, nest is identifiable but flat; 5, �10% of nestlet
intact, nest is identifiable with walls higher than the mouse body).

Running wheel behavior. Running wheel apparatuses were purchased
from Lafayette Instruments, and the chambers were 35.3 cm � 23.5
cm � 20 cm (length � width � height). The running wheel component
itself was made out of stainless steel and consisted of a wheel of 12.7 cm
diameter � 5.72 cm width with 38 uniformly spaced rungs for the mice to
run on. At 12–14 h following the CHI or sham injury, the mice were
introduced into the running wheels and data were recorded for 5 d of
recovery. Computerized counting software (Lafayette Instruments) au-
tomatically recorded the total distance run each hour by each animal, and
then these 1 h blocks were combined into 24 h (1 d) blocks to be pre-
sented graphically.

Radial arm water maze (RAWM) behavior. The RAWM followed the
well-established 2 d protocol (Alamed et al., 2006), as previously de-
scribed (Webster et al., 2013). Briefly, in block 1 (first 6 trials) and block
2 (6 trials), mice were trained to identify the platform location by alter-
nating between a visible and a hidden platform (3 hidden platform trials
and 3 visible platform trials for each block). Block 3 (3 trials) used only a
hidden platform. The next day, mice were tested in 3 blocks of 5 trials
each (blocks 4 – 6; 15 total trials), all using only a hidden platform to test
their spatial memory retention. Data are presented as the average errors
per block during the hidden platform trials. RAWM performance was
recorded and scored using EthoVision XT 8.0 video tracking software
(Noldus Information Technology). Behavioral data for both genders
were combined after observing no differences between the behavioral
responses of male and female mice tested.

Brain tissue harvesting, biochemical and immunohistochemical (IHC)
endpoints. Mice were deep anesthetized with 5% isoflurane before tran-
scardial perfusion with ice-cold PBS for 5 min. The brains were rapidly
removed, dissected, processed, and archived for subsequent biochemical
and IHC endpoints as previously described (Bachstetter et al., 2012).
Brain homogenates for cytokine and A� protein levels were made as
previously described (Bachstetter et al., 2012). Levels of IL-�, TNF�, and
A�1– 40 and A�1– 42 were measured by V-Plex ELISA from Meso Scale
Discovery (MSD) according to the manufacturer’s instructions as we
have previously described (Bachstetter et al., 2012). Gene expression was
measured by real-time PCR, using the TaqMan Gene Expression Assay
Kit (Applied Biosystems, catalog #4444964) according to the manufac-
turer’s instructions on a ViiA 7 Real-Time PCR System (Applied Biosys-
tems). Relative gene expression was calculated by the 2 ���CT method as
previously described (Bachstetter et al., 2013b). IHC staining was done
following established methods (Bachstetter et al., 2012, 2013b). Primary
antibodies used included the following: rabbit anti-GFAP (Dako, catalog
#Z0334; 1:10,000); rabbit anti-IBA1 (Wako, catalog #019-19741;
1:10,000); mouse anti-A� 6E10 (Covance, catalog #SIG-39340, 1:3000)
monoclonal antibody; and rabbit anti-A�1– 42 (Invitrogen, catalog
#44344, 1:750). Quantitative image analysis of IHC was conducted as
previously described (Bachstetter et al., 2012, 2013b). Briefly, Aperio
ScanScope XT digital slide scanner was used to image the entire stained
slide at 20� magnification to create a single high-resolution digital im-
age. The cortex was outlined using the Aperio ImageScope software. The
Aperio-positive pixel count algorithm (version 9) was used to quantify
the amount of specific staining in the region. The number of positive
pixels was normalized to the number of total pixels (positive and
negative) to account for variations in the size of the region sampled.
The resulting color markup of the analysis was confirmed for each
slide. Personnel blind to the experimental conditions performed all
quantifications.

Synthesis and use of MW151. MW01-2-151SRM (2-(4-(4-methyl-6-
phenylpyridazin-3 yl)piperazin-1-yl)pyrimidine) was synthesized and
characterized as previously reported (Hu et al., 2007). MW151 is a water-
soluble, chemically stable, small molecule (423 MW) that is orally bio-
available and CNS-penetrant, with a brain– blood ratio �1, similar to
other CNS drugs in clinical use or under development. MW151 is not a
pan-suppressor of neuroinflammation; for example, MW151 suppresses
injury- or disease-induced upregulation of proinflammatory cytokines,
such as IL-1� and TNF�, but does not block anti-inflammatory cyto-
kines, such as IL-10 (Bachstetter et al., 2012, 2015). MW151 efficacy is
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achieved in the absence of any signs of general immunosuppression or
nonselective anti-inflammatory action, as documented in diverse animal
models (Hu et al., 2007; Somera-Molina et al., 2007, 2009; Karpus et al.,
2008; Lloyd et al., 2008; Chrzaszcz et al., 2010; Bachstetter et al., 2012,
2015; Jenrow et al., 2013; Macauley et al., 2014). MW151 was adminis-
tered as previously described (Bachstetter et al., 2012). MW151 was dis-
solved in 0.9% sterile NaCl (saline: Hospira NDC 0409-4888-10), and
administered by intraperitoneal injection. Saline was injected intraperi-
toneally as the vehicle control.

Statistics. JMP Software version 10.0 was used for statistical analysis. A
repeated-measures ANOVA was used for running wheel behavior and
RAWM. For all other endpoints, a two-way ANOVA was used comparing
injury groups, time after injury, and their interaction as factors. If a
significant main effect of injury group, or time after injury was found,
then a one-way ANOVA was used to examine differences within those
factors. A two-tailed Student’s t test was used for post hoc analysis to
compare only the effect of injury in the WT and KI mice, and effect of
genotype (WT vs KI) in response to CHI, as these comparisons were
determined a priori to be the ones of interest. The F values are shown in
Tables 1, 2, and 3 for the one- and two-way ANOVA, along with the p
values for the ANOVAs and T tests. Differences between mean were
considered significant at � 	 0.05. Graphs were generated using Graph-
Pad Prism software version 6.0. Values are expressed as mean � SEM.

Results
Rationale and animal model systems
The overall goal of this study was to use CHI in an AD mouse
model to probe whether TBI would alter or possibly accelerate
AD-relevant pathophysiology changes, especially cognitive defi-
cits that define AD and related dementias, to identify a potential
mechanism amenable to modulation by intervention. The AD
mouse model we used is the APP NLh/NLh � PS1 P264L/P264L double
gene-targeted knock-in (APP/PS1 KI) mouse (Flood et al., 2002).
Gene expression in this humanized KI mouse model is driven by
endogenous promoters of the amyloid precursor protein (APP)
and presenilin-1 (PS1) genes, and the APP and PS1 genes contain
selective point mutations linked to familial AD (Reaume et al.,
1996; Siman et al., 2000; Flood et al., 2002). The APP/PS1 KI
mouse is particularly advantageous in that it preserves physiolog-
ically relevant APP expression levels and demonstrates progres-
sive and age-related AD pathology without APP overproduction
(Murphy et al., 2007). Critical to this study, the temporal changes
in proinflammatory cytokine upregulation are known, and their
link to disease-relevant neurologic outcomes, such as synaptic
dysfunction, established through intervention with the experi-
mental therapeutic MW151, a selective attenuator of stress-
related proinflammatory overproduction (Bachstetter et al.,
2012). Separate but parallel observations have been made with
TBI in mouse models. Briefly, CHI induces proinflammatory
cytokine increases that can be attenuated by MW151 interven-
tion within the appropriate dosing time window, with a resultant
improvement in cognitive behavior (Lloyd et al., 2008).

Among the diverse rodent TBI protocols available (Xiong et
al., 2013), we chose a midline CHI protocol that uses an electro-
magnetic impactor and is characterized by the following features:
(1) a mild injury, (2) primarily diffuse, (3) no cortical contusions
or gross tissue loss, (4) no craniotomy required, (5) reproducible,
and (6) low mortality. The injury produces a transient apparent
loss of consciousness �7– 8 min in length with no significant
difference in righting reflex between the WT
CHI group (�7
min � 41.1 s; mean � SEM) and the KI
CHI group (�8 min �
41.3 s; mean � SEM). Similarly, mortality rates were not signifi-
cantly different between WT (2.7%) and KI (2.3%). Less than 1%
of mice were excluded for skull fractures or ear problems from
the surgical procedure.

Injured APP/PS1 KI mice show persistent behavioral deficits
The initial tests for CHI outcomes were for behavior using the
study design outlined in Figure 1a. Two nonforced behavioral
measures of activity were used: a home cage running wheel (Fig.
1b) and nesting behavior (Fig. 1c). A cohort of mice (Fig. 1a,
cohort 3) was allowed access in the home cage to a running wheel
for 5 d after the CHI or sham surgery. Deficits in the running
wheel during the first 3 d post-injury (p.i.) self-attenuate and
reach baseline �5 d. As shown in Figure 1b, the CHI-induced
deficit in the distance traveled is evident in both the WT and KI
mice. Using a repeated-measures ANOVA, we found a significant
effect of injury (p 	 0.0149), but no effect of genotype.

We also measured nesting behavior as another test of activity.
Nest building is a naturalistic mouse behavior similar to an “ac-
tivity of daily living,” which is related to thermoregulation, ex-
ploration, and camouflage (Deacon, 2006, 2012). Cohorts 2–5
were tested at 1 d, 7 d, 1 month, and 2 months p.i. for the ability
to make a nest. As shown in Figure 1c, at 1 d following injury, both
WT and KI mice made nests of significantly lower quality com-
pared with the respective sham-injured controls (WT, p 	
0.0028; KI, p 	 0.0025). At 7 d p.i, the WT mice no longer showed
a significant effect of injury, but the KI
CHI mice continued to
make a significantly lower-quality nest than the sham-injured KI
mice (p 	 0.0005). By 1 month p.i., the WT mice were fully
recovered in nesting behavior, whereas the KI
CHI mice con-
tinued to show a significant deficit in nest building ability (p 	
0.0232). Remarkably, even at 2 months p.i., the KI
CHI mice
still showed a significant deficit in the ability to make a nest (p 	
0.0061).

A prototypical behavioral outcome of CHI in mice is cognitive
impairment, generally measured by RAWM or Morris water
maze deficits. To determine whether APP/PS1 KI mice had in-
creased susceptibility to develop cognitive deficits following a
single CHI, we injured mice at 8 months of age and measured
cognitive changes by RAWM at 9 months of age (Fig. 1a). The
rationale for choosing these ages is that, at 8 –9 months of age, the
KI mice exhibit some (but not extensive) amyloid deposition
(Flood et al., 2002; Murphy et al., 2007; Zhang et al., 2007), but no
cognitive deficits in the RAWM until 11 months of age (Webster
et al., 2013). Therefore, this paradigm allowed us to inflict a TBI
in an environment of amyloid pathology and test the KI mice in
the RAWM before cognitive impairments are normally evident.

We hypothesized that CHI would exaggerate the cognitive
impairment in the APP/PS1 KI mice. Prior studies using a
moderate-to-severe controlled cortical impact TBI model in
PDAPP or Tg2576 mice have shown that the injured transgenic
mice have a worse outcome in Morris water maze or RAWM
compared with the injured WT mice (Brody and Holtzman,
2006; Tajiri et al., 2013). In a lateral CHI in Tg2576 mice, repet-
itive CHIs were required to induce a Morris water maze deficit, as
one CHI was not sufficient; however, even repetitive CHIs in WT
mice did not induce a cognitive deficit (Uryu et al., 2002). Thus,
a threshold of injury severity may be necessary to induce cogni-
tive impairment. Therefore, we tested whether the mild diffuse
injury associated with our CHI model would be sufficient to
overcome that threshold. We previously found deficits in RAWM
performance at 14 d p.i. in WT mice (Bachstetter et al., 2015). As
shown in Figure 1d, by 1 month p.i. in WT
CHI mice, the deficit
in RAWM performance has resolved and the injured mice are not
different from the sham group. However, at this time point, the
KI
CHI mice still exhibited a significant cognitive impairment.
Using a repeated-measures ANOVA, we found a significant effect
of training (p � 0.0001) and treatment group (p 	 0.0008). Post
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Table 1. Summary of statistics for cytokines and chemokines following CHIa

Measure Figure Two-way ANOVA Time p.i. One-way ANOVA WT, sham vs CHI KI, sham vs CHI CHI, WT vs KI

IL-1� 3a F(19,96) 	 2.5847 9 h F(3,19) 	 2.4315; p 	 0.0967 p 	 0.0511 p 	 0.1015 p 	 0.8285
Assay ID: Mm00434228_m1 p 	 0.0013* 1 d F(3,19) 	 1.2627; p 	 0.3154 p 	 0.1283 p 	 0.4693 p 	 0.3051
qRT-PCR Group p 	 0.0003* 7 d F(3,19) 	 4.5854; p 	 0.0141* p 	 0.1817 p 	 0.0055§ p 	 0.0826
Cortex Time p.i p 	 0.1466 1 mo F(3,19) 	 2.0546; p 	 0.1403 p 	 0.0583 p 	 0.8492 p 	 0.0722

Interaction p 	 0.0694 2 mo F(3,20) 	 1.8447; p 	 0.1716 p 	 0.8151 p 	 0.0450 p 	 0.1483

IL-6 3a F(19,96) 	 1.7725 9 h F(3,19) 	 1.9628; p 	 0.1434 p 	 0.1121 p 	 0.1252 p 	 0.2593
Assay ID: Mm00446190_m1 p 	 0.0373* 1 d F(3,19) 	 2.3773; p 	 0.1019 p 	 0.1693 p 	 0.7033 p 	 0.0458
qRT-PCR Group p 	 0.0111* 7 d F(3,19) 	 1.2068; p 	 0.3342 p 	 0.1227 p 	 0.3824 p 	 0.1339
Cortex Time p.i p 	 0.0419* 1 mo F(3,19) 	 1.3241; p 	 0.2959 p 	 0.3090 p 	 0.2795 p 	 0.0623

Interaction p 	 0.4777 2 mo F(3,20) 	 0.5780; p 	 0.6362 p 	 0.6538 p 	 0.9226 p 	 0.4966

TNF� 3a F(19,96) 	 2.5852 9 h F(3,19) 	 2.2519; p 	 0.1153 p 	 0.0412 p 	 0.8224 p 	 0.0618
Assay ID: Mm00443258_m1 p 	 0.0013* 1 d F(3,19) 	 4.1300; p 	 0.0206* p 	 0.0058‡ p 	 0.3979 p 	 0.0437�
qRT-PCR Group p 	 0.0235* 7 d F(3,19) 	 3.1436; p 	 0.0493* p 	 0.8188 p 	 0.0272§ p 	 0.0265�
Cortex Time p.i p 	 0.0879 1 mo F(3,19) 	 0.1334; p 	 0.9390 p 	 0.9973 p 	 0.7611 p 	 0.5346

Interaction p 	 0.0064* 2 mo F(3,20) 	 1.2949; p 	 0.3036 p 	 0.4560 p 	 0.1441 p 	 0.0798

IL-10 3a F(19,96) 	 2.6404 9 h F(3,19) 	 3.0296; p 	 0.0547 p 	 0.0173 p 	 0.4601 p 	 0.0172
Assay ID: Mm00439616_m1 p 	 0.0010* 1 d F(3,19) 	 0.9682; p 	 0.4282 p 	 0.1965 p 	 0.7674 p 	 0.1392
qRT-PCR Group p 	 0.0235* 7 d F(3,19) 	 0.4799; p 	 0.4282 p 	 0.5396 p 	 0.3415 p 	 0.3282
Cortex Time p.i p 	 0.0042* 1 mo F(3,19) 	 1.4710; p 	 0.2542 p 	 0.0536 p 	 0.7661 p 	 0.3088

Interaction p 	 0.0337* 2 mo F(3,20) 	 3.0471; p 	 0.0525 p 	 0.1874 p 	 0.1521 p 	 0.8714

IL-1� 3b F(19,171) 	 2.5854 9 h F(3,27) 	 1.9628; p 	 0.1434 p 	 0.0411 p 	 0.3073 p 	 0.4310
% WT sham p 	 0.0006* 1 d F(3,36) 	 3.8218; p 	 0.0178* p 	 0.0127‡ p 	 0.0409§ p 	 0.6466
MSD Group p � 0.0001* 7 d F(3,25) 	 1.5148; p 	 0.2351 p 	 0.1210 p 	 0.2757 p 	 0.7512
Cortex Time p.i p 	 0.0851 1 mo F(3,35) 	 2.1628; p 	 0.1099 p 	 0.1979 p 	 0.4895 p 	 0.2769

Interaction p 	 0.1695 2 mo F(3,48) 	 1.8962; p 	 0.1428 p 	 0.9892 p 	 0.4541 p 	 0.0686

IL-6 3b F(19,171) 	 2.8858 9 h F(3,27) 	 1.2197; p 	 0.3216 p 	 0.1513 p 	 0.5443 p 	 0.2661
% WT sham p � 0.0001* 1 d F(3,36) 	 2.4461; p 	 0.0796* p 	 0.0255‡ p 	 0.2919 p 	 0.2197
MSD Group p 	 0.0990 7 d F(3,25) 	 0.9898; p 	 0.4136 p 	 0.3317 p 	 0.6597 p 	 0.5268
Cortex Time p.i p 	 0.0004* 1 mo F(3,35) 	 1.2670; p 	 0.3007 p 	 0.8065 p 	 0.1575 p 	 0.1633

Interaction p 	 0.0180* 2 mo F(3,48) 	 0.7712; p 	 0.5158 p 	 0.3821 p 	 0.6619 p 	 0.6535

TN F(� 3b F(19,171) 	 2.9264 9 h F(3,27) 	 0.2441; p 	 0.8648 p 	 0.8209 p 	 0.6276 p 	 0.7398
% WT sham p � 0.0001* 1 d F(3,36) 	 3.2219; p 	 0.0339* p 	 0.0130‡ p 	 0.1332 p 	 0.3122
MSD Group p 	 0.0033* 7 d F(3,25) 	 1.8041; p 	 0.1722 p 	 0.3926 p 	 0.0409 p 	 0.1257
Cortex Time p.i p 	 0.0004* 1 mo F(3,35) 	 2.7403; p 	 0.0579 p 	 0.0728 p 	 0.0417 p 	 0.6190

Interaction p 	 0.1332 2 mo F(3,48) 	 0.6572; p 	 0.5824 p 	 0.4998 p 	 0.3877 p 	 0.8061

IL-10 3b F(19,171) 	 0.8855 9 h F(3,27) 	 1.3444; p 	 0.2808 p 	 0.2807 p 	 0.4561 p 	 0.0576
% WT sham p 	 0.6013 1 d F(3,36) 	 1.0736; p 	 0.3725 p 	 0.3117 p 	 0.1573 p 	 0.9949
MSD Group p 	 0.2951 7 d F(3,25) 	 0.3243; p 	 0.8077 p 	 0.7896 p 	 0.4166 p 	 0.5551
Cortex Time p.i p 	 0.6727 1 mo F(3,35) 	 0.4297; p 	 0.7330 p 	 0.6196 p 	 0.4148 p 	 0.2979

Interaction p 	 0.5569 2 mo F(3,48) 	 1.1213; p 	 0.3498 p 	 0.1648 p 	 0.8578 p 	 0.0972

CCL2 3c F(19,96) 	 2.3369 9 h F(3,19) 	 5.1973; p 	 0.0086* p 	 0.0021‡ p 	 0.7669 p 	 0.0101�
Assay ID: Mm00441242_m1 p 	 0.0037* 1 d F(3,19) 	 2.8447; p 	 0.0651 p 	 0.0497 p 	 0.3623 p 	 0.0713
qRT-PCR Group p 	 0.0019* 7 d F(3,19) 	 1.5397; p 	 0.2368 p 	 0.5813 p 	 0.0697 p 	 0.2449
Cortex Time p.i p 	 0.1522 1 mo F(3,19) 	 1.4998; p 	 0.2467 p 	 0.0478 p 	 0.9530 p 	 0.3599

Interaction p 	 0.0562 2 mo F(3,20) 	 0.6925; p 	 0.5674 p 	 0.5653 p 	 0.8434 p 	 0.2040

CCL3 3c F(11,96) 	 5.1555 9 h F(3,19) 	 2.6329; p 	 0.0796 p 	 0.0126 p 	 0.5909 p 	 0.2913
Assay ID: Mm00441258_m1 p � 0.0001* 1 d F(3,19) 	 5.2226; p 	 0.0085* p 	 0.0008‡ p 	 0.9097 p 	 0.0681
qRT-PCR Group p � 0.0001* 7 d F(3,19) 	 7.4307; p 	 0.0017* p 	 0.0037‡ p 	 0.0032§ p 	 0.9817
Cortex Time p.i p 	 0.0612 1 mo F(3,19) 	 3.0653; p 	 0.0530 p 	 0.2150 p 	 0.3501 p 	 0.4499

Interaction p 	 0.0022* 2 mo F(3,20) 	 14.606; p � 0.0001* p 	 0.0004‡ p 	 0.0109§ p 	 0.0383�

CCL4 3c F(11,96) 	 6.4839 9 h F(3,19) 	 4.3443; p 	 0.0172* p 	 0.0022‡ p 	 0.9276 p 	 0.0302�
Assay ID: Mm00443111_m1 p � 0.0001* 1 d F(3,19) 	 8.3593; p 	 0.0010* p � 0.0001‡ p 	 0.9727 p 	 0.0104�
qRT-PCR Group p � 0.0001* 7 d F(3,19) 	 11.366; p 	 0.0002* p 	 0.0003‡ p 	 0.0014§ p 	 0.8990
Cortex Time p.i p 	 0.0991 1 mo F(3,19) 	 3.7238; p 	 0.0292* p 	 0.0153‡ p 	 0.5618 p 	 0.6782

Interaction p 	 0.0049* 2 mo F(3,20) 	 8.554; p 	 0.0007* p 	 0.0061‡ p 	 0.0181§ p 	 0.0655

CCL5 3c F(11,96) 	 3.4282 9 h F(3,19) 	 3.0097; p 	 0.0558 p 	 0.0125 p 	 0.7131 p 	 0.0281
Assay ID: Mm01302428_m1 p � 0.0001* 1 d F(3,19) 	 1.1322; p 	 0.3612 p 	 0.0990 p 	 0.8365 p 	 0.2483
qRT-PCR Group p � 0.0001* 7 d F(3,19) 	 4.6971; p 	 0.0129* p 	 0.0328‡ p 	 0.0089§ p 	 0.5302
Cortex Time p.i p 	 0.0238* 1 mo F(3,19) 	 4.0319; p 	 0.0224* p 	 0.0101‡ p 	 0.0641 p 	 0.8659

Interaction p 	 0.0303* 2 mo F(3,20) 	 0.9927; p 	 0.4164 p 	 0.7671 p 	 0.3963 p 	 0.2028
a*Denotes significant effect by ANOVA.
‡Denotes significant difference between WT 
 sham vs. WT 
 CHI.
§Denotes significant difference between KI 
 sham vs. KI 
 CHI.
�Denotes significant difference between WT 
 CHI vs. KI 
 CHI.
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Table 3. Summary of statistics for astrocytes following CHIa

Measure Figure Two-way ANOVA Time p.i. One-way ANOVA WT, sham vs CHI KI, sham vs CHI CHI, WT vs KI

GFAP 5b F(11,125) 	 19.58 9 h
IHC p � 0.0001* 1 d F(3,48) 	 3.7256; p 	 0.0178* p 	 0.2866 p 	 0.0288§ p 	 0.0442�
Positive pixels cortex Group p � 0.0001* 7 d F(3,29) 	 2.1772; p 	 0.1148 p 	 0.0556 p 	 0.2766 p 	 0.7578

Time p.i p � 0.0001* 1 mo
Interaction p � 0.0001* 2 mo F(3,46) 	 31.194; p � 0.0001* p 	 0.2780 p � 0.0001§ p � 0.0001�

GFAP 5c F(19,96) 	 3.1755 9 h F(3,19) 	 7.6226; p 	 0.0015* p 	 0.0013‡ p 	 0.3182 p 	 0.0030�
Assay ID: Mm00546086_m1 p � 0.0001* 1 d F(3,19) 	 4.2435; p 	 0.0187* p 	 0.0026‡ p 	 0.8257 p 	 0.0372�
qRT-PCR Group p 	 0.0001* 7 d F(3,19) 	 3.7997; p 	 0.0274* p 	 0.0712 p 	 0.0172§ p 	 0.3362
Cortex Time p.i p 	 0.0497* 1 mo F(3,19) 	 0.4212; p 	 0.7399 p 	 0.3213 p 	 0.6454 p 	 0.4431

Interaction p 	 0.0748 2 mo F(3,20) 	 6.4318; p 	 0.0032* p 	 0.0209‡ p 	 0.0138§ p 	 0.0892

VIM 5c F(19,96) 	 3.1755 9 h F(3,19) 	 7.6226; p 	 0.0015* p 	 0.0013‡ p 	 0.3182 p 	 0.0030�
Assay ID: Mm01333430_m1 p � 0.0001* 1 d F(3,19) 	 4.2435; p 	 0.0187* p 	 0.0026‡ p 	 0.8257 p 	 0.0372�
qRT-PCR Group p 	 0.0001* 7 d F(3,19) 	 3.7997; p 	 0.0274* p 	 0.0712 p 	 0.0172§ p 	 0.3362
Cortex Time p.i p 	 0.0497* 1 mo F(3,19) 	 0.4212; p 	 0.7399 p 	 0.3213 p 	 0.6454 p 	 0.4431

Interaction p 	 0.0748* 2 mo F(3,20) 	 6.4318; p 	 0.0032* p 	 0.0209‡ p 	 0.0138§ p 	 0.0892

LCN2 5c F(19,96) 	 2.6715 9 h F(3,19) 	 4.1114; p 	 0.0209* p 	 0.0040‡ p 	 0.7698 p 	 0.0276�
Assay ID: Mm01324470_m1 p 	 0.0009* 1 d F(3,19) 	 4.2884; p 	 0.0180* p 	 0.0069‡ p 	 0.7183 p 	 0.0065�
qRT-PCR Group p 	 0.0018* 7 d F(3,19) 	 0.2140; p 	 0.8854 p 	 0.7495 p 	 0.7836 p 	 0.4422
Cortex Time p.i p 	 0.2770 1 mo F(3,19) 	 1.7664; p 	 0.1877 p 	 0.3996 p 	 0.5499 p 	 0.4542

Interaction p 	 0.0083* 2 mo F(3,20) 	 3.8335; p 	 0.0256* p 	 0.1279 p 	 0.0113§ p 	 0.1855

PTX3 5c F(19,96) 	 3.9352 9 h F(3,19) 	 6.3087; p 	 0.0038* p 	 0.0019‡ p 	 0.4054 p 	 0.0067�
Assay ID: Mm00477268_m1 p � 0.0001* 1 d F(3,19) 	 3.0603; p 	 0.0532 p 	 0.0228 p 	 0.9488 p 	 0.0204
qRT-PCR Group p � 0.0001* 7 d F(3,19) 	 3.2649; p 	 0.0441* p 	 0.3084 p 	 0.0324§ p 	 0.0720
Cortex Time p.i p 	 0.0971 1 mo F(3,19) 	 0.0956; p 	 0.9615 p 	 0.6657 p 	 0.9579 p 	 0.7624

Interaction p 	 0.0006* 2 mo F(3,20) 	 2.9249; p 	 0.0589 p 	 0.1966 p 	 0.0331 p 	 0.1733
a*Denotes significant effect by ANOVA.
‡Denotes significant difference between WT 
 sham vs. WT 
 CHI.
§Denotes significant difference between KI 
 sham vs. KI 
 CHI.
�Denotes significant difference between WT 
 CHI vs. KI 
 CHI.

Table 2. Summary of statistics for microglia following CHIa

Measure Figure Two-way ANOVA Time p.i. One-way ANOVA WT, sham vs CHI KI, sham vs CHI CHI, WT vs KI

IBA1 4c F(11,86) 	 4.4416 9 h
IHC p � 0.0001* 1 d F(3,20) 	 3.4323; p 	 0.0367* p 	 0.0071‡ p 	 0.2629 p 	 0.5042
Positive pixels cortex Group p 	 0.004* 7 d F(3,24) 	 3.0262; p 	 0.0491* p 	 0.0332‡ p 	 0.0306§ p 	 0.5933

Time p.i p 	 0.1715 1 mo
Interaction p 	 0.0070* 2 mo F(3,42) 	 7.4269; p 	 0.0004* p 	 0.3316 p 	 0.8538 p 	 0.0129�

CX3CR1 4c F(19,96) 	 1.2676 9 h F(3,19) 	 0.1864; p 	 0.9043 p 	 0.7775 p 	 0.9694 p 	 0.5324
Assay ID: Mm02620111_s1 p 	 0.2234 1 d F(3,19) 	 0.1802; p 	 0.9085 p 	 0.2929 p 	 0.9347 p 	 0.6569
qRT-PCR Group p 	 0.2030 7 d F(3,19) 	 0.6103; p 	 0.6165 p 	 0.5164 p 	 0.9347 p 	 0.5818
Cortex Time p.i p 	 0.0107* 1 mo F(3,19) 	 0.8656; p 	 0.4760 p 	 0.1947 p 	 0.9189 p 	 0.8573

Interaction p 	 0.9458 2 mo F(3,20) 	 1.0179; p 	 4056 p 	 0.9625 p 	 0.2173 p 	 0.1603
CCR2 4c F(19,96) 	 1.8913 9 h F(3,19) 	 0.9515; p 	 0.4356 p 	 0.9501 p 	 0.6583 p 	 0.1711
Assay ID: Mm00438270_m1 p 	 0.0233* 1 d F(3,19) 	 0.3820; p 	 0.7671 p 	 0.8676 p 	 0.3102 p 	 0.5965
qRT-PCR Group p 	 0.1590 7 d F(3,19) 	 0.8827; p 	 0.4677 p 	 0.1961 p 	 0.7296 p 	 0.8286
Cortex Time p.i p 	 0.0610 1 mo F(3,19) 	 1.7086; p 	 0.1991 p 	 0.9751 p 	 0.0699 p 	 0.1083

Interaction p 	 0.0769 2 mo F(3,20) 	 0.9666; p 	 0.4279 p 	 0.3124 p 	 0.9882 p 	 0.6720
CD68 4c F(19,96) 	 2.3625 9 h F(3,19) 	 2.5462; p 	 0.0865 p 	 0.0411 p 	 0.1768 p 	 0.2849
Assay ID: Mm00839636_g1 p 	 0.0033 1 d F(3,19) 	 1.2658; p 	 0.3144 p 	 0.0836 p 	 0.8098 p 	 0.2244
qRT-PCR Group p 	 0.0007* 7 d F(3,19) 	 4.5303; p 	 0.0147* p 	 0.0405‡ p 	 0.0333§ p 	 0.1941
Cortex Time p.i p 	 0.0091* 1 mo F(3,19) 	 0.7271; p 	 0.5483 p 	 0.2061 p 	 0.7607 p 	 0.7394

Interaction p 	 0.4712 2 mo F(3,20) 	 0.9680; p 	 0.4273 p 	 0.1235 p 	 0.6449 p 	 0.4371
MHCII 4c F(19,96) 	 0.9847 9 h F(3,19) 	 1.0969; p 	 0.3747 p 	 0.2963 p 	 0.8076 p 	 0.7030
Assay ID: Mm00439216_m1 p 	 0.4854 1 d F(3,19) 	 0.3209; p 	 0.8102 p 	 0.9197 p 	 0.9758 p 	 0.5301
qRT-PCR Group p 	 0.3485 7 d F(3,19) 	 0.9623; p 	 0.4308 p 	 0.9468 p 	 0.1823 p 	 0.1763
Cortex Time p.i p 	 0.4557 1 mo F(3,19) 	 1.7895; p 	 0.1833 p 	 0.0446 p 	 0.4158 p 	 0.6600

Interaction p 	 0.5043 2 mo F(3,20) 	 1.1880; p 	 0.3395* p 	 0.2225 p 	 0.1803 p 	 0.9253
a*Denotes significant effect by ANOVA.
‡Denotes significant difference between WT 
 sham vs. WT 
 CHI.
§Denotes significant difference between KI 
 sham vs. KI 
 CHI.
�Denotes significant difference between WT 
 CHI vs. KI 
 CHI.
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hoc analysis showed that the KI
CHI
group was significantly different (p �
0.05) from the other three groups, which
were not significantly different from each
other, as analyzed by the total numbers of
errors per day.

A� deposition is increased by CHI in
the APP/PS1 KI mice at 2 months p.i.
TBI in humans can accelerate amyloid pa-
thology (for review, see Johnson et al.,
2010), including the accumulation of APP
in injured axons (Gentleman et al., 1993;
Sherriff et al., 1994), as well as a rapid de-
velopment of amyloid plaques in severe
TBI cases (Roberts et al., 1994; Ikono-
movic et al., 2004). Changes in amyloid
pathology have also been reported in TBI
studies with AD mouse models (Uryu et
al., 2002; Abrahamson et al., 2006; Tran
et al., 2011; Tajiri et al., 2013; Washington
et al., 2014). To assess whether CHI altered
A� in the APP/PS1 KI mouse, we used three
time points: (1) an acute time point of 1 d
p.i. where some previous studies have doc-
umented elevated APP and A�; (2) a 1
month p.i. time point when we see RAWM
deficits in injured KI mice; and (3) a chronic
time point of 2 months p.i. when there is
enhanced amyloid pathology in the KI mice
(Murphy et al., 2007).

At 1 d p.i., 8-month-old KI
sham
mice showed only sparse A� plaques, and
there was no injury-induced increase in
A� plaque burden as assessed by 6E10
staining (Fig. 2a). By 1 month p.i. (9-
month-old mice), a predicted age-related
increase in A� burden was seen in KI
mice, both sham and CHI, but there was
no injury-induced change in A� burden.
By 2 months p.i. (10-month-old mice),
the A� staining had continued to increase
with age in the KI mice and was seen
throughout the cortex. Quantification of
the A�-positive staining area in mice at 2
months p.i. demonstrated a significant in-
crease in the A� load in CHI mice com-
pared with sham-injured mice (p 	
0.0345; Fig. 2a). Interestingly, at this time
point, we observed small A� (6E10) de-
posits in the KI
CHI mice that were not
seen in the KI
sham mice (Fig. 2a); the
significance of this observation is not
known.

As 6E10 has the potential to detect
both A� and APP (Gouras et al., 2010),
and TBI in mice can induce increases in
APP levels (Abrahamson et al., 2006;
Loane et al., 2009), we measured A�1– 40-
and A�1– 42- specific neo-epitopes to de-
termine whether the increase in 6E10
staining was specific to A� or reflected
changes in APP. The MSD (6E10) A�

Figure 1. Injured APP/PS1 KI mice show persistent behavioral impairments. a, Overview of study design and experimental
groups. WT and KI mice (8 months old) were subjected to CHI or sham injury, and different cohorts examined at 9 h, 1 d, 7 d, 1
month, and 2 months p.i. b, Cohort 3 was tested for running wheel activity on p.i. days 1–5. CHI caused a transient reduction in
spontaneous running wheel activity that was similar in both WT and KI mice (n 	 7 or 8 per group). c, Cohorts 2–5 were tested at
1 d, 7 d, 1 month, and 2 months p.i. for the ability to make a nest. Following CHI, both WT and KI mice made lower-quality nests at
1 d after the injury. However, WT mice recovered normal nesting behavior by 7 d to 1 month p.i., whereas the KI mice continued to
have a significant deficit even at 2 months p.i. ‡p � 0.05 WT
sham versus WT
CHI. *p � 0.05 KI
sham versus KI
CHI (n 	
7–22 per group). d, Cohort 5 was tested in the RAWM at 9 months of age (1 month p.i.). At this time point, the injury-induced deficit
in cognitive performance in WT mice had resolved, but the injured KI mice remained significantly impaired compared with the
other groups (n 	 10 –14 per group). *Denotes significant difference between WT 
 CHI vs. KI 
 CHI. ‡Denotes significant
difference between WT 
 sham vs. WT 
 CHI. §Denotes significant difference between KI 
 sham vs. KI 
 CHI.
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ELISA uses A�1– 40- and A�1– 42- specific neo-epitopes as cap-
ture antibodies and a 6E10 detection antibody, thereby only mea-
suring A� and not APP. As shown in Figure 2b, biochemical
determination of the PBS soluble and formic acid (FA) soluble
A�1– 40 and A�1– 42 levels at 2 months p.i. showed a marked,
but variable, increase in both A�1– 40 and A�1– 42 in the FA
fraction in the CHI compared with sham mice (A�1– 40, p 	
0.023; A�1– 42, p 	 0.0347), but no change in the PBS soluble
fraction. Although the CHI model used in this study was of in-
sufficient severity to induce a rapid accumulation of A�, the mild
injury did cause increased A� pathology at this chronic time
point. It will be important in future studies to carefully charac-
terize A� processing and clearance pathways between the 1
month p.i. and 2 months p.i time point to elucidate the mecha-
nism of this observation.

APP/PS1 KI mice show an altered temporal cytokine and
chemokine response following a CHI compared with WT
mice
Disease- and injury-induced overproduction of proinflamma-
tory cytokines in the CNS (especially IL-1�, IL-6, and TNF�) is
associated with degenerative disease processes (Van Eldik et al.,
2007; McCoy and Tansey, 2008). Therefore, we hypothesized that
the cognitive deficits in the injured KI mice might be associated
with a heightened and/or prolonged proinflammatory cytokine
response compared with the injured WT mice. To test this, we
measured gene expression (Fig. 3a) and protein levels (Fig. 3b)
for IL-1�, IL-6, and TNF� in the cortex at select times after the
CHI (statistics are shown in Table 1). At the mRNA level, the
WT
CHI and the KI
CHI groups showed a different temporal
pattern of expression, with the peak of the proinflammatory cy-
tokines not occurring until 7 d p.i. in the KI
CHI mice. In con-
trast to the gene expression, the changes in protein levels of IL-1�,
IL-6, and TNF� were largely indistinguishable between the
WT
CHI and the KI
CHI groups, as both groups showed a
similar temporal pattern in proinflammatory cytokine increase
compared with their respective control groups (Fig. 3b; Table 1).

Head injury also induces an increase in IL-10 production
(Morganti-Kossmann et al., 2007), an anti-inflammatory cyto-
kine critical to in vivo inflammation responses (Saraiva and
O’Garra, 2010). Therefore, mRNA and protein levels for IL-10

were measured in the cortex at multiple time points after the CHI
or sham surgery to determine whether the KI mice might have an
altered anti-inflammatory response compared with the WT mice.
The KI
CHI mice did not manifest an early IL-10 response to the
injury, in contrast to the WT
CHI mice response (Fig. 3a; Table
1). The pattern of IL-10 protein levels was similar to the mRNA,
but the protein measurements were near the lower limits of assay
detection, potentially contributing to greater variance due to
signal-to-noise issues (Fig. 3b). Regardless, the early anti-
inflammatory IL-10 response seen in the WT
CHI mice was not
evident in the KI
CHI group. This raises the possibility that the
KI
CHI group is not able to mount the counteracting arm of the
physiological axis in which IL-10 counterbalances the increased
IL-1�, IL-6, and TNF� proinflammatory response, or the IL-10
response is shifted to an entirely different time window not ex-
amined in this study.

Chemokines, among other functions, have important che-
moattractant properties to direct the recruitment of leukocytes to
sites of injury or inflammation. Recruitment of monocytes to
sites of injury is the function of the CC chemokine family (Ubogu
et al., 2006; Viola and Luster, 2008), so named because the first
two cysteine residues are adjacent. Therefore, we measured
mRNA levels of four CC chemokines key to the recruitment of
monocytes. As shown in Figure 3c, the KI
CHI group did not
exhibit the early chemokine response seen in the WT
CHI
group. The WT
CHI group showed a rapid increase (by 9 h) in
CCL2 and CCL4 gene expression compared with the WT
sham
mice. In contrast, the peak chemokine response of the KI
CHI
group was at 7 d (Fig. 3c; Table 1).

The temporal patterns of microglia markers change after CHI
Microglia play an important role in maintaining the health of the
CNS but also contribute significantly to the pathophysiology fol-
lowing activation in response to an acute brain injury and in
chronic neurodegenerative disease (Loane and Byrnes, 2010;
Mosher and Wyss-Coray, 2014). Because A� is a potent activator
of microglia, we hypothesized that the microglia in the APP/PS1
KI mice would be “primed,” such that the CHI would lead to an
exaggerated microglia response compared with the WT
CHI mice.
To test this prediction, we visualized CHI-induced microglia mor-
phological changes by IBA1 IHC. CHI produced a reactive microglia

Figure 2. CHI increases A� deposition in the APP/PS1 KI mice at 2 months p.i. a, At 1 d and 1 month p.i., there were no observable differences in A� staining respective to injury, but by 2 months
p.i., the KI
CHI group had significantly more staining in the cortex compared with the KI
sham group, as determined by Aperio ScanScope digital quantification of 6E10 IHC. In addition, many
small A� deposits were seen in the KI
CHI mice that were not present in the KI
sham mice. b, Levels of soluble (PBS fraction) and aggregated (FA fraction) A�1– 40 and A�1– 42 in the cortex
were measured by MSD ELISA. No injury-induced changes were observed in the levels of A�1– 40 or A�1– 42 in the PBS soluble fraction at either 1 d or 2 months. For the FA fraction, there was a
significant injury-induced increase in A�1– 40 and A�1– 42 levels at the 2 month p.i. time point (n 	 10 –14 per group). *Denotes significant difference between KI 
 sham vs. KI 
 CHI.
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response, with the most pronounced morphological change oc-
curring at 7 d p.i. (Fig. 4a,b). Quantification of IBA1
 staining
(Fig. 4c) showed no differences between WT
CHI and KI
CHI
mice at the 1 d and 7 d p.i. time points. By 2 months p.i., the
microglia activation in the injured WT mice had resolved and was
not significantly different from the sham WT mice (for statistical
comparisons, see Table 2). At 2 months p.i., the IBA1
 microglia
in the KI mice were still elevated compared with the WT mice;
however, there was no difference between the injured and sham
KI mice. As shown in Figure 4a, some of the microglia staining in

the KI mice at 2 months p.i. appeared in clustered regions, which
may represent areas where A� plaques are deposited. Overall, our
data show that the WT and KI mice have a similar initial injury-
induced increase in IBA1 staining, which decreases over time in
the WT mice but stays elevated in the KI mice (KI
sham and
KI
CHI).

A number of gene expression markers have now been defined
that are associated with different microglia activation states and
disease-specific molecular signatures (Chiu et al., 2013; Hickman
et al., 2013; Butovsky et al., 2014). Although analysis of the large

Figure 3. APP/PS1 KI mice show an altered temporal cytokine and chemokine response following a CHI compared with WT mice. a, The temporal patterns of proinflammatory cytokine (IL-1�,
IL-6, TNF�) gene expression differed in KI and WT mice after injury, with delayed peak levels in the KI mice (n 	 5 or 6 per group). b, However, proinflammatory cytokine protein levels showed a
similar pattern of upregulation in KI and WT mice after injury (n 	 7–14 per group). The injured KI mice failed to induce an early increase in the anti-inflammatory cytokine IL-10 but showed a
delayed peak at 7 d p.i., at both the gene expression level (a) (n 	 5 or 6 per group) and protein level (b) (n 	 7–14 per group). c, The injured KI mice did not show the early (9 h and 1 d) upregulation
of inflammatory chemokines seen in the WT
CHI mice but instead showed a striking peak chemokine response at 7 d. Statistics summary is shown in Table 1. *Denotes significant difference
between WT 
 CHI vs. KI 
 CHI. ‡Denotes significant difference between WT 
 sham vs. WT 
 CHI. §Denotes significant difference between KI 
 sham vs. KI 
 CHI.
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Figure 4. The temporal patterns of microglia markers change after CHI. a, IBA1-positive staining in the cortex at 1 d, 7 d, and 2 months p.i. shows changes in microglia morphology after
CHI. Some of the microglia in the KI mice appeared in clustered regions, which may represent areas where A� plaques are deposited. b, Higher-magnification view of area indicated by
arrows in the 7 d p.i CHI groups. c, Quantification of IBA1-positive pixels in the cortex using the Aperio ScanScope (n 	 7–14 per group) shows that WT and KI mice have a similar early
(1 d, 7 d) injury-induced increase in IBA1 staining, which decreases by 2 months in the WT mice but stays elevated in the KI mice (KI
sham and KI
CHI). d, Gene expression for
microglia/macrophage markers revealed some differences between WT and KI mice after injury, with KI mice showing a peak for CD68 and MHCII expression at 7 d after the CHI (n 	 5
or 6 per group). Statistics summary is shown in Table 2. *Denotes significant difference between WT 
 CHI vs. KI 
 CHI. ‡Denotes significant difference between WT 
 sham vs. WT 

CHI. §Denotes significant difference between KI 
 sham vs. KI 
 CHI.
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number of markers that have been proposed to be microglia/
macrophage specific would be informative, it is well beyond the
scope of this study. Therefore, we selected four standard gene
expression markers to provide an initial survey of the microglia
response in the APP/PS1 KI mice following the CHI. We mea-
sured the gene expression of a marker associated with microglia
(CX3CR1) and with macrophages (CCR2) (Mizutani et al.,
2012), and two classical histological markers (CD68 and MHCII)
of microglia/macrophage activation (Fig. 4d). Expression of
CX3CR1 in the cortex was unchanged by injury or genotype. A
spike in CCR2 expression was seen at 1 month p.i., with the greatest
increase in the KI
CHI mice compared with the other groups. Ex-
pression of CD68 and MHCII followed a pattern in the KI
CHI
mice similar to that of the proinflammatory cytokine and chemo-
kine expression, with a peak response occurring at the 7 d p.i. time
point. The results suggest that there may be a functionally unique
microglia/macrophage response in the KI
CHI mice occurring �7
d p.i. Therefore, our initial microglia/macrophage gene expression
results suggest that a more detailed molecular characterization of
isolated cells by flow cytometric analysis, with subsequent gene ex-
pression analysis, is warranted in the future to fully characterize the
magnitude and type of the microglia and infiltrating macrophage
response after the CHI, and to determine whether and how this
response is altered in the context of AD pathology.

CHI induces persistent astrocyte activation and a delayed
temporal profile of gene expression changes in APP/PS1 KI
mice
Astrocytes in all CNS disorders, whether from acute brain injury
or chronic neurodegeneration, adopt phenotypes with altered
morphological and biochemical properties. This activated astro-
cyte response can result in a loss of homoeostatic functions, such
as glutamate and potassium homeostasis, movement of water,
brain metabolism, and regulation of inflammation (Verkhratsky
et al., 2012). When astrocytes become activated, they can also
impair synaptic function and contribute to cognitive impairment
(Furman et al., 2012). GFAP IHC is a common method used to
visualize astrocyte activation and morphological changes. Figure
5 shows the activated astrocyte response after CHI. The
WT
CHI group showed an increase in GFAP staining at 1 d and
7 d p.i., which decreased by 2 months p.i. (Fig. 5a). In the
KI
CHI mice, GFAP staining in the cortex at 1 d and 7 d p.i. was
largely associated with what appear to be plaques. The most strik-
ing change in GFAP staining occurred at 2 months p.i. in the
KI
CHI mice. Quantification of the GFAP staining (Fig. 5b)
showed a large increase in GFAP in the KI
CHI mice at this
chronic time point, significantly greater than the normal increase
in GFAP in the KI
sham mice at this age.

We further characterized the temporal pattern of the activated
astrocyte responses by measuring changes in gene expression of
four astrocyte markers. In WT
CHI mice, GFAP gene expres-
sion increased early, reaching a peak at 1 d p.i. and slowly subsid-
ing over 2 months (Fig. 5c). In contrast, in KI
CHI mice, the
increase in GFAP gene expression was delayed, reaching a peak at
the 7 d p.i. time point. GFAP expression remained elevated at 2
months p.i. in the injured KI mice relative to sham, in agreement
with the GFAP IHC data. The temporal pattern of gene expres-
sion for vimentin was similar to that of GFAP, with KI
CHI
mice showing a delayed increase (7 d peak) that remained ele-
vated at the 2 month time point.

A recent study (Zamanian et al., 2012) identified a number of
genes that were highly enriched in astrocytes from an ischemic
stroke brain injury model compared with the control. Two genes

that were highly induced in isolated astrocytes from the injury
model were lipocalin 2 (Lcn2) and pentraxin 3 (Ptx3). Lcn2 in-
duction has been reported to be detrimental to neurological out-
comes in stroke models (Egashira et al., 2014; Jin et al., 2014) and
in a spinal cord injury model (Rathore et al., 2011), but beneficial
in experimental autoimmune encephalomyelitis (Berard et al.,
2012). Ptx3 belongs to the superfamily of proteins that includes
C-reactive protein (for review of Ptx, see Daigo et al., 2014). In an
ischemic brain injury model, Ptx3 deficiency was associated with
increased infarct volume, increased blood– brain barrier leakage,
and prolonged edema (Rodriguez-Grande et al., 2014). In re-
sponse to ischemic brain injury, Lcn2 and Ptx3 genes showed a
rapid upregulation by 1 d p.i., with a steady return to baseline by
7 d p.i.; longer time points were not measured (Zamanian et al.,
2012).

Therefore, we measured Lcn2 and Ptx3 gene expression at
different times after CHI in WT and KI mice. WT
CHI mice
showed a rapid increase in both Lcn2 and Ptx3, and a return
toward baseline by 7 d p.i. (Fig. 5c; Table 2), in agreement with the
findings in an ischemic stroke injury model (Zamanian et al.,
2012). In contrast, KI
CHI mice failed to upregulate Lcn2 and
Ptx3 at the 9 h and 1 d p.i. time points but showed a significant
increase at later time points (7 d p.i. for Ptx3 and 2 months for
Lcn2) (Fig. 5c; Table 2). These results provide further support for
altered astrocyte activation in response to CHI in the KI mice. In
future experiments, ex vivo gene expression analysis of isolated
astrocytes will be important to fully characterize the magnitude
and type of the astrocyte responses after the CHI, and to further
explore mechanisms associated with the altered astrocyte re-
sponses in the context of AD pathology.

Treatment of APP/PS1 KI mice with MW151, a small-
molecule inhibitor of glia neuroinflammatory responses,
prevents CHI-induced cognitive impairment
MW151 was developed (Hu et al., 2007) by using a validated
mouse model (Craft et al., 2004a, b, 2006) and discovery
approach, to develop novel small molecules that selectively atten-
uate stressor-induced upregulation of neuroinflammatory re-
sponses from activated glia. We previously reported (Bachstetter
et al., 2012) that treatment of APP/PS1 KI mice with MW151 in
the early-stage time window of age-related increase in proinflam-
matory cytokines could prevent the resultant synaptic dysfunc-
tion. In addition, we recently reported that MW151 can suppress
injury-induced IL-1� and IL-6 production and attenuate cogni-
tive impairment in WT mice following a CHI (Bachstetter et al.,
2015). Based on this precedent, we treated mice with MW151 (5
mg/kg/d; i.p.) to confirm the effectiveness of MW151 in sup-
pressing the neuroinflammatory response (Fig. 6a– e). Because
there was a 7 d p.i. peak in several neuroinflammatory gene ex-
pression markers in the KI
CHI mice, we initiated treatment of
cohort 6 (Fig. 6) with MW151 at day 7 p.i. We administered
MW151 once daily for 4 d, then killed mice at �3 h after the last
injection of MW151 on day 10 p.i. to determine whether MW151
could suppress the injury-induced neuroinflammatory response
(Fig. 6a). Under these conditions, MW151 treatment suppressed
the proinflammatory cytokine response (Fig. 6b), had no effect
on IBA staining (Fig. 6c), and reduced GFAP staining (Fig. 6c).
Consistent with prior results in the age-related intervention
study (Bachstetter et al., 2012), there was no effect of MW151
treatment on A�, as assessed histologically (Fig. 6d) and bio-
chemically (Fig. 6e).

After confirming that MW151 had the expected pharmaco-
dynamics effect related to its mechanism of action (i.e., sup-
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Figure 5. CHI induces persistent astrocyte activation and a delayed temporal profile of astrocyte-associated gene expression changes in the APP/PS1 KI mice. a, GFAP staining at low magnification
shows the regional increase in staining seen in the cortex of the CHI groups. The higher-magnification insets were taken from the middle brain sections and from the same regions of the cortex to
show the morphological appearance of the astrocytes. b, Quantification of GFAP staining was done with the Aperio ScanScope, using the entire neocortex as the region of interest. Astrocyte
activation remains elevated at 2 months p.i. in injured KI mice (n 	 7–14 per group). c, The temporal patterns of astrocytic gene expression (GFAP, vimentin, Lcn2, and Ptx3) differed between WT
and KI mice after injury. The injured WT mice showed an early increase in gene expression (9 h, 1 d) and then a decline in expression levels, whereas the injured KI mice showed a more delayed initial
increase and more persistent response (n 	 5 or 6 per group). For example, GFAP, vimentin, and Ptx3 showed a peak in gene expression in the KI mice at 7 d p.i., and all four genes remained elevated
at 2 months. Statistics summary is shown in Table 3. *Significant difference between WT 
 CHI vs. KI 
 CHI; ‡Significant difference between WT 
 sham vs. WT 
 CHI. §Significant difference
between KI 
 sham vs. KI 
 CHI.
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pression of the injury-induced neuroinflammatory response),
we tested whether repeat administration with MW151 could
attenuate the injury-induced cognitive deficits. As outlined in
Figure 6f, cohort 7 mice were treated with MW151 or saline
vehicle intraperitoneally every other day from day 7 to 27 p.i.
Following 2 d without treatment, to minimize any stress-
related effects on the animals’ behavior, the mice were tested
in the RAWM. As shown in Figure 6g, there was a significant
cognitive impairment in the injured KI mice (significant effect
of training, p � 0.0001; and experimental group, p 	 0.0081).
Post hoc analysis showed that the KI
CHI
veh group was
significantly different ( p � 0.05) from the other two groups.
Importantly, on day 2 of the RAWM task, injured mice treated
with MW151 made significantly fewer errors than the injured
mice treated with vehicle, and MW151-treated mice were not
significantly different from sham controls (Fig. 6h). Thus, the
RAWM data support the hypothesis that the dysregulated neu-
roinflammatory response seen in the KI mice subjected to CHI
may be one of the contributing factors that leads to cognitive
impairment following injury.

At day 32 p.i., mice were killed, and we measured cytokine
levels (Fig. 6i), IBA1 and GFAP IHC (Fig. 6j), and A� by histology
(Fig. 6k) and biochemistry (Fig. 6l), to examine other patholog-
ical endpoints in addition to the functional RAWM endpoint.
Levels of cytokines (IL-1�, IL-6, TNF�) did not change with
injury or MW151 treatment at this chronic time point (32 d p.i.),
and MW151 did not suppress the cytokine levels below the basal
levels seen in the sham mice (Fig. 6i). IBA1 and GFAP IHC stain-
ing showed a significant increase in the injured mice compared
with the sham mice, but the MW151-treated mice showed little
(IBA1) to no (GFAP) suppression of CHI-induced glial activa-
tion (Fig. 6j). There was no effect in any of the experimental
groups on A� IHC using either 6E10- or A�1– 42-specific anti-
bodies (Fig. 6k). Biochemical measurement of PBS- and FA-
soluble A�1– 40 and A�1– 42 also showed no significant
differences in any of the groups (Fig. 6l).

Discussion
There are three key findings from the studies reported here.
First, a single, comparatively mild, diffuse brain injury admin-

Figure 6. Treatment of APP/PS1 KI mice with MW151, a small-molecule inhibitor of glia neuroinflammatory responses, prevents CHI-induced cognitive impairment. a, In cohort 6, mice were
treated with MW151 (5 mg/kg) or saline vehicle by intraperitoneal injection once daily on days 7–10 p.i. (n 	 5 or 6 per group). b, Injury-induced proinflammatory cytokine production and (c)
astrocytosis, but not microglia, were reduced by MW151 treatment. MW151 treatment had no effect on (d) A� IHC or (e) PBS-soluble or FA-soluble A�1– 40 or A�1– 42 levels. f, In cohort 7, mice
were treated with MW151 (5 mg/kg) or saline vehicle by intraperitoneal injection every other day, from day 7 to day 27 p.i. (n 	 10 –14 per group). On day 29 p.i., mice were tested in the 2 d RAWM
task. The learning curve (g) and the total number of errors per day (h) show that MW151 prevents the CHI-induced cognitive impairment. i, There was no change in cytokine levels in any experimental
group at this 32 p.i. time point. j, There was a significant increase in IBA1 and GFAP IHC in the injured mice compared with the sham mice, but the MW151-treated mice showed little (IBA1) to no
(GFAP) suppression of the staining. MW151 treatment had no effect on (k) A� IHC or (l ) PBS-soluble or FA-soluble A�1– 40 or A�1– 42 levels. ‡‡p � 0.01, KI
sham
veh versus KI
CHI
veh.
‡‡‡p � 0.001, KI
sham
veh versus KI
CHI
veh. *p � 0.05, KI
CHI
veh versus KI
CHI
MW151. **p � 0.01, KI
CHI
veh versus KI
CHI
MW151. ***p � 0.001, KI
CHI
veh
versus KI
CHI
MW151.
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istered before onset of age-associated functional deficits and
pathology in an AD-relevant mouse model can induce chronic
cognitive impairment. Second, there is an altered temporal
profile in the injury-induced proinflammatory cytokine in-
creases that could not have been predicted from the prior
separate investigations that previously linked the neuroin-
flammation to neurologic outcomes in both the TBI and the
AD relevant mouse models. Third, intervention with a small-
molecule inhibitor of brain proinflammatory cytokine up-
regulation prevents the chronic cognitive impairment,
providing a linkage of the neuroinflammatory response to the
neurologic outcomes. This raises the potential for future de-
velopment of neuroinflammation biomarkers related both to

pathophysiology progression at key time windows and to the
effects of such drugs on these pharmacodynamic endpoints.

Specifically, we report that a single mild TBI in the APP/PS1
KI mouse induced an extended neuroinflammation response and
a chronic cognitive impairment that persisted even at the 2
months p.i. time point. The astrocyte activation and cytokine
responses in the injured KI mice were delayed in onset and were
extended in presence compared with the injured WT mice. Treat-
ment during this phase with a small-molecule experimental ther-
apeutic (MW151) that selectively attenuates proinflammatory
cytokine upregulation prevented cognitive impairment in in-
jured KI mice, providing a mechanistic link between the altered
neuroinflammation and neurologic endpoints. Overall, our data

Figure 7. Summary of CHI-induced changes in WT and APP/PS1 KI mice. In WT
sham mice, there are low levels of proinflammatory cytokines/chemokines and reactive microglia and astrocytes.
In WT
CHI mice, there is a rapid increase and resolution of the proinflammatory cytokine/chemokine response. This is followed by activation of microglia and astrocytes that slowly resolves over
time, with most responses down toward basal levels by the 2 months p.i. time point. In the KI
sham mice, cytokines and glia are at low levels at the start of the experiment (8-month-old mice).
As A� accumulates in the KI
sham mice with increased age, there is also a concomitant increase in neuroinflammation. In the KI
CHI mice, there is an altered temporal neuroinflammatory
response compared with the WT
CHI mice. In the injured KI mice, much of the proinflammatory cytokine/chemokine, microglia and astrocyte response is delayed until 7 d p.i. but then remains elevated and
is not resolved at the 2 months p.i. time point. By 2 months p.i., there is also an increase in A� in the KI
CHI mice compared with the KI
sham mice. Treatment of KI
CHI mice with the experimental
therapeutic (MW151) that selectively attenuates proinflammatory cytokine overproduction reduced the cytokine and astrocyte response to injury. Importantly, MW151 treatment prevented the cognitive
deficits in RAWM. Our data support a mechanism by which a dysregulated neuroinflammatory response contributes to increased risk of cognitive impairment after head injury.
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indicate that a TBI in the context of emerging AD pathology leads
to greater cognitive impairment that appears to involve an altered
neuroinflammatory response mechanism (Fig. 7).

Epidemiological studies and clinical observations have associ-
ated a prior head injury with an increased risk of cognitive
impairment, earlier onset of dementia, and increased AD neuro-
pathological changes, as well as noting the presence of glia acti-
vation in both TBI and AD patients (Johnson et al., 2010;
Ramlackhansingh et al., 2011; Shively et al., 2012; Abner et al.,
2014). Consistent with the clinical analyses, studies of transgenic
AD mouse models have reported that a moderate-to-severe TBI
worsens cognitive performance in the Morris water maze or
RAWM (Brody and Holtzman, 2006; Abrahamson et al., 2009;
Tajiri et al., 2013). Our results are consistent with the previous
studies and extend the association to a mild diffuse TBI model
that does not have the tissue loss characteristic of more severe
injuries. Additionally, the outcomes with MW151 treatment add
a mechanistic linkage between the neuroinflammation and cog-
nitive performance.

An interesting but unresolved aspect of the cytokine response
is the difference between the injured KI and WT mice in the after
injury increase of the anti-inflammatory cytokine IL-10. The lack
of acute IL-10 induction in the injured KI mice might have func-
tional significance, but a mechanistic link between the IL-10 re-
sponse and subsequent pathological changes in the KI
CHI
mice, as done with proinflammatory cytokine levels and MW151
treatment, was not explored here. Further, the specifics of an in
vivo inflammatory response to injury and disease progression
reflects the convergence of multiple physiological axes with their
attendant feedback and crosstalk (Van Eldik et al., 2007; Wyss-
Coray and Rogers, 2012; Sama and Norris, 2013), so it is not
known whether the IL-10 response in the paradigm studied here
is a reflection of secondary responses to changes in proinflamma-
tory cytokines or a more proximal response to the injury itself.
The mechanistic role of IL-10 would be interesting to pursue in
future investigations with the availability of selective in vivo
probes for modulation of IL-10 levels in response to injury or
disease progression.

Another interesting correlation was the striking and persistent
increase in GFAP staining in the cortex of the KI
CHI group.
Astrocyte activation as assessed by GFAP staining is correlated
with TBI-associated pathophysiologies, such as increased proin-
flammatory cytokine levels, oxidative stress, and brain edema
(Kimelberg, 1992; Kimelberg et al., 1995; Laird et al., 2008; So-
froniew, 2014). However, astrocytes also serve homeostasis func-
tions (Schousboe et al., 2004; Simard and Nedergaard, 2004;
Obara et al., 2008; Halassa and Haydon, 2010; Allaman et al.,
2011; Clarke and Barres, 2013), and elimination of astrocytes
exacerbates the inflammatory response and neuronal damage fol-
lowing a neurologic injury (Bush et al., 1999; Cui et al., 2001;
Faulkner et al., 2004; Myer et al., 2006). Therefore, the multifac-
eted role of astrocytes in development, homeostasis, and injury
does not allow full interpretation of the astrocyte histopathology.
However, expression analyses revealed that markers of acti-
vated astrocytes were not elevated in the injured KI mice at the
9 h and 1 d p.i. time points. This raises the possibility that
teasing out a functional role of altered astrocyte function may
require more fine-tuned physiology-based endpoints to com-
plement the histopathology.

In conclusion, the results reported here and the context of
prior publications add to an increasing body of knowledge
strongly indicating that TBI is a contributor to increased suscep-
tibility to AD-relevant pathologies, including cognitive dysfunc-

tion. The integrated use of an acute brain injury paradigm in a
progressive neurodegenerative model is another variant of
“priming” or two-hit injury paradigms, where one insult exacer-
bates the response to a second insult (Norden et al., 2014; Perry
and Holmes, 2014). Neuroinflammation has clearly been impli-
cated as a pathophysiology progression mechanism in such two-
hit paradigms, and MW151 intervention after the first insult
provides pharmacological attenuation of the second insult re-
sponse (Somera-Molina et al., 2009; Chrzaszcz et al., 2010).
Therefore, our finding that MW151 treatment results in attenu-
ation of the exaggerated response in the CHI-KI group extends
the body of evidence that supports overproduction of cytokines
and altered homeostatic glia functions as an important patho-
physiological mechanism and promising therapeutic target.
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Trojanowski JQ (2002) Repetitive mild brain trauma accelerates Abeta
deposition, lipid peroxidation, and cognitive impairment in a transgenic
mouse model of Alzheimer amyloidosis. J Neurosci 22:446 – 454. Medline

Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson
D (2007) Glia proinflammatory cytokine upregulation as a therapeutic tar-
get for neurodegenerative diseases: function-based and target-based discov-
ery approaches. Int Rev Neurobiol 82:277–296. CrossRef Medline

Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodri-
guez JJ, Nedergaard M (2012) Neurological diseases as primary gliopa-
thies: a reassessment of neurocentrism. ASN Neuro 4:art:e00082.
CrossRef Medline

Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in
immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197.
CrossRef Medline

Washington PM, Morffy N, Parsadanian M, Zapple DN, Burns MP (2014)
Experimental traumatic brain injury induces rapid aggregation and oli-
gomerization of amyloid-beta in an Alzheimer’s disease mouse model.
J Neurotrauma 31:125–134. CrossRef Medline

Webster SJ, Bachstetter AD, Van Eldik LJ (2013) Comprehensive behavioral
characterization of an APP/PS-1 double knock-in mouse model of Alz-
heimer’s disease. Alzheimers Res Ther 5:28. CrossRef Medline

Woodcock T, Morganti-Kossmann MC (2013) The role of markers of in-
flammation in traumatic brain injury. Front Neurol 4:18. CrossRef
Medline

Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease: a brief
review of the basic science and clinical literature. Cold Spring Harb Per-
spect Med 2:a006346. CrossRef Medline

Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain
injury. Nat Rev Neurosci 14:128 –142. CrossRef Medline

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012)
Genomic analysis of reactive astrogliosis. J Neurosci 32:6391– 6410.
CrossRef Medline

Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in
hippocampal neurogenesis associated with amyloid deposition in a
knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204:
77– 87. CrossRef Medline

Webster et al. • Closed Head Injury Worsens AD-like Pathology in Mice J. Neurosci., April 22, 2015 • 35(16):6554 – 6569 • 6569

http://dx.doi.org/10.1093/brain/awl165
http://www.ncbi.nlm.nih.gov/pubmed/16825202
http://dx.doi.org/10.1002/(SICI)1096-9861(19990830)411:3<390::AID-CNE3>3.0.CO;2-%23
http://www.ncbi.nlm.nih.gov/pubmed/10413774
http://dx.doi.org/10.1006/exnr.2000.7375
http://www.ncbi.nlm.nih.gov/pubmed/10785464
http://dx.doi.org/10.1016/j.neuropharm.2014.10.028
http://www.ncbi.nlm.nih.gov/pubmed/25445485
http://dx.doi.org/10.1016/j.neuint.2007.10.015
http://www.ncbi.nlm.nih.gov/pubmed/18061308
http://dx.doi.org/10.1038/nrneurol.2014.38
http://www.ncbi.nlm.nih.gov/pubmed/24638131
http://dx.doi.org/10.1002/ana.22455
http://www.ncbi.nlm.nih.gov/pubmed/21710619
http://dx.doi.org/10.1523/JNEUROSCI.0116-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21940434
http://dx.doi.org/10.1074/jbc.271.38.23380
http://www.ncbi.nlm.nih.gov/pubmed/8798542
http://dx.doi.org/10.1136/jnnp.57.4.419
http://www.ncbi.nlm.nih.gov/pubmed/8163989
http://dx.doi.org/10.1038/jcbfm.2013.224
http://www.ncbi.nlm.nih.gov/pubmed/24346689
http://dx.doi.org/10.1016/j.arr.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23751484
http://dx.doi.org/10.1038/nri2711
http://www.ncbi.nlm.nih.gov/pubmed/20154735
http://dx.doi.org/10.1016/j.neuint.2003.11.001
http://www.ncbi.nlm.nih.gov/pubmed/15186918
http://dx.doi.org/10.1016/j.nbd.2010.06.018
http://www.ncbi.nlm.nih.gov/pubmed/20682338
http://dx.doi.org/10.1007/BF00386254
http://www.ncbi.nlm.nih.gov/pubmed/8140894
http://dx.doi.org/10.1001/archneurol.2011.3747
http://www.ncbi.nlm.nih.gov/pubmed/22776913
http://www.ncbi.nlm.nih.gov/pubmed/11102478
http://dx.doi.org/10.1016/j.neuroscience.2004.09.053
http://www.ncbi.nlm.nih.gov/pubmed/15561405
http://dx.doi.org/10.1177/1073858413504466
http://www.ncbi.nlm.nih.gov/pubmed/24106265
http://dx.doi.org/10.1111/j.1528-1167.2007.01135.x
http://www.ncbi.nlm.nih.gov/pubmed/17521344
http://dx.doi.org/10.1016/j.brainres.2009.05.073
http://www.ncbi.nlm.nih.gov/pubmed/19501063
http://dx.doi.org/10.1371/journal.pone.0078851
http://www.ncbi.nlm.nih.gov/pubmed/24223856
http://dx.doi.org/10.1523/JNEUROSCI.0858-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21715616
http://dx.doi.org/10.1016/j.tips.2005.11.002
http://www.ncbi.nlm.nih.gov/pubmed/16310865
http://www.ncbi.nlm.nih.gov/pubmed/11784789
http://dx.doi.org/10.1016/S0074-7742(07)82015-0
http://www.ncbi.nlm.nih.gov/pubmed/17678967
http://dx.doi.org/10.1042/AN20120010
http://www.ncbi.nlm.nih.gov/pubmed/22339481
http://dx.doi.org/10.1146/annurev.pharmtox.48.121806.154841
http://www.ncbi.nlm.nih.gov/pubmed/17883327
http://dx.doi.org/10.1089/neu.2013.3017
http://www.ncbi.nlm.nih.gov/pubmed/24050316
http://dx.doi.org/10.1186/alzrt182
http://www.ncbi.nlm.nih.gov/pubmed/23705774
http://dx.doi.org/10.3389/fneur.2013.00018
http://www.ncbi.nlm.nih.gov/pubmed/23459929
http://dx.doi.org/10.1101/cshperspect.a006346
http://www.ncbi.nlm.nih.gov/pubmed/22315714
http://dx.doi.org/10.1038/nrn3407
http://www.ncbi.nlm.nih.gov/pubmed/23329160
http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22553043
http://dx.doi.org/10.1016/j.expneurol.2006.09.018
http://www.ncbi.nlm.nih.gov/pubmed/17070803

	University of Kentucky
	UKnowledge
	4-22-2015

	Closed Head Injury in an Age-Related Alzheimer Mouse Model Leads to an Altered Neuroinflammatory Response and Persistent Cognitive Impairment
	Scott J. Webster
	Linda J. Van Eldik
	D. Martin Watterson
	Adam D. Bachstetter
	Repository Citation
	Closed Head Injury in an Age-Related Alzheimer Mouse Model Leads to an Altered Neuroinflammatory Response and Persistent Cognitive Impairment
	Notes/Citation Information
	Digital Object Identifier (DOI)


	Closed Head Injury in an Age-Related Alzheimer Mouse Model Leads to an Altered Neuroinflammatory Response and Persistent Cognitive Impairment
	Introduction
	Materials and Methods
	Results
	Rationale and animal model systems
	Injured APP/PS1 KI mice show persistent behavioral deficits
	The temporal patterns of microglia markers change after CHI
	Discussion
	References


