
Research Report 
470 

SOME UNCERTAINTIES OF 
SLOPE STABILITY ANALYSES 

by 

Robert C. Deen 
Assistant Director 

Tommy C. Hopkins 
Research Engineer Chief 

and 

David L. Allen 
Research Engiqeer Pri'ncipal 

Division of Research 
Bureau of Highways 

DEPARTMENT OF TRANSPORTATION 
Commonwealth of Kentucky 

offered for publication to the 

Transportation Research Board 

April 1977 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232568957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SOME UNCERTAINTIES OF 

SLOPE STABILITY ANALYSES 

by 

R. C. Deen, T. C. Hopkins, and D. L. Allen 

ABSTRACT 

Some practical limitations of total stress and effective stress analyses are discussed. For clays having 

a liquidity index of 0.36 or greater, ¢-equal-zero analyses based on laboratory undrained shear strengths 

give factors of safety close to the actual factor of safety. However, based on field vane strengths, 

¢·equal-zero analyses may yield factors of safety which may be too high. The difference between field 

vane and calculated shear strengths increased as the plasticity index increased. For clays having a liquidity 

index less than 0.36, ¢-equal-zero analyses using laboratory undrained shear strengths give factors of 

safety that are much too high; but the strength parameters can be corrected by the empirical relationship 

presented herein. An empirical relationship for correcting vane shear strength is also presented. A method 

is proposed for predicting the probable success of a ¢-equal-zero analysis. 

Data suggest that overconsolidated clays and clay shales or clays having a liquidity index less than 

0.36 pose the greatest slope design dilemma. An effective stress analysis based on peak triaxial shear 

strength parameters generally yields factors of safety which are too high; residual shear strength parameters 

frequently yield factors of safety which are too low. To approximate the theoretical strength of an 

overconsolidated clay which has undergone a process of softening, the effective stress parameters might 

be obtained from triaxial tests performed on remolded, normally consolidated clay. It is suggested the 

soil be remolded to a moisture content equal to the plastic limit plus the product of 0.36 and the 

plasticity index. 
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INTRODUCTION 

Two limiting conditions (2) are generally recognized when designing a cutting in a clay or an 

embankment on a clay foundation against a "first-time" failure (no pre-existing shear plane). The first 

condition is the shortMterm or end-of-const�uction · case in which the water content of the clay does 

not change. Excess pore pressures are 100ntrolled by the magnitude of the stresses acting in the clay 

or tending toward instability. Significant pore pressure dissipation does not occur. Prediction of the excess 

pore pressures is difficult. Consequently, the short-term design is made using the ¢-equal-zero analysis 

and the undrained shear strength obtained from unconsolidated-undrained (UU) triaxial tests, unconfined 

compression (U) tests, field vane shear (FV) tests, or a combination of these tests. 

The second limiting condition is the long-term, steady-seepage case. Pore pressures do not depend 

on the magnitude of total stresses and are controlled by the flow pattern of underground water or 

the ground-water level. Excess pore pressure dissipation has occurred and the clay exists in a drained 

state. Long-term design is performed in terms of effective stress and the drained shear strength parameters, 

¢'and c', conventionally obtained from consolidated isotropically, drained triaxial (CID) tests; consolidated 

isotropically, undrained triaxial tests with pore pressure measurements (CIU); consolidated-drained, direct 

shear (slow) (CDS) tests; or a combination of these tests. 
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For a cutting in a clay, the long-term stability is considered more critical since pore pressures are 

initially small or negative and gradually increase toward steady-seepage pore pressures. The increase of 

pore pressures causes a decrease in the shear strength of the clay since there is a reduction in effective 

stresses. In the case of an embankment on a clay foundation, the short-term stability is considered the 

more critical case. For this case, pressures steadily increase to maximum values during construction and 

gradually decrease thereafter toward the initial pore pressures, increasing shear strengths with time. 

LIMITATIONS OF TOTAL STRESS ANALYSES 

Application of the first limiting condition to the design of embankments founded on clay foundations 

or to cut slopes without regard to the stress history and moisture state of the clays in the foundation 

or slope may lead to erroneous conclusions concerning the safety factor ( 11 ); that is, the undrained 

shear strengths obtained from laboratory or field tests may be larger than the actual (back-computed) 

shear strengths existing at failure. 

Long-Term Stability of Cut and Natural Slopes-- Bishop and Bjerrum (2), summarizing results of 

a number of failures in natural slopes and cuts, showed that application of the ¢-equal-zero analysis 

to slopes where pore pressure and water content equilibrium have been attained is unreliable. In these 

cases, the ¢-equal-zero analysis gave safety factors ranging from 0.6 for sensitive soils to 20 for heavily 

overconsolidated soils. Two reasons for the differences between the in situ shear strength and the shear 

strength obtained from the undrained test are differences between field and laboratory pore pressures 

and migration of water to the failure zone of a slide in overconsolidated clays (9, 18). Lo, et a!. ( 13) 

has also shown that the effect of sample size in stiff fissured clays is an important factor in stability 

analyses. The shear strength of large samples is less than that of small specimens. 

Examination of case records of long-term failures in cuts and natural slopes revealed that large 

safety factors are associated with low to negative values of liquidity index while low safety factors are 

associated with high values of liquidity index. In data cited by Bishop and Bjerrum, there were four 

cases where the safety factor was near one; the liquidity indices ranged from 0.20 to 1.09. In the other 

cases, the liquidity indices ranged from about 0.19 to -0.36 while the safety factors ranged from 1.9 

to 20. 

Short-Term Stability of Loads on Soft Foundations -- Bjerrum ( 3, 5) assembled a number of case 

records which showed that procedures normally used to determine the short-term stability of 

embankments, footings, and load tests on soft clay foundations are unsatisfactory. In those cases, the 

¢-equal-zero analysis using undrained shear strengths from field vane shear tests overestimated the safety 

factor (open points in Figure I) for soils having liquid limits and plasticity indices in excess of 
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approximately 80 and 30 percent, respectively. Also, the difference between field vane, (Sulvane• and 

corrected shear strengths, (Sulcorrected increased as the plasticity index, PI, and the liquid limit of 
' 

the clay increased. Assuming a linear relationship between safety factor and plasticity index, the corrected 

shear strength may be expressed as 

(Sulcorrected (Sulvane/[(0.84 + 0.0082 PI) ± 0.12]. 1 

Data (dark points) assembled by Bishop and Bjerrum (2) representing end-of-construction failures 

of footings, fills, and excavations on saturated clay foundations are compared to Bjerrum's data (open 

points) in Figure 1. Liquidity indices of the former data ranged from about 0.25 to 1.44. The undrained 

strengths of the soils in these analyses were obtained primarily from unconsolidated-undrained tests. While 

Bjerrum's data showed that the difference between vane and back-computed shear strengths increased 

as the plasticity index of the clay increased, Bishop and Bjerrum's data, in marked contrast, showed 

that the computed shear strength and laboratory shear strength were almost equal. 

Short-Term Stability of Embankments Founded on Overconsolidated Clays and Clay Shales -- A 

number of short-term failures of embankments on overconsolidated soils have occurred, even though 

the ¢-equal-zero analysis indicated the embankment slopes should have been stable. Some examples include 

case histories by Beene (I), Wright (20), Peterson, et al. (16), and Hopkins and Allen (10). Safety factors 

from ¢-equal-zero analyses ranged from 1.23 to 4.0 for these cases; all had liquidity indices less than 

0.36. 

Short-Term Stability of a Cut or Excavated Slope in Overconsolidated Clays and Clay Shales --

Because the short-term safety factory is usually a maximum during or near the end of construction, 

the ¢-equal-zero analysis is oftentimes used to determine the short-term stability of a cut or excavated 

slope. However, stability of cuts in overconsolidated clays and clay shales may not always conform to 

this concept. For instance, Skempton and Hutchinson ( 19) described two slides in a stiff overconsolidated 

London clay. Based on a ¢-equal-zero analysis and undrained shear strengths, the short-term safety factors 

were about 1.8. 

Proposed Method of Predicting Success in a ¢-Equal-Zero Analysis -- Peck and Lowe (15) presented 

a portion of Bishop and Bjerrum's data (long-term failures in cuts and natural slopes) which showed 

that the computed safety factor of failed slopes, obtained from a ¢-equal-zero analysis using undrained 

strengths, was apparently a function of the liquidity index. Peck and Lowe suggested the possibility 

of using that empirical relationship to determine correction factors for laboratory undrained strength 

parameters. 

Plotting additional portions of Bishop and Bjerrum's data (2) and Bjerrum's data (5) (safety factor 

as a function of liquidity index), a distinctive division can be observed. All data in Figure 2 represent 
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failures where the ¢-equal-zero analysis was performed using undrained shear strengths obtained from 

UU, U, or FV tests. In failures where the soils had a liquidity index equal to or greater than approximately 

0.36, safety factors estimated from a ¢-equal-zero analysis and UU or U strengths should have an accuracy 

within ± 15 percent (see Figure 2), and design safety factors as low as 1.3 may be justified in many 

routine designs. Where the undrained strength is obtained from in situ vane shear tests, the vane strength 

should be corrected. 

In failures where the soils had a liqudity index less than about 0.36, the ¢-equal-zero analysis using 

UU or U strengths gave safety factors which were much too high; in situ shear strengths were greatly 

overestimated by laboratory tests. For soils having liquidity indices less than 0.36, the safety factor 

appears to be a function of the liquidity index, LI: 

F (3.98) (o.o1nP. 2 
Since the safety factor can be expressed as 

F = Su/Ss, 3 

where Su is the laboratory undrained shear strength, the corrected laboratory or "softened" shear strength 

may be expressed in terms of the standard error as 

Ss "' (0.252) Su (O.D192)"LI (10±0.24); 4 
and the error in the corrected shear strength may be as large as 70 percent. 

LIMITATIONS OF EFFECTIVE STRESS ANALYSES 

Uncertainties in the application of the effective stress approach to the design of earth slopes arise 

in the selection of shear strength parameters, ¢' and c', and the evaluation of pore pressures. Although 

the effective stress method has been successfully applied to normally consolidated and very lightly 

overconsolidated clays and silty clays having an intact structure (free of fissures or joints), the method 

is not successful when applied to the design of slopes composed of overconsolidated clays and clay 

shales. Although much research (4, 17, 18) has been directed toward understanding the characteristics 

of those soils, overconsolidated soils still pose the greatest design dilemma to engineers. 

Shear Strength Characteristics - Typical stress-strain curves for normally consolidated and 

overconsolidated clays, tested similarly under drained conditions, show that both reach a peak strength. 

As the overconsolidated soil is strained beyond the peak strength, the shear resistance decreases until 

at large strains the strength falls to a (nearly) constant value. This lower limit of resistance is referred 

to as the "residual" or "ultimate" strength (17, 18, 19). After the peak strength has been attained, 

the shear resistance of the normally consolidated clay may fall only slightly. After large strains, the 

shear resistance of the overconsolidated and normally consolidated clays coincide. In heavily 
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overconsolidated plastic clays, there is a large difference in the peak and residual strengths. In silty clays 

and soils of low plasticity, this difference is very small. With an increase in clay content, this difference 

increases even in normally consolidated clays, although not as much as in overconsolidated clays. 

The "softened" shear strength of an overconsolidated clay (as obtained from Equation 4) may be 

defmed as the intersection of a horizontal line projected from the peak strength of the normally 

consolidated clay with the stress-strain curve of the over consolidated clay (17 ). The softened strength 

is intermediate to the peak and residual strengths and probably occurs at much lower strains (representing 

a condition wherein a number of small, independent shear planes exist) than the residual strength (wherein 

the shear planes have joined to form a well defmed failure plane). 

The critical state of a normally consolidated clay can be defined ( 17) as the state (in a drained 

condition) in which any further increment in shear distortion will not result in any change in water 

content. The water content at the critical state is equal to that ultimately attained by an overconsolidated 

clay due to expansion during shear. 

Peak and Residual Shear Strengths -- Bjerrum ( 4) assembled shear strength data on a number of 

"first-time" failures of natural and cut slopes in overconsolidated clays and clay shales which showed 

that the average shear stress along the failure surface was much smaller than the shear strength measured 

from laboratory triaxial tests. In each case, the peak shear strength parameters, ¢ p and c'p• were larger 

than the back-computed parameters, ¢'c and c'c (assumed zero), and therefore, the safety factors were 

too large. The liquidity indices of these clays ranged from -0.51 to 0.25. Discrepancies between the 

field (back-computed) and laboratory strengths are illustrated in Figure 3. The back-computed effective 

stress angle of shearing resistance is plotted as a function of the peak effective stress parameter obtained 

from triaxial tests. Even neglecting the cohesion, the data plots below the line of equality. If residual 

shear strengths are used, there is better agreement between the computed shear strengths and those 

determined by direct shear tests. 

Use of the residual shear strength parameters, ¢'r and c'r· in effective stress analyses does not 

necessarily yield safety factors which are in agreement with the actual safety factor at failure, although 

the error in the safety factor based on residual strength is generally smaller than the error in the safety 

factor based on peak strength. In Table I, a number of well-documented embankment, cut slope, and 

natural slope failures based on the effective stress analysis have been summarized and arranged according 

to increasing values of liquidity indices. Except for the case by D' Appolonia, et a!. (7), all cases are 

"first-time" failures. Those case records clearly show that the effective stress analysis based on residual 

strength generally gives safety factors which are less than one. All of those cases, except for the last 

two failures listed in the table, involve soils which have liquidity indices less than 0.36; and the effective 
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stress analysis based on peak strength yields safety factors which are too high and may be as much 

as 100 percent in error. Additionally, the use of c'p equal to zero and ¢'p does not always yield the 

correct safety factor. 

Evaluation of Pore Pressures -- If the excess and initial pore pressures are known when designing 

a cutting in clay or an embankment on a clay foundation, the stability of these earth structures may 

be determined during or at any time after construction from an effective stress analysis using total pore 

pressures. However, methods of estimating excess pore pressures are particularly difficult, and the results 

obtained from such methods are highly questionable (see Moh, et a!. (14)). Additionally, to determine 

the stability of the cut or embankment at any time, dissipation of excess pore pressures must be estimated, 

generally based on the results of consolidation tests which may be very inaccurate. Unless piezometers 

are installed to obtain the necessary pore pressure data, the effective stress analysis is limited to analyzing 

the long-term stability of cuts and embankments. For this condition, the excess pore pressures are assumed 

equal to zero. In the case of a cutting in clay, the pore pressures are obtained from a prediction of 

the steady seepage pore pressures. In the case of an embankment, the pore pressures are usually obtained 

from groundwater level observations in boreholes. Where large fluctuations in groundwater levels may 

exist, inaccurate pore pressure data may be obtained. Where the embankment is located on a sloping 

foundation and "damming" of the groundwater may occur, prediction of the steady seepage pore pressures 

is very difficult, especially where large fluctuations of the groundwater level may occur. 

To make a valid comparison between field and laboratory shear strengths in terms of effective stress, 

accurate values of pore pressures existing at the time of failure must be known. The 11back-computed" 

shear strength parameters, ¢' c and c' c' are particularly sensitive to the magnitude of the pore pressures 

used in the computation. Inaccurate pore pressures may produce an error of several degrees in the 

computed parameter, ¢'
c· An accurate determination of the pore pressures in a landslide at failure poses 

certain difficulties. Even when piezometers are installed, measurements obtained may not correspond 

to the pore pressures existing at the time of failure, particularly when the failure is preceded by a heavy 

rainfall and field personnel may not be present at the time of failure. In delayed failures where several 

years may be required for the pore pressures to reach the steady�state values, use of measured pore 

pressures obtained before pore pressure equilization has occurred will lead to computed parameters, ¢'c 

and c' c• which cannot validly be compared to laboratory shear strength parameters. 

Slope Design Dilemma -- Observations ( 4) suggest the rate of development of a continuous sliding 

surface in a clay slope prior to failure varies from one type of clay to another. In the stiffer clays, 

the rate may be very small; delay of the failure may be on the order of years. Data in Figure 4 suggest 

that, for clay soils having liquidity indices Jess than approximately -0.1 to -0.2 (very stiff clays), the 
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failure delay may be several years. In slopes where the liquidity indices are greater, the delay in failure 

may be very short. 

Since the critical·state shear strength of overconsolidated clays cannot readily be determined, a 

practical approximation to the critical state might be obtained from triaxial tests performed on normally 

consolidated samples remolded at a water content given by 

w c = (0.36) PI + PL, 5 

where PL is the plastic limit and the constant 0.36 is the liquidity index at the break point in Figure 

2. 

SUMMARY AND CONCLUSIONS 

The following summary and tentative conclusions are based on observations and data analyses of 

results of several published, well-documented, landslide case histories: 

I. Application of the ¢-equal-zero analysis t9 the design of an embankment located on a clay 

foundation or to a slope cut in a clay without regard to the stress history and moisture state of the 

clay may lead to erroneous conclusion� concerning the stability of the slope. For clays having a liquidity 

index equal to or greater than approximately 0.36, the ¢-equal-zero analysis, based on laboratory undrained 

strengths, will yield fairly reliable safety factors, provided the liquid limit and plasticity index of the 

clay are equal to or below values of about 80 and 30 percent, respectively. For clays having a liquidity 

index below a value of about 0.36, the ¢-equal-zero analysis will probably yield safety factors which 

are much too high. The reliability of the high safety factors may depend on the liquidity index of 

the clay. For clays having a liquidity index less than about -0.1, the time to failure may vary from 

a few days or months to several years. If high safety factors are obtained from a ¢-equal-zero analysis, 

then Figure 2 should be reviewed to evaluate the probable success of the slope design. The stability 

of the slope might be checked using the corrected undrained shear strength given by the empirical 

relationship of Equation 4. 

2. The use of uncorrected vane shear strength to determine the stability of an embankment on 

a soft foundation, cut slopes, footings, and loading tests may yield unreliable results. The vane shear 

strength should be corrected by the empirical relationship in Equation I. 

3. The liquidity index appears to be a general indicator of the stress history of a clay. Clays having 

a liquidity index less than about 0.36 might be considered to be 11Dverconsolidated11 while clays having 

a liquidity index greater than 0.36 might be considered 11normally consolidated." 

4. The use of residual shear strength may be too conservative and expensive in many slope design 

problems involving overconsolidated clay, especially in cases where temporary cuts are made. However, 
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the use of peak shear strength in such soils may be unreliable and unsafe. The intermediate shear strength 

obtained from triaxial tests performed on normally consolidated clays remolded to a water content given 

by Equation 5 might provide a practical value to use in the de�gn of slopes against "first-time" failures. 
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Figure I. 

Figure 2. 

Figure 3. 

Figure 4. 

LIST OF FI GURES 

Factor of Safety as a Function of Plasticity Index (data from Table I and Tables IV, 

V, and VII of Bjerrum's (3, 5) papers and Table II of Bishop and Bjerrum's (2) paper). 

All slopes represented in the diagram failed, i.e., F = 1.0. All curves are by the authors 

(11). 

Factor of Safety as a Function of Liquidity Index (by the authors; the data are from 

Tables II, Ill, and V of Bishop and Bjerrum's paper (2), Peterson, et al. (16), and Kentucky 

DOT Division of Research ( 11 )). 

Back-Computed Shear Strength Parameter as a Function of Peak Shear Strength Parameter 

from Triaxial Tests and Residual Shear Strength Parameter from Consolidated-Drained, 

Direct Shear Tests (data from Bjerrum (4), Skempton (17), and D'Appolonia, et al. (7)). 

Time to Failure of Overconsolidated Clays and Shales as a Function of Liquidity Index 

(data from Cassel (6), Skempton (18), Henkel (8), Beene (1), Skempton and Hutchinson 

(19), and Kentucky DOT Division of Research (11)). 



TABLE L CASE HISTORIES BASED ON EFFECTIVE STRESS ANALYSIS 

LOCATION w PL LL PI Ll 

tiluegrass Pky. �1P 21 20 24 34 10 -0.40 

West Ky Pky. MP 96 !5 19 31 12 -0.33 

Bluegrass Pky. MP 43 17 34 16 18 -0.08 
Selset 12 13 " 13 -0.08 

I 64, MP 118 23 25 53 28 -om 
Weirton. W. Va. 26 25 51 26 0.04 

Nurthult 30 28 79 51 0.04 

Jack field 21 21 44 "" 0.05 

Kcnsel Green 33 30 83 53 0.06 

Sudburry Hill 31 28 " 54 0.06 

! 64. MP 44 21 18 40 2:! 0.14 

Amuny 30 24 64 41 0.15 
us 119 21 19 24 7 0.25 

Seven Sisters, S-6 45 26 85 59 0.3"2 

Lodalen 31 18 36 18 0.72 

Dram men 35 18 25 17 1.00 

aFills located on sloping foundations 
bNS Natural slope 
*Details contained in Ky. D.O.T. Division of Research Reports 

FACTOR OF SAFETY 

PEAK c = 0 RESIDUAL REFERENCE 

1.46 *Hopkins and Allen (cf 11), 1972 

1.94 1.12 *Allen and Hopkins (cf 11), 1973 

� 1.00 1.10 *Hopkins (cf 11), 1972 

1.03 < 1.00 0.69 $kempton (2), 1964 

1.28 0.97 0.77 *Hopkins and Allen (10), 1971 

1.51 "" 1.00 D'Appolonia, et al. (7), 1967 

1.63 0.77 0.54 Skempton and Hutchinson (19), 1968 

2.06 > 1.00 1.11 Skempton (18), 1964 

1.60 0.60 Skempton (18), 1964 

"2.27 1.05 0.74 Skempton and Hutchinson (19}, 1968 

1.01 0.7"2 *Allen, 1972 

"2."27 < 1.00 0.50 Skempton (12), 1971 

i.i3 1.13 *Hopkins, 1972 

1.65 Peterson, et a!. (16), 1960 

1.07 0.73 Skempton and Hutchinson (19), 1968 
1.01 Skempton and Hutchinson (19), 1968 
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Figure 1. 

PLASTICITY INDEX 

Factor of Safety as a Function of Plasticity Index (data from Table I 
and Tables N, V, and VII of Bjerrum's (3, 5) papers and Table ll of 
Bishop and Bj errum's (2) paper). All slopes represented in the diagram 

failed, i.e., F = 1.0. All curves are by the authors ( 11 ). 

0 !D !D � -
t:I: 0 '0 X' !-'· � rn 

Ill � p. 
!>' ..... ..... !D � 

..... N 



1 0  

a:: 
0 
t-
0 
<t LL. 
>-
t-
ILl LL. 
<t 
en 

0 .6 
-0.4 

Deen, Hopkins, and Allen 13 

"'OVERCONSOLIDATED 
CLAYS? 

.... 

• 

• 
.... 

Ill 
.... 

-0.2 0 

-----o-+-c--- "' NORMALLY CONSOLIDATED CLAYS ?--------<o-

-0.40<LI<0.36 L 
¢• 0 ANALYSIS 

F•l3.98)(0.0187) 1•Su/Ss 
S5.,(0.252) Su (0.01 92)-LI 

R2 • 0.71 

0 FOOTINGS, LOADINGS TESTS 
0 EMBANKMENTS 
0 EXCAVATIONS OR CUTS 
A STRUTTED EXCAVATIONS 
/::,EXCAVATIONS OR CUTS 
0 NATURAL SLOPES 
121 EMBANKMENTS 

END-OF
CONSTRUCTION 
FAILURES 

LONG-TERM 
FAILURES 

DARK POINTS- BISHOP AND BJERRUM 
MAINLY UU OR U STRENG T H  

OPEN POINTS -BJERRUM,FIELD 
VANE STRENGTH 

0.2 0.4 0 .6  0.8 1.0 1.2 1 . 4  1.6 

LIQUIDITY INDEX= (W-PL)/PI 
1.8 

Figure 2. Factor of Safety as a Function of Liquidity Index (by the authors; the 
data are from Tables II, III, and V of Bishop and Bjerrum's paper (2), 
Peterson, et al. (16), and Kentucky DOT Division of Research (11)). 
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Bjerrum (4), Skempton (17), and D'Appolonia, et al. (7)). 
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Figure 4. 

LIQUIDITY INDEX 
Time to Failure of Overconsolidated Oays and Shales as a Function of 
Liquidity Index (data from Cassel 16), Skempton I 18), Henkel 18), Beene 
I I), Skempton and Hutchinson (I 9 ), and Kentucky DOT Division of 
Research I II)). 
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