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ABSTRACT OF DISSERTATION 
 

 

IMMUNOTHERAPY IN COMBINATION WITH BEHAVIORAL 
ENRICHMENT IN A CANINE MODEL OF AGING 

  
Alzheimer’s disease (AD) is characterized by cognitive decline and hallmark 

neuropathology, including β-amyloid (Aβ).  Therapeutic strategies for AD are 
focusing on reducing Aβ.  Canines develop Aβ neuropathology and cognitive 
decline with age similar to AD patients.  In previous studies, immunization with 
Aβ1-42 (VAC) in aged canines decreased brain Aβ but did not improve cognition.  
Behavioral enrichment (ENR) improved cognition without reducing brain Aβ.  We 
hypothesized that VAC combined with ENR would provide cognitive benefits and 
reduce Aβ neuropathology, as compared individual VAC and ENR treatments.  
Aged beagles were placed into groups: control, VAC with fibrillar Aβ1-42, ENR, 
and combination treatment (VAC+ENR) for 18 months. Learning and memory was 
evaluated throughout the study.  Serum IgG antibody titers, cerebral spinal fluid 
(CSF) and brain Aβ were measured. Serum anti-Aβ1-42 IgG increased 
significantly in VAC animals.   ENR but not VAC significantly increased CSF Aβ1-
40.  No cognitive improvements were observed in any group. VAC significantly 
reduced brain Aβ1-40 and 1-42, as well as reduced plaque load.  An overall 
slowing of plaque accumulation was seen in the ENR group. VAC and ENR were 
able to modify pathology when used as separate treatments; however, the 
combination treatment did not succeed in further reducing Aβ or improving 
cognition.  Previous AD clinical trials using immunotherapy yielded similar 
outcomes to our study showing reduced Aβ pathology but little to no cognitive 
improvements.  In combination these results suggest that future studies should 
focus on prevention approaches both in the canine model and in human clinical 
trials. 
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CHAPTER ONE: Alzheimer’s disease 

Frequency of Alzheimer’s disease in the US and Internationally 

In the United States, 5.4 million people are living with Alzheimer disease 

(AD), (178, 495, 496).  The number of people living with the disease is expected 

to triple by 2050.  This increase in prevalence of AD is thought to be due to the 

general population living longer as well as the “baby boom” generation reaching 

the age of 75, a time at which the most common late onset of the disease is seen 

(22, 323).  AD occurrence increases exponentially between the ages of 75 and 85 

with about 50% of the population over the age of 85 being affected (113, 121, 178).  

In 2010, the Center for Disease Control and Prevention reported 83,494 deaths 

due to AD.  However, a recent study by James et al. indicated the death toll may 

be closer to 500,000 placing AD as the 3rd top killer in the US as opposed to its 

previous place at 6th.  Only heart disease and cancer are higher than AD in number 

of deaths per year (197). 

Economic Impact 

Not only is the prevalence and number of deaths caused by AD increasing, 

but the global economy is significantly impacted.  The estimated annual global 

economic burden due to dementia is between $315 and $604 billion (189, 486).  

These vast costs come as little surprise with 12% of the population being elderly, 

of whom make up 26% of physician visits, one third of hospital stays and 

prescriptions, 40% of emergency responses, and 90% of nursing home residents 

(22).  These numbers will only grow as noted earlier due to the aging “baby boom” 
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population.  By 2029, all “baby boomers” will be at least 65 years old totaling an 

estimated 70 million people in the US aged 65 years and older.   

In 2009, the Alzheimer’s Association totaled direct costs to Medicare and 

Medicare as well as indirect costs to businesses for employees who are caregivers 

of individuals with AD and other dementias to be estimated at more than $203 

billion in 2013 and expected to increase to $1.2 trillion in 2050 (23, 150, 224).  In 

2008, the average individual out of pocket costs for Medicare beneficiaries over 

the age of 65 with AD and other dementias was $9,754 per person per year for 

healthcare and long-term care services, with the payments being highest for those 

living in nursing homes and assisted living facilities (22, 23).  The total costs in 

2004 from all sources of hospice care for these beneficiaries totaled $2.8 billion 

(22).  In addition to these expenses, are those that were not paid to individuals 

who voluntarily cared for those with dementia.  Whether it was family, a friend, or 

neighbor, over 15 million people provided unpaid care for an individual with AD or 

other dementia in 2008 (9, 22, 23).  In 2012, these caregivers totaled 17.5 billion 

(22, 448).  The time provided by these caregivers is valued at $216 billion dollars 

(22, 448).  For perspective, the value of caregiver time totaled in 2011 equaled half 

the net sales from Walmart and eight times the sales of McDonald’s (448).   While 

AD is quickly becoming an epidemic among the elderly, so has the cost of care for 

these individuals on the US economy. 

History 

AD was first described in1906, by Dr. Alois Alzheimer after treating a patient 

who exhibited progressive memory decline (10).  Augusta Deter, a 51 year-old 
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woman, died 5 years later after she was first seen by Dr. Alzheimer  (10, 431).   It 

was noted at autopsy that the patient’s cerebral cortex was atrophied (10). At this 

time, Alzheimer also identified histopathological changes that would later come to 

be known as the hallmark lesions of AD, neuritic plaques and neurofibrillary tangles 

(NFTs).  In 1910, Emil Kraepelin named presenile dementia “Alzheimer’s disease” 

to honor Alois Alzheimer (395, 431).   A clinical diagnosis of AD is made when a 

patient exhibits dementia with progressive decline, although a final diagnosis of 

AD cannot be confirmed until post mortem examination and requires the presence 

of AD pathological findings (96).       

Cognitive and Behavioral Changes 

A diagnosis of dementia is established when an individual exhibits the loss 

of 2 or more of the following cognitive domains: memory, language, calculation, 

orientation, or judgment (1, 2).  However, for the individual to have a “probable AD” 

diagnosis, they must have dementia that is clinically documented along with 

deficits in at least 2 cognitive domains, absence of other systemic disorders, and 

progressive worsening of memory (269, 270, 336, 338).    Individuals with AD show 

difficulty remembering new information and exhibit confusion, disorganized 

thinking, impaired judgment, and disorientation with time, space and location.    In 

addition, those with AD experience frequent changes in mood, are easily agitated, 

and often experience anxiety.  These psychological changes often lead to 

restlessness and sleep deprivation (12, 208, 285).  Most AD patients require 

assistance with bathing, dressing, using the bathroom, eating, and other daily 
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activities.  The gradual decline in memory eventually increases in severity until the 

symptoms become debilitating (35).     

If not noted by patient report or by a family member, friend, or caregiver, the 

first signs of cognitive impairment can be detected through direct observation by a 

clinician during an Annual Wellness Visit (15).  If symptoms of cognitive impairment 

are present, a brief structured patient assessment of cognition is performed using 

one of several available tools including the Mini-Mental State Examination 

(MMSE), the Memory Impairment Screen (MIS), the General Practitioner 

Assessment of Cognition (GPCOG), or the Mini-Cog (59, 183, 192, 249, 281).  In 

addition, informant assessments of the patient can be conducted using the 

GPCOG, AD8, or short Informant Questionnaire on Cognitive Decline in the Elderly 

(IQCODE).  If any of these assessments indicate possible cognitive impairment, a 

full dementia evaluation can be conducted and may include an assessment of 

multiple cognitive domains, a neurologic exam, standard laboratory tests, and 

structural brain imaging. Results of a full dementia evaluation will help determine 

an appropriate diagnosis such as mild cognitive impairment or AD, or determine 

other possible causes (75). 

Familial and Sporadic Alzheimer’s disease 

There are two types of AD, familial and sporadic.  When at least two 

generations of a family has been reported to have AD with a mutation that is 

inherited, it is considered of the familial type (41, 303). Sporadic AD occurs with 

some genetic or outside contributing factors increasing one’s risk.    AD is further 

defined as being early (EOAD) or late onset (LOAD) based on the age of onset of 
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the disease.  EOAD occurs before the age of 65 and LOAD occurs after (37, 497).  

Almost all cases of sporadic AD are LOAD.  EOAD makes 1-6% of AD cases of 

which 60% are familial AD (57, 63).  While familial AD must have a genetic 

component, sporadic forms of AD may also have a genetic component (76, 77, 

333, 350-355).  However, a majority of the cases are unpredictable with various 

factors including past medical history, environment, and lifestyle factors that may 

increase or decrease the risk of AD and the age of onset.   

Genetic Contributions to AD 

Of the 60% familial cases that are EOAD, 13% are due to autosomal 

dominant inheritance of specific genes (57, 63).  Researchers have found several 

genes to be associated with AD, but the three most commonly linked to familial 

EOAD include mutations on the amyloid precursor protein (APP), presenilin 1 

(PSEN1), and presenilin 2 (PSEN2) genes (141, 243, 244, 348, 349, 397).  Over 

200 mutations are reported in these three genes alone (35).   A consistent feature 

of all these mutations is elevated Aβ peptide levels (discussed in more detail later), 

enhanced aggregation of Aβ, early onset of AD neuropathology, and cognitive 

decline (25).  The APP gene encodes an integral type 1 membrane glycoprotein 

and when cleaved by beta and gamma secretases results in different Aβ peptide 

isoforms.  Mutations in APP result in altered ratios of Aβ isoforms in the brain and 

can account for 10-15% of familial autosomal dominant EOAD cases (157, 339).  

The PSEN1 and PSEN2 genes encode two proteins that are components of the 

gamma-secretase complex, which are expressed in many different tissues 

including the brain and are involved in cleaving APP to Aβ (242-244, 348).  APP 
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processing will be discussed in further detail in Chapter 2.  The mutations reported 

in PSEN1 and PSEN2 may result in a modified gamma secretase cleavage of APP. 

This altered cleavage activity leads to altered Aβ ratios with an increase in AB1-42 

(107). PSEN1 accounts for a majority of the reported mutations and is the most 

common cause of familial EOAD making up 18-50% of the autosomal dominant 

cases (382, 432, 447). 

Only one gene has been widely studied as the strongest risk factor for 

sporadic LOAD, apolipoprotein E (APOE).  APOE is a three-allele polymorphism 

(ε2, ε3, ε4) encoding for a glycoprotein that carries cholesterol in the blood stream 

and maintains lipid metabolism and transport (22, 76, 77, 349, 402).  Additionally 

it can influence the clearance of cerebral Aβ in AD individuals (76, 77).  The effect 

APOE has on AD depends on which alleles are expressed.  ApoE2 has exhibited 

protective properties and can act on longevity, ApoE4 increases the risk of AD, 

and ApoE3 is considered neutral (76, 77).  Humans express two alleles of APOE.  

The effects of the two alleles a person expresses act in a dose dependent manner 

(76, 77). For example, having at least one ApoE4 allele leads to a higher risk of 

developing LOAD compared to individuals with no ApoE4 allele. However, the risk 

of AD is 15 fold higher in homozygous carriers of ApoE4 (21).  Individuals with 

ApoE4 show more Aβ and NFT pathology when compared to individuals with other 

ApoE allele expression (35). The risk of developing AD by ApoE genotype can be 

modified further by non-genetic factors such as head trauma or stroke (184, 185, 

300). The frequencies and distribution of the ApoE alleles vary widely among 

populations (504, 505) however the ApoE3 allele is the most commonly expressed 
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(35).  APOE, along with APP, PSEN1, and PSEN2 make up less than 30% of the 

genetic variance in EOAD and LOAD, however,  many other genes are currently 

being studied and reported (89, 431). 

Non-Genetic Contributions 

While APOE can influence risk of LOAD, other non-genetic variables can 

increase, or decrease risk as well.  Risk of AD increases with age, female gender, 

and lower education (121, 236, 430).  Females have a risk of AD three times higher 

than that of males (125).  This may be due to the fact that women on average live 

longer than men, allowing more time for the development of AD (22).  Education 

is an important factor influencing risk of AD (210-212, 421, 422, 506).  The 

supporting idea for this risk is that individuals with higher education develop a 

greater “cognitive reserve capacity” than those with lower education (422).  By 

having a greater reserve, a maintenance of cognition or delay of dementia onset 

may occur as a consequence of  compensating for any functional deficits caused 

by AD pathology (11).   

Comorbidities can also influence AD risk.  Individuals with systemic 

hypertension, diabetes mellitus, cardiovascular disease, and cerebrovascular 

disease all experience a greater risk for developing AD (191, 229, 251, 265, 306, 

412).  Those with type II diabetes have a two-fold increased risk for AD (117, 250, 

251, 317).  Middle-aged individuals with high serum cholesterol levels are also at 

a higher risk of AD later in age (220, 481).  Observational studies have shown mid-

life hypertension to increases likelihood of AD (267).  However, low blood pressure 

later in life can also increase chances of developing AD (334, 356).  History of 
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traumatic brain injury or stroke dramatically increases risk of AD (122, 318), 

especially in APOE4 carriers.  Some environmental factors that also appear to 

contribute to risk of AD include lack of social engagement, smoking, and heavy 

alcohol drinking. Individuals who are ApoE4 carriers are especially affected by 

smoking and heavy drinking (4, 16, 273, 311).    

Protective Factors 

While there are several factors that increase the risk of developing AD, there 

are also several that are associated with reduced risk of disease including social 

and cognitive enrichment, physical activity, and diet (112, 372, 373, 466).  Exercise 

activates neural plasticity, remodels neuronal circuitry, and promotes 

vascularization (38, 80, 462).   Cognitive enrichment such as reading, social 

activities, knitting, tabletop games, information processing activities, and playing 

musical instruments have all shown to be protective and reduce risk of dementia 

and AD (36, 84).  Diet has been widely studied for protective factors against the 

development of sporadic AD.  Omega-3, vitamin D, and folic acid have all been 

shown to reduce risk of AD (110, 289-292, 374, 472).  In addition, several studies 

suggest that a Mediterranean diet of vegetables, legumes, fruits, and cereals, 

unsaturated fats, fish, some dairy, meat and poultry, and wine is also associated 

with decreased risk (415).  While genetic factors and medical history can influence 

the onset of AD, there are many lifestyle practices an individual can engage in to 

reduce their risk. 
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Neuropathology of AD 

In parallel, or prior to, the development of cognitive and behavioral changes, 

individuals with AD accumulate several types of neuropathology that become 

progressively worse as the disease evolves.  In the 1960’s, the 2 classic lesions of 

AD, NFTs and senile plaques, were confirmed as hallmark pathology for the 

disease (215, 431).  During the 1980s, various neurotransmitter deficits were 

identified in AD (146, 147, 298, 329).  Additional forms of neuropathology that 

contribute to AD have also been described including changes in brain volume, 

synaptic and neuronal loss, as well as decreased neurogenesis. A brief description 

of each of these key pathologies is described next. 

Brain Volume and Neuronal Loss  

The medial temporal lobe, including the hippocampus and entorhinal cortex, 

is the first area in the brain to show atrophy in individuals with AD and occurs early 

in the disease as shown with structural MRI (26, 48, 52, 106, 216, 337, 414, 449, 

450).  Atrophy, including loss of myelination, synapses, and  neurons, begins in 

the temporal lobe and develops into the neocortex, notably the frontal and parietal 

regions, at later stages of the disease (26, 48, 52, 73, 90, 106, 188, 195, 284, 380, 

414, 449).  Several longitudinal studies have shown that increased rates of 

ventricular widening as well as regional and whole brain atrophy in otherwise 

healthy individuals increases risk of developing cognitive decline due to AD later 

in life (64, 196, 357).  Several studies have indicated a strong correlation between 

cognitive ability and synaptic numbers (93, 247, 369, 375, 377-379, 441).  With the 

loss of synaptic contacts and neurons, a significant reduction of grey matter in the 
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hippocampus and entorhinal cortex is seen in later stages of AD (308). This grey 

matter loss correlates with decreased cognitive performance, especially so with 

memory (227, 439).  However, synaptic and neuronal loss is experienced in 

multiple regions of the brain in AD, possibly explaining the diverse cognitive 

changes seen with the progression of the disease (376). 

Neurogenesis 

Neurogenesis takes place primarily in two regions of the adult brain, the 

subgranular zone of the dentate gyrus of the hippocampus and subventricular zone 

of the lateral ventricles (111).  Fully functioning neurons can be generated from 

progenitor cells. These cells proliferate into immature neurons and migrate to the 

granule cell layer where they mature and integrate into preexisting circuitry (502).  

Interestingly, several genetic contributors to familial AD modulate neurogenesis, 

including PS1 and APP (237).  While PS1 positively regulates neural progenitor 

cell differentiation, soluble APP positively regulates proliferation (62, 126, 127, 

238).  However, mutations in these two genes, as seen in familial AD, alter alpha 

and gamma secretase activity and reduce soluble APP, respectively, which may 

suppress neurogenesis (as reviewed in (237)).  These deficiencies in 

neurogenesis may occur early in  AD, prior to plaques, NFT, or neuronal loss, thus 

further supporting the idea that familial AD involved proteins directly affect 

neurogenesis which may contribute to the development of  AD (238).   

The link between changes in learning and memory with age and losses in 

neurogenesis is complex (237).  The hippocampus is one of the first regions of the 

brain affected in AD, and is also one of only two brain regions where neurogenesis 
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occurs. Thus supporting the hypothesis that pathological processes of AD impact 

neurogenesis, and vice versa (161, 205, 206, 248, 386, 467, 468, 508).  It has 

been proposed that when these disease processes begin to take place, rates of 

neurogenesis will increase in attempt to compensate before a significant loss in 

neurogenesis is observed (5, 222, 228, 248, 399, 400). Decreases in neurogenesis 

may underlie cognitive impairments associated with dementia (69, 161, 205, 206, 

237, 248, 386, 467, 468, 508).  Suppressing neurogenesis causes deficits in 

hippocampal dependent learning; while other cognitive domains appear unaffected 

(238, 507).  Furthermore, additional studies that increase neurogenesis in mice 

lead to improved performance in pattern separation and spatial memory (363, 

423).   

Neurofibrillary Tangles 

In 1963, neurofibrillary tangles (NFTs) were first identified as one of the 

hallmark lesions of AD and found to be made up of paired helical filaments (PHFs) 

(190, 215, 431). Then in 1986, researchers found that NFTs were comprised of 

microtubule associated protein tau (58, 151, 225, 304, 494).  Tau protein has a 

normal function of stabilizing microtubule formation and disassembly in neurons.  

In its non-phosphorylated state, tau protein binds microtubules and binds less 

tightly once phosphorylated (56).  However, increased phosphorylation, or hyper-

phosphorylation, of tau can lead to aggregation of the protein within the cell and 

formation of paired helical filaments (PHF) (151). Ultimately these PHFs lead to 

the formation of neurofibrillary tangles (NFT) (142, 226, 240, 264).  There are 19 

specific amino acid sequences that are frequently phosphorylated in the formation 
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of NFTs in AD (29, 142, 226, 240, 264).  Tau protein can be phosphorylated by 

several kinases, but the three commonly acting on phosphorylation sites of interest 

in AD include MAP kinase, GSK-3 and cdk5 (104, 254). 

The extent and distribution of NFTs correlates with the severity of dementia 

in AD (20, 49).  There are different morphological stages of NFTs including pre-, 

intra-, and extra- neuronal (219).  Pre-neuronal NFTs include intracellular punctate 

aggregates of hyperphosphorylated tau inside an otherwise healthy neuron.  Once 

these aggregates start to form filamentous structures, paired helical filaments 

(PHFs), an NFT is then considered intra-neuronal.  NFTs enter the final 

morphological stage, extra-neuronal, when the neuron dies and only an extra 

cellular NFT, or “ghost tangle”, remains (219).  

In addition to morphological changes, NFTs have defined stages for 

progression in terms of severity and location within the brain known as Braak 

stages I-VI (19, 52).  A 900 autopsy case study spanning the ages 25 to 95 of 

demented and non-demented brains showed that younger cases showed a pattern 

of NFT deposition that spread with more advanced ages (307).  NFTs are first 

observed in layer II of the entorhinal cortex (transentorhinal cortex) following a 

predictable sequence spreading onward to other regions of the brain (19, 20, 50, 

53, 187, 326, 460, 461).  Braak stages I and II are defined as having NFTs present 

in the transentorhinal region of the brain with the absence of cognitive impairments 

(55, 200).  At these stages, this area is generally void of any Aβ deposits of plaques 

(54).  Progression into Braak stages III and IV show more extensive NFT pathology 

into the hippocampus, however, most of the neocortex is unaffected.   When NFTs 
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reach the hippocampus, limbic circuits become disrupted that is associated with 

declines in cognition seen at these stages.  This disruption is further exacerbated 

in Braak stages V and VI when NFTs are prevalent throughout the cerebral cortex.  

These stages of neuropathology are used for confirmation of clinical AD diagnosis 

(283, 451).  NFTs have been seen in other neurodegenerative diseases in the 

absence of Aβ pathology, and it can be assumed that NFTs can occur 

independently of plaques in the progression of AD (389).  This is seen in Braak 

stages I and II of NFT progression.  However, for a final diagnosis of AD, the 

presence of senile plaques is also required. 

β-Amyloid 

In addition to NFTs, a final diagnosis of AD at post mortem examination also 

requires the presence of Aβ plaques (33, 96, 201).  As with most of the 

neuropathology observed in AD, Aβ pathology occurs early in the disease before 

cognitive impairments are observed (389).  Genetic mutations of APP, PSEN1, or 

PSEN2 seen in familial AD can influence the age at which Aβ pathology is first 

seen.  According to the amyloid cascade hypothesis, excess accumulation of Aβ 

peptide induces a series of events including the formation of insoluble and soluble 

oligomers followed by aggregate stress, the formation of NFTs, and ultimately 

leading to neuronal death and AD (159).  At the start of the cascade, APP is 

cleaved by β- and γ- secretase and the resultant cleavage product is the Aβ 

peptide (476).  Depending on the location at which γ- secretase cleaves APP, 

various species of Aβ peptide can be produced. The two most common Aβ peptide 

species are Aβ1-40 and Aβ1-42 (194, 389). These Aβ peptides can accumulate into 
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oligomers, then fibrils,  which then aggregate further to make up Aβ plaques (97, 

138, 261).  The spatial pattern of Aβ deposition begins in the frontal cortex 

spreading to the lateral and parietal regions early in the disease (18, 50-52, 445). 

Later, Aβ deposition spreads further into the occipital lobe and motor cortices with 

the entorhinal cortex and hippocampal region being affected last (18, 51). Whether 

Aβ deposition directly causes neuronal loss is unknown, but Aβ  is toxic and can 

alter neuron function (294).  For example, many studies have shown Aβ deposition 

impairs long term potentiation, a physiological substrate for memory, and neuronal 

plasticity in the hippocampus (245, 389). 

The extent of Aβ pathology including peptide production and isoforms, the 

various types of plaques that form, and effects on cognition will be described in 

greater detail in the following chapter.   

Vascular Aβ and Cerebral Amyloid Angiopathy 

In addition to Aβ plaques, Aβ peptides can deposit in association with the 

vasculature (138).   Aβ was originally isolated from meningeal blood vessels of 

individuals with Down syndrome and AD (138, 139).  Aβ deposition in vascular 

walls is characteristic of cerebral amyloid angiopathy (CAA) (138, 389).  CAA is 

defined as amyloid protein aggregated within the blood vessels of brain tissue that 

can be stained by Congo red, an immunohistochemical stain that labels compacted 

amyloid protein aggregates (342).  While Aβ protein makes up Aβ plaques and 

CAA, there is a low correlation between the two events and each can occur in 

absence of the other (389, 465).  Population studies show that 55-59% of patients 

with dementia show CAA and in up to 98% of the AD cases (199, 214).  Though 
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the majority of the AD population shows CAA in the brain, the degree of CAA 

burden among individuals with AD can vary widely (389, 465).  Genetic mutations 

associated with AD, including APOE and PSEN1, are also risk factors for CAA 

deposition (149, 299, 325, 499).  While CAA can be found throughout the brain, 

the distribution pattern is much like that of Aβ plaques beginning in the frontal, 

parietal, temporal, and occipital cortices and later in the hippocampus and 

entorhinal cortex (443, 444).  Interestingly, a study documenting and assessing 

various forms of neurodegenerative pathology in relation to cognitive function 

indicated that CAA may correlate more strongly with the presence of dementia 

than with other forms of amyloid pathology (266). However, the contribution of CAA 

to dementia is not well understood (465).   

Accumulation of Aβ in the vasculature may be due to efforts of clearing the 

peptide from the brain or microglial uptake and deposition into the vascular lumen.  

Vascular Aβ deposition prompts smooth muscle cells of these vessels to produce 

vascular Aβ, allowing further Aβ deposition. Affected vessels show thickened walls 

with amyloid deposits and degeneration of smooth muscle cells (260, 301).  On 

rare occasion, advanced CAA damage of the vessel walls can cause them to 

rupture resulting in microhemorrhages or hemorrhagic stroke (389, 489).  When 

hemorrhaging does occur, it is predominantly located in the frontoparietal, 

temporal, and occipital regions of the brain.  A definitive clinical diagnosis of CAA-

related hemorrhages cannot be made until postmortem examination, but a 

probable diagnosis can be made by MRI or CT imaging (223).  In comparison, a 

probable diagnosis of CAA can be made with the observation of multiple 
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hemorrhages confined to lobar brain areas with no other explanation for the 

pathology (148).  Cerebral microhemorrhages are seen in 16.7 to 32% of AD 

patients as seen using MRI (78, 79, 155, 156, 297).  When using positron emission 

tomography (PET) with amyloid labeling 11C-Pittsburgh Compound B (PiB), 

microhemorrhages usually occur in regions that have concentrated amyloid 

deposits of individuals with and without AD (99). 
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CHAPTER TWO: β-Amyloid 

APP and APP Processing 

The Aβ peptide is a cleavage product of the amyloid precursor protein (APP) 

(152, 153).  The Aβ peptide was first sequenced from amyloid deposits in 

meningio-cerebral blood vessels of a patient with Down’s syndrome (DS) and AD 

(137, 140). Subsequently, APP was localized to chromosome 21 (209, 343, 433).  

APP is a single transmembrane polypeptide glycoprotein whose function is 

unknown (476).  APP is commonly cleaved between residues 16 and 17 of the Aβ 

region by α-secretase resulting in a soluble ectodomain region (APPs-α) and its 

release into vesicle lumens.  Alternatively, APP can be cleaved by β-secretase 

cutting APP to release a truncated form of soluble APP (APPs-β), which is also 

released into the vesicle lumen (393). Cleavage by either α-secretase or β-

secretase also results in a carboxy terminal fragment (CTF) still within the 

membrane that will ultimately be cleaved by γ-secretase resulting in either the 

peptide p3 (if first cleaved by α-secretases) or Aβ peptide (if first cleaved by β-

secretase) (464, 500).  The majority of APP undergoes processing by α- and γ-

secretases while less undergoes the amyloidogenic processing by β-secretase 

and γ-secretase (387).  Various mutations in APP or PSEN1 or PSEN2 genes, as 

described in the genetic risk factors of AD section of Chapter 1, can lead to 

increased amyloidogenic processing of APP.  Genetic mutations identified in the 

APP or PS gene causing AD in addition to the observation that older individuals 

with trisomy 21 DS having an earlier onset of AD and faster progression of the 

disease led to the amyloid hypothesis (141, 158, 179, 295, 309).  The amyloid 



 

18 

hypothesis proposes that production of Aβ and its intracellular deposition in 

neurons along with extracellular formation of diffuse and neuritic plaques is the 

initiating factor resulting in tau hyperphosphorylation and activation of microglia,  

ultimately leading to neurodegeneration (119, 159). 

Aβ Peptide 

During the amyloidogenic processing of APP, γ-secretase can cleave the 

CTF at various sites leading to multiple isoforms of Aβ peptide ranging from 36 to 

43 amino acids long (74, 136, 194). The two most common isoforms of Aβ are Aβ1-

40 and Aβ1-42 which are 40 or 42 amino acids in length, respectively (74, 136, 194).  

While the biological function of Aβ peptide is not well known, it does have a 

hydrophobic structure that self-aggregates into dimers, trimers, tetramers, 

oligomers, and fibrils (262).  In general Aβ1-40 is more soluble, less toxic, and found 

in plaques, but more commonly associated with deposition in the blood vessels 

(324, 389, 498).  Aβ1-42 on the other hand is more hydrophobic making it more 

readily aggregated to form fibrils and plaques representing the majority of 

parenchymal Aβ (324, 389, 477).  Up to 90% of Aβ in the brains of individuals of 

AD can be of the Aβ42 species (144). Individuals with familial AD due to APP 

mutations will have increased levels of extracellular Aβ1-42 or both Aβ1-40 and Aβ1-

42 depending on the mutation (61, 68, 427), while PSEN1 or PSEN2 mutations 

selectively increase Aβ1-42 levels (382). 

Soluble and Insoluble Aβ 

The various forms of Aβ can be either soluble or insoluble.  The soluble 

form of Aβ can be found in CSF, plasma, and serum as well as in brain tissue (262, 
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390).  Soluble CSF Aβ1-40 and Aβ1-42 can be used as biomarkers to predict AD 

pathology progression in the brain (153, 394, 398).  CSF Aβ1-42 is reduced in 

individuals with AD and inversely proportional to the level of cognitive impairment 

and Aβ pathology in the brain of that individual (13, 128). Generally, those without 

AD have higher levels of CSF Aβ and lower levels of brain Aβ.  Lower CSF Aβ 

would indicate the movement of Aβ from the periphery into the brain (13, 128).  

While CSF Aβ levels inversely correlate with AD pathology in the brain and 

cognitive decline, Plasma Aβ1-40 and Aβ1-42 levels are more variable and less 

reliable as a biomarker of AD (268, 272, 463).  Additionally, the levels of Aβ1-40 and 

Aβ1-42 are much higher and more easily measured in CSF than plasma Aβ1-40 and 

Aβ1-42 levels (268, 272, 463).  The insoluble form of Aβ can only be found in tissue 

(294, 473).  Insoluble Aβ is generally fibrous in nature and makes up a large 

proportion of Aβ plaques (262).  The Aβ that forms plaque cores is generally more 

insoluble than that from vascular deposits (262).  While both soluble and insoluble 

Aβ correlate with cognitive impairment, soluble Aβ levels measured by biochemical 

assays appear to better correlate  with cognition than insoluble dense plaque 

deposition measured immunohistochemically (252, 271, 396). 

Aβ Oligomers 

Aβ is also very toxic in its soluble oligomeric form (252, 271).  When Aβ 

monomers assemble with one another they can form soluble oligomers which can 

exist in multiple forms such as dimers, trimers, or Aβ*56 (a dodecameric Aβ 

formation) (235).  Two studies in the early 1990’s demonstrated a poor correlation 

between fibrillar Aβ and cognitive decline in patients with AD (98, 442).  Later 
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soluble non-fibrillar Aβ levels were shown to have a strong correlation with AD 

(252, 271).  With these studies it was suggested that soluble Aβ may be a greater 

contributor to progression of AD than the previously thought deposited fibrillar Aβ 

(252, 271).  Since Aβ oligomers provide more surface area for interaction with 

neural synapses than plaques, they are thought to be more synaptotoxic.  

Oligomers modulate both pre- and post-synaptic structure and functions in a dose 

dependent manner (313, 388).  This synaptotoxicity by oligomers causes inhibition 

of long term potentiation in the hippocampus contributing to cognitive decline 

(470). 

Aβ Plaques 

Aβ is deposited extracellularly and aggregates into plaques (389).  As 

mentioned, Aβ is self-aggregating and first forms polymers that then create beta 

pleated sheet formations making up Aβ fibrils (389).  The insoluble Aβ fibrils may 

be inactive but are reservoirs of smaller Aβ assemblies (153, 294, 394, 398).  

These fibrils can then become cytotoxic when misfolded leading to amyloidosis 

and aggregating to form Aβ plaques (389).  Both Aβ1-40 and Aβ1-42 can be found in 

plaques, but since Aβ1-42 is more fibrillogenic of the two it is observed in Aβ plaques 

earlier in the disease (145, 193).  Two types of plaques can form, diffuse and dense 

plaques.  Diffuse plaques are primarily made of Aβ1-42, while dense plaques 

contain both Aβ1-40 and Aβ1-42 (263).  When stained by immunohistochemistry, 

diffuse plaques have a cloud like structure while dense plaques are more globular.   
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Post-translationally modified Aβ 

Aside from the multiple Aβ isoforms that can result in the c-terminal 

cleavage by γ-secretase, there can also be N-terminal heterogeneity (429).  This 

heterogeneity leads to various shorter peptides including Aβ5-40, Aβ5-42, Aβ3-40, and 

Aβ3-42 (65, 429). Additional post-translational modifications can occur with these N-

truncated Aβ peptides.  For example, an amino terminal modification can occur in 

which there is a proteolytic removal of residues 1 and 2 (Asp and Ala) (287). 

Another type of post-translational modification that can occur is the cyclizing of 

residue 3 or 11 of Aβ (Glu) to a pyroglutamate (pE) by glutaminyl cyclase (QC) 

(287, 384).  The most prominent forms of the pEAβ species are Aβ3(pE)-40, Aβ3(pE)-

42, Aβ11(pE)-40, and Aβ11(pE)-42 (365).  As stated earlier, up to 90% of Aβ in the brain 

ends in Aβ42 (144).  Truncated and modified Aβ make up most of the Aβ42 in the 

brain with Aβ3(pE)-42 being the most prevalent form (144, 428).  The prevalence of 

N-truncated and modified Aβ peptides is even greater in the brains of patients with 

familial AD compared to those with sporadic AD suggesting that post-

translationally modified Aβ has a decisive role in  the development of AD (282, 

361). pEAβ is more readily aggregated, more toxic, and is resistant to degradation 

(8, 162, 362, 383, 385, 487).  Schilling et al. studied the seeding and 

oligomerization capacity of the pEAβ peptide species and found that formation of 

seeds required for forming fibrils was very rapid compared to unmodified Aβ 

peptide (383).  This suggests the pEAβ peptide species is more toxic and could 

initiate Aβ aggregation and plaque formation by unmodified Aβ (383).  Since pEAβ 

peptide species promotes the advancement of Aβ pathology early in AD, then this 
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species could be a marker of older Aβ deposits (383).  With the N-terminal 

pyroglutamyl present, pEAβ is resistant to N-terminal targeted degradation, adding 

to the toxicity of this Aβ peptide species (364).  These attributes suggest that the 

pEAβ species plays a prominent role in the overall progression of AD (162, 186, 

362, 383, 440) and may determine the severity of disease state in an individual 

(360). 

Not only is pEAβ involved with Aβ pathology in AD, but two recent studies 

indicate an involvement in hyperphosphorylated tau pathology (256, 305).  In 2012, 

Nussbaum et al. examined the connections between pEAβ and tau in AD, finding 

that the toxicity of pEAβ and tau were dependent on one another (305).  Later, 

Mandler et al in 2014 measured and compared pEAβ3, full-length Aβ, and 

hyperphosphorylated tau loads in the frontal cortex and entorhinal cortex of 41 post 

mortem brains of both individuals with AD and controls (256).  As expected, all 

loads were higher in AD.  Interestingly, when looking at pEAβ3-x independently of 

full-length Aβ, pEAβ3 predicted AD and hyperphosphorylated tau while full-length 

Aβ only predicted AD (256).  High levels of hyperphosphorylated tau came with 

greater loads of pEAβ3, but were not affected by the absence of full-length Aβ 

(256).  The greater toxicity, resistance to degradation, correlation with 

hyperphosphorylated tau and the progression of AD make pEAβ a critical peptide 

to evaluate in future AD studies and therapeutic development. 
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CHAPTER THREE: Dog Model 

Used previously published material with permission. 

Davis, P.R., Head, E. Prevention approaches in a preclinical canine model of 
Alzheimer’s disease: benefits and challenges. Front. Pharmacol. 2014: 5: 1-14 
 
The Canine Model of Human Aging and Alzheimer’s disease 

Some of the most commonly studied animal models of human brain aging 

are rodents and nonhuman primates (129).  Other animals, including wolves, 

bears, cats, and dogs, naturally develop human-like neuropathology (172).  Of 

these animals, cats and dogs tend to have similar living environments to humans 

(172). Canines, however, show cognitive decline with age and develop most 

aspects of neuropathology seen in aged human brain including AD patients (81, 

87).  Such neuropathology includes Aβ pathology, reduced brain volume, neuronal 

loss, and impaired neurogenesis (81, 163).  In addition to the similar cognitive 

decline and accumulation of neuropathological hallmarks to humans with AD, 

drugs exhibit similar pharmacokinetics when administered to dogs or humans (for 

example statins - (7, 132)), making them an appropriate model for translational 

studies on therapeutic drugs.  Not only are dogs easy to handle due to their long 

history of domestication, but pet dogs also share similar living conditions and diets 

to humans (30, 87, 316). Canines are highly motivated by food reward when 

conducting cognitive tests, which makes them cooperative research subjects by 

reducing or eliminating deprivation protocols for motivation.  Thus, this 

cooperativeness eliminates many physiological stressors that can affect cognitive 

testing results present in other animal models such as rodents that require food 

deprivation or cold water for motivation (40).  The similar cognitive decline and 
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accumulation of neuropathology to humans makes the canine model of aging 

useful for translational research on neurodegenerative diseases, especially AD. 

Cognitive Outcome Measures 

There are several measures of cognition that are age-sensitive and 

treatment-sensitive in dogs that can be used as intervention outcome measures to 

assess different cognitive abilities with analogous tasks in nonhuman primates and 

in humans.  Much like humans, the aging canine shows cognitive decline with 

various cognitive domains and cortical pathways being differentially affected (277).  

Dogs show cognitive deficits due to age in tests measuring complex learning, 

executive function, spatial learning and attention, and memory (67, 82, 166, 277, 

280, 410, 424, 434, 435, 437).  In addition to cognitive domain variability, individual 

dogs also show variability in cognitive function as seen in humans (3).  This 

variability becomes most apparent in old canines, and using spatial learning and 

memory tasks, three groups of animals can be identified: (1) successful agers, (2) 

impaired dogs whose scores fell 2 standard deviations above the mean of the 

young animals, and (3) severely impaired dogs who failed to learn the task (172).  

The availability of age-matched animals with and without cognitive deficits allowed 

researchers to determine which types of neuropathology contribute to individual 

cognitive impairments in these animals (e.g. (166)). 

Several tasks, similar to those used for testing cognition in non-human 

primates, have been developed to measure cognitive decline in the aging canine 

(274, 276, 277).  Such tasks include landmark discrimination, oddity discrimination, 

object, size and black / white discrimination and reversal tasks, and a spatial 
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memory task.  Cognitive testing  occur in a modified Wisconsin General Testing 

Apparatus such that the motor and sensory demands are consistent across tasks 

(277).  For each task, 10-12 trials are given per day and dogs are tested daily until 

a predetermined criterion level of performance is reached; total error scores are 

added up across days to provide a measure of learning and/or memory for each 

animal.  These tasks are described in more detail below to illustrate how a test 

battery can be developed to measure the function of several brain circuits that may 

be differentially affected by age and/or treatment in aging dogs. 

Landmark Discrimination Task 

The landmark discrimination task, which measures visuospatial function 

and allocentric learning, involves presenting dogs with two identical objects, one 

of which is adjacent to a third object that serves as a landmark (274).  Animals are 

required to recognize that the landmark is an indicator of which object covers the 

food reward, and selection of the object closest to this landmark by the animal is 

considered a correct response. The task is made successively more difficult by 

placing the landmark further away from the object covering the reward. Previous 

work shows that aged dogs are impaired on the landmark task and show age 

decrements in their ability to determine how close the landmark is to the correct 

object (274, 276). 

Oddity Discrimination Task 

The oddity discrimination task measures complex learning, as well as 

prefrontal cortex function (82).  Aged dogs show deficits in oddity discrimination 

learning (82, 280).  In this task, dogs are presented with three objects 
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simultaneously, two of which are identical and a third that is unique.  A correct 

response is indicated when the dog chooses the unique object, resulting in a 

reward.  To prevent a floor effect and detect progressive age decline, the oddity 

aspect of this task is made successively more difficult.  Animals progress through 

four sets of three objects and each subsequent set contains a unique object, which 

is more difficult to distinguish from others than the previous set (280). Interestingly, 

young dogs can solve this problem by using the strategy of selecting the novel 

object for each successive set of objects such that error scores plateau; in contrast, 

aged dogs do not learn a strategy but re-learn each set of objects as a new problem 

(82, 280). 

Object, Size and Black/White Discrimination 

Tests of object, size and black/white discrimination are administered to 

measure associative learning ability. Object discrimination involves presenting 

dogs with two different objects simultaneously with one of the two objects 

consistently rewarded. Dogs must learn to select the same object each 

presentation with the left/right position being randomly determined. Similarly, the 

size discrimination objects differ in size (small/large) and the black/white 

discrimination task objects differ only in color (black/white) (278).  Object, size and 

black/white discrimination are also progressively more difficult for animals to solve 

given the similarities in the objects increasing. Thus, these 3 tasks in combination 

can serve as different test versions (much like in clinical studies in people) to 

assess longitudinal changes in learning while reducing practice effects (278). 
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Object, Size or Black/White Reversal 

Executive function can be evaluated immediately after discrimination 

learning has been completed by using the object, size or black/white reversal 

tasks.  The reversal tasks differ from the original discrimination task in that the 

positive and negative objects for reward contingencies are reversed after animals 

have learned the initial discrimination (278, 279).  Reversing the reward 

contingencies can show perseverative behaviors (persistent choice of previously 

correct object), which are frontal cortex dependent (474). A subset of the 

discrimination learning tasks and all reversal learning tasks are age dependent, 

with reversal learning being consistently more impaired with age (277-279, 410, 

437). 

Spatial Memory Task 

Memory also declines with age in dogs.  The most useful age-sensitive task 

we have used is a spatial memory task, in which dogs are required to recognize 

the location of a sample stimulus and then respond to a different location during 

the test trial.  We refer to this as a delayed non-match to position task (DNMP) and 

it involves showing animals a single object covering a food reward either on the 

left or right food well. After animals move the object and obtain the reward, the 

object is withdrawn from sight for a predetermined delay period (e.g. 10s). 

Subsequently animals are given two identical objects to choose from; one is the 

same object in the same position as before and one is in a novel position. The 

correct response is to select the object covering the novel location.  Results 

published in 1995 (170) suggested that the task was age-sensitive. We 
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subsequently developed a 3-choice visuospatial working memory task that allows 

determination of the differential age-dependent strategies (e.g. cognitive or 

stimulus-dependent strategies) dogs use in solving the problem (66). In this task, 

rather than just the left and right food wells, a center well is also included to make 

the task more difficult.  Further, this task shows minimal practice effects in 

longitudinal studies (177). The time course of the development of cognitive decline 

was identified and deterioration in spatial ability occurs early in the aging process, 

between 6 and 7 years of age in dogs (424). 

Behavioral/Functional Outcome Measures 

In addition to cognitive outcome measures, researchers and veterinarians 

are interested in measuring functional outcomes.  Further, laboratory-based 

cognitive testing as described above is labor intensive and requires many months 

to years to obtain data. An open field test can be used to observe the behavioral 

patterns of animals in an empty room for 10 minutes. During this task, movement, 

sniffing, urinating, grooming, rearing, jumping, vocalization, and inactivity are 

noted (171, 409, 411).  Self-recognition can be evaluated through the mirror test, 

originally developed for primates (91, 130), by observing the reaction of each 

animal with a mirror and their reflection.  Exploratory behavior of canines can be 

assessed through a curiosity test in which animals are presented with various 

novel play objects.  During their time with the objects, the amount of time the dogs 

spend in physical contact with or sitting next to the objects is recorded as well as 

their frequency of sniffing the objects (411).  Social responsiveness of dogs can 

be gauged through a few different tasks: a human interaction test, silhouette test, 
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and the model dog test. A human interaction test is performed by the presence of 

a person in the middle of the room and recording the reaction of the dog to that 

person by measuring the time the dog is in physical contact with the person, time 

sitting or standing beside the person, and frequency sniffing the person (167).  The 

silhouette test records the animals frequency of sniffing the front and rear regions 

of a cardboard silhouette of a dog posted onto a wall (123). The model dog test 

also records the sniffing frequency of the dogs, but this time in response to the 

presence of a life size model dog in the center of a room (411). 

Behavioral patterns in these functional tasks show age effects as well as 

differential effects based on the presence of intact/impaired cognition.  In 2001, 

Siwak et al. characterized the behavioral profiles of young (2 to 4 years), aged (9-

15 years) cognitively impaired, and aged non-impaired beagles (411). Young dogs 

tend to show greater responsiveness to changes in environments such as the 

addition of novel objects and a person.  They also showed greater social 

responsiveness spending the most time next to or sniffing a person, silhouette, 

and model dog.  Aged unimpaired dogs were still responsive to alterations in 

environment, but to a lesser degree than the young animals.  Additionally, aged 

unimpaired dogs spent the least amount of time reacting to the mirror during the 

self-recognition task.  Unlike either the young or aged unimpaired canines, the 

aged impaired canines were unresponsive to all stimuli presented to the 

environment and randomly moved about the room in pacing/aimless behavior.  

However, the aged impaired dogs did spend the most time interacting with the 

mirror in the self-recognition test (411).   
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Measures of canine function can also be assessed in a clinical setting (231-

233). Clinical measures have been developed consisting of pet dog owner based 

evaluation of dog behavioral changes (46, 47, 72, 233, 330, 331) similar to those 

used in human clinical evaluations, such as the Mini Mental State Exam (MMSE). 

Although there are different versions of these questionnaires, all appear to be 

sensitive to the presence of canine cognitive dysfunction (233).  The evaluation 

consists of items such as walking, posture/emotion of expression, elimination 

behavior, life rhythm, play behavior, exploratory behavior, learned specific 

behavior, adaptive capabilities, and interactions with other animals or with owners.  

The items of individual questionnaires can be used to derive scores that distinguish 

between normally and pathologically aging dogs.  Adult and older dogs generally 

score worse with these types of evaluation tools, and old dogs show individual 

variability in terms of the amount of cognitive dysfunction reported (47). 

Dog Neuropathology and Outcome Measures 

Just as canines can exhibit cognitive decline with age similar to aging 

humans and patients with AD, several human-type neuropathologies have been 

reported in dogs (81). In particular, the canine model has long been suggested as 

an excellent model of Aβ pathogenesis (490). Several changes observed in the 

aged canine brain are associated with cognition and are discussed below. 

Brain Volume 

Individuals with AD show significant cortical and hippocampal atrophy and 

ventricular enlargement relative to non-demented age matched controls (6, 340) 

and losses in brain volume correlate with cognitive decline (105, 114). Similar 
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events are seen in aged canines.  On cross sectional MR imaging, aging canines 

show increased cortical atrophy and ventricular widening (143, 218, 425).  

Ventricular widening over time was observed by MRI in a 3-year longitudinal study 

(426).  Canine cortical atrophy occurs earliest in the prefrontal cortex and later with 

age in the hippocampus (436).  As with humans, the more extensive the 

cortical/hippocampal atrophy seen in aged canines the more pronounced the 

cognitive deficits (347, 436). 

Neuronal Loss 

There is some evidence for neuronal loss in AD that could account for brain 

volume losses seen in brain imaging (404, 478).  With normal brain aging, neuronal 

loss is only seen in the hilus (478, 479), while neuronal loss is much more 

widespread in individuals with AD (42, 480).  Individuals with AD experience 

neuronal loss in the CA1, CA2, CA4, dentate gyrus and subiculum of the 

hippocampus (42, 327, 480).  In aged beagles, the hilus of the dentate gyrus 

showed fewer neurons compared to younger dogs (408).  Beagles with fewer 

neurons in the hilus made significantly more errors when performing the size 

discrimination task (408).  Similarly, Pugliese et al. found that a loss of Purkinje 

cells of the cerebellum in canines correlated with data acquired by questionnaires 

quantifying behavioral deficits (330).  However, neuronal loss may not account for 

all of the brain atrophy observed by MR as the loss of neuronal dendritic spines 

occurs with AD (221, 312) but to our knowledge, there are currently no studies 

published evaluating similar changes with age in dogs. 
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Neurogenesis 

While selective neuronal loss may occur with aging, the brain is also able 

to produce new neurons.  The hippocampus, for example, grows new neurons in 

the subgranular layer (111), as described in Chapter 1.  Neurogenesis has been 

explored in aged beagles using BrdU and doublecortin staining methods.  Siwak-

Tapp et al. measured neurogenesis in aged beagles using BrdU and found that 

animals over the age of 13 showed a significant loss of neurogenesis (407).  Fewer 

newer BrdU positive neurons was associated with poorer cognitive function in 

learning and memory (407). 

Β-Amyloid 

Beta-amyloid (Aβ) is derived from a longer precursor protein, the amyloid 

precursor protein (APP). The APP sequence of Canis familiaris has 98% homology 

with human APP (http://www.ensembl.org/Canis_familiaris/) and an identical 

amino acid sequence (207, 391).  Additionally, dog Aβ peptides may undergo the 

same posttranslational modifications as in humans (31, 371). These similarities 

make canines a viable aging model without the need for genetic modification or 

overexpression of mutant human proteins (391).   

The Aβ present in canines is ultrastructurally fibrillar and, though more 

compact deposits may form, it generally aggregates into diffuse plaques (88, 133, 

293, 359, 454, 455, 458). This type of Aβ deposition most resembles early AD 

pathology (81, 257, 288) (Figure 3.1A).  Since most AD therapeutics studied today 

are likely to have a greater affect if applied earlier in the disease progression, the 

early AD-like pathology canines produce makes them an attractive model for 
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preclinical prevention studies (258).  As with cognitive decline, AD-like 

neuropathology has a region specific progression in both humans and canines (52, 

133, 168, 391, 445, 488).  Though this progression in dogs is similar to that 

reported in humans, it is not identical.  In canines, the accumulation of Aβ begins 

in the prefrontal cortex (approximately 8 years at age of onset) and continues to 

develop with increasing age to include other regions such as the temporal and 

occipital cortex (81, 168, 358).  The severity of neuropathology can vary between 

individual animals but can be linked to the extent of cognitive decline (72, 86, 169, 

347).  For instance, animals who perform worse in reversal learning tasks have 

greater Aβ pathology in the prefrontal cortex, while those deficient in size 

discrimination learning show higher amounts of Aβ in the entorhinal cortex (86, 

166, 322). 

Aβ peptide can also be measured in the cerebrospinal fluid (CSF) of dogs 

(370).  Measuring CSF Aβ as a ratio of Aβ42/ Aβ40 is a good predictor of Aβ in the 

brain in dogs (176).  While brain Aβ increases with age, CSF Aβ decreases with 

age reflecting the hypothesis that Aβ migrates from the periphery and deposits in 

the brain with age and AD.   

Aside from the fibrillar Aβ found in diffuse plaques in AD, a smaller, more 

soluble form of Aβ, oligomeric Aβ, - is also seen in the aged dog brain.  This more 

toxic form of Aβ affects synaptic function and can be found in plaques (213, 390, 

471).  Higher levels of oligomers are present in canines and humans with 

increasing age and cognitive decline. The greater the cognitive deficit, the more 

prevalent oligomers are in the brain (321, 453).  Similar to fibrillar Aβ, oligomeric 
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Aβ can be measured in CSF, where levels are inversely related to levels in the 

brain (176). 

Cerebrovascular Pathology 

Aβ can also aggregate in the cerebral blood vessel walls and cause 

cerebrovascular pathology (27, 180, 328).  This type of deposition is referred to as 

cerebral amyloid angiopathy (CAA) (Figure 3.1B, C, D).  Typically CAA is 

composed of the shorter Aβ 1-40 peptide (27, 180, 491).  Both humans and 

canines exhibit CAA pathology, with a particular vulnerability in the occipital cortex 

(28).  CAA impairs the blood brain barrier, vascular function, and can cause 

microhemorrhages and occasionally hemorrhagic strokes (92, 328, 456).  Because 

of these complications, CAA may contribute to cognitive decline in both humans 

(27, 109, 302, 342) and canines (133, 164, 456, 457).  Much like humans, canines 

develop microhemorrhages with age (457) (Figure 3.1E).  These cerebral 

hemorrhages are present in both animals with and without CAA, but are more 

common in those with the blood vessel pathology (457). Given the significant 

overlap of cerebrovascular pathology with AD, the spontaneous accumulation of 

CAA in dogs also offers as yet, an underappreciated model system to test the 

effects of cerebrovascular pathology on cognition and AD neuropathology. 

Neurofibrillary Tangles 

One hallmark AD pathology canines do not produce is NFTs (359, 391).  

While no research to date has observed NFTs in the canine brain, the increased 

phosphorylation seen at some sites of tau in AD cases also occurs in cognitively 

impaired canines (173, 230, 315, 332, 475).  This lack of NFT pathology could 
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possibly be due to significant differences in the tau protein sequence between 

canines and humans (http://www.ensembl.org/Canis_familiaris/).  However, an 

advantage to dogs not accumulating NFTs is that they serve as a model that is 

selective for Aβ pathology and ideally suited for testing interventions that target 

this toxic protein. 

Treatment Studies in Aged Dogs 

Several studies have investigated therapeutic strategies using the canine 

model of aging and AD with both cognitive and neuropathological outcome 

measures (Table 3.1). 

Antioxidant-rich Diet in Combination with Behavioral Enrichment 

One of the earliest studies to develop a treatment for cognitive dysfunction in 

aged dogs tested an antioxidant-rich diet in combination with behavioral 

enrichment in aged dogs.  The rationale for this study was observations of 

increased oxidative damage in the canine brain (346, 347, 413) and studies in 

mouse models of AD showing environmental enrichment benefited cognition and 

reduced Aβ pathology (17, 202, 239). The diet included vitamins E and C, fruits 

and vegetables, lipoic acid and carnitine.  The behavioral enrichment included 

increased exercise, interaction with other dogs, and cognitive enrichment (82, 276, 

278, 279).  Compared to control animals, those receiving an antioxidant-rich diet 

committed fewer errors during landmark acquisition and retention tasks (276) as 

well as oddity discrimination tasks (82). Treatment with an antioxidant diet and 

behavioral enrichment resulted in improved performance during black and white 

object discrimination and reversal (278).  Pop and colleagues found dogs provided 
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with both behavioral enrichment and an antioxidant diet have an overall reduction 

in Aβ pathology across multiple regions of the brain (322) However, when looking 

at group treatment effects, only the antioxidant-treated animals had a significant 

reduction in Aβ plaque pathology.  Additionally, the combination treatment 

approach of behavioral enrichment and an antioxidant-rich diet in aged canines 

was unable to reduce existing brain Aβ, but was able to slow the accumulation of 

Aβ (322). While plaque load was affected by the combined intervention, soluble 

and insoluble Aβ1-40 was not reduced, and only soluble levels of Aβ1-42 were 

lowered specifically in the prefrontal cortex. A trend towards a significant decrease 

in oligomers, specifically in the parietal cortex, was observed in canines receiving 

the combined treatment (322).  Interestingly, the combination group also showed 

reduced oxidative damage (310) with the antioxidant diet group alone showing 

reduced mitochondrial dysfunction (175). Further, the behavioral enrichment 

group, independent of the antioxidant diet treatment showed less neuron loss in 

the hippocampus (408) as well as improved levels of brain derived neurotrophic 

factor  (115).  

Supplemental Medium-Chain TAG 

Supplemental medium-chain TAG (MCT) increases ketone levels in the 

brain, and these ketones can in turn be used as an alternative energy source. In 

2010, Pan and colleagues measured cognitive effects of this supplement on the 

landmark discrimination, oddity discrimination, and 2 choice egocentric spatial 

learning tasks.  Results indicated aged dogs given a diet with MCT 
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supplementation performed better than those receiving a control diet in all tasks 

(314). 

Medical Food Cocktail 

In contrast, fewer benefits on cognition were observed in a study using a 

medical food cocktail (174).  Dogs receiving a combination cocktail containing an 

extract of turmeric containing 95% curcuminoids, an extract of green tea containing 

50% epigallocatechingallate, N-acetyl cysteine, R-alpha lipoic acid and an extract 

of black pepper containing 95% piperine exhibited fewer errors compared to 

control animals during the landmark task indicating improved spatial attention.  

However, other areas of cognition were unaffected and brain Aβ remained 

unchanged (174). 

Cholesterol-lowering Drugs 

Several studies in the aged dog have tested the effects of drugs already 

approved for use in humans, with novel applications to brain aging. For example, 

several cross-sectional or case-control epidemiological studies revealed a striking 

link between cholesterol-lowering drugs (e.g. statins and others) and a 20-70% 

reduction in risk of developing AD (108, 154, 204, 344, 345, 492, 493, 503).  

Modest cognitive benefits have been reported in preliminary AD clinical trials with 

simvastatin (406) and atorvastatin (416-419).  In particular, AD patients with mild 

to moderate dementia who were treated with 80 mg/day atorvastatin had 

significantly improved scores on one measure of cognition (ADAS-Cog) at 6 

months of treatment, with smaller non-significant benefits at 12 months (419). 



 

38 

Statins may reduce the risk of incident AD through the prevention of Aβ 

production (160, 405).  In rodent models, treatment with inhibitors of 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) or statins reduces Aβ (319). However, 

rodents respond to statin treatment by massively upregulating HMG-CoA 

reductase levels (7, 118, 446, 452).  To compensate, long-term studies in rodent 

often employ physiologically excessive doses, making it difficult to translate the 

results of these studies into human trials.  

The dog model is particularly useful to study chronic statin treatment, given 

similarities with humans in terms of dose requirements, responsiveness, drug 

handling, and metabolism (7, 132). For example, 12 dogs were treated with 80 

mg/day of atorvastatin for 14.5 months (296). Peripheral levels of cholesterol, low 

density lipoproteins, triglycerides and high density lipoproteins were reduced in 

treated dogs. Surprisingly, a transient impairment in reversal learning was 

observed, suggesting prefrontal dysfunction. Spatial memory remained 

unchanged up to over a year of treatment. The lack of cognitive benefits of 

treatment was also reflected by a lack of reduction in plasma, CSF, and brain Aβ.  

Interestingly, BACE1 protein level was decreased in the brains of atorvastatin-

treated dogs. This intriguing outcome may suggest that statins might be more 

useful to prevent the production of Aβ through lowering BACE1 if started in animals 

in middle age, consistent with human studies indicating that middle-aged 

individuals using statins are protected from AD. 
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Immunotherapy 

In 2008, a therapeutic approach that directly targeted Aβ reduction was 

explored in which aged beagles were actively immunized with fibrillar Aβ1-42 for 2 

years (VAC) based upon previous work in transgenic mouse models of AD (381).  

Schenk and colleagues were one of the first groups to explore the immunotherapy 

approach and found that active immunization with fibrillar Aβ1-42 reduced Aβ 

pathology in aged mice while preventing accumulation in young mice (381).  

Additionally, behavioral outcomes improved in treated mice (198, 286).  When 

testing this immunotherapy approach in a larger animal model, the aging caning, 

results showed no improvement in cognitive function, but interestingly a long term 

maintenance of executive function was noted based on error scores from the size 

reversal learning task (177).  However, significant benefits to brain pathology were 

observed in the VAC dogs who showed significantly decreased Aβ plaque load in 

prefrontal, entorhinal, and occipital cortical regions, as well as reduced CAA (177). 

While soluble and insoluble brain Aβ1-40 and Aβ1-42 significantly decreased in 

treated canines, there was no significant reduction in soluble oligomers. This study 

suggests that reducing or eliminating pre-existing Aβ in aging dogs is not sufficient 

to improve cognition.  

Outcomes from the longitudinal dog active vaccination study are similar to 

reports of Aβ immunotherapy clinical trials in patients with AD where no differences 

between antibody responders and placebo groups on several cognitive and 

disability scales was observed. A small number of patients enrolled in the AN1792 

study have come to autopsy and show A plaque reduction without any effect on 



 

40 

the extent of neurofibrillary tangles or CAA (120, 259, 301).  Further, the frontal 

cortex showed the largest response to immunotherapy (259), which is similar to 

our observations in the dog.  The most recent autopsy study of 8 patients that were 

in the AN1792 study further confirm reduced Aβ pathology in response to 

treatment, 5 years after the last injection (182).  However, reduction of brain Aβ 

did not slow disease progression and 7 of 8 patients had severe end stage 

dementia prior to death. (134).  Interestingly, a composite score of a 

neuropsychological test battery  indicated “less worsening” of decline in antibody 

responders after 12 months and an improvement in the memory domain (134). 

In contrast, Bosch et al. recently (2013) showed benefits of an active fibrillar 

Aβ40 and Aβx-40 combination vaccine on cognition in aged companion beagles and 

pet dogs treated for 51 days   (46).  Over the course of treatment, cognitive 

evaluations by questionnaire were given at 31 days post treatment and at the end 

of treatment.  Immunized animals showed a significant improvement in cognitive 

evaluation scores at both 31 and 51 days post treatment compared to pre-

immunized scores (46). Differences in the formulation, the outcome measures or 

the source of animals may explain the positive effects in the Bosch study compared 

with the previous beagle immunotherapy studies. 
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Table 3.1. Treatment Studies in Aging Dogs

Treatment Sample 
size and 
Age 

Landmark 
Discrim. 

Oddity 
Discrim. 

Size 
Discrim. 

Size 
Reversal 

Black White 
Discrim. 

Black/white 
Reversal 

Spatial 
Memory 

Question
-naire 

Publication 

Antioxidant diet 

28 old 
(8-13 
yrs) 

Improved Improved Improved Improved Improved Improved Improved N/A (82, 278, 279) 

Behavioral 
Enrichment 

N/A N/A Improved Improved Improved Improved Improved N/A 

Antioxidant Diet 
+ Behavioral 
Enrichment 

Improved Improved Improved Improved Improved Improved Improved N/A 

MCT Dietary 
supplement 

24 old 
(9-10 
yrs) 

Not 
Improv. 

Impaired N/A N/A N/A N/A Impaired N/A (314) 

Medical Food 
Cocktail 

18 old 
(8-9 yrs) 

Improved Not 
Improv. 

Not Improv. Not Improv. Not Improv. Not Improv. Not 
Improv. 

N/A (174) 

Atorvastatin 10 old 
(9-13 
yrs) 

N/A N/A Not Improv. Impaired Not Improv. Not Improv. Not 
Improv. 

N/A (296) 

Fibrillar Aβ1-42 
Immunotherapy 

20 old 
(8-13 
yrs) 

Not 
Improv. 

Not 
Improv. 

Not Improv. Maintained Not Improv. Maintained Not 
Improv. 

N/A (177) 

Fibrillar Aβ 1-40 
& x-40 
Immunotherapy 

12 old 
(11-18 
yrs) 

N/A N/A N/A N/A N/A N/A N/A Improved (46) 
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Figure 3.1.  Aβ Pathology in an Aged Beagle.  

The prefrontal cortex of a 13.8 year old beagle immunostained with Aβ 1-16 (6E10) 

showing Aβ deposition.  Arrows indicate intact neurons within diffuse plaques (A).  

CAA clustering in the prefrontal cortex of a 12.7 year old beagle immunostained 

with Aβ 1-16 (6E10) (B).  Cross section of a blood vessel with CAA in the prefrontal 

cortex of a 14.5 year old beagle immunostained with Aβ 1-16 (6E10) (C).  CAA 

shown in a longitudinal blood vessel of a 13.7 year old beagle (occipital cortex) 

stained with Congo red (C).  Note the striations of CAA along the blood vessel wall 

indicated by arrows (C). Microhemorrhages are seen by Prussian blue staining in 

the prefrontal cortex of a 13.8 year old beagle (E).  The arrow points to a cross 

section of a blood vessel with a microhemorrhage and the arrowhead indicates a 

hemosiderin laden perivascular microglia (E). 
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CHAPTER FOUR: Significance and Rationale 

Introduction 

5.1 million people in the United States are affected by Alzheimer’s disease 

(AD), the most common form of dementia, with no current treatment available  

(495).  As described in Chapter 1 (Alzheimer’s Disease), the hallmark lesions of 

AD include neurofibrillary tangles (NFTs), and plaques made up of the β-amyloid 

protein (Aβ) that result from cleavage of the amyloid precursor protein (APP) (255, 

389). While there is no cure for AD, there are various approved drugs for use as 

symptomatic treatments of AD.  Three of these drugs are acetylcholinesterase 

inhibitors, donepezil, rivastigmine, and galantamine, and a noncompetitive NMDA-

receptor antagonist, memantine (124, 131).  These drugs only act to manage the 

symptoms of AD for a limited period of time until the symptoms are too great and 

the drugs become ineffective.  In addition, no current biomarker can determine 

when AD pathology will occur or how it will progress in an individual, resulting in a 

variable age of onset of disease.   An individual may be clinically normal while their 

brain may have sufficient pathology for an AD diagnosis (85).  For those reasons, 

researchers have spent the past several years developing numerous therapeutic 

strategies to specifically reduce neuropathology and improve cognition in AD 

patients (392) 

An exciting therapeutic strategy being evaluated is immunotherapy 

(immunization or vaccination).  Specifically, several immunotherapies being 

explored target the reduction of Aβ.  This approach aims to reduce Aβ 

accumulation and increase its clearance in AD patients with the goal of reversing 
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cognitive decline due to the AD neuropathology.  Both active and passive Aβ 

immunotherapies have been explored by researchers. 

Aβ Immunotherapy as a Therapeutic for AD 

Active vaccination involves the administration of a vaccine containing an 

antigen to induce the recipient’s immune response that produces antibodies 

against that antigen.  The benefit of this type of vaccine is that only a small number 

of vaccinations are required to promote an immune response to produce 

antibodies and maintain that response.  However, the disadvantage is the 

variability in immune response between patients.  Passive immunotherapy 

involves the delivery of antibodies against the antigen of interest derived from a 

source other than the recipient.  The benefit to this type of immunization is the 

ability to administer the desired amount of therapeutic antibodies.  The 

disadvantage is that passive immunization requires repeated injections or 

infusions in order to maintain the desired antibody concentration in the recipient 

over time (43, 44, 234).   

The mechanism by which immunotherapy works is still unclear, however 

there are several hypotheses.  Only about 0.1% of antibodies in the periphery are 

able to pass into the brain (43, 44, 203, 234).  Although a majority of antibodies do 

not pass into the brain, the volume of anti-amyloid antibodies in the periphery can 

cause a “peripheral sink” effect driving the movement of Aβ out of the brain and 

into the periphery (43, 44, 203, 234).  This “peripheral sink” hypothesis has been 

demonstrated in multiple animal models (94).  Of the antibodies that do reach the 

brain, several possible mechanisms could contribute to the reduction of Aβ levels 
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and pathology.  For one, the anti-Aβ antibodies could bind to soluble forms of Aβ 

increasing their clearance or causing a shift of equilibria leading to insoluble Aβ 

breaking down into a more soluble form (234).  Antibodies could be binding to Aβ 

plaques promoting microglial activation to aid in clearing out plaques (34, 43, 45, 

301).  Additionally, bound Aβ to antibodies may disrupt its ability to aggregate into 

plaques (234). 

Active vaccination with the Aβ peptide was first described by Schenk and 

colleagues (381).  A study of transgenic mice vaccinated with the Aβ peptide 

demonstrated that not only was Aβ accumulation reduced in older animals with 

pre-existing Aβ pathology, but it was prevented in younger mice (prior to Aβ 

pathology) as well.  In addition, behavioral outcomes were improved (198, 286).  

As a result, the study progressed to a clinical trial in which mild to moderate AD 

patients were immunized with fibrillar Aβ1-42 with QS-2 in polysorbate 80 as an 

adjuvant (181).  Promising initial data showed 20% of the AD patients developed 

antibodies to fibrillar Aβ and had improved brain function (181).  However, in a 

second larger clinical trial in 2005, while some patients developed antibodies and 

had reduced Aβ plaques, no cognitive improvement was seen, and the trial was 

ultimately halted when a subset of patients developed aseptic meningoencephalitis 

(135).  Some of the patients who had developed meningoencephalitis possessed 

an elevated t-cell response in the brain.  This T-cell response is thought to be 

associated with the adjuvant used in the vaccine, QS-2 in polysorbate 80 (135). 

Subsequently, a second generation of immunotherapy, passive 

immunotherapy, has been developed.  In 2010, there were 15 passive Aβ 
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immunotherapies in clinical trials including bapineuzumab and solanezumab (241).  

These two passive immunotherapies, like active immunotherapy, aim to remove 

preexisting Aβ pathology and reduce cognitive decline.     

Bapineuzumab is a humanized monoclonal antibody to Aβ1-5. In mice, this 

antibody reduced Aβ pathology (94, 438).  In Phase III clinical trials, bapineuzumab 

may have reduced Aβ accumulation and phosphorylated tau levels as seen in 

cases that reached autopsy. However, the treatment failed to improve cognition in 

patients with and without the ApoE4 allele, a gene that associated with an 

increased risk of developing AD (341, 366, 367, 403).  It was suggested that the 

dosage of bapineuzumab used in the Phase III trials was too low to reach the 

desired primary outcomes (366, 367), however Phase II trials using greater doses 

resulted in more cases of edema and microhemorrhages in treated patients (368, 

420).  The doses used in Phase III trials showed no significant adverse effects due 

to bapineuzumab treatment (366, 367). 

Solanezumab, another humanized monoclonal antibody, targets Aβ16-24, and 

reverses memory impairment in the PDAPP mouse model of AD (32, 94, 100, 438).  

However, solanezumab immunotherapy leads to variable effects on Aβ burden 

including both reduction (94) or no change (100).  Solanezumab subsequently was 

tested in two Phase III clinical trials, but both trials failed to meet prespecified 

primary outcomes of improving cognition and function (101, 102).  While primary 

outcome measures were not met, a reduced rate of cognitive decline seen in 

patients with mild AD was observed in one study (101, 102).  Additionally, no 

significant adverse effects are seen due to the solanezumab treatment (101, 102, 
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401).  Further studies will continue to explore solanezumab in patients with mild 

AD or those who   lack the clinical symptoms of AD but show brain Aβ accumulation 

through biomarker measures (101, 102).  

Although the passive immunotherapy approach was thought to be safer and 

more promising than active vaccination since no adjuvant is needed, 

bapineuzumab and solanezumab both failed to meet efficacy expectations and 

fulfil primary outcomes of reducing or slowing down cognitive decline in AD 

patients (101, 102, 341, 366, 367, 401, 403).  Additionally, there are still concerns 

with adverse effects such as edema and intracerebral microhemorrhages (60, 320, 

368, 420, 483). Thus, there is a critical need to continue to refine and develop 

novel therapeutics for AD.  Two possible reasons for negative clinical trials 

outcomes are (1) the preclinical animal model was not a predictor of human clinical 

trial outcomes and (2) the serious adverse events were harmful to the patients due 

to the immunotherapies themselves. 

Aβ Immunotherapy in the Canine Model of AD 

In Chapter 3 we describe a unique animal model, the canine, which shows 

similar neuropathology and cognitive decline to humans with AD.  Canines 

naturally produce APP that has 98% homology with human APP, develop Aβ 

neuropathology, and show cognitive decline with age, similar to AD patients (253, 

277, 475, 501).  The similar neuropathology and cognitive decline coupled with 

their common living conditions with humans make dogs useful for translational 

studies on neurodegenerative diseases such as AD. 
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The active vaccine used in this study differs from past clinically tested active 

vaccines in that it uses Aluminum hydroxide (Alum) as an adjuvant in place of the 

QS-2 in polysorbate 80.  This Alum adjuvant is commonly used in other active 

vaccines that can be safely administered in humans and causes minimal, if any, 

T-cell responses in the brain.  As discussed in Chapter 3,in a study reported in 

2008, aged beagles were actively immunized with fibrillar Aβ1-42 using Alum as 

an adjuvant (VAC) for 2 years (177). In addition, VAC dogs had significantly 

decreased Aβ plaque load (177).  No serious adverse events such as those 

reported in the previously described human clinical trials were reported. However, 

Aβ immunotherapy in aging dogs with preexisting pathology led to no improvement 

in cognitive function, but interestingly a long term maintenance of executive 

function that was noted based on error scores from the size reversal learning task 

(177). These results suggest that reducing Aβ alone was insufficient to improve 

cognition but that over time, lower levels of brain Aβ can support cognitive 

maintenance. 

Behavioral Enrichment in the Canine Model of AD 

Another therapeutic strategy being explored is behavioral enrichment.  

Behavioral enrichment (ENR) includes environmental enrichment, exercise, social 

engagement, and cognitive enrichment.  Though a combined ENR approach has 

not been explored in other animal models, individual aspects of ENR have been 

studied.  In rodents, exercise leads to increased brain derived neurotropic factor 

and improved learning (80).  However, the effects of ENR on transgenic mouse 

models of AD have shown significant variability between studies (17, 202, 239). In 
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people, individuals who live behaviorally enriched lifestyles, which includes 

exercising or participation in activities that involve information processing, tend to 

show less brain atrophy with age and exhibit reduced risk of dementia (70, 71, 

485).  

As discussed in Chapter 3, behavioral enrichment (ENR) in the canine model 

of aging has been evaluated.  In a study of aged canines, ENR included increased 

exercise, interaction with other dogs, and cognitive enrichment.  In 2004 and 2005, 

Milgram and colleagues found ENR of aged canines to decrease the rate of 

cognitive decline and improve cognitive function (278, 279).  

A Combination Approach to Improve Cognition and Reduce Pathology in the 

Canine Model of AD 

Immunotherapy decreases Aβ pathology in humans and AD animal models, 

while ENR improves overall cognition, growth factor levels and supporting neuron 

number with varying Aβ outcomes.(116, 278, 279, 407).  These results suggest 

the exploration of a combination treatment approach with the potential for additive 

effects to improve brain function and health with age.  This study evaluates the 

combination approach of active Aβ vaccination and behavioral enrichment by 

examining their effects on cognition and neuropathology.  We hypothesize that 

additive benefits of improved cognition with reduced AD like pathology will be 

exhibited in treated aged canines receiving a combination treatment approach of 

active immunization with fibrillar Aβ1-42 using aluminum hydroxide (ALUM) as an 

adjuvant (VAC) with ENR. 

Copyright © Paulina R. Davis 2014  
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CHAPTER FIVE: Methodology 

Canines 

The study was started with 40 beagles with 37 animals from the Lovelace 

Respiratory Research Institute (LRRI) (Albuquerque, NM) and 3 from Harlan 

(Riglan Farms, Inc., Mount Horeb, Wisconsin) (Table 5.1).  All animals were 

reproductively intact. At the start of baseline, the ages of the dogs ranged from 

10.5 to 13.6 years.  At this age range, all study animals should have significant 

prefrontal Aβ pathology (168).  Animals were housed singly in kennel buildings 

with indoor/outdoor runs measuring 91cm x 600cm, unless otherwise noted as part 

of the ENR treatment. Animals were fed Harlan Teklad Global Diet (25% protein – 

Teklad Pioneer Lab Diets, Madison, WI) once daily.  Water was available for the 

animals at all times.  All animals were given a thorough veterinary examination to 

assure they were in good health before inclusion in the study.  Examinations 

included physical examination, neurological examination, and analysis of blood 

biochemistry.  All procedures done with the animals were conducted in accordance 

with LRRI-approved animal protocols and the National Institutes of Health Policy 

on Humane Care and Use of Laboratory Animals.   

Testing Apparatus 

As described previously (277), the testing apparatus was a 0.609 X 1.15 X 

1.08 m wooden box constructed from press board coated with melamine.  The box 

contained a sliding black Plexiglas tray containing three food wells. Adjustable 

vertical stainless steel bars provided openings appropriate for individual dog sized 

and made up the front of the box.  The bottom of the barrier opened up so that a 
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sliding tray would be able to be pushed either toward or out-of-view of the dog. A 

60W light was placed above the presentation tray to light the objects.  Data 

acquisition was controlled by a customized program, DOGMA (MetaCog Testing 

Systems, New Westminster, BC).  This program controlled randomization 

procedures and timing, indicated the placement of the reward, and stored all of 

data.  Each trial began when an experimenter pressed a key and the program 

would provide an audio cue to present the tray to the dog.  The dog’s response 

would be recorded by identifying the location (left, right, or center) on the keyboard 

or by a mouse.  This also indicated the end of the trial and began an intertrial 

interval.  One teaspoon of wet dog food was formed into a ball and served as the 

food reward.  Each dog was given either 10 or 12 trials a day (depending on the 

task). The dogs were tested 5 day a week. 

Baseline Cognitive Testing 

All dogs underwent a series of baseline tests and error scores during this 

testing were used to counterbalance placement into treatment groups such that 

each group contained both good and poor performers.  All animals were given a 

reward and object approach learning task and then a simple object discrimination 

and reversal learning task.  After discrimination learning, dogs were given a spatial 

non-matching-to-position memory task.  All tasks were performed as described in 

Chapter 3, Dog Model. After placement into treatment groups, VAC and ENR 

protocols were started, and cognitive testing was conducted for 19 months while 

treatment was ongoing. 
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Treatment Groups 

The total errors made by each dog during baseline testing were summed and 

used to rank animals according to total error scores.  These cognitive test scored 

were used to place animals into one of four treatment groups, making sure that 

groups were balanced by baseline performance and age.  These treatment groups 

included (1) immunization with Alum only (n = 8) (C/C), (2) ENR with immunization 

with Alum only (n = 8) (E/C), (3) immunization with fibrillar Aβ1-42 and Alum (n = 8) 

(C/V), or (4) ENR with immunization with fibrillar Aβ1-42 and Alum (n = 10) (E/V) 

(Table 5.2). 

Behavioral Enrichment Procedure 

Dogs receiving ENR (groups E/C and B/V) were given a 20 min walk outdoors 

in groups of 3-4 animals three times a week.  Play toys were rotated through their 

kennels on a weekly basis.  ENR animals received cognitive enrichment involving 

additional testing procedures including: landmark discrimination learning, variable 

distance landmark discrimination, oddity discrimination learning and a second re-

test on landmark discrimination after ~16 months of treatment.  For these cognitive 

tasks, only dogs receiving ENR were included however we were able to compare 

VAC and non-VAC dogs on each measure (Table 5.3).   

Immunization Procedure   

Fibrillar Aβ (provided by Dr. Charles Glabe, University of California at Irvine) 

was prepared by adding 500 µl of phosphate buffer solution (PBS), pH 7.5, to 0.5 

mg of peptide, and the sample was vortexed and incubated overnight at 37°C in a 

water bath before formulation with the adjuvant.  To prepare Aβ for immunization, 
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0.5 mg of fibrillar Aβ (500 µl) was added to 50 µl of 2% aluminum hydroxide 

suspension (Accurate Chemical, Westbury, NY) and 450 µl of PBS and vortexed.  

Animals in the C/C and E/C groups received Alum only. Animals were immunized 

subcutaneously in the back of the neck and monitored for adverse reaction.  

Animals were boosted every month with an additional single injection for 18 

months. 

Treatment Cognitive Testing 

At predetermined time points during the study, animals were given tests to 

measure spatial attention (landmark discrimination learning), spatial memory 

(three-choice spatial testing), oddity learning, discrimination learning, and reversal 

learning (black/white discrimination and size discrimination) (Table 5.3).  All tasks 

were performed as described in Chapter 1, Dog Model. 

Serum and CSF Collection 

Blood samples were obtained at baseline, taken immediately before the first 

immunization to obtain a pre-immune sample, monthly for six months, and then 

every six months thereafter. Blood was collected in 10 cc collection tubes and 

centrifuged, and the supernatant (serum) used to assay anti-Aβ antibodies.   

Serum samples were thawed, aliquoted, and frozen again at -80°C for later use.  

Cerebral spinal fluid (CSF) was collect from each animal at the start of the study 

before the first immunization (baseline), 12 months after start of treatment, and at 

the time of euthanasia.  CSF was drawn from the lateral ventricles, aliquoted, 

frozen, and were stored at -80°C for later use. 
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Euthanasia and Tissue Collection 

At the end of the study, animals were anesthetized with sodium pentobarbital 

(Nembutal). Blood was collected in 10 cc red top tubes and centrifuged, and the 

supernatant (serum) used to assay anti-Aβ antibodies.  When animals were in 

deep surgical stage, the brains were rapidly removed. Procedures were performed 

in accordance with LRRI Institutional Animal Care and Use Committee protocols.  

The left hemisphere was placed in 4% paraformaldehyde at 4°C for48 hours before 

transfer to PBS, pH 7.4 with 0.02% sodium azide and stored at 4°C. The right 

hemisphere was coronally sectioned and stored at -80°C. 

Serum IgG ELISA 

Aβ1-42 antibody response was measured over nine time points of the study 

by enzyme-linked immunosorbent assay (ELISA). 96 well flat bottom plates 

(Microtiter Immunlon 2 HB, Fisher, cat# 14-245-61) were coated with 5µg/ml 

fibrillar Aβ1-42 in 0.1M phosphate buffered saline (PBS) (pH 7.5) and incubated 

overnight at 4°C.  Blank wells received PBS only. After incubation, plates were 

washed three times in Tris buffered saline with 0.05% Tween-20 (TBST) (pH 7.5). 

Plates were then blocked with blocking buffer (TBST with 3% bovine serum 

albumin (BSA)) and incubated for two hours at 37° on a plate rocker.  Plates that 

were not used immediately after blocking were stored at 4°C until needed.  Once 

blocked, plates were washed three times in TBST.  Serum samples being used 

were serially diluted in 1:10 dilution of blocking buffer (0.3% BSA in 2mM TBST) 

to 1:100, 1:400. 1:800, and 1:1600.  Antibody 6E10 (Aβ1-16, Covance, Dedham, 

MA; cat# SIG-39320) was used for standards and serially diluted to 1:10,000, 
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1:20,000, 1:40,000, 1:80,000, 1:160,000, and 1:320,000.  Wells received 100µl of 

each sample, 6E10 antibody, or PBS.  For a positive control and serum only control 

wells, 100 µl of 6E10 at 1:10,000 dilution and 1:200 dilution of sample was added, 

respectively.  Plates were incubated for one hour at 37°C on a plate rocker.  After 

three washes in TBST, 100 µl of horseradish peroxidase (HRP) conjugated 

secondary antibody diluted in blocking buffer was added to each well. Canine 

sample wells received anti-dog IgG-HRP (Bethyl Laboratories, Montgomery, TX; 

cat# A40-116P) as secondary, while standard and control wells received anti-

mouse IgG-HRP (Santa Cruz Biotechnology, Santa Cruz, CA; cat# SC-2005).   

Plates were incubated with secondary antibody for one hour at 37°C on a plate 

rocker.  Following three washes in TBST, 100µl of 1 Step Ultra 3, 3’,5,5’-

tetramethylbenzidine solution (TMB) (Thermo Scientific, cat# 34028) (room 

temperature) was added to each well to start the reaction. TMB reaction was held 

for 3 minutes and then stopped by adding 100µl of 1N sulfuric acid. After 5 minutes 

when reaction has completely stopped, plates were read at 450 nm using a 

Multiscan FC plate reader (Thermo Scientific). 

Frozen Tissue Extractions 

Frozen tissue underwent a basic three step serial extraction before being 

used to measure Aβ content.  Tissue first went through a phosphate buffered saline 

(PBS) extraction.  200mg of tissue was homogenized in 1 mL of 4° 1x PBS with 

complete protease inhibitor cocktail (PIC; with EDTA; Amresco, Solon, OH, cat# 

M222-1mL) (pH 7.4).  Homogenization was done using a polytron at maximum 

speed. Raw homogenate was added into 1.5 mL centrifuge tubes and centrifuged 
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at 20,000 x g for 30 minutes at 4°C.  Supernatant was collected and stored at -

80°C while the pellet was saved and used for the following extraction by sodium 

dodecyl sulfate (SDS).  Here, room temperature 2% SDS with PIC (in water) was 

added to the PBS pellets.  The total volume of 2% SDS added to the PBS pellet 

was determined by calculating 70% the volume of PBS raw homogenate.  Samples 

were sonicated with 10x 0.5 second pulses with an amplitude of 20% (Fisher sonic 

Dismembrator, Model 500).  Samples were centrifuged at the same conditions as 

stated earlier.  Supernatant was collected and stored while the pellet was used for 

the following Formic Acid extraction.  For the last extraction by formic acid, samples 

were diluted 1:40. First samples were diluted 1:20 in neutralization buffer (Tris 

Phosphate Buffer) followed by a 1:1 dilution in antigen capture (AC) buffer (0.02M 

sodium phosphate buffer (pH=7), 0.4M NaCl, 0.02 M EDTA, 0.4% Block Ace 

(Serotec, Raleigh, NC), 0.2% BSA, 0.05% CHAPS, and 0.05% NaN3). Add 4° 

equal volume of 70% formic acid as that of SDS added to the PBS pellets to the 

SDS pellets.  Samples were sonicated with 10x 0.5 second pulses with an 

amplitude of 20% and centrifuged at 20,000 x g for 30 minutes at 4°C.  The 

underlying aqueous layer was collected and stored at -80°C for later use. 

CSF and Brain Aβ ELISAs 

Beta-amyloid (1-40, 1-42, and total) was measured in CSF and tissue by sandwich 

ELISA.  Capture antibodies Ab42.5 (human sequence Aβ1-16) for Aβ1-40 capture, 

and 2.1.3 (end specific for Aβ1-42) were diluted to 10 µg/mL in PBS and added 

(50µL) to each well of a 384 well plate (Immulon, cat# 4HBX).  Any unused wells 

were filled with 50 µL of PBS.  Once loaded, plates were sealed with sealing tape 
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and incubated overnight at 4°C.  Plates were then emptied and rinsed with 1X 

PBS. To block the plates, 100µL of Synblock (Serotec, cat# BUFO34C) was added 

to each well, sealed and incubated for 2 hours at room temperature on a plate 

rocker.  Once blocked, plates were emptied and dried for two hours at room 

temperature.  Plates not used the same day could be sealed and stored at 4° in a 

dessicator for later use.  Before antigen capture, plates were washed twice in 1X 

PBS. Samples were then added (100µL) in triplicate and then plates were sealed 

and incubated overnight at 4°C.  Fluid from wells was discarded and washed twice 

with 1X PBS and 1X PBST.  Next, 100µL of biotinylated detection antibodies 

biotinylated 13.1.1 (end specific for Aβ1-40, and biotinylated 4G8 (human sequence 

Aβ17-24, Covance) diluted in detection buffer (DB) (0.02M sodium phosphate buffer 

(pH=7), 0.002% Thimerosal, 0.002M EDTA, 0.4M NaCl, and 1% BSA) was added 

to the plates, sealed, and incubated at room temperature for four to six hours.  

Following an incubation in detection antibody, plates were emptied, washed, and 

filled with 100µL of NeutrAvidin-horse radish peroxidase (Pierce Biotechnologies, 

Rockford, IL) diluted in DB.  After incubating for two hours at room temperature, 

solution was discarded and plates were washed several times.  For developing, a 

1:1 mixture of TMB developing solution (Kirkegaard and Perry Laboratories, 

Gaithersburg, MD) was made and added (100µL) to each well and allow to 

incubate for about five minutes.  Developing reaction was stopped by adding 

100µL of stop buffer (5.6% O-Phosphoric Acid) to the wells and then plates were 

read with a BioTek multiwell plate reader at λ450nm. Total levels of Aβ1-40 and Aβ1-
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42 were determined by calculating the sum of levels in each fraction (PBS, SDS, 

and FA). 

Plaque Load IHC 

Tissue was stained for Aβ plaques by using anti-Aβ1-42 (Invitrogen, Carlsbad, CA; 

cat# 44-344; 1:500), 6E10 (Covance, Dedham, MA; cat# SIG-39320; 1:1000), and 

PyroGlu3 (Novus Biological, Littleton, CO; cat# NBP1-44048; 1:500)  (Table 5.4) 

antibodies. Tissue was pre-treated in 90% formic acid for 4 min and washed in 

Tris-buffered saline (TBS) (pH 7.5).  Next, a 30 min treatment in 3% hydrogen 

peroxide and 10% methanol was done to block endogenous peroxidase activity.  

After two washes in TBS, sections were then washed in TBS with 0.1% Triton X-

100 (Sigma X-100) and blocked in TBS with 0.1% Triton X-100 and 2% Bovine 

serum albumin for 30 min to block non-specific sites.  Sections were then 

incubated with primary antibody overnight at room temperature.  Following the 

primary antibody the tissue was incubated in biotinylated secondary antibody for 

rabbit or mouse (Vectastain Elite ABC kit, Vector Laboratories, Burlingame, CA; 

cat# PK-6101 (rabbit), PK-6102 (mouse)).  After several washes sections were 

incubated for one hour in an avidin-biotin complex (Vectastain Elite ABC kit, Vector 

Laboratories, Burlingame, CA; cat# PK6101).  Detection was visualized with 3’-

diaminobenzidine and hydrogen peroxide (DAB, Vector Labs, Burlington, CA; cat# 

SK4100).  Sections were mounted on Superfrost/Plus slides (Labsco Scientific 

America, cat# LSA4951), left to dry, dehydrated, and coverslipped with 66m glass 

coverslips (Labsco Scientific America, cat# LS529J) using Depex mounting media 
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(Electron Microscopy Sciences, cat# 13515).  Appropriate controls included 

sections eliminating primary or secondary antibodies, and all were negative. 

Prussian Blue Staining 

Prussian blue staining was used to identify microhemorrhages in PFCTX, OCTX, 

and Hippo tissue for all study cases.  With this stain, only iron from hemosiderin 

containing microglia in the extracellular matrix is colorized (indicative of 

microhemorrhages).  Prior to staining, tissue was mounted onto Labsco 

Superfrost/Plus slides and air dried overnight.  Slides were rehydrated in distilled 

water for 30 seconds and then incubated in 2% potassium ferrocyanide with 2% 

6N concentrated HCl (made in distilled water) for 30 minutes.  After incubation, 

slides were rinsed twice in distilled water for five minutes each and then once in 

tap water for another five minutes.  Once rinsed, slides were incubated in filtered 

1% neutral red solution (J.T. Baker, cat# R746-03) (mixed overnight) for two 

minutes.  Tissue was rinsed three times in tap water for 1 minute each, and 

dehydrated by dipping slides four times in 95% ethanol and four times in 100% 

ethanol.  Slides were cleared twice in xylene for five minutes each and then 

coverslipped with Depex mounting media. 

Baseline Comparison for Plaque Load and Prussian Blue 

We were interested in estimating the extent of Aβ pathology and 

microhemorrhages in our dogs prior to the start of treatment to characterize 

changes in pathology over time and with immunotherapy/behavioral enrichment. 

We selected 10 archive cases (Table 5.5) that ranged in age from 10.8 to 13.5 

years to compare changes in plaque loads and number of microhemorrhages 
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before treatment to after 19 months of treatment, particularly with ENR study 

animals.  These archive cases had no previous treatment or cognitive testing done.  

Tissue for archive cases were collected using the same methods as the study 

cases.   

Immunohistochemistry was used to measure total Aβ, Aβ1-42, and PyroGlu3 plaque 

loads in the PFCTX and PCTX and was conducted in the same manner as with 

study case tissue.  Prussian Blue staining was used to count the number of 

microhemorrhages in the PFCT and OCTX regions of the brain and was done in 

the same manner as with study case tissue.   

Image Analysis for Plaque Load and Prussian Blue 

To quantify the extent of Aβ plaque labeling, images were captured using 

ImagePro 6.3 with an Olympus Q-Color 5 camera on an Olympus BX51 

microscope at 20x objective uniformly, five of the superficial layers and five of the 

deep layer.  Quantification was done by image analysis using ImageJ to yield load 

values, the percent area occupied by positive labeling (Figure 5.1).  A threshold 

was identified for each antibody/marker and applied to calculate a total average 

load of each image.  The loads of all 10 images were averaged for each subject. 

These subject averages were then used to find a treatment group average for 

treatment group comparisons. 

Quantification of Prussian blue staining entailed manually counting 

microhemorrhages in each tissue sample at 20X objective.  Prussian blue labeling 

must have been within 2 cell diameters of a blood vessel to be considered a 

microhemorrhage (Figure 5.2).  Counts were totaled for each subject in each brain 
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region. For each brain region subject averages were used to calculate a treatment 

group average to be used for treatment group comparisons. 
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Table 5.1. Dogs used in the Study 

 

Dog ID Sex Date of Birth 
Baseline 
Date 

Age at 
Baseline (mo) 

Date of 
Death 

Age at 
Death 
(mo) 

       

1625A M 9/16/1997 4/18/2010 151.1 9/20/2010 156.2 

1625C M 9/16/1997 4/18/2010 151.1 7/23/2010 154.3 

1628A M 1/3/1998 4/18/2010 147.6 6/20/2012 173.7 

1628C M 1/3/1998 4/18/2010 147.6 6/18/2012 173.6 

1633D M 4/27/1998 4/18/2010 143.8 4/26/2012 168.1 

1633S F 4/27/1998 4/18/2010 143.8 6/20/2012 169.9 

1635A M 6/9/1998 4/18/2010 142.4 7/23/2010 145.5 

1635S F 6/9/1998 4/18/2010 142.4 2/26/2012 164.7 

1635T F 9/8/1998 4/18/2010 142.4 4/11/2012 166.2 

1636V F 6/28/1998 4/18/2010 141.8 6/7/2011 155.4 

1637B M 8/21/1998 4/18/2010 140.7 6/18/2012 166.8 

1637T F 7/29/1998 4/18/2010 140.7 6/19/2012 166.8 

1638U F 8/20/1998 4/18/2010 140 9/2/2010 144.5 

1639B M 8/21/1998 4/18/2010 140 6/19/2012 166.1 

1639C M 8/21/1998 4/18/2010 140 6/18/2012 166 

1639T F 8/21/1998 4/18/2010 140 6/18/2012 166 

1639W F 8/20/1998 4/18/2010 140 6/19/2012 166.1 

1640B M 9/8/1998 4/18/2010 139.4 6/19/2012 165.5 

1640C M 9/8/1998 4/18/2010 139.4 6/19/2012 165.5 

1640S F 9/8/1998 4/18/2010 139.4 5/17/2012 164.4 

1640U F 9/8/1998 4/18/2010 139.4 8/26/2011 155.7 

1640V F 9/8/1998 4/18/2010 139.4 4/18/2011 151.4 

1640W F 9/12/1998 4/18/2010 139.4 5/11/2012 164.2 

1641A M 9/12/1998 4/18/2010 139.3 6/20/2012 165.4 

1641B M 9/12/1998 4/18/2010 139.3 6/18/2012 165.3 

1641T F 9/12/1998 4/18/2010 139.3 8/22/2010 143.4 

1641U F 9/8/1998 4/18/2010 139.3 4/15/2011 151.2 

1641V F 9/12/1998 4/18/2010 139.3 6/18/2012 165.3 

1642A M 7/24/1999 4/18/2010 128.9 6/20/2012 155 

1642B M 7/24/1999 4/18/2010 128.9 6/20/2012 155 

1642S F 7/24/1999 4/18/2010 128.9 12/29/2011 149.3 

1643C M 7/24/1999 4/18/2010 128.9 7/2/2010 131.4 

1643T F 7/26/1999 4/18/2010 128.8 6/20/2012 154.9 

1645A M 8/10/1999 4/18/2010 128.4 6/20/2012 154.5 

1645T F 8/10/1999 4/18/2010 128.4 6/19/2012 154.4 

1646T F 10/16/1999 4/18/2010 126.1 6/18/2012 152.2 

1646U F 10/16/1999 4/18/2010 126.1 6/18/2012 152.2 

D009 M 12/8/1996 4/18/2010 160.4 7/9/2011 175.1 

D012 F 11/12/1996 4/18/2010 161.3 6/19/2012 187.3 

D045 F 9/15/1996 4/18/2010 163.2 6/19/2012 189.2 
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Table 5.2. Treatment Group Assignments 

 

 

 

 

 

  

Dog ID Treatment Group Time on Treatment (mo) 

   

1625A -- 0 

1625C -- 0 

1628A C/C 19.6 

1628C C/C 19.5 

1633D E/V 17.8 

1633S E/C 19.6 

1635A -- 0 

1635S E/V 15.8 

1635T C/V 17.3 

1636V E/V 7.1 

1637B C/V 19.5 

1637T E/C 19.6 

1638U -- 0 

1639B E/V 19.6 

1639C C/V 19.5 

1639T C/C 19.5 

1639W C/C 19.6 

1640B E/V 19.6 

1640C C/C 19.6 

1640S C/V 18.5 

1640U E/C 9.8 

1640V E/C 5.5 

1640W C/C 18.3 

1641A E/C 19.6 

1641B E/C 19.5 

1641T -- 0 

1641U E/C 5.4 

1641V C/C 19.5 

1642A C/V 19.6 

1642B E/V 19.6 

1642S C/V 13.9 

1643C -- 0 

1643T C/V 19.6 

1645A E/V 19.6 

1645T E/V 19.6 

1646T E/V 19.5 

1646U C/C 19.5 

D009 E/C 8.2 

D012 C/V 19.6 

D045 E/V 19.6 
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Table 5.3. Cognitive Testing Timeline 

Study Event 

Time 
Between 
Boosts 

Study 
Month 

Baseline 

Serum and Plasma Time B1   -6.0 

Blood Biochemistry - Time B1   -6.0 

Physical and Neurological Examinations Time B1   -6.0 

Pretraining - Phase 1   -6.0 

Reward Approach Learning   -6.2 

Pretraining - Phase 3   -6.2 

Object Approach learning   -6.0 

Baseline CSF sample     

Baseline - Object Discrimination Learning   -4.8 

Baseline - Object Reversal Learning   -4.6 

Baseline - 2 choice spatial learning   -4.0 

Baseline - 3 choice spatial learning   -3.7 

Baseline - 3 choice spatial memory   -1.1 

Blood Biochemistry - Time B2   -0.7 

Treatment 

Serum and Plasma Imm 0   0.7 

Immunization-1 0 0.7 

Begin behavioral enrichment protoocol   0.7 

Serum and Plasma Imm 2w   1.2 

Immunization-2 14 1.2 

Serum and Plasma Imm 1m   1.6 

Immunization 3 14 1.7 

Landmark Testing - Land0-Land4   1.7 

Serum and Plasma Imm 2m   2.6 

Immunization 4 28 2.6 

Serum and Plasma Imm 3m   3.5 

Immunization 5 28 3.5 

Oddity Discrimination Learning   4.2 

Serum and Plasma Imm 4m   4.5 

Immunization 6 28 4.5 

Serum and Plasma Imm 5m   5.4 

Immunization 7 28 5.4 

Physical and Neurological Examinations   6.1 

Serum and Plasma Imm 6m   6.3 

Immunization 8 28 6.3 
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Blood Biochemistry 6 m   6.3 

Immunization 9 28 7.3 

Immunization 10 28 8.2 

Time 1 - Size Discrimination Learning   8.4 

Time 1 - Size Reversal Learning   8.9 

Immunization 11 28 9.1 

Time 1 - Spatial Acquisition   10.0 

Immunization 12 28 10.1 

Immunization 13 28 11.0 

Immunization 14 28 11.9 

Blood Biochemistry 12m   11.9 

Physical and Neurological Examinations   11.9 

Serum and Plasma Imm 12m   11.9 

CSF sample   12.1 

Time 1 - Spatial Memory   12.4 

Immunization 15 28 12.9 

Immunization 16 28 13.8 

Immunization 17 28 14.7 

Immunization 18 28 15.7 

Time 2 - Landmark Variable Distance Retest   16.1 

Immunization 19 28 16.6 

Time 2 - Black/White Discrimination Learning   17.0 

Immunization 20 28 17.5 

Blood Biochemistry 18m   17.5 

Serum and Plasma Imm 18m   17.5 

Time 2 - Black/White Reversal Learning   17.7 

Physical and Neurological Examinations    18.2 

Immunization 21 28 18.5 

Time 2 - Spatial Memory   19.1 

Immunization 22 28 19.4 

BrdU injections once daily for 5 days   20.1 

Immunization 23 28 20.3 

Serum and Plasma Imm 23m   20.5 

Blood Biochemistry 24m   20.5 

CSF sample immediately prior to euthanasia   20.5 

Euthanasia   20.5 

 

 

 

 

Table 5.3, continued 
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Table 5.4. Antibodies used for Immunohistochemistry 

Antibody Name Target Dilution Secondary Manufacturer 

     
Aβ 1-42 Aβ (42) 1:500 Rabbit Invitrogen 
6E10 Aβ (1-16) 1:1000 Mouse Covance 
PyroGlu3 Aβ (3 pE) 1:500 Mouse Novus Biological 
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Table 5.5. Pre-Treatment Dogs used in the study 

Dog ID Sex Date of Birth Date of Death Age at Death (mo) 

     

1425S F 11/26/1983 6/3/1997 162.4 

1470S F 1/22/1986 6/11/1997 136.7 

1485V F 12/1/1986 4/1/1999 148.1 

1509S F 3/2/1988 12/18/1998 129.6 

1580S F 5/15/1991 12/11/2002 139.0 

1634U F 6/7/1998 1/29/2010 139.9 

1634V F 6/7/1998 4/7/2009 130.1 

1639U F 8/21/1998 4/6/2010 139.6 

1639V F 8/21/1998 2/17/2010 138.0 

D304 F 7/30/1991 12/23/2002 136.9 
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Figure 5.1. Quantification of Aβ Plaque loads.  

Black and white image taken of 6E10 labeled tissue (A) and the same capture 

that has been thresholded so that only positive labeling is seen in black (B).  This 

threshold is used to obtain a measure of total area occupied by positive labeling 

for 6E10. 
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Figure 5.2. MHs in the FCTX of AD and aged canine.  

Aged canines show MHs just as seen in aged humans. Arrows point to MHs 

in FCTX tissue stained with Prussian Blue of a human with AD (A) and of an aged 

canine PFCTX (B).  Arrowheads point to blood vessel associated with each 

neighboring MH.  Bleed labeling must have been within 2 cell diameters of a blood 

vessel to be considered a microhemorrhage. 
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CHAPTER SIX: Results 

Cognitive Outcomes 

Landmark Discrimination Learning 

All dogs receiving ENR were given the landmark discrimination task. Thus, a 

comparison between dogs receiving the vaccine could be compared to those not 

receiving the vaccine, with all dogs being behaviorally enriched.  Testing began 1 

month after the first vaccination and 2 weeks after the first boost.  

In the 18 (n=10 E/V, n=8 C/V) dogs that completed landmark 0, a significantly 

higher error score was observed in the dogs provided with the vaccine relative to 

the dogs receiving behavioral enrichment alone (t(16)=2.7 p=0.016)(Figure 6.1).  

However, based on our previous research, rather than the vaccinated dogs doing 

more poorly, this effect is due to significantly lower error scores in all dogs that was 

pronounced in the E/C group  when compared to previous studies of similarly aged 

dogs (276).  In landmark 1 discrimination learning, no significant group effects were 

observed (t(16)=1.45 p=0.17). Interestingly, in landmark 1 learning, two of the 

vaccinated dogs made over 100 errors to learn the task whereas the average error 

scores for the E/C condition was 9.88+/-4.74 and for the remaining dogs on E/V 

condition averaging 5.0 +/- 1.46 errors. Scores of over 100 errors are typical of 

untreated aged animals as previously reported (275, 276).  A differential vaccine 

effect was also not observed for landmark 2 (2 cm distance) (t(14)<1 p=0.77) or 

landmark 4 (4 cm distance) (t(14)<1 p=0.48). A similar outcome was noted if a 

repeated measures general linear models approach is used to detect differential 

effects of the vaccine across all landmark tasks although the effect of distance on 
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error scores overall was significant (F(3,42)=2.8 p=0.05) suggesting the further 

distances resulted in higher error scores reflecting increasing difficulty of the task 

(Figure 6.1).  

The variable distance landmark test was conducted for a period of 20 days 

with either 1,  2 or 4 cm distances appearing each day, four times/day for a total of 

12 trials/day.  The total number of errors made during the 20 days of testing was 

not different between the E/V nor E/C groups (t(13)<1 p=0.53).  Next, the accuracy 

was calculated for individual distances for each dog as further distances are more 

difficult for animals to detect proximity to the correct response.  All dogs performed 

between 62-72% correct with little variability across distances. A repeated 

measures general linear models analysis confirmed a lack of main effect of 

distance (F(2,24)=2.2 p=0.133) and of treatment group (F(1,12)<1 p=0.53).  The 

interaction, was also not significant (F1,12)< 1 p=0.78) (Figure 6.2).  This is 

contrast to previous reports of the variable distance landmark task varying as a 

function of distance (177). 

After 15.2 months of treatment, 4 E/C and 8 E/V dogs were given a second 

assessment of the landmark variable distance task for 240 trials.  There was a 

significant effect of distance of the landmark and error scores such that longer 

distances led to greater numbers of errors (F(2,20)=12.90 p=<.0005).  There were 

no differences between the group receiving the vaccine (E/V) and the control group 

(E/C) or an interaction between distance and treatment condition (data not shown). 
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Oddity Discrimination Learning 

A comparison was made between the 8 vaccinated (E/V) vs 10 non-

vaccinated (E/C) dogs on the oddity task after 4.3 months of treatment with all dogs 

having behavioral enrichment.  When individual oddity problems were analyzed 

using t-tests to compare the two groups we did not see any significant differences. 

For oddity 1, 7 E/C dogs and 9 E/V dogs reached criterion levels of responding 

(t(14)<1 p=n.s.).  For oddity 2, 7 E/C dogs and 9 E/V dogs learned the task 

(t(14)=1.40 p=0.18).  For oddity 3, 6 E/C dogs and 9 E/V dogs learned but no 

significant differences were observed (t(13)<1 p=n.s.).  Last, for oddity 4, 6 E/C 

dogs and 9 E/V dogs learned but error scores were similar (t(13)=1.37 p=0.20).  In 

a second repeated measures analysis (4 oddity tasks) using only dogs that were 

able to reach criterion levels of responding on all tasks, the two groups (E/C vs 

E/V) were compared. There was a significant main effect of the oddity task 

(3,39)=4.75 p=0.006) suggesting increasing difficulty, but no treatment group by 

oddity task interaction (F(3,39)=0.39 p=0.76).  Overall there were no treatment 

group differences (F(1,13)=3.41 p=0.088)(data not shown). 

Discrimination and Reversal Learning 

After 7.6 months of treatment, all dogs were given a size discrimination and 

reversal learning problem.  This task allowed us to compare all 4 treatment groups 

and test the hypothesis that the combined treatment led to greater cognitive 

benefits than either treatment alone and as compared to controls.  All dogs still on 

study learned the size discrimination problem.  Using a univariate analysis of 

variance (behavioral enrichment, vaccine), there was no significant effect of the 
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vaccine alone (F(1,30)<1 p=n.s.), the behavioral enrichment alone (F(1,30)=0.36 

p=0.55) nor the interaction of the two treatments (F(1,30)<1 p=n.s.).   For size 

reversal learning, 28 dogs in total learned the task.  No significant improvements 

in the vaccine group alone (F(1,28)=0.33 p=0.57), the behavioral enrichment group 

alone (F(1,28)=0.98 p=0.33) nor in the combination group (F(1,30)=0.029 p=0.87) 

was observed (data not shown).   

We next compared baseline levels of discrimination and reversal learning to 

size discrimination learning to determine if there was a maintenance of function in 

treated animals. In this repeated measures analysis, we observed a significant 

effect of time (or of task difficulty) between baseline discrimination learning and 

size discrimination learning (F(1,26)=10.74 p=0.003) with error scores being 

higher on the size task.  No group differences nor a group by time interaction was 

observed suggesting no treatment effects on the maintenance of discrimination 

learning (data not shown). Similarly for reversal learning, there was a significant 

effect of time (or of task difficulty) overall (F(1,24)=17.1 p<.0005) with size reversal 

leading to higher error scores but no main effects of each treatment nor a time by 

group interaction (data not shown).  

After 16.1 months of treatment, all dogs on the study were given the final 

discrimination learning and reversal tasks, black/white discrimination and 

black/white reversal learning. On the black/white discrimination learning task, 7 

C/C, 4 E/C, 3 C/V and 7 E/V animals were able to reach criterion. There was no 

main effect of the vaccine (F(1,21) = 1.49 p=0.24), the behavioral enrichment 

(F(1,21)=0.07 p=0.80) nor a significant combination treatment effect (F(1,21)=0.12 
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p=0.73) (data not shown).  Similarly, of the 6 C/C, 4 E/C, 3 C/V and 6 E/V dogs 

able to reach criterion on the black/white reversal learning task, no main effect of 

the vaccine (F(1,19)=0.32 p=0.58), of the behavioral enrichment (F(1,19)=0.79 

p=0.40) nor of the combination treatment (F(1,19)=3.26 p=0.09) was observed 

(data not shown). 

To detect any treatment effects over time (i.e. a possible maintenance of 

function) we compared baseline object discrimination to size discrimination and to 

black/white discrimination only in animals able to reach criterion for all 3 tasks. 

Overall there was a significant increase in error scores over time in all groups 

(F(2,32)=3.4 p=0.05) suggesting both an aging effect and an increase in task 

difficulty but no effect of the vaccine (F(2,32)=0.11 p=0.90) or of the behavioral 

enrichment alone (F(2, 32) =0.56 p=0.58). Interestingly, there was a significant 

effect of the combination treatment group (F(2, 32)=4.0 p=0.03) and as can be 

seen in Figure 6.3A, the combination group had the lowest average error scores. 

Reversal learning also showed a significant main effect of time in dogs that could 

learn the problem (F(2,30)=10.7 p<.0005) but there were no main effects of the 

vaccine alone (F(2,30)=2.8 p=0.08) or the behavioral enrichment alone 

(F(2,30)=0.09 p=0.91) nor of the combination treatment (F(2,30)=1.12 p=0.34) on 

change in error scores over time (Figure 6.3B).  Interestingly, as can be seen in 

Figure 6.3B, the E/V group had the highest average error scores on reversal 

learning, whereas the two single treatment groups showed lower error scores. 
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Spatial Acquisition and Memory 

Once dogs had been treated for 9.4 months, they were retested on the 3 

choice spatial memory problems. At this time, dogs were given 50 days maximum 

to sequentially re-acquire the task at progressively increasing delays beginning 

with a 5 second delay.  A multivariate analysis of variance was used to determine 

whether group differences were present with the initial re-learning at a 5 second 

delay.  In this analysis, 7 C/C dogs, 4 E/C dogs, 7 C/V dogs and 7 E/V dogs 

reached criterion levels of responding. No significant main effects of the vaccine 

(F(1,25)=0.577 p=0.46), of behavioral enrichment (F(1,25)=1.83 p=0.19) nor of the 

combined treatment (F(12,25)=0.039 p=0.85) was observed (data not shown).   

At the end of spatial acquisition testing, dogs were given a variable spatial 

memory task where the delays of 20, 70 or 110 seconds could occur on a single 

day. On this phase of the test, 8 C/C, 4 E/C, 8 C/V and 8 E/V dogs completed all 

240 trials.  The main effect of the delay interval on accuracy was marginally 

significant (F(2,48)=2.91 p=0.06) but no delay by vaccine group (F(2,48)=0.71 

p=0.50), no delay by behavioral enrichment group (F(2,48)=1.11 p=0.34) nor a 

delay by vaccine group by behavioral group interaction (F(2,48)=1.26 p=0.29) was 

found.  Thus, neither treatment alone or in combination resulted in improved spatial 

memory (Figure 6.4A and B).  

A third and final test of spatial memory alone (without the acquisition phase) 

was initiated after 18.1 months of treatment. For this test, 8 C/C, 4 E/C, 5 C/V and 

6 E/V dogs remained on study.  The overall effect of delay on accuracy was blunted 

in this last test (F(2,38)=2.85 p=.07) most likely due to the smaller sample size. 
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There was no delay by vaccine group effect (F(2,38)=0.72 p=0.49) or delay by 

behavioral enrichment group effect (F(2,38)=0.31 p=0.74). Interestingly, there was 

an interaction between the delay interval accuracy in the combination treatment 

group (F(2,38)=3.62 p=0.04). Figure 6.4C shows that this was primarily due to the 

poorer performance of the E/C and C/V groups at the short 20 second delay 

whereas the C/C and E/V groups showed a progressive decline in accuracy from 

20 to 110 seconds delays. 

To detect any changes in spatial memory as a function of treatment over the 

18 months of the study, a repeated measures analysis was used for each delay 

interval separately (20,70,110s).  At the 20 second delay (F(2,36)=16.12 p<.0005), 

the 70 second delay (F(2,36)=5.51 p=0.008) and the 110 second delay 

(F(2,36)=17.32 p<.0005) there was an overall decrease in accuracy over time 

suggesting an aging effect. There was no apparent maintenance of spatial memory 

over time as a function of treatment (Figure 6.4 D, E, F). 

IgG Anti-fibrillar Aβ Antibody Response in Serum 

To determine if the anti-fibrillar Aβ given to VAC treated animals induced an 

immune response, we measured fibrillar Aβ1-42 antibody titers (Figure 6.5). Past 

active vaccine studies showed an increase in Aβ antibody titers in treated animals 

(177).  Therefore, we hypothesized the C/V and E/V groups would have an 

increase in Aβ antibody titers over time.  At baseline, there were low and variable 

levels of anti-Aβ titers in serum across dogs. Thus, to reduce individual variability 

of measurements due to baseline titers and to allow comparisons across groups 

over time, the difference between each time point measure of anti-Aβ titers from 
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baseline was calculated.  Similar to previous studies, fibrillar Aβ antibody titers 

significantly increased over time in VAC animals (F(1,19)=12.5 p=0.002) (Figure 

6.5A).  No main effect of behavioral enrichment was seen on antibody titers 

(F(1,19)=1.16 p=0.30).  Further, there was no interaction between the two 

treatments (F(1,19)=1.32 p=0.26).  While antibody titers in the combination 

treatment group did increase over time, as can be seen in Figure 6.5B, the 

maximum response did not reach that of the vaccine only group (Figure 6.5A). Post 

hoc tests show that at time 23 months the combination group had lower titers 

(p=0.018, LSD).  Additionally, the antibody titer response in the combination 

treatment group was delayed about 2 months (Figure 6.5A).    

CSF Aβ 

CSF Aβ levels are lower in AD compared with non-demented elderly controls 

as Aβ from the periphery deposits in the brain decreasing CSF Aβ and increasing 

brain Aβ and cognitive impairment (for review, see (14)). In animal studies, mice 

receiving passive immunization with antibodies against soluble Aβ experience an 

increase in CSF Aβ (100).  Additionally, dogs receiving active vaccination 

experienced a non-significant increase in CSF Aβ1-40 and decrease in Aβ1-42 (165). 

We hypothesized that CSF Aβ levels would be higher in the C/V and E/V treatment 

groups compared to the C/C and E/C groups as a result of the VAC.  CSF Aβ1-40 

and Aβ1-42 were measured by sandwich ELISA.  A significant increase in CSF Aβ1-

40 levels was seen in response to ENR (F(1,22)=5.76 p=0.03) (Figure 6.6A), while 

there was no effect of the vaccine (F(1,22)=0.41 p=0.53) (Figure 6.6B) or an 

interaction between the two treatments (F(1,22)=1.16 p=0.29) (Figure 6.7).  
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Though not significant, the E/V treatment group trended towards having the largest 

impact in increasing CSF Aβ1-40 compared to all other treatment groups (Figure 

6.7).   No treatment effect was seen for ENR (F(1,22)=0.38 p=0.54) alone for Aβ1-

42 (Figure 6.8A). VAC had no treatment effect in lowering or raising CSF Aβ1-42 

over time (F(1,22)=0.40 p=0.40), but VAC animals did have significantly higher 

levels than non-VAC animals at 12 months (F(1,22)=8.089 p=0.008) (Figure 6.8B).  

Last, there was also no interaction treatment effect on CSF Aβ1-42 for the two 

treatments over time (F(1,22)=0.06 p=0.81) (Figure 6.9). 

Aβ Plaque Load 

Based on the previous canine vaccine study indicating that Aβ plaque loads 

were decreased due to VAC, we hypothesized that animals from the C/V and E/V 

treatment groups would have decreased Aβ plaque loads compared to non VAC 

animals (177). We also hypothesized that the E/V group would have a greater 

reduction in plaque load than the C/V group as an effect of the combination 

treatment approach. To test this hypothesis we measured the extent of plaques 

containing Aβ1-42, total Aβ, and pyroglutamate Aβ in the PFCTX, OCTX, PCTX, 

and ECTX by immunohistochemistry. 

Aβ1-42 

Aβ1-42 plaque load was measured in the PFCTX, OCTX, PCTX, and ECTX in 

all animals and compared between treatments.  Plaque load was significantly 

decreased as a result of VAC (both C/V and E/V groups) in the PFCTX (F(1, 34)= 

33.04 p= <0.001), OCTX (F(1, 34)= 14.92 p= 0.001), and PCTX (F(1, 33)= 14.06 

p= 0.001), while no reduction was seen in the entorhinal cortex (ECTX) (F(1, 34)= 
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1.89 p= 0.39) (Figure 6.10).  Compared to the C/C group, the C/V group showed 

a significantly lower Aβ1-42 plaque load in the PFCTX (Bonferroni, p=<0.001), 

OCTX (Bonferroni, p=0.04), and PCTX (Bonferroni, p=0.02) (Figure 6.10). 

However there was no significant difference between the C/C and C/V groups 

when comparing plaque loads in the ECTX (Bonferroni, p=1.00) (Figure 6.10).  No 

significant reduction in Aβ1-42 plaque load was seen as an effect of ENR in the 

OCTX (F(1,34)=0.19 p=0.67), PCTX (F(1,33)=2.21 p=0.15), or ECTX 

(F(1,34)=0.754 p=0.39) (Figure 6.10). However, a reduction in the PFCTX due to 

ENR trended towards significance (F(1,34)=3.87 p=0.06) (Figure 6.10). Similarly, 

when looking at individual treatment groups, the E/C group had a significantly 

lower plaque load compared to the C/C group in the PFCTX (Bonferroni, p=0.02), 

while no difference was seen in the OCTX (Bonferroni, p=1.00), PCTX (Bonferroni, 

p=0.55), or ECTX (Bonferroni, p=1.00) (Figure 6.10).  No additive effects were 

seen between the VAC and ENR in reducing Aβ1-42 plaque load in the OCTX 

(F(1,34)=0.14 p=0.71), PCTX (F(1,33)=1.18 p=0.29), or ECTX (F(1,34)=0.18 

p=0.68) (Figure 6.10).  Statistically by two way ANOVA, there was a significant 

additive effect of VAC and ENR in decreasing Aβ1-42 plaque load in the PFCTX 

(F(1,34)=6.54 p=0.02), however by post hoc the E/V treatment group did not have 

a lower plaque load than the C/V group, (p=1.000).  In the presence of active 

vaccine, the ENR group provides no additional benefit. But, where there was no 

vaccine, the ENR treatment makes a difference such that Aβ1-42 plaque load is 

lower. In other words, there is no additional effect of behavioral enrichment on the 
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vaccine group, but in the absence of vaccine, ENR resulted in lower Aβ1-42 plaques 

compared to the C/C group. 

Total Aβ 

Total Aβ (6E10) plaque load was measured in the PFCTS, OCTX, PCTX, 

and ECTX in all animals.  A significant decrease in total Aβ plaques was seen due 

to VAC (both C/V and E/V groups) in all brain regions (PFCTX, F(1,34)= 52.91 p= 

<0.001; OCTX, F(1,34)= 13.65 p= 0.001; PCTX, F(1,33)= 10.70 p= 0.003; ECTX, 

(F(1, 34)= 6.60 p= 0.02) (Figure 6.11).  When comparing the C/V group to C/C 

animals, C/V dogs had lower plaque loads in the PFCTX, OCTX, and PCTX 

(Bonferroni: p=<0.005, p=0.05, p=0.01 respectively) (Figure 6.11).  ENR did not 

have an effect on the reduction of total Aβ plaque load in any of the examined 

regions (PFCTX, F(1,34)=2.95 p=0.10; OCTX, F(1,34)=0.34 p=0.57; PCTX, 

F(1,33)=2.82 p=0.10; ECTX, F(1,34)=.23 p=0.64) (Figure 6.11).  Though there was 

no overall effect due to ENR, the E/V group did have lower total Aβ plaque loads 

compared to the C/C group in the PFCTX, OCTX, and PCTX (Bonferroni: 

p=<0.001; p=0.05; p=0.01 respectively) (Figure 6.11).  No additive effects were 

seen between VAC and ENR in decreasing total Aβ plaque loads from any of the 

PFCTX (F(1,34)=1.78 p=0.19), OCTX (F(1,34)=0.13 p=0.73), PCTX (F(1,33)=3.26 

p=0.08), or ECTX  (F(1,34)=0.03 p=0.86) (Figure 6.11).  The combination group, 

E/V, did however have decreased total Aβ plaque loads compared to controls, C/C 

(Figure 6.11).  Decreased total Aβ plaque loads was seen in the PFCTX 

(p=<0.001), OCTX (p=0.03), and PCTX (p=0.01) (Bonferroni) (Figure 6.11). 
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Pyroglutamate Modified Aβ 

Previous immunotherapy studies did not look into the effects of the 

treatment on post-translationally modified Aβ.  Since post translationally modified 

Aβ, more specifically AβpE3, is considered to be a more toxic and 

chronobiologically older form of Aβ, we tested our vaccine on its ability to reduce 

this form of Aβ.  Here we measured AβpE3 plaques loads in the PFCTX, OCTX, 

PCTX, and ECTX in all study animals.  We hypothesized that VAC would 

significantly reduce AβpE3 plaque loads in all regions examined and more so in 

the E/V treatment group dogs.  We found that VAC had a significant effect in 

decreasing AβpE3 plaques loads (Figure 6.12). AβpE3 plaque loads were 

decreased in PFCTX (F(1, 30)= 10.00 p= 0.004) and PCTX (F(1, 29)= 6.50 p= 

0.02), while no change was seen in the OCTX (F(1, 30)= 2.32 p= 0.14) or ECTX 

(F(1, 30)= 3.13 p= 0.09) (Figure 6.12).  The C/V group trended towards a 

significantly lower AβpE3 plaque load in the PCTX compared to that of the C/C 

group (Bonferroni, p=0.06) (Figure 6.12).  No reduction in plaque load was seen in 

any regions examined due to ENR (PFCXT, F(1,30)=0.09 p=0.77; OCTX, 

F(1,30)=0.84 p=0.37; PCTX, F(1,29)=1.30 p=0.26; ECTX, F(1,30)=1.59 p=0.22) 

and or the combination therapy approach (PFCXT, F(1,30)=0.05 p=0.83; OCTX, 

F(1,30)=1.32 p=0.26; PCTX, F(1,29)=2.33 p=0.14; ECTX, F(1,30)=2.65 p=0.11) 

(Figure 6.12). 

Comparison of Plaque Load Over Time Due to Treatments 

As mentioned, PFCTX had lower Aβ1-42 plaque loads as an effect of ENR 

that trended towards significance. In addition, though no ENR effect was 
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statistically seen in lowering total Aβ plaque loads in the PFCTX and PCTX, the 

E/C treatment group did have significantly lower loads than the C/C group.  What 

was unclear was if these lower plaque loads were due to a clearance of Aβ or 

maintenance of pre-existing pathology by the ENR.  In order to investigate this 

further, we used PFCTX and PCTX tissue of archive cases that were age matched 

to study cases at their baseline age and stained them for Aβ1-42 and total Aβ.  The 

results would provide measurements that would represent the Aβ1-42 and total Aβ 

plaque loads of the study cases at baseline before treatment began. 

In the PFCTX, a significant group effect was seen when comparing Aβ1-42 

(F(4, 44)= 9.447 p= <0.001) (Figure 6.13), total Aβ (F(4, 44)= 10.923 p= <0.001) 

(Figure 6.14), and AβpE3 (F(4, 44)= 9.752  p= 0.009) (Figure 6.15) plaque loads 

between the pre-treatment group to the study treatment groups.  The pre-treatment 

group had significantly lower Aβ1-42 (Bonferroni, p=0.050) (Figure 6.13) and total 

Aβ (Bonferroni, p=0.014) (Figure 6.14) plaque loads than the C/C group indicating 

that an increase in these plaque loads was seen with age.  The plaque loads of 

the pre-treatment group did not statistically differ from the E/C group, suggesting 

that a maintenance effect due to the ENR was likely in keeping Aβ Aβ1-42 

(Bonferroni, p=1.000 ) (Figure 6.13) and total Aβ (Bonferroni, p=1.000 ) (Figure 

6.14) plaque loads maintained compared to the C/C group (Figure 6.13).   Similar 

results were seen in the PCTX.  A significant group effect was seen when 

comparing Aβ1-42 (F(4, 44)=4.780  p=0.003) (Figure 6.13), total Aβ (F(4, 44)= 3.297 

p= 0.021) (Figure 6.14), and AβpE3 (F(4, 44)=3.321 p= 0.020) (Figure 6.15) plaque 

loads between the pre-treatment group to the study treatment groups in the PCTX.  
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Compared to the C/C group, the pre-treatment group had significantly lower Aβ1-

42 (Bonferroni, p=035) (Figure 6.13) indicating that an increase in plaque load was 

seen with age.  As seen in the PFCTX, the pre-treatment group Aβ1-42 plaque load 

did not differ significantly from the E/C group in the PCTX either, again suggesting 

a maintenance effect due to ENR was likely keeping Aβ1-42 plaque loads lower than 

the C/C group (Bonferroni, p=1.000 ) (Figure 6.13). 

Soluble and Insoluble Brain Aβ 

We hypothesized that the levels of soluble and insoluble Aβ in the brain would 

be reduced due to VAC and that the E/V treatment group would show an even 

greater reduction.  To test this hypothesis we measured PBS, SDS, and FA 

extracted Aβ1-40 and Aβ1-42 from the PFCTX, OCTX, PCTX and HIPPO regions of 

the brain by sandwich ELISA. 

Aβ1-42 

VAC significantly decreased Aβ1-42 in the PBS, SDS and FA extracts of the 

PFCTX (PBS, F(1, 34)= 2.518 p= 0.016; SDS, F(1, 34)=31.244  p= <0.005; FA, 

F(1, 34)=5.610  p= 0.024) and OCTX (PBS, F(1, 34)= 5.782 p= 0.023; SDS, F(1, 

34)= 14.451 p= 0.001; FA, F(1, 34)= 3.914 p= 0.057), while the PCTX and ECTX 

remained unchanged (Figure 6.13 A, C, E).  No significant reduction was seen due 

to ENR in PBS, SDS or FA extracted Aβ1-42 levels from any of the examined brain 

regions. However, ENR increased SDS extracted Aβ1-42 in the HIPPO that trended 

towards significance (F(1,34)=3.514 p=0.071) (Figure 6.16 B, D,F).  No 

combination treatment effect was seen with VAC and ENR, except for a decrease 

in SDS extractable Aβ1-42 in the PFCTX that trended towards significance 
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(F(1,34)=3.461 p=0.073) and a significant increase in PBS extractable Aβ1-42 in the 

HIPPO (F(1,34)=4.529 p=0.042).  These results suggest that the VAC reduced 

soluble and insoluble levels of Aβ1-42 in the PFCTX and OCTX.  Additionally, the 

combination treatment may have been effective in breaking down SDS extractable 

Aβ1-42 into a more soluble state leading to increased PBS extractable Aβ1-42. 

Aβ1-40 

In addition to Aβ Aβ1-42, levels of soluble and insoluble forms of Aβ1-40 were 

also measured. No significant decrease was seen due to VAC on Aβ1-40 in any 

fraction from the PCTX. There was a significant decrease in Aβ1-40 extractable by 

FA in the PFCTX (F(1, 34)=8.790  p= 0.006) and OCTX (F(1, 34)= 3.914 p= 0.057) 

(Figure 6.17 E). However, no significant reduction due to VAC was seen in PBS or 

SDS extractable Aβ1-40 in either of these regions (Figure 6.17 A and C).  An 

increase was seen in PBS extracted Aβ1-40 due to VAC in the HIPPO (F(1, 34)= 

5.433 p= 0.027) (Figure 6.17 A).  ENR had no effect on increasing or decreasing 

PBS, SDS, or FA extractable Aβ1-40 in any of the brain regions of interest (Figure 

6.17 B, D, F).  Additive effects of VAC and ENR were only seen with increasing 

SDS extractable Aβ1-40 in the PCTX (F(1,34)=6.150 p=0.019) and HIPPO 

(F(1,34)=12.465 p=.001).  These results suggest that the VAC as well as 

combination treatment may have been effective in breaking down FA extractable 

Aβ1-42 into a more soluble state leading to increased levels of PBS (VAC) or SDS 

(combo) extractable Aβ1-40. 
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Aβ42/40 Ratio 

The ratio of Aβ42/40 was calculated as an indicator of AD pathology and 

onset of the disease (95, 217).  A high Aβ42/40 ratio would indicate a greater 

abundance of Aβ1-42 than Aβ1-40, while a low Aβ42/40 ratio would indicate greater 

Aβ 1-40 levels in the brain.  We hypothesized a lower Aβ42/40 ratio in the VAC 

animals since animals were vaccinated with fibrillar Aβ1-42 and a reduction of Aβ1-

42 was expected.  No significant changes were seen in the ratio of Aβ42/40 in the 

PBS, SDS, and FA extracted samples from the PCTX or OCTX (Figure 6.18 A, C, 

E).  There was a significant decrease due to VAC seen in PBS (F(1, 34)= 15.732 

p= <0.005) and SDS (F(1, 34)=29.668 p= <0.005) extractable Aβ42/40 ratio in the 

PFCTX (Figure 6.18 A and C).  No increase or decrease due to ENR alone was 

observed (Figure 6.18 B, D, F). However, a decrease in the ratio is found in 

combination treatment of VAC and ENR in SDS extractable Aβ42/40 ratio 

(F(1,34)=5.994 p=0.020).  Interestingly, in the HIPPO, no increase or decrease 

due to VAC was found, but a significant increase due to ENR was detected in PBS 

extracted Aβ42/40 ratio (F(1,34)=5.101 p=0.031) (Figure 6.18 B). There is also an 

additive effect due to VAC and ENR in increasing PBS extractable Aβ42/40 ratio 

(F(1,34)=5.066 p=0.032) and increasing SDS extractable Aβ42/40 ratio 

(F(1,34)=7.668 p=.010).  These results suggest that the ratio of Aβ42/40 was overall 

reduced in soluble extracts of the PFCXT due to VAC and the combination of VAC 

ENR.  In the HIPPO, an increase in PBS extracted Aβ42/40 is seen which could 

suggest the breakdown of less soluble forms seen in the SDS or FA extracts into 
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more soluble Aβ seen in the PBS extract.  Collectively these results support the 

decrease in plaque loads seen in the PFCTX and HIPPO. 

Microhemorrhages 

Based upon previous studies  in transgenic mice (320, 335, 482-484) and 

human clinical trials (459) we hypothesized that C/V and E/V groups may have 

more microhemorrhages than the C/C and E/C groups due to the vaccine. To 

detect increased microhemorrhages, we stained sections from the PFCTX, OCTX, 

and HIPPO brain regions using Prussian blue, which detects iron in the 

extracellular matrix.  Counts of the number of microhemorrhages were used to 

detect treatment associated differences. 

The total number of bleeds across all brain regions ranged between 0 and 

23.  The most bleeds was seen in the PFCTX having a range from 1 to 10 bleeds, 

with the exception of one dog having 17 bleeds.  This canine in particular was a 

female, started the study at the age of 11.6 years, and was in the E/C treatment 

group.  The OCTX had similar bleed counts ranging from 0 to 7.  Fewer bleeds 

were seen in the HIPPO with a range of 0 to 3, with the exception of two dogs that 

had 7 and 23 bleeds.  The animal that experienced 7 bleeds was a male, started 

the study at the age of 12.3 years, and was in the C/C group.  The other dog that 

experienced 23 bleeds in the HIPPO was a female, started the study at the age of 

10.7 years, and was part of the E/V treatment group.  Further, if a dog did show a 

bleed in the HIPPO, it usually occurred in the CA3 region compared to area CA1 

or dentate gyrus. Neither ENR (χ2(1)=0.025 p=0.876) (data not show) nor VAC 

(χ2(1)=0.350 p=0.554) (Figure 6.19) significantly increased microhemorrhage 
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frequency in the PFCTX.  Additionally no individual group effect was seen on 

increasing the number of microhemorrhage frequency (χ2(3)=0.984 p=0.805) 

(Figure 6.20). There was also no change in the microhemorrhages in the HIPPO 

due to ENR (χ2(1)=0.355 p=0.551) (data not shown), VAC (χ2(1)=0.078 p=0.780) 

(Figure 6.19), or individual group (χ2(3)=0.853 p=0.837) (Figure 6.20).  In the 

OCTX, however, there was a statistically significant increase in microhemorrhages 

due to VAC (χ2(1)=6.501 p=0.011) (Figure 6.19) and group effect (χ2(3)=8.372 

p=0.039) (Figure 6.20).  Though an increase in bleeds was statistically seen due 

to VAC, neither the C/V nor E/V treatment groups show more microhemorrhages 

than the C/C animals (Figure 6.20).  However fewer microhemorrhages were seen 

in the E/C animals in the occipital cortex compared to C/V animals (Figure 6.20). 

It is possible that this decrease in bleeds of the E/C group (non VAC animals) could 

have led to the statistically apparent higher frequency of bleeds due to VAC. No 

increase in the number of microhemorrhages was observed due to a combination 

treatment effect in the occipital cortex. 

Comparison of Microhemorrhages Over Time Due to Treatments 

With the finding that E/C group had fewer bleeds in the OCTX compared to 

the other treatment groups and C/C group, we wanted to determine whether ENR 

was reducing the number of bleeds seen or having a maintenance effect as 

observed with plaque loads To do this we used the same 10 archive cases as used 

for plaque load analysis that were age matched to study dogs at the start of the 

study (10.5-13.6 years) (Pre-Treatment).  We stained PFCTX and OCTX tissue 

sections from these pre-treatment dogs with Prussian Blue. 
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The total number of bleeds in the PFCTX from this pre-treatment group of 

dogs ranged from 1 to 8, similar to numbers seen in the treatment groups and 

control group.  Statistically, there was no group difference in microhemorrhage 

counts in the PFCTX between the pre-treatment group and the four study groups 

(χ2(4)=1.103 p=0.894) (Figure 6.21).  In the OCTX, pre-treatment dogs only 

showed 0 to 3 microhemorrhages compared to the 0 to 7 range seen in the study 

dogs.  There was the exception of one pre-treatment dog that had 5 bleeds.  There 

was a group difference in microhemorrhage frequency between the groups 

including the Pre-Treatment group (χ2(4)=15.400 p=0.004) (Figure 6.21).  

Additionally, the pre-treatment group showed approximately the same number of 

microhemorrhages as the E/C treatment group (Figure 6.21).  While the C/C, C/V, 

and E/V treatment groups do not look to differ in number of bleeds, they do appear 

significantly higher than the pre-treatment and E/C groups.  This would suggest 

that the E/C treatment is having a maintenance or protective effect against 

microhemorrhages in the occipital cortex while all other treatment groups 

experience more bleeds with age independently of the VAC. 
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Figure 6.1.  Landmark Discrimination Learning.   

At  Landmark 0, among, dogs that received ENR, dogs that received ENR 

with VAC (E/V) had higher error scores than dogs receiving ENR only  (E/C) 

(t(16)=2.7 p=0.016).  No group effect was seen for Landmarks 1,2, and 4.  Overall, 

higher error scores occurring as the landmark distance (and thus task difficulty) 

increased (F(3, 42)=2.8 p=0.05). 
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Figure 6.2. Variable distance landmark.   

Dogs that received both VAC and ENR (E/V) did not differ in error scores for 

the variable distance landmark task compared to those receiving only ENR (E/C).  

Distance also had no effect on error scores during this task.     
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Figure 6.3. Discrimination and reversal learning over time. 

 (A) In discrimination learning, error scores increased over time in all groups 

(F(2,32)=3.4 p=0.05). No effect of the vaccine or of the behavioral enrichment 

alone was seen, however there was a significant effect of the combination 

treatment group (F(2, 32)=4.0 p=0.03). The combination treatment group had the 

lowest error scores. (B) Reversal learning also indicated an increase in error 

scores over time in all groups (F(2,30)=10.7 p<0.0005) 2 p=0.34).  No treatment 

effects were seen on error scores over time for VAC, ENR, or the combination 

treatment.  E/V treatment group had the highest error scores on reversal learning.  
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Figure 6.4. Variable delay spatial memory task. 

(A) No difference between treatment groups was seen in the accuracy of 

performance across increasing delay intervals on the spatial memory task when 

tested at baseline. (B) When re-tested 9.4 months into treatment, there was no 

improvement observed due to VAC or ENR treatment alone or in combination.  (C)  

Testing after 18.1 months into treatment indicated an interaction between delay 

interval and accuracy on the spatial memory task in the combination treatment 

group (F(2,38)=3.62 p=0.04). However, this may be due to the poor accuracy of 

the E/C and C/V groups during the 20s delay.  (D,E,F) A decrease in accuracy 

over time was seen for each delay interval (20 second delay, F(2,36)=16.12 

p<.0005; 70 second delay, F(2,36)=5.51 p=0.008; 110 second delay, 

F(2,36)=17.32 p<.0005).   
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Figure 6.5.  Anti-Aβ antibody titers over time as a function of treatment. 

IgG response was measured in the serum of all animals over multiple 

timepoints from baseline to euthanasia.  VAC animals developed an anti- Aβ IgG 

response over time (F(1,19)=12.5 p=0.002) and was maintained as a result of the 

active vaccine (A).  When observing all treatment groups, both VAC groups (C/V 

and E/V) developed an antibody response and maintained it (B). However the E/V 

response to the vaccine was delayed and did not reach the same maximum titers 

as observed in dogs receiving the vaccine alone C/V.  
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Figure 6.6.  Change in average CSF Aβ1-40 over the course of treatment. 

CSF Aβ1-40 was measured in all dogs across three time points through the 

duration of treatment.  ENR led to a significant increase in CSF Aβ1-40 

(F(1,22)=5.76 p=0.03) (*) (A).  VAC neither increased nor decreased the levels of 

Aβ1-40 in CSF with the time points that were collected (B).  
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Figure 6.7. Change in average CSF Aβ1-40 over course of study in all four treatment 

groups. 

No change in CSF Aβ1-40 was seen over time in any treatment group.  

However, the combination treatment group E/V did have the greatest increase in 

CSF Aβ1-40 by the end of the study. 
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Figure 6.8. Change in average CSF Aβ1-42 over the course of treatment.   

CSF Aβ1-42 was measured in all dogs across three time points through the 

duration of treatment.  No systematic effects were seen due to any treatment (A, 

B).    
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Figure 6.9. Change in average CSF Aβ1-42 over course of study in all four 

treatment groups.   

None of the treatments significantly changed CSF Aβ1-42 over time.  
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Figure 6.10.  Average Aβ1-42 plaque loads in PFCTX, PCTX, OCTX, and ECTX 

regions of the brain.   

Aβ1-42 plaque loads were reduced in most brain regions of VAC animals (C/V 

and E/V) (PFCTX (F(1, 34)= 33.04 p= <0.001); OCTX (F(1, 34)= 14.92 p= 0.001); 

PCTX (F(1, 33)= 14.06 p= 0.001) (*).  No additive effect was seen due to the 

combination of VAC and ENR (E/V).  Though not as low as the C/V or E/V groups, 

E/C animals did have lower loads of Aβ1-42 plaques than the C/C group in the 

PFCTX (Bonferroni, p=0.02).  

* * 

* 

ECTX 
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Figure 6.11. Average total Aβ plaque loads in PFCTX, PCTX, OCTX, and ECTX 

regions of the brain. 

Total Aβ plaque load were reduced in the brains of VAC animals (C/V and 

E/V) (PFCTX, F(1,34)= 52.91 p= <0.001; OCTX, F(1,34)= 13.65 p= 0.001; PCTX, 

F(1,33)= 10.70 p= 0.003; ECTX, (F(1, 34)= 6.60 p= 0.02).  No additive effect was 

seen due to the combination of VAC and ENR (E/V).  Lower levels of total Aβ 

plaque loads were observed in the E/C group compared to the C/C group in the 

PCTX (Bonferroni, p=0.06).  

* 

* * 
* 

ECTX 
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Figure 6.12. Average pyro glutamate modified Aβ (AβpE3) plaque loads in PFCTX, 

PCTX, OCTX, and ECTX regions of the brain. 

Plaque levels of AβpE3 were overall lower than Aβ1-42 and total Aβ plaque 

levels in all regions of the brain.  Though post-translationally modified, VAC was 

able to reduce plaque loads containing this more toxic form of Aβ in the PFCTX 

(F(1, 30)= 10.00 p= 0.004) and PCTX (F(1, 29)= 6.50 p= 0.02).  E/C animals did 

not differ in AβpE3 plaque loads from those of the C/C treatment group in any brain 

region. 
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Figure 6.13.  Changes in average Aβ1-42 plaque loads between Pre-

Treatment animals and treated study animals in PFCTX and PCTX regions of the 

brain.  

 When comparing pretreatment animals to C/C, there is a significant increase 

in Aβ1-42 plaque load with age (PFCTX, Bonferroni, p=0.050; PCTX Bonferroni, 

p=035).   Pre-treatment animals did not differ from E/V animals suggesting a 

possible maintenance of plaque loads over time due to ENR (PFCTX, Bonferroni 

p=1.000; PCTX, Bonferroni, p=1.000).   

* 
* 
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Figure 6.14. Changes in average total Aβ plaque loads between pre-treatment 

animals and study animals in PFCTX and PCTX regions of the brain.   

Pre-treatment animals had lower levels of total Aβ plaque loads compared to 

control (C/C) animals in the PFCTX (Bonferroni, p=0.014), while there was no 

difference compared to E/C animals (Bonferroni, p=1.000).  This lack of change in 

the E/C group suggests that ENR could be counteracting the natural age 

dependent increase in total Aβ plaque loads as seen in C/C animals. No systematic 

changes were seen in the PCTX for total Aβ plaque loads.  

* 
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Figure 6.15.  Changes in average AβpE plaque loads between pre-treatment 

animals and study animals in PFCTX and PCTX regions of the brain.  

Significant group effects are seen in AβpE plaque loads between pre-

treatment animals and treated study animals in both the PFCTX (F(4, 44)= 9.752  

p= 0.009) and PCTX (F(4, 44)=3.321 p= 0.020).  There was very little AβpE in pre-

treatment dogs. While VAC reduced AβpE in treated animals compared to C/C or 

E/C groups, levels do not return back to those seen before the start of the study 

as represented by the pre-treatment group. 

 

  

* 

* 



  

110 

 

 

 

 

  * 

* 

* 

* 

* 

* 



  

111 

Figure 6.16. Soluble and insoluble brain Aβ1-42 as a function of treatment.   

Higher levels of FA extractable brain Aβ 1-42 were seen compared to PBS 

and SDS across all groups. VAC reduced all forms of extractable Aβ1-42 in the 

PFCTX (PBS, F(1, 34)= 2.518 p= 0.016; SDS, F(1, 34)=31.244  p= <0.005; FA, 

F(1, 34)=5.610  p= 0.024)and OCTX (PBS, F(1, 34)= 5.782 p= 0.023; SDS, F(1, 

34)= 14.451 p= 0.001; FA, F(1, 34)= 3.914 p= 0.057) (A, C, E).  No change in 

soluble or insoluble Aβ was seen due to ENR (B, D, F), except for an increase in 

SDS extractable Aβ1-42 in the HIPPO (F(1,34)=3.514 p=0.071) that trended 

towards significance (D). 
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Figure 6.17.  Soluble and insoluble brain Aβ1-40.   

VAC increased PBS extracted Aβ1-40 in the HIPPO (F(1, 34)= 5.433 p= 0.027) 

(A), while it reduced insoluble FA extractable Aβ1-40 in the PFCTX (F(1, 34)=8.790  

p= 0.006) and OCTX (F(1, 34)= 3.914 p= 0.057) (E).   No change in soluble or 

insoluble Aβ was seen due to ENR (B, D, F).    
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Figure 6.18.  Soluble and insoluble brain Aβ1-42/ Aβ1-40 Ratios  

VAC decreases PBS (F(1, 34)= 15.732 p= <0.005) extractable Aβ 42/40 ratio 

in the PFCTX(A), ENR increased PBS extracted Aβ 42/40 ratio (F(1,34)=5.101 

p=0.031) in the HIPPO (B). SDS extractable Aβ 42/40 ratio in the PFCTX was 

reduced by VAC (F(1, 34)=29.668 p= <0.005) (C).  No increase or decrease due 

to ENR was observed in SDS extractable Aβ 42/40 ratio (D).  FA extractable Aβ 

42/40 ratio was neither increased nor decreased by VAC or ENR (E, F).  
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Figure 6.19.  Microhemorrhages frequency in the PFCTX, OCTX, and Hippo 

regions of the brain in VAC treated animals compared to non VAC treated animals. 

 VAC does not cause an increase in microhemorrhages in the PFCTX or 

Hippo regions of the brain.  However, VAC appears to increase the number of 

microhemorrhages in the OCTX but there was significant individual variability 

(χ2(1)=6.501 p=0.011). 
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Figure 6.20.  Microhemorrhage occurrence in the PFCTX, OCTX, and Hippo 

regions of the brain as a function of treatment group. 

No increases in microhemorrhage frequency in the PFCTX or Hippo were 

seen as a consequence of treatment.  While VAC increases bleed events in the 

OCTX (χ2(1)=6.501 p=0.011), the number of bleeds observed in VAC animals (C/V 

and E/V groups) does not differ significantly from the control animals (C/C) 

(Bonferroni- C/V, p=0.852; E/V, p=1.000).  However, the E/C treatment group 

showed fewer microhemorrhages in the OCTX than the C/C group (Bonferroni, 

p=0.071) suggesting that ENR may be protective in that region of the brain.  

* 
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Figure 6.21. Microhemorrhage occurrence in the PFCTX and OCTX regions of the 

brain in pre-treatment and study animals. 

In the PFCTX there were no differences in microhemorrhages between any 

of the treatment groups.  However, in the OCTX, pre-treatment and E/C animals 

trends towards having fewer microbleeds than C/C and VAC dogs. Since E/C 

animals appear to show the same frequency of microbleeds as the pre-treatment 

animals, we suggest that the ENR is maintaining brain health and preventing 

microhemorrhages that may naturally occur with age. 
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CHAPTER SEVEN: Discussion  

Previous human clinical trials using active vaccination with fibrillar Aβ1-42, 

though discontinued due to cases of meningoencephalitis, showed evidence of 

reduced Aβ pathology within the brain (135, 181).  Consequently, passive 

immunization approaches that eliminate the possibility of the previous adverse 

events have been and are currently being investigated in patients with mild to 

moderate AD; these immunotherapies reduce Aβ pathology and show modest 

reductions in rates of cognitive decline (101, 103, 366, 367). While these passive 

immunotherapies do not lead to meningoencephalitis, they have caused 

microhemorrhaging in several patients as seen by magnetic resonance imaging 

(368, 420).  Our lab has investigated active immunization in aged canines using 

an adjuvant that is safe for use in mice and humans having few adverse effects 

(24, 83, 177, 246).  In a previous study  in aged canines,  active vaccination with 

fibrillar Aβ1-42 using Alum as an adjuvant reduced Aβ pathology in the brain and 

helped maintain executive function without causing adverse effects such as 

meningoencephalitis as seen with past active vaccinations (177). However, 

improved cognition in response to the vaccine was not observed in the canine 

study as reported in transgenic mouse studies (198, 286). Thus, it is possible that 

the vaccine alone and reduction of Aβ was insufficient to improve cognition in aged 

dogs with neuropathology. We hypothesized that adding a second intervention that 

would lead to neuronal repair may be beneficial when combined with the vaccine. 

We focused on behavioral enrichment as a second “arm” to this study. 
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Behavioral enrichment, consisting of exercise, cognitive enrichment, social 

engagement, and environmental enrichment, is being evaluated in clinical trials for 

AD in humans and animal models. Exercise and environmental enrichment 

improve learning in rodents but shows variability between studies in AD mouse 

models (17, 80, 239).  In humans, behaviorally enriched lifestyles, involving 

exercise, cognitive enrichment, and social engagement, helps reduce brain 

atrophy with age and reduces risk of dementia (165, 274). Furthermore, in canines, 

ENR improves cognitive function without affecting Aβ levels in the brain (71, 485).  

While immunotherapies reduce Aβ pathology in humans and animals as well as 

aid in cognitive maintenance, ENR improves cognition and reduces risk of 

dementia but has variable outcomes on levels of brain Aβ.  This study sought to 

combine active VAC with ENR predicting they would build upon one another and 

lead to greater cognitive improvement as well as decreased Aβ pathology 

compared to each individual treatment alone. 

One aspect of the combination therapy we wanted to test was its effects on 

cognition.  Based on our previous studies, ENR improves overall cognition in aged 

canines (71, 485).  However, in a previous canine active vaccine study, no 

improvements in cognition were observed (177). We had hypothesized that our 

study animals receiving ENR only or VAC only would show similar results to past 

studies but animals receiving both ENR and VAC would exhibit greater cognitive 

improvements.  Our results however, indicated no systematic effects by any 

treatment on improving cognition.  The lack of cognitive improvement in the E/C 

group came as a surprise.  It was noted however, that all tested animals actually 
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performed better with lower error scores at baseline than dogs in past studies did 

during their baseline testing.  Also, housing protocols and the diet now provided 

for research canines has improved substantially since our last ENR study.  It is 

possible that the housing conditions have improved enough that an ENR threshold 

has been met between all treatment groups just through these conditions where 

no additional cognitive benefits can occur even with added social engagement or 

cognitive enrichment.  Results from the current study strongly suggest that 

reversing age-associated and Aβ-dependent cognitive decline is challenging and 

prevention may be more beneficial. Results from our neurobiological studies 

support this conclusion as will be discussed next. 

After 19 months of treatment with the active vaccine of fibrillar Aβ1-42, VAC 

animals had increased antibody titers against fibrillar Aβ1-42.  In C/V animals, this 

response was first seen at 4 weeks after treatment, while the E/V treated dogs 

experienced a delayed response at 2 months.  While both groups receiving VAC 

maintained antibody levels through the rest of the study, the maximum response 

of the E/V treatment group never reached that of the C/V treatment group.  It is 

possible that ENR in the combination treatment suppressed the immune response 

initiated by the vaccine causing a lower maximum antibody response but was still 

sufficient to reduce brain Aβ to the same extent as the C/V group.  Overall, the 

elevated levels of anti- Aβ1-42 antibodies indicate that the active vaccination was 

successful in initiating the production of antibodies against fibrillar Aβ1-42.  This 

result mirrors that of the human trials using active vaccination, where patients 

showed an antibody response between one and two months after treatment (181).   
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CSF Aβ levels correlate with disease in patients with AD who show lower 

CSF Aβ levels than non-demented individuals (for review, see (14)).  To monitor 

Aβ changes throughout treatment, CSF samples were collected before treatment, 

12 months into treatment, and at euthanasia.  We hypothesized that VAC animals 

would have higher Aβ levels than non-VAC animals. These expected results would 

suggest the vaccine was succeeding in removing the Aβ from the brain and moving 

it into the periphery.  However, VAC did not lower or raise CSF Aβ1-42 or Aβ1-40 

compared to dogs that did not receive VAC.  Several contributing factors may exist 

for these unexpected results.  Samples were only able to be drawn at two time 

points before euthanasia.  It is possible that levels of CSF Aβ may have become 

elevated at some time between the baseline and 12 months collection time points 

as Aβ was cleared from the brain. This elevation would then be followed by a 

reduction once a majority of Aβ was removed from the brain and periphery.  

Essentially, once Aβ was cleared from the brain and into the periphery, Aβ would 

also be removed from the CSF. This possible mechanism could have been 

captured had additional time point collections of CSF been made.  Unfortunately, 

in order to collect CSF, the animals must be sedated, which can be physiologically 

stressful for aged animals.  For this reason, CSF draws were limited to three 

spaced out collection time points.  

While VAC did not reduce CSF Aβ1-42 or Aβ1-40, ENR did increase CSF Aβ1-

40.  As discussed earlier in Chapter 2, Aβ1-40 is the prominent isoform of Aβ peptide 

involved in amyloidosis in the vasculature of the brain (324, 389, 498).  One 

possible explanation for the increased CSF Aβ1-40 is that the exercise component 
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of the ENR improved blood perfusion and cerebrovascular health and aided in the 

clearance of Aβ deposited in the vasculature to the periphery.  Additionally, this 

increase in CSF Aβ1-40 was selective and not seen with Aβ1-42.  Since Aβ1-42 tends 

to form plaques in the parenchyma of the brain rather than within blood vessels, 

this lack of effect by ENR on CSF Aβ1-42 further supports the idea of ENR acting 

specifically on the cerebrovasculature. (324, 389, 477). 

Several active and passive immunotherapies studied as a therapeutic for AD 

have shown positive results in reducing Aβ plaque pathology in both animal models 

and patients with AD (94, 177, 341, 367, 368, 381, 403, 438).  In the present study, 

use of active immunization with fibrillar Aβ1-42 in combination with ENR to treat 

aging canines also reduces Aβ pathology in several regions of the brain.  VAC 

treated dogs, including both the C/V and E/V treatment groups, had decreased Aβ 

plaque loads compared to non-immunized animals in the PFCTX (Aβ1-42 and total 

Aβ), OCTX (Aβ1-42 and total Aβ), PCTX (Aβ1-42 and total Aβ), and ECTX (total Aβ) 

regions of the brain.  In addition, AβpE3, post-translationally modified Aβ, was 

reduced in the PFCTX and PCTX regions of the brain in VAC animals.  Previous 

vaccine studies using the canine model have not explored the vaccine’s potential 

in reducing post-translationally modified Aβ.  Post-translationally modified Aβ, 

including AβpE3, has shown to be more toxic and involved in the initial stages of 

the disease thereby making it a crucial therapeutic target for clearance in a clinical 

setting (8, 162, 362, 383, 385, 487).       

The previous ENR study in aged canines did not exhibit any kind of reduction 

in Aβ pathology in response to treatment (322).  Interestingly, in the current study 



  

124 

ENR showed a trend towards reducing Aβ1-42 in the PFCTX.   ENR led to reduced 

total Aβ plaque loads in the PFCTX and PCTX.  However, ENR did not show any 

treatment effects in reducing AβpE3.    With this finding we became curious if the 

lower Aβ pathology was due to a clearance effect or maintenance effect due to the 

ENR.  Since this reduction due to ENR seen in our study was not as great as that 

seen by VAC, we hypothesized that the ENR had a maintenance effect on Aβ 

plaque loads rather than a clearance effect.   

To test if ENR was having a maintenance or clearance effect on plaque loads, 

we used PFCTX and PCTX brain tissue (regions that appeared to have the 

greatest treatment effect by ENR) from 10 canine cases from our archive tissue 

inventory.  Dogs were selected at matched ages to the baseline ages of the 

treatment study animals.  These pre-treatment dogs represented the average 

plaque loads of the treatment study dogs prior to the start of treatment, providing 

a means of comparing change in plaque loads with age (with C/C group dogs) and 

with treatment (with E/C, C/V, and E/V group dogs).   

Results showed that pre-treatment dogs exhibited significantly lower plaque 

loads than C/C dogs for all types of Aβ examined illustrating the increase of plaque 

loads in the canine with age over time.  Aβ1-42 plaque loads of the PFCTX in pre-

treatment dogs most resembled that of the E/C treatment group suggesting that 

the effects seen by ENR were likely maintenance of plaque loads in treated dogs 

rather than a clearance of Aβ plaques.  This maintenance could have either been 

a decreased rate of Aβ accumulation or slowing of Aβ accumulation.  Aβ1-42 plaque 

loads in the PCTX of the pre-treatment animals fell between the E/C treatment 
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group and VAC animals. However, the E/C group loads were still lower than that 

of the C/C group.  It is likely that the ENR was able to slow the rate of Aβ1-42 plaque 

formation in the PCTX while VAC cleared plaque loads.  A similar effect is 

suggested with total Aβ plaque loads in the PFCTX and PCTX.  Unlike the Aβ1-42 

and total Aβ plaque loads, AβpE3 average plaque load for the pre-treatment group 

was significantly lower than all treatment groups on the present study.  ENR 

appears to have no effect on AβpE3 plaque loads, while the VAC reduced/cleared 

this post-translationally modified form of Aβ (VAC animals). The lack of change in 

AβpE3 plaque loads suggests that ENR was not affecting preexisting Aβ, but 

rather the further accumulation of Aβ plaques.  These results support ENR having 

a maintenance effect rather than enhancing clearance. 

Aβ found in the periphery is of soluble form, however, both soluble and 

insoluble Aβ are found in the brain (262, 294, 390, 473).  Plaque loads do not 

provide us with information regarding the changes in soluble as compared to 

insoluble Aβ. Though insoluble Aβ primarily makes up plaque pathology, this form 

of Aβ may not all be aggregated into plaque and can also be found in blood 

vessels.  Additionally, plaque loads do not provide insight on soluble Aβ levels 

since this form of Aβ is not associated with plaques (262, 294, 390, 473).  To further 

investigate the combination treatment effects of the present study serial extracted 

soluble and insoluble Aβ was measured in all treatment groups.  We found that 

VAC reduced both soluble (PBS and SDS extracts) and insoluble (FA extract) Aβ1-

42 from the PFCTX and OCTX compared to non VAC dogs.  Our findings confirmed 

the earlier mentioned clearance of Aβ1-42 plaques seen by VAC in these brain 
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regions.  While we saw a reduction in Aβ1-42 plaques that trended towards 

significance in the PFCTX due to ENR, we did not see any effect by ENR on 

reducing FA extracted insoluble Aβ1-42 in this brain region or any other examined 

region supporting the hypothesis of maintenance and not clearance of Aβ 

pathology. 

We did not see a reduction in FA extracted Aβ1-40 due to VAC, however, an 

increase of PBS extracted Aβ1-40 was seen.  This increase in soluble Aβ1-40 could 

be the result of breaking down plaques by the VAC into more soluble forms of Aβ.  

While we saw an increase in soluble Aβ1-40 in the CSF of ENR treated dogs, we 

did not see the expected decrease in insoluble or soluble Aβ1-40 in any brain region 

of these dogs.  As discussed earlier, the increase in CSF Aβ1-40 may have been 

due to the clearance of deposited Aβ in the cerebrovasculature by ENR benefits 

on vascular health. If this is the case, then any insoluble Aβ1-40 deposited in blood 

vessels would be broken down into a soluble state and be more readily cleared 

from the brain and into the periphery than that of which is deposited in the 

parenchyma of the brain.  While this clearance of vascular deposited Aβ could lead 

to a noticeable increase in peripheral Aβ1-40, as seen in the CSF of ENR animals, 

it may not be enough to indicate an apparent decrease in insoluble brain Aβ1-40.  

This would explain the lack of difference in the serial extracted Aβ in the brain due 

to ENR. 

Using the measurements of Aβ1-42 and Aβ1-40 we calculated the Aβ 42/40 

ratio. Generally Aβ 42/40 ratio is an indicator of AD pathology and onset of the 

disease (95, 217).  In dogs, it is expected that this ratio would be higher with age 
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as pathology and cognitive decline progress.  Since the VAC dogs in our study 

received vaccinations of fibrillar Aβ1-42 and had shown reduced levels of Aβ1-42, we 

hypothesized that the Aβ 42/40 ratio would be lower in VAC treated animals than 

non-treated animals.  Aβ 42/40 ratios for PBS and SDS extractable Aβ were lower 

in the PFCTX of VAC treated animals.  With these results we could conclude that 

the VAC was most productive in reducing Aβ pathology specifically in the PFCTX, 

which is portrayed in the reduction of plaque forms and serial extracted Aβ in the 

PFCTX.  While no change was seen in Aβ 42/40 ratios for the PCTX, OCTX, or 

HIPPO of the VAC animals, these regions did still show reduced plaque loads or 

soluble and insoluble Aβ.  

While both VAC and ENR had their respective treatment effects on CSF Aβ, 

Aβ plaque load, serially extracted Aβ, and overall reduction of Aβ pathology, no 

significant additive effects were seen in the combination treatment group in further 

reducing Aβ pathology.  Statistically by two way ANOVA, there was a significant 

additive effect of VAC and ENR in decreasing Aβ1-42 plaque load in the PFCTX, 

decreasing SDS extractable Aβ1-42 and Aβ 42/40 ratio in the PFCTX, increasing 

PBS extractable Aβ1-42 and Aβ 42/40 ratio in the HIPPO, and increasing SDS 

extractable Aβ1-40 in the PCTX and HIPPO.  However, by post hoc the E/V 

treatment group did not have greater effects than the C/V group.  In the presence 

of active vaccine, the ENR provides no additional benefit.   

The results of our study further support the ability of active vaccination with 

fibrillar Aβ1-42 combined with Alum to reduce Aβ pathology in aged canines.  

Additionally the vaccine in our study does not promote adverse effects similar to 
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the meningoencephalitis that was seen in the human clinical trials using an active 

vaccine with QS-2 in polysorbate 80 as an adjuvant.  However, there was still the 

concern of intracerebral microhemorrhages due to the use of immunotherapies for 

treatment of AD.  Such an increase in microhemorrhages could increase risk of 

intracerebral microhemorrhage and further cognitive impairment (39, 469).  We 

examined the frequency of microhemorrhages in the PFCTX, OCTX, and HIPPO 

regions of the brains in all study dogs along with the added pre-treatment archive 

cases in order to determine if an increase in microhemorrhages would occur with 

the use of the active vaccination with fibrillar Aβ1-42 in Alum.  Microhemorrhages 

appeared to be more frequent in the PFCTX and OCTX than the HIPPO of study 

dogs.  The PFCTX and OCTX are regions of the brain where Aβ deposition is 

thought to occur first with age (18, 50-52, 445). Since microhemorrhages do occur 

with age and with greater Aβ deposition in the vasculature of the brain, it was not 

surprising to see these regions having the greater number of microhemorrhages 

compared to the HIPPO. Neither VAC nor ENR led to an increase in 

microhemorrhages in the PFCTX or HIPPO.  There was a statistically significant 

increase in microhemorrhages in the OCTX due to VAC.  However, the C/V and 

E/V treatment groups did not differ in microhemorrhage occurrence compared to 

the C/C group.  What was apparent was the lower number of OCTX 

microhemorrhages in the E/C treatment group compared to the other groups.  It’s 

possible that this lower frequency of microhemorrhages in the E/C drove the 

statistical increase in microhemorrhages due to VAC since the E/C group is 

considered part of the non-VAC animals.  Using the same baseline age match 
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archive cases that were in the plaque load analysis, we were able to determine if 

the lower microhemorrhage frequency in the E/C group was due to a maintenance 

effect of treatment. Pre-treatment dogs showed a similar frequency of 

microhemorrhages in the OCTX as the E/C treatment group. This observation 

suggests that ENR shows maintenance or protective effects against additional 

microhemorrhages while all other treatment groups experienced more bleeds with 

age independently of VAC. 

Although no significant or consistent cognitive benefits were detected in any 

treatment group, the active vaccine successfully produced antibody responses 

against fibrillar Aβ1-42.  Vaccinated animals also showed a reduction in overall Aβ 

pathology in multiple areas of the brain, while not showing an increase in CSF Aβ.  

Previous immunotherapy studies in animals or humans had investigated the 

potential ability to reduce modified Aβ pathology such as plaques consisting of 

AβpE3.  Here we show that active vaccination with fibrillar Aβ1-42 is successful in 

reducing a toxic and highly aggregated form of modified Aβ in the canine model.   

In addition to the vaccine treatment, those receiving ENR showed a lack of age-

associated increase in Aβ pathology that has not been reported in past ENR 

studies in dogs.   ENR led to an increase in CSF Aβ1-40 possibly suggesting ENR 

aiding in the clearance of deposited Aβ in the vasculature. ENR also slowed the 

age associated increase of Aβ1-42 plaque load in the PFCTX with treatment.  In the 

HIPPO, ENR decreased SDS extractable Aβ1-42 in the HIPPO.  As for the concern 

for potential adverse effects of immunotherapy for AD, no serious negative effects 

were seen and frequency of microhemorrhage occurrence was not increased with 
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the use of active vaccination with fibrillar Aβ1-42 in Alum. Additionally, we found that 

ENR may actually reduce the risk of microhemorrhages in the OCTX region.  While 

benefits of both VAC and ENR were experienced in reducing Aβ pathology, the 

combination of both treatments did not cause any additional benefit compared to 

using only single treatment of either VAC or ENR.  Additionally, no synergistic 

improvement was detected in cognitive function in the combination treatment 

group compared to individual treatment groups.  

Many therapeutic approaches have at best, modestly improved cognitive 

function in larger animal models of AD.  This lack of cognitive improvement is 

consistent with clinical trials with AD patients.  It is possible that once Aβ has begun 

its damage to neurons it is challenging to reverse it and restore cognition that has 

already been compromised.  Either alternative therapeutic approaches need to be 

explored, or treatment may need to be initiated earlier as a preventative approach 

before the Aβ pathology begins or worsens.   

The combination treatment we use in this study may better serve as a 

preventative therapy for AD.  Our results from the ENR treatment strongly support 

a maintenance effect that likely works on a mechanism completely separate to that 

by which the VAC component of the combination therapy did.  While the ENR 

appears to be acting on the mechanism of Aβ accumulation, the VAC works by 

clearing pre-existing Aβ pathology.  Together, the combination treatment could be 

a viable therapeutic approach for the prevention of AD.  With the age of onset for 

AD pathology varying between individuals, determining a timeline for 

administration of a preventative treatment becomes difficult.  Using a combination 
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therapy approach such as ENR with VAC could target both the prevention of Aβ 

accumulation as well as the clearance of any likely little pre-existing Aβ pathology.  

This type of treatment approach could allow for some flexibility when determining 

a timeline for administering the treatment in a given individual.  Ultimately, the 

treatment could act early enough to prevent any possible irreversible damage 

being done to the neurons by the Aβ pathology and avoid resulting cognitive 

deficits.  
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CHAPTER EIGHT: Future Directions 

While the approach of using VAC in combination with ENR in this study did 

not lead to additive effects in reducing Aβ pathology or improving cognition in aged 

canines, we did see interesting and novel cerebrovascular benefits due to ENR 

that had otherwise not been seen in the previous canine study.  It would be of great 

interest to measure the amount of blood vessel Aβ pathology in the study animals 

and determine if there is a correlation between these levels and increased CSF 

Aβ1-40.  We would hypothesize that there would be a correlation between lower 

levels of blood vessel pathology and increased levels of CSF Aβ1-40 and that this 

correlation would be seen in animals receiving ENR.  Additionally, the changes in 

Aβ plaque pathology seen due to ENR indicate that a maintenance effect is likely 

occurring in ENR treated animals.  To further investigate this maintenance idea, α- 

and β-secretase activity could be measured. In a previous canine study exploring 

the effects of an antioxidant diet and ENR on Aβ load, α- secretase activity was 

increased in animals receiving ENR (322).  For the current study we would 

hypothesize that ENR is promoting α-secretase activity resulting in ENR animals 

having lower β-secretase activity and increased non-amyloidogenic processing 

compared to non-ENR animals.      

The focus of this study was to examine effects on cognition and Aβ pathology 

due to the combination treatment.  Other neurological changes that have 

previously been reported in past ENR studies have not yet been explored in these 

animals.  For instance, although neurogenesis was not increased with ENR in a 

previous aged canine study, neuron number in the hippocampus and the growth 
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factor BDNF are maintained and improved, respectively, in ENR treated dogs  

(116, 278, 279, 407).  Future directions of this project would be to explore these 

changes in the present study animals and comparing those in the E/V treatment 

group to all other groups. One could hypothesize that the both the E/C and E/V 

treatment groups would show higher levels of BDNF and potentially enhanced 

neuron survival and neurogenesis, with the E/V group experiencing greater 

improvement.   

It was noted that the VAC was successful in reducing modified Aβ, AβpE3, 

pathology that has been previously shown to be more toxic. Additionally, AβpE3 

correlates with the hyperphosphorylation of tau.  Though canines do not produce 

NFTs with age, they do show hyperphosphorylation of tau at sites that coincide 

with those affected in humans with AD.  It would be of interest to measure levels 

of soluble and insoluble tau in our treated canines and see if a correlation exists 

between these measures and the effects of VAC on AβpE3 plaque pathology.  One 

could hypothesize that levels of insoluble tau in C/C and E/C treatment groups 

would be higher than those of the C/V and E/V treatment groups. The effects of 

VAC in reducing AβpE3 pathology could lead to the de-hyperphosphorylation of 

tau or the prevention of additional hyperphosphorylated insoluble tau.  

As mentioned earlier, the combination approach tested in the current study 

may have exhibited greater additive effects, particularly on cognition, had the 

treatment been started at an earlier age in the canines.  As a future project, this 

combination treatment could be tested in canines around 7 to 8 years old, just as 

Aβ begins to accumulate.  At this age, Aβ pathology should be minimal and 
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cognitive changes would be predicted to be mild.  ENR started at this age would 

promote healthier brain aging as earlier studies have shown ENR improve 

neurogenesis and reduced neuronal loss (116, 408).  From our findings in this 

study, ENR should also reduce the risk of microhemorrhage occurrence which can 

contribute to cognitive decline. Additionally ENR prevented or slowed the rate of 

Aβ plaque accumulation and would be hypothesized to aid in preventing Aβ in 

younger canines.  With ENR and VAC acting on separate pathways, one could 

hypothesized the resulting immune response would further assist in preventing 

additional Aβ pathology and clearing out any pre-existing early Aβ plaque 

formation before any neuronal damage could occur. 
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