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INTRODUCTION 

Predicting the rate of consolidation of saturated clays has been one of the most difficult problems 

in geotechnical engineering. Terzaghi's theory of consolidation (7) has been the basis for predicting rates 

of consolidation settlement. The theory uses many simplifying assumptions to obtain the following 

differential equation describing the dissipation of excess hydrostatic pressures, u, in one-dimensional flow: 

[k(l + e)/av'Ywl a2u;az2 = au;at 

where z coordinate in vertical direction, 

u = excess pore pressure, 

time, 

k permeability in the vertical direction, 

e void ratio, 

= coefficient of compressibility, and 

'Yw = unit weight of water. 

Terzaghi's nondimensional solution to this differential equation takes the following form: 

u 1 . (8/n2) ~ ((2N + 1)"2 exp[·(2N + 1)2 n2Tv/4]) 2 
N"'O 

where u 

u 

uo 

Tv 

= 

degree of consolidation = 1 - u/u
0

, 

excess pore pressure, 

initial excess pore pressure, and 

dimensionless time factor = CvtiH2, 

!Research Engineer Associate, Soils and Foundations Section, Division of Research, Kentucky Bureau 
of Highways, Lexington, KY. 

2Research Engineer Senior, Soils and Foundations Section, Division of Research, Kentucky Bureau 
of Highways, Lexington, KY. 

3Research Engineer Chief, Soils and Foundations Section, Division of Research, Kentucky Bureau 
of Highways, Lexington, KY. 

3 



where H length of drainage path in z direction, 

t = time from beginning of loading, and 

Cv coefficient of consolidation = k(l + e)/"-y'Yw· 

Methods of Analysis 

Various procedures have been developed to determine the coefficient of consolidation, Cv, from 

conventional laboratory consolidation tests. Taylor ( 6) and Casagrande (1) developed empirical, graphical 

procedures for obtaining Cv, while Naylor and Doran ( 4) developed an analytical method based on an 

iterative method of successive approximations. Figure I shows the essential elements of the well known 

Taylor square-root-of-time method. If a clear linear trend is present in the initial portion of the deflection

square-root-of-time data, Taylor's method usually provides a good estimation of d
0

, the dial reading 

at the beginning of primary consolidation. However, if substantial secondary compression has occurred 

when U equals 90 percent, the determined deflection reading corresponding to this point will yield an 

inaccurate estimate of the dial reading at the end of primary consolidation, d100, and thus the coefficient 

of consolidation, Cv. 

ln contrast, the Casagrande logarithm-of-time method as shown in Figure 2 usually provides a good 

estimation of a suitable value of d 100. The initial deflection reading, d0, determined from this method 

will closely compare to the d0 value obtained from the square-root-of-time method provided the initial 

portion of the deflection-logarithm of time curve conforms approximately to a parabola. 

The Naylor-Doran analytical method is based on the fact that, if Equation 2 is plotted with the 

natural logarithm of (I - U) versus the dimensionless time factor, Tv, then a straight line is obtained 

for the portion of the curve lying between 60 and 80 percent consolidation (0.2 < 1 - U < 0.4). A 

straight line ensues because the higher order terms appearing in Equation 2 may be neglected beyond 

60 percent consolidation and the effects of secondary consolidation are negligible before 80 percent 

consolidation. Figure 3 illustrates the theoretical relationship between the time factor, TV' and logarithm 

of (1 - U) for the Naylor-Doran analytical method. In this method, d0 and d100 are assumed and then 

corrected by an iterative process of successive approximations that narrows the differences between the 

assumed and calculated values of do and d 100 until they are sufficiently small. Although the Naylor-Doran 

analytical method may yield the most reliable values for do and d10of2),the method has largely remained 

a research tool because the iterative procedures required are too involved for manual application. 

Purpose and Scope of Paper 

Reduction in the amount of work involved in analyzing time-dependent consolidation data has been 

accomplished by computer application of the three methods discussed above. The first attempt at this 

type of solution was by Murray ( 3) in 1970. A more comprehensive and basically different approa~h 
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was developed by the senior author in July of 1977. The computer program which resulted from this 

effort determines the following basic parameters using one or all of the methods under discussion: the 

coefficient of consolidation; the compression ratios, i.e., ratios of primary, initial, and secondary 

compression to total compression; the coefficients of permeability for primary and total compression; 

and the coefficient of secondary compression, Ca. Analyses of data from each load increment are plotted 

with a summary of results. In addition, plot summaries superimposing all Cv values and superimposing 

the values for the coefficient of secondary compression and secondary compression ratio are provided. 

Development of the computer program was prompted by the need for a rapid computational and plotting 

algorithm which could be used in a data acquisition scheme. The program was written in Fortran IV 

and developed on the IBM 370/165 and the Calcomp 663 drum plotted. 

METHOD OF SOLUTION 

Application of the three methods involves using a linear least-squares analysis to fit a straight line 

through sample groups of data and statistical procedures to evaluate the representativeness of the 

sample·data groups. The linear least·squares analysis yields values for the slope, m, and intercept, b, 

of the straight-line equation 

y m X+ b. 4 

The least-squares defmition of the slope (regressiod' coefficient) is defmed (5} as 

m = 
N N N N N 

[((N ~XiYi)- (~)\ ~Yi)]/[(N ~J\2 (~XiJ. 
1=1 1=1 1=1 1=1 1=1 

5 

The least-squares defmition of the intercept is 

b = 
NN 2 NN N2N2 

I~E{i ,E~ >- ~E{'i ,E~Yi)l/!N,E~ · ~~{'i> 1 6 

where Xi and Yiare individual abscissae and ordinate values, respectively, for the data points and N 

is the number of data points. 

Statistical procedures used to evaluate the representativeness of the least-square fits on sample groups 

of data are based on the use of the unbiased standard error of the estimate, Se, which is simply the 

standard deviation of the residuals. The residuals are the deviations of the actual ordinate values, Yi, 

from the predicted ordinate values, Y p; i.e., Yi - Y p· The following equation is used to calculate the 

unbiased standard error of the estimate ( 5 }: 
N 2 N N 1/2 

Se· [(~Y. - b ~y. - m ~X.Y.)/(N - 2)] 7 
1=1 1 1=1 1 1=1 1 1 

Using only the term Se given by Equation 7 to select the most representative linear portion of 

the data will lead to problems similar to the one shown in Figure 4. There, a group of closely spaced 

data points has the smallest value of Se, but those points do not provide a suitable representation of 

the linear portion of the primary compression curve. The problem shown in Figure 4 occurs because 
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the defmition of Se does not distinguish among the representativeness of sample-data groups on the 

basis of the amount of curve length covered, but rather the defmition considers only the amount of 

vertical scatter about the least-squares linear fit of the data. Figures Sa and b illustrate this property 

of Se. In both figures, the scatter of the data about the fitted straight lines is essentially the same, 

as indicated by the calculated values of Se and the appearance of the data distribution. Therefore, using 

the defmition of Se, a line twice as long as another and having the same scatter band will have nearly 

the same value of Se but should be considered twice as significant. 

To rectify these deficiencies inherent to the standard error of the estimate, the concept of statistical 

weighting factors is introduced. These weighting factors modify the absolute amount of scatter, Se, so 

that those properties that distinguish among the significance of Se in different sample-data groups are 

considered. The statistical weighting factors are formulated to account for the length and position 

significance of the sample-data group being analyzed. The meaning of length significance was described 

above. Position significance uses the slope properties of a line representation of a sample-data group 

to indicate whether or not this group is located in the most significant portion of a given data curve. 

The procedure for using length and position weighting factors in conjunction with Se is described below 

for both the square-root-of-time and logarithm-of-time methods. 

Square Root of Time 

For the square-root-of-time method, the length weighting factor, WFv gives greater significance 

to data sparming a larger ordinate distance. This is done by defming WFL as 

WFL = VHAT/YBOT 8 

where VHA T is the total vertical distance spanned by the square-root-of-time data set and YBOT is 

the ordinate distance spanned by a sampled portion of that data, as shown in Figure 6. As YBOT 

approaches zero, the length weighting factor, WFv approaches infinity. When Se is multiplied by a large 

value of WFv the large value of the resultant product will indicate a defmite lack of significance in 

the sample-data group that spans ordinate distance YBOT. In contrast, as YBOT approaches the total 

vertical distance spanned by the square-root-of-time data set, WFL will approach unity. When Se is 

multiplied by a value of WFL approaching unity, the resultant product will be small and indicate greater 

significance. 

The position weighting factor, WF P' is use!i in a similar way as described above to establish the 

position significance of a value of Se. The factor WFP adjusts the values of Se by using the slope 

characteristics of each sample-data group to give added significance to those sample-data groups located 

at the earlier portions of the square-root-of-time data curve. The position weighting factor is formulated 

as 
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WFp= SHAT/SBOT 9 

where SHA T is ihe maximum slope possible in ihe square-root-of-time data set and SBOT is the 

least-squares slope of the sample-data group. These parameters are shown in Figure 6. As the value of 

WFp approaches one, the more significant is the value of Se associated with the sample-data group. 

The total adjustment of Se for the lengih and position significance of sample-data groups from 

the square-root-of-time curve is defined as 

Se (adjusted) = ABS(WFp) . ABS(WFL) . Se. 10 

Logarithm of Time 

Procedures for modifying Se in the logarithm-of-time method are very similar to the ones presented 

above. The formulation of the statistical weighting factors, WFL and WFp, for the logarithm-of-time 

sample-data groups is determined by wheiher the line representation of the primary or secondary 

compression data is being sought. 

Considering the primary portion of ihe logariihm-of-time compression curve, the length and position 

weighting factors are formulated in a manner almost identical eto the method used to formulate the 

weighting factors for the square-root-of-time sample-data groups. The length weighting factor, WFv is 

formulated to give more significance to the sample-data groups spanning a large ordinate distance, as 

given previously in Equation 8. Next, the postion weighting factor, WFP' is expressed in Equation 9 

where SHAT is now the slope of the line extending between the first and last data points of the 

logarithm-of-time curve and SBOT is the least-squares slope of the sample-data group under consideration. 

Figure 7 illustrates ihe physical meaning of these two variables. The total adjustment of the value of 

Se for sample-data groups in the primary compression curve is accomplished by substituting ihe new 

de fruitions of WFL and WF p into the general expression of Equation 10. There are two advantages 

of using the two weighting factors in this prescribed manner. First, any sample-data group composed 

of data points having the same or nearly ihe same ordinate values will be given less significance by 

the length weighting factor. These types of data points will eiiher not lie in the steep portion of ihe 

primary compression curve or be spurious data caused by reading errors in the deflection values and( or) 

frictional effects in ihe equipment. Second, the use of least-squares slope values from the sample-data 

groups as an indication of position significance gives added significance to sample-data groups having 

larger slopes, such as those near the region of inflection in -the logarithm-of-time curve. 

In ihe secondary portion of the logarithm-of-time curve, the length and position factors used to 

determine ihe significance of Se are formulated in a manner different than any of ihe procedures previously 

presented. In this case, the length weighting factor is based on abscissa (horizontal) rather. than ordinate 

(vertical) distance. The position weighting factor is used to give significance to those data groups nearest 
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the end of the logarithm-of-time curve. The expression for the length weighting factor is 

WFL = ABS(XHAT/XBOT), 11 

where XHAT and XBOT are defined as in Figure 8. Defining WFL according to the abscissa distances 

spanned by the sample-data group utilizes that flatter nature of the secondary compression curve to 

avoid giving undue length significance to sample-data groups encompassing portions of the primary 

compression curve. 

Next, to give position significance to the value of Se associated with the flattest portion of the 

secondary compression curve, the value of Se associated with a sample-data group having a small slope 

is given additional weight by defining the position weighting factor, WFp, as 

WFp= ABS(STOP/SHAT), 12 

where STOP and SHAT are also defmed in Figure 8. The smaller the slope of the sample-data group, 

STOP, the greater the position significance of this data group. The value of WFp is prevented from 

having a value Jess than 0.2 so that undue significance is not given to sample-data groups having 

least-squares slopes approaching zero. 

The value of Se is given length and position significance by using the new definitions of WFL 

and WFp in Equation 10. If the value of WFp is allowed to go to zero for sample-data groups having 

least squares slopes approaching zero, the adjusted value of Se would become zero and fail to reflect 

the length and scatter properties of the linear representation of the sample-data group. In addition, values 

of WFp Jess than 0.2 have been found to generally indicate the presence of spurious data. 

In the computer application of the Naylor-Doran method, the statistical weighting factors described 

above are not used. Rather, only the linear least-squares portion of this algorithm is used. 

PROCEDURES UNIQUE TO COMPUTER SOLUTION 

Three types of procedures are unique to the computer solution. First, there are those procedures 

which search for the linear portions of the square-root-of-time and logarithm-of-time compression curves 

by selecting sample-data groups which are statistically evaluated for their linear representativeness. Next, 

there are those iterative procedures associated with the Naylor-Doran analytical method. Finally, there 

are the procedures which extend the effectiveness of the Naylor-Doran analytical method as far as error 

convergence and the calculation of the coefficient of consolidation, Cv, are concerned. 

Square-Root-of-Time Search Procedures 

In the analysis of the square-root-of-time data, a set of search ordinate values is prepared to provide 

the framework within which the sample-data groups are to be selected. The procedure used to select 

the search ordinate values is illustrated in Figure 9. The search ordinate values are used to define the 
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ordinate interval from which data points are sampled. The ordinate intervals used for data sampling 

are varied in size and location by selecting different sequences of search ordinate values. In Figure 9, 

the sequencing of the search ordinate values created ordinate sampling intervals of sizes I and 2, at 

different initial ordinate offset locations of A, B, and C. The ordinate sampling interval of size 1 illustrated 

in Figure 9 samples data between every other search ordinate value as it is moved down the 

square-root-of-time curve in the vertical direction from initial offset locations A and B. Similarly, the 

ordinate sampling interval is increased to size 2 by using a sequence of search ordinate values spaced 

further apart than the sampling interval of size 1. Starting from initial offset locations, A, B, and C, 

the ordinate sampling interval of size 2 is moved down the square-root-of-time curve in the vertical 

direction. Other passes are made through the data as the ordinate sampling intervals are increased in 

size. Each pass starts from various initial offset locations to obtain sample-data groups that cover a wide 

range of length and position combinations. 

Logarithm-of-Time Search Procedures 

Sample-data groups are selected from the primary and secondary portions of the curve using sampling 

intervals that move in the positive horizontal direction. The computer algorithm distinguishes between 

the primary and secondary portions of the curve by using the previously described statistical weighting 

factors to produce the minimum adjusted values of Se in conjunction with the procedures discussed 

below to generate the horizontal search intervals .•. 

Primary Compression 

For the primary compression curve, abscissa sampling-intervals of varying widths 'B' are used to 

select the sample-data groups as shown in Figure 10. The abscissa sampling-interval 'B' is set to a large 

value during the first pass through the entire logarithm-of-time data set. Additional sample-data groups 

containing fewer data points are selected with successively smaller abscissa sampling-intervals of width 

'B' in the vicinity having the maximum slope. Of the sample-data groups within these smaller sampling 

intervals 'B', the one having the minimum adjusted value of Se is selected to represent the linear portion 

of primary compression. 

Secondary Compression 

Sample-data groups are generated from the secondary compression curve using a slightly different 

abscissa sampling procedure. These sample data groups are selected by progressively increasing the abscissa 

length of the sampling interval 'A;_' backward from an initial point near the end of the secondary 

compression curve until 'A;_' reaches the beginning of the logarithm-of-time curve. New initial points 

are progressively chosen at earlier points on the secondary compression data curve to allow .the newly 

selected sample-data groups to be unaffected by any nonrepresentative data points at the end of secondary 
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compression. For example, at LLL = I in Figure 11, the last data point will serve as the initial starting 

point for the backward selection of the abscissa sampling-intervals. At LLL = 2, the last data point 

is ignored and the next to last data point is used as the starting point for the backward selection of 

the abscissa sampling intervals. This same sort of reasoning is followed for values of LLL = 3, 4, and 

up to 30 percent of the total number of data points, where the last three, two, and one less than 

the number corresponding to 30 percent of the total number of data points are ignored during the 

selection of additional sample-data groups. The sample-data group having the minimum adjusted value 

of Se is sele~ted to provide the linear representation of the secondary compression data. 

Naylor-Doran Method 

The second set of procedures unique to the computer solution are the interative procedures 

characterizing the Naylor-Doran analytical method for determining the precise values of do and d100. 

ln the Naylor-Doran method, one minus the average degree of consolidation, (I · U), is defmed as 

(I . u) = (d . d100)/(d0 · d100), 13 

where d is the particular deflection reading and do and ct100 are. the assumed values for the deflection 

readings corresponding to zero percent and 100 percent consolidation, respectively. The term (I . U) 

is calculated for each deflection reading, d, and the errors in the assumed values for d100 and do are 

then evaluated from the log0 
(I · D)-versus-time relationship. 

The error in d100, err100, is calculated from 

where 

err!OO = 0.4 (AX/BX · !)/(! · 2AX/BX), 14 

AX = slope of log0
(! · D)-versus-time relationship at 60-percent average degree of 

consolidation and 

BX = slope of loge (I · D)-versus-time relationship at 80-percent average degree of 

consolidation. 

This error in d100 is used to correct the assumed value of d100 to obtain a new assumed value as 

d100(new) = (d100 • err100d0)/(I • err100). 15 

The values of (I · U) are recalculated and the error err 100 is reevaluated until err 100 becomes less 

than five percent. 

Once a reasonably accurate estimate of d100 has been obtained, the error in d0, err0, is evaluated 

using 

err0 = loge (8/rr2) · AC = -(0.21 + AC) 16 

where AC is the intercept of the least squares straight line portion of the loge (I · U)-versus-t relation. 

The error in d0, err 0, is then used to adjust the assumed value of do according to 

d0(new) = (do + err0 d100)/(l + err0). 17 
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When the err0 is less than five percent, the (I · U) values are reevaluated and the process of computing 

the values of d0, d100, and (I · UJ is repeated for greater precision. Other details of the interative 

procedure proposed by Naylor and Doran are presented elsewhere (4). 

Special Extensions of Naylor-Doran Analytical Method 

The values of d 100 and do as obtained by Equations 15 and 17 generally converge to minimum 

values which oscillate between plus and minus values of one to five percent. True convergence below 

five percent is often not obtained. The errors in d 100 and do can be further reduced to around 0.05 

percent using an interpolative procedure that calculates intermediate values for d100 and do from those 

values of deflection corresponding to the oscillating plus-and-minus values of error. 

Calculation of Coefficient of Consolidation, Cv 

After the Naylor-Doran analytical method has been used, Cv can be detemrined hy three different 

equations. Naylor and Doran (4) used only the following version of Equation 3 to determine Cv, or 

cv = 0.565H2/tso 1s 

where tso• the time of SO-percent consolidation, was obtained manually from the graph of loge (1 · 

D)-versus-time relationship at U equal O.SO, and the value of 0.565 is taken as the dimensionless time 

factor corresponding to SO-percent consolidation. 

A second way of detemrining Cv is based on Equation 2 and the fact that for degrees of consolidation, 

U, greater than 60 percent the first term solution (N = 0) is sufficiently accurate in the following form: 

19 

Taking the natural logarithm of both sides of Equation 19 yields the linear relationship 

loge (I · U) = loge (S/~r2) · ~r2Tv/4. 20 

Sustituting in Equation 3 for the time factor, Tv, Equation 20 becomes 

los_ (! · U) = loge (8/n2) . n2Cvt/4H2 

= -0.21 · 11
2Cvt/4H2, 

21 

where H is the length of the drainage path. The coefficient of consolidation, Cv, can be determined 

for (1 · U) equal to 0.2 once the time at SO-percent consolidation, t80, is known. The value for t80 

is detemrined using the equation of the linear portion of the log
0 

(1 · D)-versus-time relationship as 

follows: 

t80 = (loge (0.2) · AC)/UTSWP, 22 

where AC is the intercept and UTSLOP is the slope of the line. Substituting tso from Equation 22 

into Equation 21 and solving for Cv yields 

cv = [4H2(·0.21 • los_ 0.2)]/n2t80 23 

= o.s672 H2tt80. 
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Using a value of t 80 in Equation 23 that has been computed from the line representation of the entire 

linear portion of the log
0 

(I • U)·versus·time relation smooths out any variation discrete data points 

may have In the vicinity of U equal to 0.8. 

The coefficient of consolidation, Cv, obtained by either Equation 18 or 23 is susceptible to errors 

associated with t80 as a consequence of the effects of an error in the intercept value, AC, of Equation 

22. The computer program does not use the value of t80 obtained from Equation 22 to de.ermine 

the coefficient of consolidation, Cv. However, t80 can be used with Equation 23 to serve as a check 

on the computer program value of Cv which is determined according to the procedure described below. 

Another way of determining Cv is to take the derivative of Equation 21 with respect to tiroe and 

use the slope, UTSLOP, of the linear portion of the lo~ (1 · U)-versus-tiroe curve as follows: 

UTSLOP = d[loge (1 . U)]/dt = .,2Cv/(4H2). 24 

Solving for Cv yields 

Cv = (-4H2/112) d[loge (I · U)] /dt. 25 

Values of Cv obtained from Equations 23 and 25 are the same only if the intercept of the straight-line 

portion of the experimental loge (I · U)-versus-time curve is equal to -0.21. When the intercept is not 

equal to -0.21, the values of Cv obtained from Equation 23 will differ slightly from the values determined 

by Equation 25. The question naturally arises; which equation is the best to use? Equation 25 is a 

better procedure to determine Cv for two reasons. First, Equation 25 is independent of the initial 

deflection reading, d0, and consequently, the equation is independent of the intercept of the linear portion 

of the loge (I · U)-versus-tiroe curve. This results from the removal of the intercept and tiroe terms 

from Equation 21 upon differentiation. Therefore, Cv is dependent only on the slope of the linear portion 

of the loge (1 · U)-versus-tiroe relationship. Second, making Cv dependent only on the slope of the 

linear portion of the loge (I · U}versus-tiroe relationship conforms to the inherent meaning of the 

coefficient of consolidation because Cv describes only the rate of the consolidation process and does 

not yield any information on the path of this process as contained in the time and intercept components 

of Equation 21. For these reasons, the slope equation given by Equation 25 is used to calculate the 

value for Cv after the Naylor-Doran method is applied. 

In an attempt to avoid using discrete points from the loge (I · U)-versus-tiroe relationship to calculate 

Cv, since these points are subject to experiroental error, Murray (3) used the same relationship given 

in Equation 25. In addition, as shown above, using Equation 25 has many other clear advantages. 

NUMERICAL EXAMPLES 

To establish the capabilities and credibility of the computer program, data published and manually 

analyzed by Naylor and Doran (4) are compared to results obtained from the computer program. Naylor 
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and Doran analyzed the example data set using the square-root-of-time, logarithm-of-time, and their 

proposed methods. Results obtained by Naylor and Doran for do and d100 are compared in Table I 

with those obtained from the computer program for 90-, 50-, and SO-percent consolidation, respectively. 

The computer program plots the graphical results of each analysis as shown in Figures 12a, b, and c 

and provides a detailed summary of the data and computed numerical quantities as shown in Figure 

13. All three methods give nearly the same results for the coefficient of consolidation, Cv. 

An example of typical computer program results for a complete set of consolidation data is given 

in Tables 3 and 4. The data were obtained from a consolidation test on a specimen of remolded kaolinite. 

All three methods yield nearly the same values of do for most load increments. For the values of d100, 

there is generally greater consistency between the square-root-of-time and Naylor-Doran methods than 

with values obtained from the logarithm-of-time method, which gives slightly larger values of d100 during 

compression. 

CONCLUSIONS 

I. The computer program is extremely effective in the reduction, plotting, and analysis of 

time-dependent consolidation data and reduces considerably the time required to analyze such data. 

2. The standard error of estimate, Se, cannot be used alone to select suitable linear representations 

for various portions of the data curves. The newly developed procedures for adjusting the statistical 

scatter, that is, the standard error of estimate, have been found to be very effective in establishing the 

significance of this scatter as far as fmding suitable linear representations for various portions of the 

curves. 

3. The computer program is a suitable adjunct to any data acquisition scheme involving conventional, 

time-dependent consolidation data. 

4. The computer program can be readily adapted for use with cathode ray plotters such as the 

Tektronix Model 4012 or any other peripheral computer equipment compatible with the IBM 370/165 

computer. 

5. Before the computer program can successfully analyze a given set of conventional consolidation 

data using either the square-root-of-time, the logarithm-of-time, or the Naylor-Doran methods, the graphical 

representation of the laboratory data should conform approximately to the traditional curve shape 

associated with each particular method. Traditional curve shapes associated with each of the three methods 

are shown in Figures I, 2, and 3. 

6. All three methods to determine Cv give essentially the same values of d0. 

7. Values of d100 determined by the square-root-of-time and Naylor-Doran methods are usually 
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reasonably close and, consequently, give similar values for the coefficient of consolidation, Cv. The 

logarithrn·of-time method tends to give values of d100 that produce slightly 'lower values of Cv. 

8. The simplifying assumption made by Naylor and Doran that the values of ct100 and do are 

independent of each other is not completely valid. However, in practice it has proven to be a highly 

useful assumption that enables the development of closed-form iterative solutions for errors in d100 

and do and the correction of these errors. 

9. The precision which can be obtained in the Naylor-Doran method should not be considered 

to indicate the accuracy which is obtained. This accuracy has yet to be determined. 

AC 

AX 

b 

BX 

e 

erro 

err!OO 

NOTATION 

least squares intercept of straight-line portion of loge (I - U)-versus-time relationship 

coefficient of compressibility 

slope of loge (I - U)-versus-time relationship at 60-percent consolidation 

least-squares definition of intercept 

slope of loge (I · U)-versus-time relationship at 80-percent consolidation 

coefficient of consolidation 

deflection readings corresponding to zero-, 

50-, 90- and I 00-percent consolidation 

void ratio 

error in d0 

error in d100 
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H 

k 

LLL 

m 

N 

SBOT 

SHAT 

STOP 

t 

u 

u 

length of drainage path in z direction 

permeability in vertical direction 

starting point for backward generation of secondary compression search intervals 

least-squares definition of slope 

number of data points 

least-squares slope of sample-data group in the primary compression portion of 

logarithm-of-time data set 

standard error of estimate 

either maximum slope in square-root-of-time data set or slope of line between first and 

last points of logarithm-of-time data set 

least-squares slope of sample-data group in secondary compression curve for the 

logarithm-of-time data set 

elapsed time 

dimensionless time factor 

elapsed times to SO, 80-, and 90-percent consolidation 

excess pore pressure 

degree of consolidation 
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UTSLOP-

VHAT 

WFp 

X 

XBOT 

y 

YBOT 

z 

initial excess pore pressure 

least-squares slope of data between 60- and SO-percent consolidation of loge (I -

U)-versus-time relationship 

vertical distance spanned by data in square-root-of-time and logarithm-of-time data sets 
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TABLE l. INITIAL AND FINAL VALUES OF PRIMARY CONSOLIDATION 
OBTAINED BY MANUAL VERSUS COMPUTER APPLICATION 
OF TIIREE MEmODS (TEST DATA FROM NAYWR AND DORAN (4/). 

INITIAL VALVES, do FINAL VALUES, dlOO 

ANALYSIS TAYLOR CASAGRANDE NAYLOR-DORAN TAYLOR CASAGRANDE NAYWR-DORAN 

Naylor-Doran 1940 (1940) 1952 1151 1166 H61 

Computer 1928 (1928) 1957 1151 1168 1175 

TABLE 2. VALVES OF ~O· t 50, AND t80 FOR 

TIME 

~0 
tso 
tso 

90., 50., AND SO-PERCENT CONSOLIDATION, 

RESPECTIVELY, BY MANUAL VERSUS COMPUTER 

APPLICATION OF TIIREE MEmODS. 

TIME (IN MINUTES) 

NAYLOR-DORAN 
(MANUALLY) 

140A 

30.3 

88.5 

COMPUTER 

PROGRAM 

145.9 

31.9 

83.6 



TABLE 3. COMPUTER RESULTS FOR INITIAL AND FINAL VALUES 
OF PRIMARY CONSOUDATION BY THREE METHODS (CONSOUDATION 
TEST ON REMOWED KAOUNITE). 

LOAD 
INCREMENT INITIAL VALUES, do FINAL VALVES, d100 

Tsf 
(kPa) TAYLOR CASAGRANDE NAYLOR-DORAN TAYLOR CASAGRANDE NAYLOR-DORAN 

0.25 0.1794 0.1794 0.1795 0.1812 0.1823 0.1813 
(23.95) 

0.50 0.1841 0.1836 0.1840 0.1873 0.1877 0.1872 
(47.9) 

~ 1.00 0.1902 0.1902 0.1899 0.2001 0.2008 0.1995 _, 
(95.8) 

2.00 0.2038 0.2043 0.2039 0.2254 0.2283 0.2260 
(191.6) 

4.00 0.2297 0.2300 0.2289 0.2574 0.2569 0.2573 
(383.2) 

8.00 0.2647 0.2641 0.2642 0.2912 0.2925 0.2915 
(766.4) 

16.00 0.2981 0.2982 0.2975 0.3296 0.3329 0.3320 
(1532.8) 

1.00 0.3366 0.3378 0.3357 0.3143 0.3040 0.3133 
(95.8) 



TABLE 4. COMPUTER RESULTS FOR <;, BY mREE 

METHODS (CONSOLIDATION TEST ON REMOLDED 

KAOLINITE). 

LOAD TAYLOR CASAGRANDE NAYLOR-DORAN 

INCREMENT cv cv cv 
Tsf ft2/DAY ft2/DAY ft2/DAY 

(kPa) (m2/DAY) (m2/DAY) (m2/DAY) 

0.25 5.97 1.957 5.224 

(23.95) (0.5550) (0.1819) (0.4854) 

0.50 0.644 0.721 0.736 

(47.9) (0.0599) (0.0669) (0.0684) 

1.00 0.347 0.307 0.405 

(95.8) (0.0323) (0.0285} (0.0376) 

2.00 0.264 0.200 0.243 

(191.6) (0.0245) (0.0186) (0.0226) 

4.00 0.286 0.295 0.300 

(383.2) (0.0266) (0.0274) (0.0278) 

8.00 0.415 0.404 0.416 

(766.4) (0.0385) (0.0375) (0.0386) 

16.00 0.698 0.520 0.565 

(1532.8) (0.0648) (0.0484) (0.0525) 

1.00 0.995 0.458 0.820 

(95.8) (0.0925) (0.0425) (0.0762) 
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Figure l. Taylor Square-Root-of-Time Method. 
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NRYLDR-DORRN EXAMPLE 1948 

Cy = 0.45 SQ.M./Y I 0.013 SQ.FT ./Dl 

PERMEABILITY, K = 0.4142•10-7 CH./SEC. 

K-PAJHAAY = 0.4021•10-7 CM./SEC. 

SQUARE R~~T ~F ELAPSED TIME 

T90 = 145.904 HJN 

Do =-4.8976 MM. (-0.1926 lN.l 

D100 =-2.9225 MM. !-0.1151 lN.l 

(SQ.RT. 
32.00 

MIN. l 
40.00 10.00 8.00 16.00 24.00 
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Figure 12. Graphical Results Obtained from Computer Program Using Data Published 
by Naylor and Doran (4): (a) Square-Root-of-Time (b) 
Logarithm-of-Time, and (c) Naylor-Doran Methods. 
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NRYLOR-DORRN EXAMPLE 1948 
Cy = 0.48 SQ.M.IY I 0.014 SQ.fT./Ol T5o = 31.853 MIN 

PEAMEA81LITY, K " 0.4416•10-7 CM.!SEC. Do =-4.8976 MM. 1-0.1928 IN.J 

K-PAIMARY = 0.4189•10-7 CM./SEC. D100 =-2.9681 MM. 1-0.1168 JN.J 

C-SUB-ALPHA = 0.00825 
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NRYLDR-DDRRN EXRMPLE 1948 

Cv = 0.53 SQ.M./Y I 0.016 SQ.FT./01 Tao = 83.601 MIN 

PERMEABILITY. K = 0.4835•10·7 CM./SEC. Do •-4.9711 MM. 1-0.1957 IN.l 

K-PRJMRAY = 0.4723•10·7 CM./SEC. D100 •-2.9839 MM. 1-0.1175 IN.l 
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TEST NO .. NAYLOR-DORAN EXAMPLE 1948 

DOUBLE DRAINAGE 

THICKNESS PRESSURE INCREMENT 

HHTIAL 25.4000MM. l .. QOOOOIN .. I 0.0 KPA/SQ .. M., o.o T/SQ.FT.l 

FINAL 23.3654~M .. I 0.91990!Nel 27 .. 30KPA/SQ,.M,. Oe2850T /SQ .. FT., J 

TAYLOR'S CASAGRANDE'S NAYLOR - DORAN 

SQUARE ROOT TIME LOGARifH"" TIME ANALYTICAL METHOD 

T90 =145 .. 90 MIN. T50 31 .. 85 MINe TBO 83 .. 60 MIN .. 

090 = -0 .. 1228 INe 050 -0 .. 1548 IN .. 080 -0 .. 1331 IN .. 

CONSOLIDATION COEFFICIENT 0 .. 45 S Q,. .r•1/Y O .. Ol3SQ .. FT./DI 0 .. 48SQ .. M/Y I D .. 014SQ .. FT .. /DI Oe53SQ .. ~/Y I Q .. Ql6SQ .. FT .. /DI 

DIAL ROG .. AT lERO % PRIMARY -4 .. 8976MM.. (-0 .. 1928IN .. I -4 .. 8976MM.. (-0 .. 1928!Nol -4 .. 9711MM.. l-O .. l957IN .. J 

DIAL RDG .. AT 100 % PRIMARY -2 .. 9225MM .. I-O .. ll51IN .. I -2 .. 9661MM .. 1-0 .. ll681Nel -2 .. 9838MMe I-O .. ll75IN .. J 

EST .. PRIMARY CONSOLIDATION 1 .. 9751M~ .. I 0.077BIN.,J 1.9315MM., I 0 .. 0760INel 1 .. 987jMMo I Q .. 07821Ne) 

CO~PRESSIBILITY, M-~UB-V 2.9337 SQ .. M./MPA (0.,2811 SQ .. FT./TONI CALPHA = Oe00825 

PRIMARY COMP., RATIO 0 .. 9708 0.9494 0.9768 

SECONDARY COMPe RATIO o .. o210 0 .. 0484 a .. 0571 

INITIAL COMP.RATIO a .. 002 3 0 .. 0023 -0 .. 0339 

PERMEABILITY COEFFICIENT .. 41E-07 CM .. /SEC. e44E-07 CM./SEC., .. 4BE-07CM .. /SEC., 

K-PRIMARV CONSOLIDATION e40E-07 CM .. /SEC .. o42E-07 CM .. /SEC. ..47E-07CM .. /SEC .. 

ELAPSED TIME DEFLECTION ELAPSED TIME DEFLECTION 

0 .. 0998 MIN .. -0 .. 19300 IN .. ' -4 .. 9022 MM .. J 36 .. 00 MIN .. -0.15280 IN .. I -3 .. 8811 MM .. l 

0 .. 2500 MIN .. -0 .. 18300 IN .. I -4 .. 6482 MM .. I 49 .. 00 MIN., -0 .. 14540 IN. ' -3 .. 6932 MM.,) 

Q.,SQOO MIN .. -0 .. 18260 INo ' -4 .. 6380 M11o\., l 64' .. 00 MIN .. -0 .. 13920 IN .. ' -3 .. 5357 MM.,J 

1 .. 0000 MIN .. -0 .. 18200 IN .. ' -4 .. 622 8 MM .. J 91 .. 00 MIN .. -0 .. 13130 IN .. I -3 .. 3350 MMe I 

2 .. 2500 MINe -0 .. 18050 IN .. ' -4.,5847 MM .. J 100 .. 00 fVIIN .. -0 .. 1.2930 IN., ' -3 .. 2842 MM .. I 

4 .. 0000 MIN .. -0 .. 17880 IN .. ' -4 .. 5415 MM .. I 121 .. 00 MIN .. -0 .. 12550 IN .. ' -3 .. 1877 MM.,J 

6e2500 MIN .. -0 .. 17610 IN .. I -4 .. 4729 MM.,J 144.,00 MIN. -0 .. 12280 IN e ' -3 .. 1191 MMel 

9 .. 0000 MIN .. -0 .. 17290 !No I -4 .. 3917 MM.,J zso .. oo MIN .. -0-.. 11690 IN., ' -2 .. 9693 MM.,! 

12 .. 2500 MIN .. -0 .. 16950 IN .. I -4 .. 3053 ~M .. I 300 .. 00 MIN .. -0 .. 11630 IN., ' -2,.9540 MM., I 

16 .. 0000 MINe -0.,16610 IN .. ' -4 .. 2189 MMel 370 .. 00 MINe -0 .. 11550 IN., ' -2 .. 9337 MM .. I 

20 .. 2500 MINo -0..16300 IN .. ' -4 .. 1402 MM.,J 790., 00 MIN .. -0 .. 11400 IN. I -2 .. 8956 MM.,! 

25.,0000 MIN., -0" 15940 n. ... ' -4 .. 0488 MMel 1038 .. 00 MIN .. -0 .. 11380 IN. ' -2 .. 8905 MM.,! 

30 .. 2500 ~IN .. -0.,15550 IN .. ' -3.,<J497 ~M .. I 1190 .. 00 MIN., -0 .. 11290 IN .. I -2.,8677 MM .. I 

Figure 13. Computer Printout. 



KEY WORDS: Computers, Consolidation, Laboratory Test, Data Analysis, Time-Rate of Strain, Coefficient 

of Consolidation, Statistical Analysis, Graphical Constructions, Iterative Procedures. 

ABSTRACT: A computerized, statistical algorithm has been developed for analyzing the time-dependent 

properties of conventional consolidation test data. The Taylor square-root-of-time and Casagrande 

logarithm-of-time methods are analytically represented along with a modified version of the Naylor-Doran 

method. The coefficient of consolidation, Cv, and values of deflection corresponding to the beginning 

and end of primary consolidation are determined by each of the three methods. The algorithm is written 

in Fortran N for use with the IBM 370/165 computer program and is extremely effective in the reduction 

of time-dependent consolidation data. 
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