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INTRODUCTION 

The one-dimensional laboratory consolidation test developed by Terzaghi permits deformation and 

drainage only in the vertical direction. The stress-strain characteristics of data obtained from this test 

are normally studied using a semilogarithmic graphical representation, that is, vertical strain or void ratio 

is plotted as a function of the logarithm of effective stress. Such a representation permits an analysis 

of the stress history and compressibility characteristics of soils. Knowledge of these material characteristics 

is of great practical value in the prediction of settlement associated with loading where the effects of 

lateral consolidation may be neglected. 

Background 

The principal event in the stress history of a soil is the maximum vertical stress experienced by 

the material in its natural subsurface environment. This stress is the result of loads imposed by past 

or present overlying materials and( or) the result of dessication and is referred to as the "preconsolidation 

stress." In 1936, Casagrande ( 1) devised an empirical, graphical procedure to determine the 

preconsolidation stress from the semilogarithmic representation of stress-strain laboratory consolidation 

data. The essential characteristics of this well known procedure are illustrated in Figure 1. 

Before 1955, the compressibility characteristics of particulate materials were expressed as the 

arithmetic slopes of the line representations of the semilogarithmic, laboratory consolidation curves. 
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However, these lines did not account for the effects of sample disturbance on the consolidation curves. 

In 1955, Schmertmann (7) developed an empirical, graphical procedure which accounted for the effect 

of sample disturbance and estimated in situ compressibility characteristics. Figure I also shows the essential 

characteristics of the Schmertmann procedure. 

Analyses of stress-strain consolidation data by empirical, graphical techniques such as the Casagrande 

and Schmertmann constructions have several drawbacks. Terzaghi (9) stated that an empirical rule expresses 

a probability and not a certainty, and to use results obtained by empirical rules without being fully 

aware of the uncertainties involved is putting oneself at the mercy of the laws of statistics. Similarly, 

Casagrande believes that the preconsolidation stress should be always considered in terms of a range 

of values (2). Additionally, the analyses of consolidation data using graphical empirical procedures require 

considerable amounts of time and effort from competent personnel who oftentimes must make subjective 

judgements which are susceptible to various graphical ambiguities and computational errors. Results of 

a survey conducted by Sallfors ( 6) emphasizes these difficulties. Figure 2 shows the scatter in values 

of the preconsolidation stress P reported by 28 geotechnical engineers who were asked to determine 

the preconsolidation stress of a given set of stress-strain consolidation data. Results of Sallfors' survey 

not only show the difficulty involved in determining the preconsolidation stress but also reflect the 

fact that different methods were used. Sallfors' survey suggested the need to develop some means of 

alleviating the problems associated with the analysis of stress-strain consolidation data. 

Purpose and Scope of Paper 

As one step toward miniruizing some of the problems associated with the analysis of consolidation 

data, a computer program was developed which completely reduces, analyzes, and plots time-independent 

data obtained from three types of laboratory consolidation tests: conventional, controlled-gradient, and 

controlled-rate-of-strain·. Details of the conventional conslidation test are described in ASTM D243S-70. 

A discussion of the later two testing methods has been presented elsewhere (2, 3, 8). Development of 

the computer program was prompted by the need for a rapid computational and plotting algorithm 

which could be used in a data acquisition scheme. The computer program was developed on the IBM 
c 

370/165 computer and the Calcomp 663 drum plotter. The program was written in Fortran IV using 

an algorithm which provides for the mathematical application of the Casagrande and Schmertmann 

constructions to determine the preconsolidation stress and in situ coefficients of compressibility, 

respectively. Another innovative feature of the program is the inclusion of two completely different 

algorithms for selecting the point of maximum curvature. 
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METHOD OF SOLUTION 

The main element of the algorithm is the use of analytical curve-fitting procedures to represent 

the graphical semilog representation of stress-strain data. An ordinary least-squares polynomial (JO)is 

used to represent the compression curve characteristics; a linear least-squares representation is used for 

the rebound or expansion data. These two functions are applied to the logarithms, base ten, of the 

abscissae of the data points. In other words, the raw data points which originally spanned logarithmic 

cycles are reduced to a narrow, arithmetic range of values. 

Selection of Curve-Fitting Function 

An analytical function used for curve fitting should have the shape characteristics and versatility 

to accurately duplicate the range of shapes or forms expected from a given type of data representation. 

Three criteria were considered in selecting a curve-fitting function: functional shape, functional versatility, 

and functional simplicity. A study of different curve-fitting functions showed that the ordinary polynomial 

satisfies these requirements amazingly well for the semilog representation of stress-strain consolidation 

data. Exponential and logarithmic functions were not satisfactory because their seemingly appropriate 

shapes were found to be too extreme and inflexible to provide an adequate representation of the point 

of maximum curvature and laboratory virgin compression curve. In contrast, rational functions based 

on Chebyshev (Tchebycheff) polynomials proved better for fitting the semilog representation of 

consolidation data than exponential or logarithmic functions. However, rational functions based on 

Chebyshev polynomials still had the general characteristic of being too inflexible to satisfactorily describe 

some of the fmer, yet essential, shape characteristics. Also, the shape of the rational function was largely 

dependent on the preselected functional order. In contrast, the ordinary polynomial has less dependence 

on the functional order used. This is very important from the standpoint of reducing the subjectivity 

involved in the choice of an appropriate order of the curve-fitting function. Finally, the ordinary 

polynomial is the simplest of all the curve-fitting functions investigated, and it provides for simpler 

analytical operations during differentiation and generation of functional expressions. The ordinary 

polynomial has the form 

p(x) = c1 + c2 x + c3 x2 + ... en xCn - I) I 

where p(x) is the given polynomial with terms having constant coefficients en for the abscissa terms 

x with integer powers (i - 1). Derivatives are easily obtained on the ordinary polynomial as follows: 

d(p(x))/dx = £ (i - !) ci x(i · 2). 
1=1 
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Limitations of Ordinary Polynomial 

The ordinary polynomial does have some important limitations. As noted by Hastings (4), low-degree 

polynomials have an intrinsic nndulatory character that prolubit them from turning Sharply and going 

as straight as sometimes required by curve-fitting considerations. The number of data points as well 

as the nature of the data impose limitations on the effectiveness of the ordinary polynomial as a 

curve-fitting fnnction. A few data points (such as obtained from standard consolidation tests) will 

ambiguously define the semilog representation of the consolidation compression curve. Having too few 

data points can create two problems. First, a small number of data points will increase the opportnnity 

for greater variation in fnnctional Shape characteristics of polynomials of different degrees. Second, there 

are fewer restraints against the undulatory characteristics of low-degree polynomials. On the other hand, 

a large number of data points (such as obtained from controlled-gradient and controlled-rate-of-strain 

consolidation tests) defmes the properties of the consolidation compression curve more clearly because 

the ordinary polynomial is given sufficient information to provide an excellent representation of the 

data. Also, a greater number of data points avoids the undesirable nndulatory characteristics of low-degree 

polynomials since polynomials of higher degrees can be used. 

Mathematical Application of Graphical Constructions 

The Casagrande construction is used by the algorithm in the computer program to estimate the 

probable preconsolidation stress, P c• and the Schmertmann construction is employed to account for the 

effects of sample ·disturbance on the compressibility of the specimen. The major elements in the 

mathematical application of these two graphical constructions are described below to illustrate the various 

analytical procedures involved. 

Casagrande Construction 

The value of P c as selected by the Casagrande construction is a fnnction of three curve characteristics: 

the point of maximum curvature, the slope of the curve at the point of maximum curvature, and the 

selected line representation of the virgin compression curve. 

Point of Maximum Curvature 

The first step in the Casagrande construction is the selection of the point of maximum curvature 

(Point 0 in Figure 1). In the manual application of this step, a subjective decision is made on the 

basis of the appearance of the manually drawn curve. In the algorithmic application of this step, the 

point of maximum curvature may be selected by one of two methods. One method employs the 

mathematical defmition of the radius of curvature given in Equation 3, below, and is called the analytical 
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method. The other procedure is the newly proposed graphical method, which uses the pictorial 

characteristics of the compression curve to select the point of maximum curvature. 

Analytical Method 

In the analytical method, the point of maximum curvature is determined from the following 

mathematical definition: 

3 

where dy/dx and d2y/dx2 are the first and second derivatives, respectively, of the generated ordinary 

polynomial (Equation 1) and R is the radius of curvature. The point of maximum curvature is the point 

on the curve at which R is calculated as a minimum. However, Equation 3 cannot be used directly 

to select the visual point of maximum curvature from the analytical expression generated by the 

polynomial fit of the compression data. The diffJculty involved is illustrated in Figures 3a and 3b. The 

circle in Figure 3a is drawn on x and y axes having the same scales. A unique analytical or visual point 

of maximum curvature does not exist on the circle in Figure 3a. However, if the x and y axes have 

different scales as shown in Figure 3b, there are two discrete visual points of maximum curvature, a 

and b, while an analytical point of maximum curvature still does not exist when Equation 3 is used. 

This distortion is caused by different scales in plotting and must be accounted for before the visual 

point of maximum curvature can be analytically selected using Equation 3 (see the Appendix). 

For Equation 3 to apply to a graphical representation of an analytical function, the horizontal 

and vertical axes used in plotting the analytical function must have the same scale. When the fitted 

curves are plotted on axes which do not have the same scale, a correction factor must be included 

in 'Equation 3 to modify the derivatives so that they reflect the actual visual distortion caused by the 

scale difference. Since strain and logarithm of effective stress are dimensionless quantities, the correction 

factor is expressed simply as the ratio of horizontal scale to vertical scale as follows: 

FACTOR = HORIZONTAL SCALE/VERTICAL SCALE 4 

This correction factor is to Equation 3 in the following way to make the analytical and visual points 

of maximum curvature the same: 

5 

Graphical Method 

Because the analytical method may not always be successful in determining the point of maximum 

curvature on curves having ill-defmed curvature, the graphical method was developed. In this method, 

the recompression and virgin compression curves are idealized as straight-line segments which are connected 

by a transitional curve. Several assumptions are made .. First, the recompression curve is assumed to have 

the same slope as the rebound curve as shown in Figure 4. The Schmertmann construction employs 
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a similar assumption. Second, the transitional curve lying between the two straight-line segments is assumed 

to be smooth and evenly distributed. Consequently, the point of maximum curvature is at the center 

of this transitional curve. Finally, the center point of the transitional curve is found by bisecting the 

interior angle formed by the intersection of the line representations of the recompression and virgin 

portions of the compression curves to obtain the point of maximum curvature as shown in Figure 4. 

Implementation of the graphical method consists of the following steps as shown in Figure 4: 

I. A line having the same slope as the rebound curve is drawn tangent to the recompression 

curve. 

2. The virgin compression curve is then represented by a line having the slope of its straight portion. 

3. The tangent of the recompression curve and the straight-line representation of the virgin 

compression curve are extended until they intersect. 

4. The interior angle formed by the intersection of those two lines is bisected. 

5. The angle bisector is then extended until it intersects the compression curve. This point of 

intersection is selected as the point of maximum curvature. 

If the point of maximum curvature can be computed by Equation 5, the point selected by the 

graphical method may be located slightly before or after the analytically selected point of maximum 

curvature. The location of the graphically selected point relative to the analytically selected point depends 

on how the shape of the transitional curve deviates from the assumption of a smooth and evenly distributed 

curve. When the data do not precisely define where the fitted transitional curve should have its point 

of maximum curvature, only an estimate is possible. The point selected by the graphical method is a 

reasonably good estimate of the point of maximum curvature. 

After the point of maximum curvature is selected, the Casagrande procedure is completed by 

determining the equa(ions of the horizontal, tangential, and angle-bisector lines which intersect at the 

selected point of maximum curvature on the fitted polynomial. The first derivative of Equation 2 is 

used to establish the slope of the tangential line at the point of maximum curvature. The equations 

of the horizontal line and angle bisector are established from siniple geometrical considerations. The 

fmal step in the mathematical application of the Casagrande construction comes in the selection of the 

line representation of the virgin compression curve and its intersection with the angle bisector line, OC, 

in Figure I. The line representation of the virgin compression curve is selected from the polynomial 

representation of the compressj.on data points. To select the most appropriate straight-line representation 

of the virgin compression curve, the portion of the fitted polynomial which is steep and has a relatively 

constant slope is used. To do this, a percent-difference criterion is used. If the slope is relatively constant, 

the percent difference between slopes of consecutively generated search points will be very small and 
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that portion of the curve will be nearly a straight line. When the percent·difference criterion of 0.02 

percent is satisfied, that portion of the curve is used to produce the straight·line representation of the 

laboratory virgin compression curve. After the laboratory virgin compression line has been selected, the 

probable preconsolidation stress, P c• is determined at the intersection point of this line with the angle 

bisector line by taking the antilog of the abscissa at the point of intersection. 

Schmertmann Construction 

After the Casagrande construction, the Schmertmann construction is mathematically applied. The 

first step in this procedure is to construct the in situ recompression curve as shown by line XY in 

Figure I. The in situ recompression curve is represented by a line passing through the in situ state 

of stress and strain at point X having the same slope, SR, as the rebound curve, EF. Next, the in situ, 

virgin compression curve is represented by a line passing from the recompression line at the 

preconsolidation stress, point Y, to the point where the virgin curve intersects the ordinate value of 

strain at 42 percent of the initial void ratio, point Z in Figure I. Finally, a minimum preconsolidation 

stress, P c (MINIMUM), is determined in accordance with a procedure modified by Schmertmann (7 ). 

The minimum preconsolidation stress is found simply by extending the laboratory virgin curve until 

it intersects either the •v = 0 line (underconsolidated material) or the in situ recompression line, XY, 

as shown in Figure I. 

Influence of the Degree of Polynomial 

In the mathematical application of the Casagrande and Schmertmann graphical constructions, the 

influence of the degree of polynomial has a range of effects on the selection of the point of maximum 

curvature and the line representation of the virgin compression curve, and hence the determined values 

of the probable preconsolidation stress, P c• and in situ compression ratio, CR (CR = Cc/(1 + e
0

)). The 

influence of the preselected degree of polynomial is least when the consolidation compression curve 

is well defmed; that is, one which has a well·defined point of maximum curvature and a reasonably 

straight virgin compression curve. Generally, but not always, this is the case when the compression curve 

is defmed by a sufficient number of data points (such as obtained from the controlled·gradient and 

controlled·rate·of·strain consolidation tests). The greatest effect of degree of polynomial occurs when 

the compression curve is ambiguously or ill defmed; that is, where there is considerable uncertainty 

in selecting the location of the point of maximum curvature and straight portion of the virgin compression 

curve. This condition usually arises in cases where there are fewer than eight data points defming the 

consolidation compression curve, as is usually the case with the standard consolidation test. Three isolated 

examples are given below to illustrate that the influence of degree of polynomial depends to a large 
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extent on the uncertainty involved in selecting the point of maximum curvature and straight portion 

of the virgin compression. These three examples are by no means all inclusive. 

An example of a well-defmed consoldiation curve is shown in Figure S. The data were obtained 

from controlled-gradient consolidation test (CG-13) and analyzed using both the analytical and graphical 

methods. To illustrate the effect of the choice of the degree of polynomial on the computed values 

of P c and CR, the data given in Figure 5 were analyzed using polynomials of different degrees and 

the results are shown in Figures 6 and 7. If the graphical and analytical methods are considered separately, 

fairly consistent values of P c and CR are obtained for polynomial degrees of six or greater. Also, Figures 

6 and 7 indicate that, when a large number of data points are available, the highest possible degree 

(equal to eleven in the computer program) should be used to obtain fairly accurate values of Pc and 

CR. 

An example intermediate between a well-defined and ambiguously-defmed consolidation compression 

curve is shown in Figures 8 and 9 (Standard Test 24) for both the analytical and graphical methods. 

Although the straight portion of the virgin compression curve is sufficiently well defined, these data 

are considered to be an intermediate ·example because there is a reasonable amount of ambiguity in 

the location of the point of maximum curvature. Consequently, the influence of degree of polynomial 

on the results shown in Figures 8 and 9 is more pronounced than the example in Figure 5 because 

the few data points do not completely define the location of the point of maximum curvature. When 

dealing with few data points, experience has shown the best preselected degree of polynomial is equal 

to the number of data points minus two. Figures to and II indicate that the least-squares smoothing 

incurred with polynomial degrees slightly less than the maximum possible degree provides reasonably 

consistent values of P c and CR when either method is used. 

Finally, an example of an ambiguously-defmed consolidation curve is illustrated in Figures 12 and 

13. The consolidation curve is considered to be ambiguously-defmed because of the great ambiguity 

in the location of the point of maximum curvature and lack of a defmite straight portion in the virgin 

compression curve. The considerable ambiquity in the location of the point of maximum curvature is 

due to the nature of the data. In considering the influence of polynomial degree, differences between 

the determination of the point of maximum curvature by the analytical and graphical methods must 

be considered. The selection of the point of maXImum curvature by the analytical method (Equation 

S) is greatly affected by the degree of polynomial because small changes in the fitted curve overshadow 

the ambiguous information furnished by the data points describing the location of the point of maximum 

curvature. This result can be noted by comparing the determined values for Pc and CR in Figures 12a 

and 12b. In contrast, the effect of polynomial degree on the determined values of Pc and CR is less 
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significant when the point of maximum curvature is determined by the graphical method (Figure 4). 

This result can be seen by comparing the values for Pc and CR in Figures 13a and 13b. Any effect 

of polynomial degree on the selection of the point of maximum curvature can be expected to have 

a corresponding effect on the determined values of Pc and CR. This problem of selecting the point 

of maximum curvature on curves having ill-defined curvature is an example of where the use of empirical, 

graphical procedures to determine the properties of stress-strain consolidation data may be limited. In 

addition, questions may even arise concerning their applicability to the analysis of certain types of data. 

With this in mind, the validity of the graphical method as opposed to the analytical method to determine 

the point of maximum curvature on data curves similar to the ones for the Standard Test 12 in Figures 

l3a and 13b is a matter of individual judgment. 

Program Output 

Figures 5, 8, 9, 12, and 13 are examples of plotted output from the computer program. These 

plots show data points, fitted curves, numerical results, and all the steps involved in the graphical.analyses. 

CONCLUSIONS 

1. The computerized version of this program has proven effective in the reduction analysis of stress-strain 

data obtained from more than 40 controlled and 30 standard consolidation tests. 

2. The program is a valuable aid in rapidly analyzing data from a large number of consolidation tests, 

particularly ones producing large amounts of data such as the controlled-gradient and 

controlled-rate-of-strain consolidation tests. 

3. The program is a suitable adjunct to any data acquisition scheme involving stress-strain consolidation 

data. 

4. The program can be readily adapted for use with cathode-ray plotters such as the Tektronix Model 

4012 or any other peripheral computer. equipment that is compatible with the I~M 370/165 

computer. 

5. A graphical procedure to select the point of maximum curvature has been proposed and included 

in the algorithm of the computer program. This graphical method is generally less susceptible to 

small variations in the fitted polynomial than the analytical method which uses Equation 5 and 

can be used when data are reduced manually. 

6. The effectiveness of the algorithm depends on two things: the applicability of the Casagrande and 

Schmertmann constructions and the adequacy of the curve representation of the data by the ordinary 

polynomial. 

7. The best-curve representation of the data is usually obtained when the highest degree of polynomial 

which provides some least-squares smoothing is used. 
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8. Sallfors (6) has pointed out that it is possible to represent the compression data with a number 

of different curves where there are only six or seven data points. This type of variation accounts 

for most discrepancies between values of P c and CR for representations of standard consolidation 

compression curves. For controlled·gradient consolidation test data, the greater amount of data greatly 

reduces the variation in results for different polynomial degrees. 

9. The location of the point of maximum curvature is dependent on the plotted representation of 

an analytical curve. Hence, values determined for P c can be significantly affected by the scales 

to which the semilog, stress·strain consolidation curves are plotted. 

NOTATION 

CG Controlled·gradient consolidation test 

C c Compression index 

CR Compression ratio 

DEG Degree of polynomial fit 

e Vertical strain, percent 

EC Vertical preconsolidation strain 

EO In situ void ratio 

e
0 

In situ void ratio 

OCR Overconsolidation ratio 

P c Preconsolidation stress 

PC Preconsolidation stress 

PO In situ vertical stress 
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•v' Vertical effective stress 

STD Standard consolidation test 

SR Swell Ratio 
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APPENDIX 

Dependency of Point of Maximum Curvature on Plotting Scales 

The location of the visual point of maximum curvature is influenced by the way in which the 

plotting axes are scaled when any analytical curve is drawn. When the effects of the plotting scales 

are ignored, as in case of Equation 3, Figure 14 shows how the selected point of maximum curvature 

will not coincide with the visual point of maximum curvature selected in Figure Sa. When Equation 

3 is used, the disparity between the selected and visual points of maximum curvature is usually much 

greater with the point of maximum curvature being selected in the straight portion of the virgin 

compression curve. Consequently, the benefits of using EquationS as compared to Equation 3 are obvious 

when the results of Figures Sa and 14 are compared. 

A geometrical approximation has been developed by the principal author of this paper as an alternate 

way of determining the radius of curvature, and consequently, the point of maximum curvature. This 

geometrical approximation will constitute a proof that the location of the visual point of maximum 

curvature is greatly affected by the scaling of any analytical curve because this geometrical· method yields 

the same results as obtained from Equation S. The basic steps associate.d with this geometrical approach 

are shown below in reference to Figure 15: 

1. Points A and B are selected distance dx apart on the fitted polynomial curve. 

2. Tangents, AI and Bl, are drawn at points A and B. 

3. Normals, A2 and B2, are drawn perpendicular to tangents AI and Bl at points A aud B, 

respectively, and extended until they intersect at point P. 

4. Point 0 is located on the curve halfway between points A aud B. 

5. line OP is drawn and its length measured and used as an approximate value of the radius 

of curvature at point 0. 

Figure 16 demonstrates the computerized operation of the geometrical approach to determining 

values for the radius of curvature at points along the fitted polynomial given in Figure Sa. Figure 17 

shows the close comparison between values of the radius of curvature determined by this geometrical 

approach and by Equation S. It is easy to see that both methods yield the same minimum value for 

the radius of curvature at the same point on the fitted polynomial curve. 

The fact that the location of the visual point of maximum curvature depends on the effects of 

the plotting scales is more clearly shown through a discussion of the computer application of the 

geometrical approach to determining values of the radius of curvature. The key point in understanding 

the effects of scaling on the location of the visual point of maximum curvature is recognizing how 
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these effects must be accouuted for so that the normals of the geometrical approximation are plotted 

perpendicular to the plotted polynomial. 

The mathematical identity describing the relationship between two perpendicular lines is 

6a 

or 

= -I, 6b 

where M1 is slope of the tangent and M2 is the slope of the perpendicular to the tangent. However, 

a normal will not be plotted perpendicular to a plotted line if the identity in Equation 6 is used when 

the scales of the horizontal and vertical plotting axes are different. Figure !Sa shows the relationship 

between two perpendicular lines when the scales of the plotting axes are the same; Figure 18b illustrates 

what occurs when the scales are not the same on both plotting axes. In Figure 18b, the horizontal 

scale is proportioned so that there are 0.300 units per inch of horizontal plotting distance (i.e. three 

log cycles over 10 inches); the vertical scale is graduated for 0.02 units per inch of vertical plotting 

distance. Normals will be plotted perpendicular to the plotted line only if the slope of the plotted line 

is corrected for the effects of the plotting scales. This is accomplished by modifying the value of slope 

for line one, M1, in Figure 18a, using a correction factor that converts the vertical and horizontal 

components, dy and dx, respectively, into the actual vertical plot distance in inches for a given number 

of inches in the horizontal direction. For instance, M1 can be expressed as follows: 

M1 = dy/dx. 7 

To convert the vertical and horizontal components, dy and dx, respectively, into their actual plotting 

distances, simply divide each component by the scaling values used to express the number of units for 

an inch of plot in both the horizontal and vertical directions. From Figure 18b, scaling values of 0.300 

and 0.02 are applied to the horizontal and vertical directions, respectively. Therefore, it follows that 

(dy/0.02)/(dx/0.300) = 15dyfdx, 8 

where 15 is the value of the correction factor needed to reflect the actual plotting distances involved. 

This correction factor, FACTOR, can be expressed as 

FACTOR = HORIZONTAL SCALE/VERTICAL SCALE. 9 

The modified value of slope, M1•, can be expressed in terms of the slope M1 as 

M1* = FACTOR • M1, lOa 

or 

lOb 

To obtain the slope of the normal, M2, which will make the plotted normal appear perpendicular 
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to the line having a slope M1, the modified normal slope M2*, must first be obtained using the identity 

given in Equation 6 as follows: 

lla 

or 

M2* = -l/(M1 . FACTOR). llb 

The slope of the normal, M2, is obtained by removing the correction factor from the visual slope M2 * 

as follows: 

12a 

or 

12b 

Next, the mathematical relationship is derived between the tangent and normal slopes, M1 and M2, when 

the effects of scaling are considered. Solving for the term M1 from Equation lib yields 

M1 = -!/(FACTOR · M2*) 13 

Substituting the relationship for M2 * from Equation 12b into Equation 13 yields 

·!/(FACTOR · FACTOR · M2) 14 

Rearranging, 

15 

Figure 19 provides an illustration of where this procedure was followed. The value of FACTOR as 

computed by Equation 9 is 15 for the horizontal and vertical scales provided. Substituting the values 

of FACTOR and slopes M1 and M2 from Figure 19 into Equation 15 yields 

(-0.06667) (0.06667) (15)2 = -1. 16 

Finally, the squaring of the term FACTOR in Equations 15 and 16 implies that the visual point of 

maximum curvature is a function of the square of the term FACTOR. Referring to Equation 5, this 

inference is confirmed. The radius of curvature R, as given by Equation 5, may be expressed in terms 

of FACTOR as follows: 

R ex ((FACTOR)2)3/2/FACTOR, 17a 

which reduces to 

R ex (FACTOR)2. 17b 

Therefore, the effect of scaling on the location of the visual point of maximum curvature is proportional 

to the square of the correction factor, FACTOR. 

This result has many practical ramifications. For instance, Figures 20a and 20b illustrate two plots 

where the number of log cycles for a given horizontal distance are different. In Figures 20a and 20b, 

there are two and five log cycles, respectively, plotted over a horizontal distance of 10 inches. The 

14 



value of FACTOR in Figures 20a is I 0 and fixes the visual point of maximum curvature at the abscissa 

value for 6.9 Tsf. In Figure 20b, FACTOR is equal to 25 and locates the visual point of MAXIMUM 

curvature at the abscissa value for 5.22 Tsf. Hence, these two figures demonstrate that the scales to 

which consolidation data are plotted, and therefore the magnitude of FACTOR, has a significant effect 

on the location of the visual point of maximum curvature. The effects of a wide range of values of 

FACTOR on the abscissa location of the visual point of MAXIMUM curvature are illustrated in Figure 

21. Usually, the value of FACTOR lies somewhere between a value of I and 100. This is the range 

where the influence of scaling is greatest, as shown by Figure 21. The value of FACTOR can be changed 

in another way by expanding the length of the vertical plotting axis to express fewer units of strain 

per inch for a given horizontal scale. This increases the value of FACTOR and causes the visual point 

of MAXIMUM curvature to be shifted to higher abscissa values located to the right on the compression 

curve. A decrease in the value of FACTOR causes the visual point of maximum curvature to be shifted 

to lower abscissa values located to the left on the compression curve. Both of these facts can be inferred 

from Figure 21. Although Figure 21 applies specifically to the data which appears in Figure 20, similar 

trends will be obtained for any other semi-logaritlunic representation of stress-strain consolidation data. 
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Intermediate Example between Well-Defined and Ambiguonsly-Defined 
Consolidation Compression Curve, Standard Test 24, Analytical Method. 
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Consolidation Compression Curve, Standard Test 24, Graphical Method. 
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Example of an Ambiguously-Delmed Consolidation Compression Curve, 
Standard Test 12, Analytical Method. 
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Figure 13. Example of an Ambiguoosly-Defined Consolidation Compression Curve, 
Standard Test 12, Graphical Method. 
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Figure 14. Selection of Point of Maximum Curvature Using Equation 3. 
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Figure 15. Geometrical Determination of Point of Maximum Curvature. 
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