Safety Improvement Program for Toll Roads KYP-77-84, HPR-PL-1(15), Part III-B

by

Jerry G. Pigman Research Engineer, Chief

Kenneth R. Agent Research Engineer, Chief

and

Joseph D. Crabtree Research Engineer

Division of Research Bureau of Highways DEPARTMENT OF TRANSPORTATION

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Bureau of Highways. This report does not constitute a standard, specification, or regulation.

July 1980

and the second second

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
	·	
		ŵ
4. Title and Subtitle		5. Report Date
		July 1980
Safety Improveme	nt Program for Toll Roads	6. Performing Organization Code
7. Author(s)	99600-496	B. Performing Organization Report No.
	. Agent, J. D. Crabtree	548
9. Performing Organization Nam	e and Address	10. Work Unit No. (TRAIS)
Division of Researc	2h	
Kentucky Departm	nent of Transportation	11. Contract or Grant No.
533 South Limesto	one Street	KYP-77-84
Lexington, Kentuc		13. Type of Report and Period Covered
2. Sponsoring Agency Name an	d Address	
		Interim
		14. Sponsoring Agency Code
5. Supplementary Notes		
. F. F		
Study Title: High	way Safety Improvement Program	
6. Abstract		₽₽₽₽₩₽₽₽₽₽₽₩₩₩₽₽₽₽₽₩₩₩₩₩₽₽₽₽₩₩₩₩₩₽₽₽₽₽₩₩₽₽₽₽
primary methods field inventory. Th Also, accident rate	presents proposed safety improvements for of identifying needed improvements were accident analysis identified specific high- s were calculated for each toll road, and t e 3-year period were summarized. A senar	an accident analysis and a accident spots and sections. he types of accidents which
primary methods field inventory. The Also, accident rate had occurred in the accidents was made are now substanda were investigated is mated and used as ranking the impro- analysis at an estim	of identifying needed improvements were accident analysis identified specific high-	an accident analysis and a -accident spots and sections. the types of accidents which rate 10-year analysis of fatal ify roadway features which accident spots and sections ach improvement were esti- l used as a means of priority natives were included in the
 primary methods of field inventory. The Also, accident rate had occurred in the accidents was made are now substandad were investigated is mated and used as ranking the improvision analysis at an estime greater than 1.0 totomore the structure of th	of identifying needed improvements were le accident analysis identified specific high- s were calculated for each toll road, and t e 3-year period were summarized. A separ le. The field inventory was used to ident rd and in need of upgrading. Also, high- in the field. The benefits and costs for e- input into a dynamic programming model vements. A total of 42 improvement alter ated cost of \$58.5 million. Those alternation rated only \$8.7 million.	an accident analysis and a -accident spots and sections. the types of accidents which rate 10-year analysis of fatal ify roadway features which accident spots and sections ach improvement were esti- l used as a means of priority natives were included in the
 primary methods of field inventory. The Also, accident rate had occurred in the accidents was made are now substandad were investigated is mated and used as ranking the improvide analysis at an estime greater than 1.0 tot 7. Key Words 8. K	ts Needs high the source summarized for each toll road, and the te accident analysis identified specific high- s were calculated for each toll road, and the e 3-year period were summarized. A separ te and in need of upgrading. Also, high- in the field inventory was used to ident and in need of upgrading. Also, high- in the field. The benefits and costs for en- input into a dynamic programming model vements. A total of 42 improvement alternation attend cost of \$58.5 million. Those alternation taled only \$8.7 million.	an accident analysis and a -accident spots and sections. the types of accidents which rate 10-year analysis of fatal ify roadway features which accident spots and sections ach improvement were esti- l used as a means of priority natives were included in the ives with benefit-cost ratios
 primary methods of field inventory. The Also, accident rate had occurred in the accidents was made are now substandad were investigated is mated and used as ranking the improvision analysis at an estime greater than 1.0 totomore the structure of th	ts Needs high the source summarized for each toll road, and the te accident analysis identified specific high- s were calculated for each toll road, and the e 3-year period were summarized. A separ te and in need of upgrading. Also, high- in the field inventory was used to ident and in need of upgrading. Also, high- in the field. The benefits and costs for en- input into a dynamic programming model vements. A total of 42 improvement alternation attend cost of \$58.5 million. Those alternation taled only \$8.7 million.	an accident analysis and a -accident spots and sections. the types of accidents which rate 10-year analysis of fatal ify roadway features which accident spots and sections ach improvement were esti- l used as a means of priority natives were included in the ives with benefit-cost ratios

COMMONWEALTH OF KENTUCKY

FRANK R. METTS SECRETARY DEPARTMENT OF TRANSPORTATION Division of Research 533 South Limestone Lexington, KY 40508

July 29, 1980

JOHN Y. BROWN, Jr. GOVERNOR

H-3-84

MEMO TO: G. F. Kemper State Highway Engineer

SUBJECT: Research Report 548; "Safety Improvement Program for Toll Roads," KYP-77-84; HPR-PL-1(15), Part III-B

Reports 495 and 517 were prepared to document the safety improvement needs of the interstate system. This report, which closely follows a users' guide included in Report 517, is a compilation of recommended improvements for the toll roads. Our studies are progressing from interstates to toll roads and then to the primary system. Certainly the most difficult is the development of a safety improvement program for the primary system. This task will be undertaken sometime after January 1, 1981, which is the date when one year of accident data will be available using new codes for accident tapes.

Experience gained in preparation of the interstate reports aided in the preparation of a safety improvement program for toll roads. In addition, we were able to analyze longer periods of accident data for the toll road system.

A total of 42 alternatives were included in the list of potential improvements for the toll road system. The estimated cost for all improvements was \$58.5 million; however, those alternatives having benefit-cost ratios greater than 1.0 totaled only \$8.7 million.

Respectfully submitted

Jas. H. Havens Director of Research

JGP:gh cc: Research Committee

Contents

Introd	luction	•	•	•	• •	•	1
Procee	dure	•					1
	Accident Analyses						1
	Field Inventory	ø		•			3
	Other Improvement Recommendations						4
	Determination of Benefits and Costs						4
	Dynamic Programming						4
Result	ts ·	۵					4
	Accident Analyses						4
	Field Inventory						
		•	•	•	•••	•	
Deeee	nmended Improvements						26
Recon		•	•	•	•••	•	20
n_::	ty Ranking						36
Priorit	ty Ranking	•	•	•	•••	•	
							37
Summ	1ary	•	•	۰	•••	•	57
· .							30
Refere	ences	٠	•	•	• •	•	38
		.					
APPE	NDIX A. Photographs of Various Roadway Features	•	•	•	• •	•	39
APPE	NDIX B. Summaries of Locations With High Numbers of Various Accident	Ty	'pe	S		•	55
	•						
APPE	NDIX C. Analyses of Coded Accident Data	٠			•	•	59
APPE	NDIX D. Fatal Accident Analysis					•	63
1							
APPF	NDIX E. Locations of Median Crossovers, Interchanges, and County Lines						67
ADDE	NDIX F. Accidents Included When Determining Percentage Reductions .		_	_			77
AFTE	MADALE I. Methodies Mediades when Determining recentings readersons.	•	•	-		-	
ል ነን የንሞን	NDIX G. Unit Costs for Recommended Improvements				_	<u> </u>	81
Arre	MDIA G. One Costs for Recommended improvements	•	•	•		•	~ ~
A 1379 F	NDIX H. Listing of Recommended Improvements for Various Budgets						85
Affe	NDIA n. Listing of Recommended improvements for various budgets	٠	•	•	•		00

,

List of Tables

Table 1. Interchange- and Intersection-Related Accident Categories 1
Table 2. Bridge-Related Accident Categories 1
Table 3. Mainline Accident Categories
Table 4. Accident Characteristics Summarized from Coded Data
Table 5. Roadway Features Included in the Field Inventory 3
Table 6. Accident Summary by Type of Accident for Each Toll Road (1976-1978)
Table 7. Accident Rate by Toll Road 5
Table 8. Summary of Mainline Accidents 5
Table 9. Summary of Interchange-Related Accidents 6
Table 10. Summary of Bridge-Related Accidents 7
Table 11. Mainline Accident Rate 7
Table 12. Critical Number of Mainline Accidents (1976-1978) 7
Table 13. Listing of 0.3-Mile (0.5-km) Spots in Order by Critical Rate Factor 8
Table 14. Listing of 1-Mile (1.6-km) Sections in Order by Critical Rate Factor
Table 15. Listing of 2-Mile (3.2-km) Sections in Order by Critical Rate Factor
Table 16. Listing of 5-Mile (8.0-km) Sections in Order by Critical Rate Factor
Table 17. Listing of 10-Mile (16-km) Sections in Order by Critical Rate Factor
Table 18. Interchange Accident Rate 12
Table 19. Analysis of Interchange Data 12
Table 20. Accident Rate on Bridges 14
Table 21. Analysis of Bridge Data

Table 22. Summary of Accidents by Type of Collision 18
Table 23. Locations with Three or More Animal-Related (Primarily Deer) Accidents in 2 Mile (3.2 km)19
Table 24. General Description of Fatal Accidents 19
Table 25. Detailed Description of Fatal Accidents 20
Table 26. Accident Rate by Toll Road and County 21
Table 27. Comparison of Accident Data on Bridges With and Without Full-Width Shoulders 22
Table 28. Accidents Associated with Types of Interchanges 22
Table 29. Relationship Between Adequacy Rating and Accident Rates for Bridges 22
Table 30. Summary of Numbers of Different Guardrail End Treatments
Table 31. Number of Underpasses on Toll Roads
Table 32. Summary of Median and Shoulder Pier Protection
Table 33. Summary of Bridge Inventory Data 23
Table 34. Summary of Interchange Inventory Data 24
Table 35. Summary of Median Crossovers 24
Table 36. Summary of Various Roadway Features Inventoried
Table 37. Recommended Safety Improvements at High-AccidentLocations - 0.3-Mile (0.5-km) Spots (In Order by CriticalRate Factor)
Table 38. Recommended Safety Improvements at High-Accident Locations – 1.0-Mile (1.6-km) Sections (In Order by Critical Rate Factor) 29
Table 39. Recommended Safety Improvements at High-Accident
Interchanges and Intersections
Table 40. Recommended Safety Improvements at High-Accident Bridges
Table 41. Types of Highway Safety Improvement Work Included in Interstate Cost Estimate
Table 42. Recommended Improvement Alternatives 32

ı

.

Table 43. Numbers and Types of Improvements by Route for System Improvements
Table 44. Summary of Cost by Benefit-Cost Ratio 35
Table 45. Costs and Benefits for Various Budgets
Table B-1. Locations with Four or More Accidents per Mile (1.6 km) During Darkness 57
Table B-2. Locations with Three or More Guardrail Accidents in One Mile (1.6 km)
Table B-3. Locations with Three or More Wet Pavement Accidents During Darkness in One Mile (1.6 km)
Table B-4. Locations with Five or More Wet Pavement Accidents in Two Miles (3.2 km) 58
Table B-5. Locations with Three or More Snow and Ice Accidents in One Mile (1.6 km) 58
Table B-6. Locations with Four or More Fatal or Injury Accidents in One Mile (1.6 km)
Table B-7. Locations with Eight or More Accidents in Five Miles (8.5 km) Due to Unsafe Speeds
Table C-1. Number of Accidents by Year 61
Table C-2. Summary of Accidents by Month 61
Table C-3. Summary of Accidents by Time of Accident
Table C-4. Summary of Accidents by Road Surface Condition
Table C-5. Summary of Accidents by Light Conditions 61
Table C-6. Severity of Accidents by Toll Road 61
Table C-7. Summary of Accidents by Most Severe Injury
Table C-8. Summary of Accidents by Type 61
Table C-9. Summary of Accidents by Roadway Character
Table C-10. Summary of Accidents with Given Human, Vehicular, or Environmental Factors 62
Table D-1. Locations with Critical Number of Fatal Accidents
Table D-2. Summary of Fatal Accidents by Route 65

	Table D-3. Summary of Fatal Accidents by Year 65
	Table D-4. Summary of Fatal Accidents by Month 65
	Table D-5. Summary of Fatal Accidents by Hour 65
	Table D-6. Summary of Fatal Accidents by Light Conditions 65
	Table D-7. Summary of Fatal Accidents by Road Surface Conditions 65
	Table D-8. Summary of Fatal Accidents by Contributing Factors 66
•	Table D-9. Summary of Fatal Accidents by Vehicle Type 66
	Table D-10. Summary of Fatal Accidents by Type of Location
·	Table D-11. Types of Fixed Objects Most Frequently Involved in Fatal Accidents 66

-

List of Figures

Figure 1. Example output from dynamic programming with information about a safety improvement
Figure 2. Example output from dynamic programming showing a listing of projects in order by benefit-cost ratio
Figure 3. Example output from dynamic programming showing the recommended list of improvements given a \$5,000,000 budget
Figure A-1. Types of protectors at median-pier
Figure A-2. Types of protectors at shoulder-pier
Figure A-3. Types of protection at gap between bridges
Figure A-4. Various types of median crossovers
Figure A-5. Rock cut and rock outcropping
Figure A-6. Types of guardrail end treatments
Figure A-7. Types of median drainage inlets
Figure A-8. Protected and unprotected toll booths
Figure A-9. Various obstructions in the gore
Figure A-10. Short section of guardrail at hazardous culvert headwall
Figure A-11. Rigid sign supports
Figure A-12. Breakaway sign supports
Figure A-13. Guardrail not attached to bridge
Figure A-14. Typical bridge rail and curb
Figure A-15. Short gap between two sections of guardrail
Figure A-16. Direct access permitted on Daniel Boone Parkway
Figure A-17. High-accident location: intersection of Daniel Boone Parkway and KY 472
Figure A-18. High-accident location: intersection of Cumberland Parkway and Ringo Road

Figure A-19. High-fatality location: ramp from Green River Parkway to US 60 bypass, westbound	53
Figure E-1. Locations of median crossovers, interchanges, and county lines on the Mountain Parkway	69
Figure E-2. Locations of median crossovers, interchanges, and county lines on the Western Kentucky Parkway	70
Figure E-3. Locations of median crossovers, interchanges, and county lines on the Bluegrass Parkway	71
Figure E-4. Locations of median crossovers, interchanges, and county lines on the Purchase Parkway	72
Figure E-5. Locations of median crossovers, interchanges, and county lines on the Pennyrile Parkway	73
Figure E-6. Locations of median crossovers, interchanges, and county lines on the Audubon Parkway	74
Figure E-7. Locations of median crossovers, interchanges, and county lines on the Green River Parkway	74
Figure E-8. Locations of median crossovers, interchanges, and county lines on the Cumberland Parkway	75
Figure H-1. List of recommended improvements given a \$3,000,000 budget	87
Figure H-2. List of recommended improvements given a \$6,000,000 budget	87
Figure H-3. List of recommended improvements given a \$9,000,000 budget	87
Figure H-4. List of recommended improvements given a \$12,000,000 budget	88
Figure H-5. List of recommended improvements given a \$15,000,000 budget	88
Figure H-6. List of recommended improvements given a \$17,000,000 budget	89
Figure H-7. List of recommended improvements given a \$18,000,000 budget	89
Figure H-8. List of recommended improvements given a \$21,000,000 budget	90
Figure H-9. List of recommended improvements given a \$24,000,000 budget	90
Figure H-10. List of recommended improvements given a \$27,000,000 budget	91
Figure H-11. List of recommended improvements given a \$30,000,000 budget	91

Introduction

To provide the highest degree of safety on the highway system, there is a need to continually monitor the accident experience and to make improvements where justifiable. Since 1968, the Kentucky Department of Transportation has had a program to facilitate safety improvements at high-accident locations. An evaluation of this program showed that improvements

Procedure

Accident Analyses

Much of the information required for each accident is available from a computer file. However, since additional details concerning the type of accident were needed, copies of the reports of all accidents occurring on toll roads duringa three-year period (1976-1978) were obtained. Information given on the accident report enabled each accident to be classified into one of have reduced accidents, and the improvements were cost-effective.¹

In a previous report, an accident analysis and field inventory was used to prepare a priority ranking of improvements for the interstate system.² The objective of the study reported here was to prepare a list of recommended improvements for Kentucky's toll roads. The toll road system consists primarily of four-

• Interchange- and intersection-

• Bridge-related (Table 2); or

• Mainline-related (Table 3).

These categories are divisions of a

revised directional analysis and

were subsequently approved by the

Kentucky State Police and included

in the computer accident file.³

Other information coded from the

accident report included such vari-

related (Table 1);

three categories:

lane highways with full-access control. However, most of one toll road and part of another are twolane, and there are some at-grade intersections. The previous report contained a users' guide for preparation of a safety improvement program. The methodology contained in that guide was used in this study of toll roads.

Table 2. Bridge-Related Accident Categories.

51 -	Not	stated
------	-----	--------

- 52 Hit bridge rail or curb
- 53 Hit bridge abutment
- 54 Rear end accident
- 55 Ran off road after losing control on bridge
- 56 Head-on
- 57 Opposite-direction sideswipe
- 58 Same direction sideswipe
- 59 Through or over bridge rail
- 60 Gap between bridges
- 61 Hit approach guardrail
- 62 Other bridge related accident

Table 1. Interchange- and Intersection-Related Accident Categories.

Interchange	Intersection
trance Ramp	00 - Not stated
- Not stated	01 — Angle accident — both straight
 Rear-end accident on ramp 	02 — Angle accident — one turning left
 Angle accident between ramp vehicle and mainline vehicle 	03 - Angle accident - one turning right
- Sideswipe accident on ramp	04 — Angle accident — other
- Rear-end accident on mainline at ramp	05 - Rear end - both straight
- Ramp vehicle hit fixed object	06 - Rear end - one turning left
- Ramp vehicle ran off road	07 — Rear end — one turning right
- Sideswipe accident between mainline vehicles	08 — Rear end — accident on exit ramp
 Other accident related to entrance ramp 	09 — Rear end — other
	10 - Opposite direction - one left turn, one straight
Ramp	11 - Opposite direction - both going straight
- Not stated	12 - Opposite direction - other
Sideswipe accident related to ramp	13 – Fixed object
- Vehicle hit fixed object in gore	14 — Single vehicle
- Ramp vehicle hit fixed object not in gore	15 - Pedestrian
- Rear-end accident before ramp	16 – Vehicle backing
- Ramp vehicle ran off road	17 – Merging from ramp
- Other accident related to exit ramp	18 — Merging onto ramp
	19 - Other

Table 3. Mainline Accident Categories.

Roadway Sections and Mid-Block

- 26 Not stated
- 27 Rear end accident in traffic lane
- 28 Hit fixed object
- 29 Ran off roadway
- 30 Head-on collision
- 31 Sideswipe accident (same direction)
- 32 Sideswipe accident (opposite direction)
- 33 Pedestrian
- 34 One car entering driveway or alley
- 35 One car leaving driveway or alley
- 36 Entering or leaving parked position
- 37 Median cut accident
- 38 Wrong-way vehicle accident
- 39 Vehicle backing
- 40 Rear end accident on shoulder
- 41 Other shoulder-related accident
- 42 Animal-related accident
- 43 Other

Miscellaneous

- 91 Not stated
- 92 Parking lot
- 93 Train
- 94 Toil booth
- 95 Other train-crossing-related
- 96 Other

ables as lighting and roadway surface conditions. Accident location information (route and milepost) was also coded. The coded information was punched onto computer cards (one card per accident), for a detailed analysis. A list of the accident characteristics summarized from the coded data is given in Table 4.

Lists of high-accident, mainline sections were obtained using various section lengths: 0.3 mile (0.48 km), 1 mile (1.6 km), 2 miles (3.2 km), 5 miles (8.0 km), and 10 miles (16 km). Also, lists of high-accident interchanges and bridges were obtained. Each accident classified as bridge- or interchange-related was assigned to a specific bridge or interchange. The number of accidents occurring at each interchange and bridge was found and compared to a critical number. The critical number of accidents for an interchange, bridge, or specific length of road was calculated using the following formula:⁴

$$Nc = Na + K(SQRT(Na)) + 0.5,$$
(1)

in which Nc is the critical number of accidents; Na is the average number of accidents; K is the constant related to levels of statistical significance (P) selected (for P =0.95, K = 1.645; for P = 0.995, K = 2.576); and SQRT is the square root.

Average and critical accident rates were calculated using traffic volumes. A level of significance of 0.995 was used. Volumes within a given milepost range for mainline section were obtained from a computer file. The number of vehiclemiles (vehicle-kilometers) traveled on a particular section of road was calculated directly from the volume and section length. The lengths of bridges along with the volumes also gave vehicle-miles (vehicle-kilometers). The total interchange volume was estimated using the mainline volume and the number of ramps. The critical rate for a highway section is given by⁵

Ac = Aa + K(SQRT(Aa/m)) + 1/(2m),

(2)

in which Ac is the critical accident rate, in accidents per million vehicle-miles (1.6 million vehicle-kilometers); Aa is the average accident rate, in accidents per million vehicle-miles (1.6 million vehicle-kilometers); and m is the annual million vehicle-miles (vehicle-kilometers).

For spots and within interchanges, the annual volume was used rather than the number of vehicle-miles. Thus, the values of Ac and Aa were expressed in terms

Table 4. Accident Characteristics Summarized from Coded Data.

- 1. Summary by parkway
- 2. Summary by year
- 3. Summary by month
- 4. Summary by hour of day
- 5. Summary by roadway surface condition
- 6. Summary by light conditions
- 7. Summary by roadway character
- 8. Summary by type of accident
- 9. Summary by contributing factors environmental
- Summary by contributing factors vehicular
- 11. Summary by contributing factors human
- 12. Summary by accident severity
- 13. Summary by directional analysis
- 14. Summary by weather conditions
- 15. Summary by traffic control
- 16. Summary by county by route
- 17. Summary by directional analysis by severity
- 18. Summary by severity by route
- 19. Summary by directional analysis by route
- 20. Summary by severity by light conditions
- 21. Summary by severity by roadway surface conditions
- 22. Summary by severity by type of accident
- Summary by type of accident by parkway

of accidents per million vehicles.

Comparing these calculated critical rates with actual rates resulted in lists of high-accident locations. Dividing the accident rate for a particular interchange, bridge, or roadway section by the critical accident rate for the location resulted in a critical rate factor. A critical rate factor of 1.0 or above meant that the location had a critically high accident rate. A computer listing by critical rate factor (in descending order) was then obtained for each accident category. These lists identified the high-accident locations. The severity of each accident was determined and used to compare several of the accident characteristics shown in Table 4. The severity index used to make these comparisons is given by¹

Severity Index (SI) = EPDO/N,

(3)

in which N is the total number of accidents; EPDO is 9.5 (K + A) + 3.5 (B + C) + PDO; K is the number of fatal accidents; A is the number of A-type injury accidents (accidents in which an A-type (incapacitating) injury was the most severe injury sustained); B is the number of B-type (nonincapacitating) injury accidents; C is the number of C-type (possible) injury accidents; and PDO is the number of property-damage-only accidents.

A separate analysis was used to determine locations which had a critical number of a particular type of accident. The average number of accidents of a specific type was determined for a given length of roadway. Using Equation 1, the critical number of accidents was calculated. The specific accident types investigated included wet-pavement accidents, snow and ice accidents, fatal or injury accidents, accidents due to unsafe speed, accidents during darkness, animal-related accidents, and accidents involving guardrail.

A special investigation of fatal accidents was performed. Copies of the reports of all accidents involving a fatality were obtained for a 10-year period (1970-1979). Information from these reports was coded and summarized. Each accident was placed into one of several descriptive categories. Sections of toll road where several fatal accidents had occurred were identified.

A comparison of accident data on bridges with and without fullwidth shoulders was made. A comparison of accident rates on bridges with various sufficiency ratings was performed. Also, interchanges were divided into several types, and accident rates were calculated for each type.

An information source utilized to identify substandard and hazardous bridges was the adequacy rating of each bridge. This rating involves the subjective and objective ratings of condition, safety, and service elements. Adequacy ratings were useful in selecting various types of recommended bridge improvements. Bridges with deficient safety features were included in the list of recommended improvements. The improvements included

- Upgrading approach guardrail,
- Upgrading bridge rail,
- Attaching approach guardrail to bridge structure, and
- Installation of acceptable endtreatment on approach guardrail.

Field Inventory

It was necessary to survey all toll roads (approximately 650 miles (1046 km)) for the purpose of inspecting high-accident locations and conducting an inventory of selected roadway features. Some toll roads had features which are now in need of upgrading. To obtain an estimate of the total cost for such improvements, it was necessary to count the number of each offending feature. For example, the present standard for guardrail ends is the breakaway cable terminal; however, almost all guardrail ends on toll roads are either buried or blunt. It was necessary to conduct an inventory of the number of each type of guardrail end to estimate the costs of updating all guardrail ends to current standards.

A listing of the general roadway features included in the field inventory is given in Table 5. The numbers of buried, breakaway, blunt, and flared guardrail ends were deTable 5. Roadway Features Included in the Field Inventory

- 1. Type of guardrail end
- 2. Bridge pier protection
- 3. Bridge shoulder width
- 4. Bridge safety features
- 5. Curb on bridge
- 6. Protection of gap between bridges
- 7. Bridge deck condition
- 8. Sidewalk on bridge
- 9. Interchange lighting
- 10. Gore area features
- 11. Toll booth protection
- 12. Unnecessary guardrail
- 13. Additional guardrail
- 14. Signs
- 15. Hazardous culvert headwall
- 16. Nonbreakaway lighting standards
- 17. Unprotected overhead sign support
- 18. Hazardous rock outcropping or rock cut
- 20. Median crossovers
- 21. Roadway delineation

termined for guardrail used on fills, at bridge piers, at bridge rails, and in gaps between bridges. The type of protector used for bridge piers in medians was noted - guardrail, earth mounds, and shrubs have been used; several had no protector. For bridges, the shoulder width, the existence of a curb or sidewalk, the type of protector at the median gap, and the traffic safety features were inventoried. Safety features consisted of the bridge-rail/guardrail transition, and guardrail endtreatment. Safety features had previously been rated as good or poor, and these ratings were verified. Bridge deck conditions had also been rated previously.

The number of signs (classified as breakaway, rigid, or protected) and nonbreakaway lighting standards were determined. The number of lighted interchanges was counted. Gore areas were classified as clear or the features in the gore were

noted. The features included exit signs (if not breakaway), lightposts, guardrail, or a combination of several features. Toll-booth protection was summarized. The lengths of all rock cuts and rock outcroppings closer than 30 feet (9.1 m) to the roadway were tabulated. Hazardous culvert headwalls were summarized. Median crossovers were counted. Crossovers were divided into those which were designed and those which had been created by frequent use. All features inventoried, with the exception of bridges, were summarized by mile. Photographs of various roadway features were taken and are presented in APPENDIX A.

Other Improvement Recommendations

Memos were sent to district engineers and division directors asking their recommendations for needed improvements on the toll roads. Recommendations for improvements at specific locations, as well as general improvements to certain roadway features, were received. All of these recommendations were considered for inclusion into the safety improvements for toll roads.

Determination of Benefits and Costs

To obtain a priority ranking of the recommended safety improvements, benefits and costs had to be assigned. The annual benefits were calculated based on the number of fatal, injury, and property-damageonly accidents which would be affected by the improvement, and the estimated percentage reduction for each of the types of accidents. Monetary benefits from the reduction in accidents were based on the following National Safety Council costs (1978) for various degrees of accident severity:

Fatality	\$1	50,000
Injury	\$	5,800
Property-Damage-Only	\$	850

The percentage reductions were based on previous research findings for the type of improvements considered, as well as subjective opinions based on results of past safety improvement programs. The costs were the actual installation or construction costs of the improvement, plus the annual maintenance costs. The improvement cost was based on past unit price bids for the type of improvement, other research reports, and information from manufacturers of various safety devices.

The present worth of the benefits was calculated from a given interest rate, an exponential growth rate factor for traffic volume, and a service life for each improvement. Benefit-cost ratios were then determined for each improvement type.

Dynamic Programming

Multistage dynamic programming was used as the means of priority ranking the improvements. Using the present worth of the benefits and costs of the improvements, along with a specific program budget, the combination of improvements which would yield the greatest benefits was determined. Several theoretical budgets were input into the program, and the improvement types which would yield optimum results were output for each budget. Dynamic programming procedures used for priority ranking in this study were similar to those applied to Kentucky's High-Accident, Spot Improvement Program.6

Results

Accident Analyses

A search of the 1976-1978 accident reports disclosed a total of 2,044 accidents on the toll roads. The accidents were summarized by type for each toll road, as shown in Table 6. A large majority of the accidents (86 percent) was classified as mainline occurrences. The percentage of interchange-related accidents was much smaller (10 percent), while bridge-related accidents made up the smallest percentage (5 percent). The Pennyrile and Western Kentucky Parkways had the largest number of accidents, while Table 6. Accident Summary by Type of Accident for Each Toll Road (1976-1978).

Parkway	Mainline	Interchange Related	Bridge Related	Total
Mountain (Mtn)	316	16	18	350
Western Kentucky (WKy)	387	31	19	437
Bluegrass (BG)	210	11	19	240
Purchase (Pur)	70	14	3	87
Pennyrile (Pen)	385	38	23	446
Audubon (Aud)	39	10	4	53
Daniel Boone (DB)	128	41	1	170
Green River (GR)	159	19	9	187
Cumberland (Cum)	54	17	3	74
All	1748	197	99	2044

the Audubon, Cumberland, and Purchase Parkways had the fewest accidents.

A detailed analysis of accident rates is given in Table 7. The overall accident rate for all toll roads was 80 accidents per 100 million vehicle-miles (MVM) (160 million vehicle-kilometers (MVK)). This low rate is similar to the rate for rural interstates. Almost all of the toll roads are in rural areas, and only parts of some pass near the edges of cities. Therefore, the system was not divided into rural and urban sections. The highest accident rates in terms of accidents per 100 MVM (160 MVK) were for the Daniel Boone and Mountain Parkways. These are the only toll roads with two-lane sections, and the higher

	Le	ngth	Accidents per Year	Vehicle Miles	Average AADT	Accidents per 100 Million Vehicle Miles (160 million	Accidents per Mile
Parkway	Miles	km	(1976-1978)	(100 million)	(1977)	Vehicle kms)	(1.6 km)
Mtn	75,6	121.6	117	1.284	4650	91	1.5
WKy	133.1	214.2	146	1.866	3840	78	1.1
BG	71.1	114.4	80	1.015	3910	79	1.1
Pur	52.3	84.2	29	0.339	1770	86	0.6
Pen	71.4	114.9	149	1.740	6680	86	2.1
Aud	23.5	37.8	18	0.268	3130	67	0.8
DB	59.1	95.1	57	0.598	2770	95	1.0
GR	70.2	113.0	62	0.779	3040	80	0.9
Cum	88,5	142.4	25	0.549	1700	46	0.3
All	644.8	1037.5	681	8.438	3600	80	1.1

Table 7. Accident Rate by Toll Road.

Table 8. Summary of Mainline Accidents

Directional Analysis	Number of Accidents	Percent of Total	Severity Index
Not Stated	4	0.2	3.83
Rear-End accident in traffic lane	152	8.7	2.84
Hit fixed object	390	22 .3	3.06
Ran off roadway	453	25.9	2.89
Head-on collision	17	1.0	5.59
Sideswipe accident			
(same direction)	95	5.4	1.75
Sideswipe accident			
(opposite direction)	25	1.4	2.82
Pedestrian	1	0.1	3.50
One car entering driveway			
or alley	2	0.1	2.25
Entering or leaving parked			
position	3	0.2	4.67
Median cut accident	22	1.3	3.34
Wrong-way vehicle accident	8	0.5	4.06
Vehicle backing	7	0.4	2.21
Rear-end accident on shoulder	24	1.3	4.21
Other shoulder related accident	19	1.1	2.55
Animal related accident	182	10.4	1.36
Other	218	12,4	1.73
Parking lot	8	0.5	1.00
Toll Booth	118	6.8	1.67

rates are probably related to the geometries of the road. The Daniel Boone Parkway is two-lane with truck-climbing or passing lanes. The lowest rate was on the Cumberland Parkway, which also had the lowest volume of traffic. The overall average volume for the toll roads was only 3,600 vehicles per day. The Pennyrile Parkway had the highest volume and also the highest number of accidents per mile. The Cumberland Parkway had the lowest number of accidents per mile.

Each accident was categorized into one of the three major divisions (mainline-related, interchange-related, and bridge-related). Summaries of the accidents in each category are given in Tables 8, 9, and 10.

Mainline accidents primarily involved vehicles running off the roadway or hitting a fixed object (Table 8). These are single-vehicle accidents and were the predominant accident type on toll roads. Head-on collisions were the most severe, occurring primarily on the two-lane sections of road. Also, wrong-way-vehicle accidents involving a head-on collision on four-lane roads were very severe. Accidents involving a vehicle parked on the shoulder were also severe. There was a relatively large percentage (10 percent) of animal-related accidents, primarily involving deer. There was also a large number of accidents related to toll booths (7 percent).

Interchange-related accidents were divided into those occurring on the exit ramp, entrance ramp, or intersection of the ramp and cross-

Table 9. Summary of Interchange-Related Accidents.

Directional Analysis	Number of Accidents	Percent of Total	Severity Index
Entrance Ramp			
Not Stated	1	0.5	3.50
Rear-end accident on ramp	10	5.1	1.50
Angle accident between ramp vehicle	10	<i>Q</i> .1	1.00
and mainline vehicle	8	4.1	1.00
Sideswipe accident on ramp	3	1.5	1.00
Rear-end accident on mainline at ramp	2	1.0	1.00
Ramp vehicle hit fixed object	6	3.0	1.00
Ramp vehicle ran off road	6	3.0	2.67
Sideswipe accident between	0	0.0	2.07
mainline vehicles	1	0.5	1.00
Other accidents related to entrance ramp	9	4.6	3.17
Exit Ramo	3	7.0	0.17
Sideswipe accident related to ramp	3	1.5	1.00
Vehicle hit fixed object in gore	7	3.6	1.30
Ramp vehicle hit fixed object not	/	5.0	1.7 1
•	21	10.7	1.12
in gore	21	10.7	1.83
Rear-end accident before ramp	13	6.6	3.92
Ramp vehicle ran off road	13		
Other accidents related to exit ramp	17	8.6	1.44
ntersection		4 4 59	A 65
Angle accident - both straight	23	11.7	2.35
Angle accident - one turning left	14	7.1	2.93
Angle accident — one turning right	9	4.6	1.28
Angle accident — other	2	1.0	2.25
Rear-end accident — both straight	4	2.0	1.62
Rear-end accident - one turning right	1	0.5	3.50
Rear-end accident – on ramp	12	6.1	1.21
Other rear end	1	0.5	1.00
Opposite direction - one turning	~		4 66
left, one straight	2	1.0	1.00
Deposite direction - both		a a	.
going straight	4	2.0	3.12
Fixed Object	3	1.5	2.67
Single vehicle	2	1.0	1.00
/ehicle backing	1	0.5	1.00
Merging from ramp	5	2.5	2.00
Merging onto ramp	2	1.0	2.25
Other	2	1.0	2.25

road (Table 9). More accidents occurred on the exit ramp than the entrance ramp, but the largest number occurred at the intersection of the ramp and the crossroad. Accidents there had to be directly related to the ramp to be included in this category. On entrance ramps, rear-end accidents occurred most often, followed by angle accidents between a vehicle leaving the ramp and a vehicle on the mainline. This indicates that merging created the largest number of accidents on entrance ramps. On exit ramps, most accidents were single-vehicle accidents on the ramp — the vehicle hit a fixed object in most cases. There were also several rear-end accidents on the exit ramp. In most cases, these were caused by drivers failing to properly decelerate when exiting. Most intersection accidents were angle accidents involving a vehicle turning onto or from a ramp.

The most common type of bridge-related accident involved a vehicle out of control and hitting the bridge rail or curb or running off the road past the bridge (Table 10). In many instances, these were related to adverse road surface conditions (ice). The next most common type involved hitting a bridge wingwall. These accidents were the result of the large number of older bridges that were constructed without full-width shoulders.

A separate analysis of rates was done for mainline-related, interchange-related, and bridge-related accidents. A summary of the mainline accident rate analysis is given in Table 11. Accident rates were calculated in terms of accidents per 1-mile (1.6-km) sections and 0.3-mile (0.5-km) spots. Also, spot and section rates were calculated using traffic volumes. The average mainline rate was lower than the overall rate for toll roads. Next, using Equation 1, the critical numTable 10. Summary of Bridge-Related Accidents.

Directional Analysis	Number of Accidents	Percent of Total	Severity Index
Hit bridge rail or curb	30	30.3	2.15
Hit bridge abutment	13	13.1	2.61
Rear-end accident	7	7.1	1.71
Ran off road after losing			
control on bridge	19	19.2	2.05
Head-on	2	2.0	6.50
Sideswipes -	-		
Opposite-direction	1	1.0	1.00
Same direction	5	5.1	3.20
Through or over bridge rail	3	3.0	6.67
Hit approach guardrail	9	9.1	2.89
Other bridge related accidents	10	10.1	1.50

Table 11. Mainline Accident Rate.*

	11-00-4117140-00-00-00-00-00-00-00-00-00-00-00-00-0
Mainline Accidents	
per Year (1976-1978)	583
Total Miles	635.9
Accidents per Mile	0.9
Average AADT	3595
Accidents per	
0.3 Mile (0.5 km) Spot	.27
Million Vehicles Per	
Year per Spot	1.312
Average Spot Accident	
Rate (Accidents per	'
Million Vehicles)	0.21
Vehicle Miles Driven	
(100 Million)	8.343
Section Accident Rate	
(Accidents per 100 mvm) **	70
Residing avaluate bridge	related and

 Mainline excludes bridge-related and interchange-related accidents. Also, miles of bridges and vahicle-miles driven on bridges ware excluded.

**A section is greater than 0.3 mile (0.5 km) in length. ber of mainline-related accidents for the 3-year study period was calculated for 0.3-mile (0.5-km) spots and section lengths of 1 mile (1.6 km), 2 miles (3.2 km), 5 miles (8.0 km), and 10 miles (16 km) (Table 12). A computer program identified spots and sections having a critical number of accidents; these were analyzed further using Equation 2. Computer listings of these locations were made in order by critical rate factor. These listings, shown in Tables 13-17, give the high-accident spots and sections on the mainline. The most dangerous locations have the highest critical rate factors. More detailed accident analyses were done at those locations to determine the types of safety improvements that would alleviate the accident problems.

Table 12. Critical Number of Mainline Accidents (1976-1978).

Len	gth	Number of Spots	Accidents per Spot	Critical Number of Mainline Accident in a 3-Year Period
Miles	km	or Sections	or Section	(1976-1978)
0.3	0.5	2120	0.8	4
1	1.6	636	· 2.7	8
2	3.2	318	5.5	12
5	8.0	127	13.7	24
10	16	63.7	27.4	42

A summary of interchange accident rates is given in Table 18. The rate, critical rate, and critical rate factor were calculated for each interchange, and Table 19 provides a listing by critical rate factor. This table gives the location, interchange volume, total number of ramps, number of entrance ramps, number of exit ramps, number of accidents per ramp, and other rate information.

A summary of accident rates for bridges is given in Table 20. These rates, in terms of vehicle-miles, were very high. Table 21 lists the bridges by critical rate factor and gives the bridge location, its length, traffic volume, sufficiency rating, number of accidents, rate, critical rate, and critical rate factor. Only a few bridges had accumulated several accidents during the three-year study period. Three or more accidents had occurred on only eight bridges. No bridge had a critical rate factor of one or higher.

In addition to searching for specific high-accident locations, the analysis also included an investigation of roadway elements which contributed to either the occurrence of accidents or accident severity. To identify hazardous roadway elements, general summaries of accident information, as shown in Table 4, were prepared. One useful summary was a printout by type of collision, as shown in Table 22. The data there show that the most common types of fixed-object accidents involved either a guardrail, a rock cut, or an earth embankment. The data would enable calculation of the average number of a specific accident type in a given section length. The critical number of accidents for that section could then be calculated and a list of locations exceeding the critical number could be obtained. Similar types of analyses could be made using other summaries of data given in Table 4.

Table 13. Listing of 0.3-Mile (0.5-km) Spots in Order by Critical Rate Factor (CRF).

		Beginning	Ending	Number of	Number of		A verage Daily	Accident	Critical		
County	Route	Milepost	Milepost	Accidents	Lanes	Class	Traffic	Rate	Rate	CRF	EPDO
43	9001	106.900	107.100	14	4	6	3640	3.51	1.61	2.18	27.5
99	9000	32.800	33.000	12	4	6	5540	1.98	1.29	1.54	14.5
119	9000	38.000	38.200	12	4	6	6030	1.82	1.23	1.47	33.0
3	9002	58,700	58.900	10	4	6	5480	1.67	1.29	1.29	12.5
114	9007	7.400	7.600	7	4						
114	3007	7.400	7.000	1	4	6	2960	2.16	1.81	1.19	12.0
77	9000	72.200	72.400	6	4	6	2400	2.28	2.04	1.12	19.5
89	9001	57.900	58.100	7	4	6	3590	1.78	1.62	1.10	9.5
79	9003	42.600	42.800	5	4	6	1610	2.84	2.60	1.09	13.5
63	9006	7.000	7.200	7	4	6	3750	1.70	1.58	1.08	9.5
117	9004	62,500	62,700	7	4	6	4770	1.34	1.39	0.96	18.0
89	9001	63.900	64.100	6	4	6	3590	1.53	1.62	0.94	8.5
51	9005	10.100	10.300	5	4	6	3140	1.45	1.75	0.83	18.5
54	9004	37.000	37.200	9	4	6	10710	0.77	0.93	0.83	16.5
99	9000 9000	21.000	21.200	9 7	4 4		6710				
						6		0.95	1.17	0.82	12.0
54	9001	24.300	24.500	5	4	6	3480	1.31	1.65	0.79	7.5
54	9001	32.900	33.100	5	4	6	3550	1.29	1.63	0.79	10.0
43	9001	91.800	92.000	5	4	6	3640	1.25	1.61	0.78	10.0
92	9001	75.000	75. 20 0	5	4	6	3650	1.25	1.61	0.78	7.5
120	9002	63.000	63.200	6	4	6	5360	1.02	1.31	0.78	14.5
26	9006	33.800	34.000	4	4	6	2400	1.52	2.04	0.75	4.0
66	9006	42.000	42.200	4	4	e	2340	1 60	0.07	0.75	17.5
						6		1.56	2.07		
66	9006	43.900	44.100	4	4	6	2340	1.56	2.07	0.75	9.0
119	9000	53.900	54.100	4	4	6	2440	1.50	2.02	0.74	15.0
16	9007	28.700	28.900	4	4	6	2780	1,31	1.87	0.70	4.0
99	9000	14.600	14.800	6	4	6	6710	0.82	1.17	0.70	14.5
99	9000	15.000	15.200	6	4	6	6710	0.82	1.17	0.70	8.5
26	9006	14.800	15.000	4	4	6	3140	1.16	1.75	0.67	23.5
54	9004	28.900	29.100	5	4	6	5400	0.85	1.30	0.65	10.0
90	9002	9,500	9.700	4	4	6	3360	1.09	1.68	0.65	6.5
90	9002	11.500	11.700	4	4	6	3360	1.09	1.68	0.65	9.0
40	0004	10 000	10.000	4	4	c	2400	4.05	4.05	0.64	10 E
43	9001	18.800	19.000	4	4	6	3480	1.05	1.65	0.64	12.5
47	9002	3.000	3.200	4	4	6	3390	1.08	1.68	0.64	6.5
54	9004	38.900	39.100	7	4	6	10710	0.60	0.93	0.64	12.0
54	9004	39.700	39.900	7	4	6	10710	0.60	0.93	0.64	29.0
90	9002	36.900	37.100	4	4	6	3390	1.08	1.68	0.64	23.5
115	9002	41.700	41.900	4	4	6	3430	1.07	1.66	0.64	15.0
54	9004	54.900	55.100	5	4	6	5730	0.80	1.27	0.63	16.0
89	9001	45,900	46.100	4	4	6	3590	1.02	1.62	0.63	4.0
43	9001	99.000	99.200	4	4	6	3640	1.00	1.61	0.62	4.0
43	9001	112.800	113.000	4	4	6	3640	1.00	1.61	0.62	9.0
		***				_	8614				~ ~
43	9001	115.000	115.200	4	4	6	3640	1.00	1.61	0.62	6.5
43	9001	118.300	118.500	4	4	6	3640	1.00	1.61	0.62	11.5
92	9001	75.500	75.700	4	4	6	3650	1.00	1.61	0.62	12.5
24	9004	7.000	7.200	5	4	6	6040	0.76	1.23	0.61	10.0
63	9006	2.300	2.500	4	4	6	3750	0.97	1.58	0.61	9.0
		36.800	~~ ~~~	<i>_</i>		-	0000	~ ~ ~	4 60	0.04	10.0
119	9000	30,800	37.000	5	4	6	6030	0.76	1.23	0.61	13.5

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	Number of Lanes	Class	A verage Daily Traffic	Accident Rate	Critical Rate	CRF	EPDO
25	9000	4.900	5.100	5	4	6	6470	. 0.71	1.19	0.59	21.0
25	9000	7.300	7.500	5	4	6	6470	0.71	1.19	0.59	18.5
25	9000	10.200	10.400	5	4	6	6470	0.71	1.19	0.59	16.0
24	9004	14.000	14.200	4	4	6	4240	0.86	1.48	0.58	12.5
99	9000	19,900	20.100	5	4	6	6710	0.68	1.17	0.58	5.0
99	9000	26.900	27.100	5	4	6	6710	0.68	1,17	0.58	16.0
51	9004	77.200	77,400	5	4	6	6900	0.66	1.15	0.57	5.0
63	9006	0.700	0.900	4	4	6	4665	0.78	1.41	0.56	6.5
24	9 004	20.200	20.400	4	4	6	4690	0.78	1.40	0.55	9.0
24	9004	26.900	27.100	4	4	6	4690	0.78	1.40	0.55	9.0
54	9004	32.700	32.900	6	4	6	10710	0.51	0.93	0.55	19.
54	9004	40.200	40,400	6	4	6	10710	0.51	0.93	0.55	14.
54	9004	41,800	42.000	6	4	6	10710	0.51	0.93	0.55	17.0
117	9004	59.600	59 .800	4	4	6	4770	0.77	1.39	0.55	21.0
117	9004	64.200	64.400	4	4	6	4770	0.77	1,39	0.55	11.5
51	9004	73,900	74.100	4	4	6	5450	0.67	1.30	0.52	23.5
54	9004	29.500	29.700	4	4	6	5400	0.68	1,30	0.52	6.5
3	9002	59.000	59.200	4	4	6	5480	0.67	1.29	0.51	4.0
99	9000	35.200	39.400	4	4	6	5540	0.66	1,29	0.51	4.0
99	9000	35.800	36.000	4	4	6	5540	0.66	1.29	0.51	17.5
35 47	9001	120.300	120.500	4	4	6	5900	0.62	1.25	0.50	6.5
47	9001	134.300	134.500	4	4	6	5900	0.62	1.25	0.50	6.5
25	9000	1.000	1.200	4	4	6	6470	0.56	1.19	0.47	17.5
25	9000	11.800	12.000	4	4	6	6590	0.55	1.18	0.47	9.0
23 54	9004	50.600	50.800	4	4	6	6630	0.55	1.18	0.47	6.5
54	9004	35.700	35.900	5	4	6	10710	0.43	0.93	0.46	7.5
54	9004	36.400	36.600	5	4	6	10710	0.43	0.93	0.4 6	7.5
54	9004	36.700	36.900	5	4	6	10710	0.43	0.93	0.46	16.0
54	9 004	3 8.200	38.400	5	4	6	10710	0.43	0.93	0,46	10.0
54	9004	40.900	41.100	5	4	6	10710	0.43	0.93	0.46	16.0
54	9004	42.100	42,300	5	4	6	10710	0.43	0.93	0.46	7.5
54	9004	42.400	42.600	5	4	6	15150	0.30	0.80	0.38	7.5
54	9004	30.900	31,100	4	4	6	10710	0.34	0.93	0.36	20.0
54	9004	37.300	37.500	4	4	6	10710	0.34	0.93	0.36	6.5
54	9004	37.600	37.800	4	4	6	10710	0.34	0.93	0.36	15.0
54	9004	42.900	43.100	4	4	6	15150	0.24	0.80	0.30	12.5
54	9004	43.400	43.600	4	4	6	15150	0.24	0.80	0.30	12.5

Table 14. Listing of 1-Mile (1.6-km) Sections in Order by Critical Rate Factor (CRF).

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	Number of Lanes	Class	Average Daily Traffic	Accident Rate	Critical Rate	CRF	EPDO
43	9001	106900	107.800	16	4	6	3640	401.	295.	1.36	32.0
119	9000	37,400	38.300	19	4	6	6030	288.	238.	1.21	62.0
3	9002	58,700	59,600	16	4	6	5480	267.	247.	1.08	18.5
66	9006	43.400	44.300	9	4	6	2340	351.	362.	0.97	19.0
99	9000	32.100	33.000	14	4	6	5540	231.	246.	0.94	19.0
89	9001	57.200	58,100	9	4	6	3590	229.	296.	0.77	11.5
54	9004	37.100	38.000	17	4	6	10710	145.	192.	0.76	44.0
54	9004	28,900	29.800	11	4	6	5400	186.	249.	0.75	21.0
63	9006	7.000	7.900	9	4	6	3750	219.	291.	0.75	11.5
114	9007	6.800	7.700	9	4	6	4040	203.	281.	0.72	16.5
54	9004	41.500	42.400	16	4	6	10710	136.	192.	0.71	29.5
92	9001	75.100	76.000	8	4	6	3650	200.	294.	0.68	16.5
54	9004	36.100	37,000	15	4	6	10710	128.	192.	0.67	39.5
117	9004	61.800	62.700	9	4	6	4770	172.	262.	0.66	25.0
54	9004	38.200	39,100	14	4	6	10710	119.	192.	0.62	26.5
24	9004	27.900	28.800	9	4	6	5400	152.	249.	0.61	22.5
25	9000	9.500	10,400	10	4	6	6470	141.	231.	0.61	37.0
120	9002	63.000	63.900	9	4	6	5360	153.	250.	0.61	20.0
54	9004	39.300	40.200	13	4	6	10710	111.	192.	0.58	43.5
117	9004	59.600	60.500	8	4	6	4770	153.	262.	0,58	30.0
119	9000	36.400	37.300	9	4	6	6030	136.	238.	0.57	20.0
25	9000	1.000	1.900	9	4	6	6470	127.	23.1.	0.55	30.0
54	9004	49.900	50.800	9	4	6	6630	124.	229.	0.54	14.0
99	9000 9000	15.000	15,900	9	4	6	6710	122.	228.	0.54	22.5
99 99	9000	20.500	21.400	9	4	6	6710	122.	228.	0.54	22.5
99	9000	35.200	36.100	8	4	6	5540	132.	246.	0.54	21.5
24	9004	9.100	10.000	8	4	6	6040	121.	238.	0.51	13.0
119	9000	42.000	42.900	8	4	6	6030	121.	238.	0.51	13.0
25	9000	0.0	0.900	8	4	6	6470	113.	231.	0.49	35.0
25	9000	8.300	9.200	8	4	6	6470	113.	231.	0.49	23.0
54	9004	40.400	41.300	10	4	6	10710	85.	192.	0.44	26.0
54	9004	34.000	34.900	9	4	6	10710	77.	192.	0.40	14.0
54	9004	35.100	36.000	9	4	6	10710	77.	192.	0.40	14.0
54 54	9004	32.000	32.900	8	4	6	10710	68.	192.	0.36	21.5
54	9004	33.000	33.900	8	4	6	10710	68.	192.	0.36	21.5
54 54	9004	42,500	43.400	8	4	6	15150	48.	171,	0.28	27.5

.

L

Table 15. Listing of 2-Mile (3.2-km) Sections in Order by Critical Rate Factor (CRF).

County	Route	Beginning Milepost	Ending Milepost	Accidents	Number of Lanes	Class	Average Daily Traffic	Accident Rate	Critical Rate	CRF	EPDO
43	9001	106.900	108.800	21	4	6	3640	263.	221.	1.19	53.0
119	9000	36.400	38.300	28	4	6	60 30	212.	184.	1.15	82.0
54	9004	35.800	37.700	29	4	6	10710	124.	153.	0.81	61.0
24	9004	27.600	29.500	18	4	6	5400	152.	191.	0.80	47.5
97	9006	56.000	57.900	12	4	6	2790	196.	246.	0.80	62.0
99	9000	32.100	34.000	18	4	6	5540	148.	190.	0.78	34.0
114	9007	7.400	9.300	12	4	6	2960	185.	240.	0.77	25.5
3	9002	58.700	6 0.600	17	4	6	5480	142.	190.	0.74	22.0
92	9001	75.000	76.900	13	4	6	3650	163.	221.	0.74	32.5
90	9002	10.800	1 2.700	12	4	6	3360	1 63.	228.	0.72	28.0
25	9000	9.000	10.900	18	4	6	6470	1 27.	180.	0.71	68.5
25	9000	0.0	1.900	17	4	6	6470	120.	180.	0.67	65.0
54	9004	37.800	39.700	24	4	6	10710	102.	153.	0.67	56.0
43	9001	19.000	20 .900	13	4	6	4770	124.	200.	0.62	23.0
99	9 000	14.000	15.900	16	4	6	6710	109.	178.	0.61	38.0
9 9	9000	34.200	36.100	14	4	6	5540	115.	190.	0.61	38.5
24	9004	25.500	27.500	12	4	6	4690	117.	201.	0.58	36.5
54	9004	41.800	43.700	24	4	6	12930	85.	145.	0.58	57.0
54	9004	49.900	51 .800	15	4	6	6630	103.	178.	0.58	31.0
117	9004	59.300	61.200	12	4	6	4770	115.	200.	0.57	36.5
54	9004	39.800	41.700	19	4	6	10710	81.	153.	0.53	65.5
120	9002	63.000	64 .900	12	4	6	5360	102.	1 92.	0.53	28.0
54	9004	33.800	3 5.700	17	4	6	10710	72.	153.	0.47	29.5
51	9004	7 6.800	7 8.700	12	4	6	6 900	7 9 .	176.	0.45	31.5
54	9004	31.800	33.700	16	4	6	10710	68.	153.	0.44	40.5
54	9004	43.900	45.800	14	4	6	11920	54.	149.	0.36	35.0
54	9004	2 9.600	31.500	12	4	6	10710	51.	153.	0.33	38.0

Table 16. Listing of 5-Mile (8.0-km) Sections in Order by Critical Rate Factor (CRF).

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	Number of Lanes	Class	Average Daily Traffic	Accident Rate	Critical Rate	CRF	EPDO
9 9	9000	32.100	37.000	40	4	6	5540	132.	143.	0.92	89.0
54	9004	33.300	38.200	58	4	6	10710	99 .	121.	0.82	135.5
54	9004	3 8.300	43.200	58	4	6	10710	96.	121.	0.79	137.0
43	9001	106.900	111.800	24	4	6	3640	120.	161.	0.75	56.0
119	9000	37.200	42.100	32	4	6	6030	97.	140,	0.69	102.0
24	9004	23.300	28,200	25	4	6	4690	97.	1 50.	0.65	77.5
117	9004	58.000	62 .900	25	4	6	4770	96.	149.	0.64	65.5
25	9000	10.100	15.000	31	4	6	6590	86.	136.	0.63	85.0
3	9002	57.100	62.000	25	4	6	5480	83.	143.	0.58	37.5
25	9000	0.0	4.900	27	4	6	6470	76.	137.	0.56	102.0
54	9004	28.300	33.200	37	4	6	10710	63.	121.	0.52	86.5
25	9000	5.000	9.900	24	4	6	6470	68.	137.	0.49	71.0
54	9 004	43.400	48.300	26	4	6	9275	51.	125.	0.41	69.0

Table 17. Listing of 10-Mile (16-km) Sections in Order by Critical Rate Factor (CRF).

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	Number of Lanes	Class	Average Daily Traffic	Accident Rate	Critical Rate	CRF	EPDO
99	9000	30.600	40.500	71	4	6	5785	112.	119.	0.94	185.0
43	9001	106.900	116.800	43	4	6	3640	108.	133.	0.81	96.0
24	9004	27.200	37.100	88	4	6	1 071 0	75.	106.	0.71	212.5
117	9004	57.300	67.200	46	4	6	4770	88.	125.	0.71	115.0
54	9004	37.300	47.200	92	4	6	12930	65.	102.	0.63	238.0
25	9000	0.0	9.900	51	4	6	6470	72.	116.	0.62	173.0
25	9000	10.100	20.000	51	4	6	6710	69.	116.	0.60	123.5
51	9004	67.400	77.300	42	4	6	5450	70.	121.	0.58	124.0

 \sim

Table 18. Interchange Accident Rate.*

Interchange-Related accidents per year (1976-1978)	65.7
Total number of interchanges	96
Accidents per interchange	0.68
Critical number of accidents per interchange (P=99.5)	4
Interchanges per mile	0.15
Average interchange volume	4850
Accidents per million vehicles	0.38
Includes at-grade intersection: parkways; does not include under construction or recently where accident data would not ex- ter a social of the social of	interchanges completed

Table	19.	Analy	sis/	of	Interchange	Data.
-------	-----	-------	------	----	-------------	-------

			Number of	inter- change		Number of	Accident	Critical		Accidents per			
County	Route	Milepost	Accidents	ADT	Туре	Remps	Rate	Rete	CRF	Ramp	Entranca	Exit	Cross Road
63	9006	3.0	13	3750	5	0	3.17	2.13	1.49	0.00	0.00	0.00	KY 472
100	9008	87.9	10	3600	5	0	2.54	2.17	1.17	0.00	0.00	0.00	Ringe Road
63	9006	0.0	12	5580	5	0	1.96	1.76	1.11	0.00	0.00	0.00	US 25
79	9003	52.3	6	1610	5	C	3.40	3,34	1.02	0.00	0.00	0.00	US 62
30	9005	23.5	7	3517	1	4	1.82	2,20	0.83	1.75	1.50	2.00	US 60 Bypass
47	9001	136.6	11	9834	4	4	1.02	1.38	0.74	2.75	2.00	3.50	1-65
24	9004	7.0	8	6584	10	3	1.11	1.64	0.68	2.67	5.00	1.50	US 41A
25	9000	0.0	7	6858	9	2	0.93	1.61	0.58	3,50	1.00	6.00	1-64
97	9006	59.1	4	2790	5	0	1.31	2.48	0.53	0.00	0.00	0.00	KY 15
114	9007	3,6	5	4525	3	4	1.01	1.94	0.52	1.25	0.50	2.00	US 31W
30	9007	70.2	6	6451	1	4	0.85	1.65	0.51	1.50	0,50	2.50	US 60 Sypass
42	9003	24.7	3	2025	6	2	1.35	2.94	0.46	1.50	2.00	1.00	US 45
47	9001	136.8	6	8780	5	0	0.62	1.44	0.43	0.00	0.00	0.00	US 31W
54	9004	44.3	9	16968	3	4	0.48	1.12	0.43	2.25	1.00	3.50	KY 281
26	9006	20.5	3	2688	3	4	1.02	2.52	0.40	0.75	1.00	0,50	US 421

Table 19. Analysis of Interchange Data. (Continued).

			Number of	inter- change		Number of	Accident	Critical		Accidents per			
County	Route	Milepost		ADT	Түра	Ramos	Rate	Rate	CRF	Ramp	Entrance	Exit	Cross Road
					1		0.70		0.05	0.76	0. 00	1.50	Pennyrile Pkwy
51	9005	0.0	3	3517	-	4	0.78	2.20	0.35	0.75			
47	9002	0.0	3	3797	1	4	0.72	2.12	0.34	0.75	1.00	0.50	1-65
54	9004	42.4	7	16968	3	4	0.38	1.12	0.34	1.75	2.00	1.50	KY 70
63	9006	2.3	3	3750	5	0	0.73	2.13	0.34	0.00	0.00	0.00	KY 638
42	9 003	22.2	2	1770	3	4	1.03	3,17	0.33	0.50	1.00	0.00	KY 80
92	9001	76.8	3	4526	11	8	0.61	1.94	0.31	0.38	0.25	0. 50	Green River
114	9007	0.0	3	5186	1	4	0.53	1.82	0.29	0.75	1.00	0.50	1-65
88	9000	59.2	2	2491	8	2	0.73	2.63	0.28	1,00	1,00	1.00	KY 134
	9008	0.0	2	2632	1	4	0.69	2.55	0.27	0.50	0.00	1.00	1-65
5 5	9008	11.4	2	2845	3	· 4	0.64	2.45	0.26	0.50	0.50	0.50	US31E
		2.0	3	6765	3	4	0.40	1.62	0.25	0.75	0. 00	1.50	US 41
24	9004	7.9									0.00	0.50	WK Pkwy
92	9007	41.3	2	3348	11	8	0.55	2.25	0.24	0.25			
90	9002	24.5	2	3593	6	2	0.51	2.18	0.23	1.00	1.00	1.00	US 150
51	9004	77.2	3	7728	1	4	0.35	1.53	0.23	0.75	0.50	1.00	Audubon Pkwy
63	9006	0.8	2	3750	5	0	0.49	2.13	0.23	0.00	0.00	0.00	Moran Rd (KY 17)
63	9006	1.2	2	3750	5	0	0.49	2.13	0.23	0.00	0.00	0.00	KY 754
100	9008	88.5	2	3600	5	٥	0.51	2.17	0.23	0. 00	0.00	0.00	KY 80 Bypess
89	9001	57.9	2	4021	4	4	0.45	2.08	0.22	0.50	0,50	0.50	US 431
43	9001	107.0	2	4077	4	4	0.45	2.04	0.22	0.50	0.50	0.50	KY 259
43 47	9001	135.8	3	9307	8	2	0.29	1.41	0.21	1.50	1.00	2.00	US 31 Bypass
_			•	4070	3	4	0.43	2,00	0.21	0.50	0. 00	1.00	KY 53
3	9002	47.8	2	4278						0.50	0.50 0.50	0.50	US 127
3	9002	58.8	2	6138	4	4	0.30	1.69	0.18				
119	9000	43.1	2	6392	9	2	0.29	1.66	0.17	1.00	1.00	1.00	KY 15
104	9008	62.4	1	1624	4	4	0.56	3.32	0,17	0.25	0.50	0.00	US 127 Bypass
99	9000	22.3	2	7515	3	4	0.24	1.54	0.16	0 .50	0.50	0. 50	KY 213
42	9003	2 3.7	1	2139	3	4	0.43	2.85	0.15	0.25	0 .00	0.50	KY 121
26	9006	34.3	1	2400	5 ·	0	0.38	2.68	0,14	0.00	a .00	0.00	KY 66
97	9006	56.4	t	3125	3	4	0.29	2.33	0.13	0.25	0.00	0.00	KY 451
	9007	26.4	1	3114	3	4	0.29	2.34	0.13	0.25	0.50	0.00	US 231
18 72	9007	3.7	1	3896	3	4	0.25	2.15	0.12	0.25	0.00	0.50	US 62
			t	3438	3	4	0.27	2.22	0.12	0.25	0 .00	0.5 0	KY 91
17	9001	11.7								0.50	0.00	1.00	KY 166
38	9003	0.5	1	3551	6	2	0.28	2,19	0.12				
54	9 004	37.1	2	11995	8	4	0.15	1.27	0.12	0.50	0.00	1.00	KY 813
54	9004	45.2	2	12635.	6	2	0.14	1.25	0.12	1.00	1.00	1.00	US 41
114	9007	7.4	1	3315	4	4	0.28	2.27	0.12	0.25	0.50	0.00	US 231
89	9001	38.3	t	4402	11	8	0.21	1.97	0.11	0.13	a .oo	0.25	Pennyrile Pkwy
92	9001	74.6	1	4088	3	4	0.22	2.04	0.11	0.25	0.50	0.00	US 231
90	9002	9.5	1	3763	8	4	0.24	2.13	0.11	0.25	0.00	0.50	KY 52
90	9002	20.5	1	3763	3	4	0.24	2.13	0.11	0.25	0.00	0.50	US 31E
38	9003	1.4	1	3752	3	4	0.24	2.13	0.11	0.25	0.50	0.00	US 51
114	9007	5.0	1	4525	3	4	0.20	1.94	0.10	0.25	0.00	0. 50	US 68
99	9000	32.8	1	6205	4	4	0.15	1.68	0.09	0.25	0.50	0.00	KY 11
		52.8 68.4	1	5777	6	2	0.16	1.73	0.09	0.50	0.00	1.00	KY 416 Toll Ramp
51	9004			7515	3	4	0.12	1.54	0.08	0.25	0.00	0.50	KY 15
99 99	9 000 90 00	16.4 18.5	1 1	7515	6	2	0.12	1.54	0.08	0.50	1.00	0.00	KY 1057
				670F	~		A 19	1 65	0.00	∩ ? ≝	0 .00	0.50	US 68
24	9004	9.4	1	6765	3	4	0.13	1,62	0.08	0.25		1.00	US 41 End SB Lan
51	9004	78.4	1	7314	3	2	0.12	1.58	0.08	0.50	0.00		
54	9004	34.3	1	13280	11	8	0.07	1.22	0.06	0.13	0.00	0.25	WK Pkwy
119	9000	40.5	a	6754	3	4	0.00	1.62	0.00	0.00	0.00	0.00	KY 15
119	9000	46.2	0	2440	5	0	0. 00	2.66	0.00	0.00	0.00	0.00	KY 191
119	9000	53.3	٥	2733	3	4	0.00	2.50	0.00	0.00	0.00	0.00	KY 1010
119	9000	57.2	a	2733	3	4	0.00	2.50	0.00	0.00	0.00	0.00	KY 205
	9000	71.7	õ	2688	1	4	0.00	2.52	0.00	0.00	0.00	0.00	KY 30
77			a		8	4	0.00	2.52	0.00	0.00	0.00	0.00	KY 7
	9000 9000	74.7 75.6	0	2688 2460	8 5	4	0.00	2.54	0.00	0.00	0.00	0.00	KY 114
77 77								2.09	0.0 0	0.00	0.00	0.00	KY 109
77 77								2 (10)		11121			
	9001	24.4	0	3898	4	4	0.00						
77	9001 9001	24.4 94.2	0 G	4077	3	4	0.00	2.04	0.00	0.00	0.00	0.00	KY 79
77 54 43	9001									0.00 0.00	0.00 0.00	0.00 0.00	кү 79 кү 55
77 54		94.2	0	4077	3	4	0.00	2.04	0.00	0.00	0.00	0.00	KY 79

Table 19. Analysis of Interchange Data. (Continued).

6	Route	Milepost	Number of Accidents	inter- change ADT	Type	Number of Ramps	Accident Rate	Critical Rate	CRF	Accidents per	F	Exit	Cross Road
County	noute	Innepost	ACCTUALITY		I Ahe	Namps	Mate	Hate	UKF	Ramp	Entrance	EXIL	Cross Aload
120	9002	71.1	0	6003	1	4	0.00	1.70	0.00	0.00	0.00	0.00	US 60
38	9003	2.5	0	2699	3	4	0.00	2.52	0.00	0.00	0.00	0.00	KY 307
42	9003	13.6	0	1770	4	4	0,00	3.17	0.00	0.00	0.00	0.00	KY 339
42	9003	21.3	0	1770	1	4	0.00	3.17	0.00	0.00	0.00	0.00	US 45 Bypess
7 9	.9003	42.6	0	1803	4	4	0.00	3.13	0.00	0.00	0.00	0.00	KY 348
79	9003	47.0	0	1707	6	2	0.00	3.23	0.00	0.00	0.00	0.00	US 68
24	9004	11.7	0	4749	4	4	0.00	1.90	0.00	0.00	0.00	0.00	KY 1682
24	9004	22.7	0	5253	3	4	0.00	1.81	0.00	0.00	0.00	0.00	KY 800
54	9004	29.6	0	5724	6	2	0.00	1.74	0.00	0.00	0.00	0.00	US 41
54	9004	32.9	0	11995	3	4	0.00	1.27	0.00	0.00	0.00	0.00	US 62
54	9004	49.0	0	7028	6	2	0.00	1.59	0.00	0.00	0.00	0.00	KY 260
54	9004	54.1	0	7493	3	4	0.00	1.55	0.00	0.00	0.00	0.00	KY 138 Toll Ramps
117	9004	62.6	0	5342	4	4	0.00	1.80	0.00	0.00	0.00	0.00	KY 56
651	9005	10.2	0	3517	4	4	0.00	2.20	0.00	0.00	0.00	0.00	KY 416
66	9006	44.2	0	2200	5	O	0.00	2.81	0.00	0.00	0.00	0.00	KY 118
18	9007	33.8	0	3024	4	4	0.00	2.37	0.00	0.00	0.00	0.00	US 231
92	9007	47.8	0	3214	4	4	0.00	2.30	0.00	0.00	0.00	0.00	KY 69
5	9008	14.0	0	2845	3	4	0.00	2.45	0.00	0.00	0.00	0.00	KY 90
85	9008	27.4	0	1590	4	4	0.00	3.36	0.00	0.00	0.00	0.00	US 68
1	9008	48.9	0	1613	3	4	0.00	3.34	0.00	0.00	0.00	0.00	KY 55
100	8008	87.5	0	3600	5	0	0.00	2.17	0.00	0.00	0.00	0.00	To KY 80

Table 20. Accident Rate on Bridges

Bridge-related accidents per year (1976-1978)	32
Total number of bridges	197
Accidents per bridge	0.16
Critical number of accidents per bridge	
(P=99.5)	2
Average AADT	3810
Accidents per bridge	0.40
per million vehicles	0.12
Average length per bridge (feet)	240
Total length of	
bridge (miles)	9.0
Vehicle miles driven	
on bridge (100 million)	0.125
Accidents per 100	д р. а.
million vehicle miles	256

Table 21. Analysis of Bridge Data.

						Number		Critical		
		E #**=	14-1	Bridge	Sufficiency	of	Accident	Accident		
County	Route	Milepost	Volume	Length	Rating	Accidente	Rate	Rate	CRF	Underpass
lio	9001	76.8	3650	249	71.9	4	21.22	27.09	0.78	Green River Pkwy
derson	9002	61.8	5480	1088	62.6	9	7.28	10.26	0.71	Kentucky River
pkins	9004	32.3	10710	156	67.1	4	11.54	19.12	0.60	White Plains Road
lison	9002	39.2	3390	330	60.7	3	12.93	23.96	0.54	Chaplin River
nier	9007	32.6	2700	780	69.2	4	9.16	16.89	0.54	Green River
olfe	9000	56.8	2440	159	77.5	2	24.86	46.55	0.53	Red River
opkins	9004	43.4	15150	159	67.3	4	8.01	15.75	0.51	L & N Railroad
nderson	9002	51.8	3820	126	78.5	. 2	20.04	40.34	0.50	Cheeselick Pond
opkins	9001	43.4	3550	205	65.1	Ż	13.25	31.01	0.43	Pond River
ookins	9004	29.4	4754	157	91.7	2	12.92	30.53	0.43	Drakes Creek
	9007	13.5	2960	260	67.2	2	12.53	29.96	0.47	Causes Birms
arren	9007	38.3	3550	226	66.7	2	12.02	29.90	0.42 0.41	Gasper River
opkins		9.8	6470	159						Pennyrile Parkway
ark	9000		10710		64.8	2	9.37	25.17	0.37	Upper Howards Creek
opkins	9004	32.6		275	63.0	3	4,91	14.23	0.35	ICRR, Pleasant Run
nderson	9005	15.8	3140	942	61.9	3	4.89	14.20	0.34	Green River
etcalfe	9008	24.1	1420	128	77.1	1	26.53	7 9.37	0.33	KY 640
aves	9003	34.3	1680	132	78.1	ĩ	21.74	68.69	0.32	KY 564
eison	9002	21.5	3360	474	64.0	2	6.06	19.63	0.31	Beech Fork
ebster	9004	59. 3	4770	368	59.7	2	5.49	18.61	0.30	Deer Creek
raves	9003	17.B	1580	211	78.1	1	14.46	51. 59	0.28	Opossum Creek
ark	9000	0.1	6470	336	67.0	2	4 44	16.61	0.27	1 64
ark reetfin	9000	66. 5	2400	159	75,7	1	12.64	47.07	0.27	Johnson Fork
agotfin	9000	74.8	2400	161	75.2	1	12.48	46.67	0.27	KY 7
agoffin	9000	75.3	2460	159	78.7	1	12.33	46.29	0.27	Burning Fork
agoffin organ	9000	63.0	2350	180	74.7	1	11.40	43.93	0.26	Johnson Fork
3										
agoffin	9000	64.5	2400	172	77.0	1	11.68	44.65	0.26	Johnson Fork, KY 604
uhlenberg	9001	59.2	3590	120	84.9	t	11.19	43.40	0.26	Mine Haul
hio	9001	85.7	3650	116	79.1	1	11.39	43.90	0.26	Arnold-Butler Road
rayson	9001	99.1	3640	119	76.5	1	11.13	43.25	0.26	Millwood-Pleasant View Roa
utler	9007	27.4	2780	160	66.7	1	10.84	42.49	0.26	KY 70
arren	9008	9.0	2350	174	64.3	î	11,79	44.94	0.26	KY 1297
aves	9003	9.1	1580	310	87.2	1	9.84	39.89	0.25	Bayou de Chien
agoffin	9000	66.1	2400	212	74.7	1	9.48	38.91	0.24	Johnson Fork, KY 134
ay	9006	20.7	2400	224	67.9	t	8.97	37.55	0.24	Horse Creek
utier	9007	26.1	2780	180	67.7	1	9.64	39.33	0.24	US 231
						_				
uhlenberg	9001	56.0	3590	161	60.4	1	8.34	35.84	0.23	US 62
opkins	9004	39.8	10710	265	69.1	2	3.40	14.50	0.23	CRR, McCrew Lane
enderson	9005	0.1	3140	191	77.0	t	8.04	35.01	0.23	Pennyrile Parkway
agoffin	9000	7 0.2	2400	281	75.0	1	7.15	32.52	0.22	Middle Fork Creek
uhlenberg	9001	65.4	3590	1813	77,7	3	2.22	9.88	0.22	Green Aiver
opkins	9004	37.0	10710	318	77.1	2	2.83	13.26	0.21	KY 813
ebster	9004	56.5	4770	163	74.1	1	6.20	29.77	0.21	KY 147
nderson	9002	58.0	5480	162	71.7	1	5.43	27.47	0.20	Southern Railroad
opkins	9001	28.3	3550	278	57.1	1	4.89	25.79	0.19	KY 112
ardin	9001	132.6	5900	173	63.5	1	4.72	25.28	0.19	L & N Railroad
			PR. A			-		-	- <i>-</i> -	WW 44 8 WW 4E
ileweil	9000	32.1	5540	208	53.8	1	4.18	23.56	0.18	KY 11 & KY 15
opkins	9004	49.0	6630 5760	161	75.7	1	4.52	24.63	0.18	KY 260 Oursesborg Beltline
aviess	9007	70.2	5760	189	61.1	1	4.43	24.35	0.18	Owensboro Beltline
ark	9000	2.5	6470 5000	195	63.8	1	3.82	22.36	0.17	Marris Road
ardin	9001	132.5	5900	210	59.7	1	3.89	22.59	0.17	Valley Creek
oodford	9002	71.1	5360	236	57.1	1	3.81	22.33	0.17	US 60
ebster	9004	63.9	4770	260	59.7	t	3.89	22.58	0.17	Graves Creek
well	9000	11.9	6710	204	49,3		3.52	21.35	0.16	Luibegrud Creek
elson	9002	17.6	3360	465	57.3	T	3.09	19.83	0.16	Beech Fork River
lark	9002	3.6	6470	253	59.8	1	2.95	19.33	0.15	C & O Railroad
opkins	9001	36.9	3550	448	60.4	1	3.03	19.64	0.15	US 41-A
opkins	9004	42.4	10710	192	78.0	1	2.34	17.10	0.14	KY 70, KY 85
	0000	18.2	6710	341	49.4	1	2.11	16.17	0.13	Red River
well	9000									
owell ulaski	9008	84.3 5.3	3130	1746	69.3	1 0	0.88 0.00	10.66	0.08	Fishing Creek Stoner-Ephesus Road

Table 21. Analysis of Bridge Data. (Continued).

						Number		Critical		
•	Bout	Mileoost	Volume	Bridge Length	Sufficiency Rating	of Accidents	Accident Raw	Accident Rate	CRF	Underpass
County	Route									1010
weil	9000	22.3	6710	159	61.4	0	0.00	24.63 13.91	0.00 0.00	KY 213 Red River
oweil	9000	24.8	6710	460	49.5	0	0.00	30.07	0.00	Cane Creek
owell	9000	26.1	6710	114	82.0	0	0.00		0.00	KY 613
oweli	9000	27.4	6710	114	81.5	0	0.00	30.07		North Fork Red River
owell	9000	27.9	6710	225	56.8	0	0.00	20.21	0.00	North Pork ned niver
weil	9000	31.2	5540	159	63.9	0	0.00	27.60	0.00	KY 77
well	9000	32.0	5030	207	49.5	0	0.00	24.99	0.00	Middle Fork Red River
swell	9000	32.7	5540	159	64.9	0	0.00	27.60	0.00	Middle Fork Red River
well	9000	32.8	5540	159	58.2	0	0.00	27.60	0.00	KY 11 – Toll Plaza
olfe	9000	40.5	2440	159	69.2	0	0.00	46.55	0.00	KY 15
olfe	9000	43.8	2440	275	57.8	0	0.00	32.62	0.00	Swift Creek Camp Road
olfe	9000	46.2	2440	203	67.0	0	0.00	39.60	0.00	KY 191
olfe	9000	48.6	2440	172	75.1	0	0.00	44.16	0.00	Baptist Creek Road
olfe	9000	49.7	2440	188	65.7	ō	0.00	41.64	0.00	KY 1812
oife	9000	55.4	2440	159	73.3	Ō	0.00	46.55	0.00	Gilmore Road
						-	0.00	FE 49	0.00	KY 205
olfe	9000	57.2	2440	120	80.4	0	0.00	55.43 47.74	0.00	KY 134
organ	9000	60.4	2350	159	82.6	0	0,00	47.74		KY 134
organ	9000	62.1	2350	186	68.6	0	0.00	42.99	0.00	Johnson Fork, KY 3047
agoffin	9000	65.2	2400	192	74.7	0	0.00	41.51	0.00	
agoffin	9000	65.9	2400	159	78.3	0	0.00	47.07	0.00	Johnson Fork Creek
agoffin	9000	66.2	2400	192	75.7	0	0.00	41.51	0.00	Johnson Fork, KY 134
agoffin	9000	67.5	2400	159	75.7	0	0.00	47.07	0.00	Johnson Creek
laqoffin	9000	67.6	2400	114	87.5	0	0.00	59.17	0.00	Cow Creek
agoffin	9000	71.7	2400	159	75.9	0	0.00	47.07	0.00	KY 30
agoffin	9000	74.5	2400	417	64.5	O	0.00	25,58	0.00	Licking River
	9001	3.7	3300	226	73.3	0	0.00	30.55	0.00	US 62
yon aldweli	9001	11.4	3070	189	64.5	ō	0.00	35.76	0.00	ICRR
aldweil	9001	21.7	3480	207	47.8	ō	0.00	31.21	0.00	Tradewater River
	9001	22.0	3480	215	63.6	ō	0.00	30.49	0.00	Tradewater River
opkins opkins	9001	24.9	3480	131	75.7	õ	0.00	41.81	0.00	ICRR
		32.0	3550	260	47.3	0	0.00	26.84	0.00	Oak Hills Road, ICRR
opkins	9001	33.9		415	67.1	0	0.00	20.49	0.00	Drakes Creek
lopkins	9001	40.3	3550	165	69.1	0	0.00	35.54	0.00	Pond River Relief
lopkins	9001	42.8	3550 3590	165	60.4	0	0.00	35.29	0.00	Pond River Relief
luhienberg luhienberg	9001 9001	43.6 48.0	3590	235	56.1	0	0.00	28.33	0.00	KY I 75; ICRR
idine neerg										
iuhienberg	9001	52.5	3590	179	52.5	0	0.00	33.51	0.00	KY 181 ICR 8
iuhlenberg	9001	55.5	3590	263	60.4	0	0.00	26.48	0.00	-
uhlenberg	9001	57.6	3590	169	49.7	0	0.00	34.75	0,00	L & N Railroad
hio	9001	69.7	3650	120	83.1	0	0.00	42.93	0.00	Lewis Creek
hio	9001	72.4	3650	186	55.3	0	0.00	32.38	0.00	KY 369
hio	9001	74.6	3650	128	77.9	0	0.00	41.14	0.00	US 231
nayson	9001	103.9	3640	156	52.1	0	0.00	36.25	0.00	KY 187
lardin	9001	130.9	5900	130	78.5	0	0.00	30.02	0.00	Rhodes Creek
lardin	9001	136.5	8780	206	67.0	0	0.00	18,31	0.00	1 65
lardin	9001	136.5	8780	206	59.7	0	0.00	18.31	0.00	165
lardin	9002	0.0	3390	226	55.2	0	0.00	30.04	0.00	1 65
leison	9002		3360	300	62.4	ō	0.00	25.47	0.00	Rolling Fork River
leison	9002	9.5	3360	106	76.6	õ	0.00	49.32	0.00	KY 52
leison	9002	10.2	3360	166	62.4	ō	0.00	36.67	0.00	L & N Railroad
elson	9002	11.9	3360	313	61.4	ō	0.00	24.84	0.00	Beech Fork River
		~~ ·	0000	100	75 -	•	A 05	18 20	0.00	Bardstown-Loretto Rd.
leison	9002	23.4	3360	109	75.1	0 0	0.00 0.00	48.39 37.49	0.00	L & N Railroad
ielson	9002	27.3	3390	159	67.0				0.00	
ashington	9002	42.1	3430	489	63.7	0	0.00 0.00	19.08	0.00	Salt River
fercer ulton	9002 9003	56.3 0.0	4500 3350	200 153	68.0 69.1	0	0.00	27.25 38.73	0.00	KY 116
	3003	0.0				-	2.00			
ulton	9003	0.9	3350	146	69.1	0	0.00	39.92	0.00	KY 166
ulton	9003	1.8	3350	539	70.1	Q	0.00	18.33	0.00	ICRR
	9003	12.8	1580	127	93.0	0	0.00	73.83	0.00	Brush Creek
Graves						~	0.00	60.10	0.00	Obion Creek
Graves Graves	9003	16.7	1580	208	78.1	0 0	0.00	52.10 52.10	0.00	Mayfield Bypass

Table 21. Analysis of Bridge Data. (Continued).

						Number		Critical		
County	Route	Milepost	Volume	Bridge Length	Sufficiency Rating	of Accidents	Accident Rate	Accident Rete	CRF	Underpass
004111				21:::	-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Graves	9003	24.7	1910 1910	283 172	77.0 78.1	0	0.00	37.42	0.00	US 45 ICBR
braves	9003 9003	25.1 25.4	1680	208	78,1	0	0.00 0.00	52.12 49.96	0.00 0.00	Mavfield Creek
Braves	9003	25.6	1680	208	78.1	0	0.00	49.96 86.03	0.00	Mayfield Creek Overflow
Graves Graves	9003	25.8	1680	97	78.1	0	0.00	86.03	0.00	Mayfield Creek Overflow
719462	3000	23.9	1000		70,1	Ŭ	0.00	00.00	0.00	mayneld week over now
Graves	9003	31.4	1680	189	78.1	0	0.00	53.35	0.00	Panther Creek
Graves	9003	31.6	1680	97	78.1	0	0.00	86.03	0.00	Parther Creek Overflow
Graves	9003	33.5	1680	97	78,1	0	0.00	86.03	0.00	Clarks River Overflow
Graves	9003	33.7	1680	208	78.1	0	0.00	49.96	0.00	West Fork Clarks River
Graves	9003	34.0	1680	108	78.1	٥	0.00	7 9.47	0.00	Clarks River Overflow
Marshall	9003	42.7	1610	158	73.1	0	0.00	62.29	0.00	LC & STL Railroad
Varshali	9003	43,3	1610	291	73.7	ŏ	0.00	41.06	0.00	Clarks River Relief
Marshall,	9003	43.6	1610	591	73.5	õ	0.00	28.50	0.00	East Fork Clarks River
Marshall	9003	43.9	1610	387	68.5	0	0.00	34.17	0.00	Clarks River Relief
Christian	9004	6.8	6040	247	78.9	ō	0.00	20.35	0.00	US 41A
										.
Christian	9004	7.5	6040	155	94.5	0	0.00	26.61	0.00	L & N Railroad
hristian	9004	7.9	6040	203	95.0	0	0.00	22.73	0.00	US 41
Christian	9004	8.5	6040	151	94.6	0	0.00	27.03	0.00	South Fork Little River
Christian	9004	9.7	6040	64 165	79.4	0	0.00	46.66	0.00	First Street
Hopkins	9004	30.3	10710	165	78.3	0	0.00	18.54	0.00	Crab Orchard Creek
Hopkins	9004	31.3	10710	99	84.1	0	0.00	24.72	0.00	Pleasant Hill Road
Hopkins	9004	48.8	6630	144	76.7	0	0.00	26.30	0.00	Otter Creek
Hopkins	9004	54.1	66 90	174	77.2	0	0.00	23.42	0.00	KY 138
Nebster	9004	60.5	4770	166	64.8	Q	0.00	29.44	0.00	KY 370
Henderson	9004	65.4	54 50	183	90.8	0	0.00	25.63	0.00	Access Road
		75 4	5450	1 4 1	30.0			20.00	0.00	
lenderson	9004	75.4	5450 3140	141 70	76.8 76.5	0	0.00	29.99 69.13	0.00	Elam Ditch Lick Creek
Henderson	9005 9005	6.3 22.7	3140	140	73.5	0	0.00	42.82	0.00 0.00	Worthington Road
Daviess Daviess	9005	23.4	3140	189	73.5 55.8	0	0.00	35.25	0.00	Owensbaro Beltline
Daviess Laurel	9005	23. 4 0.8	3750	217	79.7	0	0.00	28.96	0.00	L & N Railroad
200.01					/	-				
Laure!	9006	3.4	3750	85	84.7	0	0.00	53.21	0.00	Little Laurel River
Laurei	90 06	4.2	3750	166	79.9	0	0.00	34.19	0.00	Sailys Branch Road
Laurei	9006	6.4	3750	126	81.9	0	0.00	40.84	0.00	KY 1305
Laurei	9006	7.6	3750	126	81.5	0	0.00	40.84	0.00	Lick Creek Road
Laurel	9006	8.6	3140	130	81.5	0	0. 00	44. 99	0.00	KY 488
Clay	9006	10.8	3140	190	77.9	đ	0.00	35.13	0.00	Little Goose Creek Road
Clay	9006	13.9	3140	147	60.4	0	0.00	41.47	0.00	Minton Road
Clay	9006	16.1	3140	150	77.9	Q	0.00	40.92	0.00	Hooker Road
Clav	9006	20.8	2400	229	79.8	0	0.00	37.02	0.00	Coal Dock Road, L & N
Clay	9006	21.5	2400	213	82.5	٥	0.00	38.79	0.00	KY 80, US 421
Clay	9006	21.7	2400	495	70.3	0	0.00	23.14	0.00	Ham Brook Road; Goose Cre
Clay	9006	22.0	2400	203	74.7	0	0.00	40.03	0.00	Paces Creek Road
Clay	9006	26.3	2400	219	63.7	0	0.00	38.10	0.00	KY 149
Clay	9006	33.6	2400	618	69.9	0	0.00	20.41	0.00	Red Bird River
Clay	9006	34.2	2400	221	61.7	0	0.00	37.88	0.00	KY 66
Leslie	9006	48.1	2090	836	74.7	0	0.00	18.66	0.00	KY 257; KY 1021; KY River
Perry	9006	56.0	2790	586	75.0	ō	0.00	19.35	0.00	KY 80, Big Creek
Perry	9006	57.2	2790	646	76.1	ō	0.00	18.35	0.00	KY 80; L & N; KY River
Warren	9007	0.0	4630	210	58.2	0	0.00	26.02	0.00	165
Warren	9007	3.6	4040	206	62.2	0	0.00	28.56	0.00	US 31-W
		• -				_			-	· • • • •
Warren	9007	3.8	4040	194	72.2	0	0.00	29.63	0.00	L & N Railroad
Narren	9007	4.9	4040	277	71.0	0	0.00	23.96	0.00	US 68 Listo Muddu Crock
Butler	9007	22.6	2960 2870	228	66.3	0	0.00	32.50	0.00	Little Muddy Creek
Ohio Ohio	90 07 9007	43.8 44.1	2870	237 135	69.4 79.9	0	0.00	32.34 46.59	0.00 0.00	Nuddy Creek
Ohio	2001		20/0	123	19.9	J	0.00	40.93	0.00	MUCHA PICCH
Ohio	9007	44.5	2870	227	69.5	0	0.00	33.23	0.00	US 62
Ohio	9007	49.3	2870	245	66.1	Ō	0.00	31.68	0.00	Rough River
	9007	58.2	2870	168	73.9	0	0.00	40.30	0.00	KY 764
Ohio										
Ohio Daviess	9007 9007	62.4 62.7	2880 2880	170 155	73.4 67.2	0	0. 00 0. 00	39.90 42.39	0.00	South Fork Panther Creek South Fork Panther Creek

Table 21. Analysis of Bridge Data. (Continued).

County	Route	Milepost	Volume	Bridge Longth	Sufficiency Rating	Number of Accidents	Accident Rate	Critical Accident Rate	CRF	Underpass
Daviess	9007	62.9	2880	155	67.2	0	0.00	42.39	0.00	South Fork Panther Creek
Daviess	9007	67.2	2880	155	63.5	0	0.00	42,39	0.00	North Fork Pantner Creek
Daviess	9007	67.4	2880	180	72.0	0	0.00	38.44	0.00	North Fork Panther Creek
Daviess	9067	67.7	2880	155	67.2	0	0.00	42.39	0.00	North Fork Panther Creek
Barren	9008	0.0	2350	276	58.2	0	0.00	33.32	0.00	1 65
Barren	9008	8.1	2350	285	66.5	0	0.00	32.66	0.00	Beaver Creek
Barren	9008	11.4	2430	211	66.6	0	0.00	38.72	0.00	US 31-E
Barren	9008	11.4	2430	165	82.2	0	0.00	45.53	0.00	South Fork Beaver Creek
Barren	9008	11.5	2430	134	82.2	Û	0.00	52.43	0.00	Beaver Creek
Barren	9008	11.5	2430	194	66.4	0	0.00	40.90	0.00	South Fork Creek
Barren	9008	18.2	1420	216	65.6	0	0.00	54.64	0.00	Mount Pisgah Road
Vietcalfe	9008	28.0	1420	298	66.4	0	0.00	43.92	0.00	South Fork Little Barren
Metcalfe	9008	34.2	1420	210	69.5	0	0.00	55.72	0.00	East Fork Little Barren
Adair	9008	48.1	1440	209	81.6	0	0.00	55.36	0.00	Petty's Fork
Adair	9008	50.0	1440	291	72.1	Q	0.00	44.21	0.00	Russell Creek
Adair	9008	56.2	1440	265	67.5	ò	0.00	47.07	0.00	Russell Creek

Table 22. Summary of Accidents by Type of Collision.*

		Percent	of Total	
			Inter-	
Type of Collision	Mainline	Bridge	change	All
Other Motor Vehicle	21.8	14.0	52.0	24.1
Pedestrian	0.5	0.0	1.3	0.5
Animal	7.9	0.0	0.0	6.8
Fixed Object				
Light support/utility pole	0.9	0.0	2.2	1.0
Guardrail	13.4	21.5	9.4	13.4
Crash cushion	1.1	0.0	0.0	1.0
Sign post	2.1	0.0	4.0	2.2
Tree	0,4	0.0	0.0	0.4
Building/wall	0.5	0.8	0.0	0.4
Curbing	0.4	0.0	2.7	0.6
Fence	1.1	0.8	0.9	1.1
Bridge structure	1.1	43.0	0.9	3.1
Culvert/head wall	1.0	0.0	0.9	1.0
Median/barrier	8.2	7.4	1.8	7.6
Snow embankment	1.1	0.0	0.4	1.0
Earth embankment/rock cut/				
ditch	15.5	3.3	8.1	14.3
Fire Hydrant	0.0	0.0	0.0	0.0
Other fixed object	1,7	0.0	1.8	1.6
Noncollision				
Overturned	11.6	3.3	10.8	11.1
Fire/explosion	3.5	0.8	0.0	3.1
Submersion	0.0	0.8	0.0	0.0
Ran off roadway (only)	3.3	3.3	1.3	3.1
Other	2.8	0.8	1.3	2.6

*One accident could involve more than one collision.

Table 23 contains a listing of locations with three or more animal-related (primarily deer) accidents in a 2-mile (3.2-km) length of road. Dividing this total by the number of 2-mile (3.2-km) sections gave the average number of accidents in 2 miles (3.2 km). Using Equation 1, a critical number of three accidents in 2 miles (3.2 km) was determined. The analysis was used to locate other hazardous locations. Summary tables of the results are shown in APPENDIX B. Critical numbers of accidents in a given section length were also determined for speed-related accidents, injury and fatal accidents, accidents during darkness, accidents on snow or ice, accidents involving a guardrail, and accidents on a wer pavement.

Summary tables of accident characteristics shown in Table 4 are given in APPENDIX C. Most tables were summarized by the three categories of accidents previously used (mainline, interchange-related, and bridge-related) and for all toll-road accidents.

A separate fatal-accident analysis was made spanning a ten-year (1970-1979) period. The largest <u>number of fatal accidents involved</u> collisions with fixed objects (Table 24). The most common involved guardrail. The second most common fixed-object-type involved a bridge pier. Each fatal accident was also classified into a category shown in Table 25. Data from these tables indicated the general type of improvements that would reduce

Table 23. Locations with Three or More Animal-Related (Primarily Deer) Accidents in Two Miles (3.2-km).

Parkway	Beginning Milepost	Ending Milepost	Number of Accidents
Mtn	31.0	33.0	4
WKy	25.9	27.4	3
	31.2	33.0	5
	44.4	46.0	5
	51.5	53.2	3
	93.0	94.6	3
	113.0	115.0	4
Pen	24.0	25.5	3
	26.2	28.1	4
	37.1	38.4	5
	48.9	50,2	3
	51.2	52 .9	3
	57.3	58.4	3
	64.3	65.5	5
GR	11.0	12.9	3
	19.3	20.6	5
	23.0	24.4	4
	26.4	27.8	4
	28.7	30.7	4
	31.5	33.2	4
	34.6	36.0	4
	41.0	42.6	3
	51.1	51.3	3
	53.8	55.6	3
	56.0	57.1	4

fatal accidents. For example, replacing blunt and buried guardrail ends would eliminate fatalities resulting from a blunt guardrail end penetrating a vehicle or a vehicle jumping a buried end and overturning. Also, there were several fatal accidents involving exposed bridge piers or nonbreakaway sign supports. Such accidents illustrated the need for safety improvements in these areas.

A list of locations which had the highest number of fatal accidents was prepared. A critical number of four fatal accidents in 5.0 miles (8.0 km) or two accidents in 0.3 mile (0.5 km) was determined. Those lists are given in APPENDIX D. The highest number of fatal accidents at any given milepost in the 10-year period was three, and these occurred on the Green River Parkway exit ramp (westbound exit) to the US 60 bypass in Owensboro. Several other summary tables are given in APPENDIX D. A summary by route indicated that the highest number of fatal accidents occurred on the Mountain and Western Kentucky Parkways. The peak number of fatal accidents occurred in 1973. The peak accident months were

Table 24. General Description of Fatal Accidents.

		Percent of
Description	Number	Total
Other Motor Vehicle	38	32
Pedestrian	5	4
Ran-Off-Road or		
Overturned		
(No Collision)	18	15
Fixed Object (all)	59	49
Guardrail	23	19
Bridge pier	13	11
Bridge	8	7
Sign	5	4
Culvert	3	3
Rock cut	2	2
Other	5	4

August, July, and November. A high percentage of fatal accidents occurred during darkness (46 percent). The major human contributing factor was speeding; this was followed by alcohol involvement and falling asleep. Vehicular factors were not listed very often, but the most common factor was tire failure. The major environmental factor was a slippery pavement. Summaries by hour, road surface condition, vehicle type, type of location, and type of fixed object are also given. In addition, an investigation of seatbelt usage was made. In the, 121 fatal accidents, there were 137 fatalities. Only one of the persons killed was coded as wearing a seatbelt. This fatality resulted when the driver fell asleep and hit an exposed bridge pier. Of the instances in which ejection from the vehicle was coded on the accident reports, 36 percent of the fatalities involved ejection. Increased seatbelt usage would have decreased drastically the percentage of people ejected and probably would have prevented many of the fatalities.

Accident rates were calculated for segments of the roads in each county (Table 26). The highest accident rates were for the Daniel Boone Parkway in Laurel County, the Mountain Parkway in Morgan and Clark Counties, the Purchase Parkway in Marshall County, and the Bluegrass Parkway in Hardin County.

A comparison of accidents on bridges with and without full-width shoulders was made (Table 27). It was found that bridges with fullwidth shoulders had a 35-percent lower accident rate and 64 percent fewer accidents per bridge compared to bridges without full-width shoulders.

At-grade intersections had much higher accident rates than any of the interchange types (Table 28). The lowest rates were at cloverleafs, and the highest rates were at "T" or trumpet interchanges.

A comparison was also made to determine if there was a relationship between the adequacy rating assigned to a bridge and accident rate (Table 29). The adequacy rating includes condition elements (substructure, superstructure, floor condition, and safe loading), safety

Table 25. Detailed Description of Fatal Accidents.

Description	Number	Percent of Total
Pedestrian		
Not occupant of other motor vehicle	3	3
Disabled vehicle	1	1
Previous accident	1 5	1 4
Totai	Э	-
Guardrail-Related	_	•
General	7	6
Blunt end punctured vehicle	5 1	4 1
Through guardrail Overturned	7	6
Jumped over buried end	3	3
Total	23	19
·		
Rear End General	4	3
Slow moving truck	3	3
Vehicle on emergency strip	5	4
Exit ramp (vehicle backing)	2	2
Total	14	12
Bridge Related		
Hit bridge abutment	3	3
Gap between parallel bridges	2	2
Bridge railing	3	3
Total	8	7
Wrong Way Head-On	4	3
Run-Off-Road (No Collision)	18	15
Median Crossover Related	1	1
Hit Bridge Pier	13	11
Hit Culvert	3	3
Hit Sign	5	4
Hit Rock Cut	2	2
Head-On (Two-Lane Road)	13	11
Opposite Direction Sideswipe (Two-Lane Road)	1	1
Lost Control on Exit Ramp	3	3
At-Grade Intersection on Parkway	3	3
Passenger Fell from Vehicle	3	3
Hit Deer	1	1

elements (clear roadway width, approach alignment, and traffic safety features), and service elements (clear roadway height, waterway, and remaining life). A maximum of 100 points may be as-

Table 26. Accident Rate by Toll Road and County.

	*****		Acci	dent Rate) Accider Parkway	nts/100 i	nvm)		
County	Mtn	WKy	BG	Pur	Pen	Aud	DB	GR	Cum
Clark	108								
Magorfin	70								
Morgan	115								
Paweil	70								
Wolfe	94								
Butler		50							
Caldwell		59	÷						
Grayson		87							
Hardin		75							
Hopkins		78							
Lyan		73							
Muhlenberg		76							
Ohio		6 6							
Anderson			89						
Hardin			110						
Mercer			15						
Nelson			90 52		,				
Washington			53 57						
Woodford			57						
Fulton				43					
Graves				84					
Hickman				35 115					
Marshail				113					
Christian					80				
Henderson					78				
Hopkins					91				
Webster					74				
Daviess						5 9			
Henderson						78			
Clay							82		
Laurel							128		
Leslie							81		
Perry							94		
Butler							•	93	
Daviess								57	
Ohio								74	
Warren								89	
Adair									44
Barren									40
Metcalfe									37
Pulaski									64
Russell									26

signed, and a high point total indicates the bridge is in good condition. It was shown that bridges with the highest adequacy rating had the lowest accident rates.

Field Inventory

The field inventory involved a survey of all toll roads. The roadway features included in the inventory are listed in Table 5. Photographs of many of the roadway features inventoried were taken and are presented in APPENDIX A. The photographs show both desirable and undesirable roadway features.

A summary of the number of different guardrail end treatments is given in Table 30. The majority of guardrail ends were buried (70 percent), but a significant percentage were blunt (29 percent). Almost all guardrail ends on the Western Kentucky Parkway were blunt. Very few guardrail ends had been upgraded by installing the breakaway cable terminal or flared end.

The number of underpasses on the toll roads was 238. A summary of underpasses is presented in Table 31. A summary of the types of protectors at median and shoulder piers is given in Table 32. The two most common types of protective devices for shielding or cushioning the impact of a collision with a median bridge pier are guardrail (42 percent) and earth mound (22 percent). A significant number had no protector (19 percent); 17 percent were shielded only with shrubs. The Mountain Parkway had the highest percentage of exposed median bridge piers; shrubs were the only protectors at median piers on the Western Kentucky Parkway. For the shoulder pier, guardrail was the only protective device used. In a few cases, the design was such that there was no shoulder pier. The shoulder pier was exposed 40 percent of the time. The Western Kentucky and Mountain Parkways had

	Number of Bridges	Number of Accidents per Year	Exposure (mvm)	Accident Rate (ACC/mvm)	Percent Decrease for Full-Width Shouider	Accidents per Bridge per Year	Percent Decrease for Full-Width Shoulder
Not Full	an an an an tha ann an a	1994-1994-1994-1994-1994-1994-1994-1994	90000000000000000000000000000000000000	ndjenis kije die Styffield allieftield allieftie nie one die een die de stad is die die stad is die die stad is	nt de la sentente de la filla de la Construction de la construction de la construction de la construction de la	a waaraa ahaa ahaa ahaa ahaa ahaa ahaa a	
Width	128	28	9.4389	2.97		0.22	
Full					35		64
Width	65	5	2.5760	1.94		0.08	

Table 27. Comparison of Accident Data on Bridges With and Without Full-Width Shoulders

Table 28. Accidents Associated with Types of Interchanges.*

Туре	Number	Total Accidents (1976-1978)	Average Daily Volume per Interchange	Accident Rate (Accidents per million vehicles
Diamond	32	48	5280	0.26
Toll booth	18	25	3930	0.32
Partial diamond	13	21	5630	0.26
T or Trumpet	12	36	4710	0.58
At-grade intersection	14	57	3660	1.02
Cloverleaf	4	7	6390	0.25
Partial cloverleaf	3	3	6150	0.15

"Did not include a few driveways which existed on Daniel Boone Parkway.

Table 29. Relationship Between Adequacy Rating and Accident Rates for Bridges.

	Accident Rate						
Sufficiency Rating	Accidents/ Bridge	Accidents/ mvm					
80-100	0.17	4.4					
70-80	0.40	7.8					
Below 70	0.63	7.9					

the largest number of exposed shoulder piers. In 48 percent of the cases, the guardrail was not attached to the pier.

The summary of bridge inventory data is given in Table 33. There are 196 bridges, and only one in three (34 percent) have fullwidth shoulders. Protection at the gap between twin bridges has been shown to be an accident problem.⁷ In most cases, there is an opening between bridges which must not be left exposed; in some instances, a wall connects the bridges. Some type of barrier existed in all instances. The most common barrier involved a guardrail alone or in conjunction with shrubs or an earth mound. The guardrail varied, with some of the older installations offering very little capacity for arresting vehicles. Shrubs alone were provided at almost all bridges on the Western Kentucky Parkway. Almost all bridges had a curb rather than the New-Jersey-type bridge rail and breakaway-cable end treatment. Fifty percent of the guardrail transitions to the bridge were rated as being equivalent to present standards; 69 percent of the approach guardrails were rated as good. The bridge inventory file rated the condition of the bridge decks and listed

Table 30. Summary of Numbers of Different Guardrail End Treatments.

					Pa	rkway				
Guardrail End-Treatment	Mtn	WKy	BG	Pur	Pen	Aud	DB	GR	Cum	Totał
Blunt	327	706	12	27	89	8	9	7	5	1190
Buried	345	67	433	235	263	88	498	409	520	2858
Breakaway Cable Terminal	3	3	0	5	1	0	0	0	1	13
Flared	4	1	0	0	0	0	0	0	3	8

Table 31. Number of Underpasses on Toll Roads.

Parkway	Number of Underpasses						
Mtn	23						
WKy	45						
BG	28						
Pur	32						
Pen	33						
Aud	9						
DB	6						
GR	25						
Cum	37						
All	238						

23 bridge decks in need of major repair.

A summary of interchange inventory data is given in Table 34. Almost one-half of the interchanges were lighted. Some were lighted only in the gore areas. Slightly over one-third of the gores were classified as clear. Major features in the gore areas which should be removed or replaced were signs, guardrail, and curbs. Many exit signs in the gore areas were supported by backto-back channel posts which are not breakaway.

Of 281 crossovers, 210 were marked and 60 were paved (Table 35). Crossovers are warranted at county lines and on either side of interchanges or toll booths. Using this criterion, 139 crossovers would remain. All remaining crossovers should be paved and signed. Therefore, signing was recommended at 31 crossovers, and paving was recommended at 101 crossovers. Scale drawings showing the locations of all median crossovers are given in APPENDIX E. The drawings also give the location of all interchanges and county lines.

Table 32. Summary of Median and Shoulder Pier Protection.

					Park	cway				
Type of Protection	Mtn	WKγ	BG	Pur	Pen	Aud	DB	GR	Cum	Total
Median Pier										
Guardrail	1	2	26	0	10	0	NA	21	35	95
Earth mound	0	0	0	28	13	8	NA	0	0	49
Crash cushion	0	0	0	0	0	0	NA	0	0	0
Shrubs	0	38	0	1	0	0	NA	0	0	39
None	18	5	2	3	10	1	NA	3	2	44
Shoulder Pier										
Guardrail	11	4	52	î	17	0	12	40	65	202
Unprotected	31	86	4	3	2	0	0	4	4	134
Guardrail-Unattached	11	2	9	3	11	0	6	20	35	9 7

Table 33. Summary of Bridge Inventory Data.

agan manunun kapa peraktika dalam menjar yang bilan kara dan kapapatén Salah Kapapatén kara kara kara kara kara				and the second secon	Par	kway				
Data Item	Mtn	WKy	BG	Pur	Pen	Aud	DB	GR	Cum	Total
Number of bridges	41	32	16	23	23	5	20	21	15	196
Shoulder										
Full width	4	8	3	16	14	2	16	1	1	65
Not full width	37	22	13	7	9	3	4	20	14	129
Gap between bridges protection										
Guardrail	16	1	14	13	8	4	NA	20	12	88
Shrubs	0	25	0	0	0	0	NA	0	0	25
Guardrail and shrubs	0	2	0	0	0	0	NA	0	0	2
Guardrail and earth mound	0	0	0	10	14	0	NA	0	0	24
None	0	0	0	0	0	0	NA	0	0	0
Curb										
Yes	40	25	14	23	21	5	20	21	15	184
No	1	4	2	0	1	0	0	0	0	8

Table 33. Summary of Bridge Inventory Data. (Continued).

	Parkway											
Data Item	Mtn	WKy	BG	` Pur	Pen	Aud	DB	GR	Cum	Total		
Percent of given safety feature												
rated as good (up to standard)								-	_	~		
Bridge rail	0	0	0	0	0	0	0	0	0	0		
Transition	58	0	100	83	0	60	85	67	33	50		
Approach guardrail	68	44	100	83	86	60	85	67	33	69		
End treatment	0	0	0	0	0	0	0	0	0	0		
Number of decks in need of												
major repair	7	5	6	0	1	0	1	3	0	23		

Table 34. Summary of Interchange Inventory Data.

		Parkway								
Inventory item	Mtn	WKy	BG	Pur#*	Pen	Aud	DB	GR	Cum	Total
Number of interchanges*	14	12	10	13	18	3	10	9	10	99
Number lighted	2	5	5	4	8	2	7	7	8	48
Number of gore areas	20	23	16	24	31	4	4	18	13	153
Number with given gore area	feature									173 (27
Clear	3	7	1	12	9	2	0	11	10	55
Exit sign ***							0	0	0	27
Other breakaway signs	2	8	11	4	5	0	0	0	0	30
Light poles	2	2	2	0	0	0	2	0	0	8
Curb	5	0	0	14	13	0	0	0	0	32
Guardrail	4	11	2	6	6	2	2	7	3	43

*Includes st-grade intersections.

**Includes new interchanges where no accident data were available.

***Back-to-back channel posts.

Table 35. Summary of Median Crossovers.

	Parkway*									
Information	Mtn	WKy	BG	Pur	Pen	Aud	GR	Cum	Total	
Number of crossovers										
Marked	13	60	23	14	56	8	20	16	210	
Unmarked	13	1	11	6	4	3	7	26	71	
Total	26	61	34	20	60	11	27	42	281	
Number paved	3	3	19	0	2	0	11	22	60	
Number related to										
county line	2	6	6	3	3	1	3	4	28	
Number related to interchange										
or toll booth	12	18	16	10	28	4	12	14	114	

Table 35. Summary of Median Crossovers (Continued).

Parkway*										
Information	Mtn	WKy	BG	Pur	Pen	Aud	GR	Cum	Total	
Number recommended										
removing	12	36	14	8	30	6	13	23	142	
Number remaining	14	25	20	12	30	5	14	19 [°]	139	
Number signing recommended	6	1	4	4	1	0	3	12	31	
Number paving recommended	10	26	7	12	30	5	6	6	101	

Table 36. Summary of Various Roadway Features Inventoried.

	Parkway									
Inventory Item	Mtn	WКy	BG	Pur	Pen	Aud	DB	GR	Cum	Total
Number of signs										
Breakaway	0	23	24	9	18	6	1	36	47	164
Protected	46	55	69	54	76	18	33	55	44	450
Nonbreakaway and										
unprotected	27	50	4	4	22	3	0	0	0	110
Number of breakaway										
lighting standards	30	80	0	0	0	0	0	0	0	110
Total length of rock										
outcroppings (miles)	2.0	1.6	0.8	0	0.3	0	0.2	0.1	0.9	5.9
Total length of rock										
cuts (miles)	3.9	14.4	10.8	0	5. 5	0	15.0	5.6	17.9	73.1
Number of small culvert										
headwails to replace	4	96	3	18	15	7	15	38	9	205

A total of 724 signs were counted (Table 36), and it was determined that 110 needed to be replaced with breakaway posts. A less desirable alternative would be to divert the vehicle away with guardrails. Almost half of the signs in need of replacement were on the Western Kentucky Parkway. A total of 110 nonbreakaway lighting standards were counted. On some toll roads, the Western Kentucky Parkway in particular, it was common practice to install small sections of guardrail to shield culvert headwalls. Exposed headwalls should be replaced with sloped headwalls, and the area around the new headwall should be contour graded. In addition, short sections of guardrail should be removed. A total of 205 such culverts

were counted.

The lengths of rock outcroppings and rock cuts were also summarized. Reducing the accident potential associated with rock outcroppings and rock cuts is very expensive, and solutions are not readily available. Alternatives range from eliminating the rock cuts to installing guardrail or barrier walls to shield vehicles from the rock cuts.

Recommended improvements for the toll roads can be divided into two categories: specific, high-accident locations and systemwide safety features. The first category was for improvement of specific high-accident locations. Lists of high-accident spots, sections, interchanges or intersections, and bridges were obtained. These locations were investigated and inspected, and appropriate improvements are recommended. A list of recommended safety improvements at high-accident, 0.3-mile (0.5-km) spots, which were ordered by critical rate factor, is given in Table 37. Another list for 1.0-mile (1.6-km) sections is given in Table 38. Many locations appeared on both lists, including many toll-booth locations. Also, a section of the Pennyrile Parkway between mileposts 30 and 45 accounted for a significant portion of the lists. Paving the shoulder on this section of parkway was recommended. Toll-booth improvements and paving the shoulder on the section of the Pennyrile Parkway were the two major improvements recommended at the highaccident spots and 1.0-mile (1.6-km) sections. Other recommended improvements involved

signing and deslicking. Improvements are also recommended at high-accident interchanges and intersections (Table 39) and bridges (Table 40). Interchanges with six or more accidents and bridges with three or more accidents are listed. Only four intersections and no bridges had critical rate factors of one or more. Recommendations at high-accident interchanges and intersections vary from construction of a grade-separated interchange to pavement markings and signing. Recommendations at bridges are either an "ice on bridge" warning system or additional delineation. The "ice on bridge" warning system would consist of a sensor in each bridge deck to detect ice and a sign on each approach.

The second improvement category is systemwide upgrading of a safety feature. As a guide, a list of types of highway safety improvements included in the interstate cost estimate was used (Table 41).

A list of 42 specific improvement alternatives is recommended in Table 42. The number of each type of improvement recommended is given for the "general upgrading." The specific locations are listed for the other improvements. The num-

bers of accidents which would be affected by the improvements were determined by various methods. A description of the accidents included when determining percentage reduction is given for each improvement in APPENDIX F. The estimated percentage reduction was determined using past studies and accident analyses. In some cases, estimates were made based on engineering judgment. The percentage reductions in accidents were given separately for fatal, injury, and property-damage-only accidents. This was done because some improvements will reduce accident severity but not affect the number of accidents. In such cases, total accidents may remain unchanged, but injury and fatal accidents will be reduced. Thus, the number of property-damage-only accidents will show a negative percent reduction because some injury and fatal accidents would become propertydamage-only accidents after improvements are made.

Improvement costs were taken primarily from average unit bid prices for past projects awarded by the Kentucky Department of Transportation. A tabulation of the unit costs used for the recommended

 Table 37. Recommended Safety Improvements at High Accident Locations –

 0.3-Mile (0.5-km) Spots (In Order by Critical Rate Factor).

County	Parkway	Beginning Milepost	Ending Milepost	Number of Accidents	CRF	Recommended Improvements
43	WKy	106.9	107.1	14	2.18	Replace nonbreakaway posts; transverse stripes (toll booth)
99	Mtn	32.8	33.0	15	1.54	Rumble stríps; breakaway posts; crash-cushions; transverse stripes; escape ramp
119	Mtn	38.0	38.2	12	1.47	Deslicking; curve warning signs
3	BG 1	58.7	58.9	10	1.29	Transverse stripes (toll booth)
114	GR	7.4	7.6	7	1.19	Transverse stripes (toll booth)

ounty	Parkway	Beginning Milepost	Ending Milepost	Number of Accidents	CRF	Recommended Improvements
77	Mtn	72.2	72.4	6	1.12	Curve warning sign
89	WKy	57.9	58.1	7	1.10	Rumble strips; transverse stripes (toll booth)
79	Pur	42.6	42.8	5	1.09	Crash cushion; transverse stripes (toll booth)
63	DB	7.0	7.2	7	1.08	Transverse stripes (toll booth)
117	Pen	62.5	62.7	7	0.96	Transverse stripes (toll booth)
89	WKγ	63.9	64.1	6	0.94	N.I.R.*
51	Aud	10.1	10.3	5	0.83	Transverse stripes (toll booth)
54	Pen	37.0	37.2	9	0.82	Pave Shoulder
99	Mtn	21.0	21.2	6.	0.82	N.I.R.
54	WKy	24.3	24.5	5	0.79	Replace nonbreakaway posts; transverse stripes (toll booth)
54	WKy	32.9	33.1	5	0.79	Deer signs; deer fence
43	WKy	91.8	92.0	5	0,78	N.I.R.
92	WKy	75.0	75.2	5	0.78	N.I.R.
120	BG	63.0	63.2	6	0.78	N.I.R.
26	DB	33.8	34.0	4	0.75	Transverse stripes (toll booth)
66	DB	42.0	42.2	4	0.75	Deslicking
66	DB	43.9	44.1	4	0.75	Rumble strips; transverse stripes (toll booth)
119	Mtn	53.9	54.1	4	0.74	Deslicking
16	GR	28.7	28.9	4	0.70	Deer fence; deer signs
9 9	Mtn	14.6	14.8	4	0.70	Transverse stripes (toll booth)
99	Mtn	15.0	15.2	6	0.70	Transverse stripes (toll booth)
26	DB	14.8	15.0	4	0.67	Curve warning sign
54	Pen	28.9	29.1	5	0.65	N.I.R.
90	BG	9.5	9.7	4	0.65	Transverse stripes (toll plaza)
90	BG	11.5	11.7	4	0.65	Improve snow and ice removal
43	WKy	18.8	19.0	4	0.64	N.I.R.
47	BG	3.0	3.2	4	0.64	Improve snow and ice removal
54	Pen	38.9	39.1	7	0.64	Pave shoulder
54	Pen	39.7	39.9	7.	0.64	Pave shoulder
90	BG	36.9	37.1	4	0.64	N.I.R.
115	8G	41.7	41.9	4	0.64	N.I.R.
54	Pen	54.9	55.1	5	0.63	Remove one crossover (MP 55.1)
89	WKy	45.9	46.1	4	0.63	N.I.R.
43	WKy	99.0	99.2	4	0.62	N.I.R.
43	WKy	112.8	113.0	4	0.62	N.I.R.
43	WKy	115.0	115.2	4	0.62	Deer fence; deer signs

Table 37. Recommended Safety Improvements at High Accident Locations – 0.3-Mile (0.5-km) Spots (In Order by Critical Rate Factor) (Continued).

.

County	Parkway	Beginning Milepost	Ending Milepost	Number of Accidents	CRF	Recommended Improvements
43	WKy	118.3	118.5	4	0.62	Improve snow and ice removal
43	WKy	75.5	75.7	4	0.62	Directional left-exit sign
24	Pen	7.3	7.2	5	0.61	Concrete barrier with delineation
24	Men	36.8	37.0	5	0.61	Deslicking
119	Mtn	38.3	38.5	5	0.61	Deslicking
25	Mtn	4.9	5.1	5	0.59	N.I.R.
25	Mtn	7.3	7.5	5	0.59	N.I.R.
25	Mtn	10.2	10.4	5	0.59	Deslicking
24	Pen	14.0	14.2	4	0.58	N.I.R.
99	Mtn	19.9	20.1	5	0.58	N.I.R.
99	Mtn	26.9	27.1	5	0.58	N.I.R.
51	Pen	77.2	77.4	5	0.57	N.I.R.
24	Pen	20.2	20.4	4	0.55	N.I.R.
54	Pen	32.7	32.9	6	0.55	Pave shoulder
54	Pen	40.2	40.4	6	0.55	Pave shoulder
54	Pen	41.8	42.0	G	0.55	Pave shoulder
117	Pen	59.6	59.8	4	0.55	Replace median drainage inlets
117	Pen	64.2	64.4	4	0.55	N.I.R.
51	Pen	64.2	64.4	4	0.55	N.I.R.
54	Pen	29.5	29.7	4	0.52	Pave shoulder
3	BG	59.0	59.2	4	0.51	Transverse stripes (toll booth)
99	Mtn	35.2	35.4	4	0.51	Deslicking
99	Mtn	35.8	36.0	4	0.51	Deslicking
47	WKy	120.3	120.5	4	0.50	Improve snow and ice removal
47	WKy	134.3	134.5	4	0.50	N.I.R.
25	Mtn	11.8	12.0	4.	0.47	N.I.R.
54	Pen	50.6	50.8	4	0.55	N.I.R.
54	Pen	35.7	35.9	· 5	0.46	Pave shoulder
54	Pen	36.4	36.6	5	0.46	Pave shoulder; replace nonbreakaway sig
54	Pen	36.7	36.9	5	0.46	Pave shoulder
54	Pen	38.2	38.4	5	0.46	Pave shoulder
54	Pen	40.9	41.1	5	0.46	Pave shoulder
54	Pen	42.1	42.3	5	0.46	Pave shoulder
54	Pen	42.4	42.6	5	0.38	Pave shoulder
54	Pen	30.9	31.1	4	0.36	Pave shoulder
54	Pen	37.3	37.5	4	0.36	Pave shoulder
54	Pen	37.6	37.8	4	0.34	Pave shoulder
54	Pen	42.9	43.1	4	0.30	Pave shoulder
54	Pen	43.4	43.6	4	0.30	Pave shoulder

 Table 37. Recommended Safety Improvements at High Accident Locations –

 0.3-Mile (0.5-km) Spots (In Order by Critical Rate Factor) (Continued).

"No improvement recommended.

improvements is given in APPEN-DIX G. Service lives and annual maintenance costs were selected for each project based on information obtained from other sources. The average annual benefits were determined using National Safety Council accident costs. Accident savings were the only benefits considered. Given the service life for each improvement, an interest rate of 10 percent, and an exponential growth-rate factor for traffic of six percent, the present worth of the benefits was determined and a benefit-cost ratio was calculated.

A separate listing by toll road was made of the systemwide type

of improvements (Table 43). The number of each improvement needed is summarized for each toll road. This table shows which toll roads are in the greater need of safety upgrading.

A summary of the improvement costs in various benefit-cost ratio ranges is given in Table 44. The

Table 38. Recommended Safety Improvements at High Accident Locations -1.0-Mile (1.6-km) Sections (In Order by Critical Rate Factor).

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	CRF	Recommended Improvements
43	WKy	106.9	107.8	16	1.36	Replace nonbreakaway posts; Transverse stripes (toll booth)
119	Mtn	37.4	38.3	19	1.21	Deslicking; curve warning signs
3	BG	58.7	5 9.6	16	1.08	Transverse stripes (toll booth)
66	DB	43.4	44.3	9	0.97	Rumble strips; transverse stripes (toll booth)
99	Mtn	32.1	33.0	14	0.94	Rumble strips; crash cushions; breakaway poles; transverse stripes; escape ramp
89	WKy	57.2	58.1	9	0.77	Rumble strips; transverse stripes (toll booth)
54	Pen	37.1	38.0	17	0.76	Pave shoulder; deer fence
54	Pen	28.9	29.8	11	0.75	Pave shoulder
63	DB	7.0	7.9	9	0.75	Transverse stripes (toll booth)
114	GR	6.8	7.7	9	0.72	Transverse stripes (toll booth)
54	Pen	41.5	42.4	16	0.71	Pave shoulder; remove crossover
92	WKy	75.1	76.0	8	0.68	Directional left-exit sign
54	Pen	36.1	37.0	15	0.67	Pave shoulder
117	Pen	61 .8	62.7	9	0.66	Transverse stripes (toll booth)
54	Pen	38.2	39.1	14	0.62	Pave shoulder
24	Pen	27,9	28.8	9	0.61	Improve snow and ice removal
25	Mtn	9.5	10.4	10	0.61	Deslicking
120	8G	6 3,0	6 3.9	9	0.61	N.I.R.*
54	Pen	39.3	40.2	13	0.53	Pave shoulder
117	Pen	59.6	60.5	8	0.58	Remove crossovers
119	Mtn	36.4	37.3	9	0.57	Deslicking
25	Mtn	1.0	1.9	9	0.55	N.I.R.
54	Pen	49.9	50.8	9	0.54	Remove crossover

County	Route	Beginning Milepost	Ending Milepost	Number of Accidents	CRF	Recommended Improvements
99	Mtn	15.0	15.9	9	0.54	Transverse stripes (toll booth)
99	Mtn	20.5	21.4	9	0.54	N.I.R.
99	Mtn	35.2	36.1	8	0.54	Deslicking
24	Pen	9.1	10.0	8	0.51	Screen on bridge over parkway
119	Mtn	42.0	42.9	8	0.51	Remove crossover
25	Mtn	0.0	0.9	8	0.49	N.I.R.
25	Mtn	8.3	9.2	8	0.49	N.I.R.
54	Pen	40.4	41.3	10	0.44	Pave shoulder
54	Pen	34.0	34.9	9	0.40	Pave shoulder
54	Pen	35.1	36.0	9	0.36	Pave shoulder
54	Pen	33.0	33.9	8	0.36	Pave shoulder
54	Pen	42.5	43.4	8	0.28	Pave shoulder

 Table 38. Recommended Safety Improvements at High Accident Locations –

 1.0-Mile (1.6-km) Sections (In Order by Critical Rate Factor)

*No improvement recommended.

Table 39. Recommended Safety Improvements at High Accident Interchanges and Intersections.*

County	Parkway	Milepost	Cross Road	Number of Accidents	CRF	Recommended Improvement
Laurel	DB	3.0	KY 472	13	1.49	Grade-separated interchange or vehicle-actuated warning device
Pulaski	Cum	87.5	Ringo Road	10	1.40	Grade-separated interchange or vehicle-actuated warning device
Laurel	DB	0.0	US 25	12	1.11	Transverse stripes
Marshall	Pur	52.3	US 62	5	1.02	Vehicle-actuated warning device
Daviess	Aud	23.5	US 60 Bypass	7	0.83	Additional directional signing; transverse stripes
Hardin	WKγ	136.6	1-65	11	0.74	Gore improvements
Christian	Pen	7.0	US 41 A	8	0.68	N.I.R.
Clark	Mtn	0.0	I-64	7	0.58	Lighting; additional delineators; transverse stripes
Daviess	GR	70.2	US 60 Bypass	6	0.51	Transverse stripes
Hardin	WKγ	136.8	US 31W	6	0.43	Additional directional signing
Hopkins	Pen	44.3	KY 281	9	0.43	Transverse stripes (exit ramps); gore improvements
Hopkins	Pen	42.4	KY 70	8	0.39	Transverse stripes (exit ramps); gore improvements

*Six or more secidents.

Table 40. Recommended Safety Improvements at High-Accident Bridges.*

				Number of		
County	Parkway	Milepost	Bridge Over	Accidents	CRF	Recommendations
Ohio	WKy	76.8	Green River Pkwy	4	0.78	Ice on bridge warning system
Anderson	BG	62.6	Kentucky River	9	0.71	Delineation; ice on bridge warning system
Hopkins	Pen	43.4	L and N Railroad	4	0.64	Delineation; ice on bridge warning system
Hopkins	Pen	32.3	White Plains Road	4	0.60	Delineation
Nelson	BG	39.2	Chaplin River	3	0.54	Delineation; ice on bridge warning system
Butler	GR	32.6	Green River	4	0.54	Delineation; ice on bridge warning system
Hopkins	Pen	32.6	ICRR, Pleasant Run	3	0.35	Delineation
Henderson	Aud	1 5.8	Green River	3	0.34	Delineation

"Three or more accidents.

Table 41. Types of Highway Safety Improvement Work Included in Interstate Cost Estimate.

- 1. Eliminate unnecessary signs.
- 2. Place signs on otherwise required structures such as bridges, lighting poles, and other sign supports.
- 3. Relocate signs laterally 30 feet or more from the pavement edge.
- 4. Relocate signs longitudinally to where they cannot be hit, such as behind otherwise required guardrail.
- 5. Convert supports to breakaway design.
- 6. Convert existing overhead supports to ground-mount breakaway design when feasible.
- 7. Provide protective guardrail around overhead sign supports.
- 8. Relocate lighting supports from highly vulnerable locations, such as gores.
- 9. Convert lighting supports to breakaway design.
- 10. Eliminate unnecessary median u-turn openings.
- 11. Eliminate small rock outcrops and boulders in an otherwise clear area along the roadside.
- 12. Round ditches.
- 13. Flatten ditch dikes and median u-turn openings.
- 14. Flatten and regrade slopes in gores and around adjusted drainage structures.
- 15. Regrade slopes in median or on side to permit the elimination of short sections of guardrail.
- 16. Remove gore curb.
- 17. Relocate minor drainage headwalls to the edge of clear roadside area.
- 18. Convert catch basins and headwalls to a design that allows vehicles to safely pass over.
- 19, Provide guardrail along large drainage structures.
- 20. Eliminate unwarranted guardrail.
- 21. Add additional guardrail or median barrier posts and blockouts or otherwise upgrade the existing rail to one of acceptable standard.
- 22. Replace a guardrail that deflects a lateral distance greater than the space available.
- 23. Anchor guardrail terminals and adjust them to reduce chance of impalement.
- 24. Strengthen guardrail in advance of and rigidly attach it to bridge parapets and walls.
- 25. Upgrade hazardously substandard bridge rail.
- 26. Install guardrail and median barrier along bridge piers, at overhead sign supports, or in narrow medians.
- 27. Place energy absorption barriers in gores where large fixed objects cannot be relocated.
- 28. Provide skid resistant overlays and pavement grooving.
- 29. Implement other less frequent types of safety work: add glare screens; add rail screens on pedestrian bridges; update signing and lighting at interchanges; revise striping at ramp terminals; lengthen speed change lanes; correct lane drops by signing and/or other minor work.

Table 42. Recommended Improvement Alternatives.

.

.

		Accident Severity						ntine	Maintenance Costa				
No.	mprovement	No.	Fatal	(3-Year Period) Injury	PDO	Fata	Percent Redux Injury	PDO	Costs (\$)	(\$)	(\$)	Ratio	Li (yı
				-	-		<u></u>		20	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u>, , , , , , , , , , , , , , , , , , , </u>		
			t	2(3)*	- 2	20	20	20	500	0	11,000	185.95	1
1.	Curve warning sign DBP MP 14.9	1	'	2(3)	4	20	20	20	500				
2.	Curve warning sign MTP MP 38.1	1	0	6(10)	6	20	20	20	500	0	4,200	69.02	1
3.	Curve werning sign MTP MP 72.3	1	· O	3(5)	2	20	20	20	500	0	2,000	33.58	1
4.	Fasten seatbelt signs at entrance ramps and intersections	184	3 9	674(1011)	1330	2	0	0	36,800	0	39,000	8.69	1
5.	Deer crossing signs	24	1	3(4)	48	5	5	5	5,000	0	3,600	5.85	1
6.	Additional directional signing JJAPUS60 WKPUS31W WKPBeaver Dam Rest Area	3	0	2(4)	5	50	50	50	7,500	0	4,600	5.00	1
7.	Additional signing for exit ramp	۱	. O	1(1)	١	20	20	20	1,000	0	400	3.64	1
8.	Replace rigid lightpoles	110	1	6(9)	۱	75	75	-500	220,000	o	49,000	3.10	:
9.	Vehicle-sctuated warning devices DBPKY 472 CPRingo Rd. JPPUS 62	3	1	- 9(15)	19	20	20	20	45,000	500	17,000	3.01	
10.	Replace rigid signs	110	2	8(12)	10	75	75	-70	440,000	0	90,000	2.85	:
11.	Median crossover improvements: Removing Signing Paving	142 31 101	4	7(11)	11	50	50	50	610,000	0	112,000	2.55	:
12.	Actuated warning sign MTP MP 32.9	1	0	2(3)	5	20	20	20	5,000	100	1,400	2.25	
13.	Transverse stripes <u>DBP</u> –US 25 JJAP–US 60 MTP–I 64 GRP–US 60	6	2	8(10)	17	15	15	15	24,000	0	19,000	2.16	
14.	PP-KY 281 PP-KY 70 Additional delineators JJAP-US 60 MTP-1 64	2	0	٥	5	15	15	15	1,000	O	200	1.74	
15.	Guardrail transition to bridge and (98 bridges)	392	1	7(11)	3	75	50	-170	392,000	0	47,000	1.65	:
16.	Upgrade gap between bridges: install guardrail and shrubs	25	1	2(3)	2	90	60	-100	400,000	5,000	48,000	1.55	:
17.	Concrete barrier wall (500 ft.) PP MP 7,1	8	0	2(4)	2	50	50	-50	19,000	0	3,000	1.55	
18.	Flashing beacons DBPKY 636 DBPKY 176 DBPKY 754 DBPKY 118 MTPKY 191 MTPKY 114 CPKY 80	;	0	5(9)	1	10	10	10	7,000	700	1,800	1.48	
19.	Screen on bridge over Pen Pkwy MP 9.3 and M P 9.5	1	0	0	3	100	100	100	4,000	200	800	1.44	
20	Delineation for wrong-way accidents	153	1	2(3)	١	20	20	20	23,000	0	11,000	1.36	
21.	celineator posts:	3100	7	122(183)	236	2	2	1	71,400	.5,000	15,000	1.25	
	Replace post and lens Replace lens	3400 6800											

Table 42. Recommended Improvement Alternatives (Continued).

,

	•	Accident Severity							Improvement	Maintanance	Avenage Annual	Benefit	
No.	Improvement	No.	Fatal	3-Year Period) Injury	PDO	Fetal	Percent Reduc Injury	ntion PDO	Costs (S)	Costa (S)	8enefits {\$}	Cost Ratio	Life (yrs)
22.	Ice on bridge sensor and sign WKP-MP 76.8 BGP-MP 62.6 PP-MP 43.4 BGP-MP 39.2 GRP-MP 32.8 WKP-MP 65.4 CP-MP 64.3 JJAP-MP 15.8	8	o	3(7)	17	50	50	50	96,000	1,000	9,200	1.24	20
23.	Delineation for shoulders approaching bridges without full-width shoulders	258	1	15(23)	29	10	10	5	38, 700	°O,	10 ,000	1.14	5
24.	Toll booth unprovements Crash cushions (7) Rumble strips (11) Transverse stripes (25)	25	0	22(33)	9 6	30	30	20	105,000	0	2 5,000	1.05	5
25.	Paving shoulder: Pen Pkwy (MP 30.0-45.0)		٥	14(20)	6	90	90	90	330,000	O	36,000	1.05	12
26.	Change guardine) end-treatments to B.C.T.	4048	4	34(51)	19	90	60	180	3,036,600	0	229,000	1.05	20
27.	Median and shoulder pier protection: Shoulder pier unprotected Median mer unprotected Guardrail at shoulder pier unattached	134 83 97	4	9(14)	10	90	60	100	2,641,000	0	193,000	1.02	20
28.	Clear gore area: Remove rigid signs Move light standard Replace dual channel post Remove guardrail Remove curb	30 8 27 43 32	0	6(9)	15	75	50	25	134,000	0	10,000	1.01	20
29.	Deer fence (37.4 miles of fence) WKP 31.2–33.0, 44.4–46.0 113.0–115.0 GRP 19.3–20.6, 26.4–27.8 28.7–30.7, 31.5–33.2 34.6–36.0, 56.0–57.1 26.2–28.1, 37.1–38.4 64.3–65.5		1	3(4)	48	100	100	100	987,000	2,000	71,000	0.98	20
30.	Deslicking: (17-2 lane mi.) MTP 9,510.4, 35.238.3, 53.9- D8P 42.042.2	-54.1	t	10(15)	14	50	50	50	206,000	0	41,000	0.90	5
31.	Culvert/Headwall improvements: Replace headwall Remove guardrail (100 ft, avg. length) Improve slope contour (1,000 cu. yd. avg.) Replace substandard median drainage inlets (750)	205	1	16(24)	8.	90	60	0	1,2 83,000	0	73,000	0.79	20
32.	Upgrade gap between gridges: Plant shrubs behind guardrail	112	1	2(3)	2	75	50	1 00	784,000	20,000	40, 000	0.49	20
33.	Shield rock cuts (73.1 miles)		2	17(26)	19	90	60	-60	4,000,000	0	117,000	0.41	20
34.	Remove rock outcroppings (5.9 mile moving back 10 feet at an average 10 feet high	sł	0	2(3)	2	100	100	50	346,000	0	6,100	0.24	20
35.	Retrofit safety curbs with New Jersey barrier	184	1	16(24)	31	75	75	50	5,1 90,000	0	77,000	0.20	20
36.	Paving shoulder: DBP (MP 0-59.1)		1	25(37)	29	20	20	20	1,300,000	0	26,000	0.19	12
37.	Grade-separated interchange: DBPKY 472	1	1	5(10)	8	100	75	75	5.000,000	0	6 6,000	0.18	20
38.	Bridge deck repair	23	1	26(39)	49	10	10	10	1,725,000	٥	14,000	0,11	20

Table 42. Recommended Improvement Alternatives (Continued).

		·		cident Severity 5-Year Period)			Percent Reduc	tion	Improvement Costs	Maintenance Costs	Average Annuai Benefits	Banafit Cost	Life
No.	Improvement	No.	Fatal	injury	PDO	Fatal	Injury	PDO	(\$)	(\$)	(\$)	Ratio	(yrs)
39.	Interchange lighting: MTP-1 64	1	0	Q	4	50	50	50	100,000	500	600	0.04	20
40.	Truck escape ramp: MTP MP 32.9	1	1	2(3)	5	75	75	75	750,000	1,000	5,400	0.04	20
41.	Bridge widening: For bridges without full-width shoulders	231	1	15(23)	29	50	50	50	3,100,000	0	51,000	0.03	20
42.	Grade-separated interchange CP-Ringo Rd.	1	Q	2(3)	8	100	75	75	5,000,000	0	4,600	0.01	20

"Two injury accidents resulting in three injuries.

Table 43. Numbers and Types of Improvements by Route for System Improvements.

					Parl	ways				
Safety Improvement	Mtn	WKy	BG	Pur	Pen	Aud	DB	GR	Cum	Total
Clear gore area										
Remove rigid signs	2	8	11	4	5	0	0	0	0	30
Move light standard	2	2	2	0	0	0	2	0	0	8
Replace dual channel post	14	7	1	2	3	0	0	0	0	27
Remove guardrail	4	11	2	6	6	2	2	7	3	43
Remove curb	5	0	0	14	13	0	0	0	0	32
Replace rigid signs	27	50	4	4	22	3	0	0	0	110
Replace rigid lightpoles	30	80	0	0	0	Q	0	0	0	110
Remove rock outcroppings (Miles)	2.0	1.6	0.8	0	0.3	0	0.2	0.1	0.9	5.9
Shield Rock Cuts (Miles)	3.9	14.4	10.8	0	5.5	0	15.0	5.6	17.9	73.1
Culvert Headwall Improvements	4	96	3	18	15	7	15	38	9	205
Replace Substandard Median										
Drainage Inlets	150	0	220	160	220	0	0	0	0	750
Toll Booth Improvements										
Crash Cushion	1	0	1	2	0	0	3	0	0	7
Rumble Strips	4	1	1	0	0	0	3	1	1	11
Transverse Strips	4	4	3	2	2	1	3	3	3	25
Bridge Widening	51	44	26	14	18	6	4	40	28	231
Change Guardrail End Treatment										
to BCT	672	773	445	262	352	96	507	416	525	4048
Median Crossover Improvements										
Remove	12	38	14	8	29	6	DNA	13	24	144
Sign	4	1.	4	4	1	0	DNA	3	12	29
Pave	9	24	7	12	31	5	DNA	6	6	100
Guardrail transition to bridge end	68	128	0	16	92	8	12	28	40	392
Median and shoulder pier protection										
Add shoulder pier protection	31	86	4	3	2	0	0	4	4	134
Protect median pier	18	43	2	4	10	1	DNA	3	2	83
Attach guardrail to shoulder pier	11	2	9	3	11	0	6	20	35	97

					Parl	kways			,	
Safety Improvement	Mtn	WKy	BG	Pur	Pen	Aud	DB	GR	Cum	Total
Bridge Deck Repair	7	5	6	0	1	0	1	3	Ö	23
Upgrade Gap Between Bridges										
Install guardrail and shrubs	0	25	0	0	0	0	DNA	0	0	25
Plant shrubs behind guardrail	16	1	14	23	22	4	DNA	20	12	112
Install Fasten Seatbelt Signs	24	27	18	19	32	6	20	20	18	184
Delineation for Shoulders Approaching Bridges Without Full-Width Shoulders	74	44	26	14	18	6	8	40	28	258
Delineation for Wrong Way Accidents	20	25	18	17	33	6	2	20	12	153
Replace and Upgrade Delineator Posts										
Replace post and lens	400	700	375	275	375	125	310	37 0	470	3400
Replace lens	800	140 0	750	5 50	750	250	6 20	740	94 0	6 800
Retrofit Safety Curbs with										
New Jersey Barrier	40	25	14	23	21	5	20	21	15	184

Table 43. Numbers and Types of Improvements by Route for System Improvements (Continued).

Table 44. Summary of Cost by Benefit-Cost Ratio (BCR).

BCR	Number of Projects	Total Cost
.0125	9	\$42,511,000
.2650	2	4,784,000
.5175	0	0
.7699	3	2,476,000
1.00-1.25	7	6,380,700
1,26-1,50	4	105,400
1.50-2.00	4	812,000
2.00-2.99	4	1,079,000
3.00-4.99	3	266,000
5.00-9.99	3	49,300
10 or more	3	1,500
All	42	\$58,464,900

total cost for all projects was \$58.5 million. Of that total, \$8.7 million were for projects having a benefitcost ratio of 1.0 or above. There was a wide range in benefit-cost ratios from 0.01 for a grade-separated interchange to 185 for a curve warning sign. A significant portion of the cost for projects with very low ratios was for bridge widening, which would cost \$23.1 million and would have a benefit-cost ratio of 0.03. Alternate improvements are recommended when one type of improvement was shown not to be economically feasible. For example, delineation of shoulders approaching bridges without full-width shoulders was proposed as an alternative to bridge widening.7 It had a

benefit-cost ratio of 1.14 and would provide some relief to the problem. Two projects for grade separation, with a cost of \$10 million, also had very low benefit-cost ratios. Vehicle-actuated warning devices are recommended at these locations as a less expensive alternative. The less expensive alternative would address the problem; however, the potential for improvement would be reduced. The projects with very high benefit-cost ratios tended to be low-cost improvements at high-accident locations. Three other projects with a total cost of about \$2.5 million had benefit-cost ratios close to 1.0 (0.79 to 0.98).

Priority Ranking

To priority rank improvement projects, construction costs and monetary benefits resulting from accident reductions must be known. Also, such information as interest rate, expected traffic volume growth rate, and annual maintenance costs is needed to perform an economic analysis; and priority ranking may be accomplished according to benefit-cost ratios. Given a budget, projects can be selected by dynamic programming. The dynamic programming model, as applied to Kentucky's High-Accident Spot Improvement Program, has been used to set priorities for improvement projects for various budgets.⁶ Some changes in these computer programs were made for the Interstate Safety Improvement Program.² These revised programs

REF. NO. 10	REPLACE RIGID SIG		
ACCIDE	NT HISTORY 3.00YEARS.	MONTH 2,YEAR 80.	3 CAUSE.
ROADWAY CAUSE 1 2	NO. NO KILLED INJURED C. 12. C. 0.	NO. PDO 0. 10.	
TOTALS	2. 12. Cost life main cos	10. T EFFECT ON	1 2 3
ALTERNATIVE 1 4	4000. 20. 0.	i fildi ont	0.75 0.75 -0.70
TOTAL BENEFI	TS AND COSTS		
ALTERNATIVE 1		T ACC BENEFIT 40000. 1808333.	
BENEFIT/COST	ANALYSIS, MAINTENANCE	INCLUDED ***PRESEN	I WORTH METHOD***
ALTERNATIVE 1	MAINTENANCE COS 0. 4	ACC BENEFIT 40000. 1253799.	BENEFIT/COST 2.85

Figure 1. Example output from dynamic programming with information about a safety improvement.

were used in this study.

Input into the program included numbers of injuries, fatalities, and property-damage-only (PDO) accidents for each project location during the study period (three years). Percentage reductions for these accidents were also input along with improvement costs, annual maintenance costs, and assumed service life of each project. An interest rate of 10 percent and a volume growth rate of six percent per year were used. An example of output from the program is shown in Figure 1. The improvement involves replacing rigid sign supports over the entire toll-road system. The numbers of related fatalities (2), injuries (12), and propertydamage-only accidents (10) are given first. Then a listing of costs (\$440,000), service life (20 years), and annual maintenance costs (0) is given. The expected percentage reductions are given for various accident severities (75 percent reduc-

LOCATION	LITERNATIVES. COSTS AND BENEFITS-ORDERED BY BEN -LOCATION MAME	KOMčöst-	RETURN	B/C RATIO	ACCUM COSTI	ICCUN RETURN
1	CURVE WARNING SIGN DBP MP 14.9	1 522.	92476	184.95	1000.	126984
2	CURVE WARNING SIGN MIN PKWY MP 38.1	1 299.	39393,	33.24	1500	103773
3	CURVE WARNING SIGN MIN FRWI MP 72.3	1 2000.	110000	33.28	22200	44144
4	SEATBELT_SIGNS_AT_ENT RAMPS AND INTERS	1 30800.	-12268-	e	42200	49295
5	DEER CROSSING SIGNS	1 5000.	<u> </u>	2.02	43300.	51066
6	ADD. DIRECTIONAL SIGNING 3 LOCATIONS_	/200.	31242.	3.00	61800.	តី ដំ ព័រ រំ
7	ADD, SIGNING FOR EXIT RANP GRP TO WEP	1 1000.	202/. 2011	2,04	271800	121566
6	REPLACE RIGID LIGHTPOLES	1 420000.	175360	3.43	116800	1350812
. 9	AEMIGTE-VCIDALED MYENTUG DEATCER 3 FOC	43444	1161700	3.86	756800	260461
10	REPLACE RIGID SIGHS	440000.	1622421.	5.65	1266800	416016
11	HEDIAH CROSSOVER LIPROVENENTS & TIPES	1 010000.	1333/31.	5.32	1271800	417158
12	ACTUATED WARKING SIGN MIN PRWI MP 32.9	1 . 30000	(1663) E1869	2.12	1205800	422349
13	TRANSVERSE STRIPES SIX LOCATIONS	1 24000.	-1425-	1 70	1106000	422523
14	ADD. DELINEATORS GJAPTUSEU HIP-184	1 202000	647472	1.45	1788800	487265
15	GUARDRAIL TRANSITION TO BRIDGE LAD	1 400000	621842	1.55	2188800	549449
14	UPGRADE GAP BET. BRIDGES GERALD SHRUDS	1 10000	20300	125	2207800	552389
17	CONCRETE BARKIEK WALL PF OF 7.1 300 F1	7000.	10205	1 06	2214806	553409
18	FLASHING BEACONS SEVER LOCATIONS	1 10000.	6746	1 4 4	2218800	553984
19	SCRIEN ON BRIDGE OVER PPRMI & LOC.	1 33000	31461	1.12	2241800	557110
20	DELINEATION FOR WRONG-WAI ACCIDENTS	1 1100	31224	1 26	2313200	566133
21	REPLACE AND UPGRADE DELINEATUR POSIS	1 96000	114715	1 24	2409200	578004
2 2	ICE ON SENSUR ARD BRIDGE SIGN & LCC.	1 29700	42144	1.10	2447900	582421
Z 3	ALL ADDALL IOR AND ADDALL AFFA. AALDES	105000	110125	1 65	2552900.	593433
7 2	TULL BOUTH INFROVENCALS INFEE MINUS	3036000	1182019	1.65	5568900.	911637
25	CHARGE GUARDRAID S BUTY HD 20 0000	1 335600	144681	1.05	5918900.	946185
20	FRVING SHOULDER F FRWI HF SULUTION 3	2641000	2581952	1.02	8559900.	1214380
11	ALVIAN AND SHOULDER FILM FOULDATION S	1 134000.	135376	1.61	8693900.	1227918
28	APPA FUCE NUE 1102 DD 1100 GDD 4100	987000.	972145	0.38	96809CO.	1325133
22	DEER FARTE WIN BULK TION TO BE BULK TION	1 205000.	185857	0,90	9886900.	1343718
30	ANTUFUT AUGUNANT THERACORDENES	1 1283000.	1010065.	0.79	11169900.	1444725
31		i 784000.	382094	0.49	11953900.	1482934
35		1 4000000.	1621456.	0.41	15953900.	1645080
3.5	AFMOVE BOCK OUTCROPPINGS.	1 346000.	84357.	0.24	16299900.	1653515
12	PETPOETT SAFETY CURBS WITH HJ BARRIER	1 5190000.	1063476.	0.20	21489900.	1759863
žž	FAUTNG SHOULDER DB PEWY (MP 0-59.1)	1 1300000.	246773.	0.19	22789900.	1784540
27	GRIDE-SEPIRATED INTERCHANGE DBP-KY472	1 50000000.	917989.	0.18	27789900.	1876339
ĩ.	BRIDGE DECK REPAIR	1 1725000.	193143.	0.11	29514900.	1895654
ĩã	TRUCK ESCAPE RAMP MTN PKWY MP 32.9	1 750000.	32487.	0.04	30264900.	1898902
ŭń	INTERCHANGE LIGHTING MP 164	1 100000.	3601.	0.04	30364900.	1899262
1 1	RRIDGE WIDENING (W/OUT FULL-WIDTH SHOU)	1 23100000.	711950.	0.03	53464900.	1970957
2.2	CONDELETED INTERCHINGE CREATWOARD	1 5000000.	63788.	0.01	58454900.	1976836

Figure 2. Example output from dynamic programming showing a listing of projects in order by benefit-cost ratio.

tion for fatalities and injuries and 70 percent increase in propertydamage-only accidents). Also, total benefits and costs are given along with present-worth values. A benefit-cost ratio of 2.85 could be realized from this improvement.

The program output includes a listing of all projects in order of benefit-cost ratio (Figure 2). The highest benefit-cost ratios were for low-budget improvements involving only signing. A total of 28 of the 42 projects had a benefit-cost ratio of 1.0 or higher. This listing provides a column of cumulative benefit-cost ratio.

The dynamic programming output was obtained for several assumed budgets ranging from one

million to 30 million dollars in one-million-dollar increments. Lists of the recommended improvements for various budgets are given in AP-PENDIX H. An example of the type of output for each is shown in Figure 3. For this budget (\$5million), 16 projects were selected with a combined benefit-cost ratio of 1.64. The total costs and benefits of the selected projects are given. A summary of the costs and benefits for various budgets is given in Table 45. The combined benefitcost ratio was over 1.0 up to a budget of \$18 million, even though only \$8.7 million of the individual projects had benefit-cost ratios over 1.0.

Table	45.	Costs and Benefits for	
		Various Budgets.	

Budget	Cost	Benefit	
(million)	(million)	(million)	BCR
\$3	\$ 3.001	\$ 6.223	2.07
6	5.998	9.361	1.56
9	9.000	12.350	1.37
12	11.954	14,829	1.24
15	15.001	15.712	1.05
17	16.400	16.539	1.01
18	17.700	16.786	0.95
21	20,995	17.331	0.83
24	23,640	17.881	0.76
27	26,590	18.520	0.70
30	29,615	18.960	0.64

LOCATION * 5 7 8 9 10 11 12 13 14 15 16 17 19 20 22 23	LOCATION NAME SEATBRLT SIGNS AT ENT RAMPS AND INTERS DEER CYOSSING SIGNS NDD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VIMICE-ACTURTED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER INPROVEMENTS 3 TYPES ACTUATED WARNING WIGN MIN PKWY MP 32.9 TRANSVERSE SIRIPES SIL LOCATIONS ADD. DELIMEATORS JJAP-US66 MIP-164 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAF BET. BRIDGES G-RAIL-XIRUDS CONCRETE BARRIER WALL PP MP 7.1 500 FT SCREEN ON BRIDGE OVER PPKWY 2 LOC. DELIMEATION FOR WRONG-WAY ACCIDENTS LCC. ON SENSOR AND BRIDGE SIGN 8 LOC. DELIMEATION FOR SHOULDERS APPR. BRIDGES MEDIN SHOULDER PIER PROTECTION	λLT-KUM	COST 36800. 5000. 220000. 45000. 40000. 5000. 24000. 392000. 40000. 392000. 392000. 392000. 392000. 392000. 392000. 240000. 2541000.	RETURM 319920. 29258. 681328. 1355358. 12553759. 155755. 519023. 647422. 647422. 647422. 647422. 31261. 31261. 11875. 441642.	ACCUM RETURN 319920. 319978. 352815. 1034142. 1169511. 2463310. 39790261. 39790266. 4042188. 40423931. 4691334. 5342590. 5342590. 5379595. 542447. 822447.	9840155564555346442 06861085817655546442 88557882222	ACCUN 8.69 8.69 8.354 8.354 8.39 8.39 2.98 2.93 2.93 2.91 2.64 2.43 2.44 2.43 2.44 2.43 2.43 2.43 2.4
--	---	---------	---	--	--	--	---

Figure 3. Example output from dynamic programming showing the recommended list of improvements given a \$5.000.000 budget.

Summary

This report presents proposed safety improvements for Kentucky's toll roads. The methodology used was based on a users' guide for preparation of a safety improvement program developed in an earlier report.² The primary methods of identifying needed improvements were an accident analysis and a field inventory. The accident analysis identified specific high-accident spots and sections. Also, accident rates were calculated for each toll road, and the types of accidents which had occurred in the three-year period were summarized. A separate 10-year analysis of fatal accidents was done. The field inventory was used to identify roadway features which are now substandard and in need of upgrading. Also, high-accident spots and sections were investigated in the field. The benefits and costs for each improvement were estimated and used as input into a dynamic programming model which was used as a means of priority ranking the improvements.

References

- Agent, K. R.; "Evaluation of the High-Accident Location Spot-Improvement Program in Kentucky," Report 357, Kentucky Department of Highways, Division of Research, February 1973.
- Pigman, J. G.; Agent, K. R.; and Zegeer, C. V.; "Interstate Safety Improvement Program," Report 517, Kentucky Department of Transportation, Division of Research, March 1979.
- 3. Zegeer, C. V.; and Agent, K. R.; "Identification, Analysis, and Correction of Higb-Accident Locations in Kentucky," Report

Pending, Kentucky Department of Transportation, Division of Research, August 1979.

- Agent, K. R.; "Development of Warrants for Left-Turn Phasing," Report 456, Kentucky Department of Transportation, Division of Research, August 1976.
- 5. Yamane, Taro; Statistics: An Introductory Analysis, Second Edition, Harper & Rowe Publishers, New York, 1967.
- Pigman, J. G.; Agent, K. R.; Mayes, J. G.; and Zegeer, C. V.; "Optimal Highway Safety Im-

provements by Dynamic Programming," Report 398, Kentucky Department of Transportation, Division of Research, April 1974.

- Agent, K. R.; "Accidents Associated with Highway Bridges," Report 427, Kentucky Department of Transportation, Division of Research, May 1975.
- 8. Agent, K. R.; "Guardrail Performance: An Analysis of Accident Records," Report 442, Kentucky Department of Transportation, Division of Research, March 1976.

APPENDIX A

.

Photographs of Various Roadway Features

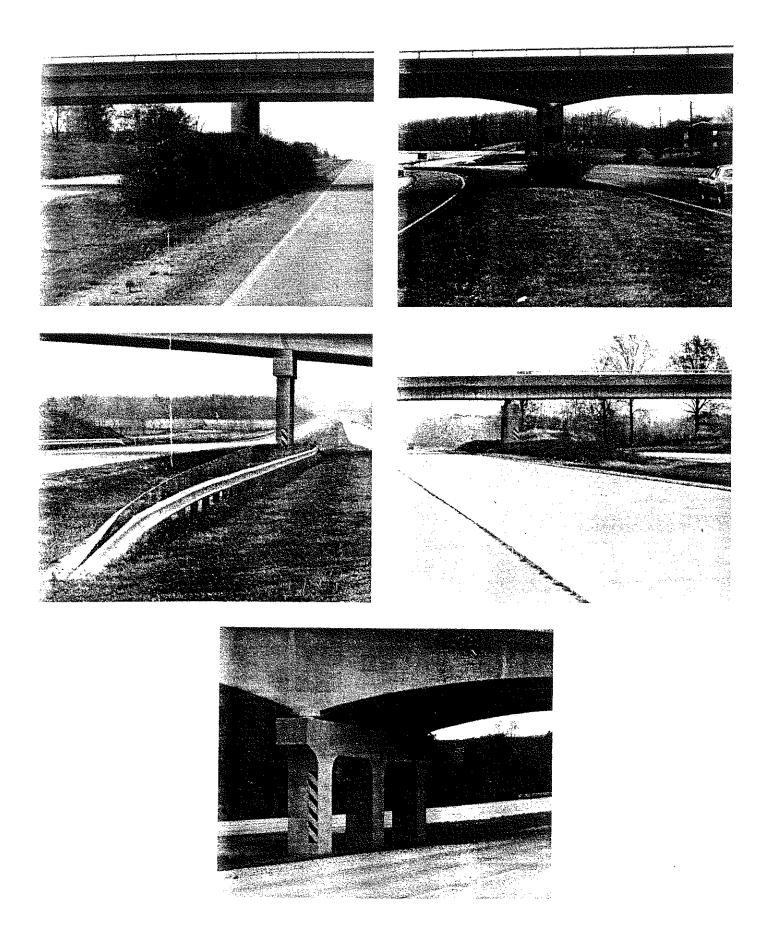


Figure A-1. Types of protectors at median-pier.

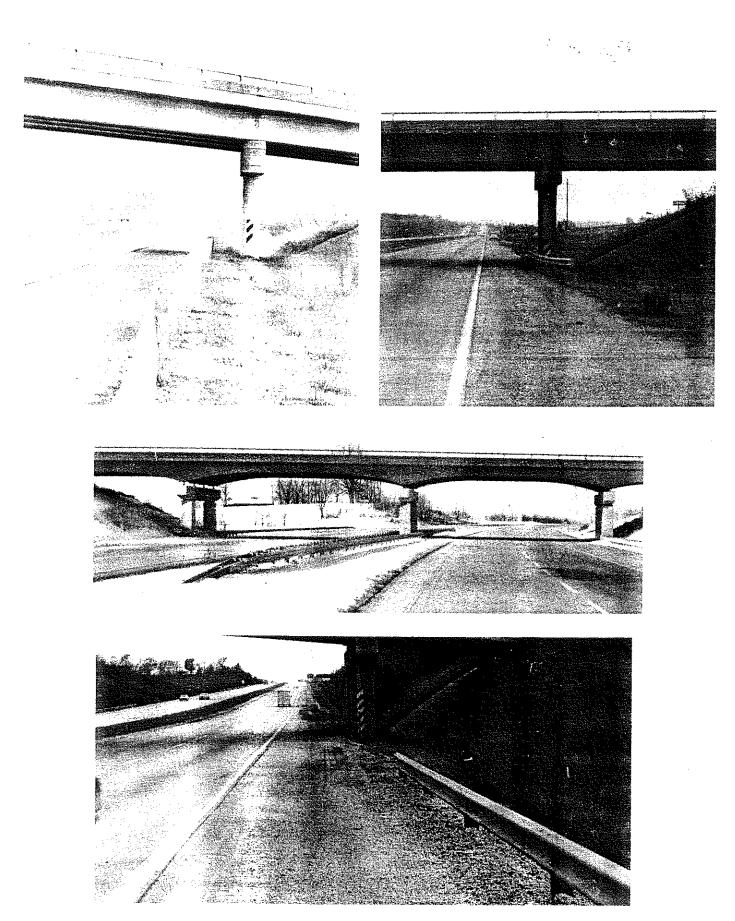


Figure A-2. Types of protectors at shoulder-pier.

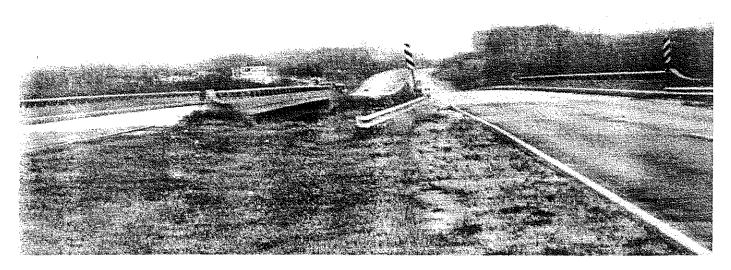


Figure A-3. Types of protections at gap between bridges.

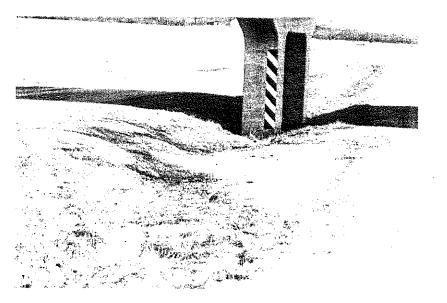


Figure A-4. Various types of median crossovers.

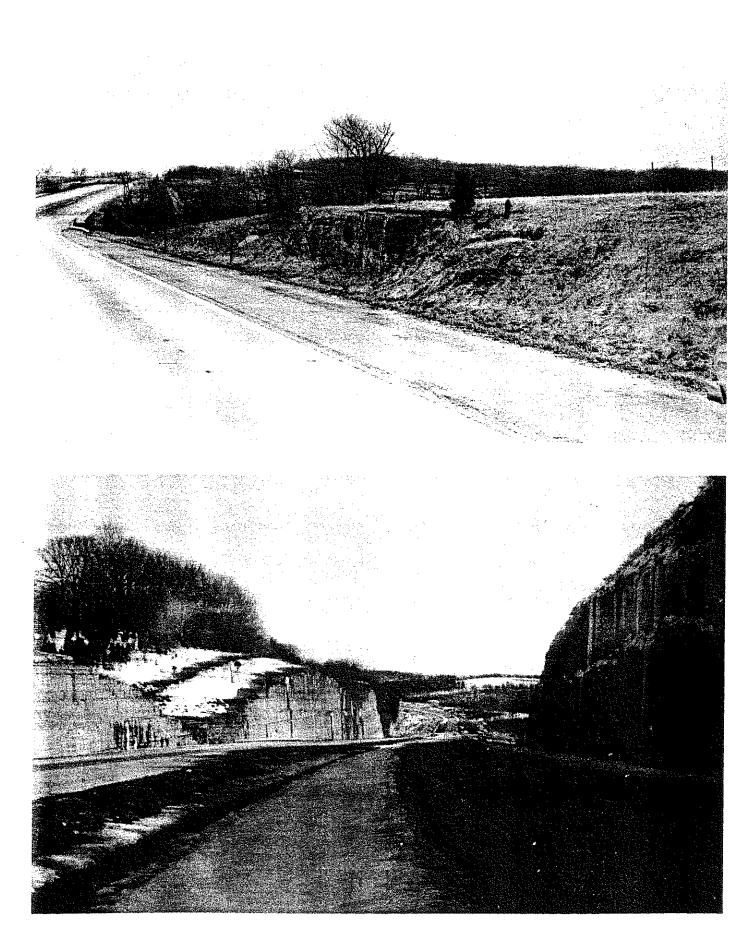
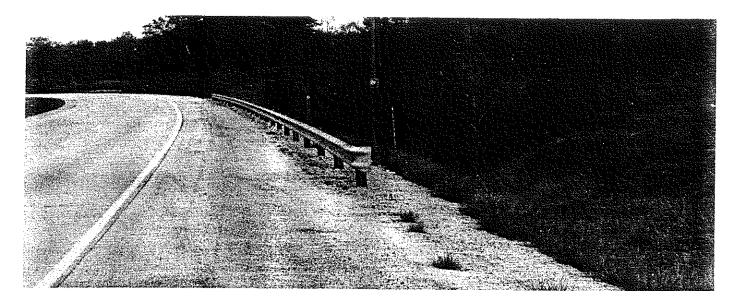



Figure A-5. Rock cut and rock outcropping.

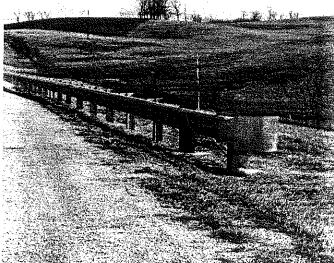


Figure A-6. Types of guardrail end treatments.

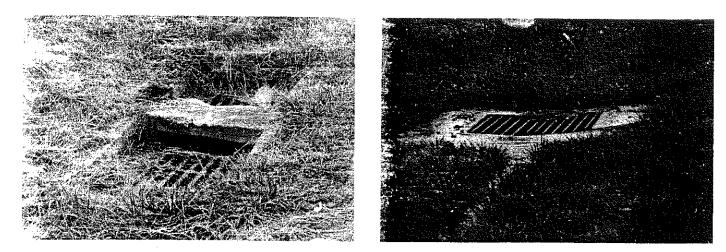


Figure A-7. Types of median drainage inlets.

Figure A-8. Protected and unprotected toll booths.

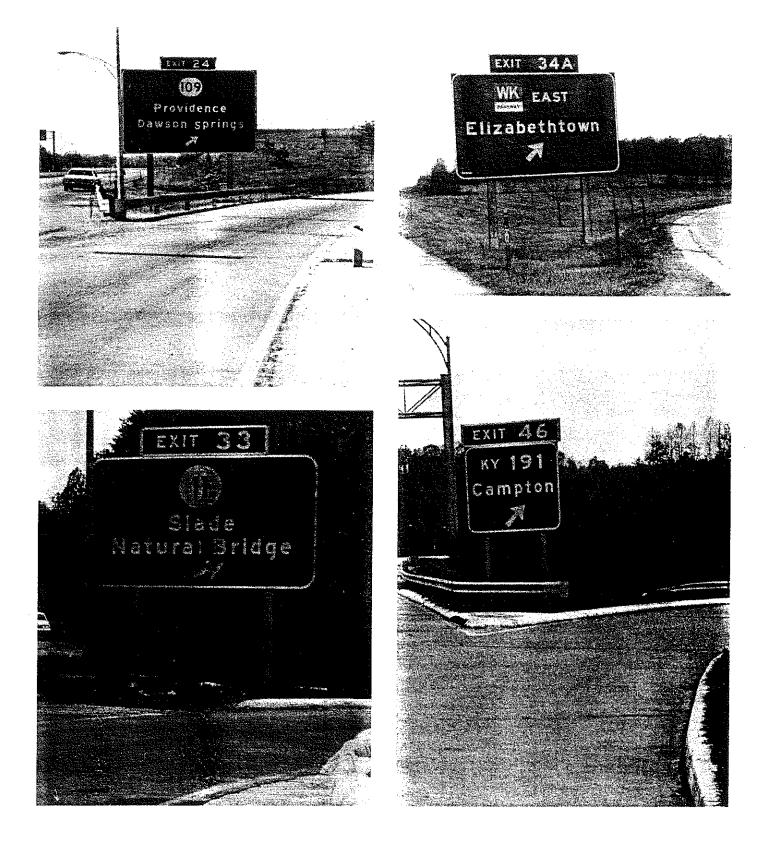


Figure A-9. Various obstructions in the gore.

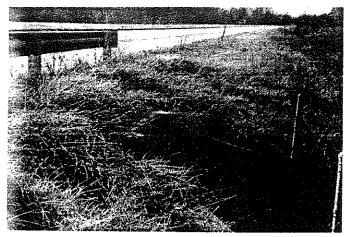


Figure A-10. Short section of guardrail at hazardous culvert headwall.

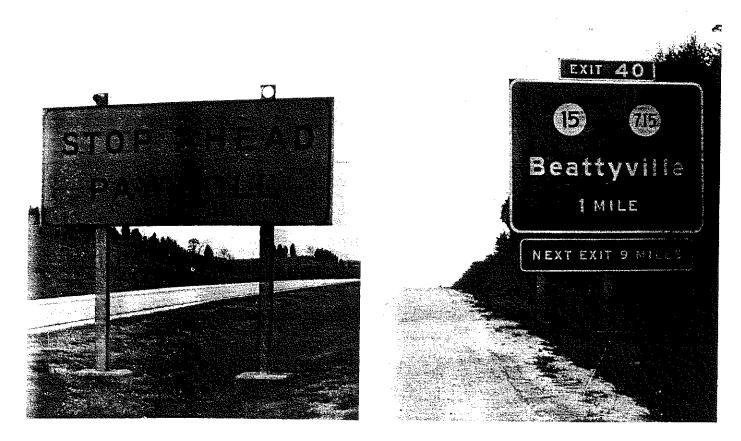


Figure A-11. Rigid sign supports.

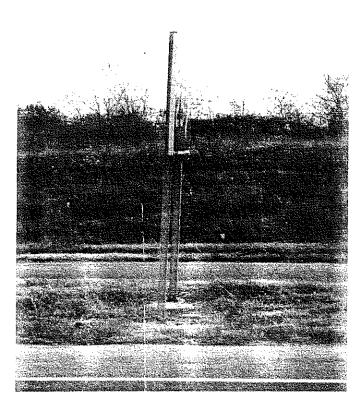


Figure A-12. Breakaway sign supports.

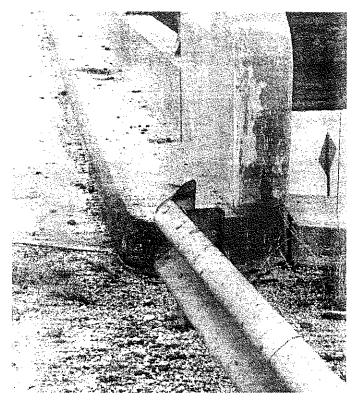


Figure A-13. Guardrail not attached to bridge.

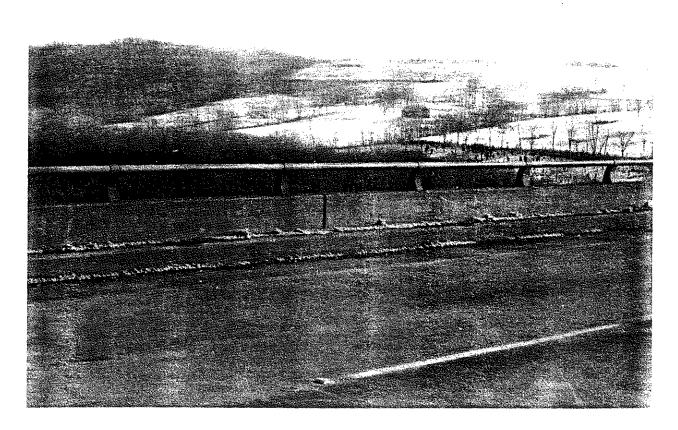


Figure A-14. Typical bridge rail and curb.

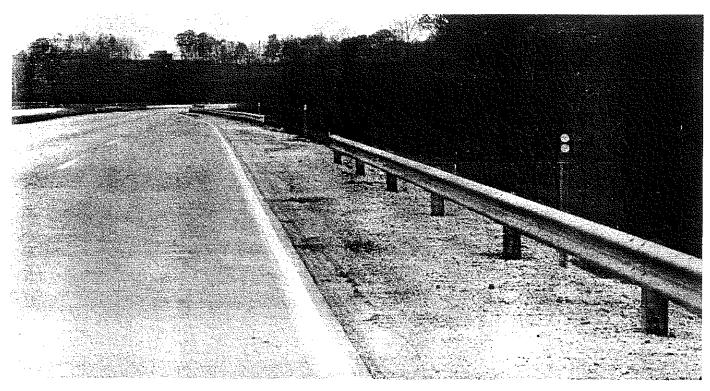


Figure A-15. Short gap between two sections of guardrail.

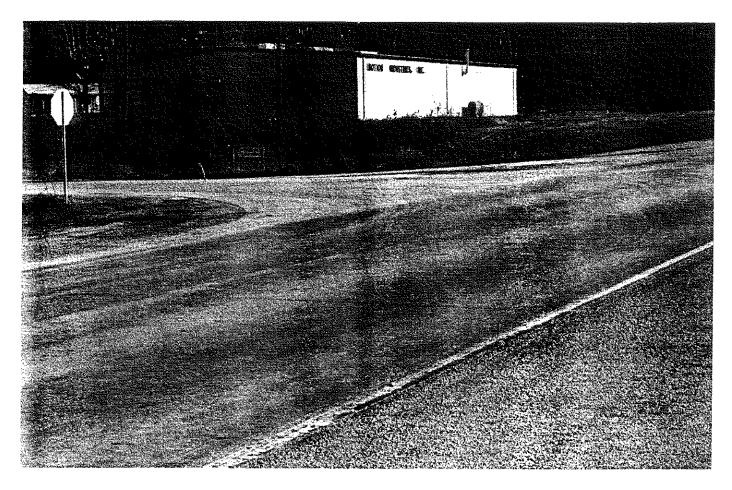


Figure A-16. Direct access permitted on Daniel Boone Parkway.

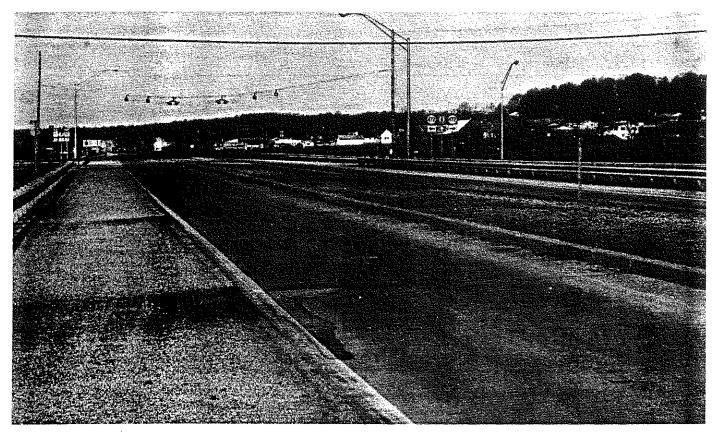


Figure A-17. High-accident location: intersection of Daniel Boone Parkway and KY 472.

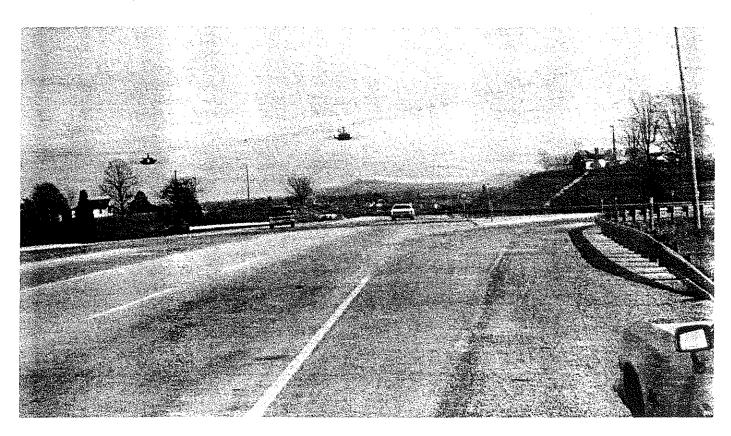


Figure A-18. High-accident location: intersection of Cumberland Parkway and Ringo Road.

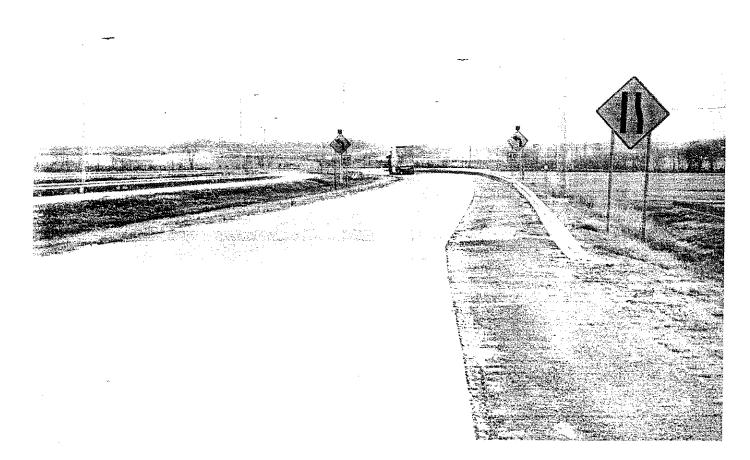


Figure A-19. High-fatality location: ramp from Green River Parkway to US 60 Bypass, westbound.

APPENDIX B

Summaries of Locations With High Numbers of Various Accident Types

	Constanting and the second second second		
PARKUAY	BEGINNING Milepost	ENDING Milepost	NUMBER OF Accidents
HOUNTAIN	0.0 9.70 26.9 30.0 32.8 35.8 37.2	0.7 121.0 271.0 336.8 38.2	<i>។ ច</i> ហសាភា វ ាហាភ
WESTERN KENTUCKY	18.9 44.49 63.9 71.6 93.0 107.0 114.0 120.3 130.3	9.39 454.6 714.0 714.0 908.0 1155.5 1185.5 1185.0 1185.5 1180.0 1185.5 1180.0 1185.5 130.0	446544454 8
BLUEGRASS	3.3 34.2 60.9	4.3 35.2 61.3	र्थ द
PURCHASE	40.5	41.5	4
PENNYRILE	323290601234781425387 222223333337781425387	182057497824381022365749782438102236574	545447444676584556655
GREEN RIVER	23.0 27.8 31.5 55.6	23.6 28.8 32.3 56.6	4 4 5 4

Table B-1. Locations With Four or More Accidents Pe	er Mile	2
(1.6 km) During Darkness.		

Table B-2. Locations With Three or More Guardrail Accidents In One Mile (1.6 km).

PARKWAY	BEGINNING	ENDING	NUMBER OF
	Milepost	Milepost	ACCIDENTS
MOUNTAIN	38.2	38.2	4
	42.4	43.4	3
	72.3	73.0	3
WESTERN KENTUCKY	22.0	23.1	4
	24.5	25.0	3
	37.0	37.8	3
	118.3	118.5	3
	120.3	121.2	3
BLUEGRASS	9.5	9.8	3.
	11.1	11.8	4
	34.2	35.4	4
	36.0	37.0	3
PENNYRILE	25.9	26 - 9	4
	37.0	37 - 1	3
	44.3	45 - 3	7
	74.5	75 - 3	3
AUDUBON	15.7	16.4	3
DANIEL BOONE	2.3 14.8 29.7 43.4 56.3 57.3	3.0 15.8 30.6 44.1 56.9 57.9	おりちょう
GREEN RIVER	1.7	2.7	3

Table B-3. Locations With Three or More Wet Pavement Accidents During Darkness In One Mile (1.6 km).

-

PARKWAY	BEGINNING	ENDING	NUMBER OF
	MILEPOST	Milepost	ACCIDENTS
HOUNTAIN	0.02 10.09 205.89 335.05 381.59 351.59 559.8	001273450 2405450 2773450 3378245 3550 550 570	34335460433 1948
WESTERN KENTUCKY	94. 1	95.0	3
	107.0	108.0	3
BLUEGRASS	4.6	5.5	3
PENNYRILE	33512 35512 4259 5592 624715 66247 75 775	346772 346772 359.69 559.69 662471.9 662471.9 6624776 76	n++*+n+41+nnnn
DANIEL BOONE	2.3	2.3	4
	7.0	7.9	3
	24.5	24.8	3
	42.0	42.1	4

PARKWAY	BEGINNING	ENDING	NUMBER OF
	Milepost	Milepost	ACCIDENTS
MOUNTAIN	10.1	10.9	7
	32.8	34.5	6
	35.2	36.0	5
	36.6	38.5	15
	52.0	54.0	5
WESTERN KENTUCKY	80.0 83.2 94.0 118.0 120.3 134.3	81.4 85.2 95.7 119.8 121.2 135.9	565 86 6
BLUEGRASS	3.0	4.4	7
	9.5	11.5	8
	22.1	24.1	5
PENNYRILE	12.5	14.1	5
	28.3	29.5	8
	35.7	37.5	5
	60.6	62.6	5
DANIEL BOONE	42.0	43.9	5

Table 8-4. Locations With Five or More Wet Pavement Accidents In Two Miles (3.2 km).

Table B-6. Locations With Four or More Fatal or Injury Accidents in One Mile (1.6 km).

PARKWAY	BEGINNING Milepost	ENDING Milepost	NUMBER OF ACCIDENTS
MOUNTAIN	0.029 1.9 7.037 120.48 357.48 355.23 38.39 71.48 374 374.48 374 374.48 374 374.48 374 374 374 374 374 374 374 374 374 374	1.08 5.5 7.5 95.7 25.0 368.2 399.4 399.4	8 + + + + 6 + + + + 7 5 + 5 5
WESTERN KENTUCKY	15.3 32.1 71.8 87.9 91.1 107.0 118.0	16.1 33.1 72.6 88.7 92.1 108.0 119.0	ហ វ ហ វ វ ច ហ
BLUEGRASS	3.6 11.5 29.2	4.6 12.3 29.9	ង ស ម
PENNYRILE Daniel Boone	04601715023128040	8780714822028720 22500714822028720 3393789124425 44451524720	៹៹៹ ៰ ៶៸៶៲៰៰៰៰៹៹៹៶៲៶៲៸៹៹៲៶
GREEN RIVER	56.0 1.9 31.6	44.2 57.0 2.3 32.6	5 4 4

Table B-5. Locations With Three or More Snow and Ice Accidents In One Mile (1.6 km).

PARKWAY	BEGINNING Milepost	ENDING Milepost	NUMBER OF ACCIDENTS
MOUNTAIN	10.1 34.4 36.0 38.2 40.7 63.6 72.3	10.9 35.9 36.5 41.3 64.4 72.4	7 3 3 3 3 3 3 3 3 3 3 3 3 3
WESTERN KENTUCKY	32.2 68.9 70.8 83.0 83.0 118.3 119.0 135.9	33.2 69.1 80.6 84.9 119.3 120.8 136.5	333335733
BLUEGRASS -	3.0 10.6 23.2 26.5 39.0 59.0	3.6 1+.5 24.1 27.2 39.6 59.3	មាល់។ នាងន
PENNYRILE	10.0 28.3 45.2 50.1 77.2	10.1 29.2 46.1 50.8 77.7	3834 4
DANIEL BOONE	12.8 26.9 43.9 56.0	13.0 27.4 44.2 56.6	3 3 3 3
GREEN RIVER	28.7 42.1	28.9 43.0	3 3

Table B-7. Locations With Eight or More Accidents In Five Miles (8.5 km) Due to Unsafe Speeds.

PARKWAY	BEGINNING MILEPOST	ENDING	NUMBER OF ACCIDENTS
MOUNTRIN	4,9 10.1 29.8 35.2	9.5 12.0 34.5 38.5	8 10 8 17
WESTERN KENTUCKY	113.8 119.0	118.8 123.5	10 12
PENNYRILE	7.0 25.9 32.7 37.8 43.1 67.1	12.0 37.5 42.0 47.3 71.4	8 8 1 1 1 2 8 8
DANIEL BOONE	39.9	44.2	8

APPENDIX C

.

. .

.

Analyses of Coded Accident Data

Table C-1.	Number	of Accidents	by Year.
------------	--------	--------------	----------

		YEAR	
PARKWAY	1976	1977	1978
MOUNTAIN WESTERN KENTUCKY BLUEGRASS PURCHASE PENNYRILE AUDUBON DANIEL BOONE GREEN RIVER CUMBERLAND	108 177 299 113 352 14	121 191 157 153 642 31	115 177 266 1800 71 629
ALL	558	743	741

Table C-5. Summary of Accidents by Light Conditions.

		PERCENT OF TO	TAL	
		TYPE OF ACCID	ENT	
LIGHT Conditions	MAINLINE	INTERCHANGE Related	BRIDGE RELATED	A L
DAY DAWN OR DUSK DARNESS (LIGHTED) DARNESS (NOT LIGHTED) DARNESS (ALL)	54.2 4.6 2.9 33.4 41.3	73.3 2.6 9.2 14.9 24.1	53.6 5.2 1.0 40.2 41.2	56.

Table C-6. Severity of Accidents by Toll Road.

.

Table C-2. Summary of Accidents by Month.

		PERCENT OF TO	TAL	
HONTH	MAINLINE	TYPE OF ACCIN INTERCHANGE RELATED	DENT Bridge Related	ALL
JANUARY FEDRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER	13.7 5.75 6.55 7.55 8.33 9.55 9.55 9.55 9.55 9.55 9.55 9.55 9	9.3 8.8 7.2 8.2 7.2 6.2 7.2 7.2 7.2 12.9 11.2	1 2 5 2 1 3 4 4 2 3 4 4 6 7 7 4 4 2 3 4 4 6 7 7 4 6 7 8 2 7 7 8 2 7 7 8	13.15545094 6678869444 92.3

PARKWAY	SEVERITY INDEX	PERCENT INJURY ACCIDENTS	PERCENT FATAL ACCIDENTS
MOUNTAIN WESTERN KENTUCKY BLUEGRASS PURCHASE PENNYRILE AUDUBON DANIEL BOONE GREEN RIVER CUMBERLAND	2.35 2.21 2.445 3.000 2.814 3.78	37.4 31.0 32.0 32.0 47.2 37.2 37.2 37.2 37.2 37.3 37.3 37.3 3	2
ALL	2.49	33.5	1.9

Table C-3. Summary of Accidents by Time of Accident.

		PERCENT OF TO	TAL	
		TYPE OF ACCIE	DENT	
TIME	MAINLINE	INTERCHANGE Related	BRIDGE: RELATED	S ALL
MIDNIGHT-3AM 3AM-6AM 6AM-9AM 9AM-NOON NOON-3PM 3PH-6PM 6PH-9PM 9PM-MIDNIGHT	9.1 8.3 11.7 12.3 16.7 15.1 15.1	7.6 4.0 9.6 18.2 20.7 23.2 10.6 6.1	9.5 12.6 21.1 8.4 13.7 14.7 12.6 7.4	9.0 8.1 12.7 16.3 16.4 14.5 11.1

Table C-7. Summary of Accidents by Most Severe Injury.

		PERCENT O	F TOTAL	
1		TYPE OF A	CIDENT	
MOST SEVERÉ Injury	MAINLINE	INTERCHANGE RELATED	BRIDGE Related	ALL
FATALITY INCAPACITATING NON-INCAPACITATING	2.0 8.5	0.5 4.0	2 - 1 7 - 2	1.9 8.1
INJURY POSSIBLE INJURY NONE	13.9 10.8 64.6	13.6 10.6 71.2	23.7 6.2 60.8	14.3 10.6 65.1

Table	C.4	Summary	r of	Accidents	bv	Read	Surface	Condition.
1 4 4 1 5	w۳.	- CONTROLICE	· • •		wγ	110466	~~~~~	oona uom

		PERCENT OF TO)TAL	
		TYPE OF ACCIN	DENT	
ROAD SURFACE CONDITION	MAINLINE	INTERCHANGE RELATED	BRIDGE RELATED	ALL
DRY WET SNCW OR ICE	63.9 17.4 18.7	72.4 14.8 12.8	36.1 13.4 50.5	63.4 16.9 19.6

Table C-8. Summary of Accidents by Type.	Table C-8.	Summary	of	Accidents	by	Type.	
--	------------	---------	----	-----------	----	-------	--

........

		PERCENT OF	TOTAL	
		TYPE OF ACC	IDENT	
TYPE	HAINLINE	INTERCHANGE RELATED	RELATED	ALL
COLLISION WITH OTHER MOTOR VEHICLE	21.7	51.6	14.0	24.1
COLLISION WITH FIXED OBJECT	48.6	32.9	76.9	48.5
OTHER SINGLE VEHICLE	21.1	13.3	9.1	19.8

Table C-9. Summary of Accidents by Roadway Character.

allowed and a second		an a		and the second
		PERCENT OF 1	OTAL	
		TYPE OF ACC	DENT	
ROADWAY CHARACTER	MAINLINE	INTERCHANGE RELATED	BRIDGE Related	ÅLL
STRAIGHT & LEVEL STRAIGHT & GRADE STRAIGHT & HILLCRES CURVE & GRADE CURVE & GRADE CURVE & HILLCREST	54.4 27.4 51 2.5 4.7 10.0 1.0	40.9 22.2 2.0 5.1 27.3 1.5	49.5 32.0 3.1 2.1 12.4 1.0	52.9 27.1 2.5 4.7 11.8 1.0

Table C-10. Summary of Accidents with Given Human, Vehicular, or Environmental Factors.

		PERCENT OF			
TYPE OF Factor	SPECIFIC FACTOR	TYPE OF ACC: MAINLINE	IDENT INTERCHANGE- RELATED	BRIDGE- RELATED	ALL
HUMAN	UNSAFE SPEED FAILURE TO YIELD RIGHT OF WAY FOLLOWING TOO CLOSE IMPROPER PASSING DISREGARD TRAFFIC CONTROLS TURNING IMPROPERLY ALCOHOL INVOLVEMENT SICK FELL ASLEEP LOST CONSCIOUSNESS DRIVER INATTENTION DISTRACTION PHYSICAL DISABILITY OTHER	18.0 3.0 1.7 0.4 1.1 6.3 0.2 7.8 0.2 10.7 1.4 0.3 4.6	15.6 0.3 1.3 3.6 4.0 1.3 1.0 1.0 1.6 0.0	20.9 0.9 2.79 2.79 2.70 5.50 4.5 0.9 15.57 0.0 9.1	17.8 4.99 0.5 0.6 1.4 0.2 6.9 0.4 11.3 0.3 4.7
VEHICULAR	BRAKES DEFECTIVE HEADLIGHTS DEFECTIVE OTHER LIGHTING DEFECTS STEERING FAILURE TIRE FAILURE/INADEQUATE TOW HITCH DEFECTIVE OVER OR IMPROPER LOAD OVERSIZE LOAD ON VEHICLE OTHER	2.1 0.3 1.2 5.0 6 7 5.6	3.0 1.5 5.0 3.0 5.5 0.5 0.5 1.5	3.1 0.0 0.0 5.1 2.0 1.0 1.0	1.9 0.4 1.1 5.1 1.6 0.7 5.0
ENVIRONMENTAL	ANIMAL'S ACTION GLARE VIEW OBSTRUCTED/LIMITED DEBRIS IN ROADWAY IMPROPER/NON-WORKING TRAFFIC CONTROLS SHOULDERS DEFECTIVE HOLES/DEEP RUTS/BUMPS ROAD UNDER CONSTRUCTION IMPROPERLY PARKED VEHICLES FIXED OBJECT SLIPPERY SURFACE WATER POOLING OTHER	9.8 0.1 0.9 1.2	1.0 1.9 0.5 0.5 0.0 0.0 0.0 0.0 0.5 12.1 0.0	2.0 0.0 0.0 2.0 1.0 0.0 6.1 0.0 48.0 48.0 1.0 2.0	8.6 0.2 1.0 1.2 0.5 0.2 1.3 0.4 22.1 2.3

-

62

APPENDIX D

Fatal Accident Analysis

.

Table D-1. Locations With Critical Number of Fatal Accidents.

CRITERIA	PARKUAY	MILEPOSTS	NUMBER OF FATAL ACCIDENTS
FOUR ACCIDENTS IN FIVE MILES (3.0 KM)	MOUNTAIN	56.4-61.4 72.0-74.9	կ կ
(3.0 Kil)	WESTERN KENTUCKY	41.0-45.3 50.2-55.6	ч 5
	BLUEGRASS	22.9-27.6 65.1-39.3 45.2-50.0	
	PENNYRILE	56.6-58.6	4
TWO ACCIDENTS IN 0.3 MILE (0.5 KM)	MOUNTAIN	6.4 31.2-31.3 72.0-72.1	2222
	WESTERN KENTUCKY	50.2-50.5 76.2+76.4	32
	BLUEGRASS	27.4-27.5	2
	PENNYRILE	58.0	2
	AUDUBON	23.6	2
	DANIEL BOONE	3.0-3.1	2
	GREEN RIVER	0.0-0.2 70.3	2 3

Table D-4. Summary of Fatal Accidents by Month.

MONTH	HUMBER OF FATAL		PERCENTAGE O	
JANUARY	† 1		9	
FEBRUARY	. 3		2	
MARCH	6		5	
APRIL	7		6	
MAY	6		5	
JUNE	12		10	
JULY	17		14	
AUGUST	18		15	
SEPTEMBER	8	•	7	
OCTOBER	7		5	
HOVEMBER	17		14	
DECEMBER	9		7	

Table D-5. Summary of Fatal Accidents by Hour.

Table D-2.	Summary	of	Fatal	Accidents by	Route.

PARKWAY	NUMBER OF FATAL ACCIDENTS	PERCENTAGE OF TOTAL
MOUNTAIN	28	23
WESTERN KENTUCKY	27	22
BLUEGRASS	19	16
PURCHASE	2	2
PENNYRILE	16	13
AUDUBON	2	2
DANIEL BOONE	14	12
GREEN RIVER	9	7
CUMBERLAND	` 4	3

HOUR	HUMBER OF FATAL A	
MIDNIGHT-3AM	17	14
324-624	ġ	7
62 8-928	10	8
91H-HOON	19	16
400X-3PH(15)	17	7.44
3PH-6PH(18)	20	17
6PM-9PM(21)	18	t 5
9PM-MIDHIGHT	Ŧ 1	9

Table D-6. Summary of Fatal Accidents by Light Conditions.

LIGHT CONDITION	NUMBER OF Accidents	PERCENTAGE OF TOTAL
DAY	59	49
DAHN-DUSK	6	5
DARKNESS-NOT LIGHTED	55	45
DARKNESS-LIGHTED	1	1

Table D-3. Summary of Fatal Accidents by Year.

YEAR		ACCIDENTS FERCENTAGE OF TOTAL
1970	13	1
1971	7	6
1972	13	11
1973	2 2	18
1974	8	6
1975	11	9
1976	10	8
1977	1 2	10
1978	12	10
1979	13	11

Table D-7. Summary of Fatal Accidents by Road Surface Condition.

analandipäägugukkanalminemenyegangasaakeennyepäänasaa	norozana ana manana manga manga anga anga ang	
ROAD SURFACE Condition	NUMBER OF Accidents	PERCENTAGE OF TOTAL
DRY	91	77
WET	2 2	18
SNOW/ICE	5	iş,
SLUSH	1	1

TYPE	FACTOR	NUMBER OF ACCIDENTS	PERCENTAGE OF TOTAL
HUMAN	UNSAFE SPEED FAILED TO YIELD RIGHT-OF-WAY	32 10	19 6
	DISREGARD TRAFFIC CONTROLS TURNING IMPROPERLY ALCOHOL INVOLVEMENT FELL ASLEEP DRIVER INATTENTION DISTRACTION OTHER HUMAN FACTOR	1 21 22 15 20 10	1 13 13 9 1 6
VEHICULAR	BRAKES DEFECTIVE HEADLIGHTS DEFECTIVE OTHER LIGHTING DEFECTS TIRE FAILURE/INADEQUATE OVER OR IMPROPER LOAD OTHER VEHICULAR FACTOR	1 1 4 1 15	1 1 2 1 9
ENVIRONMENTAL	ANIMAL ACTION DEBRIS IN ROADWAY HOLES/DEEP RUTS/BUMPS CONSTRUCTION/MAINTENANCE SLIPPERY SURFACE WATER POOLING OTHER ENVIRONMENTAL FACTORS	1 1 3 17 1 6	1 1 2 1 1 4

**

Ν

Table D-8. Summary of Fatal Accidents by Contributing Factor.

-

Table D-9. Summary of Fatal Accidents by Vehicle Type.

Table D-11.	Types of	Fixed Objects f	Vlost i	Frequently	y involved
	In Fatal	Accidents.			

VEHICLE TYPE	NUMBER OF Accidents	PERCENTAGE OF TOTAL
AUTOS OR PICKUP TRUCKS	94	79
SINGLE UNIT TRUCKS	5	4
COMBINATION TRUCKS	13	11
MOTORCYCLES	4	3
PEDESTRIANS	3	3

TYPE OF FIXED OBJECT	PERCENT OF ALL FIXED OBJECT FATAL ACCIDENTS
GUARDRAIL	39
BRIDGE PIER	22
BRIDGE	14
SIGN	8
CULVERT	5
ROCK CUT	3
OTHER	8

Table D-10. Summary of Fatal Accidents by Type of Location.

LOCATION		PERCENTAGE OF TOTAL
BRIDGE	14	12
INTERSECTION	12	10
MAINLINE	95	78

......

_

APPENDIX E

Locations of Median Crossovers, Interchanges, and County Lines

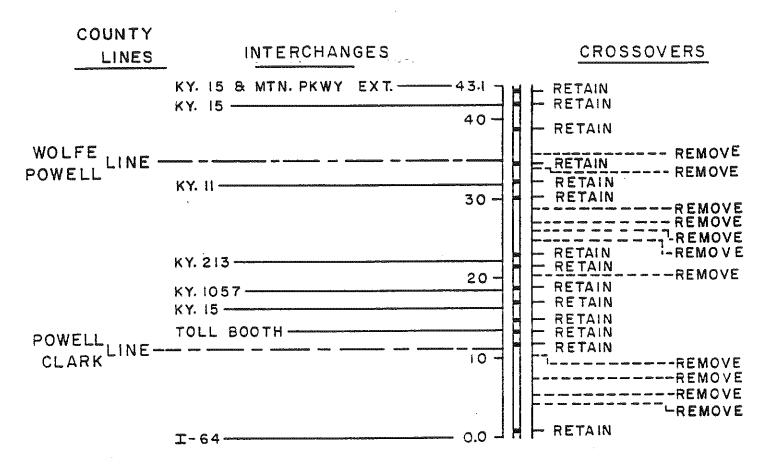
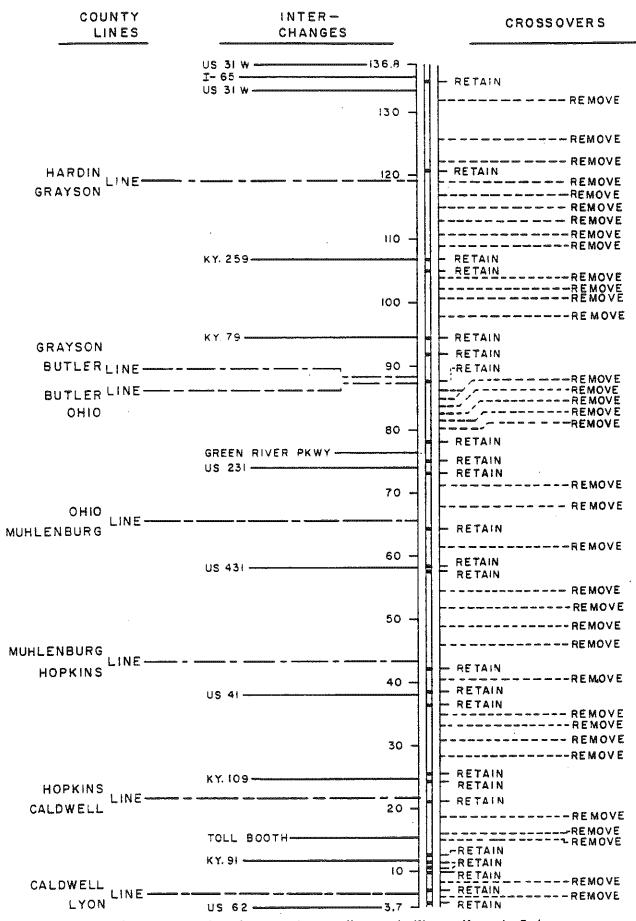



Figure E-1. Locations of median crossovers, interchanges, and county lines on the Mountain Parkway.

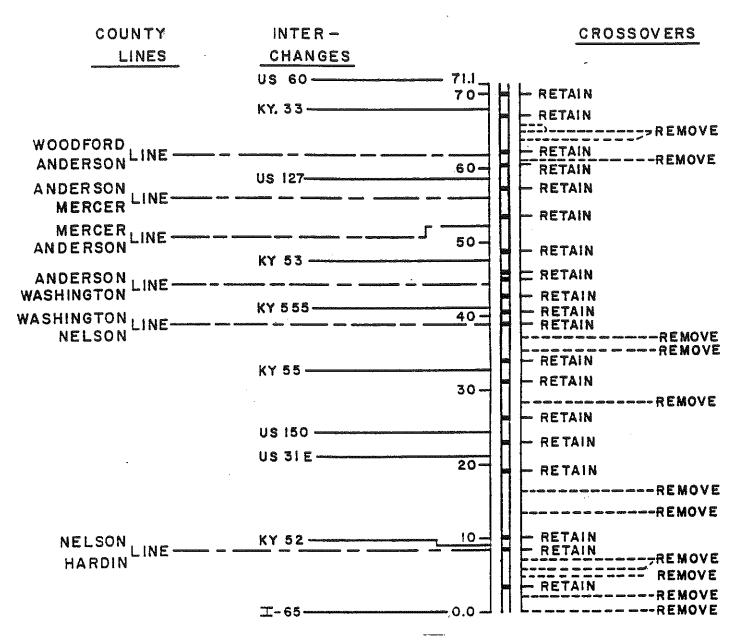


Figure E-3. Locations of median crossovers, interchanges, and county lines on the Bluegrass Parkway.

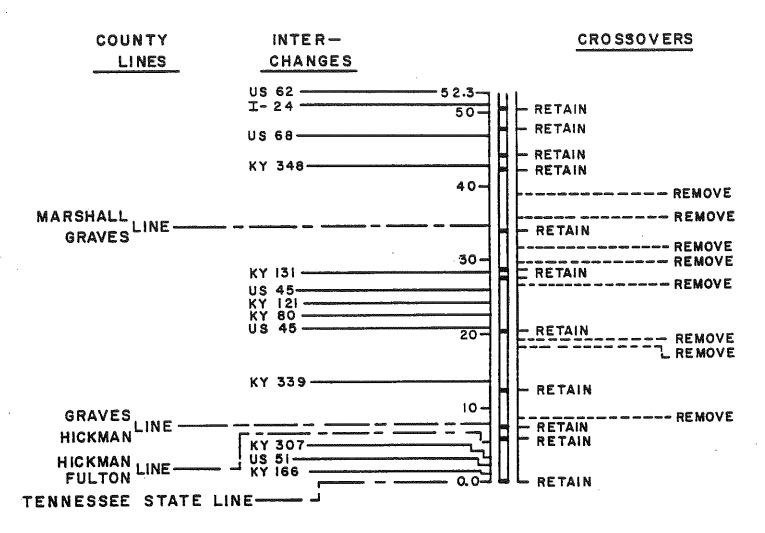


Figure E-4. Locations of median crossovers, interchanges, and county lines on the Purchase Parkway.

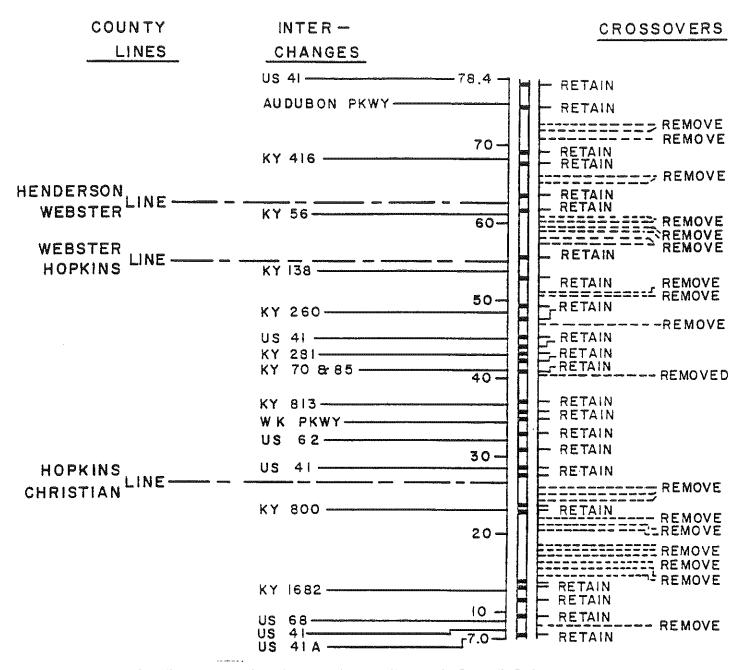
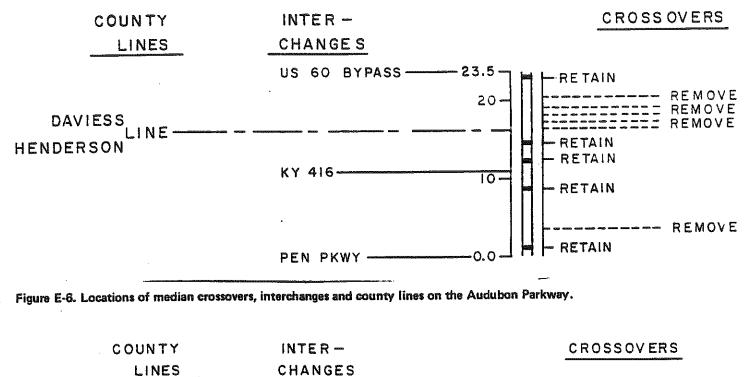



Figure E-5. Locations of median crossovers, interchanges and county lines on the Pennyrile Parkway.

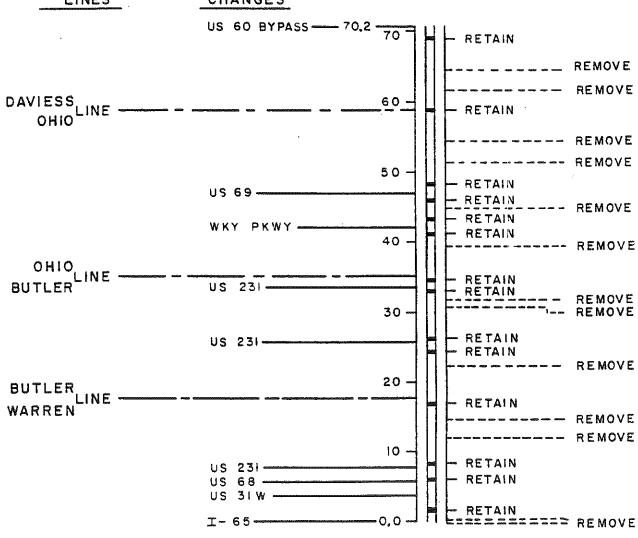


Figure E-7. Locations of median crossovers, interchanges and county lines on the Green River Parkway.

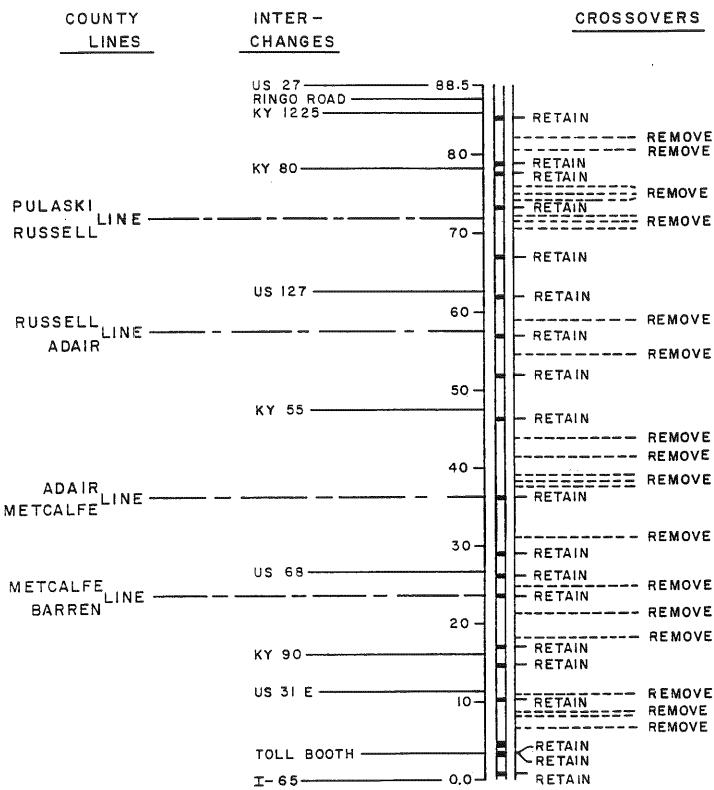


Figure E-8. Locations of median crossovers, interchanges and county lines on the Cumberland Parkway.

APPENDIX F

.

Accidents Included When Determining Percentage Reductions

IMPROVEMENT REFERENCE NUMBER

.

- 1. Curve Warning Sign
- 2. Curve Warning Sign
- 3. Curve Warning Sign
- 4. "Fasten Seatbelt" Signs
- 5. Deer Fence or Deer Crossing Sign
- 6. Directional Signs
- 7. Additional Signing for Exit Ramp
- 8. Replace Rigid Light Supports
- 9. Vehicle Actuated Warning Device at Intersection
- 10. Replace Rigid Signs
- 11. Median Crossover Improvements
- 12. Actuated Warning Sign
- 13. Transverse Stripes
- 14. Additional Delineation
- 15. Guardrail Connection to Bridge End
- 16. Bridge Gap Improvements
- 17. Concrete median barrier replacing barrels
- 18. Flashing Beacon
- 19. Screen on Bridge over Parkway
- 20. Delineation on ramps for wrong-way accidents
- 21. Replace and Upgrade Delineator Posts
- 22. "Ice on Bridge" Warning System
- 23. Delineator for Shoulders Approaching Narrow Bridge (Not Full-Width Shoulder)
- 24. Toll Booth Improvements
- 25. Change Guardrail end to Breakaway Cable Terminal (BCT)
- 26. Paving Shoulder

ACCIDENTS INCLUDED

- All related accidents at location.
- All related accidents at location.
- All related accidents at location.
- All parkway accidents.
- All accidents at locations involving deer.
- All related accidents at location.
- All accidents on ramp involved.
- All accidents involving light supports.
- All related accidents at location.
- Accidents involving sign.
- All accidents involving median crossover.
- Accidents involving brake failure.
- All related accidents at location.
- All related accidents at location.
- Bridge accidents involving collision with bridge abutment or approach guardrail.
- Accidents involving gap between bridges, including 10 year fatal accident history.
- Accidents involving collision with barrels.
- All related accidents at location.

All accidents at bridge involving vehicle hit by thrown object.

All wrong-way vehicle accidents.

All nighttime accidents.

All ice on bridge accidents at subject locations.

Bridge accidents involving bridge abutment or approach guardrail.

All toll booth related accidents.

All guardrail accidents multiplied by percent of all guardrail accidents involving guardrail end (3).

Pennyrile Parkway - Accidents involving soft shoulders as a contributing factor.

IMPROVEMENT REFERENCE NUMBER

- 27. Median and Shoulder Pier Protection
- 28. Clear Gore Area
- 29. Deer Fence or Deer Crossing Sign
- 30. Deslicking
- 31. Improve Culvert
- 32. Bridge Gap Improvements
- 33. Shield Rock Cut
- 34. Remove Rock Outcropping
- 35. Retrofit Safety Curb with New Jersey Barrier
- 36. Paving Shoulder
- 37. Grade Separation of At-Grade Intersection
- 38. Bridge Deck Repair
- 39. Lighting
- 40. Truck Escape Ramp
- 41. Widen Bridges
- 42. Grade Separation of At-Grade Intersection

ACCIDENTS INCLUDED

All accidents involving collision with bridge pier. Included 10 year fatal accident history.

All exit ramp interchange accidents involving hitting fixed object in gore.

All accidents at locations involving deer.

Wet pavement accidents at locations.

All accidents involving culvert including 10 year fatal accident history.

Accidents involving gap between bridges, including 10 year fatal accident history.

All accidents involving rock cut.

All accidents involving rock outcropping.

All accidents hitting, going through, or going over a bridge rail.

Daniel Boone Parkway - All fixed object and ran-off-roadway accidents.

All related accidents at location.

All bridge accidents occurring after start of bridge.

All related accidents at location.

Accidents involving brake failure.

Bridge accidents involving hitting bridge abutment or approach guardrail.

All related accidents at location.

APPENDIX G

Unit Costs for Recommended Improvements

IMPR	OVEMENT REFERENCE NUMBER COST	(DOLLARS)	UNIT
1.	Curve Warning Sign	250	Each
2.	Curve Warning Sign	250	Each
3.	Curve Warning Sign	250	Each
4.	"Fasten Seatbelt" Signs	200	Each
5.	Deer Crossing Sign	200	Each
6.	Directional Signs	2,500	Each
7.	Additional Signing for Exit Ramp	1,000	Ramp
8.	Replace Rigid Light Supports	2,000	Each
9.	Vehicle Actuated Warning Device at Intersection	15,000	Intersection
10.	Replace Rigid Signs	4,000	Each
11.	Median Crossover Improvements Signing Paving Removing	400 1,000 3,500	Each Each Each
12.	Actuated Warning Sign	5,000	Each
13.	Transverse Stripes	4,000	Location
14.	Additional Delineation	16	per Delineator
15.	Guardrail Connection to Bridge End Remove Guardrail	1,000 1	Each Linear Foot
16.	Bridge Gap Improvements - Install Guardrail Plant Shrubs behind Guardrail	9,000 7,000	per Bridge per Bridge
17.	Concrete Median Barrier (Replace Barriers) -End Treatment	32 3,000	Linear Foot Each
18.	Flashing Beacon	1,000	Location
19.	Screen on Bridge over Parkway (5 foot height)	2,000	Bridge
20.	Delineation on ramps for wrong-way accidents (two arrows)	150	per Ramp
21.	Replace Shoulder Delineator Posts -Lens	16 2	Each Each
22.	"Ice on Bridge"Warning System (2 signs and 2 sensors)	12,000	Bzidge
23.	Delineation for Shoulders Approaching Narrow Bridge (\$100-raised pavement markers) (\$50-tape)	150	per Approach
24.	Toll Booth Inprovements Crash Cushion Transvezse Stripes Rumble Strips	2,500	Location Location Location
25.	Change Guardrail End to Breakaway Cable Terminal (BCT)	750	Each

IMPROVEMENT REFERENCE NUMBER COST (DOLLARS) UNIT

26.	Paving Shoulder (10 foot shoulder-2 inches thick)	11,000	Mile
27.	Median and Shoulder Protection- Shoulder Pier Unprotected Shoulder Pier Guardrail Unattached	3,500 1,000	Each Each
	Median Pier Protection (GREAT crash cushion)	25,000	per Pier
28.	Clear Gore Area - Remove Rigid Signs Move Light Standard Replace Dual Channel Post Remove Guardrail Remove Curb Contour Grading	1,000 2,000 500 1,000 35,000	Each Each Each per Gore per Gore per Gore
29.	Deer Fence (8 foot height)	5	Foot
30.	Deslicking	12,000	Lane Mile
31.	Improve Culvert - Replace Headwall Remove Guardrail Improve Grading Replace Median Drain Inlet	1,000 100 1.5 1,000	Each Location Cubic Yard Each
32.	Bridge Gap Improvements - Plant Shrubs behind Guardrail	7,000	per Bridge
33.	Shield Rock Cuts - GM Barrier Guardrail	30 10	Linear Foot Linear Foot
34.	Remove Rock Outcroppings	3	Cubic Yard
35.	Retrofit Safety Curb with New Jersey Barrier	30	Linear Foot
36.	Paving Shoulder (10 foot shoulder-2 inches thick)	11,000	Mile
37.	Grade Separation of At-Grade Intersection	5,000,000	Location
38.	Bridge Deck Repair	75,000	Location
39.	Lighting	2,000	Standard
40.	Truck Escape Ramp	750,000	Each
41.	Widen Bridges	100,000	Single Bridge
42.	Grade Separation of At-Grade Intersection	5,000,000	Location

APPENDIX H

Listing of Recommended Improvements for Various Budgets

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 30000000.

LOCATION LOCATION NAME	NUM					
	NVII -	COST	RETURN	RETURN	B/C	8/C
4 SEATBELT SIGNS AT ENT RAMPS AND INTERS 5 DEER CROSSING SIGNS 7 ADD. SIGNING FOR EXIT RAMP GRP TO WKP 8 REPLACE RIGID LIGHTPOLES 9 VEHICLE-ACTUATED WARNING DEVICES 3 LOC 10 REPLACE RIGID SIGNS 11 MEDIAN CROSSOVER HIPROVEMENTS 3 TYPES 12 ACTUATED WARNING SIGN MTN PKWY MP 32.9 13 TRANSVERSE STRIFES SIX LOCATIONS 14 ADD. DELINEATORS JJAP-US60 MTP-164 15 GUARDRAIL TRANSITION TO BRIDGE END 16 UPGRADE GAP BET. BRIDGES G-BAIL/SHRUBS 17 CONCRETE BARRIER WALL PP MP 7.1 500 FT 19 SCREEN ON BRIDGE OVER PPKWY 2 LOC. 20 DELINEATION FOR WRONG-WAY ACCIDENTS 21 REPLACE AND UPGRADE DELINEATOR POSTS 22 ICE ON SINSOR AND BRIDGE SIGN 8 LOC. 23 DELINEATION FOR SHOULDERS APPR.BRIDGES 24 TOLL BOOTH IMPROVEMENTS THREE KINDS 26 PAVING SHOULDER P PKWY MP 30.0-45.0 28 CLEAR GORE AREA LIST OF FIVE		$ \begin{array}{r} 36800.\\ 5000.\\ 1000.\\ 45000.\\ 45000.\\ 5000.\\ 24000.\\ 5000.\\ 24000.\\ 392000.\\ 19000.\\ 392000.\\ 392000.\\ 392000.\\ 392000.\\ 392000.\\ 330000.\\ 30000.\\ 30000.\\ 30000.\\ 30000.\\ 30000.\\ 30000.\\ 30000.\\ 30000.\\ 300.\\ 3000.$	3 19920. 3 29237. 3 35378. 1 3 537991. 1 2 537991. 5 19023. 6 47423. 6 474242. 2 512619. 1 143944. 3 1225. 1 144164. 3 1253. 6 2394. 1 1453. 3 1253. 6 23368. 1 255. 1 255.	319920. 3492815. 10399210. 303952815. 11223928881. 24979028881. 24979028881. 24979028881. 533994. 533994. 5533995. 5557048. 5557048. 55578822. 55578822. 5557882. 5622. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572	954015556455546644551	88833322222222222222222222222222222222

Figure H-1. List of recommended improvements given a \$3,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 6000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	' שטא	COST	RETURN	RETURN	B/C	B/C
457890123456790124568	SEATBELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. SIGNLING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MTN PKWY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS DD. DELINEATORS JJAP-USGO MTP-I64 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL PP MP 7.1 500 FT SCREEN ON BRIDGE OVER PPKWY 2 LOC. DELINEATION FOR WRONG-WAY ACCIDENTS REPLACE AND UPGRADE DELINEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN & LOC. TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P PKWY MP 30.0-45.0 CLEAR GORE AREA LIST OF FIVE		$ \begin{array}{r} 36800.\\ 5000.\\ 1000.\\ 45000.\\ 45000.\\ 5000.\\ 24000.\\ 1000.\\ 392000.\\ 1000.\\ 392000.\\ 10000.\\ 23000.\\ 10000.\\ 392000.\\ 10000.\\ 3392000.\\ 105000.\\ 333000.\\ 133000.\\ 3330000.\\ 134000.\\ 3330000.\\ 134000.\\ 3330000.\\ 134000.\\ 334000.\\ 134000.\\ 334000.\\ 134000.\\ 334000.\\ 134000.\\ 334000.\\ 134000.\\ 334000.\\ 134000.\\ 334000.\\ 134000.\\ $	3292572222. 6352699. 125512222. 5172222. 5172222. 5172222. 5172222. 5172222. 5172222. 5172222. 51222. 51222. 51222. 51222. 51222. 5122. 5122. 5122. 5122. 512.	335349394 19928153 335349390218 35349390218 30142999454 399944913155 399945451 12499942985454 39994298545 39994298545 39994298545 39994545 39994545 39994545 399545 399545 399545 399545 399545 399545 395555 395555 395555 395555 395555 39555555 3955555555	95401555645554664555 8533322221745554664555 8	9544043311443328480766

Figure H-2. List of recommended improvements given a \$6,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 9000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	NUM	COST	RETURN	RETURN	B/C	B/C
4578901 11234 11567901 1221	SEATBELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MIN FRWY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS APD. DELINEATORS JJAP-US60 MTP-I64 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL PP MP 7.1 500 FT SCREEN ON BRIDGE OVER PPKUY 2 LOC. DELINEATION FOR WRONG-WAY ACCIDENTS REPLACE AND UPGRADE DELINEATOR POSTS	1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 36800,\\ 1000,\\ 20000,\\ 40000,\\ 440000,\\ 440000,\\ 1000,\\ 24000,\\ 392000,\\ 392000,\\ 40000,\\ 19000,\\ 23000,\\ 714000,\\ 71100,\\ 7100,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 71000,\\ 710000,\\ 710000,\\ 710000,\\ 710000,\\ 710000,\\ 710000,\\ 7100000,\\ 710000,\\ 71000000,\\ 710000000,$	319920. 319978. 3524142. 10169361. 2497902181. 297902181. 297902181. 53992266. 531428356. 5337694. 553766. 553766. 55379223524.	319920. 29258. 3637. 681328. 1355368. 1253799. 1555759. 155575. 51902. 1743. 647423.	8533322221111111 853332222111555464 111111111111111111111111111111	9544043311443328 6329899999644443328
2357229	DELINEATION FOR SHOULDERS APPR.BRIDGES CMANGE GUARDRAIL IND-TREATMENT TO BCT MEDIAN AND SHOULEER FIER PROTECTION 3 DEER FENCE UKP 3LOC. PP 3LOC. GRP 6LOC TREATMENT TOTALS	1 1 1	38700. 3036000.	5513989. 8696028. 11377980. 12350124.	44164. 3182039. 2681952. 972145. 12350124.	1.14 1.05 1.02 0.98	2.432 2.336 1.428 1.427 1.37

Figure H-3. List of recommended improvements given a \$9,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 12000000.

LOCATION LOCATION NAME NUM	COST	5 5 6 11 5 17			
		RETURN	RETURN	B/C	B/C
1CURVE WARNING SIGN DBP MP 14.92CURVE WARNING SIGN MIN PKWY MP 38.13CURVE WARNING SIGN MIN PKWY MP 38.14SEATSELT SIGNS RT ENT RAMPS AND INTERS5DEER CROSSING SIGNS6ADD. DIRECTIONAL SIGNING 3 LOCATIONS7ADD. SIGNING FOR ENIT RAMP GRP TO NKP8REPLACE RIGID LIGHTPOLES9VEHICLE-ACTUATED NARNING DEVICES 3 LOC10REPLACE RIGID SIGNS11MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES12ACTUATED WARNING SIGN MIN FRUY MP 32.913TRANSVERSE STRIPES SIX LOCATIONS14ADD. DELIMEATORS JJAP-US60 MTP-I6415GURPDRAIL TRANSITION TO BRIDGE END16UPGRADE GAP HET. BRIDGES G-RAIL/SHRUBS17CONCRETE BARRIER WALL FP MP 7.1 500 FT18FLASHING BEACONS SEVEN LOCATIONS19SCREEN ON BRIDGE OVER PFKWY 2 LOC.20DELINEATION FOR WRONG-WAY ACCIDENTS21REPLACE AND UFGRADE DELINEATOR FOSTS22ICE ON SENSOR AND BRIDGE SIGN & LOC.23DELINEATION FOR SHOULDERS APPR.BRIDGES24TOLL BOOTH INPROVEMENTS THREE KINDS25CHANGE GUARDRAIL END-TREATMENT TO FCT26PAVING SHOULDER P PINE PROTECTION 327MEDIAN AND SHOULDER PINE ROTECTION 328CLEAR GORE AREA LIST OF FIVE29DEEL FENCE WIN 3LOC. PP 3LOC. GRP 6LOC30DESLICKING MIN FWY 3LOC DB PKWY 1LOC31CULVERT/HEADWALL IMPROVEMENTS32UPGRADE FETWERN SALUES ANTHEATER FORESTS32UPGRADE FETWE	50000000 50000000 35700000000 357000000000 244000000000 24400000000 24400000000 24400000000 30350000000 1030000000 103000000 103000000 103000000 103000000 103000000 119000000 119000000 119000000 119000000 119000000 119000000 119000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 11900000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 11900000000 119000000000 1190000000 11900000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 1190000000 11900000000 1190000000 11900000000 11900000000 11900000000 11900000000 11900000000 11900000000 11900000000 1190000000 1190000000 11900000000 1190000000 11900000000 11900000000 11900000000 11900000000 1190000000000	934599545955555 9345995752023326695555 24599575326695555 24599575202332669555 1255151517722043324 1255151557722043324 1255151557722043324 125515555 62290572227162598557455 12551555 62290572227162598557455 1255155 12551555 1255155 125555 125555 125555 1255555 1255555 1255555 1255555 1255555 125555 1255555 1255555 1255555 1255555 125	$\begin{array}{c} 6.4.3.\\ 6.4.3.\\ 7.87956.5.1074.2.\\ 7.87795.6.5.1421.2.8.\\ 7.87795.6.5.1421.6.6.\\ 7.87795.6.5.1421.6.6.\\ 7.87795.6.5.1421.6.6.\\ 7.87795.6.5.1421.6.6.\\ 7.87795.6.5.1421.6.\\ 7.87795.6.5.1421.6.\\ 7.87795.6.5.1421.6.\\ 7.87795.6.5.1.6.\\ 7.8775.6.5.\\ 7.8775.6.5.\\ 7.8775.6.\\ 7.8775.6.\\ 7.8775.6.\\ 7.8775.6.\\ 7.8775.6$	52095040155564555646544555218099 905680610855645559465445552180997 99385553332222176555443222100000009979 85385553332222211111111111111100000	585184176444322100095082302176944 998134342400007555554443336644333222 46521004433333222222222222222111111111

Figure H-4. List of recommended improvements given a \$12,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 15000000.

4 SERTBELT SIGNS AT ENT RAMPS AND INTERS 36800. 319920. 319920. 8.69 8.6 5 DEER CROSSING SIGNS 1 5000. 29255. 349178. 5.85 8.6 7 ADD. SIGNING FOR EXIT RAMP GRP TO WKP 1000. 36377. 352815. 3.64 8.1 3 REPLACE RIGID LIGHTPOLES 1 220000. 631323. 1034142. 3.10 3.5 9 VENTCLE-ACTUATED WARNING DEVICES 3 LOC 45000. 135363. 1169511. 3.01 3.6 10 REPLACE RIGID SIGNS 1 440000. 1253799. 2423310. 2.35 3.1 11 MEDTAN CROSSOVER IMPROVEMENTS 3 TYPES 610000. 1535751. 3979061. 2.55 2.5 12 ACTUATED WARNING SIGN MIN FULY MP 32.9 5000. 11225. 3990286. 2.25 2.5 13 TRANSVERSE STRIPES SIX LOCATIONS 1 24000. 51902. 4042168. 2.16 2.0 14 ADD. ELINEATORS JJAP-US60 MINP-164 1000. 1743. 4043931. 1.74 2.6 14 ADD. ELINEATORS			ALT-			ACCUM		ACCUM
5 DEER CROSSING SIGNS AND LAND LAND 5000. 29253. 349178. 5.85 8.7 7 ADD. SIGNING FOR EXIT RAMP GRP TO WKP 1000. 3637. 352815. 3.64 6.7 3 REPLACE RIGID LIGHTPOLES 220000. 631323. 1034142. 3.10 3.5 9 VENICLE-ACTUATED WARNING DEVICES 20000. 135368. 1169511. 3.01 3.5 10 REPLACE RIGID SIGNS 440000. 1253799. 2423310. 2.85 3.7 11 MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES 610000. 1555751. 3979061. 2.85 3.7 12 ACTUATED WARNING SIGN MIN FULLY MP 32.9 50000. 11225. 3990286. 2.25 2.5 13 TRANSVERSE SIRIFES SIX LOCATIONS 24000. 51902. 4042188. 2.16 2.6 14 ADD DELINEATORS JJAP-US60 MIP-I64 1000. 1743. 4042188. 1.65 2.6 15 GUARDRAIL TRANSITION TO BRIDGE END 392000. 627442. 5313196. 1.55 2.6 16 UPGRADE GAP EIT. BRIDGES GREACL/SHEUBS	LOCATION	LOCATION NAME	NUM	COST	RETURN	RETURN	B/C	B/C
24 10LL BOOTH IMPROVENENTS THREE RINFS 1 105000. 110125. 5713435. 1.05 2.2 25 CHANGE GUARDRAIL END-TREATHENT TO BCT 3036000. 3182039. 8895474. 1.05 1.05 26 FAVING SHOULDER P PKKY MP 30.0-45.0 1 330000. 345453. 9240956. 1.05 1.05 27 MEDIAN AND SHOULDER PER PROTECTION 3 1 2641009. 2631952. 11922908. 1.02 1.4 29 DEER FENCE UKP 3LOC. FP 3LOC. GRP 6LOC 987000. 972145. 12895053. 0.98 12 30 DEER FENCE UKP 3LOC. DB PKUY 1LOC 1 205000. 135637. 13080910. 0.90 12 31 CULVERT/HEADHALL INPROVEMENTS 1 1283000. 1010065. 14090975. 0.79 1.2 33 SHIELD ROCK CUTS (73.1 MILES) 1 4000000. 15712431. 0.41 1.0	11 12 13 14 15	DEER CROSSING SIGNS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VENICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED MARNING SIGN MITN FULLY MP 32.9 TRANSVERSE SIRIFES SIX LOCATIONS ADD. DELIMEATORS JJAP-US60 MTP-I64 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP EET. BRIDGES G-RAIL/SHEUBS SCREEN ON BRIDGE OVER PFKLY 2 LOC. DELIMEATION FOR WRONG-WAY ACCIDENTS RIFLACE AND UPGRADE DELIMEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN 3 LOC. DELIMEATION FOR SHOULDERS APPR. BRIDGES TOLL SOOTH IMPROVEMENTS THREE KINPS CHANGE GUARDRAIL END-TREATMENT TO BCT FAVING SHOULDER PIER PROTECTION 3 DEFINA AND SHOULDER PIER PROTECTION 3 DESLICKING MITN FKLY 3LOC DB PKLY 1LOC CULVERT/HEADMALL IMPROVEMENTS		$\begin{array}{c} 5 & 5 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ \end{array}$	$\begin{array}{c} 2& 3& 5& 5& 7& 5& 8& 9& 1& 1& 2& 5& 3& 2& 5& 5& 5& 5& 5& 5& 5& 5& 5& 5& 5& 5& 5&$	35342 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 924151101681 9300850094 94451101681 9421509971 942509971 942509971 942509971 1230094 12300094 1230094 1200094 1200094 1200094 12000000000000000000000000000000000000	54015556455466445552809	95440433114442942707065855

Figure H-5. List of recommended improvements given a \$15,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 17000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	нин	cosr ,	RETURN	RETURN	B/C	B/C
123456789011234567890123456789 111111111111222224556789	CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN MTN PKWY MP 38.1 CURVE WARNING SIGN MTN PKWY MP 72.3 SEATSELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS ADD. DELINEATORS JJAP-US60 MTP-164 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHUBS CONCRETE BARRIER WALL PP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCREEN ON BRIDGE OVER PFKWY 2 LOC. DELINEATION FOR WRONG-WAY ACCIDENTS REPLACE AND UPGRADE DELINEATOR FOSTS ICE ON SENSOR AND BRIDGE SIGN 8 LOC. DELINEATION FOR SHOULDERS APPR.BRIDGES TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P FKWY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GORE AFESA LIST OF FIVE DEER FENCE WF 3LOC. PP SLOC. GRP 6LOC DELINEATION FOR WRONG-WAY ACCIDENTS TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P FKWY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GORE AFESA LIST OF FIVE DEER FENCE WF 3LOC DE PKWY 1LOC CULVER/HEATS MTN PKWY 3LOC DE PKWY 1LOC CULVER/HEATS THTE FIRE FROTECTION 3 CLEAR FENCE WF 3LOC DE PKWY 1LOC DEELINEATION FOR WENGES FOR SHOULDER PIER PROTECTION 3 CLEAR FENCE WF 3LOC DE PKWY 1LOC DEER FENCE WF TOTELS TO FILES FENCES SHIELD ROCK CUTS (73.1 MILES) ENOVE ROCH OUTCROPPINGS INTERCHANGE LIGHTING MF 164 ************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000. 5000. 355000. 750000. 200000. 200000. 44000000. 510000. 2400000. 39200000. 100000. 200000. 100000. 200000. 100000. 200000. 100000. 200000. 200000. 100000. 2000000. 2000000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 20000. 20000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 200000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 20000. 200	934593269915 93459253269915 1255129742324 12551117483904699057222162393 12551117483904699057222162393 125511174839045419 125511174839045419 125511174839045419 125511174839045419 11174839045419 11184857531 11184851531 1184851531 1184851531 118383174 1184851531 1184851531 1184851531 1184851531 1184851531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11848515531 11858515531 11858515531 11858515531 11858515531 11858515531 11858515531 11858515531 11858515531 11858515531 11858515531 <t< td=""><td>$\begin{array}{c} 64333\\ 64333\\ 787956\\ 787956\\ 787976981421\\ 249776981421\\ 2497769941421\\ 286332061720244\\ 25512506677202434\\ 25523666772024342\\ 26633420233416647555\\ 21722792334766823366720\\ 22244424444445555556823366726914222444\\ 25525555678914477579\\ 22244425555556823367222444\\ 22244444444555555555555912012426444\\ 22244444455555555555559120124224444\\ 255555555555555555555555555555$</td><td>52895040155564555646644555241809991 9056806108521765554486644555241809991 49385553332222111111111111100009974 863</td><td>585184176444322100095082302176943 99813434240002755559444336644738220 82652100443333332222222222222111111111111111</td></t<>	$\begin{array}{c} 64333\\ 64333\\ 787956\\ 787956\\ 787976981421\\ 249776981421\\ 2497769941421\\ 286332061720244\\ 25512506677202434\\ 25523666772024342\\ 26633420233416647555\\ 21722792334766823366720\\ 22244424444445555556823366726914222444\\ 25525555678914477579\\ 22244425555556823367222444\\ 22244444444555555555555912012426444\\ 22244444455555555555559120124224444\\ 255555555555555555555555555555$	52895040155564555646644555241809991 9056806108521765554486644555241809991 49385553332222111111111111100009974 863	585184176444322100095082302176943 99813434240002755559444336644738220 82652100443333332222222222222111111111111111
33 34 39	SHIELD ROCK GUTS (/3.1 MILES) REMOVE ROCK GUTCROPPINGS INTERCHANGE LIGHTING MP 164	1	346000.	1621456. 84357. 3601.	16450802. 16535159. 16538760.	0.41 0.24 0.04	1.01
	IXIXIXI TOTALS IIIIIIII	(XX XK)	19344400'	16538760.	16538760.		1.01

Figure H-6. List of recommended improvements given a \$17,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 18000000.

		ALT-			ACCUM		ACCUM
LOCATION		пли			RETURN	B/C	B/C
123456	LOCATION NAME CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN MTN PKMY MP 38.1 CURVE WARNING SIGN MTN PKMY MP 72.3 SEATBELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN NTN PKWY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS ADD. DELINEATORS JJAP-US60 MTP-164 GUARDAEL TRANSITION TO SRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRIE BARRIER WALL PP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCREEN ON BRIDGE OVER PPKMY 2 LOC. DELINEATION FOR WRONG-MLY ACCIDENTS REPLACE AND UPGRADE DELINEATOR PCSTS ICE ON SENSOR AND BRIDGE SIGN 8 LOC. DELINEATION FOR SHOULDERS APPR.BRIDGES TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P PKMY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GOET AREA LIST OF FIVE DEER FENCE WIP 3LOC. PP 3LOC. GRP 6LOC DESLICKING MTN PKWY 3LOC DB PKUY 1LOC CULVERT/MEADWALL IMPROVEMENTS NIELD ROCK CUTS (73.1 MILES) PAVING SHOULDER DB FKWY (MP 0-59.1) INTERCHANGE LIGHTING MP 164 TOTALS TATEATION FOR PIAS	T 1 1 1 1	500. 500. 36800. 7500.	92476. 34508. 16789. 319920. 29258. 37529.	92476. 126984. 143773. 463693. 492951. 530480.	52895040155564555646044555218 905680610852176555646044555218 49385538722221111111111110	B 99851841764443221000950823021769431555 99851841764443222100095082302171111111000
333 334 39	UPGRADE GAP BETWEEN BRIDGES-SHRUBS Shield Rock Cuts (73.1 Miles) Remove Rock Outcroppings Paying Syoulder DB FKUY (MP 0-59 1)	1	784000. 40000000. 346000. 1300000.	382094. 1521456. 84357. 246773	14829346. 16450802. 16535159. 16781932.	0.49 0.41 0.24 0.19	1.24 1.03 1.01 0.95
39	INTERCHANGE LIGHTING MP 164	 * * *	100000 17699900	3601. 16785533.	16785533. 16785533.	0.04	0.95

Figure H-7. List of recommended improvements given a \$18,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 21000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	NUM	COST	RETURN	RETURN	B/C	B/C
1234578901234567901234567901235	CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN MTN PKUT MP 38.1 CURVE WARNING SIGN MTN PKUT MP 72.3 SEATBELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MTH PKUY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS ADD. DELINEATORS JJAP-US60 MTP-164 GUARDRAIL TRANSITION TO BRIDGE END UYGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL PP HP 7.1 500 FT SCREEN ON BRIDGE OVER PFKUY 2 LOC. DELINEATION FOR WRONG-WAY ACCIDENTS REPLACE AND UYGRADE DELINEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN 8 LOC. DELINEATION FOR SHOULDERS APPR.BRIDGES TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P PKUY NP 30.0-45.0 MEDIAN AND SHOULDER PTER FROTECTION 3 DEER FENCE WKP 3LOC. PP 3LOC. GRP 6LOC DESLICKING MTN PKUY 3LOC DB PKWY 1LOC CULVERT/HEADWALL IMPROVEMENTS UYGRADE GAP BETWEEN BRIDGES-SHRUBS SHIELD ROCK CUTS (73.1 MILES) RETROFIT SAFETY CURBS WITH NJ BARRIER ******** TOTALS		$\begin{array}{r} 500\\ 500\\ 500\\ \\ 500\\ \\ 500\\ \\ 36800\\ \\ 2200000\\ \\ 4400000\\ \\ 4400000\\ \\ 240000\\ \\ 240000\\ \\ 39200000\\ \\ 39200000\\ \\ 39200000\\ \\ 39500000\\ \\ 30300000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 3687000\\ \\ 368000\\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ 368000\\ \\ \\ \\ 368000\\ \\ \\ \\ 368000\\ \\ \\ \\ \\ 368000\\ \\ \\ \\ \\ \\ 368000\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 9 \\ 3 \\ 4 \\ 5 \\ 7 \\ 6 \\ 8 \\ 9 \\ 9 \\ 2 \\ 4 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 2 \\ 5 \\ 2 \\ 4 \\ 5 \\ 9 \\ 9 \\ 2 \\ 5 \\ 5 \\ 2 \\ 5 \\ 5 \\ 5 \\ 1 \\ 2 \\ 5 \\ 1 \\ 1 \\ 5 \\ 5 \\ 4 \\ 2 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 5 \\ 5 \\ 4 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 9 \\ 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 9 \\ 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 9 \\ 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1$	$\begin{array}{c} 6$	528954015556455546644555528099910 9056861085217455546644555280999140 4938533322221111111111110000000 493853333222211111111111110000000 863	585181653332110998499723927694333 908132424000754444333365433322088 465211144333332222222211111111100 82911111

Figure H-8. List of recommended improvements given a \$21,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 24000000.

PT217V	BUDGET = 24000000.						
		ALT-			ACCUM		ACCUM
				RETURN	RETURN	B/C	B/C
LOCATION	LOCATION NAME	NUM	COST	REFORM	RETORA	870	5/0
•	CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN MIN PKWY MP 38.1 CURVE WARNING SIGN MIN PKWY MP 72.3 CURVE WARNING SIGN MIN PKWY MP 72.3	1	500.	92476.	92476.	184.95	184.95
2	CHAVE WARNING SIGN MIN PKWY MP 38.1	1	500. 500. 36300.	34508.	126984.	69 62	126.98
3	CURVE WARNING SIGN MTN PRWY MP 72.3	1	500.	16789.	143773.	33.58	95.85
ų.	SEATBELT SIGNS AT LAI RAMPS AND INICAS	!		319920.	463693. 492951.	8.62	12.11
5	DEER CROSSING SIGNS		5000 7500		492951.	33.589 5.65 5.65 3.64 3.10	11.38 10.44
é	ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. SIGNING FOR EXIT BAMP GRP TO UKP	ł	1000.	3637.	530480. 534117.	3 64	10.31
7		i	220000.	681323.	1215444.	3.10	4,47
9	VEHICLE-ACTUATED HARNING DEVICES 3 LOC REPLACE RIGID SIGNS	1	45000	135368.	1350812. 2504611.	3.0155552.16	4.26
10	REPLACE RIGID SIGNS	1	440000.	1253799.	2504611.	2.85	3.44
11	REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MTN FRHY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS ADD. DELINEATORS JJAP-US60 MTP-I64 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL PP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCRETE OVER PEVUX 2 LOC.	1	610000.	1555751.	4160362.	2.55	3.04 3.04 3.03
12	ACTUATED WARNING SIGN MIN PRWY MP 32.9	1	5000.	11225. 51902.	4171588.	2.25	3.04
13	TRANSVERSE STRIPES SIX LOCATIONS		24000.	1743.	4223490. 4225233.	4.10	3.03
14	ADD DELINEATORS JUAP-USDU HIP-184	1	392000	647423.	4972656	1.555	33222 2222 2222 22222 22222 22222 22222 2222
15 16	NOCREASE CAR RET REFORES G-RAIL/SHRUBS	i	400000	621842.	5494497.	1.55	2.51
17	GUARDRAIL TRANSITION TO BRIDGE CALL/CSHRUBS UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL 'PP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCREEN ON BRIDGE OVER PFKUY 2 LOC. DELINEATION FOR WRONG-UAY ACCIDENTS REPLACE AND UPGRADE DELINEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN 8 LOC. DELINEATION FOR SHOULDERS APPR.BRIDGES TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P FKWY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GORE AFEA LIST OF FIVE DEER FENCE UKP 3LOC. PP 3LOC. GRP 6LOC DESLICKING MTN FKWY 3LOC DB PKWY 1LOC CULVER/HEADWALL IMFROVEMENTS UPGRADE GAP BETWEEN BRIDGES-SHRUBS	1	19000.	29394.	5494497. 5523892.	1.55	2.50
18	FLASHING BEACONS SEVEN LOCATIONS	1	7000.	10205.	5534096. 5539840. 5571102.	1.46	2.50
19	SCREEN ON BRIDGE OVER PFKHY 2 LOC.	!	4000.	5744.	5539840.	1.44	2.50
20	DELINEATION FOR WRONG-WAY ACCIDENTS	-	Z3000.	51201.	5661331.	1.36	2 49
21	REPLACE AND UPGRADE DELINEATOR POSTS	-	71400.	119715	5780046.	1.24	2 40
22 22 22 25 26 7 28	ICE ON SENSOR AND BRIDGE SIGN & LOC.	- i	38700	44164	5824210.	1.14	2,40 2,38 2,32
2.5	TOLE POOTE THEROUTHENTS THEE KINDS	1	105000	110125	5934336. 9116375. 9461857.	1.05	2.32
42 42	CHANGE GUARDRAIL END-TREATMENT TO BCT	1	3036000.	3182039.	9116375.	1.05	1,63
26	PIVING SHOULDER P FKWY MP 30.0-45.0	1	330000.	345483.	9461857.	1.05	1.60
27	MEDIAH AND SHOULDER PIER PROTECTION 3	1	2641000.	2681952.	12143809.	1.02	1.42
28	CLEAR GORE AREA LIST OF FIVE	1	134000.	135370.	12279185.	1.01	1.41
2 9	DEER FENCE UKP 3LOC. PP 3LOC. GRF 6LOC		987000.	972143.	13251330. 13437187.	0.90	1.37
30	DESLICKING MIN FRWY SLUC DS FRWI TLUC	ł	1283000	1010065	14447251.	0.79	1.29
31	CULVERT/HEADWALL INFROVENSALS	i	784000	382094	14829346.	0.49	1 29
34	CUTTIN POCK CUTS (73.1 MILES)	1	4000000	1621456.	16450802.	0.41	1.03
33	FRIOVE ROCK OUTCROPPINGS	1	346000.	84357.	16535159.	0.24	1.01
35	RETROFTT SAFETY CURBS WITH NJ BARRIER	1	5190000.	1063475.	17598635.	0.20	0.82
2772 2772 2772 2772 2772 2772 2772 277	PAVING SHOULDER DB PKUY (MP 0-59.1)	1	1300000.	246773.	17845408. 17877895.	0.19	0.78
4 Ö	TRUCK ESCAPE RAMP MIN PRUY MP 32.9	1	750000.	32437.	17877895.	0.04	0.76 0.76
39	MEDIAM AND SHOULDER PIER PROTECTION 3 CLEAR GORE AREA LIST OF FIVE DEER FENCE HKP 3LOC. PP 3LOC. GRF 6LOC DESLICKING MIN FKWY 3LOC D3 PKWY 1LOC CULVERT/HEADWALL IMFROVEMENTS UPGRADE GAP BETWEEN BRIDGES-SHRUBS SHIELD ROCK CUTS (73.1 MILES) REMOVE ROCK CUTS (73.1 MILES) REMOVE ROCK CUTSCROPPINGS RETROFIT SAFETY CURBS WITH NJ BARRIER PAVING SHOULDER DB PKHY (MP 0-59.1) TRUCK ESCAPE RAMP MIN PKHY MP 32.9 INTERCHANGE LIGHTING MP H64 INTERCHANGE LIGHTING MP H64	1	27620000	17881464	17881496. 17881496.	V.U4	0.76
	ANALASA TOTALS ************************************		63039900.	1/001470.	17001470.		0.70

•

Figure H-9. List of recommended improvements given a \$24,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 27000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	NUM	COST	RETURN	RETURN	B/C	B/C
123456789012345678901234567890123457	CURVE WARNING SIGN DBP MP 14.9 CURVE WARNING SIGN MIN PKWY MP 38.1 CURVE WARNING SIGN MIN PKWY MP 72.3 SEATSELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MIN PKWY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS ADD. DILINEATORS JAP-US60 MTP-164 GUARDRAIL TRANSITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL PP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCREEN ON BRIDGE OVER PFKUY 3 LOC. DELINEATION FOR WRONG-WAY ACCIDENTS SCREEN ON BRIDGE DELINEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN & LOC. DELINEATION FOR WRONG HAY ACCIDENTS CHANGE GUARDRAIL END-TREATHENT TO BCT PAVING SHOULDER P PRUY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GORE AREA LIST OF FIVE DEER FENCE WIP 3LOC. PP 3LOC. GRP 6LOC DELING THOWARD ALL IMPROVEMENTS SUBJECTION FOR WRUY 1LCC CULVERT/HEADWALL IMPROVEMENTS SILED ROCK CUTS (73.1 MILES) REMOVE ROCK OUTCROPFINGS RETROFIT SAFETY CURBS WITH NJ BARRIER	1 T T T T T T T T T T T T T T T T T T T	$\begin{array}{c} 5000\\ 55000\\ 368000\\ 750000\\ 2450000\\ 2450000\\ 44000000\\ 39200000\\ 1750000\\ 2750000\\ 39200000\\ 1990000\\ 2750000\\ 39200000\\ 1030000\\ 30500000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 1030000\\ 103000\\ 1000\\ 1000\\ 10000\\ 1000$	$\begin{array}{c} 9.245778.9.2\\ 245732089715.2.2\\ 3119975532689715.2\\ 3137720042324.2\\ 5119975532689715.2\\ 313377220443324.2\\ 51255512977483909459152\\ 51255512977483909459152\\ 51222716239324.2\\ 3155551297748909459153745755.2\\ 5122271623932459537457554.6\\ 3155512856955745554.6\\ 1183539254856955745554.6\\ 118353925455554.6\\ 118353925455554.6\\ 118353925552855554.6\\ 1183539255554.6\\ 1183539255554.6\\ 1183539255554.6\\ 118555555566666666\\ 1185555556666666\\ 118555556666666\\ 118555556666666\\ 11855555666666\\ 11855555666666\\ 11855555666666\\ 11855555666666\\ 11855555666666\\ 118555555666666\\ 118555555666666\\ 11855555666666\\ 118555555666666\\ 118555555666666\\ 118555556666666\\ 118555555666666\\ 118555555666666\\ 118555556666666\\ 118555556666666\\ 1185555556666666\\ 1185555556666666\\ 1185555556666666\\ 1185555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118555556666666\\ 118556666666\\ 118556666666\\ 1185566666666\\ 118556666666\\ 118556666666\\ 11855666666\\ 118556666666\\ 118556666666\\ 118556666666\\ 118556666666\\ 118556666666\\ 118556666666\\ 11855666666\\ 118556666666\\ 118556666666\\ 118556666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 1185566666\\ 11855666666\\ 11855666666\\ 11855666666\\ 11855666666\\ 118556666666\\ 11855666666\\ 1185666666\\ 11855666666\\ 11855666666\\ 11856666666\\ 1185666666\\ 11856666666\\ 11856666666\\ 1185666666\\ 11856666666\\ 11856666666\\ 1185666666666\\ 11856666666\\ 118566666666\\ 11856666666666\\ 1185666666666\\ 1185666666666\\ 1185666666666666\\ 11856666666666666\\ 118566666666666\\ 11856666666666666\\ 118566666666666666\\ 11856666666666666666\\ 118566666666666666666666666666666666666$	$\begin{array}{c} \\ .\\ .\\ .\\ .\\$	528950401555645556466445552180999140 905680610855645556466445552180999140 493855333222211111111111111100009974422	11 998134342400007555544433664443322008 465210044333332220095082302176943322008 8295210044333332222222222111111111110
37 39	GRADE-SEPARATED INTERCHANGE DBP-KY472 INTERCHANGE LIGHTING MP 164	1	5000000.	917989. 3601.	18516624. 18520225.	0.18	0.70 0.70
	XXXXXXXXXX TOTALS XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		26589900.	18520225.	18520225.		0.70

Figure H-10. List of recommended improvements given a \$27,000,000 budget.

LISTING OF SELECTED PROJECTS BY B/C RATIO BUDGET = 30000000.

		ALT-			ACCUM		ACCUM
LOCATION	LOCATION NAME	NUM	COST		RETURN	B/C	B/C
123456789012345678901234567890123456789	CURVE WARNING SIGN DEP MP 14.9 CURVE WARNING SIGN DEP MP 14.9 CURVE WARNING SIGN MTN PKWY MP 33.1 CURVE WARNING SIGN MTN PKWY MP 72.3 SEATBELT SIGNS AT ENT RAMPS AND INTERS DEER CROSSING SIGNS ADD. DIRECTIONAL SIGNING 3 LOCATIONS ADD. SIGNING FOR EXIT RAMP GRP TO WKP REPLACE RIGID LIGHTPOLES VEHICLE-ACTUATED WARNING DEVICES 3 LOC REPLACE RIGID SIGNS MEDIAN CROSSOVER IMPROVEMENTS 3 TYPES ACTUATED WARNING SIGN MIN PKWY MP 32.9 TRANSVERSE STRIPES SIX LOCATIONS ADD. DELIKEATORS JJAP-US60 MTP-164 GUARDRAIL TEANNITION TO BRIDGE END UPGRADE GAP BET. BRIDGES G-RAIL/SHRUBS CONCRETE BARRIER WALL FP MP 7.1 500 FT FLASHING BEACONS SEVEN LOCATIONS SCREEN ON BRIDGE OVER PPKWY 2 LOC. DELINEATION FOR WRONG-MYY ACCIDENTS REPLACE AND UPGRADE DELINEATOR POSTS ICE ON SENSOR AND BRIDGE SIGN 8 LOC. DELINEATION FOR MOULDER A PR. BRIDGES TOLL BOOTH IMPROVEMENTS THREE KINDS CHANGE GUARDRAIL END-TREATMENT TO BCT PAVING SHOULDER P FWY MP 30.0-45.0 MEDIAN AND SHOULDER PIER PROTECTION 3 CLEAR GORE AREA LIST OF FIVE DEER FENCE MKP 3LOC. PP 3LOC. GRP 6LOC DESLICKING MTN PKWY 3LOC DE PKMY 1LOC CULVER/HEADWALL IMPROVEMENTS UPGRADE GAP BETHEEN BRIDGES-SHRUBS SHIELD ROCK CUTS (73.1 MILES) RETROFIT SAFETY CURBS WITH NJ BARRIER PAVING SHOULDER DE PKWY MP 30.9.1) GRADE-SEPARATED INTERCHANGE DBP-KY472 BRIDE DECK REAL IST OF FIVE DEFROMENTS OF SAFETY CURBS WITH NJ BARRIER PAVING SHOULDER DE PKWY MP 30.9.1) GRADE-SEPARATED INTERCHANGE DBP-KY472 BRIDE DECK REAL AND MP 164 ************************************		$\begin{array}{c} -5000 \\ -7500 \\ 2000 \\ 245000 \\ 45000 \\ 440000 \\ 55000 \\ 24000 \\ 1000 \\ 392000 \\ 40000 \\ 10000 \\ 392000 \\ 40000 \\ 23000 \\ 7000 \\ 4000 \\ 33700 \\ 105000 \\ 33700 \\ 105000 \\ 33700 \\ 105000 \\ 330000 \\ 2641000 \\ 13400 \\ 13400 \\ \end{array}$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 9&4&3&3\\ 7&4&3&3\\ 7&4&3&3\\ 7&4&3&3\\ 7&4&5&3&3\\ 2&6&7&9&5&1&0\\ 2&6&3&3&2&0&5&3\\ 2&6&3&3&2&0&5&3&5&5\\ 3&3&4&2&6&4&8&9&4&0&2\\ 3&3&4&2&6&4&8&9&4&0&2&3&3\\ 1&2&6&4&2&2&6&3&8&9&4&0&2\\ 3&3&4&3&5&5&5&5&5&5&5&5&5&5&5&5&5&5&5&5&$	5289504015556455564664455552180991409814 905680610852477655564664455552180991409814 4938555333222211111111111111110000000000000 863855533322222111111111111111111111111111	9981341764443221000950823021769431288444 998813417644443221000950823021769431288444 46521004433333322222221111111111111000876666 82952100443333332222222111111111111110000000

.

۰.

ļ.

Figure H-11. List of recommended improvements given a \$30,000,000 budget.