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TheMw 4.2 Perry County, Kentucky, Earthquake
of 10 November 2012: Evidence of the
Eastern Tennessee Seismic Zone in
Southeastern Kentucky
by N. Seth Carpenter, Edward W. Woolery, and Zhenming Wang

Online Material:Tables of P- and S-wave arrivals; earthquake
catalog.

ABSTRACT
The 10 November 2012 Mw 4.2 Perry County earthquake
may represent a continuation of the seismically active
Eastern Tennessee seismic zone (ETSZ) farther north than
previously recognized into southeastern Kentucky. The main-
shock and aftershock data from regional seismic networks
and EarthScope’s Transportable Array stations allowed high-
quality determinations of the source parameters. The focal
mechanism, depth, and proximity of the mainshock to the
NewYork–Alabama magnetic lineament, a subsurface, crustal-
scale structure that spatially correlates with central ETSZ seis-
micity, suggest that this earthquake may share the same type of
causal geologic structures as the more-active ETSZ region to the
south.

INTRODUCTION

At 12:08 p.m. Eastern Standard Time (17:08 UTC) on 10
November 2012, near the county line between Letcher and
Perry Counties in eastern Kentucky, a moment magnitude
(Mw) 4.2 (U.S. Geological Survey, 2013) earthquake occurred.
Although this earthquake was classified as light, shaking was
felt more than 1000 km away, from the north of Columbus,
Ohio, to the south of Atlanta, Georgia, and from west of Hen-
derson, Kentucky, to east of Raleigh, North Carolina (Fig. 1;
U.S. Geological Survey, 2013). Moderate-to-strong shaking
(modified Mercalli intensity V–VI) was reported within
40 km of the epicenter in northern Leslie County, Kentucky.

Minor cracks appeared in a basement wall in the Letcher
County Courthouse, Whitesburg, Kentucky, 21 km from
the epicenter. In Jenkins, Kentucky, 38 km from the epicenter,
the rate of water flow leaking from the base of a dam increased
tenfold after the event (Roach, 2012).

The earthquake occurred beneath the Cumberland Pla-
teau of eastern Kentucky, which had not experienced an earth-
quake of similar size since 1990. The closest instrumentally
recorded seismicity was about 17 km from the epicenter
(Fig. 2). Though sparse in the vicinity of the epicenter, seismic-
ity is continuous, with increasing spatial density from the epi-
central region into the central eastern Tennessee seismic zone
(ETSZ) to the south (Fig. 2). Seismic monitoring capabilities
have been improving in the source region (e.g., Carpenter et al.,
2014), and the timely presence of the Transportable Array
component of EarthScope’s USArray in eastern Kentucky sig-
nificantly improved the accuracy and completeness of the
analysis of this earthquake and it aftershocks.

In this study, we consider the ETSZ to occupy a slightly
larger zone than in previous studies (discussed below; Fig. 2):
450 km long by 120 km wide, trending largely with and strad-
dling both the New York–Alabama (NY–AL) (King and
Zietz, 1978) and the northwestern limit of Iapetan faulting
(Wheeler, 1995). This zone includes the region described in
Johnston et al. (1985), which has traditionally been used to
delineate the ETSZ (e.g., Powell et al., 1994; Wheeler and
Frankel, 2000). Our expanded zone contains the bulk of seis-
micity in the northeast-trending cluster from northeastern Ala-
bama into southeastern Kentucky and all light-class (herein
defined as magnitude 3.9 and greater) cataloged earthquakes
within and nearby this cluster, including, as we will discuss,
the 10 November 2012 Perry County earthquake.

doi: 10.1785/0220130221 Seismological Research Letters Volume 85, Number 4 July/August 2014 931



SEISMOTECTONIC CONTEXT

The ETSZ is second only to the New Madrid seismic zone in
the central and eastern United States in seismic energy release
(Powell et al., 1994; Dunn and Chapman, 2006). It extends
into the southeastern corner of Kentucky, which lies within
the Cumberland Plateau, an elongated northeast–southwest-
oriented province that is a transition area between the Interior
Plateaus to the west and the folded Appalachian mountains to
the east (McFarlan, 1958; Fig. 2). The Pennsylvanian and older
Paleozoic clastic and carbonate rocks in the region show sig-
nificant evidence of tectonism, primarily related to the appur-
tenant structures that define the Rome trough and Pine
Mountain thrust; however, Bollinger et al. (1991) and Dunn
and Chapman (2006) indicated most of the earthquake focal
depths in the ETSZ lie below the décollment and are not
thought to be associated with the surface geology. Johnston
et al. (1985) found that between 80% and 90% of the seismic-
ity occurred within a 300 km × 50 km zone of activity that lies
between the New York–Alabama (NY–AL) and Clingman
(CL) aeromagnetic lineaments that were described by King
and Zietz (1978) and Nelson and Zietz (1983), respectively
(Fig. 2), and bounded by north latitudes of 36.5° and 34.3°.

The NY–AL lineament extends approximately 1700 km
between northern Alabama and Albany, New York. The CL
lineament extends approximately 1000 km between north-
eastern Georgia and Maryland. Both lineaments produce long-
wavelength aeromagnetic signatures that bound an area of low
magnetic intensity and varying gradient. Powell et al. (1994)
suggested that the seismicity along this anomaly represents an
evolving strike-slip fault system; however, neither Johnston
et al. (1985) nor Powell et al. (1994) suggested that the
NY–AL or CL lineaments are seismogenic, because focal sol-
utions indicated subvertical strike-slip faults with either right-
lateral motion along north–south-striking planes or left-lateral
motion along east–west-striking planes. Both geometries are
consistent with the northeast–southwest-oriented maximum
horizontal compressive stress in eastern Tennessee but were
considered inconsistent with the northeast-oriented aeromag-
netic lineaments. Wheeler (1995) observed that seismicity in
the eastern United States decreases from the east to the west
(i.e., cratonward; Fig. 2) across the northwestern limit of Iape-
tan normal faulting. Wheeler (1995) suggests that reactivation
of these normal faults, currently under horizontal compression,
is responsible for ETSZ seismicity.

Chapman et al. (1997) relocated 474 earthquakes that oc-
curred in the ETSZ between 1977 and 1997 and determined
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▴ Figure 1. USGS Community Internet Intensity Map (Courtesy of
the USGS; U.S. Geological Survey, 2013) summarizing the experi-
ences of shaking, averaged in each responding zip code, resulting
from the 10 November 2012 Mw Perry County, Kentucky, earth-
quake. This map illustrates the broad geographical area over
which this earthquake was felt.
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▴ Figure 2. Seismicity in the eastern Tennessee seismic zone
(ETSZ), location of the 2012Mw 4.2 Perry County earthquake (black
star), mapped surface faults (thin gray lines), and major aeromag-
netic lineaments: the New York–Alabama (NY–AL) and the Cling-
man (CL), and the northwestern extent of Iapetan faulting (Ia;
Wheeler, 1995). Seismicity is an approximately 30-year subset
of the Advanced National Seismic System (ANSS) composite cata-
log, prior to the 2012 earthquake, with mining-related events re-
moved (Street et al., 2002).
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the seismic zone consists of a series of northeast-trending, en
echelon basement faults that are intersected in at least three
locations by east-trending basement faults. They concluded
the seismicity results from strike-slip motion along conjugate
fault systems with the dominant faults striking N95°W and
N50°E. Their relocated focal depths ranged between 1 and
27 km (average � 16 km); however, based on the steeply dip-
ping fault planes, they noted the depth calculations have sig-
nificant uncertainty. More recently, Dunn and Chapman
(2006) relocated approximately 1000 earthquakes using a dou-
ble-difference algorithm and found the improved hypocenters
in the central, most active part of the ETSZ evidenced a west-
striking, north-dipping plane, whereas clusters of events near
the Tennessee–North Carolina border evidenced a steeply dip-
ping, northwest-striking fault.

The largest instrumentally recorded earthquake in the
ETSZ is the 29 April 2003Mw 4.6 event near Fort Payne, Ala-
bama (Dunn and Chapman, 2006). The catalog published by
Stover and Coffman (1993) also includes the 30 November
1973 Mw 4.0 (mb 4.7) earthquake near Maryville, Tennessee,
as well as several other historical events occurring between the
mid-nineteenth and twentieth centuries, estimated in the low-
to-mid magnitude 4 based on felt area reports. Nuttli (1981)
recommended estimating the maximum magnitude of earth-
quake source zones in the central and eastern United States
based on the magnitude of the earthquake with a 1000-year
recurrence interval. The mean values for the Bollinger et al.
(1989) recurrence relationship suggests a maximum magnitude
of 6.4 (mb) for the ETSZ. This estimate is consistent with the
paleoseismic observations by Hatcher et al. (2012) of late Pleis-

tocene activity near Dandridge, Tennessee, which they suggest
likely resulted from two or moreMw 6.5 or greater earthquakes.

EVENT ANALYSIS

Methods
We used waveform data from several monitoring networks
around the epicenter to perform mainshock and aftershock
analyses. In addition to the nearby Center for Earthquake Re-
search and Information’s (CERI) Southern Appalachian Seis-
mic Network, U.S. National Seismic Network, and Kentucky
Seismic and Strong Motion Network stations, the leading
edge of the Transportable Array component of EarthScope’s
USArray (www.earthscope.org/science/observatories//usarray;
last accessed March 2013) coincided with the longitude of the
mainshock, yielding high-quality observations and allowing ex-
cellent geometrical coverage of the source region (Fig. 3). We
found aftershocks using a combination of network short-term
average to long-term average (STA/LTA) triggering and wave-
form cross correlation.

We determined single-event locations with the program
Hypocenter (Lienert and Havskov, 1995), as implemented in
the SEISAN software package (Havskov and Ottemoller, 1999),
which employs an adaptively damped, least-squares location al-
gorithm. We used the 1D layered crustal velocity model devel-
oped for the ETSZ by Vlahovic et al. (1998) and modified by
Chapman et al. (1997) to include a mantle half-space for travel-
time calculations (table 1 in Chapman et al., 1997). For all lo-
cation determinations, we used a distance weighting scheme that
linearly downweights the influence of arrivals from 50 to

▴ Figure 3. (Left) Seismic stations used in the analysis of the mainshock and aftershocks and (right) a closer view of the mainshock and
aftershock epicenters, the closest seismic station, and mapped faults (barbs are on the hanging wall). Stations are shaded by operating
agency: Center for Earthquake Research and Information (ET; white), U.S. Geological Survey (US; black), University of Kentucky (KY; dark
gray) stations, and the Transportable Array component of EarthScope’s USArray (TA; light gray).
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200 km offsets, with arrivals beyond 200 km receiving zero
weight; at 200 km, travel-time errors due to a flat-earth travel-
time calculator (e.g., Snoke and Lahr, 2001) exceed 0.1 s. We
obtained precise relative hypocenters for aftershocks using a
master-event method (Johnson and Hadley, 1976). We esti-
mated duration magnitudes for all located events using the re-
lationship applied to the southeastern United States in the
Southeastern United States Seismic Network Bulletin (Chap-
man et al., 2002) for all duration measurements. Finally, we
determined the focal mechanism for the mainshock using
first-motion polarities and phase amplitude ratios with the pro-
gram FOCMEC (Snoke, 2003).

Mainshock
Using 32 P- and S-phase arrivals recorded at 25 stations at
offsets from 7 to 179 km from the epicenter (Ⓔ Table S1 avail-
able in the electronic supplement to this article), we determined
the mainshock hypocenter to be at 37:143� 0:006°N,
83:054� 0:014°W, and 17:3� 2:4 km below sea level (Fig. 3;
Table 1). This location is in agreement with the solution pub-
lished in the Advanced National Seismic System (ANSS) catalog,
which is 1.0 km to the south and 0.4 km shallower. Likewise, the
duration magnitude we determined, MD 4:3� 0:05, is consis-
tent with theMw determined by the USGS for this earthquake,
which corroborates the duration magnitude scale we employed.
We used 33 P-phase polarities and P- and S-phase amplitude
ratios (SV=P, SH=P, and SV=SH ) at four stations to calculate
a focal mechanism (Fig. 4;Ⓔ Table S2). Because of the excellent
station coverage and the number of polarity observations and

amplitude ratios used, the mechanism is very well constrained and
shows right-lateral motion on a southwest-striking, steeply dip-
ping plane or left-lateral motion on a southeast-striking, steeply
dipping plane. The extremely well-constrained depth proves that
this event is of tectonic rather than anthropogenic origin.

Aftershocks
Using continuous waveform data from stations surrounding
the mainshock, we implemented two types of event detection
to identify aftershocks. We employed EARTHWORMS’s carl-
statrig/carlsubtrig network triggering to search for STA/LTA
ratio exceedances from multiple stations within a configured
time window. We detected five aftershocks with this triggering
method, including all but one event with calculated source
parameters (discussed below). We also used a 1–8 Hz band-
pass-filtered waveform recorded at the closest station, T52A
(7.3 km from the epicenter) from a high-quality aftershock
(Fig. 5) to search for events in the continuous data using wave-
form cross correlation. We used MATLAB to cross correlate
the normalized, filtered full waveform from each orthogonal
component at this station across 46 days of continuous data:
one day prior to the mainshock to search for evidence of fore-
shocks and the following 45 days. From inspection, we deter-
mined that an aftershock is identifiable by an absolute value of
the correlation coefficient of at least 0.15. Using this technique,
we discovered 10 additional aftershocks during four days
following the mainshock, only one of which (MD − 0:2 after-
shock on 10 November 2012 17:16:36.5; Table 1) was large
enough to be recorded by stations farther from the epicenter

Table 1
Perry County Earthquake Mainshock and Aftershock Source Parameters

Date
(yyyy/mm/dd)

Time
(hh:mm:ss.s)

Latitude
(° N)

Longitude
(° W)

Depth
(km) MD N sta Nphs

Rms
(s)

GAP
(°)

Dmin

(km)
ERH
(km)

ERZ
(km)

2012/11/10 17:08:14.1 37.143 83.054 17.3 4.3 25 32 0.18 112 7.3 1.6 2.4
2012/11/10 17:16:36.5 37.155 83.059 15.2 −0.2 6 10 0.13 130 8.4 5.0 3.9
2012/11/10 17:23:33
2012/11/10 17:23:51
2012/11/10 17:39:55.3 37.145 83.066 16.0 1.4 5 8 0.10 121 8.3 7.0 7.4
2012/11/10 17:51:24.3 37.148 83.055 16.4 1.5 18 24 0.11 128 7.7 2.2 1.9
2012/11/10 18:37:07.7 37.147 83.047 16.8 2.8 21 23 0.13 128 7.0 1.9 1.6
2012/11/10 19:54:25
2012/11/10 22:06:52.1 37.143 83.064 16.5 2.6 20 24 0.12 121 8.0 1.7 1.8
2012/11/11 03:13:11.2 37.132 83.074 15.2 1.0 6 9 0.09 109 8.4 4.5 4.6
2012/11/11 06:44:11
2012/11/11 08:41:01
2012/11/11 09:13:12
2012/11/11 10:05:26.7 37.156 83.058 15.0 −0.4 5 7 0.16 131 8.4 9.1 8.0
2012/11/11 16:19:29
2012/11/14 20:19:33

Depth, depth below sea level; MD, duration (coda) magnitude; Nsta, number of stations with arrival-time data; Nphs, number of
arrival-time picks used; rms, weighted root mean square travel-time residual; GAP, largest angular offset between stations used;
Dmin, distance from epicenter to closest station; ERH and ERZ, horizontal and vertical formal errors, respectively.
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than T52A. We saw no clearly identifiable aftershocks after
four days. We estimated the origin times for the events without
calculated source parameters by assuming their hypocenters
coincide with the mainshock and removing the P-phase travel
time from the P-phase arrival picks, or, if the P phase was not
picked, we used the S-phase arrival and travel times.

The quality of the lower-magnitude (MD <1:5) after-
shock hypocenters was limited by the lack of near-source ob-
servations. Because of the large location uncertainties (Table 1),
and the dearth of events that could be located, there are no
clear trends of spatial migration of these events. For the same
reasons, we did not attempt to use the aftershocks to infer
which nodal plane corresponds with the fault plane of the
mainshock.

DISCUSSION

The Perry County earthquake occurred in a region of reduced
seismicity, compared with the heart of the ETSZ (Fig. 2; fig. 1b
in Hatcher et al., 2012). However, because it exhibits several
characteristics of nearby ETSZ seismicity, the seismogenic
structures responsible for the more frequent seismicity to the
south may extend farther north into eastern Kentucky than
previously recognized. The strikes of the nodal planes we de-

termined (azimuths 116° and 216°; Fig. 4) are consistent with
other ETSZ events for which focal mechanisms have been de-
termined (Fig 6; Chapman et al., 1997; Hermann et al., 2011).
Chapman et al. (1997) found that ETSZ nodal planes fall
within two dominant populations: (1) north–south-striking
and east–west-striking planes most frequently occur and (2) an-
other less-frequent mode of northeast–southwest and north-
west–southeast-striking planes is apparent, which includes
the Perry County earthquake (Fig. 6 inset). This suggests that
the population of basement faults with northeast–southwest
and northwest–southeast-striking planes that Chapman et al.
(1997) observed continue into southeastern Kentucky. Regard-
less of depth (including shallow mechanisms that reside in the
overthrust Paleozoic rocks and deeper mechanisms within base-
ment rocks), P axes are consistent with regional stress on both
sides of the NY–AL and of the Iapetan-faulting boundary
(Wheeler, 1995; Fig. 6).

To make further comparisons with the ETSZ, we use a
subset of seismicity from the ANSS catalog for 30 years prior
to the Perry County earthquake, after removing events related
to mining activity (Street et al., 2002; Figs. 2 and 7). To
determine if the density and seismicity-distribution character-
istics we observe depend on monitoring network improve-
ments or configurations, we further subset this catalog based on
time and magnitude. The regional monitoring network con-
figurations remained relatively unchanged during the 30 years
prior to this earthquake, which anticipates little change in
detection threshold or seismicity distribution. This was con-
firmed by finding that the most recent ten years of seismicity
maintain the spatial characteristics in the longer, 30-year cata-
log. In addition, we find that larger-magnitude events (i.e.,

 116  71 -29

216   63 -158 T

P

N

 2012 1110 1708 14.2 L  37.143 -83.054 17.3  KY  39 0.2 4.3CKY

▴ Figure 4. Focal mechanism (thick lines) of the mainshock de-
termined using first-motion polarities and P- and S-phase ampli-
tude ratios. Compressional quadrants are shaded gray, with
corresponding first-motion polarity-up observations as circles. Tri-
angles symbolize polarity-down observations. Solid circles and tri-
angles indicate observations of polarities and P- and S-phase
amplitude ratios. Each nodal plane is labeled with its strike,
dip, and rake. Thin, black lines show other solutions that fit the
polarity and amplitude-ratio data.
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▴ Figure 5. (a) Vertical-, (b) north-, and (c) east-component
waveforms recorded at the closest station, T52A (7.3 km offset),
for an aftershock on 10 November at 22:06 (UTC). These wave-
forms are filtered with a band-pass filter from 1 to 8 Hz and used
to search for small aftershocks via cross-correlation calculations
on continuous data recorded at this site.
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Mw 2.5 and greater) have the same spatial and temporal char-
acter as the entire catalog. These two observations give us con-
fidence that the characteristics we observe are persistent, and
not a function of spatial or temporal variability in monitoring
network detection threshold.

From this catalog subset, we find that 66% of the seismic-
ity lies to the southeast of the NY–AL, in the Ocoee block of
basement crust (Johnston et al., 1985; Powell et al., 1994),
which is a reduction from Johnston et al. (1985) estimate of
80%–90%, and that 89% occurs southeast of the Iapetan fault-
ing boundary (Wheeler, 1995). By plotting the ETSZ seismicity
in cross section and map view (Fig. 7), we observe subzones
that can be characterized by variations in spatial density,
mean focal depth, and epicentral position with respect to the
NY–AL. We determine that the subzones’ mean depths are
statistically distinct at the 95% confidence level, and we sum-
marize the depth statistics for each subzone in Table 2. Earth-
quakes occur predominantly southeast of the NY–AL in the
three southwestern subzones (labeled 1 through 3 in Fig. 7).
North of approximately 36.2° N, in subzone 4, however, the
bulk of the seismicity occurs northwest of the NY–AL, pre-
sumably in Grenville basement, including the Perry County
earthquake. A simple linear regression of focal depth versus dis-
tance along this profile, for events of magnitude 3.5 and greater

(excluding the Perry County earthquake, but with a sufficient
number of events to determine a reliable regression), the depths
increase by approximately 33 m=km. Although the Perry
County earthquake is deeper than the mean depths of this seis-
micity subset and in subzone 4 (Table 2), its focal depth is
consistent with the depth predicted by our depth–distance re-
gression, and it falls within the range of depths in the ETSZ
overall and in this subzone (Fig. 7).

In addition, we observe the spatial density and temporal
frequency of ETSZ seismicity decrease north of 36.2° N (Fig. 7;
compare to fig. 1b in Hatcher et al., 2012). North of this lat-
itude, earthquakes most commonly occur northwest of the
NY–AL and larger earthquakes are not necessarily proximal
to dense clusters of smaller ones. This same characteristic con-
tinues as far north as the Perry County earthquake. We also
observe that, although the NY–AL forms the northwestern
boundary for most ETSZ earthquakes, larger earthquakes do
not show a clear affinity for either terrane that it separates
(Grenville basement to the northwest and the Ocoee block
to the southeast [Johnston et al., 1985], distinguished by differ-
ing magnetic anomaly characteristics), as approximately half of
the larger events occur on either side (Fig. 8). Notably, all but
one light-class (typically defined as magnitude 4–4.9, but we
include Mw 3.9 to account for uncertainties in magnitude es-
timates) earthquake occurred southeast of the cratonward Ia-
petan-faulting boundary, supporting the suggestion byWheeler
(1995) that reactivated Iapetan normal faults are responsible
for the largest historical earthquakes in the ETSZ.

Finally, we note the Perry County earthquake is the largest
earthquake recorded in more than 50 years in the Appalachians
of Kentucky. Although earthquakes occur less frequently in
southeastern Kentucky than to the south in the central
ETSZ, this earthquake is the fourth known event of magnitude
3.9 or greater to occur in this part of Kentucky (Fig. 8; Ⓔ
Table S3). Including two in northern Alabama, one in
northwestern Georgia, eight in Tennessee, and three others in
southeastern Kentucky, the Perry County earthquake is the fif-
teenth light-class historical earthquake in the ETSZ (from
33.8° N to 37.5° N and from 86.8° Wto 82.4° W). This implies
that more than one-quarter of these light-class earthquakes
have occurred in southeastern Kentucky, and this is reason
enough to consider southeastern Kentucky to be in the ETSZ.

SUMMARY

The 2012 Perry County earthquake, which we suggest indi-
cates a new northeastern extent of the ETSZ, is the largest
earthquake recorded in more than 50 years in the Appalachians
of Kentucky. We found the nodal planes of this earthquake’s
focal mechanism are consistent with one of two dominant
populations of ETSZ nodal planes (northeast–southwest and
southeast–northwest), as determined by Chapman et al.
(1997). In addition, the depth of this earthquake falls within
the range observed for the ETSZ and is consistent with the
depth predicted by regressing along-axis focal depths versus dis-
tance through the ETSZ for larger earthquakes (magnitude 3.5
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and greater). Finally, because the seismicity characteristics (less
frequent and sparser) in the vicinity of the epicenter match
those seen in the ETSZ north of 36.2° N (subzone 4 in Fig. 7),
we suggest that this earthquake is evidence that the ETSZ con-
tinues into southeastern Kentucky. If the Perry County earth-
quake is considered to indicate a northeastern extension of the
ETSZ, then more than one-quarter of light-class (magnitude

3.9 and greater) ETSZ earthquakes have occurred in south-
eastern Kentucky.
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