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by 

A. S. Ranal and James H. Havens 

ABSTRACT 

The purpose of this study was to modify concrete mix-design formulas to supplant all water over 

and above that needed for hydration with a non-evaporable liquid material and( or) a super-water-reducer 

or plasticizer ·· thus producing a low-void concrete. A water-cement ratio of 0.244 - 0.30 was presumed 

minimal for hydration of the cement. Several polymeric materials, asphalts, oils, and superplasticizers 

were used, Success was achieved with two latexes, one epoxy, and several superplasticizers. The use of 

these materials in concrete resulted in improved strength, reduction of air voids and permeability, and 

enhancement of resistance to corrosive chloride salts. 

Keywords: Concrete, Bridge deck, Voids, Durability, Non·evaporable liquids, Latex, Superplasticizers, 

Epoxy, Corrosion resistance, Permeability. 



INTRODUCTION 

Extensive research in Kentucky {I, 2, 3) and other states have identified and explained the 

mechanisms causing premature deterioration of concrete bridge decks. Some suggest that the causal factors 

have been compounded by the increasingly heavy traffic and widespread use of deicing agents. It is 

widely recognized that the most destructive forces arise from the absorption and freezing of water within 

the pores of the mortar and aggregates and corrosion of the embedded steel. These factors lead to scaling, 

spalling, and structural breakups. Tests have shown repeatedly that damage by freezing and thawing is 

related directly to rate of water absorption, degree of saturation, and total water content. Corrosion 

of the steel is also related to the soundness of concrete. Water carrying chloride salts absorbed by the 

concrete and contacting the steel initiates corrosion which consequently leads to spalling. 

If one accepts the hypothesis or premise that the quality of portland cement concrete may yet 

be improved to provide adequate durability and resistance and to, thereby, assure long·time, 

maintenance-free service in bridge decks, several improvements are needed. Two basic needs would be 

(l) the elimination of porous, highly absorptive, reactive, or expansive aggregates and (2) the improvement 

of the shape or workability features of aggregates to obtain significant reduction in mixing·water in making 

the concrete. Ideally, protection and assurances against premature deterioration should be a prerequisite 

consideration in the design of the structure. From the engineer's point of view, this becomes a process 

of purification and implementations in stages until history provides the necessary proofs and balances. 

Emerging alternatives have included protective coatings and overlays on normal-quality concrete, use of 

epoxyacoated reinforcement, injections of polymers into hardened concrete, and cathodic protection. 

The intent of this study is to demonstrate, in yet another way, the immunization of concrete against 

deterioration. Several concepts are employed. The first involves the use of oils and( or) polymerizable 

liquids to supplant a due portion of mixing water and to fill unwanted spaces in the concrete. Latex· type 

modifiers have been used rather extensively in Kentucky for patching and overlaying bridge decks. They 

have been used in lesser concentrations than are considered to be ideally void·ftlling; that is, the amount 

of water used has not been limited to that needed for hydration. 

The second concept is the use of superplasticizers or super-water reducers to eliminate large portions 

of the mixing water intended for workability. The superplasticizing admixture disperses the cement 

agglomerates in such an efficient way that the concrete remains workable at a water-cement ratio near 

that needed for hydration of the cement. The resulting properties of the concrete are improved in every 

aspect and are a consequence of the addition of the superplasticizer. There are many superplasticizers 

available commerciaily, all of which could be classified under one of three main groups: sulfonated 

melamine formaldehyde condensates, sulfonated nepthalene formaldehyde condensates, and modified 
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lignosulfonates (4}. Figures 1 and 2 illustrate the flowing properties of a cement paste at a water·cement 

ratio of 0.275 before and after a superplasticizer has been added. 

Another method which has been suggested as a protection against chloride·induced corrosion of 

reinforcing steel is the use of internally sealed concrete. Unlike low·void concrete, internally sealed concrete 

is based on the premise that significant reduction in the penetration of water and freezing· type damage 

could be realized by mixing wax particles into the fresh concrete and fusing the additives after the 

concrete has cured. Wax beads in concrete have been used in decks in some other states and in one 

full·depth bridge deck in Kentucky (5}. 

Voids occur in concrete through the entrapment of air, the use of excess mixing water, differences 

in the specific volumes of reactants and hydration products, leaching of hydration products (CaO), and 

the use of porous aggregates. Only about one-half of the normal mixing water is needed for hydration 

of the cement (6}; the remainder, or excess, is normally required to fluidize the fresh concrete. If the 

cur€.d concrete is used in a drying environment, most of the excess water evaporates and leaves voids 

or spaces. The voids which are easily saturated or resaturated upon rewetting affect the durability 

unfavorably while those which are less permeable are highly favorable to durability. Water occluded in 

concrete in the form of excess mixing water and water absorbed in the aggregate remains within the 

mass unless exposed to severe drying conditions. Concrete which has not been allowed to dry following 

curing may perform poorly upon freezing and thawing (2}. Eliminating the permeable voids from the 

concrete could alleviate many of the shortcomings leading to early deterioration and poor durability. 

The largest percentage of voids in the concrete is attributed to the excess mixing water. Excess 

mixing water is defined here as any water over and above that needed for hydration of the cement. 

By eliminating most of the excess water, which is needed for workability, and leaving only the amount 

of water needed for hydration, a watertight, nearly voidless and impermeable concrete could be attained. 

The workability of the mixture could be provided by either a non·evaporable liquid replacing the excess 

mixing water ·· such liquid could· be of the polymeric, asphaltic, or oil type ·· or addition of a 

superplasticizer. 

The two critical questions which have to be resolved in order to make the idea of a low· void concrete 

possible are: 

I. What type of material could successfully replace the excess mixing water without adversely 

affecting the concrete? 

2. How much water is needed for hydration of the cement (Type I cement)? 

The fluid material to replace the excess mixing water should have the following characteristics: 

1. Be a liquid soluble in or emulsifiable with water and have a consistency of water or light 
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oil; water should be the continuous phase; may be an inert oil or polymeric compound. Ideally, 

the disperse phase should remain dispersed thorughout the concrete-mixing process. 

2. Be a liquid which would eventually solidify: a latex, epoxy, etc. 

3. If solidification is sought, which should take place within a a reasonable time after mixing, 

the material should exhibit sufficient strength and not contribute to weakening of the hardened 

concrete. 

The super-water-reducing admixture should have the following properties: 

I. Be soluble or emulsifiable with water. 

2. Not have any adverse affect on the strength or durability of the concrete. 

3. Not induce segregation or excessive air entrainment or bleeding. 

4. If acceleration or retardation of set is a consequence of the admixture, it should be within 

acceptable tolerances. 

There are different opinions about the amount of water needed for hydration of the cement. The 

specificity of the amount varies with the type of cement and method of analysis. The extent of hydration 

appears to be dependent on the amount of water available, time, and compactness of the cement particles. 

Dense hydration shells or matrices of hydration products slow and perhaps arrest the hydration process. 

According to Powers (7), portland cement when completely hydrated binds about 0.23 gram of water 

per gram of cement. This amounts to about 2.6 gal/bag (2.3 x 10·4 m3 /kg) of cement. It has also 

been reported ( 6) that, if only the minimum water needed for hydration is added to the cement, the 

possibility of near complete hydration is very remote. For this reason, 0.244 - 0.3 gram of water per 

gram of cement (2.75 · 3.38 gal/bag of cement, w/c; 0.244. 0.30) was adjudged to be a more practical 

amount of essential water for the proposes of this study. Others (8) have indicated a minimum w/c 

of 0.24. 

MATERIALS 

As mentioned previously, the material replacing the mixing water could be either of the polymeric, 

asphaltic, or oil type or a superplasticizing admixture. Several latex polymers were used; but only two, 

Dow Latex Modifiers A and B, were considered successful; and one, DuPont chloroprene latex, was 

unsuccessful. The DuPont latex hardened very fast and made placing the concrete very difficult; the 

hardened concrete exhibited low strength. One epoxy-type polymer was successfully used. Many other 

emulsified asphalts and oils were tried but could not be successfully blended into the concrete. Some 

were abandoned at the mixing stage because the dispersion "broke'' before mixing was completed. Three 

superplasticizers were used successfully: Melrnent L-10, Mighty ISO, and PVP. 
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Latexes 

A latex is a water suspension of a polymeric material of either natural or synthetic origin. The 

latexes used in this study were the following: 

A. Dow Latex Modifier A 

Polymer Type 

Stabilizers 

(a) Latex 

(b) Portland Cement 

Composition 

Percent Solids 

Weight at 25 C 

Color 

B. Dow Latex Modifier B 

Polymer Type 

Stabilizers 

(a) Latex 

(b) Portland Cement 

Composition 

Percent Solids 

Weight at 25 C 

Color 

C. Dupont Latex 

Polymer Type 

Stabilizers 

(a) Latex 

(b) Portland Cement 

Composition 

Percent Solids 

Weight at 25 C 

Color 

Styrene-Butadiene 

Non-ionic Surfactant 

Polydimethyl Slloxane 

46 - 49 

8.4 lb/gal (100 kg/m3) 

White 

75% Saran 

25% Styrene-Butadiene 

Non-ionic Surfactant 

Polydimethyl Siloxane 

47 - 49 

9.7 lb/gals (!162 kg/m3) 

White 

Neoprene (Polychloroprene) 

Non-ionic Surfactant 

2 parts anti-oxidant/ 100 g solids 

48 

9.35 lb/gal (1119 kg/m3) 

White 

Several other latex systems were tried but could not be successfully mixed into the concrete. The 

main factors leading to the choice of such systems were their emulsifying and curing properties. All 
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three latexes were emulsifiable with water and cured at ambient temperatures within a desirable time. 

Emulsified Epoxy Resins 

Epoxy resins are polymers which are mixed with another ingredient to form combinations referred 

to as formulations. The formulation used in this study consisted of an epoxy resin and a hardener. 

The hardener reacts with the resin and becomes an integral part of the final plastic material (9 ). 

For the purpose of thls study, a formulation had to be emulsifiable with water. Emulsifiable epoxies 

are not readily available, and a special formulation was developed by Celanese Coatings Company of 

Louisville, Kentucky. Following are the properties of that EPI-TOP, PC-10 Epoxy: 

Polymer Type 

Stabilizers 

Percent Solids 

Weight at 25 C 

Emulsified Asphalts and Oils 

Liquid, Bisphenol A, Epoxy Resin 

Surfactants (water-dispersible) 

100 

9.6 lb/gal (1145 kg/m3) 

The emulsified asphalts utilized in this study were predominantly of the slow-setting type. Some 

of the asphalts were paving grade and the others were experimental. The paving grade asphalts included 

SS-1 and SS-lH (ASTM D·977). The experimental asphalt was a specially formulated emulsion made 

by the Ashland Oil Company. Emulsified linseed oil was used unsuccessfully. 

Superplasticizers (super-water-reducers) 

There are several superplasticizers available commerically. Only three were tested and are reported 

in this study. A description of each follows: 

A. Melment L-10 

Melment L-1 0 is a 20-percent aqueous solution and, as such, is miscible with water in all proportions. 

It does not reduce the surface tension of water but acts as a dispersing agent which is absorbed on 

the surface of the cement particles and the cement is consequently more thoroughly saturated. It is 

transparent to slightly milky in color and has a slight secondary effect as a hardening accelerator. Melment 

L-10 has a chloride content of 0.005 percent and weighs 9.18 lb/gal (1,100 kg/m3); it is a modified 

poly-condensation product of melamine and formaldehyde. 

B. Mighty 150 

Mighty !50 is a 42-percent aqueous solution and is miscible with water in all proportions. Mighty 

does not reduce surface tension of its aqueous solution, and the foaming tendency is kept very low, 

meaning that it does not entrain unwanted air. It has negligilbe effect on the normal hardening of the 

concrete. It is dark brown in color, has negligible chloride content, and weighs 10.0 lb/gal (1,200 kg/m3). 

C. PVP 
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PVP is a napthalene sulfonate which is miscible with water in all proportions. It was used as a 

40-percent aqueous solution. The solution is dark brown in color and has characteristics very similar 

to Mighty ISO. The 40-percent aqueous solution weighs 10 lb/gal (1,200 kg/m3). 

DESIGN OF MIXTURES 

The mix designs were based on a typical concrete used by the Kentucky Bureau of Highways, 

Department of Transportation, for bridge decks, namely Class AA concrete, Special Provision No. 35-B. 

Class AA concrete (Table I) was used unchanged for the control mixtures designated "C". All other 

mixtures incorporated in them basically the same materials with the following experimental modifications: 

I. The water requirement was reduced approximately to that estimated for hydration of the 

cement. 

2. Water needed for workability was compensated for by addition of one of the following: 

a. a non·evaporable liquid, added with the water or 

b. a superplasticizer, added after all ingredients were thouroughly mixed. 

Modified or experimental mixture designs are shown in Table I. 

TEST PROCEDURES 

Latex and emulsified epoxy mixes were extensively tested; all test procedures are described hereafter. 

As testing of super-water-reducers began, it became apparent that tests for strength, durability, unit weight, 

and workability were indicative of the integrity of the concrete, due to the inert nature of the 

super-water-reducers and the resulting densification of the concrete. 

Strength 

Unconfined compression tests on all mixtures were made on 6- by 12-in. (152- by 305-mm) cylinders 

in accordance with ASTM C 39. The specimens were molded according to ASTM C 31 in single-use 

molds conforming to ASTM C 470. All cylinders were covered with wet burlap immediately after molding 

and were removed from the molds· one day later. They were placed in a moisture room and cured until 

the time of testing. All cylinders were capped and tested in a wet condition. 

Flexure tests on all mixtures were run on 3- by 4- by 16-in. (75- by 100· by 400-mm) specimens 

in accordance with ASTM C 293 (center-point loading). All beams were made according to ASTM C 

31 using steel molds. The specimens were removed from the molds one day later and cured in a moisture 

room until tested. All flexure beams were tested in a wet condition. 

Specific Gravity, Absorption, and Voids 

Hardened concrete samples of latex and epoxy mixtures were sawed from beams and cylinders and 
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tested in accordance with ASTM C 642 for specific gravity, absorption, permeable void volume, and 

bulk unit weight. The test was modified slightly to insure complete saturation by applying a vacuum 

to the container while the specimens were immersed in water. Test values listed in Table 2 are average 

values from three tests. 

Air·Yoid Content 

Air-void content in the hardened latex and epoxy concretes was measured on sawed and polished 

sections taken from beams and cylinders. The linear traverse method was used in accordance with ASTM 

C 457, Three samples were tested from each mix. Average results are listed in Table 2. 

Freezing and Thawing 

The freezing and thawing tests of all different mixtures was conducted on beams measuring 3 by 

4 by 16 in. (75 by 100 by 400 mm). Three beams from each mix were tested in accordance with 

ASTM C 666. The specimens were cast in steel molds and consolidated by vibration. Finishing was done 

immediately afterwards; the same procedure was used on each specimen. Wet burlap was placed on the 

specimens; and, after 24 hours, the specimens were removed and placed in the moisture room where 

they were cured wet for 13 more days (making a total of 14 days wet cure). The freeze·thaw cycles 

were started immediately after the curing was discontinued. Prior to placing in the freeze· thaw chamber, 

the initial, longitudinal, resonant frequency of each beam was measured using a sonometer. 

The freezing·and·thawing test ran continuously 7 days a week and continued until each specimen 

reached 300 cycles of freezing and thawing or until the relative modulus of elasticity diminished to 

60 percent of the initial modulus .. whichever occurred first 

Permeability 

A special apparatus was designed and built to measure permeabilities of latex and epoxy concretes. 

The appartus was similar to that used by Virginia Highway Research Council for permeability studies 

on aggregates (10). The sample to be tested was cut from a circular cylinder 4 in. (100 mm) in diameter, 

had parallel ends, and had a thickness of I 1/8 in. (29 mm). This sample was mounted in a stainless 

steel ring, and the margin between the walls of the ring and sample was sealed with epoxy resin to 

prevent leakage. Care was taken to be sure that the sample was free of cracks and excessively large 

voids. 

The procedure for testing was to vacuum·saturate the sample with distilled water, first allowing 

enough time for all air to escape. The sample was then surrounded with water on both sides by filling 

the inlet and outlet sides of the chamber housing it with boiled, distilled water. A capillary tube was 

connected to the outlet side and filled partially with distilled water. With pressure applied from a nitrogen 

tank to the inlet side, the flow rate could be measured by monitoring the rise in the capillary tube. 
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Measurements were made repeatedly until three, consecutive, consistent readi.ngs were obtained. 

Permeability was calculated for each reading and an average was obtained. 

Corrosion Protection 

Two types of laboratory tests were conducted to evaluate the effectiveness of some of the concretes 

in preventing corrosion. The first test was done on blocks (slabs) and the other on beams. In the first 

test, the specimens were 14 by 14 by 3.75 in. (356 by 356 by 95 mm). In each test block, two No.5 

reinforcing bars were centered. One bar was positioned I in. (25 mm) below the surface, the second 

2.5 in. (64 mm) below the surface. A copper wire was then soldered to the reinforcing bar nearest 

the surface and extended through the mold. 

Four concretes, Class AA conventional, Latex Modifier A, Latex Modifier B, and PC-10 Epoxy 

concretes, were used. Three blocks were molded from each mix -- making a total of 12 test specimens. 

The concrete was placed in three layers; each layer was mechanically vibrated. After fmishing the 

top surface, the specimens were covered with wet burlap and allowed to cure in their molds for 24 

hours. They were then removed and cured in a moist room for the remainder of a 28-day period. A 

paraffin wall was then constructed around the perimeter of each specimen to provide a pool having 

a depth of 0.5 in (12.7 mm) for 3-percent NaCl solution. 

The specimens were placed on a concrete floor in the laboratory and covered with the salt solution; 

the solution was renewed from time to time. Potential readiogs of each specimen were made and recorded 

weekly. The electrical potentials of the reinforcing steel were referenced to a saturated, copper-copper 

sulfate half-cell. The potential readings were made with a Hewlett Packard, d.c., null voltmeter connected 

to a half-cell and the steel io the test block. In making readings, the probe was placed on a test block 

at three locations to determine an average reading. 

For the beam test, 12 concrete beams measuring 4.5 by 2.5 by 15 io. (114 by 64 by 380 mm) 

were molded. Three beams were molded from each of the four concretes. A No.-4 reinforcing bar was 

placed in each test beam so that a minimum of 1 inch (25 mm) cover was provided. Each reinforcing 

bar was thoroughly cleaned by sandblasting prior to the moldiog of the beams. The concrete was placed 

io three layers and mechanically vibrated. After finishing, the beams were covered with wet burlap and 

cured 24 hours io their molds. The beams were then immersed in water at a temperature of approximately 

73 F (23 C) for the remaioder of the 28-day curing period. After curing, the specimens were transferred 

to a tank containiog a 3-percent solution of sodium chloride. The NaCl solution was maintained at 3 

percent and at a depth of 5 in. (127 mm) throughout the experiment. A plywood cover was placed 

over the tank to reduce evaporation and aid in the maintenance of the 3-percent NaCl solution. 
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Electrical connections to each rebar was made with spring clips. A set of 12 conductors connected 

each rebar to a central selector switch. This switch was connected to a Hewlett Packard, d.c., null voltmeter. 

The switch allowed reading the half-cell potential of the reinforcing bars in all specimens without 

connecting and disconnecting circuits. The half-cell potentials of the rebars were referenced to a saturated, 

calomel half-cell. Potential readings were taken several times weekly. 

Workability 

Slump tests were conducted on all mixtures immediately after mixing and at 3-minute intervals 

thereafter. 

RESULTS 

Strength 

Results of the compressive and flexure strengths are listed in Table 3. Each value listed represents 

an average from three specimens. 

It is apparent from Figure 3 that all experimental mixtures exhibited higher compressive strengths 

than the control concrete. Concrete made using super-water-reducers had higher strengths than concrete 

made with latex and epoxy. Mighty 150 resulted in the highest compressive strength throughout the 

testing period while Dow Latex Modifier B had the highest strength among the latexes and epoxies. 

Whereas latex and epoxy concretes had significantly higher flexural strenghts than the control mix, 

only Mighty 150 of the superplasticized concretes exceeded the control, and Melment and PVP exhibited 

lower strengths; this is shown in Figure 4. 

The modulus of rupture and compressive strength for the experimental mixtures are related in the 

same manner as in normal portland cement concrete. This relathionship is shown graphically in Figure 

Sa for latex and epoxy mixtures and Figure Sb for superplasticized concretes. The relationship for 

predicting the modulus of rupture from compressive strength is given by 

f' r Kyfc' 

where f' = modulus of rupture, r 

f' c compressive strength, and 

K constant. 

The value of K is usually between 8 and l 0. The average value of K for the Class AA control mixture 

was 15.5 (15.42 to 15.72); these ~verage values were calculated from test data and plotted in Figure 

Sa. The average values of K for the other mixtures were: 

I 
Dow Latex Modified A 

Dow Latex Modified B 

18.46 (17.84 to 18.78) 

18.18 (17.74 to 18.78) 



PC-10 Epoxy 

Melment 

Mighty 150 

PVP 

Resistance to Rapid Freezing and Thawing 

10.96 (19.5 to 20.15) 

12.4 (12.0 to 12.8) 

13.75 (12.8 to 14.7) 

13.5 (12.6 to 14.4) 
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The test data indicate that latex, epoxy, Melment, and Mighty !50 beams endured the 300 cycles 

of freezing and thawing specified by ASTM C 666 without failure; PVP beams did not endure to 300 

cycles. Further evaluation of the test results follows. 

During the progress of the freeze-thaw tests, the specimens were periodically removed and tested 

for fundamental resonant frequency, from which the relative dynamic modulus was calculated. Figure 

6 shows the average, relative, dynamic modulus of elasticity (Table 4) plotted against time expressed 

as numbers of cycles of freezing and thawing for the various mixtures. It should be noted that a downward 

trend of the curves indicates deterioration of the specimens. There is a downward inclination in the 

Dow Latex Modifier, Melment and PVP curves between 160 and 300 cycles. There is no apparent reason 

for this downward trend (no cracking or scaling). The Mighty and PC 10 Epoxy curves remain constant 

throughout the 300 cycles. 

Since all testing was discontinued after 300 cycles of freezing and thawing, only a limited comparison 

could be made using the average durability factors. Figure 7 is a bar graph of average durability factors 

deduced from all specimens in each group. 

Permeability 

Table 2 shows the permeabilities for four of the concretes included in this study. The latex mixtures 

had the lowest permeability (measured zero for all specimens). Also evident is the fact that the control 

mixture (Class AA concrete) had the highest permeability, more than twice the permeability of PC-10 

epoxy concrete. 

Table 2 reveals that there is an evident correlation between permeability and absorption on the 

one hand and permeability and air content on the other. The latex-modified specimens had zero 

permeability, low absorption, and low air content; the control, Class AA concrete specimens had the 

highest permeability, absorption, and void content. 

Air-Void Content 

This void content does not include capillary passages, voids in the aggregate, or any other 

submicroscopical openings. The voids are usually larger than 2 J-lm in diameter and are entrapped, entrained, 

or generated. 

In an effort to produce a no-void concrete, no air entrainment was attempted in the experimental 
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mixtures. Class AA concrete, which is the control mix, entrained 6 ± 2 percent air by volume. The 

air contents of all fresh concretes were measured shortly after mixing, in accordance with ASTM C 231, 

and are shown in Table 2. 

In freshly mixed concrete, voids could serve two purposes. When distributed uniformly in the form 

of air bubbles, they tend to fluidize the concrete. The presence of air bubbles could also help reduce 

the amount of water in the mixture, decrease the water-cement ratio, and enhance strength (2 ). An 

excessive percentage of air (5 to 8 percent) could, however, be detrimental to strength and durability, 

In the hardened concretes, of latex, epoxy, and Class AA, the air content was measured on sawed 

and polished surfaces using the linear traverse method according to ASTM C 457. By this method, the 

void and solid volumes are microscopically examined along series of regularly spaced lines, and the 

percentage of void spaces is determined. The void content for the hardened concrete from each mixture 

is shown in Table 2. Each value listed is the average void content of three specimens. 

It is readily recognizable that all Dow latex and epoxy concretes had lower air-void contents than 

Class AA concrete. Latex Modifier A concrete exhibited the lowest measured air content (1.92 percent). 

Class AA concrete exhibited the highest air-void content (3.06 percent). It may be noted that 

approximately three percent air was lost during the molding of the Class AA concrete. 

Corrosion Protection 

The half-cell potential readings of the reinforcing steel on the ponded blocks varied considerably 

during the 10 months of the corrosion potential test. The reinforcing steel had very high half-cell potentials 

when referenced to a saturated, copper-copper sulfate electrode. Such unusually high readings would 

tend to indicate a very active corrosion process occurring on the surface of the reinforcing steel. No 

cracking or rust stains were observed on the surface of the test blocks, however. At the end of the 

10-month period, several of the concrete test blocks were broken in order to inspect the embedded 

steel. No corrosion was found on any of the reinforcing bars. A plot of potential versus time is shown 

in Figure 8. 

One probable reason for the high potential readings could have been the fact that the reinforcing 

steel was not sandblasted prior to placement in the concrete. Sandblasting would have removed any 

oxide film which may have been present on the steel bars. The presence of an oxide fthn may have 

caused the readings to appear higher than normal. No other explanation could be found. The test was 

discontinued and another series of tests on beams were initiated. 

Potential readings were made on the beams for a period of 10 months. The results from this test 

were satisfactory, and a plot of potential versus time is shown in Figure 9. The potential curves for 

this test (Figure 9) showed a decreasing half-cell potential the first 2 months of the test. Initial, relatively 



12 

high readings were indicative of active corrosion. This was due primarily to corrosion on the exposed 

portion of the rebar. The corrosion was caused by moisture during the curing process. After several 

months, the active corrosion of the exposed rebar changed to a passive state and resulted in a passive 

half-cell potential (lower than 0.27 v, referenced to a calomel electrode) (11). During the next 7 to 

8 months of the test, the Latex Modifier A, Latex Modifier B, and PC-I 0 epoxy concrete specimens 

demonstrated passive and nearly constant half-cell potentials; there was almost no tendency to increase. 

However, Class AA, conventional concrete specimens showed a small increase in potential during the 

last 6 months of the test. The increase in potential of Class AA concrete specimens was probably due 

to the slow penetration of the salt solution to the rebar. Test data after the 10-month period strongly 

indicated that the potential in the Class AA specimens was changing to an active state while staying 

passive in the others. Thus far, corrosion potential measurements are subject to empirical interpretation; 

the electrochemical basis has not been thoroughly established. 

Workability 

There appears to be a slight difference in workability among all the different mixtures having the 

same slump. Latex, epoxy, and mixtures containing super-water-reducers had a rubbery consistency; more 

effort was required to work them than Class AA concrete. 

Slump-loss test results are shown in Figure 10. All mixtures had an acceptable initial slump of 

1/2 to 3 1/2 in. (38.1 to 88.9 mm). Latex Modifier A concrete could be worked up to 30 minutes 

without revibration and up to 40 minutes upon revibration. Latex Modifier B concrete stiffened more 

rapidly and reached a slump of I in. (25.4 mm) within 20 minutes. Modifier B concrete responded 

to revibration after 30 minutes but could not be worked after 40 minutes. The PC-I 0 epoxy concrete 

mixture maintained a 2-in. (50.8-mm) slump up to 15 minutes after mixing; between 20 and 30 minutes, 

the slump diminished rapidly until the mix was unworkable after 30 minutes. Revibration was not very 

effective in improving the workability of epoxy concretes. More effort was needed to fmish epoxy 

concretes than the latex concretes. Even though the slump-loss test could be interchangeably used to 

measure both workability and consistency for concretes containing the same materials, it may not be 

a good indication of workability in the case of latex and epoxy concretes. 

The workability of superplasticized concrete is dependent on the amount or dosage of 

super-water-reducing admixture. All mixtures yielded satisfactory workabilities after the initial addition. 

(Figure 1 0). The minimum workability achieved was 47 minutes -- using Mighty ISO. Addition of more 

admixture to the stiffened concrete and revibration revived the workability for approximately I 0 additional 

minutes. 
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DISCUSSION AND CONCLUSIONS 

Emphasis in this report, as suggested by the title, has been directed toward reduction of voids in 

concrete. Figure II shows the solids-voids relationships for Class AA concrete and a polymer concrete. 

It is assumed here that a water-cement ratio of 0.244 is needed for hydration; any water above that 

amount adds to the void space in the hardened concrete. None of the concretes were entirely voidless, 

but there was a very significant decrease in void space (actual void space is 1.9 percent for Dow Modifier 

A compared to 12 percent for Class AA concrete). Other studies ( 3) on aggregates have shown that 

a 4-percent absorption, together with near saturation, gives nearly a 100-percent probability of rupture 

in four cycles of freezing and thawing. The low probability or likelihod of saturation together with 

a low probability of damage at 1.9-percent porosity (0.8-percent absorption) provide a high degree of 

assurance against deterioration by freezing and thawing. In the case of Class AA concrete, the probability 

of deterioration could be high if saturation occurred; there, resistance to freezing and thawing is determined 

by the improbability of saturation. 

The mere number of rapid or slow freezing and thawing cycles which a concrete specimen is able 

to withstand before saturation becomes critical is probably not as significant as the time-duration of 

the conditions causing absorption of water and eventual saturation. That is to say, concrete which does 

not absorb water could withstand any number of cycles of freezing and thawing. So, up to the point 

of critical saturation, ihe number of cycles depends upon the freeze-thaw process schedule. This applies 

to both normal and polymer concretes. 

There are other factors which could affect the performance of polymer concretes exposed to heat 

and freezing and thawing. One which needs to be explored extensively is the thermal expansions and 

contractions of resins, plastics, and oils in the confined, rigid spaces in the concrete. Plastics, resins, 

and oils have a higher coefficient of thermal expansion ihan concrete. This fact could have contributed 

to the apparent inconsistency in the decrease in dynamic modulus of elasticity of ihe Dow Modifier 

mixtures during freezing and thawing. It would have been very beneficial to this study to have cycled 

at least a few specimens of the polymer concretes up to temperatures of ISO F (66 C) or higher. However, 

this remains an item to be considered in any ensuing researches on concretes of the type demonstrated 

in this study. 

Super-water-reduced, superplasticized concrete resulted in significantly higher strengths than any other 

concrete mixed previously, Not only did ihe ultimate strength increase, the early strength increased also, 

which is advantageous from a construction point of view. This significant leap into low, w/c-ratio concrete 

and the eagerness for a solution to the bridge deck deterioration problem prompted the recent 

reconstruction of a US 27 bridge over Silas Creek using Melment L-10 and PVP in two of its four 
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spans (5). 

Two major problems beset the use of the super-water-reducers on the above-mentioned bridge. The 

first was the rapid loss of workability. Laboratory and limited field work with similar mixtures indicated 

that the concretes would maintain sufficient workability for at least 4S minutes (Figure 10), and that 

it would be possible to revive the slump by addition of small amounts of the water-reducing admixture. 

When 8-cubic-yard {6.I-m3) batches were attempted under field conditions, the loss of slump and 

workability was drastic. The initial setting time decreased, and additions of PVP or Melment were only 

momemtarily effective. The problem was compounded by the method of unloading and placing of the 

concrete. It took an average of 64 minutes to unload each 8-cubic-yard ( 6.I-m3) batch of concrete, 

which made it impossible to maintain workability. The second problem was associated with the finishing 

equipment. It would have been possible to place and finish the concrete if the finishing machine had 

been equipped with vibratory, oscillating screeds and a vibrator every S feet {1.52 m) of screed length. 

There is reason to believe that an instantaneous type of mixing method which does not require 

continuous agitation of the ingredients might result in successful concrete mixtures using asphalts and 

oils and might be very helpful in the production of polymer and superplasticized concretes. The use 

of retarded admixtures with Melment Mighty ISO, and PVP would be a solution. Current work on a 

retarded version of Mighty ISO has already proven successful. 

The use of polymers and super-water-reducers represents a potential contribution towards solving 

the dilemma of chloride intrusion and deterioration of bridge decks. Further research by this Division 

on superwwaterwreducers is underway. 
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Figure 2. Cement Paste (w/c ~ 0.275) after Addition of Superplasticizer. 
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TABLE I. 

All Mixes 

Class AA 
Concrete* 

Dow Latex 
Modifier A 

Dow Latex 
Modifier B 

PC 10 
Epoxy 

Melment 

Mighty 150 

PVP 

MIX DESIGNS 

Cement 
Coarse Aggregate 
Fine Aggregate 

ITEM 

Water Needed for Hydration 

Water 

Percent Solids = 46 - 49 "' 47 
Amount of Liquid Required (includes 152 lb/yd3 

of water for hydration) = 152/0.53 

Percent Solids = 48 
Amount of Liquid Required (includes !52 lbjyd3 

of water for hydration) = 152/0.52 

Amount of Epoxy Required 
Part A = 74.1% 
Part B = 25.9% 

Water Needed for Hydration (minimum) 

Percent Solids = 20 
Amount of Liquid Added 

3% of weight of cement 
Total Water in Mix 

wjc = 0.3 

Percent Solids = 42 
Amount of Liquid Added 

1.3% of weight of cement 
Total Water in Mix 

wjc = 0.3 

Percent Solids = 40 
Amount of Liquid Added 

5% of weight of cement 
Total Water in Mix 

w/c = 0.3 

*I 1/2 to 2 1/2 in. (38 to 64 mm) slump 
6 percent air content 

26 

MAGNITUDE 

620 
1814 
1196 

152-186 

275 

287 

292 

129 
95.6 
33.4 
!52 

18.6 

186 

8.1 

186 

31.0 

186 

368 
1076 
710 

90-110 

163 

170 

173 

76.5 
56.7 
19.8 

90 

11.0 

110 

4.8 

110 

18.4 

110 



TABLE 2. FRESH AND HARDENED CONCRETE TEST RESULTS FOR ALL MIXTURES 

HARDENED CONCRETE 

FRESH CONCRETE 
SPECIFIC GRAVITY UNIT WEIGHT 

SLUMP UNIT WEIGHT (BULK) PERMEABLE 

CONCRETE AIR SAT. SUF. VOIDS 

MIXTURE CONTENT {in.) (mm) (lb/ft3) (kg/rn3) DRY BULK APPARENT (lb/ft3) (kg!m3) (%) 

Dow Latex 
Modifier A '·' 2A " 151.8 2,432 lAD 2.36 2.47 147.3 2,360 '·' 
Dow Lc''X 
Modifier B 2.8 ,, % !53.0 2,451 2.46 2.42 2.50 151.0 2.419 2' 

PC 10 
Epoxy ' ' " 30 149.5 '2,395 2.41 2.33 2.52 145.4 2,329 7.6 

Class 
AA PCC <.2 " " !48.5 2,379 H4 2.30 2.68 143.5 2,299 14.0 

Mel men! 2.0 3.0 76 152.8 2,448 

Mighty !50 2A ,, 
'" 154.6 2,476 

PVP 2.9 ' ' 60 155.4 2,489 

AIR 
CONTENT 

ABSORPTION (%) 
MOISTURE UNEAR 

(%) TRAVERSE 

1.90 1.92 

1.51 1.94 

3.29 2.73 

6.10 3.06 

PERMEABIUTY 

{em/min) 

0.0 

0.0 

u9 x w·7 

2.91 x w·7 

"' ..... 
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TABLE 3. COMPP.ESSIVE AND FLEXURE STRENGTH TEST RESULTS 

NUMBER COMPRESSIVE STRENGTH FLEXURE STRENGTH 

CONCRETE MIXTURE OF DAYS (psi) (MPa) (psi) (MPa) 

3 4192 28.90 1263 8.71 

Dow Latex 7 5117 35.28 1381 9.52 

Modifier A 28 6532 45.04 1496 10.31 

90 6948 47.91 1950 13.44 

3 5440 37.51 1375 9.48 

Dow Latex 7 6408 44.18 1375 9.48 

Modifier B 28 7210 49.71 1563 10.78 

90 8952 61.72 1850 12.76 

4 4616 31.83 1325 9.14 

PC 10 Epoxy 7 6031 41.58 1620 11.17 

28 7269 50.12 1680 11.58 

90 8177 56.38 1740 12.00 

3 3684 25.40 950 6.55 

Class AA PCC 7 4525 31.20 1043 7.19 

28 6019 41.50 1212 8.36 

28* 4500* 38.03* 275* 3.97* 

90 6349 43.78 1275 8.79 

3 6592 45.45 1015 7.00 

Melment 7 7604 52.43 1117 7.70 

28 8610 59.36 1192 8.22 

90 9205 63.47 1152 7.94 

3 7509 51.77 1238 8.54 

Mighty 150 7 8349 57.56 1338 9.23 

28 8622 59.45 1367 9.42 

90 10331 71.23 1298 8.95 

3 6173 42.56 1129 7.78 

PVP 7 7713 53.18 1113 7.76 

28 8689 59.91 1178 8.12 

90 10369 71.49 1278 8.81 

*Average, minimum requirements 



TABLE 4. AVERAGE DYNAMIC YOUNG'S MODULI OF ELASTICITY FOR ALL ~11XTURES 

CLASS AA PCC LATEX MODIFIER A LATEX MODIFIER B PC lO EPOXY 
DF* = 70.53 DF o 80.76 DF o 70.75 DF o 82.85 

DE** DE DE DE 
CYCLE CYCLE CYCLE CYCLE 

NUMBER psi MPo NUMBER psi MPo NUMBER psi MPo NUMBER psi MPa 
(x!0-6) (x 10-4) (xI o·6) (xl0-4) (x!0-6) (x!0-4) (x!0-6) (x!0-4) 

0 6 95 4 79 0 7.07 4.87 0 7.29 5.03 0 5.72 3.94 

24 6.65 4.58 16 7.26 5.0! 25 6.79 4.68 73 5.70 3.93 

46 6.60 4.55 63 7.27 5.0! 57 6.74 4.65 129 5.61 3.87 
78 6.41 4.42 114 7.08 4.88 81 6.69 4.6! 189 5.36 3.70 

102 6.39 4.41 !38 7 22 4.98 !Ol 6.69 4.61 266 5.13 3.54 

134 6.34 4.37 !60 7.!2 4.9! !30 6.61 4.56 299 4.76 3.28 

!58 6.09 4.20 !92 6.82 4.70 !51 6.52 4.50 
!9! 5.89 406 216 6.74 4.65 !82 6.52 4.50 

225 5.38 3.71 248 6.55) 4.52 233 5.80 4.00 *DF = Durability Factor 

249 5.38 3.7! 272 6.22 4.29 264 5.47 3.77 **DE = Dynamic Young's Modulus 

269 5.38 3.71 306 5.60 3.86 293 5.19 3.58 of Elasticity 

299 4.92 3.40 300 5.12 3.53 

MIGHTY !50 MELMENT PVP 
DF o 9!.34 DF o 70.08 DF o 59.78 

DE DE DE 
CYCLE CYCLE CYCLE 

NUMBER p~i MPo NUMBER psi MPa NUMBER psi MPo 
(x w-6) (x!0-4) (x!0-6) (x!0-4 ) (x!0-6) (x!0-4) 

0 7.33 5.05 0 6.62 4.56 0 6.93 4.78 

6 7.21 4.97 4! 6.31 4.35 38 6.67 4.60 
117 7.23 4.99 8! 617 4.25 94 6.43 4.43 

!50 7.23 4.99 132 5.89 406 182 5.71 3.94 
!76 7.12 4.9! !96 5.47 3.77 239 4.73 3.26 
223 7.08 4.88 255 4.92 3.40 279 4.24 2.92 
247 7.37 5.08 273 4.73 3.26 289 4.15 2.86 "' 
289 6.84 4.7! 300 4.64 3.20 

(JJ 

300 669 4.61 


