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Abstract: Paramyxoviruses are a family of negative sense RNA viruses whose members 

cause serious diseases in humans, such as measles virus, mumps virus and respiratory 

syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. 

Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein 

complex and the surface glycoproteins at the plasma membrane of infected cells and 

subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the 

attachment protein and the fusion protein, promote attachment of the virus to host cells  

and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into 

infectious progeny particles requires coordinated interplay between the three viral structural 

components, driven primarily by the matrix protein. In this review, we discuss recent 

progress in understanding the contributions of the matrix protein and glycoproteins in 

driving paramyxovirus assembly and budding while focusing on the viral protein interactions 

underlying this process and the intracellular trafficking pathways for targeting viral 

components to assembly sites. Differences in the mechanisms of particle production among 

the different family members will be highlighted throughout. 

Keywords: paramyxovirus; matrix protein; glycoproteins; virus assembly; viral trafficking; 

membrane rafts; virus budding 
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1. Introduction 

The Paramyxoviridae, a family of enveloped viruses with negative strand, non-segmented RNA 

genomes, cause significant disease in humans and animals. Important human pathogens within this family 

include measles virus (MeV), mumps virus (MuV) and human respiratory syncytial virus (HRSV), 

which is the single largest cause of respiratory tract infections in the pediatric population [1]. In addition, 

several paramyxoviruses have recently been identified, including the respiratory pathogen human 

metapneumovirus (HMPV) and the deadly zoonotic Hendra (HeV) and Nipah (NiV) viruses [2–4]. 

Paramyxoviruses also lead to high burdens on agriculture and the global economy by infecting avian 

species (Newcastle disease virus (NDV) and avian metapneumovirus (AMPV) [5,6], cattle (rinderpest 

virus), as well as pigs (NiV) [3] and horses (HeV) [4]. Paramyxovirus particles are pleomorphic in 

shape. For many family members, particles are primarily spherical, and range in size from 150 nm  

to 300 nm in diameter; however, a filamentous form predominates for some viruses such as HRSV and 

the parainfluenza viruses, and these particles can reach up to 10 μm in length [7–12]. The process by 

which paramyxovirus particles are formed and released at the cell membrane involves a series of 

highly coordinated and organized events that eventually result in the production of fully infectious 

virus particles with the basic structure depicted in Figure 1A. The viral membrane of paramyxoviruses 

contains two major glycoproteins required for virus entry into target cells: the attachment protein 

(termed HN for hemagglutinin-neuraminidase, H for hemagglutinin, or G for glycoprotein, depending 

on the virus) and the fusion (F) protein. These glycoproteins are densely packed on the viral envelope 

and form spike layers as seen under cryo-electron microscopy [13,14]. A subset of paramyxoviruses 

have an additional surface glycoprotein, the small hydrophobic (SH) protein whose function in the 

viral life cycle is less clear since it is dispensable for virus replication in vitro [15–19]. Inside the  

viral envelope, the RNA genome is encapsidated by the nucleocapsid proteins (N or NP), forming  

the flexible, loosely coiled nucleocapsid structure, termed ribonucleoprotein complex (RNP), to which  

the viral RNA-dependent RNA polymerase complexes, made of large polymerase (L) protein and 

phosphoprotein (P), are bound. The RNA genomes of paramyxoviruses are 15–19 kb in length and 

contain six to ten genes. As is the case for most negative-strand RNA viruses, association of the 

paramyxovirus RNP with the viral membrane is mediated by the matrix (M) protein. Matrix proteins 

are considered the key organizers of virus particle assembly since they act as bridges between the envelope 

glycoproteins and the ribonucleoprotein complexes, can self-assemble into higher order structures, and 

bind cellular membranes as well as several cellular factors [20–22]. 

Figure 1B depicts the general life cycle of paramyxoviruses, which culminates in newly synthesized 

virus particles being assembled and released into the extracellular matrix. Infection is initiated upon 

binding of the attachment protein to a cell surface receptor, followed by fusion of the viral membrane 

to a host cell membrane, a step promoted by the F protein. The viral genome is then released into the 

cytoplasm where all the steps of the replication cycle occur. Primary transcription of the negative sense 

RNA genome by the viral RNA-dependent RNA polymerase follows the “stop-start” model resulting 

in a gradient of mRNA abundance such that genes at the 3'end are transcribed in higher amounts than 

genes at the 5'end [1]. Replication of the full-length genome occurs efficiently only after accumulation 

of viral proteins and involves production of positive sense anti-genomes which act as templates for  

the synthesis of new negative-sense genomic RNA. Progeny genomes can then be used for further 
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replication, for secondary transcription, or for incorporation into virus particles. The newly synthesized 

RNPs are then transported to selected sites at the plasma membrane where interaction with the viral 

integral membrane glycoproteins occurs, followed by membrane scission and release of virus particles. 

Incorporation of RNPs and envelope glycoproteins into infectious virus particles is a highly complex 

and coordinated process that requires cooperation among the three main structural components of the 

virus: the surface glycoproteins, the RNPs and the matrix proteins. While the majority of paramyxoviruses 

fit with this overall model, studies on the molecular mechanisms involved in the assembly and budding 

of paramyxovirus particles revealed significant differences between members of this family. This review 

will focus on novel findings in the understanding of the interplay between surface glycoproteins, 

matrix proteins and RNPs during virus particle assembly while highlighting the main differences that 

exist among the members of this family. 

Figure 1. (A) Schematic of a paramyxovirus particle. The viral envelope, containing two main 

surface glycoproteins: fusion protein (purple) and attachment protein (magenta), surrounds 

the single stranded RNA genome (gray) which is encapsidated by the nucleocapsid protein 

(brown) and bound by phosphoprotein (orange) and the large polymerase protein (yellow). 

Underlying the membrane is a layer of matrix proteins (green). (B) Schematic illustration 

of the life cycle of paramyxoviruses. Transcription and replication of the viral genome occurs 

in the cytoplasm by the action of the viral RNA-dependent RNA polymerase. The newly 

synthesized viral components translocate to discrete sites at the infected cell plasma membrane 

where assembly and budding of infectious virus particles occur. For details, refer to text. 
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2. Interactions among the Viral Proteins are Critical for Glycoprotein Incorporation and 

Paramyxovirus Particle Assembly 

The three key components in production of infectious paramyxovirus particles, the surface 

glycoproteins, the matrix proteins and the RNPs, must coalesce at the plasma membrane to initiate 

budding. Interactions among these three components are critical for glycoprotein incorporation and 

particle assembly. The matrix protein is generally considered the main driver of paramyxovirus 

assembly and can interact with both the glycoproteins and the core RNPs in an orderly manner. 

However, paramyxovirus surface glycoproteins are not simply bit players in this process, but instead 

can play important roles in directing the process of particle formation. 

2.1. Paramyxovirus Surface Glycoproteins 

Entry of paramyxoviruses into target cells requires the concerted effort of two glycoproteins on  

the viral membrane: the attachment protein and the F protein. The attachment protein is generally 

responsible for primary adsorption of the virus to the cell surface by binding proteinaceous or sialic 

acid receptors [23–25]. Fusion of the viral envelope to a target cell membrane then occurs, a process 

that is driven by very large conformational changes in the F protein [26–28]. Paramyxovirus attachment 

proteins are all homotetrameric type II integral membrane proteins [29], but their nomenclature differs 

depending on two characteristics: the ability to agglutinate erythrocytes (hemagglutination), and the 

presence or absence of neuraminidase activity (cleavage of sialic acid). For the genera Rubulavirus, 

Respirovirus and Avulavirus, the attachment protein is termed HN for its ability to cause hemagglutination 

(H) and remove sialic acid from carbohydrates (N). The attachment proteins of Morbilliviruses can 

agglutinate red blood cells but lack a neuraminidase activity and are thus denoted H. G is used to refer 

to the attachment proteins that lack both the ability to bind and to cleave sialic acids, which is the  

case for the attachment proteins of Henipaviruses and members of the pneumovirinae subfamily. 

Interestingly, the attachment proteins of pneumoviruses differ significantly from attachment proteins 

within the paramyxovirinae subfamily, as they are much smaller in size and are not strictly required for 

membrane fusion and entry [16,19,30–33]. Recent data strongly suggest that the F protein plays a role 

in attachment for members of the pneumovirinae subfamily, and cellular factors which interact with 

both RSV F and HMPV F have been identified [34–37]. 

Evidence from X-ray crystallography on a number of paramyxovirus attachment proteins, including 

the HN proteins of NDV, PIV5, and PIV3; the H protein of measles virus and canine distemper  

virus (CDV); and the G protein of HeV and NiV, suggests that the attachment proteins exist as a 

dimer-of-dimers, with each monomer comprising a short cytoplasmic tail, a single membrane-spanning 

domain and a large ectodomain made up of a membrane-proximal stalk region and a C-terminal 

globular head domain (Figure 2A) [38–48]. The crystal structures for both the stalk and the head 

domains have been obtained, revealing important information about the mechanistic role of the attachment 

protein in linking the binding of cell surface receptors to the triggering of F protein-promoted membrane 

fusion. The globular head, composed of four six-bladed β-propeller fold monomers, harbors the  

sites for receptor binding and enzymatic activity, though the exact location differs according to the virus. 

The atomic structures of the stalk domains of PIV5 and NDV showed that this domain forms a four helix 
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bundle, and substantial evidence suggests that F interacts with the attachment protein through this stalk 

domain [42,49–57]. Interaction of the attachment protein with F is generally required for triggering the 

fusion-associated conformational changes needed for membrane fusion. 

Figure 2. Conserved domain structures of paramyxovirus fusion protein (A) and attachment 

protein (B). Abbreviation: fusion peptide (FP); heptad repeat region (HRA, HRB); 

transmembrane domain (TMD); cytoplasmic tail (CT); disulfide bond (S-S). 

 

Paramyxovirus F proteins contain a fusion peptide, two heptad repeat regions, HRA and HRB,  

a C-terminal cytoplasmic tail, and a single-pass transmembrane domain which anchors the protein  

to plasma membrane (Figure 2B). They are homotrimeric type I proteins that are synthesized in a 

fusogenically inactive precursor form, termed F0, and require proteolytic processing into the fusogenically 

active, disulfide-linked F1+F2 metastable pre-fusion form [58]. Proteolytic processing of all F proteins 

is necessary to expose the hydrophobic fusion peptide needed for membrane insertion, but the protease 

responsible for the cleavage differs depending on the virus. Some paramyxovirus F proteins, such as 

those of HMPV and Sendai virus, are cleaved by tissue-specific extracellular proteases, so that virus 

assembly involves the uncleaved precursor form [2,32,59]. For most paramyxoviruses, the cleaved 

metastable pre-fusion F1+F2 heterodimer is the predominant form incorporated into virus particles, so 

cleavage must occur prior to virus assembly. For the majority of paramyxoviruses, including mumps, 

PIV5, and NDV, processing of F is mediated by the ubiquitous subtilisin-like serine protease furin during 

F protein transport through the trans Golgi network, prior to arrival at the plasma membrane [60–62]. 

Henipavirus fusion proteins require activation by the endosomal/lysosomal protease cathepsin L, an 

event that is accomplished after endocytosis of F0 from the cell surface and trafficking to an early 

endosomal compartment, followed by re-trafficking to the plasma membrane [63–66]. The HRSV F 

protein is unique among paramyxoviruses since it requires two cleavage events for its activation,  

one mediated by furin in the TGN prior to assembly, and a second cleavage which is thought to depend 

on cathepsin L in an endocytic compartment after endocytosis of the viral particle [67]. The F protein 

interacts with its homotypic attachment protein in a temporally and spatially controlled manner, though 

the timing of this interaction may vary among different paramyxoviruses. There is evidence that in 

some cases, a preassembled F/attachment protein complex is formed prior to packaging into budding 

virions, while in other cases, the F and attachment proteins incorporate separately into particles and 
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only interact within the viral envelope upon subsequent receptor binding. Specific interaction between 

the fusion and attachment proteins during viral particle assembly will be discussed in more detail in 

Section 3.1. Upon receptor binding, the attachment protein transmits a signal to F which triggers a 

series of irreversible conformational changes in F leading to the formation of a stable six-helix bundle 

formed by the heptad repeat regions and resulting in fusion of the viral envelope with the host cell 

membrane [25,68–70]. 

Some paramyxoviruses including members of the pneumovirinae subfamily, rubulaviruses, and  

the unclassified J virus have an additional glycoprotein on the viral membrane, termed SH for small 

hydrophobic protein. SH proteins are all type II integral transmembrane proteins, but the size and 

proposed function of these proteins differs between viruses. The SH proteins of RSV and HMPV have 

been proposed to function as viroporins, or viral protein channels [71–77]. In addition, HMPV SH can 

modulate the host immune response and contribute to viral pathogenicity by inhibiting NF-κB [78]. 

For other paramyxoviruses, SH can inhibit apoptosis by interfering with TNF-α signaling [15,79]. 

Recent evidence indicates that HMPV SH can also decrease HMPV F-mediated membrane fusion and 

inhibit virus uptake in dendritic cells [77,80]. Although studies have shown that SH is dispensable  

for virus replication in vitro [17–19,81], deletion in vivo can attenuate viral replication and 

pathogenicity [16,30,82–84]. 

2.2. Matrix Proteins as Coordinators of Paramyxovirus Assembly and Budding 

The M protein, the most abundant protein in the virion, plays a fundamental role in paramyxovirus 

assembly through its ability to interact with multiple partners. M proteins can self-assemble, bind 

directly to cellular membranes, and interact with the RNP complex and the cytoplasmic tails of 

glycoproteins, thus allowing the RNP core to associate with a region at the plasma membrane where 

the surface glycoproteins are concentrated, which will become the budding site. The importance of  

M proteins for paramyxovirus particle production was originally shown in Sendai virus and measles 

virus, where mutations in the M gene encoding an unstable M protein was correlated with severe 

defects in infectious particle production [85–88]. Our understanding of the role of M protein in the 

process of paramyxovirus assembly was enhanced by studies involving virus-like particle formation 

(VLPs) and reverse genetics, as recombinant viruses with mutations or deletions in the M gene 

revealed the significance of the matrix protein in incorporation of other viral components and in viral 

budding. For example, deletion of the measles virus M protein led to an increase in cell-associated 

virus and the loss of co-localization of the surface glycoproteins with the RNPs [89]. A recent study by 

Mitra et al. showed that infection with an M-null HRSV resulted in impairment of infectious particle 

release and alterations in the intracellular localization of the RNP complex as well as in the distribution 

of glycoproteins on the plasma membrane, further demonstrating the essential role of M in the assembly 

and budding of virus particles [90]. For many paramyxoviruses, including Sendai virus (SeV) [91,92], 

MeV [93,94], NiV [95,96], hPIV1 [97], and NDV [98], transient expression of M protein by itself  

is sufficient to promote budding of VLPs, indicating that the M protein of these viruses has the ability 

to efficiently associate with membranes, induce membrane curvature and promote scission. Although 

matrix proteins of different paramyxoviruses display similar functions, they vary greatly in length and 

amino acid sequences. 
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Recent structural studies on paramyxoviruses involving crystallography and cryo-tomography 

revealed important information on how the structure of M and how its organization within virions 

allows M to function in assembling viral components and inducing membrane deformation. The 

atomic structures of M proteins of three paramyxoviruses, NDV [99], HRSV [100] and HMPV [101] 

were recently solved. These M proteins share similar overall structures, including the presence of positive 

charges on the surface of the molecule which are observed in other mononegavirales matrix proteins 

including Ebola virus VP40 [102] and Borna disease virus (BDV) M protein [103]. Although the  

NDV and HMPV M proteins were crystallized as dimers while the HRSV M protein was found in a 

monomeric form, structural alignment revealed similarities in the N-terminal domain (NTD) and  

C-terminal domain (CTD) of these proteins [99–101]. The monomeric subunits of NDV, RSV and 

HMPV M proteins are composed of two beta-sheets containing folded domains that are connected by 

an unstructured, flexible linker region. The linker region is thought to play a dynamic role in promoting 

structural plasticity of M which is essential for the ability of the protein to interact with multiple 

binding partners and with itself. Matrix-like proteins are known for their ability to form higher order 

assemblies involving NTD/NTD and CTD/CTD interfaces. For SeV, it has been shown that M can 

self-assemble in vitro into helices and sheets [104,105]. Binding of HRSV and HMPV M proteins to 

lipids promotes self-assembly and polymerization of M subunits into long flexible helical filaments 

with different curvatures [101,106]. It is thought that the dimer subunits of M can associate through 

different side-by-side interactions which influence that curvature of the matrix arrays and thus virus 

morphogenesis. Paramyxovirus M proteins, similar to matrix proteins of other negative-strand RNA 

viruses, also have an intrinsic ability to bind membranes [107–111], and the matrix protein of NDV 

was even shown to adsorb onto phospholipid liposomes and self-assemble to induce membrane 

deformation [112]. However, the exact nature of the interaction of M with membrane lipids is not  

yet clearly understood. The atomic structures of the paramyxovirus M proteins are characterized by  

the presence of a positively charged area on the surface of the molecule, most likely involved in 

electrostatic interactions with the negatively charged surface of cell membranes. Binding of M to  

the lipid bilayer is suggested to be driven by basic residues in the CTD as well as by hydrophobic 

interactions [100]. Interestingly, comparison of amino acid sequences of pneumovirus M proteins 

revealed high similarity in the CTD and more disparate sequences in the NTD, suggesting further that 

the C-terminal interactions of different paramyxovirus M proteins with membranes are of a similar 

nature and that the NTD is involved in specific protein interactions of M with other viral and cellular 

factors [100]. This would thus explain the ability of various paramyxovirus M proteins to coordinate 

different protein-lipid and protein-protein interactions. The matrix protein of HMPV has an additional 

unique feature in its NTD not seen in other mononegaviral matrix proteins to date which is the 

presence of a Ca
2+

 binding site [101]. This suggests that binding of Ca
2+

 to HMPV M may represent a 

new mechanism by which M proteins of paramyxoviruses are regulated to organize particle assembly. 

Despite the essential role of the M protein in paramyxovirus particle production, the mechanisms by 

which M regulates the assembly and budding processes vary among different members of the family. 

Unlike SeV, MeV, NDV, NiV and hPIV3, where the M protein is sufficient for VLP formation, other 

paramyxoviruses require interactions of M with the surface glycoproteins or with the RNP for particle 

formation, indicating that there are significant variations in the function of M and in the strategies that 

different family members employ for efficient particle production. Differences in the role of M in the 
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assembly of paramyxoviruses were also demonstrated by electron cryo-tomography showing the 3D 

structures of virus particles. While the general ultrastructural model of paramyxoviruses depicts M 

protein as lining the inner leaflet of the viral envelope, recent cryo-tomography data show that this 

structure does not apply to all paramyxoviruses. For RSV, NDV and SeV, M forms a layer under  

the viral membrane only in a small percentage of virus particles. In the majority of particles, M was 

observed to be dissociated from the membrane and disassembled, potentially to allow the conformational 

changes of the F protein from the pre-fusion to the post-fusion form by releasing interactions with  

the F cytoplasmic tail [99,113,114]. A recent study revealed that for RSV, the surface area of the virion 

membrane which is covered by M varies significantly depending on the morphology of the virus 

particle, with the highest coverage (86%) detected in filamentous particles and the lowest (24%)  

in spherical viruses [115]. The arrangement of the surface proteins and the matrix proteins in the  

3D structures of NDV and RSV suggest an interaction between these two viral components. In MeV, 

on the other hand, M protein was not located under the viral membrane but was found to assemble on  

the RNP forming a bundled two-layer helical structure inside the virion [116]. These findings suggest 

significant mechanistic differences in the way M interacts with the RNPs and envelope proteins to 

assemble virus particles. 

2.3. Interaction of Ribonucleoprotein Complex with Glycoproteins and M 

During replication, the newly synthesized genomic RNA is tightly wrapped with the nucleoprotein 

for protection from degradation, forming a helical RNP complex [117]. Encapsidation of RNA by N 

does not depend on specific nucleotide sequences, as expression of N in the absence of infection can 

result in the formation of nucleocapsid-like structures resulting from N non-specifically binding host-cell 

RNAs [92,97,118–120]. Prior to virus budding, newly synthesized RNPs must assemble with the 

surface glycoproteins and the M protein at the plasma membrane. While multiple copies of the RNA 

genome can be packaged within a single particle [114,115,121,122], incorporation of RNPs into virions 

is selective and likely depends on species homology between M and the nucleocapsid protein, genome 

length, and to a lesser extent on the polarity of the genome [123–125]. Targeting of RNPs to the plasma 

membrane assembly sites is primarily mediated by the M protein. M proteins of several paramyxoviruses, 

including SeV, MeV and PIV5, are known to interact with the nucleocapsid protein to mediate 

incorporation of the RNPs into virions [123,126,127]. Studies using recombinant viruses also demonstrated 

that deletions or mutations of the M gene can block RNP complex transport to the plasma membrane 

during infection, further supporting the important role of M protein in RNP inclusion into virus 

particles [90,94]. Within the pneumovirinae subfamily, association of M with the RNP can occur through 

interaction of M with the transcription elongation factor, M2-1 protein, which is also considered a 

component of the RNP complex [113,115,128]. M can also bind RNA directly or can bind to the large 

polymerase L protein [129,130]. In addition to interacting with M to facilitate their incorporation into 

virions, in some cases the paramyxovirus nucleocapsid proteins play a role in increasing efficiency  

of VLP budding [14,119]. Co-imunoprecipitation experiments showed that the fusion protein of NDV 

interacts with the NP protein in purified VLPs and not with the M protein, suggesting that interaction 

of F with NP may be involved in localization of NP at plasma membrane assembly sites [98]. In other 
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cases, such as SeV, interaction of the M protein with a viral glycoprotein is required for concentration 

of the RNPs at the plasma membrane and their subsequent assembly into particles [131]. 

2.4. Active Role of Glycoproteins in Paramyxovirus Particle Formation 

While the role of M proteins as organizers of paramyxovirus assembly has been well established, 

the important function of membrane proteins in the late phases of paramyxovirus infection has gradually 

become clearer. Surface glycoproteins of paramyxoviruses are well characterized for their significance 

in membrane fusion and viral entry; however, substantial evidence implicates an active role of these 

membrane glycoproteins in the end stages of the virus replication cycle (reviewed in [20,21]). 

Paramyxovirus glycoproteins can specify the location for viral budding through interactions with lipids, 

associate with the M protein to aid in assembly, and in some cases, interact with RNPs as part of virus 

assembly. For assembly of infectious particles, M must target the cytoplasmic RNPs to the budding 

site at the plasma membrane where the viral integral membrane glycoproteins are concentrated, thus 

paramyxovirus M proteins are suggested to bind membranes at areas enriched with the envelope 

proteins. Consistent with this view, the ultrastructure of NDV revealed that the M protein forms a  

grid-like array where the glycoproteins were densely packed [99]. In addition, an inner layer of 

membrane-bound M was associated with regular spacing of the pre-fusion F protein in RSV virions, 

further supporting an interaction between M and F [113]. Studies have demonstrated that membrane 

proteins interact with the matrix protein for a number of paramyxoviruses, and this interaction is 

needed to organize assembly and for the incorporation of glycoproteins into budding virus particles, 

but many differences exist between various members with respect to the contribution of this interaction 

to particle formation and the individual roles of the attachment and fusion proteins. For SeV, M can 

interact with both F and HN [132–134] but only the fusion protein is important for virus production 

and its function is as critical as that of M since alterations in F can attenuate virus production up to 

70% [134–136]. Expression of glycoproteins was also shown to be important for budding of VLPs. For 

PIV5, F and HN have redundant functions during VLP formation, while mumps F protein, but not  

HN, enhance particle release [14,119,137,138]. Loo et al. have recently shown that while HMPV M 

interacts with both F and G proteins, expression of HMPV G facilitates formation of VLPs [10]. 

Specific interactions between M and HN of NDV have also been reported; however, this interaction 

does not have an effect on efficiency of VLP release [98]. Similar results were seen for MeV,  

NiV and RSV, indicating that glycoproteins can enhance budding efficiency for only a subset of 

paramyxoviruses [93,95,96,139]. 

In addition to their contribution to the budding process, paramyxovirus glycoproteins are also 

implicated in assembly of other viral components. The fusion protein of RSV was shown to be responsible 

for incorporation of G and SH proteins into budded virions and for their co-localization with N at 

plasma membrane assembly sites; however, F deletion had no effect on M assembly into virions [139]. 

A key function for the fusion protein in SeV assembly was shown, as mutations in F altered cellular 

localization of both HN and M, although interaction of F with M was not affected [131]. These 

findings indicate that the paramyxovirus glycoproteins can play significant roles in the assembly and 

budding processes, but different paramyxoviruses utilize their glycoproteins differently. 
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2.5. Role of the Cytoplasmic Tails of Glycoproteins in Particle Production 

Paramyxovirus surface glycoproteins contain short cytoplasmic tails which extend on the inner  

side of the plasma membrane. The length and amino acid sequences of these domains in the fusion and 

attachment proteins vary significantly among different paramyxovirus members (Figure 3). Several 

studies have demonstrated that the role of paramyxovirus glycoproteins in particle formation depends 

on their cytoplasmic tails, as these regions are required for glycoprotein incorporation into packaged 

particles and for glycoprotein interactions with M. Biochemical and co-localization studies revealed 

that M can interact with the cytoplasmic tail of the homotypic attachment proteins for RSV, HMPV, 

NDV and measles [10,98,140,141]. These finding are surprising for the pneumoviruses RSV and 

HMPV since G is dispensable for viral replication in vitro [30,31]. This suggests that while interaction 

of M with G is dispensable for virus production in these cases, the presence of G may contribute to 

optimal virus production manifested by an increase in HMPV VLP formation [10] and a role for G  

in SH incorporation into RSV particles [139]. The importance of the glycoprotein cytoplasmic tails for 

paramyxovirus particle production was also demonstrated for PIV5, as deletion of these domains  

in either F or HN prevented assembly of M and the glycoproteins at the cell surface, and removal  

of the cytoplasmic tail of the HN protein significantly decreased virion egress [119,138]. For other 

paramyxoviruses, the cytoplasmic tail of F protein plays an important role in late stages of viral infection. 

The cytoplasmic tails of MuV and hPIV1 F proteins are involved in particle assembly [14,142]. For 

RSV, formation of viral filaments depends on the cytoplasmic tail of the fusion protein [139,143].  

In addition, alterations in the cytoplasmic tail of SeV F protein significantly affected virus replication 

and the clustering of HN, M and NP at assembly sites, indicating a role for the cytoplasmic tail of the 

fusion protein in coordinating the assembly of the different viral components [131,142]. For measles 

virus, truncations in the cytoplasmic tails of F and H do not alter assembly of viral components at the 

cell membrane but do affect the incorporation of F, M and H into released particles [144]. Deletion of 

the cytoplasmic tail of measles virus F protein is associated with increased cell-cell fusion, similar to 

what is seen for the MeV strain obtained from subacute sclerosing panencephalitis (SSPE) patients.  

It has been suggested that interaction of M with the cytoplasmic tails of F locks F in the pre-fusion 

conformation during the process of assembly; thus removal of the cytoplasmic tail, and loss of the M 

interaction domain, facilitates fusion [89,113,145]. The importance of the glycoprotein cytoplasmic 

tails for particle assembly appears to be a common feature of many RNA viruses, as truncations in the 

cytoplasmic tails of the glycoproteins hemagglutinin [146] (HA) and neuraminidase (NA) of influenza 

A virus or of the rhabdovirus G result in severe defects in particle formation [147,148]. Figure 3 shows 

the differences in the length and amino acid sequences of the cytoplasmic tails of different paramyxovirus 

glycoproteins. It is believed that the function of the cytoplasmic tails of glycoproteins in paramyxovirus 

particle formation depends on specific amino acid sequences or signals rather than simply a defined 

length. The sequences that have been shown to affect the role of the fusion and attachment proteins in 

particle production are highlighted [91,131,140,143,144,149–154]. For SeV, it was shown that while 

random truncations and mutations in the cytoplasmic tail of F affected virus production to varying 

extents, the strongest effect on accumulation of virus components at the cell surface and virus egress 

was detected in particles carrying F proteins with mutations in a TYTLE motif [91,131]. A four amino 

acid sequence with a critical phenylalanine residue in the cytoplasmic tail of HRSV F protein was 



Viruses 2014, 6 3029 

 

 

shown to coordinate virus filament assembly and budding [143,146]. Specific sequences crucial for the 

insertion of attachment proteins into virions have also been identified for NDV and SeV HN proteins 

(Figure 3B) [149,153]. These findings suggest that even though the cytoplasmic tails of paramyxovirus 

glycoproteins are needed for their inclusion into infectious viruses, the roles of these domains in 

different viruses may vary. 

Figure 3. Amino acid sequences of the cytoplasmic tails of the fusion protein (A) and 

attachment protein (B) of different paramyxoviruses. Amino acid residues highlighted 

contribute to paramyxovirus particle production. Sequences of cytoplasmic tails were 

obtained from UniProt. 

 

3. Intracellular Trafficking of Viral Components 

During paramyxovirus replication, the glycoproteins, matrix proteins and RNPs are synthesized  

at distinct sites in the cytoplasm and must be transported to the plasma membrane for coordinated 

assembly. The different viral components reach the plasma membrane by different mechanisms  

and interact with each other in an orderly manner either during trafficking or at the cell surface prior  

to packaging into virions. Paramyxovirus proteins are carried to the cellular plasma membranes by 

utilizing various cellular machineries including endocytic and exocytic pathways, in addition to vesicular 

trafficking and the cytoskeleton. 
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3.1. Trafficking of Viral Glycoproteins 

Paramyxovirus glycoproteins are synthesized in the endoplasmic reticulum (ER) and traffic through 

the secretory pathway, and in some cases through endocytic pathways, to the plasma membrane. 

Proper trafficking is needed for incorporation into budding virions or induction of cell-cell fusion for 

direct cell-to-cell transmission of virus particles. For some paramyxoviruses, data indicate that the 

fusion and attachment proteins can interact following their synthesis in the ER, and thus are transported 

to the cell surface as a metastable protein complex. This has been suggested to occur for NDV, MeV 

and human parainfluenza viruses 2 and 3 [155–157]. Alternatively, the F protein and the attachment 

protein can traffic separately and only associate after reaching the plasma membrane, which is the case 

for HeV and NiV [158,159]. For PIV5, F and HN also associate at the cell surface but formation of the 

F-HN complex requires receptor binding [68]. During their synthesis in the ER, glycoproteins must 

undergo proper folding and oligomerization prior to trafficking to the cell surface. Mutational analyses 

showed that mutations which interfere with proper folding or assembly of the final oligomeric 

structure of paramyxovirus glycoproteins generally result in their retention in the ER and prevent their 

transport through the exocytic pathway to the cell surface [160–163]. The contribution of the ectodomain 

in proper folding and stability of the trimeric fusion protein or the tetrameric attachment protein is well 

established, but substantial evidence also indicates an important role of the transmembrane domains 

and cytoplasmic tails in the oligomerization process and folding of the ectodomain [29,162,164,165]. 

Mutation of a TYTLE motif in the cytoplasmic tail of SeV F protein prevented its transport to the PM, 

and the protein was instead retained in the ER. This failure to traffic was hypothesized to be due to  

the failure of the F mutant to trimerize [131]. Similar findings were reported for the PIV5 HN protein, 

as deletion of the cytoplasmic tail prevented its assembly to an oligomer and transport to the cell 

surface [163]. In addition to their role in protein oligomerization, the cytoplasmic tails are thought to 

facilitate proper trafficking of glycoproteins to the cell surface by binding cellular factors that direct 

protein targeting to the plasma membrane and by harboring residues that facilitate interaction with 

negatively charged lipids at the plasma membrane. N-glycosylation can also be essential for the proper 

folding, stability, intracellular transport, and surface expression of the paramyxovirus glycoproteins. 

Removal of N-glycans from the glycoproteins of NDV, CDV, PIV5, SeV, HeV and NiV had a significant 

effect on their exocytic transport and surface expression [166–172]. However, removal of all  

three N-glycans did not affect transport of the RSV F protein to the cell surface indicating that the 

degree to which N-glycosylation influences proper folding and transport varies among paramyxovirus 

glycoproteins [173,174]. 

Trafficking of viral glycoproteins has been demonstrated to involve tyrosine-based and di-leucine 

motifs which are involved in protein trafficking in both secretory and endocytic pathways. Several 

paramyxovirus glycoproteins have endocytic signals and can undergo internalization following 

trafficking to the plasma membrane [65,175–178]. For instance, the cytoplasmic tails of NiV and HeV 

F proteins contain a tyrosine-based motif (YXXΦ), where X is any amino acid and Φ is a residue  

with a bulky hydrophobic side chain that is required for internalization of the protein from the cell 

surface [65,178]. PIV5 HN is internalized from the plasma membrane by clathrin-coated pits but its 

internalization depends on a single glutamic acid residue at the boundary between the transmembrane 

domain and the ectodomain [176,179]. Henipavirus fusion proteins are the only paramyxovirus 
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glycoproteins that have an absolute dependence on endocytosis for proteolytic activation by  

cathepsin L [63,65,66,180]. With the exception of Henipaviruses, the relevance of endocytic signals in 

viral envelope glycoproteins is not yet well established. It has been proposed that down-regulation of 

attachment and fusion protein expression on the cell membrane may be a post-translational regulatory 

mechanism that plays an important role in viral pathogenicity through minimizing recognition of 

antigens on the infected cells by the immune system. Endocytic signals in viral glycoproteins can  

also affect efficiency of glycoprotein incorporation into virions and virus assembly. Mutation of  

the internalization signal in PIV5 HN has been shown to affect the incorporation of both F and HN  

into budded virions [181]. Interaction of the surface glycoproteins with the core matrix proteins  

may regulate expression of the paramyxovirus glycoproteins on the cell surface and decrease 

internalization of the glycoproteins, thus favoring their incorporation into assembled virus particles 

over endocytosis [89,145,182,183]. 

Paramyxoviruses can infect cells that are polarized in nature, such as neurons, epithelial cells, 

endothelial cells and lymphocytes. The plasma membrane in polarized cells is divided into two discrete 

domains, the apical domain and the basolateral domain, and this polarity is maintained by sorting of 

proteins and lipids in the TGN or secretory pathways and recycling endosomes [184]. Several studies 

conducted on paramyxoviruses in polarized systems have revealed important information about the 

sorting of the surface glycoproteins between apical and basolateral sides. Motifs for internalization and 

polarized targeting generally share common elements that can interact with specific adaptor complexes, 

such as the cytoplasmic adaptor proteins, and thus selectively recruit protein cargo into endosomes, 

lysosomes or target them to basolateral cell membrane [185]. Recognition of two separate signals  

for endocytosis and basolateral sorting may be regulated by interaction with other viral components. 

NiV glycoproteins expressed from plasmid DNA are located primarily at the basolateral surface of 

epithelial cells, and this localization depends on tyrosine signals (YXXΦ) in the cytoplasmic tail of 

Nipah F and on a dityrosine signal in the Nipah G protein [150]. The F and H proteins of measles virus 

also have tyrosine-dependent sorting signals in the cytoplasmic domains that mediate their targeting to 

the basolateral site of polarized epithelial cells and facilitate cell-cell fusion between epithelial cells. 

Transport of measles F and H is not interdependent but each protein traffics alone, as mutation of 

tyrosines in one protein does not affect localization of the other [186,187]. Additional motifs in cytoplasmic 

domains that direct basolateral targeting have been identified in non-viral systems, and include the 

tetrapeptide NPXY motif, dileucine motifs and single leucine residues [188,189]. Fitting with this,  

a dileucine motif in the cytoplasmic tail of the NDV F protein was shown to be important for the 

basolateral sorting of the protein [152]. A role for the TMD in intracellular transport of integral 

membrane proteins is being increasingly recognized. For example, amino acid residues S490 and Y498 

in the TMD of Hendra virus F protein were found to be critical for endocytic trafficking and recycling 

of the protein to the cell surface [154,164,190]. The hypothesis that the localization of surface 

glycoproteins determined the site of virus budding was dominant for a considerable time, but substantial 

evidence indicates that this is not accurate in many cases. Directional budding is determined by the 

matrix protein for several enveloped viruses, including influenza, Marburg virus and VSV [191–194]. 

The paramyxovirus M protein is also considered the main determinant of virus budding sites. Crucial 

evidence for the central role of M in determination of budding sites was obtained from studies on MeV 

and NiV, where experiments showed that while the glycoproteins are intrinsically targeted to the basal 
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side of polarized membranes, budding of virus particles occurs at the apical side where the M protein 

is concentrated, and expression of M during infection partially redirects the glycoproteins to apical 

surface [150,186,187,195–197]. Basolateral sorting of the fusion and attachment proteins can contribute 

to the pathogenesis of the virus by mediating transmission of viruses to underlying tissues by cell-cell 

fusion. For RSV, both the M protein and the glycoproteins are targeted to the apical side of polarized 

epithelial cells, but the glycoproteins are dispensable for apical sorting of M and for virus budding  

at the apical side, further confirming the essential role of M in directionality of budding [198].  

Apical targeting of membrane proteins depends on signals either in extracellular domains or in the 

TMD. For example, the TMDs of influenza HA or NA are necessary for polarized sorting of the  

two proteins [184,199,200]. The TMD of RSV fusion protein also plays a role in the polarized sorting 

of the protein to the apical side [201]. Apical targeting can also be established by alternative mechanisms. 

Association of proteins with lipid rafts (cholesterol and sphingolipid rich domains) can facilitate 

transport of protein cargo to apical membranes, and raft association has been shown for several 

paramyxovirus glycoproteins as well as for several paramyxovirus M proteins [202]. This will be 

discussed in more detail in the following section. Signals for basolateral sorting are usually dominant 

over apical signals, so retargeting of paramyxovirus glycoproteins from the basal to the apical side 

during infection requires masking of basolateral targeting signals [203–205]. Transcytosis from  

the basolateral to the apical side, which requires endocytosis from the specific domain, delivery to 

endosomes, and trafficking to the apical surface can also occur, and involves apical recycling endosomes 

(ARE). Sorting of the M protein and glycoproteins of measles to different membrane domains during 

infection indicates that trafficking of M occurs independently of the surface proteins. This is consistent 

with the finding that the matrix protein of measles is not co-transported with glycoproteins [109]. 

However, for some paramyxoviruses such as SeV [206], M associates with the glycoproteins before 

reaching the plasma membrane. For RSV, M and F were found to localize in inclusion bodies (IBs)  

in the cytoplasm for the formation of assembly complexes prior to trafficking to the surface of nonpolarized 

cells. Deletion of the cytoplasmic tail of F altered the cellular localization of both proteins, with both 

M and F found concentrated in inclusion bodies and not in filaments on the cell surface. Although  

a direct interaction between RSV M and F has not been shown, F and M targeting to the plasma 

membrane requires the cytoplasmic domain of F [146]. Interestingly, RSV F and M were shown to 

traffic to the apical side independent of one another suggesting that polarized sorting of viral proteins 

can vary significantly from non-polarized trafficking. 

3.2. Intracellular Transport of Matrix Proteins and Ribonucleoproteins 

Though originally synthesized in the cytoplasm, the matrix protein and the RNPs must subsequently 

translocate to viral budding sites at the plasma membrane; however, very little is currently known  

on the mechanisms underlying transport of these critical viral structural components. In the classical 

model for paramyxovirus assembly, the matrix protein is thought to interact with the RNP at the cell 

membrane to mediate its insertion into budding sites for the production of infectious virus particles. 

Substantial data, however, support an alternative model in which the matrix protein associates with the 

RNP complex in the cytoplasm prior to translocation to the plasma membrane. Data on both MeV and 

SeV suggest that the M protein binds to the RNP in the cytoplasm, and the two components are then 
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co-transported to the plasma membrane [94,108]. Further support for an interaction of M with the RNP 

in the absence of membrane interactions was provided by the 3D structure of MeV particles, which 

showed that measles M protein did not form a layer underneath the viral envelope, but instead associated 

with the RNPs to form a helical matrix-covered nucleocapsid structure inside the virion [116]. 

Data from live cell imaging revealed an important role of the host cytoskeleton in the trafficking  

of paramyxovirus RNP complexes. Filamentous RNPs of RSV show myosin-motor driven directional 

movement on the actin cytoskeleton [207]. In the case of SeV and MeV, RNPs are transported along 

microtubules using Rab11A containing vesicles, key regulators of trafficking within the recycling 

endosomal pathways and Golgi to the plasma membrane [208,209]. Rab11 endosomes are also part of 

the apical recycling endosome (ARE) pathway which controls apical transport of proteins in polarized 

cells, suggesting that this pathway may be particularly important in polarized cells. However, a 

requirement for Rab11A in assembly of SeV is observed in both polarized and non-polarized cells. In 

contrast, Rab11A dependent transport of measles RNPs is only critical for virus production in polarized 

epithelial cells and is not a general requirement for measles RNP trafficking. The Rab11-mediated 

recycling pathway is also important for budding of RSV particles from the apical surface [210]. In the 

course of RSV infection, the matrix protein localizes in cytoplasmic bodies containing the RNP 

complex proteins N, P, L, and M2-1, which are thought to be assembly bodies. Deletion of the matrix 

gene prevents the translocation of the viral RNP from the cytoplasmic inclusions to the cell surface 

suggesting that for RSV, trafficking of the RNPs depends on trafficking of M [90,211]. These findings 

indicate that large differences exist in the trafficking mechanisms of paramyxovirus RNPs. It is yet to 

be determined whether the Rab11 mediated pathway is utilized by other paramyxoviruses to transport 

the RNPs prior to assembly and if M is associated with the viral RNPs in the Rab11 containing 

endosomes to facilitate its trafficking. A recent study demonstrated that the incorporation of HIV1-Env 

protein into budding particles is dependent on the interaction of the Rab11-interacting proteins FIP1C/RCP 

and Rab14 with the cytoplasmic tail of the protein [212]. This raises the question of whether sorting of 

paramyxovirus glycoproteins to the plasma membrane can be mediated by components of the Rab11 

pathway and this requires further investigation. 

Although the entire replication cycle of paramyxoviruses occurs in the cytoplasm, the matrix 

proteins of HRSV, SeV, NDV and NiV have been shown to traffic through the nucleus early during 

virus infection. In the case of RSV, localization of M in the nucleus occurs through interaction of  

a nuclear localization signal (NLS) with the nuclear import receptor, importin β1, and its exit to the 

cytoplasm at later stages of infection is mediated by a nuclear export signal (NES) that directs  

Crm-1dependent nuclear export [213]. Nuclear-cytoplasmic trafficking of NiV M was also dependent 

on a NLS and a leucine-rich NES [214]. In contrast to both RSV and NiV, the matrix protein of NDV 

is present in the nucleus throughout infection, and recent studies indicate that NDV M localizes in the 

nucleolus primarily due to interaction with the nucleolar phosphoprotein B23 [215–220]. In all cases, 

trafficking of M to the nucleus and its localization there was necessary for later virus budding and 

efficient virus production. Although more studies are needed to clarify the biological function of M 

protein nuclear localization, it is proposed that M transits to the nucleus at early stages of infection  

to allow optimal transcription and translation of viral components, since the M protein of several 

paramyxoviruses has been shown to bind RNA directly and inhibit viral transcription [126,130]. 

Transition of M through the nucleus may also affect host transcription to enhance virus replication 
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(similar to the matrix protein of vesicular stomatitis virus) [221,222]. The M protein of RSV has been 

shown to induce cell cycle arrest in lung epithelial cells by regulating cellular p53 expression levels, 

thus enhancing virus replication [223]. 

4. Localization of Glycoproteins at Membrane Assembly Sites: A Role of Raft Microdomains 

Paramyxoviruses have a host-derived, lipid bilayer envelope containing the membrane spanning 

envelope glycoproteins. The assembly of viral membranes is a sophisticated and specific process that 

involves coalescence of viral components at discrete sites on cellular membranes and exclusion of  

the majority of host cell membrane proteins. Recent data support the idea that viral glycoproteins of 

enveloped RNA viruses are not randomly distributed on the cell surface but instead are clustered within 

lipid raft membrane microdomains to form the nucleation points for budding [224]. Lipid rafts, which 

are rich in cholesterol and sphingolipids, are characterized by a rigid, ordered structure with limited 

flexibility and can thus act as platforms for virus assembly (reviewed in [21,225–228]). Lipid rafts can 

also be referred to as detergent resistant membranes (DRM) since they are resistant to solubilization  

by cold non-ionic detergents such as Triton-X100. The important role of lipid rafts in assembly  

and budding of enveloped RNA viruses have been described for HIV-1, influenza virus, Ebola virus 

and others [228–231]. Several studies have reported that different paramyxovirus glycoproteins are 

selectively targeted to raft microdomains in cellular membranes. For MeV, only F, but not H, has  

the intrinsic ability to be incorporated into membrane rafts, and it is thought that two palmitoylated 

cysteines in the TMD of F facilitate its interaction with lipid rafts; however, during infection, H is 

pulled into raft domains upon association of the H-F complex with membrane rafts [232–234]. On the 

other hand, both SeV glycoproteins, F and HN, can associate with rafts when expressed individually or 

in combination [235]. During NDV infection, F and HN interact with rafts to facilitate the incorporation 

of F-HN complexes into virions [236]. The fusion protein of RSV can also be sorted to lipid rafts in a 

process directed by its cytoplasmic tail [237]. In addition to the glycoproteins, other viral components 

can be associated with raft domains in membranes. For example, the nucleoproteins of SeV, MeV and 

NDV have been found to associate with DRMs [233,236,238]. Matrix proteins can also bind raft 

membranes, in some cases regardless of the presence of other viral proteins, as was seen with the M 

protein of MeV [93] , and in other instances, like SeV M for example [132], depending on interaction 

of M with surface glycoproteins. It has been recently proposed that accumulation of viral components 

at cell membranes leads to coalescence of multiple membrane microdomains where viruses create  

their own assembly platforms [224,239]. In the case of influenza virus, these clusters of membrane 

microdomains are termed viral “budozones”. They are larger in size than regular cellular raft membranes 

and their formation is dependent on the M1 matrix protein [225,229,240,241]. It would be of interest to 

explore whether such domains can be formed during paramyxovirus assembly and whether their 

formation depends on clustering of envelope glycoproteins or on oligomerization of the matrix proteins 

underlying the plasma membrane and driving the multimerization of the membrane glycoproteins.  

In addition to acting as sites of assembly, raft domains also contribute to the infectivity of the released 

viral particles. Disruption of raft microdomains by altering cholesterol levels leads to a decrease in  

the formation of infectious particles of NDV and RSV [236,242]. For MeV and SeV, rafts are needed  

as platforms for assembly but do not constitute precursors for budding [232,243]. Thus, although 
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targeting of viral components to raft membranes seems common among paramyxoviruses, the 

functional significance of these microdomains in the viral life cycle varies among the family members. 

5. Role of Envelope Glycoproteins in Paramyxovirus Budding 

Budding of enveloped viruses is a complex process that requires induction of membrane curvature 

followed by membrane scission and release of virus particles. Induction of membrane curvature and 

the final membrane fission event requires manipulation of the lipid-lipid interactions within cellular 

membranes, and is driven by interactions of viral proteins with membrane lipids in addition to viral-viral 

and viral-host protein interactions [244]. The mechanisms underlying budding of paramyxoviruses are 

still largely unknown, but it is evident that various paramyxoviruses exit infected cells using different 

mechanisms (reviewed in [20,21]). Budding of paramyxovirus particles is driven primarily by the 

matrix protein. The M protein binds membranes and homo-oligomerizes underneath the plasma membrane 

to drive membrane deformation and promote the needed curvature. As previously mentioned, the M 

protein of a number of paramyxoviruses can induce formation of VLPs when expressed by itself [91]. 

In this case, self-association of M under the membrane may be sufficient to drive membrane 

deformation and outward budding of VLPs. It is equally possible that host proteins are recruited by M 

to the plasma membrane and thus the host machinery drives the membrane deformation and outward 

budding. One of the primary mechanisms involved in the release of nascent virus particles of many 

enveloped viruses, such as HIV-1, Ebola virus, and VSV requires a short stretch of amino acids in  

the matrix protein with a late budding function known as the “L” domain. These L domains, which 

vary among different viruses (P[T/S]AP, PPxY, YxxL), function by recruiting and interacting with 

cellular proteins of the endosomal sorting complex required for transport (ESCRT), which are part of 

the vacuolar protein sorting (VPS) pathway and are involved in promoting membrane fission steps that 

lead to the release of virus particles [245]. The paramyxoviruses PIV5 [119], NDV [220] and mumps 

virus [14] rely on the host ESCRT machinery during virus exit, as release of particles was inhibited by 

expression of a dominant negative VPS4A. Budding of PIV5, NDV and mumps virus is dependent  

on a FPIV-like motif in the M protein [14,220,246], which does not resemble canonical L-domain 

sequences, suggesting that these paramyxoviruses may utilize different components of the host ESCRT 

that can recognize and bind to a different amino acid sequence. There is increasing evidence that a 

growing number of viruses, including influenza virus and VSV, can bud from host cells independent  

of ESCRT machinery (reviewed in [244,247]). Budding of RSV [210], NiV [248], MeV [249],  

AMPV [250] and HMPV [251] has also been demonstrated to occur in an ESCRT-independent 

manner. The mechanisms used by ESCRT-independent viruses to bud from infected cells are still 

unknown for many of these viruses. Interestingly, budding and virus release of HRSV is dependent  

on Rab11-FIP2, and the Rab11 pathway was also shown to play a role in influenza virus production, 

suggesting that viruses may utilize the Rab11 endosomal pathway in a previously uncharacterized 

manner to achieve their exit from host cells [210,252]. 

Although M proteins are considered the driving force for budding of paramyxoviruses, increasing 

evidence demonstrates that the glycoproteins can also play a role. Several paramyxovirus glycoproteins 

can induce VLP formation by themselves or must be present with the M protein for efficient VLP 

formation, indicating that surface glycoproteins in these cases are needed either to recruit M to 
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assembly sites or to initiate budding. A major role of glycoproteins in paramyxovirus budding is  

well characterized for the SeV fusion protein. Sendai F induces VLP release when expressed alone in 

cells, and silencing of the F gene reduces virus production by 70% [134]. The ability of F to bud from 

the plasma membrane depends on a TYTLE motif in the cytoplasmic tail of the protein [131,253].  

This suggests that the TYTLE motif may be needed to bind a cellular factor that facilitates budding. 

Sendai F also interacts with M in the ER and is responsible for carrying M to the plasma membrane. 

Interestingly, both proteins were found to contain amino acid sequences that resemble actin binding 

domains [91]. The host cytoskeleton has been shown to play an important role in the life cycle of 

several paramyxoviruses, and it is thought that cytoskeletal components are involved in paramyxovirus 

budding. Large amounts of actin were found associated with SeV particles and, interestingly, mutations 

of the actin binding domain in F resulted in a significant reduction in SeV VLP production, indicating 

that binding of SeV F protein to actin is important for budding of the virus. The requirement of the 

cytoplasmic tail domains of glycoproteins for budding of several paramyxoviruses may indicate that 

these domains are involved in binding cellular factors that usually are involved in exocytic pathways. 

Another significant role of paramyxovirus glycoproteins in paramyxovirus particle production is 

manifested in RSV production. Short filament-like structures containing F and G were seen in cells 

infected with M-null virus suggesting that RSV glycoproteins are capable of deforming the cell membrane 

and initiating bud formation [90]. Clustering of glycoproteins in lipid raft microdomains may create a 

pulling force on the plasma membrane and thus induce an initial membrane deformation that is further 

elongated by oligomerization of the matrix protein [113]. These observations suggest that the glycoproteins 

of paramyxoviruses can actively contribute to the budding process leading to virus egress from 

infected cells. 

6. Concluding Remarks 

Substantial progress has been made in understanding the mechanisms of paramyxovirus particle 

production. Paramyxoviruses form at selected sites at the plasma membrane of host cells as a result of 

coordinated interactions between viral components and between viral and cellular factors. The role  

of the matrix protein as the principal organizer of the assembly process has been well established, and 

recent structural data obtained from several paramyxovirus matrix proteins revealed important 

information on the molecular basis of the ability of M to drive particle formation. M can associate  

with the plasma membrane, self-oligomerize to form a lattice, and interact with glycoproteins, the RNP 

complex and several host factors mainly through its N-terminal domain. The viral protein-protein 

interactions involved in particle assembly have been demonstrated for a variety of paramyxoviruses. 

While there are differences between members of the family in terms of specific host cell protein 

interactions or points of viral protein-protein interactions, the general concepts of coordinated assembly 

are consistent. However, the mechanisms by which different viral components reach the plasma 

membrane and coordinate their localization at assembly sites still require further investigation. It is 

evident from the studies summarized in this review that fundamental differences exist among the 

different family members in the mechanisms that underlie coordinated targeting to the assembly  

site, and three different models for paramyxovirus assembly can at present be deduced (Figure 4). 

What factors determine which mechanism is employed by specific paramyxoviruses for completion of 
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their life cycle is currently unknown. It is possible, however, that some family members can employ 

more than one assembly mechanism either simultaneously or at different times during infection, depending 

on cellular factors or in vivo conditions. 

Figure 4. Potential models of paramyxovirus assembly: fusion protein shown in purple, 

attachment protein in magenta, matrix protein in green and the RNP complex in brown. 

 

In the first model, the fusion and attachment proteins interact following their synthesis in the  

ER and are co-transported to the plasma membrane as a complex. The matrix protein associates with 

the RNP in the cytoplasm and carries it to the plasma membrane where it assembles with surface 

glycoproteins. This model can be deduced mainly from studies done on MeV. Alternatively, the fusion 

and attachment proteins can traffic separately to the cell surface. In some cases, like SeV (model 2), 

the fusion protein can bind the matrix protein in the ER, and the two are transported as a complex to 

the plasma membrane where they create a nucleation site for assembly. Incorporation of the attachment 

protein likely occurs though interactions with M or with F. The RNP can traffic by itself to the assembly 

site and is packaged within particles upon binding to M or one of the glycoproteins. Studies of  

RSV suggest a third model of paramyxovirus assembly, where the formation of an assembly complex 

containing F, M and the RNP core occurs in inclusion bodies in the cytoplasm, with a role of the 

cytoplasmic tail of F in targeting M-RNP to assembly sites. While these models, and potentially others 

to be generated after future research, provide insight into glycoprotein incorporation and paramyxovirus 

assembly, several critical questions remain to be answered to obtain a complete understanding of 

paramyxovirus particle formation. 

One of the key unanswered questions is how are assembly sites initiated? Is the clustering of 

surface glycoproteins in membrane raft domains sufficient to create an outward bud in the plasma 

membrane to which other viral components are recruited, or is the interaction of M with the cytoplasmic 

tail of glycoproteins and its self-oligomerization the main driver for the formation of assembly 

nucleation sites? The requirements for the formation of budding precursor sites may vary among 

different paramyxoviruses. For RSV, the fusion protein seems to be the significant contributor for the 
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formation of short viral filaments without the need for M or the host cytoskeleton. On the other hand, 

the actin cytoskeleton and the interaction between M and the cytoplasmic tail of F appear to drive  

SeV particle formation at the plasma membrane. Another significant area of study is to determine the 

cellular pathways that are utilized by the matrix proteins and the RNP core that allows their delivery  

to assembly sites and subsequent packaging of the RNA genome into virions. Important questions  

also remain regarding how membrane budding and the final scission process are established for 

paramyxoviruses, particularly for those viruses that do not utilize the well-characterized ESCRT 

proteins. What are the cellular factors that play a role in budding of paramyxoviruses, and how are  

they recruited by viral proteins? Thus, further studies are still required to clarify multiple aspects of 

paramyxovirus particle production and to uncover the differences that exist in the molecular mechanisms 

utilized by different paramyxoviruses to form new infectious particles. Future discoveries in this field 

may contribute to the development of antivirals against paramyxovirus infections. 
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