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ABSTRACT OF DISSERTATION 

SUSTAINABLE DISPOSAL OF COAL PROCESSING WASTE STREAMS 

Modern coal preparation facilities incorporate a wide array of solid-solid and solid-liquid 

separation processes for rejecting mineral matter to meet market specifications. The coarse 

mineral matter is typically placed into engineered refuse piles whereas the fine refuse is 

either stored in impoundments or co-disposed with the coarse refuse. The discharge water 

from the refuse material represents an environmental concern due to the potential release 

of trace elements, and the subsequent elevation of total dissolved solids and conductivity. 

The research findings reported in this dissertation addresses sustainable coal processing 

waste disposal through using strategies aimed at minimizing the environmental impacts. 

To provide an accurate and inexpensive method to assess the potential environmental 

effects of a given waste material, a conductivity screening-level test was modified to 

incorporate the impact of particle surface area. The test was used on various waste streams 

as well as the particle size and density fractions of each waste stream to identify 

environmentally sensitive components that can be separated from the bulk and isolated to 

prevent negative environmental impacts. The results were subsequently evaluated for long 

term mobility of trace elements under different disposal scenarios: (i) static leaching tests 

designed to simulate the quiescent conditions in a stable impoundment, and (ii) a dynamic 

test to simulate waste materials exposed to the atmosphere in variable wet/dry storage 

conditions. The results indicated that liberating, separating and isolating the highest density 

fractions (>2.68 SG) which represents less than 5% of the coal refuse materials results in 

significant abatement of total dissolved solids and conductivity. Required modifications of 

the coal processing plants were suggested to segregate and subsequently isolate the 

environmentally sensitive fractions from the remaining refuse material.  
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Mohammad Rezaee 

Student’s Signature 

12/18/2015 

          Date 



SUSTAINABLE DISPOSAL OF COAL PROCESSING WASTE STREAMS 

By 

Mohammad Rezaee 

Dr. Rick Q. Honaker 

Director of Dissertation 

Dr. Braden Lusk 

Director of Graduate Studies 

12/18/2015 

Date 



This Work is dedicated to the memory of my father and mother who have always inspired 

me to peruse my dreams. 



iii 

ACKNOWLEDGMENTS 

Now that I am reaching to the summit of my academic career as a student, I have a lot of 

people to thank, acknowledge and be indebted for making this journey a memorable 

experience. Without these people, I would not have achieved whatever miniscule I have 

accomplished over the past few years and beyond. 

First and foremost, I would like to express my deep and sincere gratitude for my research 

advisor and Committee Chair, Dr. Rick Q. Honaker, for his constant support, guidance and 

encouragement during the course of this work and without whom this work would not have 

been possible. I cannot thank him enough for always being available despite being 

extremely busy. The excellent discussions that he has had with me over the years, not only 

pertaining to the subject but also sharing his experiences in general have been a constant 

motivation for me to think independently and perform better. I will be ever grateful to Dr. 

Honaker for guiding me throughout. As not only an advisor but also a mentor, he has 

always trusted in my abilities and assisted me to expand my knowledge, skills and 

experiences through involvement in working on various research projects beyond this 

dissertation, teaching courses, proposals development and serving the mining society. 

I am also extremely grateful to Dr. Richard Warner, an important member of my doctoral 

advisory committee, for his time, assistance and guidance during the course of my research. 

I thank him whole-heartedly for sharing his excellent experience and thoughts in the field 

of mining environmental impacts and remediation with me. 



iv 
 

In addition, I would like to extend my sincere gratitude to Dr. Thomas Novak, Dr. 

Bhupendra K. Parekh and Dr. John Silva for readily accepting to be a part of my doctoral 

advisory committee and providing me with valuable suggestions, guidance and sharing 

their insights at various stages of the program. I would also like to express my gratitude to 

Dr. Carmen T. Agouridis for agreeing to be the external examiner for my final examination. 

 

I am especially thankful to Mr. Nick Cprek, scientist assistant at UK mechanical 

engineering department, for his exceptional advice on laboratory details of the 

experimental research and the generous use of his time spent with me to set up the 

experiments. My appreciation goes also to Mr. Edward Thompson of the Department of 

Mining Engineering for his critical role in facilitating logistics and several technical details 

of the project.  

 

I also would like to appreciate Mr. Jason Backus, manager of Kentucky Geological Survey 

(KGS), and Mr. Gerald Thomas, principal research scientist at the Center for Applied 

Energy Research (CAER), for their exceptional supports with analytical services. 

 

I would also particularly appreciate my colleagues at UK mining engineering department, 

Majid, Hassan, Abhijit, Venkat, Qing Qing, Wencai, Ebrahim, Greg and other UK graduate 

students for always sharing their valuable insights and helping me broaden my knowledge 

base. A big thank you to all my friends in Lexington for making this journey so memorable 

that I would never forget a moment of this phase of my life. It would not be fair if I do not 

mention the support that I have had from my best buddies, Omid, Majid, Hassan, Dana, 

http://www.aimehq.org/programs/award/bio/bhupendra-k-parekh-0


v 
 

Mohammad, Yaser, Ehsan, Erfan, Amir, Nj, Ariana and Anisaa, for always taking time off 

from their busy lives and helping me out during stressful times. Above all, special words 

of appreciation for Lisa and Jamshid Baradaran for putting up with me, being with me at 

all times and treating me like a member of their own respective family. I can and will never 

forget all that you have ever done for me. 

 

This segment would be incomplete without me acknowledging the role played by the most 

important people in my life. Of paramount and supreme importance among them are my 

parents, who have been great pillars of strength for me, who have nurtured and instilled 

great values in me during my formative years. Words fall short for me to describe how 

much I love and miss them. I know that I will always be blessed by the great memories that 

they have left me with. My sincere gratitude to my sisters, Firouze, Zohre and Arezoo, and 

brothers in law, Mortaza and Mahmood, who have always supported me, encouraged me, 

inspired me and stood by me in whatever I have done through my life. Last but not the 

least, my deepest and sincere thanks to my nephews, Ali and Qurosh, and my niece, Asal, 

for their always support with their true love. 

  

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ................................................................................................ III 

TABLE OF CONTENTS .................................................................................................. VI 

LIST OF TABLES ............................................................................................................ XI 

LIST OF FIGURES ....................................................................................................... XIII 

1. INTRODUCTION AND BACKGROUND ................................................................ 1 

1.1 COAL MINING AND REGULATIONS ....................................................................... 6 

1.2 COAL PROCESSING ............................................................................................... 8 

1.3 COAL WASTE DISPOSAL .................................................................................... 11 

1.4 TRACE ELEMENTS .............................................................................................. 14 

1.5 ORIGIN OF TRACE ELEMENTS ............................................................................. 17 

1.6 MODE OF OCCURRENCE OF TRACE ELEMENTS .................................................... 17 

1.6.1 Antimony ...................................................................................................... 20 

1.6.2 Arsenic .......................................................................................................... 21 

1.6.3 Beryllium ...................................................................................................... 22 

1.6.4 Cadmium ....................................................................................................... 22 



vii 
 

1.6.5 Chromium ..................................................................................................... 23 

1.6.6 Cobalt ............................................................................................................ 24 

1.6.7 Lead............................................................................................................... 24 

1.6.8 Manganese .................................................................................................... 25 

1.6.9 Mercury ......................................................................................................... 26 

1.6.10 Nickel ........................................................................................................ 26 

1.6.11 Selenium ................................................................................................... 27 

1.6.12 Thorium..................................................................................................... 28 

1.6.13 Rare Earth Elements ................................................................................. 29 

1.7 DISSERTATION OUTLINE .................................................................................... 33 

2. DEVELOPMENT OF A FIELD LEACHING TEST FOR ELECTRICAL 

CONDUCTIVITY SCREENING-LEVEL ....................................................................... 35 

2.1 INTRODUCTION .................................................................................................. 36 

2.2 MATERIALS AND METHODS ............................................................................... 41 

2.2.1 Sample collection and characterization ........................................................ 41 

2.2.2 Conductivity Screening Test ......................................................................... 44 

2.2.3 Parametric Study ........................................................................................... 45 



viii 
 

2.3 RESULTS AND DISCUSSION ................................................................................. 47 

2.3.1 Leaching Characterization ............................................................................ 47 

2.3.2 Statistical Evaluations of Conductivity Populations ..................................... 50 

2.3.3 Parametric Evaluation ................................................................................... 53 

2.3.4 Modified Conductivity Test Procedure ......................................................... 61 

2.4 CONCLUSIONS .................................................................................................... 62 

3. ELECTRICAL CONDUCTIVITY SCREENING FOR DEVELOPING COAL 

PROCESSING WASTE DISPOSAL STRATEGIES ...................................................... 65 

3.1 INTRODUCTION .................................................................................................. 66 

3.2 EXPERIMENTAL .................................................................................................. 73 

3.2.1 Sample Collection and Characterization ....................................................... 73 

3.2.2 Conductivity Screening Level (CSL) Test:................................................... 80 

3.3 RESULTS AND DISCUSSION: ............................................................................... 82 

3.3.1 CSLT of refuse streams ................................................................................ 82 

3.3.2 Crushing Effect ............................................................................................. 84 

3.3.3 CSL test on size-density fractions................................................................. 87 

3.4 MATERIAL SEGREGATION .................................................................................. 95 



ix 
 

3.5 CONCLUSION ...................................................................................................... 96 

4. LEACHING CHARACTERISTIC STUDY OF COAL PROCESSING WASTE 

STREAMS ........................................................................................................................ 98 

4.1 INTRODUCTION .................................................................................................. 99 

4.2 EXPERIMENTAL ................................................................................................ 101 

4.2.1 Sample Collection and Characterization ..................................................... 101 

4.2.2 Leaching Experiments ................................................................................ 106 

4.2.2.1 Dynamic Leaching Experiment .......................................................... 107 

4.2.2.2 Static Leaching Experiments .............................................................. 110 

4.2.2.3 Analyses of Leachate Solutions .......................................................... 110 

4.3 RESULTS AND DISCUSSION ............................................................................... 111 

4.4 CONCLUSIONS .................................................................................................. 126 

5. MINIMIZING THE ELECTRICAL CONDUCTIVITY LEVEL OF APPALACHIAN 

COAL WASTE STREAMS EFFLUENT ...................................................................... 128 

5.1 INTRODUCTION ................................................................................................ 128 

5.2 EXPERIMENTAL ................................................................................................ 131 

5.2.1 Sample Collection and Preparation ............................................................. 131 



x 
 

5.2.2 Sample Characterization ............................................................................. 134 

5.2.3 Leaching Study ........................................................................................... 137 

5.3 RESULTS AND DISCUSSION ............................................................................... 140 

5.3.1 Leaching characteristics of origin waste streams ........................................ 140 

5.3.1.1 Low pyritic coal refuse streams .......................................................... 145 

5.3.1.2 High pyritic coal refuse streams ......................................................... 147 

5.4 CONCLUSION .................................................................................................... 152 

6. CONCLUSIONS AND FUTURE WORK .............................................................. 154 

6.1 CONCLUSIONS .................................................................................................. 154 

6.2 RECOMMENDATIONS FOR FUTURE WORK ........................................................ 160 

REFERENCES ............................................................................................................... 162 

VITA ............................................................................................................................... 190



xi 
 

LIST OF TABLES 

  

Table 1.1. US EPA Selected elements classified as HAPs under 1990 CAAA (Davidson 

and Clark, 1996). ........................................................................................................ 7 

Table 1.2. Trace elements of environmental concern in coal utilization .......................... 16 

Table 1.3. Trace elements distribution in coal .................................................................. 19 

Table 2.1. Sample Characterization .................................................................................. 43 

Table 2.2. Four sized and density fractionated samples ................................................... 44 

Table 2.3. Parameter value ranges investigated in the Box–Behnken test program ......... 45 

Table 2.4. Particle shape factors for different materials used for the determination of 

surface area ............................................................................................................... 47 

Table 2.5. Summary of independent parameters and measured values for the response 

variable ...................................................................................................................... 51 

Table 2.6. T-tests' results for testing the equality of pairs of the means ........................... 53 

Table 2.7. Statistical significance of the parameters and parameter interactions and fit 

analysis for the four quadratic models. ..................................................................... 56 

Table 3.1. Ash and sulfur contents including sulfur forms in the materials collected from 

the various process streams of an operating coal preparation plant. ........................ 78 

Table 3.2. Major element analyses of the ash-forming material generated from the 

combustion of the material in each process stream at 500˚C. .................................. 79 

Table 3.3. CSLT results from the analysis of samples collected from the original refuse 

streams. ..................................................................................................................... 83 

Table 3.4. Effect of crushing on pH of supernatant liquids in contact with various top size 

samples of dense medium vessel refuse (DMVR) sample. ...................................... 85 



xii 
 

Table 3.5. Effect of crushing on pH of supernatant liquids in contact with various top size 

samples of dense medium cyclone refuse (DMCR) sample. .................................... 85 

Table 3.6. Weight distribution of size-density fractions of DMVR sample along with 

associated leachate pH in CSL test ........................................................................... 89 

Table 3.7. Characteristics of -0.15 mm fraction of DMVR samples ................................ 91 

Table 3.8. Weight distribution of size-density fractions of DMCR sample along with 

associated leachate pH in CSLT ............................................................................... 93 

Table 3.9. Characteristics of -0.15 mm fraction of DMCR samples ................................ 93 

Table 3.10. Weight distribution of size-density fractions of HFO sample along with 

associated leachate pH in CSLT ............................................................................... 94 

Table 3.11. Weight distribution of the density fractions of the coal processing waste 

streams ...................................................................................................................... 96 

Table 4.1. Trace elements association in coal (after Vejahati et al., 2010) .................... 100 

Table 4.2. Ash content and sulfur forms in the coarse and fine reject samples collected 

from three preparation plant. .................................................................................. 104 

Table 4.3. Semi-quantitative mineralogy of coal fractions obtained from an analysis of 

the 5-B Central Illinois coal  using XRD. ............................................................... 105 

Table 4.4. Major element analyses (ash basis) of 500˚C ash prepared from the sample 106 

Table 4.5. Cumulative (mg) of elements released in the leachate from 1kg of the samples 

calculated based on the ICP measurements for dynamic and static tests. .............. 125 

Table 5.1. Ash content and forms of sulfur .................................................................... 134 

Table 5.2. Major element analyses (ash basis) of 500˚C ash prepared from the sample 137 

Table 5.3. Size distribution of the density fraction of high pyritic refuse streams ......... 151 



xiii 
 

LIST OF FIGURES 

 

Figure 1.1. Schematic steps from coal mining to utilization (Gluskoter et al., 2009) ........ 9 

Figure 1.2. Schematic coal processing plant flowsheet .................................................... 10 

Figure 1.3- Mode of occurrence of trace elements ........................................................... 18 

Figure 2.1. Variation of supernatant liquid pH as a function of time in static and dynamic 

leaching tests. ............................................................................................................ 48 

Figure 2.2. Cumulative extraction of alkali and alkaline earth elements, sulfate and total 

metals from unit weight (kg) of the coarse refuse sample in dynamic and static 

leaching tests. ............................................................................................................ 49 

Figure 2.3. Conductivity of the supernatant liquid measured as a function of time in the 

dynamic leaching test for the non-segregated coarse refuse material. ...................... 50 

Figure 2.4. Relations between EC and VSAR for different size-density fractionated 

samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. ............... 57 

Figure 2.5. Relations between EC and SA for different size-density fractionated samples: 

(a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. .............................. 58 

Figure 2.6. Relations between EC and oxidant for different size-density fractionated 

samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. ............... 59 

Figure 2.7. Predicted interactive effects of VSAR and oxidant on EC for different size-

density fractionated samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) 

Coarse-Sink ............................................................................................................... 60 

Figure 2.8. Schematic of the modified conductivity screening-level procedural steps 

including the determination of surface area. ............................................................. 62 



xiv 
 

Figure 3.1. Sampling locations in the coal processing plant: 1) Feed, 2) Clean coal, 3) 

Dense medium vessel refuse, 4) Dense medium cyclone refuse, 5) High frequency 

overflow, 6) Total coarse refuse, 7) Thickener underflow, and 8) Fine refuse sump.

................................................................................................................................... 74 

Figure 3.2. Sampling locations in the coal processing plant: 1) Feed, 2) Clean coal, 3) 

Dense medium vessel refuse, 4) Dense medium cyclone refuse, 5) High frequency 

overflow, 6) Total coarse refuse, 7) Thickener underflow, and 8) Fine refuse sump.

................................................................................................................................... 76 

Figure 3.3. Particle size distributions of the dense medium vessel refuse (DMVR), dense 

medium cyclone refuse (DMCR), high frequency overflow (HFO), fine refuse sump 

(FRS) and thickener underflow (TU) samples. ......................................................... 77 

Figure 3.4. Schematic showing the sample preparation process used to assess the potential 

of isolating environmentally sensitive components. ................................................. 82 

Figure 3.5. Effect of crushing on EC of supernatant liquids in contact with various top size 

(TS) samples of (a) dense medium vessel refuse (DMVR) and (b) dense medium 

cyclone refuse (DMCR) ............................................................................................ 86 

Figure 3.6. EC of supernatant liquids in contact with dense medium vessel refuse (DMVR) 

samples in CSL tests: (a) origin, (b) 19.2 mm TS, (c) 6.35 mm TS, and (d) 1 mm TS. 

The absence of bars for a given specific gravity fraction indicates that no material was 

recovered. .................................................................................................................. 88 

Figure 3.7. EC of supernatant liquids in contact with DMCR samples in CSLT (a) origin, 

(b) 12.7 mm TS, (c) 6.35 mm TS, and (d) 1 mm TS ................................................ 92 

Figure 3.8. EC of supernatant liquids in contact with the size-density fractions of HFO 94 



xv 
 

Figure 4.1. Experimental Setup for the dynamic leaching tests based on ASTM method D 

5744-96. Numbered Items indicate: (1) Compressed air source, (2) desiccant chamber, 

(3) humidifier, (4) air-flow control valves, (5) humidity series cells (after huggins et 

al., 2012) ................................................................................................................. 109 

Figure 4.2. pH variation of supernatant liquid in contact with the coal refuse samples in the 

(a) dynamic and (b) static leaching tests. ................................................................ 113 

Figure 4.3. Cumulative extraction (mg) of (a) sulfate and (b) iron per unit weight of 

material (kg) ............................................................................................................ 115 

Figure 4.4. Cumulative extraction (mg) of (a) aluminum and (b) silicon per unit weight of 

material (kg) ............................................................................................................ 118 

Figure 4.5. Cumulative Extraction of alkali and alkaline earth elements, sulfate and total 

metals from total coarse refuse and fine refuse sum samples of different coal sources 

per unit weight of material (kg) in (a) dynamic and (b) static leaching tests. ........ 119 

Figure 4.6. Percentage of metal and buffering elements out of total elements (TE) and alkali 

and alkaline earth elements (AAEE) released from coal waste samples in (a) static and 

(b) dynamic leaching tests ...................................................................................... 120 

Figure 4.7. Electrical conductivity of weekly leachate of the coal processing plant waste 

samples in dynamic leaching test ............................................................................ 121 

Figure 5.1. Simplified flowsheet for modern coal processing plants and sampling locations

................................................................................................................................. 132 

Figure 5.2. Column leaching tests set-up ........................................................................ 139 

Figure 5.3. Leaching characteristics of low pyritic coal refuse streams (a) pH and (b) EC

................................................................................................................................. 141 



xvi 
 

Figure 5.4. Leaching characteristics of high pyritic coal refuse streams (a) pH and (b) EC

................................................................................................................................. 144 

Figure 5.5. (a) pH and (b) EC of supernatant liquid in contact with low pyritic coal refuse 

samples .................................................................................................................... 146 

Figure 5.6. EC of supernatant liquids in contact with original and different density 

fractionated samples of (a) dense medium vessel and (b) dense medium cyclone refuse 

streams .................................................................................................................... 148 

Figure 5.7. Figure 5.6. EC of supernatant liquids in contact with original and different 

density fractionated samples of (a) high frequency overflow and (b) coarse refuse 

streams .................................................................................................................... 149 

Figure 5.8. Figure 5.6. Average and maximum EC of supernatant liquids in contact with 

original and different density fractionated samples of high pyritic refuse streams 150 

 

 

 

 

 

 

 

 

 

 

 

 

  



1 
  

1. INTRODUCTION AND BACKGROUND 

  

Upgrading of coal, which occurs after mining and before transport of the cleaned product 

to market, is achieved using low-cost facilities that incorporate a variety of solid-solid and 

solid-liquid separation processes. The process is driven by financial incentives resulting 

from reduced freight costs and improved utilization properties for the product coal. While 

these benefits are well documented, the coal industry often overlooks the important role of 

coal preparation in environmental control. In fact, coal processing facilities have long 

played a critical role in reducing the emissions of pollutants at coal-fired power stations. 

Airborne pollutants impacted by preparation include solid particulates such as fly ash as 

well as gaseous emissions of precursors associated with acid-rain and air toxics. These 

emissions are strictly regulated for coal-fired utilities by the EPA through various 

legislative acts such as the 1990 Clean Air Act Amendment (CAAA) and 2005 Clean Air 

Interstate Rule (CAIR). Many of the air pollutant precursors identified in the CAAA are 

associated with the mineral matter commonly rejected by coal preparation plants. Some of 

the most noteworthy of these are antimony (Sb), arsenic (As), beryllium (Be), cadmium 

(Cd), chlorine (Cl), chromium (Cr), cobalt (Co), fluorine (F), lead (Pb), manganese (Mn), 

mercury (Hg), nickel (Ni), selenium (Se) and radionuclides. 

 

During combustion at coal-fired utilities, these elements may be released to the atmosphere 

as solid compounds with the fly-ash and in the vapor phase with the flue-gas. The pre-

combustion rejection of trace elements by coal preparation is attractive since the waste rock 

is coarser and has a lower reactivity than the high-surface-area ash generated by power 

stations (Jacobsen et al., 1992). In-plant sampling campaigns conducted by various 
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researchers (Luttrell et al., 2000) suggest a good correlation between the rejection of 

mineral matter and the removal of trace elements during physical cleaning. These findings 

are also supported by laboratory float-sink tests performed using a variety of eastern U.S. 

coals (Palmer et al, 2004). These data suggest that trace elements are typically rejected at 

levels of 40-70% by weight using conventional preparation technologies.  

 

Unfortunately, the current focus of coal preparation facilities is not on addressing water-

related environmental problems. As such, many experts working in this technological area 

now believe that a new function to deal with comprehensive environmental management 

of air and water should be added to the list of responsibilities for coal processing facilities. 

There exist additional opportunities for redesigning preparation facilities for (i) the 

characterization, handling, disposal and storage of solid wastes and for (ii) the monitoring, 

transport, treatment and discharge of mine-influenced waters over the entire life cycle of 

mining projects. Preparation operations are ideally suited to provide the opportunity to 

address a multitude of environmental issues related to the coal mining system. In particular, 

the possibility of manipulating coal processing unit operations to minimize short- and long-

term water discharge of regulated constituents offers great potential. These new functions 

can be accomplished through the addition of new steps aimed at eliminating environmental 

problems. 

 

Research is also needed to spearhead the development of new coal processing technologies 

that can improve how mine waste is managed, handled and disposed near the working face 

of underground or surface mines.  Current practices in Central Appalachia require an 
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extensive amount of rock to be extracted from roof and floor material. After processing, 

50-70% of the run-of-mine material is rejected and placed into surface storage areas. 

Recent research has shown that this out-of-seam material is a primary source of trace 

elements that can be released to the environment. The development of a new generation of 

separation technologies that are capable of removing a significant amount (40-60%) of the 

rock material as close to the working face as possible and storing the material 

underground/in-pit could significantly reduce the footprint of the mining operation and 

reduce other environmental issues associated with releases of surface waste storage 

facilities. Underground storage of waste may also provide potential to reduce other 

environmental issues, such as those caused by subsidence. Also, according to recent 

research at National Institute for Occupational Safety and Health (NIOSH), waste storage 

behind seals could provide an effective barrier to absorb energy from accidental explosions 

in sealed areas of an underground mine. 

 

On the other hand, coal and coal by-products (processing waste and combustion waste 

streams  such as fly ash and bottom ash) are source of many valuable elements such as rare 

earth elements (REE), and precious metals, e.g. Germanium, as well as industrial metals. 

It has been estimated that the U.S. needs for REE can be met from the processing of the 

waste streams generated from the treatment of heavy mineral sand, phosphate, iron and 

copper ores, coal and coal combustion facilities (fly ash and bottom ash).  REE recovery 

as a byproduct provides significant economic advantages as mining operations that recover 

REE as the primary product have been disadvantaged by low cost operations outside the 

U.S.  The Mountain Pass mine in California is the only operation in the U.S. that focusses 
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solely on REE production and is currently struggling to be competitive with international 

sources. If REE were extracted as a byproduct from the aforementioned sources, mining 

operations such as Mountain Pass would not be needed thereby reducing the environmental 

impacts from extracting REE from a primary source. 

 

The recovery of REE from secondary sources could also be significantly beneficial to the 

economics of an operation that currently struggles to meet current profit demands from the 

production of their primary product.  There are many examples whereby the revenue from 

the primary product meets the cost of operating the facility and the revenue from the 

secondary source(s) provides the profit for the operation.  

 

As a results, sustainable disposal practices of coal processing waste materials is suggested 

to be the most effective strategy, from which valuables can be recovered for commercial 

use while the remaining materials are processed to generate environmentally benign 

material. Sustainability of our national resources is critical for our economy, the 

environment and our independence. Utilizing the materials that we extract from mining 

operations to their fullest while also using state-of-the-art technologies to minimize 

environmental impacts is of utmost importance for our society. 

 

Sustainable coal waste disposal may require following steps:  

1) Discovering the mode of occurrence of hazardous trace metals, REE, precious and 

industrial elements in coal and their fractionation in processing plants. 
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2) Developing and conducting characterization tests to determine the association 

between trace elements of environmental concern and various forms of minerals 

that are present in run-of-mine coals. These tests could be conducted to specifically 

identify these associations as a function of material properties that can be exploited 

for separation (e.g., particle size, density, magnetic susceptibility, etc.).  

3) Formulating the low cost operations for segregation of hazardous fraction from 

valuable fractions and possible scenarios for isolation/encapsulation of the 

hazardous fractions. 

4) Formulating modifications of the coal processing plants for extraction of valuable 

minerals and elements from the remaining waste materials. 

 

For improving the sustainability of coal processing waste disposal practices, this research 

focused on the minimizing the environmental impacts of coal waste disposal through the 

identification and isolation of the hazardous fractions. To achieve this goal, precise and 

reproducible short leaching characterization tests were developed to identify 

environmental concerns of coal waste disposals as a function of material properties. The 

results were then analyzed for long term through conducting leaching experiments, which 

were designed to simulate various storage conditions of the coal waste streams. The 

findings were then utilized for formulating the required modifications for liberation, and 

segregation followed by isolation of the environmental concerned fractions. 
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1.1 Coal Mining and Regulations 

 

Coal mining has been an important source of fuel and energy in the United States with an 

estimated 250 billion tons of recoverable resources in North America alone (EIA, 2007). 

In order to utilize coal and increase its combustible recovery, the waste components, which 

consist largely of incombustible mineral matter, are separated from the coal by coal 

cleaning process. The generated refuse material from the cleaning process must be stored 

or disposed of in an environmentally acceptable manner as specified by existing federal 

and state environmental regulations and permits. According to the U.S. Department of 

Energy, 92% of coal consumed in 2003 was used for electricity generation, and that share 

is expected to rise to 94% by 2025. 

 

The products of both coal cleaning and utilization are covered under several federal and 

state regulations and statutes such as the 1990 Clean Air Act Amendments (CAAA), the 

Clean Water Act (1977), the Safe Drinking Water Act (1974), the Migratory Bird Treaty 

Act (1918), the Endangered Species Act (1973), the 1976 Resource Conservation and 

Recovery Act (RCRA), and 2005 Clean Air Interstate Rule (CAIR), and A Field-Based 

Aquatic Life Benchmark for Conductivity in Central Appalachian Streams (2011). Some 

regulations are specific to coal mining such as the Federal Mine Safety and Health Act 

(1977) and the Surface Mining and Reclamation Act of 1977 (SMCRA).  

 

Of particular interest to the coal mining industry, the Clean Air Act Amendments (CAAA) 

of 1990 identified eleven trace elements and their compounds commonly found in coal as 

potentially “hazardous air pollutants” (HAPs). These selected elements are listed in the 
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Table 2.1. The range of values for each element includes a collection of data from different 

coal seams and locations with the concentrations expressed as a geometric mean of those 

ranges. 

 

Table 1.1US EPA Selected elements classified as HAPs under 1990 CAAA (Davidson and 

Clark, 1996). 

Element Symbol Concentration (µg/g) Ranges (µg/g) 

Beryllium Be 2 0.1 – 15 

Chromium Cr 20 0.5 – 60 

Manganese Mn 70 5 – 300 

Cobalt Co 5 0.5 – 30 

Nickel Ni 20 0.5 – 50 

Arsenic As 10 0.5 – 80 

Selenium Se 1 0.2 – 10 

Cadmium Cd 0.5 0.1 – 3 

Antimony Sb 1 0.05 – 10 

Mercury Hg 0.1 0.02 – 1 

Lead Pb 40 2 – 80 

 

The federal mandates in Titles III and IV of the Clean Air Act Amendments of 1990 have 

placed increasingly stringent demands on the type and grade of coal that can be burnt in an 

environmentally acceptable manner. This has increased the push for advanced cleaning 

prior to supply to utility companies. The removal of impurities during cleaning 



8 
  

significantly reduces the amount of Hazardous Air Pollutants (HAPs) and this contributes 

to an effective reduction in emissions during coal firing in the power plant. The waste 

products of coal cleaning typically consist of quartz, clays and pyrite. While the emissions 

from coal-fired power plants are subject to further emission control devices that eliminate 

HAPs from the flue gases to required standards by the US Environmental Protection 

Agency (EPA), fly ash, the waste generated by the preparation plant, is typically disposed 

of in tailings impoundments.  

 

1.2 Coal Processing 

 

Coal processing utilizes the low cost separation technologies to fractionate the 

heterogeneous coal run-of-mine to organic (carbonaceous) and inorganic (mineral) matter 

to increase heating value and meet the specification of the market such as specific energy, 

ash and moisture content (Figure 1.1). 
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Figure 1.1. Schematic steps from coal mining to utilization (Gluskoter et al., 2009). 

 

Coal processing involves the application of series of particle sizing, cleaning and 

dewatering units (Figure 1.2). Run-of-mine coal after crushing for partially liberation of 

organic from mineral matter, is treated in coal processing plants in different particle size 

fractions. Sizing in the plant is achieved through the application of screens and classifying 

cyclones. Coal cleaning for coarse (greater than 10 mm) and intermediate (10 x 1 mm) 

particle size fractions is achieved through utilization of dense medium vessel and dense 

medium cyclone, respectively. The dense medium separations utilize a dense medium 

suspension to separate the coal and rocks based on their relative density difference.  Fine 

(1 x 0.15 mm) particle size fraction is typically treated using a series of spiral concentrators 

which fractionate coal and rock based on the particles size, shape and density. Depending 

on the amount of materials in the ultrafine (smaller than 0.15 mm) size fraction, froth 
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floatation circuit may be used for coal cleaning in this fraction. Froth floatation utilizes the 

difference between hydrophobicity of rock and organic materials. Finally, appropriate 

dewatering units are applied to reduce the moisture content of the final products or recovery 

of magnetite used in the dense medium circuits. Coal processing, therefore, generates, 

coarse and fine refuse materials that need to be disposed. 

 

 

Figure 1.2. Schematic coal processing plant flowsheet 

 

The tailings generated from coal preparation processes are generally exposed to air and 

water. The interaction of pyrite and other sulfide minerals in the tailings with air and water 

leads to the production of iron sulfate and oxyhydroxide minerals and sulfuric acid. The 

acidic conditions generated from such mineral systems enhance the solubility of both major 

and trace elements in the tailings. The mobilization of such elements may not only 
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increases the conductivity of the aqueous streams but also creates significant problems if 

allowed to get in contact with the local natural groundwater (Rezaee et al., 2013).  

 

1.3 Coal Waste Disposal 

 

As a result of coal processing for improving the coal heating value and meeting the market 

specifications, 50-70% of the run-of-mine material is rejected and placed into surface 

storage areas which are refuse piles or impoundments. Refuse pile are designed to store the 

coarse refuse materials that can be easily dewatered and hauled by trucks or conveyor belts. 

Impoundment describes ponds that are used to store mining tailing slurry with high water 

content by constructing a dam using coarse refuse and sand from previous mining 

activities.  To reduce the cost, the coarse refuse is usually used to dam the opening of a 

hollow between adjacent mountains near the mining site. Tailings impoundments are also 

designed to perform other functions in addition to the disposal function. Some of the 

functions include removal of suspended solids from process water by sedimentation, 

equalization of wastewater quality, storage and stabilization of process recycle water and 

so on (Anon., 1987). 

 

Concerns about dust generation, transportation costs, health concerns and performance 

have resulted in the preference of wet cleaning processes. Therefore, fine coal and mineral 

matter, waste slurry with large amounts of water are conventionally disposed of in an 

impoundment. In the US, 713 fresh-water and slurry impoundments were reported to be 

active by MSHA as of August 2001 (Bentley, 2001). Although impoundments are believed 

to be the cheapest way to dispose the waste material, dam failures, flooding from breached 
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impoundments, acid mine drainage, spillages and overflows and local groundwater 

contamination from undesirable leachate generation due to the presence of iron and sulfur 

in coal refuse materials are considered as potential environmental problems of tailings 

impoundments. (Alam, 2011; Gardner, J. S., et al., 2004; National Research Council, 2002; 

Davies, W. E., et al., 1972; Owens, 1987; Michalek etc., 1996). 

 

Many impoundments are getting close to their capacity. Additionally, permits to construct 

new impoundments are becoming increasingly difficult to obtain, hence, there is an 

increasing interest in the alternative methods and technologies for disposing the fine coal 

tailings by reducing the amount of waste generated, utilizing waste, or disposing of the 

wastes elsewhere (National Research Council, 2002). Fine coal waste generated during 

coal preparation plants can be reduced or eliminated during both the mining, e.g. selective 

mining, and the preparation phases. However, implementing options for waste elimination 

of preparation plant is easier during coal preparation than mining, due to extraction of many 

low quality coal seams.  

 

Different alternatives or strategies may be applied for the impoundments. Such strategies 

are adding fine coal waste to the cleaned coarse coal product, dewatering the slurry product 

solidifies (to a degree) and reducing the volume of the waste (Osborne, 1988; Leonard, 

1991), use of coal water slurry as fuel for traditional combustors or gasifies (Syngle and 

Sinn, 1991; Harrison and Akers, 1997; Arey,1997; Couch, 1998;  Rousaki and Couch, 

2000; DOE, 2001), disposing of fine coal waste in surface fills and underground workings 

(National Research Council, 2002) , co-disposing fine and coarse rejects (Williams et al., 
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1990, 1992, and 1995), solidification of fine coal stream (Malone & Jones, 1979; 

Cullinane et al.,1986; Cullinane & Jones, 1986; Wetzman, et al. 1988; Barth et al., 1990; 

Conner, 1990; Dermata & Meng, 1995; Glasser, 1997; Poon et aI., 1986 & 2004; Jang & 

Kim, 2000; Leist et al., 2003; Duchense & Laforest, 2004; Bagnoli et al.,2005; Amini, H. 

R., et al., 2008), adding lime or fly ash to fine coal stream (Adams, 1972; Stewart et al., 

1997; Jang & Kim, 2000; Shang et al., 2006), and remining slurry impoundment (National 

Research Council, 2002). Some of these strategies add cleaning responsibilities to the 

power plants.  

 

Oxidation and dissolution of mineral content of coal refuse streams may result in acid mine 

drainage, release of trace elements into the supernatant liquids and elevation of total 

dissolved solids and electrical conductivity of the discharged water. Such discharged water 

requires physical and chemical treatment to minimize the total dissolved solids and 

conductivity level, especially in cases which there may be the risk of pollution of head 

water streams. Spesefic conductance values of water exceeding 500 µS/cm in headwater 

streams has been reported as one of the causes for the loss of certain groups of bugs, e.g. 

myflies, and the disturbance of aquatic life in Appalachia (Cormier at al., 2011; Agouridis 

at al., 2012)  . Therefore, developing strategies aimed to minimize environmental concerns 

regarding coal mining and processing waste disposal increases the sustainability of coal 

mining.  
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1.4 Trace elements 

 

Trace elements are defined as elements with a concentration of less than 1000 ppm (µg.g-

1) in dry coal, as expected for naturally occurring materials formed under varying 

conditions over a long period. 

 

In addition to the environmental aspect of trace elements, there are several other reasons to 

work on coal trace elements. During coal mining some trace elements may be mobilized, 

especially under oxidizing conditions which affect pyrite, thereby producing acid 

conditions (Swaine, 1978a). This redistribution of trace elements might result in changing 

the concentrations of some trace elements in nearby surface and underground waters and 

in the overburden. These possible changes should be considered when rehabilitation of an 

area is undertaken, especially in the case of pastures and grazing animals, where 

deficiencies or excess of some elements may be problematic. They may also lead to 

significant risks to aquatic and semi-aquatic organisms. Such effects could be either as 

subtle as minor physiological changes or as drastic as extirpation of entire populations.  

(Rowe et al., 2002)  

 

Trace elements also are related to several practical situations like: the requirement of less 

than 2 ppm boron in carbon used as a moderator in nuclear reactors (Hutcheon, 1953), the 

interest in boron in certain steels is due to its effect on mechanical properties (Borrowdale 

et al, 1953), and also embrittlement in steel due to arsenic and phosphorus. (Kurmanov et 

al., 1957; Steven and Balajiva, 1959). Coal and fly ash also could be the source of several 
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elements like: germanium (Goldschmidt, 1930 and 1935), gallium (Inagaki, 1956), 

selenium (Goldschmidt, 1954), cobalt (Kuhl, 1957), uranium (Berkovitch, 1956).   

 

Trace elements of environmental concern are listed under both the 1990 CAAA and the 

1976 RCRA statutes. Swaine (1990) also provides an assessment of the environmental 

hazard posed by specific trace elements during coal utilization. The listing in Table 2.2 

shows a group of 7 trace elements categorized as “prime interest” (As, Cd, Cr, Pb, Hg, Ni, 

and Se), followed by a group of 6 of intermediate priority (Sb, Be, Co, Mn, Th and U) and 

the remaining 11 of lesser concern. 

 

Also PECH (1980) categorized the elements into the following six groups: 

Elements of greatest concern (As, B, Cd, Hg, Mo, Pb, Se); 

Elements of the moderate concern (Cr, Cu, F, Ni, V, Zn); 

Elements of minor concern (Ba, Br, Cl, Co, Ge, Li, Mn, Sr); 

Radioactive elements, these are generally considered to be of minor concern, but adequate 

information is lacking for a proper assessment, (Po, Ra, Rn, Th, U); 

Elements of concern but “with negligible concentration in coal and coal  residues” (Ag, 

Be, Sn, Tl); 

Elements of “no immediate concern”. 
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Table 1.2. Trace elements of environmental concern in coal utilization 

Element 1976 RCRA 1990 CAAA Swaine’s Assessment (1990) 

“Prime Interest” “Some Interest” 

Antimony, Sb  Yes  Yes 

Arsenic, As Yes Yes Yes  

Barium, Ba Yes    

Beryllium, Be  Yes  Yes 

Boron, B    Yes 

Cadmium, Cd Yes Yes Yes  

Chlorine, Cl    Yes 

Chromium, Cr Yes Yes Yes  

Cobalt, Co  Yes  Yes 

Copper, Cu    Yes 

Fluorine, F   Yes  

Lead, Pb Yes Yes Yes  

Manganese, Mn  Yes  Yes 

Mercury, Hg Yes Yes Yes  

Molybdenum, 

Mo 

   Yes 

Nickel, Ni  Yes Yes  

Selenium, Se  Yes Yes  

Silver, Ag Yes    

Thallium, Tl    Yes 

Thorium, Th  Yes  Yes 

Tin, Sn    Yes 

Uranium, U  Yes  Yes 

Vanadium, V    Yes 

Zinc, Zn    Yes 

*Elements in bold occur on at least two lists, including Swaine’s “prime” interest list, 

elements in italics occur in two lists, including Swaine’s “some” interest list. 
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1.5 Origin of trace elements 

 

The origin of trace elements in coal is in part attributable to the peat formation stage, in 

which the uptake of certain elements by plants are removed by ion exchange from swamp 

water, and in part to some mineral matters added from incoming waters and the 

atmosphere, and minerals formed in situ. Additions of minerals depend on some factors 

like the types of the nearby rocks, weathering and the means of transport to the peat area, 

and changes in pH, which can enhance the retention or removal of trace elements. (Cohen 

et al. 1987; Baas Becking et al., 1960; Cecil et al. 1982; Cairncross and Cadle, 1988). It is 

clear that trace elements in coal have been influenced over long period of time by botanical, 

geological, biological, biochemical and chemical sources. (Swaine, 1990). As a result, the 

mode of occurrence of trace elements could be both mineral associated and organic 

associated (Smyth, 1966; Finkelman 1981, 1982, 1988, and 1994; Cecil et al., 1981; 

Harvey and Demaris, 1987; Swaine, 1990).  

 

1.6 Mode of occurrence of trace elements 

 

The mode of occurrence is an important factor in determining the behavior of a given 

element during cleaning processes and many researchers have worked on how elements 

partition among different fractions in coal cleaning processes. Figure 2.1 classifies the 

modes of occurrence of trace elements in coal (Clarke and Sloss, 1992; Vejahati et al., 

2010). 



18 
  

 

Figure 1.3- Mode of occurrence of trace elements 

 

Querol et al. (1995) performed an extensive study on trace element distributions in both 

coals and wastes. Table 1.3 shows the summary of their funding (Vejahati et al., 2010). 
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Table 1.3. Trace elements distribution in coal 

Affinity 
Mineral 

Group 
Mineral Type Elements 

Inorganic 

Clay 

minerals 

and 

feldspars 

Kaolinite, Illite 

Montmorillonite 

Al, Ba, Bi, Cr, Cs, Cu, Ga, K, Li, Mg, 

Na, Ni, P, Pb, Rb, Sn, Sr, Ta, Th, Ti, U, 

V, Y, and rare earth elements 

Iron 

sulfides 
Pyrite, Sphalerite 

As, Cd, Co, Cu, Fe, Hg, Mo, Ni, Pb, S, 

Sb, Se, Ti, W and Zn 

Carbonates 
Calcite, Dolomite, 

Ankerite, Siderite 
Ca, Co, Mn 

Sulphates - Ba, Ca, Fe, and S 

Heavy 

minerals 
Tourmaline B 

Organic N, S, Be, B, Ge, V, W, Zr, rare earth elements 

 

Trace elements are usually associated with one or other of the major minerals, pyrite or 

illite. These minerals are usually targeted for removal in coal cleaning processes in order 

to reduce the coal sulfur and ash contents and they typically host many of the trace elements 

(As, Cr, Mn, Ni, Se, etc.) that are considered hazardous. One of the first systematic methods 

to determine elemental modes of occurrence is interpretation of analytical data on trace 

elements in raw coals and in fractions prepared from the coals by float-sink methods 

(Zubovic, 1966; Gluskopter et al., 1977; Wang et al., 2009).  

 

These data are usually presented in the form of washability curves, which show variations 

in the concentration of elements as a function of the specific gravity of the separated 

fraction. Zubovic (1966) used “organic affinity” of an element as a tool which is basically 

a measure of the degree of association of an element with the organic fraction of the coal. 

Gluskoter et al. (1977) also used washability curves and organic affinity to determine 

elemental occurrences in a wide range of U.S. coals. Because of the different washability 
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characteristics of the coals, values for organic affinity for a given element in different coals 

have little or no basis for comparison. Furthermore, sequential leaching methods results, in 

which fractions are created chemically rather than physically, armed with quantifying coal 

mineralogy by X-ray diffraction (XRD) with Rietveld analysis (Mandile and Hutton, 1995; 

Dale et al., 1997; Huggins et al., 1996, and 2002) , automated scanning electron 

microscopic methods (see reviews by Skorupska and Carpenter, 1993; Huggins, 2002), or 

by results of  speciation of a number of elements has been determined by X-ray absorption 

fine structure (XAFS) spectroscopy (Huggins et al., 1993, and 1996) may be helpful to 

obtain quantitative mineralogical information and determination of trace element behavior 

in physical coal fractionation methods (Huggins et al., 2002, 2008, and 2011). 

 

Environmentally concerned trace elements and rare earth elements (REE) along with their 

mode of occurrence in coals are discussed in more detalis here. 

 

1.6.1 Antimony 

 

The presence of antimony (Sb) in coal seams was reported by Daubree in mid-nineteenth 

century (Briggs, 1934) and it is often determined nowadays, although at its typically low 

concentrations found in coals it is not considered to be environmentally hazardous. Metal 

smelting, waste incineration and coal combustion, or emissions from some volcanoes are 

the main source of Sb in the atmosphere (Austin and Millward, 1988; Cadle et al., 1973). 

The mode of occurrence of antimony is not well established, but organic association 

prevails in many coal seams, together with a sulfide association, which may predominate 

in others. In some coals, Sb was presented as small grains of sulfide, possibly stibnite, 
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which could be associated with organic coal matter (Finkelman, 1981), and therefore, 

having organic association. Calculated by Sobbioni et al. (1983), mean value of Sb in USA 

is 0.7 ppm, which is usually much smaller than the mean of Sb for other reported countries 

except Australia with mean value of 0.5 ppm. (Swaine, 1990)    

 

1.6.2 Arsenic 

 

Before there was interest in trace elements, arsenic (As) was found in some of European 

coals (Daubree, 1858; Percy 1875), but Goldschmit and Peters (1934) were the first 

researcher to carry out much investigation on this element.  The range of As contents may 

vary from 1 ppm to several hundred ppm in coal seams (Minkkinen and Yliruokanen, 

1978). The mean value of arsenic content in US coals, calculated by Sabbioni et al. (1983), 

is 14 ppm which is high compared to other countries like Australia (1.5 ppm), South Africa 

(4 ppm), and 11 ppm for coals burnt in nine EC countries. 

 

The mode of occurrence of arsenic in coal is predominantly an association with pyrite. 

Arsenopyrite (FeAsS), as in clay minerals and organically bound As are generally much  

less common forms. Recent studies of arsenic using XAFS spectroscopy on bituminous 

and higher rank coals (Huggins et al., 1993) showed distinct occurrence of As in pyrite 

within a concentration range of 10-2000ppm. The recorded XAFS data showed that most 

of the As was present as arsenical pyrite, in which arsenic substitutes for sulfur in the pyrite 

(FeS2) structure. Furthermore, XAFS distinguishes As in pyrite from As in arsenopyrite, 

FeAsS (Huggins et al., 1993; Huffman et al., 1994). Examination of numerous coal samples 

indicated the presence of arsenical pyrite rather than arsenopyrite. Their other findings 
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showed the presence of the arsenate [AsO43-] species in coal and that such arsenate species 

accumulated over time as a result of oxidation of pyrite. In summary, they stated that 

arsenic in bituminous coals occurs principally as a substitution for sulfur in the pyrite 

structure, and significant arsenate may also be present as a result of the oxidation of arsenic-

containing pyrite (Seidu, 2008). 

  

1.6.3 Beryllium 

 

After the initial investigation of Be in some German coals by Goldschmit and Peters 

(1932), there was a gap of knowledge and research on this element until results of Canadian 

(Hawley, 1955) and US coals (Stadnichenko, Zubovic and Sheffy, 1961) were published. 

For US coals, Be contents from 0.05 to 32 ppm have been reported (Swaine, 1990). 

Generally Be is considered an organically associated trace element, although in some coals, 

Be may be present as beryl or associated with quartz and clay (Singh, Singh and Chandra, 

1983). 

  

1.6.4 Cadmium 

 

While there may be some beneficial effects of cadmium (Cd) in nutrition, Cd is now an 

element of prime environmental concern and therefore the levels of Cd in coal and coal 

related materials are of interest (Swaine 1990). The first information on Cd was reported 

in German coal ashes (Jensch, 1887). In general the main mode of occurrence of Cd in 

most coal seems is an association with mineral matter in coal; typically it replaces Zn in 

the mineral sphalerite (ZnS), but other minor mineral associations, clay and carbonate 
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minerals as well as pyrite may occur. (Gluskoter et al., 1977; Gluskoter and Lindahl, 1973; 

Finkelman, 1994). Most coals have Cd contents in the range of 0.1 - 3 ppm, while Swanson 

et al. (1976) reported a mean value of 1.3 ppm for U.S. coals.  

 

1.6.5 Chromium 

 

Chromium is an vital trace element which is required for normal carbohydrate metabolism 

(Anderson, 1981).The hexavalent state, Cr(VI), is the only form that is considered toxic. 

The trivalent state, Cr(III), found in almost all coal seams is not toxic. Chromium is 

regarded as a potentially hazardous element in coal-derived fly-ash mainly because a 

portion of the concentration may be in the hexavalent oxidation state (Meij and te Winkel, 

2001; US EPA, 2009). In U.S. coals of bituminous rank, chromium is generally present in 

one of two trivalent chromium forms: as a minor component in clay minerals, such as illite, 

or as small-particle oxide or oxyhydroxide minerals associated with the organic macerals 

(Huggins et al., 2000). This latter species are postulated to have derived from Cr(III) 

bonded to carboxyl groups, which have decomposed as the coal experienced increasing 

metamorphism (coalification) (Huggins and Huffman, 2004).  

 

Occasionally, Cr in coal may also be found in oxide (spinel) phases, especially in coals of 

above average Cr contents; such occurrences, however, appear limited to situations in 

which weathering-resistant chromium minerals, such as chromite, have been transported 

into coal-forming environments from nearby ultramafic deposits (Brownfield et al., 1995; 

Ruppert et al., 1996; Gluskoter et al.,1977; Finkelman, 1981, Huggins et al., 1999). During 

pulverized coal combustion, chromium-bearing minerals transform and react with other 
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mineral-derived components to form chromium-bearing crystalline phases and glass (Stam 

et al., 2011).  In the process, a small fraction of the Cr is usually oxidized from Cr(III) to 

Cr(VI). The range of Cr contents is 0.5 - 60 ppm for most coal seams (Swaine, 1990), and 

averages about 15 ppm for US coals (Sabbioni et al., 1983). 

 

1.6.6 Cobalt 

 

Although cobalt is subjected to EPA CAAA (1990) regulations, there are no reports of 

unwanted effects caused by Co during coal mining and usage. There is an inclusive review 

of all aspects of Co by Smith and Carson (1981). This trace element also has an important 

role in nutrition and some serious deficiencies in grazing animals have been found (Swaine 

1990). Co could be associated with mineral matter in coals (linnaetite, other sulfides, clay) 

or it could be organic associated, as was reported for US coals. (Finkelman, 1981; Des 

Cloizeaux, 1880; Goldschmidt, 1954; Firth, 1973; Zubovic, Stadnichenko and Sheffey, 

1961; Gluskoter et al, 1977). The Co concentration for most coals is within the range of 

0.5 to 30 ppm with a mean of 4-8 ppm (Swaine, 1990), and the range of 0.25 to 43 has been 

reported for the US coals by Zubovic et al. (1979). 

 

1.6.7 Lead 

 

Exposure to lead (Pb) could give rise to illness in certain situations and therefore there is 

much interest in Pb regarding health and the environment. Pb was first reported by Jensch 

(1887) in Upper Silesian coals. There is a little argument regarding the occurrence of Pb in 

coal.  Lead was reported to be associated with mainly with galena (PbS), mineral grains of 
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clausthalite (PbSe), in about 50 percent of the Appalachian Basin coals studied, and in 

about 10 percent of other samples, and Ba minerals, where Pb can be replace Ba (sulphates, 

carbonates, phosphates, silicates) (Brown and Swaine, 1964; Finkelman, 1981; Bethel, 

1962). It could be associated with some minerals like lead tungstate (PbWO4), lead-barium 

aluminum silicate, plumbogummite [PbAl3(PO4)2(OH)5·(H2O)], in coals as a minor 

mode of occurrence. Pyrite is able to contain lead in its structure to some extent (Deer et 

al, 1962). In some low rank coals lead could be organically associated too. The range of 

lead concentrations in US coals is 2 - 40 ppm (Swaine, 1990).  

 

1.6.8 Manganese 

 

There is interest in Mn because not only of its biological essentiality but also the probable 

environmental problems of excess amounts of manganese. However, no serious health or 

environmental effects of Mn during coal mining and its usage have been reported (Swaine, 

1990). Regarding the mode of occurrence of Mn in coal; for low rank coals it is mainly 

organically bound through carboxylic acid groups (Brown and Swaine, 1964; Benson and 

Holm, 1985), and in higher rank coals there are several modes, including association with 

carbonate minerals and clays as major forms, association with pyrite and organically bound 

Mn as minor sources (Finkelman, 1981).  
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1.6.9 Mercury 

 

Due to the emission of mercury (Hg) to the atmosphere during coal combustion, and its 

negative impact on biological systems, there is continued interest in Hg in coal. Hg, 

seemingly, was first determined in coal by Stock and Cucuel (1934) in German coals. 

The modes of occurrence in coal proposed by different authors for mercury include the 

sulfide (HgS), as well as pyrite-bound Hg, metallic Hg, and organically=-bound Hg. 

However, due to the very low concentration of Hg in most coals (0.02 - 1.0 ppm), little 

information on the mode of occurrence of Hg has actually been established by direct 

methods and interpretation based on indirect methods can be misleading.  A study of a 

group of Illinois coals showed significant Hg association with pyrite, and minor part of Hg 

occurred in the lightest specific gravity fraction of the coal, leading to the conclusion of a 

minor organic association (Ruch et al., 1971). Huggins et al. (2008) also found a strong 

association of Hg with pyrite in US Illinois coal seams. (Gluskoter et al., 1977; Ruch et al., 

1974). According to Swaine (1990) Mercury is mainly associated with pyrite for most 

coals. ‘Finkelman (1994) also agrees that mercury is in solid solution with pyrite stating 

that epigenetic pyrite probably has more mercury than syngenetic pyrite’. 

 

1.6.10 Nickel 

 

Nickel (Ni) is one of the trace elements subjected to the CAAA (1990) regulations and 

under some conditions, in relatively high levels of Ni, some plants may be harmed, but this 

is unlikely to occur on coal mine spoil heaps and it is likely that there would not be 

significant untoward effects from Ni in coal mining and usage. It also has been considered 
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as ‘a relatively non-toxic elements’ by Underwood (1997) (Swaine, 1990). Regarding the 

mode of occurrence of Ni in coal, experiments by Horton and Aubrey (1950) and Zubovic 

et al. (1961) showed a range of intermediate organic affinities. The main modes of 

occurrence of nickel are probably associated with sulfides and organically associated 

(Finkelman, 1981; Goldschmidt, 1935; Gluskoter et al., 1977). Nicholls (1968) also 

suggests that coals with Ni content greater than 3 ppm would have the element associated 

with the inorganic fraction. Some SEM-EDX work on nickel in minerals by Finkelman 

(1981) suggested that Ni to be most commonly associated with the sulfides such as galena 

(PbS), sphalerite [(Zn,Fe)S], pyrite (FeS2) and other complex sulfides (Seidu, 2008), and 

later he added clays (Finkelman, 1988). Omitting some very high Ni contents (>8000 ppm) 

reported by Goldschmidt (1937), Jones and Miller (1939), and Vorobev (1940) for some 

unusual coals, the probable range of nickel concentration in most coals is around 0.5 - 50 

ppm (Swaine, 1990; Kolker, 2012). 

 

1.6.11 Selenium 

 

Selenium (Se) is very important from nutritional and environmental aspects. There is 

evidence that small amounts of Se are essential for good nutrition in humans, as well as 

medical and biological effects, and Se deficiency could be an important factor of two 

diseases of endemic cardiomyopathy and endemic osteoartheropathy, by which millions of 

people may be affected in China. The local high selenium content coals could be the source 

of Se for the soil and plants (Yang et al., 1983; Levander, 1987; Nas; 1976). There are also 

several industrial Se applications (Zingaro and Cooper, 1974). On the other hands, 

selenium enriched plants in certain limited areas, have caused toxic effects on grazing 



28 
  

animals. Enriched Se soils could be harmful for some plants. The endemic Se-poisoning in 

Enshi county of Hubei province, China, is the outstanding case of severe effects on humans 

(Yang et al., 1983).  

 

Regarding the mode of occurrence of Se, it could occur in coal organically associated, in 

pyrite and other sulfides (probably in solid solution), in galena as PbSe, at least in some 

coals and possibly in clays (Wedepohl, 1972; Wandless, 1957; Porrett and Swaine, 1976; 

Ruch et al., 1974; Carter et al., 1973; Finkelman, 1981). Organic matter rich-shale 

weathering has been identified as a source of Se in coal mine effluents and also se primarily 

associated with pyritic minerals (Unrine et al., 2013). The mean value of Se in U.S. coals 

is 0.5 to 4 ppm (Swanson et al., 1976; Swaine, 1990). 

 

1.6.12 Thorium 

 

Thorium (Th) is radioactive and due to its biological and environmental effects is an 

interesting trace element to do research on in coal utilization. Regarding its mode of 

occurrence in coal, it is clearly associated with mineral matter in most coals, mainly as 

monazite, with lesser amounts in zircon and xenotime. Small amounts of Th perhaps could 

be associated with iron oxides and clays, as in the case with soil; however, Th is unlikely 

to be organically associated (Palmer and Filby, 1984; Finkelman, 1981; Swaine, 1990). Th 

contents in most coals are in the range 0.5-10 ppm (Swaine. 1990).  
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1.6.13 Rare Earth Elements  

 

Rare earth elements (REEs) are a group of 15 lanthanide elements (atomic numbers 57-71) 

and two transition metal elements (scandium and yttrium) (Binnemans et al., 2013; Ren et 

al., 2000 Sui et al., 2013; Binnemans et al., 2013; Ren etal., 2000; Resende, 2010). 

Promethium (atomic number 61) is extremely rare, and is generally considered not to exist 

in nature (Sui et al., 2013; Binnemans et al., 2013; Ren etal., 2000; Resende, 2010).  

 

Coal has become an alternative raw-material for many metals and organics. Reports have 

appeared about the recovery of metals such as gold, platinum, vanadium, iron, and 

aluminum from coal or coal ash (Zhang et al., 2011; Groppo and Honaker, 2009; Bratskaya 

et al., 2009). Systematic review of coal deposits as an alternative resource of REEs and the 

beneficiation method of traditional REEs-bearing mineral both have been published in 

recent years (Seredin and Dai, 2012; Jordens, 2013). 

 

Many papers regarding the distribution and geochemistry of REEs in coal have proved the 

existence of REE-mineral matter associations (Birk and White, 1991; Birk, 1989; Dai et 

al., 2008, 2010a, 2010b; Eskenazy, 1987, 2009; Finkelman and Stanton, 1978; Hower et 

al., 1999; Karayigit et al., 2000; Seredin 1996; Wang et al., 2008; Zheng et al., 2007). Hu 

et al. (2006) conducted an investigation to indentify the distribution of trace elements in 50 

coal samples from DPR Korea, and the results show that all REEs (except Y) have a strong 

correlation with ash yield, and LREEs have stronger correlation (r from 0.81 to 0.88) than 

HREEs (r from 0.72 to 0.82). Birk and White (1991) pointed out that the REEs in the 

bituminous coal of the Sydney Basin displays strong correlation with the ash content (r 



30 
  

from 0.58 to 0.87). Karayigt (2000) reported that LREEs in 13 coal samples from Turkish 

coal at 95% confidence level correlates positively with the ash yield, while the HREEs 

show no correlation. Eskenazy (1987) also found that the REEs content increases with an 

increase in ash content of coal. Apart from the correlation coefficient, the REEs mineral 

sites have been directly observed via scanning electron microscope (SEM) equipped with 

energy dispersive X-ray analyzer (EDX) (Birk and White, 1991; Birk, 1989; Dai et al., 

2010a; Finkelman and Stanton, 1978; Hower et al., 1999; Seredin, 1996). 

 

For coals with normal REEs contents, these elements are mainly concentrated in accessory 

minerals (allanite, monazite, xenotime), resistate minerals (monazite, florence, xenotime, 

zircon) or clay minerals (kaolinite, illite) (Birk and White, 1991; Finkelman and Stanton, 

1978; Birk, 1989; Eskenazy, 1987; Dai et al., 2012; Wang et al., 2008; Zheng et al., 2007). 

Finkelman and Stanton (1978) detected at least four accessory rare-earth minerals 

(monazite, allanite, etc.) in carbominerite bands of Waynesburg coal. The SEM-EDX 

survey for Sydney coals detected REEs mainly in discrete phosphate minerals derived from 

detrital fish bones or resistate clastics (Fig.2.5) (Birk, 1989; Birk and White, 1990, 1991). 

 

 According to the positive correlation between REEs and lithophile elements including Si, 

Al, Ti, Fe and Na, Zheng et al. (2007) concluded that REEs in coal from Huaibei Coalfield, 

China, are mainly distributed in clay minerals. Similarly, Wang et al. (2008) found that 

most of the REEs in coal from Antaibao mining district, China, are derived from detrital 

sources and occur dominantly in kaolinite and illite, and to a lesser extent, in phosphate.  
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For coals with high REEs content, authigenic REE minerals play a dominant role (Hower 

et al., 1999; Seredin, 1996; Dai et al., 2008, 2012). Seredin (1996) suggested that REEs 

mostly occur in REE enriched coal in both authigenic grains of REEs, usually 0.5-5μm in 

diameter, and adsorbed forms on the organic matter or clay minerals. Hower et al. (1999) 

found that REEs in coal samples from eastern Kentucky are mainly in the form of REE-

rich phosphate, tentatively identified as monazite, which is of authigenic origin judging 

from the fact that the monazite commonly infills cracks in clays and cells in clarain and 

vitrain. The monazite occurs in very small (<2μm) irregular shape particles. For the coal 

of Jungar Coalfield, Inner Mongolia, China, Dai et al. (2012) found that REEs are mainly 

associated with authigenic kaolinite, goyazite, gorceixite and boehmite.  

 

Extensive evidences have been presented pertaining to the existence of REEs (particularly 

HREEs) as organic compounds in coal which are summarized as follows:  

 

1) Strong correlation of HREEs have been found with other trace elements, such as Ge, 

W, and Be, which were proven to be organically fixed, and a similar distribution pattern 

of REEs was found with Ge in coals as a function of particle specific gravity (Gluskoter 

et al., 1977; Eskenazy, 1982; Eskenazy, 1987; Seredin, 1996; Seredin et al., 2006). 

2) HREEs have been enriched with a decrease in the content of clay (coaly clay) rocks, 

and the LREE/HREE ratio increased with a rise in specific gravity, which indicates that 

coal with low ash content has an enriched level of HREEs (Yershov, 1961; Seredin, 

1996; Eskenazy, 1987; Birk and White, 1991; Wang et al., 2008; Eskenazy 2009). 
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3) Larger correlation coefficients have been obtained with La, Ce, Sm and Eu (LREEs) 

compared to the correlation coefficients with Tb, Yb and Lu (HREEs). Also, smaller 

correlation coefficients exist between HREEs and ash content as well as terrigenous 

elements (Si, Al, Fe), compared with LREEs (Eskenazy, 1987; Birk and White, 1991; 

Hu et al., 2006). 

4) In organic solvent extraction of coal, the LREE/HREE ratio in the leachate is normally 

smaller than that of coal, and HREEs complexes with organic matter are more stable 

than those of LREEs (Birk and White, 1991; Wang et al., 2008; Karayigt, 2000). 

5) The mechanism of bonding the REE ions by organic matter can be sorption on the 

coagulating humic and fulvoacids, as well as formation of organometallic complexes. 

(Birk and White, 1991; Eskenazy, 1987; Wang et al., 2008) 

  

Based on these findings, it is apparent that HREEs show greater organic affinity than 

LREEs. Based on the washability data, Gluskoter et al. (1977) calculated the organic 

affinity for REEs. The organic affinity for La to Ce ranges from 0.08 to 0.75, while for Yb 

and Lu it ranges from 0.29 to 0.75. Binding of REEs with humic substance (HS) has been 

recently quantified using Capillary Electrophoresis-Inductively Coupled Plasma Mass 

Spectrometry (CE-ICP-MS) (Stern et al., 2007; Sonke and Salters, 2006). The binding 

constant (logKc,LnHA) ranges from 8.9 to 16.5, indicating a strong REE-HS interaction, 

and displays a lanthanide contraction effect, which is a gradual increase of Kc,LnHA from 

La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius (Sonke and 

Salters, 2006). This implies that the mechanism of binding the REE ions by organic matter 

in coal can be sorption on the coagulating humic and fulvoacids (Eskenazy, 1987).  
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There have been conflicting opinions as to what extent REEs are bound with organic 

matter. The most common view is that REEs associated with the organic matter is only 

considered a minor part of the total REEs (Dai et al., 2002; Finkleman, 1982; Eskenazy, 

1987; Birk and White, 1991; Zheng et al., 2007; Wang et al., 2008). 

 

1.7 Dissertation Outline 

 

For sustainably disposing coal waste streams, this research addresses developing strategies 

for minimizing the environmental issues regarding coal waste disposal such as minimizing 

release of trace elements, total dissolved solids and conductivity level of supernatant waster 

in contact with the streams. 

 

To achieve the target goals, in the second chapter the effect of surface area, leachant 

volume to surface area ratio and amount of oxidant on electrical conductivity was assessed 

through conducting a parametric study. The results of parametric study was then used to 

develop a quick and inexpensive test for conductivity screening-level of waste streams. 

 

In the third chapter, the conductivity screening-level test was used to assess the electrical 

conductivity of supernatant liquids in contact with various coal refuse streams to identify 

the significance of each stream in mitigation of elements to the leachant and elevating the 

totals dissolved solid and conductivity level of the leachate. Electrical conductivity of the 

leachate was then studied as a function of material properties that can be exploited (i.e., 
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size and density) for the separation of fractions generating high electrical conductivity in 

contact with water.  

 

Long term leaching characteristics of coarse and fine refuse streams from three processing 

plants treating low, medium and high pyritic coal seams were evaluated in the fourth 

chapter. This investigation of the mobility (leachability) of major and potentially hazardous 

trace elements from coal processing waste materials was conducted using two types of 

leaching tests. One test, termed the static test, was designed to simulate stable storage of 

wastes entirely under water, whereas the second test, termed the dynamic test, was 

designed to simulate storage under more variable conditions that permitted the waste 

materials to be exposed to air and variations in humidity. 

 

Long term leaching characteristics of material as a function of material properties were 

examined through conducting column leaching tests, in the fifth chapter. Based on the 

results, modifications in the coal processing plants for segregation and isolation of 

environmentally concerned fractions from environmentally benign fractions. 

 

Finally, the conclusions of this study were summarized in the sixth chapter and 

recommendations for future works were suggested. 
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2. DEVELOPMENT OF A FIELD LEACHING TEST FOR 

ELECTRICAL CONDUCTIVITY SCREENING-LEVEL 

 

Summary: A common environmental concern at mining and processing operations is the 

leaching of trace elements from mining overburden and byproduct streams of coal and 

mineral processing plants. To quickly assess and compare the potential electrical 

conductivity values of leachate emanating from various coal processing plant waste 

streams, research was conducted to examine technical issues associated with the 

USGS Field Leach Test (FLT) and to modify the procedure and analyses to improve the 

precision of the test results. The primary issue involves the importance of leachant volume-

to-particle surface area ratio in the assessment of the leaching potential for a given source. 

To determine the key factors impacting leachability of a given material, a statistically-

designed parametric study was performed which evaluated the effect of surface area, the 

leachant volume-to-surface area ratio, and the amount of oxidant on the leaching 

characteristics of the material. The results revealed that the statistically significant 

parameters are leachant volume-to-surface area ratio and the amount of oxidizer.   Based 

on the findings of the study, modification to the conductivity screening test was proposed 

which may be used for the evaluation, prediction and comparison of the leaching 

characteristics of different materials.  

 

 Keywords: leaching, conductivity screening test, surface area, volume to surface area 

ratio, oxidant, parametric study. 
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2.1 Introduction 

 

The leaching of major and trace elements into streams and their effect on the environmental 

state of equilibrium are common environmental concerns especially for mine overburden, 

coal and mineral processing waste materials, naturally mineralized soil, industrial waste, 

construction sites, natural and amended soils, ash material from coal combustor units, dust, 

dried sludge and sediments, etc. (Ghosh et al., 2014; Hageman, 2007; Plumlee et al., 2005; 

Yager  et al.,2004, Van Gosen et al., 2000). 

 

In mining and coal processing, the gangue minerals are separated from valuable minerals 

or organic material, respectively, using separation technologies which improves the quality 

of raw material to a level that meets the product quality requirements of manufactures and 

power generation plants. These minerals may oxidize in the waste impoundments and 

dissolute into the water.  Dissolution reactions of different types of minerals such as sulfide, 

carbonate and clay minerals have been extensively researched (Evanglou, 1995; Huertas et 

al., 1998; Köhler et al., 2003; Pokrovskyet al., 2005, Chandra and Gerson, 2010; Bibi et 

al., 2011). The dissolution of minerals in aqueous streams may result in pH variations and 

an elevation in total dissolved solids (TDS) in the supernatant water that is in contact with 

the solid material. The relative level of TDS concentration can be indirectly measured by 

the electrical conductivity (EC) of the liquid with higher values indicating an elevated TDS 

level. 
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An in-stream limit of 300 µS/cm has been suggested by the U.S. EPA report EPA/600/R-

10/023F to protect 95% of sensitive genera, primarily Ephemeroptera in the Central 

Appalachian region, whereas Cormier et al. (2011) recommended a level of 500 µS/cm to 

prevent the substantial disturbance of aquatic life. To meet the EPA conductivity limit for 

water, identifying potentially high conductivity producing materials in mine soil 

overburden and mine and coal processing waste streams followed by isolation or 

encapsulation have been suggested to be promising operational methods (Yeheyis et al., 

2009; Rezaee et al., 2013). Given the vast number of mineral sources contained within 

typical mine and processing wastes, a quick and inexpensive method for providing an 

initial ranking of the potential leachability is needed. The measurement of the water 

conductivity resulting from the contact with the solid waste meets the requirements 

assuming acceptable accuracy and precision. Using the conductivity test as a screening 

mechanism, the waste materials that have the greatest potential for environmental harm can 

be identified and tested in more details using established static and kinetic leaching tests 

(Sobek et al., 1978, O’Shay etal., 1990; Kleinmann, 2000; Chotpantarat, 2011; Parbhakar 

and Lottermoser, 2015). 

 

Acid base accounting (ABA) and neutralization potential (NP) tests are static tests that 

have been widely used for overburden characterization and acid mine drainage prediction. 

However, these tests do not predict the post-reclamation water quality where the NP is 

approximately equal to the maximum potential acidity (MPA).  Kinetic tests are required 

for such an evaluation (Bradham and Caruccio, 1990).  
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Humidity cells, leaching columns, soxhlet reactors, shake flasks, pilot and large field 

leaching tanks are various types of apparati used for kinetic tests (ASTM D5744, Danielle, 

2013; Sobek et al., 1982; Renton et al., 1988; Bruynesteyn and Hackl, 1984; Ziemkiewicz, 

2013; Renton et al., 1984).  The factors to be considered in kinetic leaching tests include: 

particle size (Brady, 1974; Horowitz et al., 1987; Bradham and Caruccio, 1990 and 1995), 

antecedent storage conditions (Caruccio and Geidel, 1981; Bradham and Caruccio, 1995), 

interleach storage conditions (Borek, 1994; Bradham and Caruccio, 1995), degree of 

saturation (Kleinmann, 2000; Watzalf, 1992), size, shape and structure of apparatus 

(Hornberger, 1998), volume and placement of samples in the test apparatus (Kleinmann, 

2000), leaching interval (Gidel, 1979; Bradham and Caruccio, 1995), influent composition 

(Carrucio et al., 1981), rock-to-water ratio (Kleinmann, 2000), pore gas composition 

(Watzlaf, 1992; Cravotta et al., 1994; Guo et al., 1994), bacterial effects (Silverman, 1967; 

Kleinmann et al., 1981), pyrite morphology and texture (Caruccio and Parizek, 1968; 

Morrison, 1988; Borek, 1994) and carbonate content (Moses and Herman, 1991; 

Ziemkiewicz et al., 1995, Huggins et al., 2012). The kinetic leaching tests are usually 

expensive and time consuming and require performance under stringent laboratory 

conditions.  

 

To quickly assess and compare leachate geochemistry from historical metal mine dumps, 

Hageman (2000) developed the USGS Field Leach Test (FLT). In this test, 1,000 mL of 

deionized water is slowly added to 50 g of prepared sample (20:1 water/solid ratio) in a 

wide-mouth plastic bottle.   The capped bottle is vigorously hand shaken for 5 minutes and 

the contents allowed to settle for 10 minutes. The leachate is extracted from the bottle and 
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analyzed for pH, specific conductance, alkalinity or other water quality characteristics. 

This test was later modified by Warner et al. (2013) for screening-level specific 

conductivity of drill core strata in the field or laboratory. Modifications to this method, as 

compared with FLT, were a reduction from 1,000 mL to 450 mL of either distilled or 

deionized (alternative methods) water with or without the addition of 50 mL hydrogen 

peroxide added to a 25 mg of sample (20:1 liquid/solid ratio) in a 1L wide-mouth plastic 

bottle. Hydrogen peroxide and other oxidants such as dissolved oxygen, Fe (III) ions, 

KMnO4, and MnO2 increase the oxidation rate of minerals especially pyrite and dissolution 

of the elements into the solution.  As a result, an expedited assessment of the leaching 

potential for mineral types and individual fractions of the mine and processing waste can 

be achieved through the measurement of specific conductivity, and visual observation of 

effervescences. (Holmes and Crundwell, 2000; Schoonen et al., 2010; Warner, 2013, Lara 

et al., 2015).  

 

As indicated in the above discussion, previous research has found that parameters such as 

particle size and volume along with leachate volume are impactful parameters in assessing 

leachability using kinetic leaching experiments. These parameters are directly linked to the 

exposure of the leachant to particle surface area. However, the FLT and the modified FLT 

do not specify a particle size distribution. As such, the ratio of exposed surface area (SA) 

to the liquid volume is not held constant and, in fact, reaches values greater than 25:1 which 

results in dilution of the ionic concentration thereby limiting the ability to provide an initial 

leaching potential assessment using electrical conductivity measurements. In addition, high 

liquid-to-solid ratio may limit predicting leaching characteristics of different materials 
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exposed to various environmental conditions. Furthermore, the amount of oxidant (H2O2) 

added to the solution was not specified based on the mineralogical composition. 

 

Electrochemical reaction steps controlling the dissolution rates of minerals occur at the 

mineral-solution interface. Therefore, the water volume to solid volume, weight or surface 

area is critical in leachate characteristics. Differences in volume-to-surface area ratio 

(VSAR) have resulted in a wide variation within empirical rate laws developed by 

researchers for minerals dissolution (Lollar, 2005). If this ratio is much greater than that 

occurring in the mine environment, the leachate will be diluted, resulting in lower 

concentration of TDS and conductivity of the leachate. This fact limits the application of 

the methods to predict the quality of water driven from waste streams as well as conducting 

conductivity screening-level tests. Patricio et al. (2015) found that the USGS leach test 

would underestimate conductivity released from coal mine water (Hornbeger, 1998; 

Kleinmann, 2000).  Despite being of utmost importance, the effects of VSAR in 

determining leachate quality has not yet been studied in detail.  

 

Previous investigations found that acid production rate, release rate of neutralization 

potential and production rate as well as total loads of ions such as sulfate, calcium, iron 

and manganese from minerals into solution varies in different size fractions and specific 

surface area (Pugh et al., 1984; Sasaki, 1994; Bradham and Caruccio, 1995; Nordstrom and 

Southam, 1997; Kleinmann, 2000; Chirita, 2003; Lollar, 2005). However, this conclusion 

was derived from the results obtained as a function of particle size using standard test 
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procedures. Thus, the conclusion could be simply due to the variation in the VSAR rather 

than an increase in the surface area. 

 

To develop a more meaningful standard test for rapidly performing conductivity screening-

level assessments, the effects of three parameters and parameter interaction were evaluated 

using a statistically-designed test program which included 1) surface area (as quantified by 

material particle size, density, and mineralogy of the sample), 2) volume-to-surface area 

ratio (VSAR) and 3) the amount of oxidant on the leaching characteristics of a material . 

The selected response variable was specific conductance. The results of the parametric 

study was used to develop a standard procedure for a conductivity screening-level test. This 

modified test may be used for evaluation and comparison of leaching characteristics of 

different materials such as mine soils, waste streams of the coal and mineral processing 

plants or industrial wastes. The procedure can be used to screen the various materials at an 

operating mine and processing complex to identify materials that need to be further studied 

for potential isolation using long term column leaching experiments.  

 

2.2 Materials and Methods 

 

2.2.1 Sample collection and characterization 

 

A representative sample of a coarse refuse stream from a coal processing plant treating 

Indiana 5-B central coal seam was collected. Coal from this source is characterized as high-

volatile ‘C’ bituminous coal with high concentrations of organic and pyritic sulfur.  Upon 

receiving the sample, the material was crushed using laboratory jaw crusher to achieve a 
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top size of 6.35 mm, which was selected based on the leaching test standard described by 

the D-5744 ASTM procedure. After crushing, the sample was split into 1 kg sample lots 

using a Jones riffler. The samples were placed into plastic container and stored until needed 

in the test program.  

 

Characterization of the coarse refuse was conducted on a representative 1 kg sample lot.  

As shown in Table 2.1, proximate, ultimate and sulfur forms analysis results found that the 

sample contained 54.5 % ash-bearing material and the sulfur was primarily in the form of 

pyritic sulfur from which the oxidization product generates acidic runoff. The minerals 

present within the ash-forming material were identified and their content quantified using 

X-ray Diffraction (XRD) by the Rietveld method. The mineral was mostly pyrite at 43% 

followed by nearly equal amounts of quartz, illite and kaolinite. A minor amount of calcite 

was also present which has value as a neutralizing component to counter the acid 

generators. These findings were confirmed by results obtained from X-ray fluorescence 

(XRF) analysis of the ash produced by combusting the coarse refuse sample at 500 oC. The 

ash was primarily comprised of iron oxide which mostly resulted from the combustion of 

pyrite. Significant quantities of aluminum and silica oxides were found as expect from the 

XRD results.  The low CaO concentration indicated limited natural buffering capacity. 
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Table 2.1. Sample Characterization. 

Ultimate analysis 

(%) 

Forms of 

Sulfur (%) 
Mineral (%)* %Oxide (ash basis)** 

Ash 54.5 Total S 29.3 Pyrite 43 Al2O3 10.41 K2O 1.38 

Moisture 1.6 Sulfate 1.1 Quartz 20 BaO 0.02 SiO2 24.41 

C 17.9 Organic 7.6 Illite 19 CaO 0.45 Na2O 0.24 

H 1.6 Pyritic 20.7 Kaolinite 18 Fe2O3 61.48 SrO 0.02 

N 0.04   Calcite <5 MgO 0.58 SO3 0.45 

O <0.01     P2O5 0.15 TiO2 0.43 

* As %wt of mineral matter, **Major element analyses (ash basis) of 500˚C ash prepared 

from the sample 

 

Prior to performing a modified conductivity screening test, a 1 kg sample was screened 

using sieves having 1 mm and 0.15 mm apertures which resulted in three particle size 

fractions: i.e., coarse (6.35 x 1 mm), fine (1 x 0.15 mm) and ultrafine (minus 0.15 mm). 

The ultrafine fraction was not used in the screening test and thus was discarded. The coarse 

and fine size fractions were subjected to float-and-sink analysis at a specific gravity of 2.95 

using a lithium metatungstate (LMT) solution. In this process, the particle size fraction is 

submerged into an LMT medium contained in a 2-liter beaker followed by removal of the 

float fraction using a screening tool which allowed the excess medium to drain. The 

remaining medium was filtered to recover the particles that settled to the bottom of the 

beaker.  Both the float and sink fractions were rinsed and dried.  As a result, four particle 

sized and density fractionated samples were produced as shown in Table 2.2 which were 

used for the modified FLT parametric study. These particle size and density fractions can 

be readily recovered through normal processing plant operations if isolation is required for 

any of the fractions due to acid generation and the release of trace elements that are harmful 

to the environment.  
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Table 2.2. Four sized and density fractionated samples. 

Size Distribution 2.95 Float 2.95 Sink 

6.35 x 1 mm Coarse-Float (CF) Coarse-Sink (CS) 

1 x 0.15 mm Fine-Float (FF) Fine-Sink (FS) 

 

Leaching characteristics of the sample were studied by conducting two long-term dynamic 

column leaching tests, which were performed according to standard ASTM method D-

5744, and static leaching tests. The two long-term leaching test was utilized to simulate 

various storage conditions associated with typical coal waste disposal practices. The static 

test was designed to simulate the stable storage of coarse waste materials submerged under 

water that are used for embankment construction of impoundments. The dynamic test was 

designed to model storage under more variable conditions similar to those of coarse refuse 

piles that provide intermittent exposure to air and variations in humidity. 

 

2.2.2 Conductivity Screening Test 

 

As described in a previous section, the conductivity screening tests were conducted in 

accordance to the modified procedure described by Warner et al. (2013) with the exception 

of the variable quantities being studied in the investigation including particle size and 

density, solid mass and the volumetric amount of distilled water and oxidant. In each 

experiment, a specified amount of solid sample was added to a volume of distilled water 

and oxidant in an appropriately sized container whose volume varied due to the evaluation 

of leachate volume-to-particle surface area ratio effects. The contents were mixed using a 

mechanical vibration device for a period of 15 minutes. After allowing 5 minutes for the 

sediments to settle, the conductivity and pH of the leachate were measured and recorded.  



45 
  

2.2.3 Parametric Study 

 

To quantify the importance of surface area and the interactive effects with particle size, a 

three-level statistically designed program was conducted which included several repeat 

tests to assess experimental error. Given that the effects may vary with mineralogy, a 

separate experimental program was conducted on two particle size fractions and two 

density fractions as indicated in Table 2.2.  A three-level test program based on the Box-

Behnken statistical design was performed to evaluate the effects of surface area (SA), 

leachant volume-to-surface area ratio (VSAR) and amount of oxidant on the conductivity 

of samples.  The range of parameter values evaluated are shown in Table 2.3.  The 20 to 

80 cm2 value range for surface area is a typical for coarse refuse material in the coarse 

waste streams. The volume-to-surface area ratio (VSAR) used in the original conductivity 

test is 25 cm3/cm2 whereas the typical leaching column experiment utilizes a ratio of 1 

cm3/cm2. The highest VSAR value was established to meet the symmetrical requirements 

of a three-level test design.  The oxidant range was established based on a typical value of 

15% and a general lack of quantitative data on the impact on conductivity. 

 

Table 2.3. Parameter value ranges investigated in the Box–Behnken test program. 

Parameter 
Level 

Low Medium High 

SA (cm2) 20 50 80 

VSAR (cm3/cm2) 1 25.5 50 

Oxidant (%) 0 15 30 
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Surface area (SA) was calculated using the following expression:  

 

𝑆𝐴 = 6𝑓
𝑚

𝜌√(𝑥1×𝑥2)
                                                                                                                        (2.1) 

 

in which, SA is the surface area (cm2); m the weight of the material (g); ρ the solid density 

of the material (g/cm3); √(x1× x2) the geometric mean diameter of the material (cm); x1 and 

x2 bottom size and top size (cm) of the sample determined by sieve analysis; and f the shape 

factor, which is a function of the type and shape of the materials. 

 

For example, a shape factor of 1 and 1.24 may be used for approximately spherical fly ash 

and cubic lime stone dust particles, respectively. For irregularly-shaped hydrated lime, a 

higher shape factor should be used. The values of shape factor for different types of 

materials ranges from 1 to 2, as shown in Table 2.4 (Ishai and Craus, 1977).  A shape factor 

of 1.5 was applied for the studied material since their shapes are neither completely 

irregular nor cubic. 
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Table 2.4. Particle shape factors for different materials used for the determination of 

surface area. 

Material Shape factor (f) 

Fly ash 1 

Limestone 1.24 

Hydrated lime 2 

Glass beads 1 

Dolomite 1.24 

Basalt 1.24 

 

After calculation of equivalent mass of particles corresponding to the pre-determined SA, 

the required volume of deionized water to achieve the VSAR was added to the solids in a 

capped container. The samples were shaken for 15 min using a mechanical shaker, and the 

conductivity of the leachates were measured. For 3 parameter evaluation, 12 tests with an 

additional 5 repeat tests at the central parameter values were conducted for each sample. A 

total number of 68 tests were conducted (Box and Draper, 1987; Montgomery, 2001; Myers 

and Montgomery, 2002). 

 

2.3 Results and Discussion 

 

2.3.1 Leaching Characterization 

 

The leaching characteristics of the coarse reject and the corresponding leachate 

conductivity were evaluated using static and dynamic column leach tests. As shown in 

Figure 2.1, the supernatant liquid pH was strongly acidic during the initial period of both 
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the dynamic and static tests and remained acidic throughout the entirety of the tests. The 

lower acidic condition in the dynamic column leaching test was due to the more aggressive 

oxidation as a result of weekly cycles of alternating periods of dry air (3 days), humid air 

(3 days), followed by leaching using de-ionized water on the seventh day. High pyrite 

content and a negligible amount of buffering capability (calcite content) in the sample was 

the primary reason for the strong acidic medium when the sample was contacted with 

water. 

 

 

Figure 2.1. Variation of supernatant liquid pH as a function of time in static and dynamic 

leaching tests. 

 

Under these acidic conditions, a high amount of trace elements were released into the 

solution (Figure 2.2), thereby increasing the conductivity level of the leachate. The 

electrical conductivity (EC) of the supernatant liquid collected from the dynamic column 
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leach tests was measured periodically throughout the duration of the tests. As shown in 

Figure 3.2, the EC value trended downward after an initial high reading throughout the test 

period varying from around 6000 µS/cm to over 14000 µS/cm. The conductivity of the 

leachate solution collected at the end of the static leaching test was also measured and the 

value of 7,440 µS/cm agrees well with less aggressive conditions in the static test.  

 

 

Figure 2.2. Cumulative extraction of alkali and alkaline earth elements, sulfate and total 

metals from unit weight (kg) of the coarse refuse sample in dynamic and static leaching 

tests. 
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Figure 2.3. Conductivity of the supernatant liquid measured as a function of time in the 

dynamic leaching test for the non-segregated coarse refuse material. 

 

2.3.2  Statistical Evaluations of Conductivity Populations  

 

Experimental programs conducted according to a Box-Behnken statistical design was 

performed on four samples having different particle size and density to evaluate the 

independent and interactive effects of particle surface area (SA), leachant volume-to-

surface area ratio (VSAR), and the amount of oxidant on the electrical conductivity (EC) 

of supernatant liquid. The results were used to develop a standard procedure for 

conductivity screening-level testing.  
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The test conditions and the EC values from the 68 conductivity screening level tests are 

provided in Table 2.5. Seventeen tests were conducted on each of the four samples, i.e.,: 

fine-float, fine-sink, coarse-float and coarse-sink.   EC values varied from 1 to 3,530 µS/cm 

and the variation was the greatest for the coarse-sink material which likely contained the 

highest amount of pyrite. 

 

Table 2.5. Summary of independent parameters and measured values for the response 

variable. 

Trial 

Order 

Parameters Response Variables: EC (µS/cm) 

S.A. 

(cm2) 

Vol.: S.A. 

(cm3:cm2) 

Oxidant    

(%) 

Fine-

Float 

Fine-

Sink 

Coarse-

Float 

Coarse-

Sink 

1 20 25.5 30 79 170 164 608 

2 50 1 30 722 1,414 1,106 3,530 

3 50 25.5 15 37 87 72 406 

4 80 25.5 0 2 6 17 24 

5 50 25.5 15 38 98 90 363 

6 50 25.5 15 40 61 52 447 

7 80 50 15 27 55 39 184 

8 80 1 15 487 828 643 1,528 

9 20 25.5 0 3 6 24 387 

10 50 25.5 15 33 62 88 446 

11 80 25.5 30 73 247 100 813 

12 50 50 30 48 160 134 358 

13 50 25.5 15 34 65 45 434 

14 20 50 15 29 59 110 278 

15 50 1 0 63 92 360 3,450 

16 20 1 15 653 505 743 3,480 

17 50 50 0 1 4 6 205 

Average (Standard Error) 139 (13) 231 (22) 223 (18) 997 (72) 
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The initial statistical analysis focused on an assessment to determine if there are statistically 

differences in the population means using a one-way analysis of variance (ANOVA).  The 

null hypothesis was that all population means were equal and the alternative hypothesis 

was that at least one mean was different. Based on a comparison between the F-statistic 

value of 6.07 and the value corresponding to a confidence interval level of 95%, the null 

hypothesis was rejected which meant that at least one of the population mean values was 

statistically different from the other three. This was the first indication that particle size 

and density have an impact on the EC values resulting from oxidation and contact with 

water. 

 

As a result, a statistical analysis was conducted to determine which group or groups among 

the four data sets have different population means.  The analysis individually compared the 

mean of each population with each of the means of the other three populations. The null 

hypotheses in each case was that the pair of means were equal.  The only rejected 

hypotheses were the equality of the means associated with the coarse-sink fraction with the 

means of other fractions as shown in Table 2.6.  Given the specific gravity for pyrite of 4.8 

relative to 2.9 or lower for most of the other minerals, the finding that the mean associated 

with the coarse-sink was different than the other samples was understandable. The high 

conductivity level of this fraction is primarily due to the high amount of pyrite along with 

unliberated lighter minerals such as clay minerals in this fraction. Although clay minerals 

are expected to be presented in the float fractions, they may not be effectively separated in 

density fractionation of coarse materials due to lack of complete liberation. As a result, 

oxidation of pyrite not only generates an acidic condition which releases associated 
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calcophilic trace elements, but also dissolves lithophilic trace elements associated with the 

other mineral content in that fraction.  

 

Table 2.6. T-tests' results for testing the equality of pairs of the means. 

Null Hypothesis Alpha Value Decision 

µ fine-float = µ fine-sink 7.69E-02 Not Reject 

µ fine-float = µ coarse-float 2.60E-01 Not Reject 

µ fine-float = µ coarse-sink 2.33E-08 Reject 

µ fine-sink = µ coarse-float 5.07E-01 Not Reject 

µ fine-sink = µ coarse-sink 1.69E-05 Reject 

µ coarse-float = µ coarse-sink 1.60E-06 Reject 

 

This finding demonstrates the ability of the applied experimental approach to recognize 

differences in conductivity level and identifying the fraction within a given waste stream 

that needs to be isolated to prevent negative impacts on the environment. 

 

2.3.3 Parametric Evaluation 

 

In an effort to evaluate the parameter and parameter interactive effects, empirical models 

were developed which were used to predict the electrical conductivity (EC) resulting from 

a combination of surface area (SA), volume-to-surface area ratio (VSAR) and oxidant 

addition values. Linear, quadratic and cubic models were considered. Linear models were 

found to provide statistically poor predictions for all four data sets while the cubic model 

significantly reduced the degrees of freedom and thus was considered unfavorable. The p-

values obtained from ANOVA for quadratic models were less than 0.05 for four data sets, 
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which is indicative that the models are significant (Table 2.7). As such, the following 

statistical evaluations were conducted using quadratic models for the four data sets.  

 

The ability of models to accurately estimate the response variable (yi) was measured by the 

coefficient of determination (R2) as calculated by the expression: 
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                                                                                         (2.1) 

 

where 𝑦𝑖  is the electrical conductivity measured during a given test, �̂�  the predicted 

conductivity value and  �̅�  the mean value obtained from an experimental data set. The 

quadratic models for all the four samples were found to accurately predict the conductivity 

values as indicated by R2 values greater than 0.9. 

 

To ensure that each model was not constrained by a low degree of freedom, the adjusted 

coefficient of determination (R2
adj) was quantified for each data set using the following 

equation:   

 

 
 2 2n 1

R 1 1 R
n k 1

adj


  

 
              (2.2) 

 

where n and k are the number of data points and parameters, respectively. As implied from 

Eq. 3.3., R2
adj  must always be less than R2, and their difference is indicative of an excessive 
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number of parameters used in the modes. The differences were less than 0.033 for all of 

the four models derived in this study thereby meeting the required standards to accepted 

 

After acceptance of the models, the parametric and parameter interaction terms in each 

model were evaluated for their statistical significance. The null hypothesis used for the 

assessment was that the corresponding coefficient value was zero. Table 2.7 summarizes 

the test statistic values which represent the probability that the parameters or their 

associated interactions has no effect on the response variable. A prescreening of the 

parameters and interactions was conducted through rejection of any term having a t-value 

greater than 0.05 with exception of hierarchy conditions. The models were then modified 

according to the rejected terms. Table 2.7 provides the t-values for the remaining model 

terms established for each of the four data sets. 
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Table 2.7. Statistical significance of the parameters and parameter interactions and fit 

analysis for the four quadratic models. 

 

An observation of the significant model terms in Table 2.7 reveals that the most significant 

parameter effecting the leachate EC value is VSAR for all four materials while SA has no 

independent effect on conductivity. Figure 2.4 also confirms that EC is a function of VSAR 

to the second order, and increasing the VSAR decreases the EC significantly due to 

dilution. The graphs in Figure 3.3 were plotted at constant values SA and oxidant values 

of 50 cm2 and 30%, respectively. However, the trends were independent of these values. 

Quadratic models for estimating EC in the samples 

Fine-Float Fine-Sink Coarse-Float Coarse-Sink 

Parameter t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic 

Quadratic 

Model 
5E-06 

Quadratic 

Model 
5E-06 

Quadratic 

Model 
3.79E-08 

Quadratic 

Model 
1.02E-06 

B-VSAR 5.8E-06 B-VSAR 1.8E-05 B-VSAR 3.96E-08 A-SA 0.065861 

C-Oxidant 0.00368 C-Oxidant 0.0003 C-Oxidant 0.000213 B-VSAR 3.34E-07 

BC 0.00341 BC 0.00087 BC 0.001311 AB 0.032758 

B^2 0.00019 B^2 0.00054 B^2 1.28E-06 B^2 3.61E-05 

R-Squared 0.90395 R-Squared 0.90412 R-Squared 0.957842 R-Squared 0.926695 

Adj R-

Squared 
0.87193 

Adj R- 

Squared 
0.87217 

Adj R-

Squared 
0.94379 

Adj R-

Squared 
0.90226 
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Figure 2.4. Relations between EC and VSAR for different size-density fractionated 

samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. 

 

Figure 2.5 shows the effect of SA on EC for all samples along with 95% confidence interval 

(CI) bands using VSAR and oxidant values of 25.5 and 30%, respectively. Evaluations at 

different VSAR and oxidant values indicated that the trends were independent of VSAR 

and oxidant percentage. The graphs confirmed that EC is independent of SA. This finding 

is due to the fact that EC is caused by the mitigation of ions to the aqueous phase after the 

dissolution of minerals, and the chemical reaction occurs at the mineral-solution interface. 

As well-known from previous studies and in practice, leaching is a function of the ratio of 

particle surface area to the leachant volume (van der Sloot, et al. 1997; Lolar, 2005). 
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Figure 2.5. Relations between EC and SA for different size-density fractionated samples: 

(a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. 

 

The next most significant parameters in the models with the exception of the coarse-refuse 

fraction were the oxidant percentage and its interaction with the VSAR. Figure 2.6 

confirms the predicted significance of the percent of oxidant on three of the four materials 

with the exception of the coarse-sink fraction. It is noted that the conductivity of the 

leachate from coarse-sink is already significantly high relative to the other materials. As 

described by the models and the graphs in Figure 2.6, the variation of EC with percent of 

oxidant is linear for all materials except the coarse-sink fraction. The trends were 

independent of the selected other parameter values (VSAR:1 cm3/cm2 and SA:50 cm2)  
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Figure 2.6. Relations between EC and oxidant for different size-density fractionated 

samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-Sink. 

 

 

As noted, the interaction between the percent of oxidant and VSAR is significant and the 

impact on EC is shown in Figure 2.7. As shown, VSAR has a significantly greater impact 

than the amount of oxidant on EC. Depending on the sample mineralogy and TDS value 

after a given dilution ratio, the EC of the supernatant water significantly decreases. This 

observation is consistent with the dependency of EC with the second order of VSAR in the 

developed quadratic models. 
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Figure 2.7. Predicted interactive effects of VSAR and oxidant on EC for different size-

density fractionated samples: (a) Fine-Flat, (b) Fine-Sink, (c) Coarse-Float, (d) Coarse-

Sink 

 

 

An additional observation from Figure 2.7 is that a 1:1 VSAR ratio for all four fractions 

results in an elevated conductivity level without the use of an oxidant, which simplifies the 

conductivity screening-level test. As a result, one may consider just using a 1:1 VSAR in 

the conductivity screening-level test and eliminate using the oxidant since hydrogen 

peroxide is not naturally available during dissolution of minerals in a mining environment. 

This 1:1 VSAR value is also more representative of the mining environment, and is also 

commonly used in soil testing as suggested by a number of researchers for implementation 

in leaching columns and weathering cells (Kleinmann, 2000).  
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2.3.4 Modified Conductivity Test Procedure 

 

Understanding the effect of the parameters facilitates modification of the previous 

conductivity screening-level tests. Based on the parametric analysis,  it is recommended to 

modify the  standard conductivity test procedure as illustrated in Figure 2.8 and described 

as follows: 

 

1- Particle size analysis of a representative sample by sieving to determine the top and 

bottom size of the material.  

2- Measure solid density 

3- Calculate surface area using Eq.  3.1. 

4- Add distilled water to the sample at a volume that provides a volume to surface area 

ratio (VSAR) of 1:1. 

5- Shake the capped container for 15 min.  

6- Measure conductivity of the leachate after allowing particles time to settle. The 

leachate may be filtered for further analyses. 
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Figure 2.8. Schematic of the modified conductivity screening-level procedural steps 

including the determination of surface area. 

 

 

2.4 Conclusions 

 

Dissolution of the mineral content comprised in processing waste streams results in the 

release of major and trace elements thereby causing an elevation of conductivity of the 

water in contact with the materials. Identification and separation followed by 

isolation/encapsulation of the fractions causing the elevation of TDS and conductivity of 

water may minimize the environmental effects of waste disposals. To achieve this goal, an 

accurate conductivity screening-level test that can provide a timely assessment of the 

various components in a waste stream is needed. 

 

Understanding the effect that the various parameters have on the conductivity of the water 

in contact with the solid surfaces is necessary for developing an adequate conductivity test.  
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Particle surface area, liquid volume-to-surface area ratio and the amount of oxidant were 

identified as key parameters impacting electrical conductivity of the leachate. The effects 

of each parameters were quantified using data obtained from a test program that was 

conducted based on a statistical three-level design known as the Box-Behnken method. 

Separate test programs were conducted on two different particle size fractions and density 

fractions from a coarse coal waste material which effectively varied the mineralogical 

composition. A statistical analysis of the test results indicated that the coarse and high 

density fraction provided supernatant liquid conductivity values that were significantly 

different than those obtained from the coarse, low density material and the high and low 

density fractions of the small particle size fraction. This finding is likely due to the high 

pyrite content in the heavy fraction and low concentration of minerals like calcite that could 

provide neutralizing potential. 

 

Quadratic models were developed using the parametric test results which provided an 

accurate means to quantify electrical conductivity as a function of the parametric values 

and their associated parameter interactions. Based on a statistical analysis of the models, 

the significance of the parameter and parameter interactions followed the order of 1) liquid 

volume-to-solid surface area ratio (VSAR), 2) oxidant amount through the interaction with 

VSAR, and 3) interaction between VSAR and surface area. Surface area was not found to 

be an independently significant parameter for all four material cases.  A low VSAR value 

of 1:1 produced an elevated supernatant conductivity value in all cases and thus points to 

an acceptable standard for a modified conductivity screening test procedure.  
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Based on the findings of the parametric study and subsequent statistical analyses, a 

modification to the existing standard conductivity screening test was developed which 

consists of the following steps: 1) conduct a particle size analysis of the material by sieving 

to determine top size and bottom size for calculation of the geometric mean diameter, 2) 

measure density of the solids 3) calculate particle surface area calculation, 4) add a quantity 

of distilled water to the sample in a container that will meet  a 1:1 ratio of liquid volume-

to-particle surface area, 5) agitate the capped container for 15 minutes and  6) measure the 

conductivity of the supernatant after allowing time for particles to settle. This procedure 

can be applied for conductivity screening-level of various waste streams. 
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3. ELECTRICAL CONDUCTIVITY SCREENING FOR 

DEVELOPING COAL PROCESSING WASTE DISPOSAL 

STRATEGIES 

 

Summary: An environmental concern at coal processing operations is the release of 

elements resulting from the oxidation or dissolution of certain minerals contained in the 

process waste streams.  Using a standard conductivity test, the electrical conductivity (EC) 

of the water samples obtained from mixing with various particle size and density fractions 

of a given plant waste material were measured as an indicator of total dissolved solids. As 

a result, the particle size and density fractions contributing to high EC levels were identified 

with the objective of potentially extracting the identified fractions and isolating the material 

to reduce the potential for negative environmental impacts. The results showed that the EC 

generated from coarse refuse streams were significantly higher than the values obtained 

from fine refuse streams. Crushing the coarse samples to a finer particle top size showed 

potential for reducing the EC of the supernatant water, at least in the short term, due to the 

liberation of certain minerals, such as calcite, which provide enhanced buffering capability. 

Furthermore, the high specific gravity (>2.68) fractions were found to be the primary 

source of elevated EC levels. The remaining fractions were found to be of minimal 

environmental concern. Mass balancing of the coal processing plant streams indicated that 

the high density fractions comprised less than 10% of the coal waste streams. Liberation 

and separation followed by the isolation of this fraction significantly minimizes the 

negative environmental impacts associated with the handling and placement of coal refuse 

materials.  
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3.1 Introduction 

 

Modern coal preparation facilities incorporate a wide array of low-cost solid-solid and 

solid-liquid separation processes for coal upgrading to improve utilization characteristics 

of the product coal.  While these benefits are well documented, the coal industry often 

overlooks the opportunity to further integrate coal preparation as an environmental control 

system. In fact, coal processing facilities have long played a critical role in reducing the 

emissions of pollutants at coal-fired power stations.  

 

Many of the air pollutant precursors are associated with the mineral matter commonly 

rejected by coal preparation plants. The mode of occurrence of trace elements in coal has 

been well studied by many researchers (Zubovic, 1966; Gluskopter et al., 1977; Finkelman, 

1981; Clarke and Sloss, 1992; Querol et al., 1995; Wang et al., 2009; Vejahati et al, 2010, 

Huggins et al, 2012). The pre-combustion rejection of trace elements by coal preparation 

is attractive since the waste rock is relatively coarse and has a lower reactivity than the 

high-surface-area ash generated by power stations (Jacobsen et al., 1992). In-plant 

sampling campaigns conducted by various researchers (Luttrell et al., 2000) suggest a good 

correlation between the rejection of mineral matter and the removal of trace elements 

during physical cleaning. The data suggests that trace elements are typically rejected at 

levels of 40%-70% by weight using conventional preparation technologies. 

 

The rejected mineral matter is commonly placed into surface storage areas which are refuse 

piles and impoundments in mountainous terrains or a ponding system in flat areas. Refuse 

piles are designed to store the coarse refuse materials which can be easily dewatered and 
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hauled by trucks or conveyor belts. Due to recent changes in environmental rules, a few 

operations are employing the use of high pressure filters to dewater the fine refuse which 

allows co-disposal with the coarse refuse in a piling system. In most cases, impoundments 

are used to store the fine coal waste in slurry form with typical solid concentrations of 

around 30% by weight. A portion of the coarse coal waste is used to construct the 

embankment of the impoundment.  The waste materials are exposed to ambient air and 

water which promotes the oxidation of minerals such as pyrite (FeS2) and dissolution of 

associated elements. This process impacts the quality of the water that permeates through 

the impoundment and flows into downstream ponds as well as the discharged water from 

the coarse refuse piles. 

 

Weathering of pyrite has the potential to create highly acidic leachate which degrades water 

quality by elevating metals and sulfate concentrations that exceed water quality standards 

(Moses, 1990; Nordstrom et al., 2000; Dold & Fontboté, 2001). Three major steps involved 

in pyrite oxidation include:  

(1) Sulfur oxidation as described by:  

 

 FeS2 +  7 2⁄  O2 +  H2O →  Fe2+ + 2 SO4
2− + 2 H+                                              (3.1) 

 

In this initial step, pyrite is oxidized through adsorbing oxygen and water to its partly 

protonated surface by bonding to Fe2+. Every mole of pyrite then produces one mole of 

ferrous iron (Fe2+), two moles of sulfate (SO4
2−) , and two moles of H+. In addition, 

chalcophilic and other associated elements are also released into the solution (Nordstrom 
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et al., 1979; Nordstrom, 1982; Moses et al., 1987; Fornasiero et al., 1994; Ehrlich, 1996, 

Rezaee et al., 2013). Pyrite oxidation by ferric iron at pH below 3 is approximately 10 

times faster than by oxygen (Ritchie, 1994; Dold, 2010) due to the more efficient electron 

transfer of Fe3+ (Luther, 1987). 

(2) Ferrous iron oxidation according to the following reaction: 

 

 Fe2+ +  1 4⁄  O2 +  H+  →  Fe3+ + 1 2⁄  H2O                                                               (3. 2) 

 

The reaction produces ferric iron (Fe3+) which is the primary oxidant, especially at low pH 

conditions based on the reaction:  

 

FeS2 +  14 Fe3+ + 8 H2O →  15 Fe2+ + 2 SO4
2− + 16 H+                                        (3.3) 

 

O2 becomes the major oxidant under circumneutral pH due to the diminished solubility of 

Fe3+ (Singer and Stumm, 1970; Dold, 2010).  

(3)  Hydrolysis and precipitation of ferric complexes such as Fe(III) oxyhydroxide, 

which is the main acid producer reaction (Dold, 2010), i.e.,  

 

Fe3+ +  3 H2O →   Fe(OH)3(s) +  3 H+                                                                      (3. 4) 

 

As a result, the overall reaction is a release of 4 moles of H+ per mole of pyrite as indicated 

by: 
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FeS2 +  15 4⁄  O2 +  7 2 ⁄ H2O →  Fe(OH)3 + 2 SO4
2− + 4 H+                                 (3.5) 

 

Pyrite oxidation decreases by precipitation of the secondary Fe(III) hydroxides due to the 

coating effect which prevents the exposure of the pyrite to further oxidation (Blowes et al., 

1991; Evangelou & Zhang, 1995; Dold et al., 2009). The overall reaction of pyrite 

oxidation facilitates the release of major and trace elements into the solution as a result of 

the elevated hydroxide solubility of metals in strong acidic conditions. As a result, the 

negative impact can be detected by high electrical conductivity values measured in the 

supernatant water that has interacted with the waste material.  

 

Pyrite oxidation, acid generation, release of sulfate, iron and trace elements could be abated 

by the buffering capability provided by natural chemical or biological processes, such as 

carbonate mineral dissolution, release of exchangeable cations associated with the clay 

minerals (Toran, 1987; Nicholson et al., 1988; Blowes & Ptacek, 1994; Huggins et al., 

2011) or bacterial sulfate reduction (Herlihy et al., 1988; Moses, 1990). For example, the 

formation of insoluble jarosite (NaFe3(SO4)2(OH)6) and gypsum (CaSO4. 2H2O) through 

the release of sodium and calcium from the dissolution of carbonate minerals provides 

natural pH neutralization potential. The formation of these minerals is explained by the 

following reactions:  

 

3 FeS2  + 3 H2O  + 13.5 O2  + [Na+]sol′n → NaFe3(SO4)2(OH)6  + 4[SO4]2−
sol′n

       (3.6) 
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[Ca2+]sol′n  +  [SO4
2−] + 2 H2O →  CaSO4. 2H2O                                                     (3.7) 

 

These reactions show the release of some sulfate to the leachate, the lack of iron 

mobilization, the absence of acid generation ([H+]sol'n), and the formation of jarosite and 

gypsum subject to the presence of a critical concentration of calcium and sodium ions. At 

or above the critical concentrations, the acidity is buffered to near neutral pH, and 

mobilization of iron and trace metals associated with pyrite would be minimized.  

 

Waste materials with naturally high buffering capability may also provide elevated 

electrical conductivity values of the supernatant liquids due to increased solubility of 

metals in alkaline conditions. For example, the dissolution of carbonate minerals such as 

calcite, dolomite or magnesite will provide an environment that results in elevated 

electrical conductivity values as  described by the following three parallel reactions which 

occur at the mineral/water interface: (Plummer et al., 1978; Chou et al., 1989; Wollast, 

1990): 

MeCO3 + 2H+ 
k1

↔
k − 1

 Me2+ +HCO3
−                                                                                    (3.8)  

 

MeCO3 + H2CO3
∗  

k2

↔
k − 2

 Me2+ +2HCO3
−                                                                                (3.9)  

 

MeCO3   
k3

↔
k − 3

 Me2+ + CO3
2−                                                                                                  (3.10) 
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where Me represents the metal ion such as Ca, Mg and Ba (Plummer et al., 1978; Chou et 

al., 1989; Wollast, 1990; Pokrovsky et al., 2005).   

 

The dissolution of most clay (aluminosilicate) minerals also release base cation (Fe(II), Ca, 

Mg),and alkali elements such as Na and K, which leads to H+ consumption, and contribute 

to the dissolved Al and Si found in the tailings pore water (Blowes & Ptacek, 1994). 

However, Al and Si dissolution rates are significantly smaller than that of carbonate 

minerals.  In contrast with carbonate minerals that are categorized in dissolving mineral 

group with a relative reactivity of one, clay minerals such as kaolinite are grouped in the 

slow weathering category with a relative reactivity value of 0.02 (Jambor and Blowes, 

1998). Reactions 3.11 and 3.12 describe kaolinite dissolution under acidic and basic 

conditions, respectively, and reaction 3.13 describes illite dissolution under an acidic 

condition (Huertas et al., 1998; Köhler et al., 2003; Cama and Ganor, 2015): 

 

Al2Si2O5(OH)4 + 6 H+  ↔ 2 Al3+ + 2 H4SiO4 +  H2O                                                  (3.11) 

 

Al2Si2O5(OH)4 + 5 H2O + 2 OH−  ↔ 2 Al(OH)4
−  +  2 H4SiO4                                  (3.12) 

 

(Si3.55Al0.45)(Al1.27Fe0.36
(III)

Mg0.44)O10(OH)2(Ca0.01Na0.13K0.53) +  7.80 H+  ↔

3.55 SiO2 +  1.72 Al3+  +  0.36 Fe3+ +  0.44 Mg2+ +  0.01  Ca2+ +  0.13 Na+ +

 0.53 K+ +  4.90 H2O          (3.13) 
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Quartz is a typical gangue mineral in coal which is categorized in the inert group by a 

relative reactivity value of 0.004 (Jambor and Blowes, 1998). Huggins et al. (2012) 

summarized the dissolution rate order based on column leach tests conducted on various 

coal waste streams.  The dissolution rate order for the associated minerals was: calcite > 

pyrite >> clay minerals.  

 

As discussed, coal waste streams are comprised of a variety of minerals which have 

differential dissolution rates. The dissolution of a few minerals results in undesirable 

environmental conditions which is reflected by high or low pH conditions, elevated total 

dissolved solids (TDS) content, and high electrical conductivity in the supernatant water. 

The minerals also differ in their physical properties including crystalline size and density. 

As a result, mineral types are naturally segregated in a coal preparation plant into the 

various reject streams and specially designed circuits can be employed to concentrate and 

isolate specific minerals in an effort to remediate environmental concerns regarding coal 

waste disposal. However, fractionating each waste stream by particle size and density 

results in a large number of samples that would require significant time and resources to 

evaluate leaching characteristics using standard column leaching experiments. Electrical 

conductivity measurements can be used as a means of providing timely assessments of the 

various fractions in a coal waste material. In this screening process, fractions with high 

electrical conductivity may be considered as an environmental concern while materials 

providing a low conductivity can be studied in more detail using long-term column 

leaching tests. 
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 The application of a conductivity-screening level (CSL) test was utilized to characterize 

coal waste streams and identify fractions that contribute to the elevation of TDS and thus 

the EC values. The processing waste material was separated into a number of particle size 

and density fractions and subjected to the CSL tests to identify the components that would 

cause environmental harm if handled and stored in a conventional manner.  The test 

program also investigated the potential of liberating the environmentally harmful minerals 

to minimize the material requiring isolation. The positive effects of liberating the minerals 

that provide natural buffering capability was also studied and the results reported in this 

chapter.  

 

3.2 Experimental 

 

3.2.1 Sample Collection and Characterization  

 

A comprehensive set of representative samples were collected by taking incremental 

samples every 20 minutes over a four hour operating period during a typical operating shift 

at a coal processing plant. The plant was located in northern Appalachia and utilized 

various circuits to treat coal that was extracted from the Pittsburgh No. 8 coal seam, which 

was classified as high volatile bituminous coal containing a relatively large amount of 

sulfur in pyritic form.  

 

Dense medium vessels and cyclones were utilized for treating the coarse (+10 mm) and 

intermediate (10 x 1 mm) particle size fractions, respectively. Spiral concentrators were 

used for cleaning the fine size fraction (1 x 0.15 mm). The ultrafine material which 

consisted of particles smaller than 0.15 mm was upgraded using a froth flotation circuit.  
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As shown in Figure 3.1, the representative samples were collected from the following 

process streams: 1) plant feed, 2) plant clean coal, 3) dense medium vessel refuse (DMVR), 

4) dense medium cyclone refuse (DMCR), 5) high frequency overflow (HFO), 6) total 

coarse refuse (TCR), which includes DMVR, DMCR, and HFO, 7) thickener 

underflow(TU), and 8) the discharge stream for the fine refuse sump (FRS), which includes 

TU and high frequency underflow.  

 

 
Figure 3.1. Sampling locations in the coal processing plant: 1) Feed, 2) Clean coal, 3) 

Dense medium vessel refuse, 4) Dense medium cyclone refuse, 5) High frequency 

overflow, 6) Total coarse refuse, 7) Thickener underflow, and 8) Fine refuse sump. 

 

Upon arrival at the laboratory, the DMVR, DMCR and HFO were spread out and air-dried 

over a period of about 3 days. For the DMVR and DMCR samples, the coning and 

quartering method was employed to split the sample into representative sample lots 

comprising of the original particle sizes.  The coning and quartering involved heaping the 



75 
  

bulk sample into a pile and dividing into four quarters, rejecting two opposite quarters, 

mixing the two remaining quarters and then repeating the process until a suitable volume 

of material remained for splitting. Afterwards, the representative samples were stored in 

large vacuumed plastic bags for analysis and CSL test.  

 

To evaluate the impacts of liberation, the top particle size of the DMVR and DMCR 

samples was further reduced using a laboratory jaw crusher and, in some cases, a hammer 

mill to pre-selected top sizes ranging from 38.1 to 1mm. After mixing the ensure 

homogeneity, representative samples from each top size lots were obtained for a CSL test 

and size-density fractionation. A laboratory Jones riffle splitter was employed for this 

process which yielded 1 kg sample lots to be used for analysis and the experimental 

program. After riffling, the final samples were stored in vacuumed sealed bags to prevent 

atmospheric oxidation. The clean coal sample was processed in the same manner except 

for the air drying step. Also, given that the top particle size of the high frequency screen 

material was 1mm, no crushing was required prior to splitting into representative samples.  

 

The fine refuse and thickener underflow slurry samples were well mixed for 15 min using 

an agitator and split into several representative slurry samples using an Outotec Rotary 

Slurry Sampler Model WS-220. One of the samples was used to measure the initial slurry 

pH and conductivity as well as the solids content and trace element concentrations in the 

supernatant liquid.  A particle size analysis was also conducted on a representative sample 

using a wet sieve screening procedure. The remaining sample was filtered using a pressure 

filter and dried in a low temperature oven for 24 hours. The dried samples were then 
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crushed using a hammer mill equipped with an internal screen having 1 mm apertures. The 

crushed samples were then split into representative lots and stored until use in the 

experimental program. 

 

 
Figure 3.2. Sampling locations in the coal processing plant: 1) Feed, 2) Clean coal, 3) 

Dense medium vessel refuse, 4) Dense medium cyclone refuse, 5) High frequency 

overflow, 6) Total coarse refuse, 7) Thickener underflow, and 8) Fine refuse sump. 

 

 

After the required preparation, the samples were analyzed for their particle size 

distribution, ash content, sulfur forms, major elements using XRF, and elemental analysis 

by Inductivity Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The particle 

size distributions provided in Figure 3.2 show that the dense medium vessel and cyclone 

reject materials were relatively coarse as expected with top sizes of 100 and 20 mm, 

respectively, and a bottom size of around 1 mm. The high frequency screen (HFS) overflow 
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is the reject material derived from a cleaning circuit treating nominally 1 x 0.15 mm which 

is reflected by the size distribution. The smallest particle size distributions with more than 

80% finer than 0.15 mm were associated with the fine reject and thickener underflow 

samples with the latter being the finest.  

 

 

Figure 3.3. Particle size distributions of the dense medium vessel refuse (DMVR), dense 

medium cyclone refuse (DMCR), high frequency overflow (HFO), fine refuse sump 

(FRS) and thickener underflow (TU) samples. 

 
 

The total ash contents and sulfur forms for each sample are provided in Table 3.1.  The 

Pittsburgh No. 8 coal feeding the coal preparation plant was found to contain 22.59% ash 

bearing material and 2.84% total sulfur of which the pyritic-to-organic ratio was 

approximately 1:1. As expected, the material in the waste streams contained the highest 

quantities of ash and pyritic sulfur. The materials in the coarse waste streams and high 
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frequency overflow were concentrated in ash-forming minerals with contents exceeding 

75% as well as pyrite as indicated by high relatively high pyritic-to-organic sulfur ratios. 

The dense medium cyclone refuse and high frequency screen overflow streams were 

particularly high in pyritic sulfur due to liberation and classification of the fine pyrite into 

the underflow of the cyclones used to achieve sizing and density-based separations. The 

lower pyrite content in the coarse dense medium vessel reject was due to the dilution of 

coarse rock from out-of-seam sources during the extraction of the coal. The lower ash and 

sulfur contents in the fine reject reflected the inefficiencies of the cleaning processes used 

to process the fine particle size fractions which resulted in significant coal loss and dilution 

of the mineral matter.  

 

Table 3.1. Ash and sulfur contents including sulfur forms in the materials collected from 

the various process streams of an operating coal preparation plant. 

Sample No. Sample Description Ash (%) 
Sulfur Forms (%) 

Total Sulfate Pyritic Organic 

1 Feed 22.59 2.84 0.04 1.38 1.42 

2 Clean Coal 8.9 3.09 0.03 1.22 1.84 

3 DMVR 86.48 2.19 0.15 1.68 0.36 

4 DMCR 79.86 4.54 0.32 3.53 0.69 

5 HFO 76.04 9.88 0.08 7.79 2.01 

6 TCR 81.55 5.29 0.44 4.39 0.46 

7 TU 40.64 1.69 0.22 0.42 1.05 

8 FRS 47.58 3.09 0.26 2.2 0.63 

 

 

The major element contents of the ash forming components in each process stream are 

listed in Table 3.2. As expected, the large major components of the material in each stream 

were silica oxide and aluminum oxide likely in the form of sandstone and clay minerals. 

Iron content was also a significant component which was likely due to the high pyrite 
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content. The presence of calcium oxide in significant quantities, which was an indicator of 

the presence of calcite, was a significant finding given its potential for providing 

neutralization potential (Eq. 3.7).  The apparent concentration of calcium oxide content 

into the high frequency screen overflow has importance given that the material is nearly 

always mixed with the high pyritic sulfur materials in the dense medium vessel and cyclone 

reject streams. The fine refuse reject material has the highest percentage of calcium oxide. 

Due to changes in environmental regulations concerning fine slurry impoundments, a 

recent coal industry trend is to dewater the fine reject using high pressure filter presses and 

combine the filter cake with the coarse reject prior to permanent placement into storage 

facilities. As a result, the relatively high calcium oxide concentration in the fine reject could 

provide pH buffering action to counter the acid producing components of the coarse reject 

material.  

 

Table 3.2. Major element analyses of the ash-forming material generated from the 

combustion of the material in each process stream at 500˚C. 

Element 

Oxide 

% Weight of Ash 

Feed 
Clean 

Coal 
DMVR DMCR HFO TCR TU FRS 

SiO2 57.30 44.07 63.73 59.12 52.45 58.96 58.06 55.49 

Al2O3 21.75 21.81 25.77 23.98 21.43 23.83 24.74 23.04 

Fe2O3 10.18 21.13 4.54 7.86 15.19 9.58 3.35 9.43 

CaO 2.52 3.78 0.67 1.59 3.69 1.53 2.74 3.98 

MgO 0.90 0.72 0.69 0.74 0.66 0.71 0.98 0.94 

Na2O 0.91 0.64 0.54 0.50 0.41 0.47 2.16 1.16 

K2O 1.88 1.46 2.08 1.98 1.78 1.91 2.12 2.01 

P2O5 0.21 0.37 0.16 0.17 0.19 0.19 0.17 0.20 

TiO2 1.23 1.05 1.33 1.21 1.06 1.20 1.15 1.09 

BaO 0.05 0.08 0.04 0.04 0.04 0.04 0.05 0.05 

SrO 0.06 0.16 0.03 0.03 0.04 0.03 0.05 0.05 

SO3 2.74 3.27 0.52 1.29 0.90 1.33 3.41 2.70 
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3.2.2 Conductivity Screening Level (CSL) Test: 

 

The conductivity of water after contact with the coal waste sources was evaluated using 

the modified CSL test described in Chapter 2 which included the following steps:  

1- Particle Size analysis of the sample by sieving to determine the top and bottom size 

of the sample, and to provide the information needed to calculate the geometric 

mean diameter. 

2- Particle density measurement  

3- Surface area calculation using the Equation 2.1. 

4- Mixing a predetermined amount of deionized water with the representative coal 

reject sample to achieve a liquid volume-to-surface area ratio of 1:1. 

5- Agitation of the water and solid mixture in a capped container for 15 min.  

6- Conductivity measurement of the supernatant after allowing time for the solid 

particles to settle to the bottom of the container.  

7- Filtration of the solid-liquid mixture to collect the supernatant for additional testing. 

 

The CSL test was initially performed on representative samples of the original coal waste 

to identify which sources release more total dissolved solids (TDS) when contacted with 

water. Subsequently, representative sample lots of the coarse reject sources (DMVR and 

DMCR) were crushed down to different top sizes using a laboratory jaw crusher and 

hammer-mill and the products evaluated by the CLST. The study provided an assessment 

of the impact, positive or negative, of liberating the various minerals comprising the reject. 

Subsequently, the crushed samples were screened and density fractionated which provided 

a separation of the minerals into different fractions. As a result, the particle size and density 
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fractions in the original and crushed coal reject fractions causing a positive or negative 

impact on the environment could be identified. The components that were determined to 

have a negative impact on the environment can be isolated through a particle size and 

density separation process and treated to remedy the environmental issues. 

 

The specific sample preparation procedure involved dry sieving the samples to obtain size 

fractions having specific top and bottom sizes. Each particle size fraction was then 

separated into different density fractions by laboratory float-sink testing using lithium 

metatungstate salt solutions with different specific gravities. The specific gravity (SG) 

values of the solutions were 1.8, 2.68, and 2.95. These specific gravity values were selected 

based on the solid SG values of the mineral components that typically comprise bituminous 

coals in the Appalachian coal fields. The 1.8 SG value was chosen to concentrate the 

organic material in the float fraction, the 2.68 SG value to float quartz (SG = 2.65), kaolinite 

(SG = 2.6) and a portion of the illite (SG range = 2.6 – 2.9), the 2.95 SG value to recover 

the remaining illite and calcite (SG = 2.71) while isolating the pyrite (SG = 5.0) into the 

material that sinks in the 2.95 SG medium. Figure 3.2 provides a schematic description of 

the sample preparation process. If the results show that isolating specific fractions of the 

reject materials would be environmental beneficial, circuitry can be added to an existing 

processing plant at a relatively low cost to achieve the desired particle size and density 

separations. 
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Figure 3.4. Schematic showing the sample preparation process used to assess the 

potential of isolating environmentally sensitive components. 

 

 

3.3 Results and Discussion: 

 

3.3.1 CSLT of refuse streams 

 

Representative samples from the waste streams were subjected to the CSLT (Table 3.3). 

The high buffering capability of the HFO, FRS, and TU neutralized the pH of the 

supernatant liquid (D.I. water with pH of 5.7 and zero conductivity) that was in contact 

with the samples. As a result , acid generation reactions (Eqs. 3.1 to 3.5) were suppressed 

thereby preventing the release of trace elements and decreasing the TDS and conductivity 

(Eq. 3.7 and 3.8). On the other hand, the coarse reject generated by the dense medium 

vessel and cyclone was found to produce an acidic condition which resulted in an elevation 

of the TDS as indicated by high leachate conductivity values. 
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Table 3.3. CSLT results from the analysis of samples collected from the original refuse 

streams. 

 

The high frequency overflow material has an alkali and alkaline elemental content that is 

sufficiently high to buffer the pH and counter the effects of the high pyrite content. 

However, the material is typically blended into the coarse reject streams which dilutes its 

natural buffering capacity. The problem is magnified by the fact that the high frequency 

overflow material has the highest pyritic sulfur content (Table 3.1) among all reject streams 

which will contribute to the potential for acid generation.  

 

A comparison of the fine refuse and thickener underflow content analysis in Tables 3.1 and 

3.2 shows that the high frequency underflow also has elevated contents of calcite and coal 

pyrite. The pyrite contents of both the high frequency overflow and underflow are 

particularly high. From Figure 3.1, it is shown that the feed to the high frequency screen is 

derived from the tailings of the primary spiral unit. As such, a potential solution for any 

long term storage issues would involve the use of a mineral spiral concentrator to separate 

and isolate the pyrite in the high density stream of the primary spiral concentrator. 

The results in Table 3.3 also suggest that coal fine refuse stream is of less environmental 

concern than coarse refuse. It is also implied that most of the trace elements release from 

impoundments is due to the passing of the water through the embankment of the 

impoundment, which indicates that separation and isolation of the environmentally 

Sample DMVR DMCR HFO FRS TU 

Measurements 
EC 

(µS/cm) 
pH 

EC 
(µS/cm) 

pH 
EC 

(µS/cm) 
pH 

EC 
(µS/cm) 

pH 
EC 

(µS/cm) 
pH 

Mean 5280 
2.7

8 
1479 2.90 98.0 7.02 13.1 8.30 6.5 6.41 

Standard 

Deviation 
2376 

0.2

2 
33.2 0.01 0.2 0.64 1.1 0.40 4.9 0.05 
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concerned fractions of the coarse refuse streams should be performed prior to dispose in 

refuse piles or construction of the embankment. 

 

3.3.2 Crushing Effect 

 

Some of the minerals that provide natural neutralization capacity may not be liberated in 

the coarse reject material. As such, experiments were conducted to investigate the potential 

of creating natural neutralization potential by crushing the material to a smaller particle top 

size. Mineral liberation could result in a higher dissolution of alkali and alkaline earth 

elements through interactions with the solution (eq. 3.8 to 3.10), formation of insoluble 

sulfate minerals (eq. 3.6 and 3.7) and pH stability at values close to neutral thereby leading 

to a  reduction in trace element mobility and conductivity. Crushing the dense medium 

vessel and cyclone refuse materials to a 1mm top size resulted in an increase in the 

supernatant liquid pH (Table 3.4 and 3.5) and a significant reduction of the conductivity 

level (Figure 3.5). However, the positive effects of creating natural neutralization potential 

through particle size reduction may be a short term effect due to the limited amounts of 

minerals with dissolutions rates and alkali and alkaline earth elements contents that are 

needed to counter the effect of pyrite oxidation. 
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Table 3.4. Effect of crushing on pH of supernatant liquids in contact with various top size 

samples of dense medium vessel refuse (DMVR) sample. 

DMVR Samples 

pH 

mean 
standard 

deviation 

Origin 3.36 1.01 

38.1(mm) TS 4.08 0.95 

25.4(mm) TS 3.84 0.54 

19.05(mm) TS 3.94 0.28 

12.7(mm) TS 3.71 0.05 

6.35(mm) TS 4.02 0.49 

1mm TS 5.21 0.01 

 

 

Table 3.5. Effect of crushing on pH of supernatant liquids in contact with various top size 

samples of dense medium cyclone refuse (DMCR) sample. 

DMCR Samples 

pH 

mean 
standard 

deviation 

Origin 2.90 0.01 

12.7(mm) TS 2.97 0.01 

6.35(mm) TS 3.60 0.42 

1mm TS 4.37 0.04 

 

 



86 
  

 

 

Figure 3.5. Effect of crushing on EC of supernatant liquids in contact with various top 

size (TS) samples of (a) dense medium vessel refuse (DMVR) and (b) dense medium 

cyclone refuse (DMCR).  
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3.3.3 CSL test on size-density fractions 

 

Conducting CSL tests were performed on particle size-by-size density fractionated samples 

having different top sizes to experimentally identify the high conductivity generating 

fractions that need to be separated and isolated as well as to quantify the impacts of 

liberating the minerals by particle size reduction.  

 

Most of the particle size and density fractions in the original sample provided elevated EC 

values in the supernatant liquid after mixing with the solid material as shown in Figures 

3.6 (a). As a baseline, the EC and pH values of the ultrapure deionized water that was 

mixed with the solids in this study were zero S/cm and 5.5, respectively. The relatively 

high EC values could be due to both dissolution of certain minerals and oxidation of the 

pyrite. For particles size fractions smaller than 25.4 mm, the pH values of the supernatant 

liquid samples that were mixed with the 2.68 x 2.95 SG and 2.95 SG sink fractions were 

below 4.0 which was proof of pyrite oxidation. On the other hand, particle sizes larger than 

25.4 mm along with those in the 1.8 SG fraction of the 25.4 x 12.7 mm size class provided 

elevated pH conditions with values reaching 8.38. The EC value of the liquid at pH 8.38 

was around 2800 S/cm which may be a result of the release of alkali and alkaline earth 

elements from the dissolution of various mineral types. 
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Figure 3.6. EC of supernatant liquids in contact with dense medium vessel refuse 

(DMVR) samples in CSL tests: (a) origin, (b) 19.2 mm TS, (c) 6.35 mm TS, and (d) 1 

mm TS (TS: top size). The absence of bars for a given specific gravity fraction indicates 

that no material was recovered.  

 

The original sample was crushed to a lower particle top size in an effort to quantify the 

impact of liberating the various minerals comprised in each density fraction. Size reduction 

to a top size of 19.5 mm resulted in a significant reduction in the EC values in almost all 

particle size and density fractions as shown by a comparison of Figures 3.6 (a) and (b). 

Figure 3.6(b) also shows that the EC values of the supernatant liquid dropped in each 

subsequently smaller particle size fractions and lower specific gravity fractions. The trend 

with specific gravity corresponds well with pH as shown in Table 3.7. The supernatant 

liquid pH values from mixing with the 1.8 SG material were in the range of 6 to 7 while 

the values for the 2.68 x 2.95 SG and 2.95 sink were below 4.   
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Table 3.6. Weight distribution of size-density fractions of DMVR sample along with 

associated leachate pH in CSL test. 

Particle Size 

Fractions 

(mm) 

Weight (%) pH 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

+38.1 0.00 23.94 0.00 0.00  5.81   

38.1 x 25.4 0.00 15.55 0.32 1.91  6.48 7.64 7.40 

25.4 x 12.7 0.89 35.38 0.45 0.56 8.38 5.69 5.54 4.27 

12.7 x 1 0.20 19.47 0.18 0.46 5.49 5.46 3.31 3.20 

1 x  0.15 0.03 0.50 0.02 0.02 5.96 6.72 5.36 4.39 

Crushed to 19.5 mm top size 

19.5 x 12.7 1.08 42.79 0.49 0.00 7.00 5.57 3.11  

12.7 x 1 1.19 46.96 0.77 2.04 6.29 5.23 3.37 3.55 

1 x 0.15 0.14 2.82 0.04 0.08 6.90 5.14 3.99 3.94 

Crushed to 6.35 mm top size 

6.35 x 1 1.42 52.95 0.23 1.98 4.02 5.48 5.37 2.58 

1 x 0.15 2.04 31.31 0.17 1.52 5.10 5.15 4.52 3.17 

Crushed to 12.7 mm top size 

1 x 0.15 4.96 61.05 0.75 2.29 5.25 5.93 4.50 2.89 

 

Further reductions in the top particle size to 6.35 mm and 1 mm continued the decrease in 

the EC values as shown in Figures 3.6 (c) and (d). Overall, the maximum EC values in any 

fraction of a sample decreased from slightly higher than 4000 S/cm in the original sample 

to values below 500 S/cm in the material having a top particle size of 1 mm.  

  

The relatively low EC values for the finest size-density fractions (1 × 0.15 mm) were a 

result of the liberation of different minerals and their effective separation into the different 

densities. Thus, the EC value obtained for each fraction was reflective of the trace elements 

associated with the minerals comprised within each fraction. In other words, the lower EC 

values of the 2.95 sink in the finest particle size fraction relative to the larger size fraction 
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is due to the effective liberation and separation of other minerals out of this fraction, As 

such, the EC value of the supernatant liquid was impacted by the release of calcophilic 

trace elements associated with pyrite. The EC value of this fraction increased in the larger 

particle size fractions since the other types of minerals such as clay minerals may remain 

in that fraction due to lack of liberation and effective separation. The release of lithophilic 

trace elements associated with the clay minerals (Eq. 3.11 to 3.13) also elevates the TDS 

and EC values of those fractions.  

 

The same explanation would apply for lower EC levels for fractions in the samples with 

top sizes smaller than 6.35 (Figure 3.6 (c) and (d)). The low EC levels in the 1.8 float and 

2.95 float fractions is due to the very low relative dissolution rate of the mineral content 

(clay, quartz and organic materials) in such fractions. Medium level of EC in 2.95 float is 

expected to be due to high dissolution rate of calcite while the high EC level of 2.95 sink 

was due to the oxidation of pyrite and release of elements associated with pyrite into the 

supernatant liquid. The effective separation of minerals in such samples to different 

densities can be also seen by the larger difference in the pH values (3.7). 

 

Materials having a particle size smaller than 0.15 mm that were excluded from the float 

and sink analysis showed low level of EC (Table 3.6). This could be due to the high 

exposure of the buffering capability of the sample to the solution due to the ultrafine size 

and high surface area for dissolution which suppress the release of elements.  
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Table 3.7. Characteristics of -0.15 mm fraction of DMVR samples. 

Characteristics 

-0.15 mm fraction of DMVR samples 

Origin 
38.1 

mm TS 

25.4 

mm TS 

19.5 

mm TS 

12.7 

mm TS 

6.35 

mm TS 

1 mm 

TS 

Weight (%) 0.13 1.6 0.65 1.61 2.38 8.37 30.95 

EC (µS/cm) 39.6 23.9 10 8 9 7 25 

pH 4.58 4.04 5.02 5.11 4.76 4.47 4.2 

 

The weight percentage of high and medium-level generating EC is less than 5% after 

liberation, i.e. 3.9% and 3.04 % for 6.35 mm and 1 mm top size samples, respectively 

(Table 3.7). 

 

The impact of particle size reduction on reducing the EC values associated with the Dense 

Medium Cyclone Refuse (DMCR) followed the trends described by the dense medium 

vessel reject results as shown by Figures 3.7 (a) through (b). The 2.95 sink fractions were 

the only fractions generating high EC values after the DMCR samples were crushed to top 

sizes of 6.35 and 1 mm  (Figure 3.7 (c) and (d)). The weigh percentage of the 2.95 density 

fractions were also close to 5%, i.e. 4.40% and 5.38% for the 1 and 6.35 mm top size 

samples (Table 3.8).   

 



92 
  

 

Figure 3.7. EC of supernatant liquids in contact with DMCR samples in CSLT (a) origin, 

(b) 12.7 mm TS, (c) 6.35 mm TS, and (d) 1 mm TS. . The absence of bars for a given 

specific gravity fraction indicates that no material was recovered.  
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Table 3.8. Weight distribution of size-density fractions of DMCR sample along with 

associated leachate pH in CSL test. 

Particle Size 

Fractions (mm) 

Weight (%) pH 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

19.5 x 12.7 0.66 7.93 0.03 0.00 1.67 2.96 NE* 

……

……

….. 

12.7 x 1 9.63 74.61 1.12 3.46 2.87 4.19 3.30 2.27 

1 x 0.15 0.31 1.90 0.03 0.13 4.42 4.26 3.14 2.86 

Crushed to 12.7 mm top size 

12.7 x 1 10.22 82.63 1.27 2.93 2.57 3.01 2.33 1.34 

1 x 0.15 0.30 2.29 0.05 0.13 4.16 3.99 3.64 3.03 

Crushed to 6.35 mm top size 

6.35 x 1 4.65 51.03 0.45 3.03 3.27 3.45 3.44 2.37 

1 x 0.15 4.92 26.72 0.44 2.35 6.05 6.20 4.22 2.85 

Crushed to 1 mm top size 

1 x 0.15 10.78 58.68 1.21 4.40 7.07 6.81 3.58 2.85 

*NE: not enough sample for analysis 

 

Size fractions finer than 0.15 mm also generated low conductivity values for the DMCR 

samples (Table 3.9). 

 

Table 3.9. Characteristics of -0.15 mm fraction of DMCR samples. 

Characteristics 
-0.15 mm fraction of DMVR samples 

Origin 12.7 mm TS 6.35 mm TS 1 mm TS 

Weight (%) 0.19 2.76 6.41 24.93 

EC (µS/cm) 17 14 5 2 

pH 5.54 4.75 4.93 4.92 

 

High frequency overflow (HFO) samples contained higher amounts of liberated pyrite and 

calcite than other coarse refuse streams (Tables 3.1 and 3.2). As a result, the higher density 

fractions (2.95 float and sink) in the HFO samples generated high EC levels, especially in 

coarser particle size fractions (Figure 3.8) while low EC levels were measured in the 

supernatant after interaction with the material in the lower density fractions, which contain 
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minerals that have low dissolution rates. The 2.95 SG float and sink fractions account for 

14.46% of the total HFO waste stream (Table 3.10).    

 

 

Figure 3.8. EC of supernatant liquids in contact with the size-density fractions of HFO.  

 

 

 

Table 3.10. Weight distribution of size-density fractions of HFO sample along with 

associated leachate pH in CSL test. 

Particle Size 

Fractions 

(mesh) 

Weight (%) pH 

1.80 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 
1.8 Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

+16 0.00 10.50 0.67 2.03  3.57 4.05 2.27 

16 x 30 1.38 34.20 0.74 5.90 3.91 4.13 3.53 2.94 

30 x 50 3.09 20.49 0.25 3.27 4.58 5.10 3.80 3.04 

50 x 100 2.85 6.09 0.17 1.43 5.10 5.47 3.57 3.01 

-100 6.93 7.47 
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3.4 Material Segregation 

 

In current coal waste disposal practices, the dense medium vessel and cyclone reject 

streams along with the high frequency screen overflow which is comprised of mostly spiral 

concentrator reject material are combined and disposed as the total coarse refuse stream. 

The CSL test results indicated that the high specific gravity fractions (i.e., 2.68 x 2.95 SG 

float and 2.95 SG sink), the EC values in the water contacted the solid surfaces were 

elevated due to the release of elements associated with pyrite in these density fractions.  

 

To quantify the amount of material that is primarily responsible for the negative effects of 

high EC and low pH values, consider the throughput capacity of 1600 tph for the plant 

where the samples were collected. The mass yield (mass percentage of the plant feed 

reporting to the clean coal product stream) of the plant is 78%, which is a typical yield for 

coal processing plants. As such, 1244 tph of the plant feed reports to the clean coal stream, 

258 tph to coarse refuse and 98 tph to the fine refuse streams. In the coarse refuse streams, 

40% and 54% report from the dense medium vessel and dense medium cyclone separation 

units, respectively, while the remaining 6% material reports to the coarse refuse streams 

through the high frequency overflow stream. Using the density-by-density weight 

distribution data for each sample in Table 3.11, the weight percentages of the density 

fractions of the coarse refuse stream and its sub-streams, indicate that only less than 10% 

of the total materials (2.95 sink and 2.95 float) in the coarse refuse stream results in 

significant abatement of the electrical conductivity of the leachate from the coal waste 

streams. 

 



96 
  

Table 3.11. Weight distribution of the density fractions of the coal processing waste 

streams. 

Sample 

Weight (%) 

6.35 mm top size 1 mm top size 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

1.8 

Float 

2.68 

Float 

2.95 

Float 

2.95 

Sink 

DMVR 3.78 91.96 0.43 3.83 7.19 88.41 1.08 3.32 

DMCR 10.22 83.08 0.95 5.75 14.36 78.16 1.61 5.86 

HFO 7.87 76.6 1.96 13.57 7.87 76.6 1.96 13.57 

CR 7.53 86.19 0.81 5.47 11.12 82.12 1.42 5.33 

 

 

3.5  Conclusions 

 

Dissolution and/or oxidation of minerals in coal waste streams may result in elevation of 

the total dissolved solids of the discharged water. If not recycled, the discharged water 

should be treated through physical or chemical processes to minimize the dissolved solids 

and heavy metals content of the water prior to discharge to the environment. Electrical 

conductivity can be used as an indirect measurement of the total dissolved solids. 

Additional, current regulations limit the EC level in certain mining regions where the EC 

value of the supernatant liquid has been shown to impact local aquatic life. 

 

 In this study, a conductivity screening-level test was used to compare EC values generated 

from the handling and storage of various coal processing waste streams. Additionally, 

testing was conducted to identify EC values as a function of material properties (i.e. size 

and density). The results showed that the EC of coarse refuse streams are much higher than 

fine refuse streams. Spiral refuse may require additional treatment to separate the higher 

generating EC fractions prior to being transferred to the high frequency screen and being 

combined to coarse and fine refuse streams. Results of CSL test indicated that pyrite 
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oxidation and mineral dissolution associated with less than 10% of the coal preparation 

coarse refuse stream were the primary sources of high conductivity levels.. The remaining 

materials were not found to generate high EC levels in water. This finding is due to the fact 

the minerals comprised in these fractions are resistant to leaching and thus have low 

dissolution rates. The high generating EC fractions appear in high density fractions (SG > 

2.68). The liberation and separation followed by isolation of this fraction results in 

significant abatement of EC, as an indicator of total dissolved solids, of the waste 

discharged from coal processing waste streams 
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4. LEACHING CHARACTERISTIC STUDY OF COAL 

PROCESSING WASTE STREAMS 

 

Summary: A study of the mobility of major and potentially hazardous trace elements from 

coal processing waste materials was conducted using two types of leaching tests. The static 

leaching test simulates stable waste storage under water, whereas the dynamic test models 

the storage of waste under more variable conditions including intermittent exposure to air 

and variations in humidity. Coarse and fine refuse materials were obtained from three 

commercial coal preparation plants that were being used to upgrade US bituminous run-

of-mine coal containing low to high amounts of pyritic sulfur.  X-ray diffraction analysis 

revealed a large variation in mineralogy between the coarse and fine refuse streams due to 

the mineral fractionation that occurs in the processing units and plant.  Coarse refuse 

contained higher pyrite content while the fine refuse samples had a high clay content and 

a minor amount of calcite. This variation in mineralogy resulted in large difference in the 

leaching characteristics of the waste streams. The most acidic pH and highest release of 

trace elements were observed in the leachate of high and medium pyritic coal samples, 

while the fine refuse samples released lower amounts of trace elements in their 

circumneutral leachate. The least amount of trace elements was observed in the leachate of 

low pyritic refuse streams. The data therefore suggest that the pyrite content of the coarse 

refuse streams is responsible for the acid rock drainage and release of trace elements in 

coal waste disposal. As a result, separation and isolation of the pyrite content of the coarse 

refuse streams provides significant environmental improvement in coal waste disposal. 
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4.1 Introduction 

 

Upgrading run-of-mine coal is achieved by rejecting mineral matter in coal to increase the 

heating value and meet market qualifications.  After processing, 50-70% of the run-of-mine 

material is rejected and placed into surface storage areas. Impoundment are used to store 

fine coal waste containing particles smaller 0.15 mm in slurry form. The dam is typically 

constructed using coarse refuse and sand from previous mining activities. 

 

Most of the trace elements of environmental concern such as arsenic, selenium, and 

chromium are associated with mineral matter (Table 4.1) and therefore tend to be 

concentrated in the coal waste streams (Querol et al., 1995; Vejahati et al.,; Zhang et al., 

2015). Two major coal minerals that contain most of the trace elements in eastern U.S. 

bituminous coals are illite and pyrite. Illite, a clay mineral, typically encompasses most of 

the lithophilic trace elements such as vanadium and chromium, while the behavior of 

chalcophilic elements such as arsenic, selenium, mercury and lead is typically controlled 

by pyrite, a sulfide mineral. A number of other elements including nickel, manganese and 

zinc may have a mixed association with both of the minerals (Huggins et al., 2009). A 

possible mobilization of these trace elements from coal waste impoundments, therefore, 

may be of environmental concern (Rezaee et al., 2013; Ghosh et al, 2015).  

 

The oxidative weathering of pyrite and dissolution of carbonate and clay minerals have the 

potential to degrade the water quality by mobilization of metals exceeding the water 

quality, increasing total dissolved solids (TDS) content of water and its specific 

conductivity level (EC).  
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Table 4.1. Trace elements association in coal (after Vejahati et al., 2010). 

Affinity 
Mineral 

Group 
Mineral Type Elements 

Inorganic 

Clay 

minerals 

and 

feldspars 

Kaolinite, Illite 

Montmorillonite 

Al, Ba, Bi, Cr, Cs, Cu, Ga, K, Li, Mg, 

Na, Ni, P, Pb, Rb, Sn, Sr, Ta, Th, Ti, U, 

V, Y, and rare earth elements 

Iron 

sulfides 
Pyrite, Sphalerite 

As, Cd, Co, Cu, Fe, Hg, Mo, Ni, Pb, S, 

Sb, Se, Ti, W and Zn 

Carbonates 
Calcite, Dolomite, 

Ankerite, Siderite 
Ca, Co, Mn 

Sulphates - Ba, Ca, Fe, and S 

Heavy 

minerals 
Tourmaline B 

Organic N, S, Be, B, Ge, V, W, Zr, rare earth elements 

 

Developing new strategies to minimize the TDS and EC of supernatant liquids in contact 

with coal processing waste streams requires understanding of their associated leaching 

characteristics. Static and kinetic leaching tests have been developed to evaluate or predict 

the leaching characteristics of a given material (Sobek et al., 1978, O’Shay etal., 1990; 

Kleinmann, 2000; Chotpantarat, 2011; Parbhakar and Lottermoser, 2015). Static tests 

include acid base accounting (ABA) and neutralization potential (NP) while the kinetic 

tests utilize humidity cells, leaching columns, soxhlet reactors, shake flasks, pilot and large 

field leaching tanks (ASTM D5744, Danielle, 2013; Sobek et al., 1982; Renton et al., 1988; 

Ziemkiewicz, 2013; Renton et al., 1984). 

 

In this chapter, the leaching characteristics of coal waste streams from U.S. processing 

plants treating high, medium, and low pyritic bituminous coals were examined. Two long 

term dynamic and static leaching testswere performed for the study. The dynamic leaching 

test was a variation of the ASTM standard Test Method D-5744 (ASTM, 1996) and 



101 
 
 

included a weekly cycle exposure to moist and dry air followed by leaching with deionized 

water. This test was designed to simulate waste storage scenarios involving exposure of 

the material to the atmosphere, either in variable wet/dry storage condition, or unusual 

circumstances like breaching of an impoundment containment wall.  The static leaching 

test, in which the material is stored under water, was designed to simulate the quiescent 

conditions such as those in stable impoundments. 

 

4.2 Experimental 

 

4.2.1 Sample Collection and Characterization 

 

Modern coal processing plants typically consist of four processing circuits for treating the 

coarse (> 10 mm), intermediate (-10 x 1 mm), fine (-1 x 0.15 mm), and ultrafine (< 0.15 

mm) material. Dense medium vessel, dense medium cyclone, spiral concentrators and 

flotation are utilized, respectively, for the separation. Various scenarios involving the type 

and number of operation units may be considered for processing. The selection of the 

operation units depends on properties of the coal and required specifications of the final 

product (Gluskoter, 2009; D. Osborne, 2013). Clean product streams from all the four 

fractions are combined as the final product. The spiral refuse stream is deslimed using a 

high frequency screen in which the overflow stream is combined with the coarse reject 

material while the underflow reports to the plant fine reject stream in the thickener 

underflow. The thickener underflow stream is either pumped to an impoundment or 

dewatered using high pressure filters and subsequently co-disposed with the coarse reject. 

 



102 
 
 

A set of representative samples of the coarse and fine refuse streams were collected at 20 

minute time intervals over a 4 hour period from three coal processing plants treating: 

1. Coalburg coal seam, Central Appalachia, WV (low pyritic content); 

2. Pittsburgh No.8 coal seam, Northern Appalachia, PA (Medium pyritic content); 

3. 5-B central Illinois-based coal seam, IN (High pyritic content). 

 

After receiving the material, the coarse refuse samples were spread out and air-dried over 

a period of about three days. Sample preparation involved crushing to a particle top size of 

12.7 mm (½-inch) using a jaw crusher. The top size was further reduced to 6.35 mm (¼-

inch) by crushing using a Holmes hammer mill crusher, accompanied by a manual mixing 

stage to ensure homogeneity of the samples. The coning and quartering method was 

employed for achieving a representative reduction in sample volume. The method involved 

heaping the bulk of the sample in a pile and dividing into four quarters, rejecting two 

opposite quarters, mixing the two remaining quarters and then repeating the process until 

a suitable volume of material remained for splitting. A laboratory Jones riffle splitter was 

employed at this stage which finally yielded representative samples of about 1 kg for 

analysis and experiments. For splitting, samples were poured onto the top of a riffle which 

splits the samples using alternating angled slots that discharge into separate containers 

underneath the riffle. The final samples were stored in sealed bags to minimize atmospheric 

oxidation. The reject portion of the sample was then returned to the barrel and sealed 

airtight for future use.  
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The fine slurry refuse samples were well mixed for 15 min using an agitator prior to 

splitting into several representative lots using an Outotec Rotary Slurry Sampler Model 

WS-220.  A representative split was used to assess the initial pH, conductivity, solids 

concentration, particle size analysis and the trace element concentration in the  supernatant 

liquid. The remaining samples were then filtered using a pressure filter and dried in an 

oven for 24 hours. The dried caked samples were then passed through a hammer mill 

crusher with an internal screen size of 1mm to separate agglomerated clay particles from 

each other.  A riffler was used to split the material into small representative lots. Each 

sample was stored in a sealed bag until use. 

 

After the required preparation, a representative lot was was analyzed for ash content, sulfur 

forms, the presence of major elements using XRF, mineral matter content by X-ray 

Diffraction (XRD) utilizing Rietveld method and elemental analysis by Inductivity 

Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). 

 

The ash contents and sulfur forms (ASTM D-2492) for each sample collected from the 

processing plants are listed in Table 4.2. The results clearly show that the Coalburg and 

Pittsburg coal seam samples have relatively low and medium sulfur content, respectively, 

while 5-B Central coal seam samples have high sulfur content. All three samples are 

classified as high volatile bituminous coals. The ash contents of the coarse reject samples 

were higher than the fine refuse streams in all three plants which is reflective of the superior 

separation performances provided by the coarse cleaning units. The ash content of the 5-B 

Central coal seam appears relatively low which is partially due to the need to achieve a 
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lower density separation to meet sulfur content requirements in the final product. However, 

the 19.39% pyritic sulfur also represents a significant portion of the mineral matter in the 

coarse reject stream that was combusted in the form of sulfur and thus not accounted for in 

the ash content value. 

 

The pyritic sulfur content is a primary concern due to the acidity that it generates as a result 

of oxidation. The data in Table 4.2 indicate that the coarse refuse streams have a 

substantially higher pyritic sulfur content than fine refuse streams. This is due to 

unliberated pyrite content of dense medium vessel and dense medium cyclone, as well as 

the relatively high liberated pyrite content of high frequency overflow stream. The liberated 

pyrite content in the fine fractions (-1 x 0.15mm) of the plant feed is concentrated in the 

underflow of the classifying cyclone and reports to the spiral refuse, and concentrates in 

the high frequency screen overflow.  

 

Table 4.2. Ash content and sulfur forms in the coarse and fine reject samples collected 

from three preparation plant. 

Sample Ash (%) 
Forms of Sulfur (%) 

Total Sulfate Pyritic Organic 

Coalburg Coal Seam 

Coarse Refuse 62.3 0.58 0.01 0.31 0.26 

Fine Refuse 55.5 0.3 <0.01 0.26 0.04 

Pittsburgh No.8 Coal Seam 

Coarse Refuse 81.55 5.29 0.44 4.39 0.46 

Fine Refuse 47.58 3.09 0.26 2.2 0.63 

5-B Central Coal Seam 

Coarse Refuse 54.5 26.14 1.32 19.39 5.49 

Fine Refuse 41.7 9.02 0.62 6.91 1.5 
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The mixture of coal and various mineral types that have varying solid densities and 

liberation characteristics results in a broad weight distribution by particle size and density 

within a given feed coal. Given that the typical coal upgrading technology separates based 

on density over a given range of particle sizes, it is easy to understand the variability in 

mineralogy that exists in the different waste streams which is depicted in the XRD analysis 

data obtained for the 5-B Central Illinois coal (Table 4.3).  The XRD data concurs with the 

sulfur forms in that the coarse reject contains an extremely large amount of pyrite. A 

positive finding is the presence of calcite in both the coarse and fine refuse streams which 

has a high dissolution rate. The dissolution results in elevated concentration of calcium 

ions in solution which provides the potential to counter the negative effects of pyrite 

oxidation.  

 

Table 4.3. Semi-quantitative mineralogy of coal fractions obtained from an analysis of 

the 5-B Central Illinois coal using XRD. 

Sample 
%Mineral (as wt% of mineral matter) 

Pyrite Quartz Illiite Kaolinite Calcite 

Coarse Refuse 43 20 19 18 <5 

Fine Refuse 23 18 36 23 <5 

 

The XRD results also shows a relatively high concentration of clay minerals (illite and 

kaolinite) especially in the fine refuse. This finding was supported by the aluminum oxide 

and silica oxide contents shown in Table 4.4 as determined by XRF analyses. The higher 

clay concentrations in the fine refuse streams were a direct result of the ultrafine particle 

size and the classification of the clay particles into the overflow of the classifying cyclones 

which reports along with fine coal particles to either a flotation circuit or directly to the 

thickener. The mineralogy data are also consistent with the XRF data in regards to the high 
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iron and sulfur contents in the high pyrite content samples. Higher calcium contents in the 

fine refuse streams were also due to the Ca content of the clay minerals as well as the Ca 

being released from the calcite mineral. The data suggests concentration of the fine calcite 

particles in the overflow of the classifying cyclone which ultimately reports to the fine 

refuse streams. This suggests higher buffering capability of the fine refuse stream to 

neutralize the pH of supernatant liquid in contact with fine refuse streams in the 

impoundment. 

 

Table 4.4. Major element analyses (ash basis) of 500˚C ash prepared from the sample. 

Sample 
% Oxide (ash basis)* 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O P2O5 TiO2 BaO SrO SO3 

Coalburg Coal Seam 

Coarse Refuse 62.39 25.98 4.78 0.35 1.18 0.18 3.75 0.12 1.27 0.08 0.02 0.1 

Fine Refuse 60.19 26.73 4.7 0.5 1.32 0.28 4.11 0.1 1.12 0.12 0.03 0.34 

Pittsburgh No.8 Coal Seam 

Coarse Refuse 58.96 23.83 9.58 1.53 0.71 0.47 1.91 0.19 1.2 0.04 0.03 1.33 

Fine Refuse 55.49 23.04 9.43 3.98 0.94 1.16 2.01 0.2 1.09 0.05 0.05 2.7 

5-B Central Coal Seam 

Coarse Refuse 24.41 10.41 61.48 0.45 0.58 0.24 1.38 0.15 0.43 0.02 0.02 0.45 

Fine Refuse 44.13 16.76 26.99 5.41 1.09 0.35 2.28 0.24 0.73 0.07 0.03 1.91 

* As %wt. of mineral matter 

 

 

4.2.2 Leaching Experiments 

 

Two types of leaching tests were employed in this study which were the dynamic leaching 

test and the static leaching test. While the static test consisted of keeping the waste 

materials entirely under water for periods of up to twelve months, the dynamic test involved 

exposure of the waste materials in a weekly cycle to first dry air and then humid air for up 
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to 20 weeks. The dynamic test is based on the procedure described in ASTM test method 

D-5744 (ASTM 1996).  

 

4.2.2.1 Dynamic Leaching Experiment 

 

The standard ASTM method D 5744 was designed specifically to meet regulatory 

requirements for mining wastes and ores (ASTM, 1996). In the experimental setup, the 

waste stream samples were placed into humidity cells made of PVC (Figure 4.2). The 

samples, each weighing 200 g, rested on 22-μm polypropylene felt filter media placed on 

the top of perforated PVC which served as an air distributor to allow air and water to flow 

through while retaining the samples. Flowmeters were used to deliver air to each humidity 

cell at a constant rate of 10 L/m/cell. The humidity cells were setup to receive an upward 

flow of air through a valve located at the bottom of cell. Dry air was obtained from the 

laboratory compressed air line routed through a desiccant column while humid air was 

generated by passing air through water held at 30 °C in the humidifier. The water 

temperature of the humidifier was kept constant by immersing it in a water bath with a 

thermostat controlled temperature setting (Huggins et al., 2012; Rezaee et al., 2013). 

 

The leaching experiments were initiated with flooded leach on the first day. The samples 

in the humidity cells were then subjected to weekly cycles involving alternating periods of 

dry air (3 days), humid air (3 days), followed by leaching with 200 ml of de-ionized water 

on the seventh day. Each flooded cell was then allowed to sit for a period of 2 hour before 

draining the leachant into plastic bottles. The two-hour leach time commenced after all of 

the leachant had been placed in the cell, thus ensuring that the samples were saturated and 
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completely immersed by the leachant water. The valve at the bottom of the humidity cell 

was then opened and the leachant allowed to drain into the plastic bottles. The volume, pH, 

and conductivity of the collected leachant solutions were then recorded. At the conclusion 

of the 7th day, the cycle was repeated. After a number of weekly cycles, the collected 

leachant waters were combined, based on the variation in pH, and submitted for sulfate 

concentration, and major and trace elements composition analysis using ICP-OES. The 1st 

cycle corresponds to the initial aqueous leaching of the rejects conducted prior to the first 

cycle of exposure to dry and humid air.  

 

The weekly leaching with de-ionized water promoted the removal of products of leachable 

mineral dissolution produced during the weathering cycle of the previous week. Delivering 

three-day dry air to the sample partially evaporates the remnant water in the sample pores 

after the weekly leach without totally drying the sample. As a result, the sample saturation 

is reduced, air contact is enhanced, and the oxygen diffusion rate through the sample may 

be enhanced by several orders of magnitude, which promotes the oxidation of constituents 

such as pyrite. This evaporation also enhances pore water cation/anion concentrations and 

may also intensify the acidity (e.g. by increasing the hydrogen ion concentration generated 

from previously oxidized iron sulfide). Increased acid generation will elevate the 

dissolution of additional sample constituents.  
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Figure 4.1. Experimental Setup for the dynamic leaching tests based on ASTM method D 

5744-96. Numbered Items indicate: (1) Compressed air source, (2) desiccant chamber, (3) 

humidifier, (4) air-flow control valves, (5) humidity series cells (after huggins et al., 

2012). 

 

Continuous evaporation results in over-saturation of water with some mineral phases, 

thereby causing them to precipitate. The purpose of the three-day wet (saturated) air portion 

of the cycle is to maintain a relatively constant mass of pore water in the sample for 

promoting the diffusion of weathering products (e.g, re-dissolved precipitation products) 

in the residual pore water without totally saturating the sample and adversely affecting 

oxygen diffusion (ASTM D5744). 
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4.2.2.2 Static Leaching Experiments 

 

The static or baseline test was setup to run in parallel with the dynamic leaching test. In the 

static test, 200 grams each of the waste samples were completely submerged under 200 ml of 

deionized water in a capped glass vessel for the entire period of the experiment. Electrical 

conductivity and pH of the supernatant liquids in contact with the samples were measured 

weekly. At the end of the experiment, typically after about 6 months, the solution was drained 

from the glass vessel and an elemental analysis using ICP-OES was performed on the filtered 

solution. 

 

4.2.2.3 Analyses of Leachate Solutions  

 

Numerous water samples were obtained during the long-term leaching tests on the coal waste 

materials. Typically, pH determinations were made on all individual water samples. 

Determinations of Eh, conductivity, sulfate anion and major and trace element concentrations 

were also made. However, to reduce analytical costs, some of these determinations were made 

on combined leachate samples obtained in the dynamic leaching test. Major and trace element 

concentrations in the leachate samples were determined by inductively coupled plasma with 

optical emission spectroscopy (ICP-OES), and measurements were made for the conductivity 

of the solutions and their sulfate ion concentrations were obtained through ion chromatography. 

Major and trace elements included in the ICP-OES analyses were Al, Sb, As, Ba, Be, B, Cd, 

Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Ni, P, K, Se, Si, Ag, Na, Sr, Tl, Sn, V, and Zn. 

 

 

 

 



111 
 
 

4.3 Results and Discussion 

 

Static and kinetic leaching tests were initiated on the coarse refuse and fine refuse samples 

of three coal waste sources, i.e. high, medium and low pyritic content feedstocks. Frequent 

measurements of pH were made on the supernatant liquids in the static test and similar 

measurements as well as electrical conductivity were also conducted on the leach water 

collected weekly from the kinetic tests. 

 

The pH values of the supernatant liquids in both tests showed a wide range for the different 

fractions, varying from neutral to relatively acidic, and each remained fairly constant for 

the entire leaching period (Figure 4.3). The difference in the pH values is due to the 

difference in mineralogy. The pH value is usually controlled by the acid generating content 

(pyrite) and natural base content (carbonate and/or exchangeable cations on clay minerals) 

of the processing waste streams.  

 

Initiation of pyrite oxidation occurs through adsorption of oxygen and water to partly 

protonated surface of pyrite by bonding to Fe2+ (4-1). This reaction releases ferrous iron 

(Fe2+), sulfate (SO4
2−), and generates acidic condition (H+). Pyrite oxidation also releases 

chalcophilic and other associated elements into the solution (Moses, 1990; Nordstrom et 

al., 2000; Dold & Fontboté, 2001; Nordstrom et al., 1979; Nordstrom, 1982; Moses et 

al.,1987; Fornasiero et al., 1994; Ehrlich, 1996, Rezaee et al., 2013).  

 

FeS2 +  7 2⁄  O2 +  H2O →  Fe2+ + 2 SO4
2− + 2 H+                                              (4.1) 
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High pyrite content of medium and high pyritic total coarse refuse samples therefore result 

in generating the most acidic condition (pH ~3) in both tests. The lower pH values for these 

fractions in the dynamic test is due to the fact that the oxidation condition is more 

aggressive during the dynamic test, where the wet sample is exposed to dry and moist air 

which favors pyrite oxidation. Generally, pyrite is oxidized at a very low rate, depending 

on the amount of dissolved oxygen and ferric iron in the supernatant water in saturated 

static tests. On the contrary, in the dynamic test, the released elements are leached out on 

a weekly basis while, in the static tests, the released elements including alkali and alkaline 

elements remain in the container for the entire period of test. Therefore, the availability of 

such a buffering capability, depending on its amount, may slow down or suppress the pyrite 

oxidation. 
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Figure 4.2. pH variation of supernatant liquid in contact with the coal refuse samples in 

the (a) dynamic and (b) static leaching tests. 

(a) 

(b) 
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Under low pH value conditions such as those associated with the high and medium pyritic 

coarse refuse samples, ferric iron (Fe3+) produced by ferrous iron oxidation (4-2) would be 

the primary oxidant while O2 is the major oxidant at circumneutral pH. Pyrite oxidation 

with ferric iron (Equations 4-3) is ten times faster than that of oxygen due to the more 

efficient electron transfer for Fe3+  (Ritchie, 1994; Singer and Stumm, 1970; Dold, 2010). 

The high concentration of Fe in the leachate of these fractions approve the role of ferric 

iron role in the pyrite oxidation of these fractions (Figure 4.4), as can be implied by Eqs. 

4.2 and 4.3: 

 

Fe2+ +  1 4⁄  O2 +  H+  ↔  Fe3+ + 1 2⁄  H2O                                                               (4. 2) 

 

FeS2 +  14 Fe3+ + 8 H2O →  15 Fe2+ + 2 SO4
2− + 16 H+                                        (4.3) 

 

This explains the higher concentration and steeper slope of cumulative sulfate release (as 

the indicative of pyrite oxidation) for these two samples (Figure 4.4). 
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Figure 4.3. Cumulative extraction (mg) of (a) sulfate and (b) iron per 1 kg of material. 

 

(b) 

(a) 
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The low pH conditions generated by these samples increases the otherwise slow dissolution 

rate of the clay minerals (as indicated by Al and Si content in Figure 4.5). Dissolution of 

most clay (aluminosilicate) minerals releases base cation (Fe(II), Ca, Mg), alkali elements 

such as Na and K, and they contribute in dissolved Al and Si to the tailing pore water as 

well as H+ consumption (Blowes & Ptacek, 1994). However, their dissolution rate is much 

slower than that of carbonate minerals (Jambor and Blowes, 1998). Reactions 4.4 and 4.5 

describe the dissolution reactions of kaolinite and illite, respectively, under acidic 

conditions (Huertas et al., 1998; Köhler et al., 2003; Cama and Ganor, 2015): 

 

Al2Si2O5(OH)4 + 6 H+  ↔ 2 Al3+ + 2 H4SiO4 +  H2O                                                  (4-4) 

 

 (Si3.55Al0.45)(Al1.27Fe0.36
(III)

Mg0.44)O10(OH)2(Ca0.01Na0.13K0.53) +  7.80 H+  ↔

3.55 SiO2 +  1.72 Al3+  +  0.36 Fe3+ +  0.44 Mg2+ +  0.01  Ca2+ +  0.13 Na+ +

 0.53 K+ +  4.90 H2O          (4-5) 

  

Acidic conditions therefore facilitate the mobilization of major and trace elements into the 

supernatant liquid as shown from the highest concentration of leachate metal for these two 

fractions compared with others (Figure 4.6). The total content of these fractions is a mixture 

of major elements and both lithophilic and chalcophilic trace elements (Figure 4.7) since 

the mobility of metals increases in acidic or alkaline pH (Rezaee et al, 2012). This fact 

explains the higher electrical conductivity (EC) of the leachate of these two fractions 

(Figure 4.8).  EC of the fine refuse samples was not measured in the static test due to 

difficulty of such a measurement caused by holding water capacity of the samples.  



117 
 
 

Note that the higher metal and sulfate concentrations of medium pyritic fine refuse 

compared to the high pyritic fine refuse in static tests were due to the large difference in 

the duration of the static tests (180 vs. 480 days).  
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Figure 4.4. Cumulative extraction (mg) of (a) aluminum and (b) silicon per 1 kg of 

material. 

(b) 

(a) 
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Figure 4.5. Cumulative Extraction of alkali and alkaline earth elements, sulfate and total 

metals from total coarse refuse and fine refuse sum samples of different coal sources per 

unit weight of material (kg) in (a) dynamic and (b) static leaching tests. 

(b) 

(a) 
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Figure 4.6. Percentage of metal and buffering elements out of total elements (TE) and 

alkali and alkaline earth elements (AAEE) released from coal waste samples in (a) static 

and (b) dynamic leaching tests. 

(a) 

(b) 
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Figure 4.7. Electrical conductivity of weekly leachate of the coal processing plant waste 

samples in dynamic leaching test. 

 

Existence of readily soluble alkali and alkaline earth elements, e.g. Na and then Ca, as a 

result of dissolution of carbonate minerals such as calcite and exchangeable base metals on 

the clay minerals (Plummer et al., 1978; Chou et al., 1989; Wollast, 1990), could buffer 

the solution and maintain the pH of the leachates close to neutral. This is due to formation 

of insoluble minerals, such as jarosite and gypsum (4-4 and 4-5) as shown by following 

reactions: 
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3 FeS2  + 3 H2O  + 13.5 O2  + [Na+]sol′n → NaFe3(SO4)2(OH)6  + 4[SO4]2−
sol′n

           (4.6) 

 

[Ca2+]sol′n  +  [SO4
2−] + 2 H2O →  CaSO4. 2H2O                                                         (4.7) 

 

Therefore, the pH of leachates from lower pyrite content of the fine refuse samples of all 

three coal sources as well as the total coarse refuse of low pyritic coal sample, compared 

to the total coarse refuse samples of medium and high pyritic coal sources, was buffered 

by the calcite content of those fractions, resulting in circumneutral pH of the leachate. 

 

In such circumneutral pH, the oxygen is the dominant oxidant of pyrite which has a low 

rate, as indicated by the lower contents and slower release of sulfate into the leachate 

(Figure 4.4). The dominance of oxidation can be observed by a low concentration of Fe in 

the leachates (Figure 4.4) due to the precipitation of the secondary Fe(III) hydroxides. This 

precipitation may decrease even the pyrite oxidation rate due to the coating effect of 

cemented layers (Blowes et al., 1991; Evangelou & Zhang, 1995; Dold et al., 2009). At 

neutral pH conditions, most of the elements are immobilized, or precipitate as the metal 

hydroxide. This explain the lower leachate of Fe, and metal content (Figure 4.6 and 4.7), 

and lower conductivity of the fractions (Figure 4.8). 

 

The pH conditions that were slightly lower than neutral for the low pyritic fine refuse, 

especially in the static test, is hypothesized to be due to the release of humic acid from the 

oxidized Coalburg coal (Pawlik et al, 1977). 
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Comparison of the cumulative amount (mg) of trace elements released from 1 kg of sample 

to the leachate in the dynamic and static leaching tests (Figure 4.6 and Table 4.5) indicates 

that the dynamic leaching test is more aggressive than the static leaching test with respect 

to leaching of most elements from the waste samples. This is due to the limited pyrite 

oxidation by the dissolved oxygen content of water under saturation conditions. Therefore, 

storing the samples under water decreases the pyrite oxidation and elemental release rates. 

The maximum release of the trace elements was related to coarse refuse samples of the 

high and medium pyritic coal seams when they were subjected to the dynamic leaching 

test. In this test, pyrite oxidation was enhanced and most of the trace elements were released 

under the acidic conditions. In contrast, lower amounts of of the trace elements were 

released under neutral pH condition in fine refuse effluents, suggesting that, for minimizing 

the mobility of elements, a good strategy would be to keep the pH as close to neutral as 

possible. Therefore, dewatering of the refuse streams and co-disposing coarse and fine 

refuse for lower pyritic coal samples provides an efficient way to take advantages of the 

buffering capability of fine refuse stream to minimize the release of trace elements from 

coal waste sources. This scenario could be applied for the high pyritic waste streams as 

well if the pyritic content of the coarse streams is separated and isolated prior to the co-

disposal.  

 

The comparison of the dynamic leaching tests reveals the shows that for trace elements 

especially those elements expected to be associated with pyrite or other sulfide minerals in 

the coal refuse (viz. chalcophilic elements such as Sb, As, Cd, Co, Fe, Pb, Mn, Ni, Cu, Se 
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and Th) there are huge differences in their apparent mobility in the waste streams of 

processing of the two coal seams and increases by increase of pyritic content. 

 

In summary, relatively low trace element release and higher pH conditions obtained from  

fine refuse streams versus the opposite trend for coarse refuse effluent, especially in 

relation to higher pyritic coal seams, reveals that the acid rock drainage and release of trace 

elements in the coal waste sources is mainly controlled by the pyritic content of the coarse 

refuse streams, by which the embankment of the impoundment is built up. This suggest the 

addition of processing units to separate and isolate the pyritic content of the coarse refuse 

streams prior to disposal. Such isolation compared to other strategies suggested in this 

study seems to be the most effective strategy, since it removes the most important element 

of the acid rock drainage which is pyrite rather than removing water or oxygen out of the 

reaction (Eq. 4.1).  
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Table 4.5. Cumulative (mg) of elements released in the leachate from 1kg of the samples 

calculated based on the ICP measurements for dynamic and static tests.  

* Higher concentration of the data from this fraction than the fine refuse of high pyritic sample in the static test is due to the longer test 

duration. ** Static data were not measured for this fractions 

 

Element
s 

High Pyritic Medium Pyritic Low Pyritic** 

Coarse Refuse Fine Refuse Coarse Refuse Fine Refuse* 
Coarse 
Refuse 

Fine 
Refuse 

Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic Dynamic 

Ag 0.03 0.00 0.02 0.00 0.35 0.00 0.01 0.00 0.00 0.00 

Al 498.71 13.93 0.00 0.00 235.26 0.13 0.33 0.11 0.00 0.00 

As 43.43 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Au 0.00 0.00 0.00 0.00 6.92 0.00 0.00 0.00 0.00 0.00 

B 46.76 2.13 8.35 0.63 6.43 0.58 3.91 0.49 0.68 0.35 

Ba 0.26 0.02 0.26 0.01 0.18 0.01 0.72 0.01 2.03 0.70 

Be 0.20 0.03 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 

Ca 1201.11 354.42 4181.23 
201.3

0 
3705.60 312.13 2090.92 185.74 761.51 177.38 

Cd 0.69 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 

Co 4.38 0.09 1.70 0.01 7.61 0.00 0.04 0.00 0.07 0.09 

Cr 5.76 0.11 0.00 0.00 0.54 0.00 0.00 0.00 0.00 0.00 

Cu 6.60 0.29 0.13 0.00 47.85 0.00 0.42 0.00 0.68 0.35 

Fe 
24062.3

0 
475.86 0.10 0.00 2267.17 0.39 0.15 0.00 0.00 0.22 

K 160.49 5.68 68.32 5.14 72.66 8.87 88.19 10.24 290.73 87.82 

Li 1.69 0.27 0.26 0.03 1.53 0.08 0.52 0.09 1.02 0.17 

Mg 528.94 139.92 226.23 25.49 427.18 102.65 192.29 36.59 286.67 89.56 

Mn 123.68 45.61 26.45 0.49 26.81 2.82 0.62 0.00 2.71 3.56 

Na 381.56 184.80 145.30 36.30 1365.81 310.55 1443.06 210.57 619.36 308.67 

Ni 17.41 1.16 2.88 0.03 15.75 0.01 0.07 0.01 0.27 0.09 

P 68.61 0.00 0.26 0.01 0.74 0.02 0.23 0.01 2.71 0.78 

Pb 0.56 0.03 0.00 0.00 0.89 0.00 0.00 0.00 0.34 0.09 

S 
18790.2

5 
937.20 3947.82 

193.3
3 

8980.29 
1043.3

1 
3504.79 751.16 707.36 386.93 

Sb 0.91 0.01 0.00 0.00 0.09 0.00 0.01 0.00 0.00 0.00 

Se 0.00 0.00 0.38 0.00 0.09 0.00 0.23 0.00 1.02 0.17 

Si 145.16 32.08 42.24 0.89 75.75 4.31 20.01 0.74 201.38 58.87 

Sn 0.06 0.00 0.00 0.00 4.52 0.00 5.00 0.00 0.00 0.00 

Sr 5.27 0.97 7.46 0.66 22.64 4.56 38.83 5.25 4.06 2.96 

Tl 0.11 0.07 0.00 0.00 0.09 0.00 0.25 0.00 0.00 0.00 

V 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 11.12 1.04 0.26 0.00 57.08 0.03 0.17 0.05 2.37 0.52 

SO4 
50550.8

0 

2890.8

0 

10072.4

4 

613.2

5 

24544.6

1 

2851.5

4 

10950.9

2 

2347.0

5 
2470.69 1165.13 

TM 
27316.3

9 
1258.5

7 
4711.82 

270.9
9 

8349.90 747.16 3885.98 449.91 2177.59 732.34 
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4.4 Conclusions 

 

Coal processing plants take advantage of various low cost solid-solid and solid-liquid 

separation processes for increasing the heating value of coal and/or meeting the market 

requirements. The upgrading of coal is achieved by rejecting the mineral matter in coal. As 

a results of such a process, coarse and fine refuse are generated that need to be disposed. 

In conventional coal disposal, the coarse refuse material is used to build the embankment 

of the impoundment in which the slurry fine refuse is stored.  

 

Most of the trace elements in coal are associated with minerals, especially pyrite and illite. 

As a result of coal processing, they are enriched in the waste streams and their potential 

release to the environment is an environmental concern. To develop sustainable coal waste 

disposal scenarios, understanding the leaching characteristics of the waste streams is 

mandatory. Therefore, this research studied the leaching characteristics of coarse and fine 

refuse streams of three US processing plants treating high, medium and low pyritic 

bituminous coal seams. Leaching characteristics were studied through conducting dynamic 

column leaching tests and static tests to simulate the waste disposal conditions.  

 

Characterization of the samples showed the large difference in mineralogy of coarse and 

fine refuse streams. This variation arises due to the different size distribution of minerals 

and ways they occur in the coal and processed in coal preparation. Coarse streams contain 

higher amount of pyrite while fine refuse contain higher amount of clay and calcite, This 

suggest coarse refuse generates acidic effluent, especially in high and medium pyritic coal, 

while fine refuse offers buffering capability through dissolution of its calcite content and 
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release of exchangeable metals on the clay mineral.  The differences in the mineralogy, 

therefore, resulted in various leaching characteristics of the samples.  

 

In contact with water, coarse refuse of high and medium pyritic coal generated the most 

acidic condition (pH~3) for the entire period of the tests, while the pH of supernatant 

liquids in contact with fine refuse samples and coarse refuse of low pyritic coal were close 

to neutral. The elements data analysis, suggested that most of the trace elements were 

released under the acidic pH conditions, in which the pyrite oxidation is also enhanced by 

the ferrous iron ions in the leachate. Therefore, an effective strategy to minimize the release 

of trace elements is keep the pH of medium as close as neutral.  

 

The highest amount of release of trace elements were related to the dynamic leaching of 

coarse refuse streams of high and medium pyritic content, while the least amount of 

released trace elements were related to low pyritic refuse streams. This suggest that higher 

pyrite content of the coarse refuse streams is the cause of acid generation and release of 

trace elements to the effluent. As a result, separation and isolation of high density fraction, 

i.e. pyrite, of course refuse streams prior to the disposal minimize the environmental impact 

of coal waste disposal significantly. Subsequent co-disposing of remaining coarse refuse 

with fine refuse streams then can buffer the supernatant water through the release of self-

buffering capability of fine refuse stream. This also can suppress the oxidation of pyrite 

which is remained in the system due to any efficiency of the separation processes or lower 

pyritic content of fine refuse streams.
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5. MINIMIZING THE ELECTRICAL CONDUCTIVITY LEVEL 

OF APPALACHIAN COAL WASTE STREAMS EFFLUENT 

 

Summary: Coal cleaning for increasing the heating value or meeting market requirements 

generates significant amounts of waste materials which are stored in coarse refuse ponds 

or slurry impoundments. Coarse refuse ponds effluent has shown elevated amount of 

released trace elements and electrical conductivity (EC). The discharged water of the coal 

mining to the perennial streams in Appalachia region should have EC below 500 µS/cm. 

To develop the strategies to minimize the EC of the coal refuse leachates, long term 

leaching characteristics of the coal refuse streams was studied as a function of material 

density through conducting column leaching tests, variation of the ASTM standard Test 

Method D-5744. The results indicated that EC of the refuse streams can be reduced to the 

500 µS/cm or greatly decreased depending on the pyritic content of the sample. This high 

density fractions contain less than %5 of the total material and could be easily separated 

through manipulating of coal processing plants prior to waste disposal for sustainably coal 

waste disposal. 

 

5.1 Introduction 

 

Waste generated in coal mining and processing stages are disposed in either coarse refuse 

pond or fine slurry impoundments. Several alternatives for coal waste impoundments have 

been proposed. The alternatives include remaining, processing using advanced fine 

separation technologies and reclamation of coal waste slurry, sending slurry refuse directly 

for power generation in either conventional boilers or advanced combustion and 
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gasification technologies, surface and underground options such as combined refuse piles, 

co-disposal fine and coarse refuse, incised ponds or slurry cells, and injection in 

underground mines (Williams and Kuganathan, 1992; Couch, 1998; Anon, 2002; Wickland 

et al., 2010; Rezaee et al, 2013). However, there are still practical, technology, efficiency 

or cost issues related with each alternative. 

 

No matter what method is used for coal waste disposal, addressing related environmental 

issues such as acid mine drainage, release of trace elements to the environment, 

conductivity level of discharged supernatant liquid in contact with waste material should 

be the primary concern.  

 

 Pyrite oxidation is the primary sources of acid mine drainage, and causing the supernatant 

liquid in contact with the solid material to be strongly acidic. In such an acidic condition, 

major elements, calcophilic and lithophilic trace elements are mobilized. In addition to 

pyrite, dissolution of carbonate minerals can also enhance the conductivity level of the 

leachates from the coal mine refuse streams (Streams). Therefore, separation of 

environmentally concerned fractions in coal processing plants followed by isolation and 

encapsulation of those fractions could significantly improve sustainability of coal waste 

disposal.  

 

An in-stream limit of 300 µS/cm has been suggested by the U.S. EPA report EPA/600/R-

10/023F to protect 95% of native aquatic macroinvertebrates in the Central Appalachian 

region, while Cormier et al. (2011) reported a level of 500 µS/cm to substantially disturb 
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aquatic life. To meet the EPA conductivity limit of water, identifying potentially high 

conductivity producing materials in mine soil overburden and mine and coal processing 

waste streams, followed by isolation or encapsulation have been suggested to be promising 

operational methods (Yeheyis et al., 2009; Rezaee et al., 2013). 

 

Short term screen tests on the Appalachian coal waste streams conducted at the University 

of Kentucky showed less than %10 of material in the waste streams causes high electrical 

conductivity (EC), as an indicative of the total dissolved solid, of the discharged water from 

the coal waste disposal. This fraction is the high density fractions of the coarse refuse 

streams which mostly contain pyrite and calcite. It was therefore suggested if the high 

density fraction could liberated and separated, the remaining fractions of the coal waste 

streams could be considered as environmentally benign. Crushing the samples to the top 

size of 6.35 mm showed relative, not completely, liberation of high density fractions in 

coarse refuse streams.  

 

In this study, long-term leaching characteristics (pH and electrical conductivity) of the 

coarse refuse streams as a function of material density is evaluated. The long-term leaching 

characteristics were studied through conducting column leaching tests on waste streams of 

two coal processing plants cleaning Appalachian coal seams. 
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5.2 Experimental 

 

5.2.1 Sample Collection and Preparation 

 

To assess the strategies for minimizing the conductivity level of discharged from coal 

refuse ponds, comprehensive set of representative samples were first taken at 20 minute 

time intervals over a 4 hour period from two coal processing plants treating relatively  low 

and high pyritic Appalachian coal seams. The coal seams are: 

1. Coalburg, Central Appalachia, WV (low pyritic content) 

2. Pittsburgh No.8 coal seam, Northern Appalachia, PA (high pyritic content) 

 

Figure 5.1 illustrates the sampling locations in the coal processing plants. Samples were 

obtained from following streams: 1) Feed, 2) Clean coal, 3) Dense medium vessel refuse 

(DMVR), 4) Dense medium cyclone refuse (DMCR), 5) High frequency overflow (HFO), 

6) Total coarse refuse (CR), which includes DMVR, DMCR, and HFO, 7) Thickener 

underflow (TU), and 8) Fine refuse sump (FR), which includes TU and high frequency 

underflow. All streams were sampled from plant 2, and the samples taken from plant 1 

include 5, 6 and 8.  
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Figure 5.1. Simplified flowsheet for modern coal processing plants and sampling 

locations. 

 

After sampling, the CR, DMVR, DMCR and HFO samples were spread out and air-dried 

over a period of about 3 days. CR, DMVR, and DMCR preparation involved crushing the 

samples to a top size of 12.7 mm (½-inch) using a jaw crusher. The top size was further 

reduced to 6.35 mm (¼-inch) by crushing in the second stage using a Holmes hammer mill 

crusher, accompanied by a manual mixing stage to ensure homogeneity of the samples. 

The coning and quartering method was employed for achieving the reduction in sample 

volume. The method involved heaping the bulk of the sample in a pile and dividing into 

four quarters, rejecting two opposite quarters, mixing the two remaining quarters and then 

repeating the process until a suitable volume of material remained for splitting. A 

laboratory Jones riffle splitter was employed at this stage for CR, DMVR, DMCR, as well 
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as HFO which finally yielded samples of about 1 kg for analysis and experiments. For 

splitting, samples were poured onto the top of a riffle which splits the samples into 

alternating angled slots that discharge into separate containers underneath the riffle. The 

final samples were stored in sealed bags in a freezer to prevent atmospheric oxidation. The 

reject portion of the sample was then returned to the barrel and sealed airtight for future 

use. All the processing, except drying in air, was performed for clean coal. The processes 

after crushing also were performed on spiral refuse sample. 

 

For the slurry FR and TU sample, the samples were well mixed for 15 min using agitator 

and several representative slurry samples were taken using Outotec Rotary Slurry 

Sampler Model WS-220 to evaluate the initial pH, and conductivity and amount of release 

trace elements into supernatant liquid in contact with the samples, solid percent, and size 

analysis. The rest of samples were then filtered using pressure filter and dried in low 

temperature oven for 24 hours. The dried caked samples were then sent to hammer mill 

crusher with screen size of 1mm, to separate adhered particles from each other. Then 

splitting and storage steps were repeated for the sample. 

 

The HMVR, HMCR, HFO, and CR samples were subjected to density fractionation to 

evaluate the long term leaching characteristics of the fractions and identify the fractions 

that need to be separated and isolated for minimizing the conductivity level of discharged 

water from refuse ponds. 
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5.2.2 Sample Characterization 

 

After required preparation, samples were analyzed for ash content, forms of sulfur, major 

elements using XRF, mineral matter by X-ray Diffraction (XRD) utilizing Rietveld method 

and elemental analysis by Inductivity Coupled Plasma – Optical Emission Spectroscopy 

(ICP-OES). 

 

Ash content and forms of sulfur (ASTM D-2492) for the samples obtained from the 

processing plants are listed in Table 5.1, which indicates that the Coalburg Pittsburg coal 

seam samples have relatively low and medium sulfur content, while Pittsburgh No.8 coal 

seam samples have relatively high sulfur content. 

Table 5.1. Ash content and forms of sulfur. 

Sample Ash (%) 
Forms of Sulfur (%) 

Total Sulfate Pyritic Organic 

Coalburg Coal Seam 

HFO 72.50 0.55 0.01 0.12 0.42 

CR 62.30 0.58 0.01 0.31 0.26 

FRS 55.50 0.30 <0.01 0.26 0.04 

Pittsburgh No.8 Coal Seam 

FEED 22.59 2.84 0.04 1.38 1.42 

CLEAN COAL 8.90 3.09 0.03 1.22 1.84 

DMVR 86.48 2.19 0.15 1.68 0.36 

DMCR 79.86 4.54 0.32 3.53 0.69 

HFO 76.04 9.88 0.08 7.79 2.01 

CR 81.55 5.29 0.44 4.39 0.46 

TU 40.64 1.69 0.22 0.42 1.05 

FRS 47.58 3.09 0.26 2.20 0.63 

 

The data indicates that total coarse refuse streams have higher pyritic sulfur content than 

fine refuse sump sample. The pyritic content data is consistent with Fe content of the 



135 
 
 

sample (Table 5.2). This is due to unliberated pyrite content of dense medium vessel refuse 

(DMVR) and dense medium cyclone refuse (DMCR), as well as high liberation of pyrite 

content from high frequency overflow (HFO) stream. The liberated pyrite content in fine 

fractions (-1 x 0.15mm) is concentrated in the underflow of classifying cyclone and 

reported to the spiral refuse, and then HFO. On the other hand, ultrafine pyrite particles, 

which have been reported to the underflow of classifying cyclone due to the water recovery, 

are also enriched in the spiral refuse and by passing the apertures of high frequency screen 

may slightly increase the pyrite content of fine refuse sum (FR).  

 

The same explanation can be used to describe the reason for an elevated calcite content in 

HFO and FR as indicated by calcium oxide contents, Table 5.2. Although the presence of 

the calcite in the sample may buffer the solution and lessen the release of trace elements 

and conductivity, this buffering capability may be diluted when this stream is stored with 

other streams. This dilution ratio is typically around 5, considering typically 80% of run of 

mine is more than +1 mm, 15 % is between 1 to 0.15 mm and 5% finer than 0.15 mm, and 

the yield is 70%. As a result of this dilution, the buffering capability decreases and 

oxidation of pyrite generates an acidic condition and increases the TDS and conductivity 

(Moses and Herman, 1991; Nordstrom et al., 2000; Dold & Fontboté, 2001; Nicholson et 

al., 1988, Huggins et al., 2012). It is therefore suggested to treat the coal spiral refuse with 

mineral spiral to reject high density materials (solubilized calcite and pyrite with high 

oxidation and dissolution rate) prior to co-disposing with other fractions for partial 

abatement of the conductivity of aqueous streams. Due to the high pyritic content of the 
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CR, treating DMV and DMC refuse streams are also suggested to remove the high density 

fractions and achieve a sustainable coal waste disposal. 

 

The significant variation in the mineralogy of the waste streams arises because of the 

different size distributions and a difference in the physical occurrence of individual 

minerals, resulting in their different behavior during coal cleaning. High clay minerals 

(illite and kaolinite) content of the TU and/or FR, indicated by Al and Si content (Table 

5.2), is due to the separation of fine and light clay minerals to the overflow of classifying 

cyclone which is reported along with fine coal particles either to flotation circuit or directly 

to thickener.  

 

The higher pyritic contents of CR of medium and high pyritic coal samples indicating low 

pH, high TDS and conductivity level of supernatant liquid in contact with these streams. 

On the other hand, circumneutral condition is expected for the low pyritic Coalburg coal 

waste streams, and FR, and HFO samples with high alkali and alkaline earth elements 

content. 
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Table 5.2. Major element analyses (ash basis) of 500˚C ash prepared from the sample. 

Sample 
% Oxide (ash basis)* 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O P2O5 TiO2 BaO SrO SO3 

Coalburg Coal Seam 

HFO 61.70 23.44 4.81 0.34 1.06 0.21 3.42 0.09 0.97 0.08 0.02 0.18 

CR 62.39 25.98 4.78 0.35 1.18 0.18 3.75 0.12 1.27 0.08 0.02 0.10 

FR 60.19 26.73 4.70 0.50 1.32 0.28 4.11 0.10 1.12 0.12 0.03 0.34 

Pittsburgh No.8 Coal Seam 

FEED 57.30 21.75 10.18 2.52 0.90 0.91 1.88 0.21 1.23 0.05 0.06 2.74 

CLEAN COAL 44.07 21.81 21.13 3.78 0.72 0.64 1.46 0.37 1.05 0.08 0.16 3.27 

DMVR 63.73 25.77 4.54 0.67 0.69 0.54 2.08 0.16 1.33 0.04 0.03 0.52 

DMCR 59.12 23.98 7.86 1.59 0.74 0.50 1.98 0.17 1.21 0.04 0.03 1.29 

HFO 52.45 21.43 15.19 3.69 0.66 0.41 1.78 0.19 1.06 0.04 0.04 0.90 

CR 58.96 23.83 9.58 1.53 0.71 0.47 1.91 0.19 1.20 0.04 0.03 1.33 

TU 58.06 24.74 3.35 2.74 0.98 2.16 2.12 0.17 1.15 0.05 0.05 3.41 

FR 55.49 23.04 9.43 3.98 0.94 1.16 2.01 0.20 1.09 0.05 0.05 2.70 

* As %wt. of mineral matter 

 

5.2.3 Leaching Study 

 

Leaching characteristics (pH and EC) of leachates of different density fractions (2.95 sink, 

cumulative 2.95 float, and cumulative 2.68 float) of HMVR, HMCR, HFO and CR were 

compared to those of original samples.  For size-density fractionation, each sample was 

first separated to different sizes be sieving. Each size fraction then separated to different 

density fractions by laboratory float-sink testing using heavy liquids with different specific 

gravities. The specific gravities (SG) of 2.68, and 2.95 were chosen for density 

fractionation. These specific gravities were selected to achieve the optimum separations of 

typical minerals in Appalachian coals, i.e. Specific gravity of 2.68 to float Organic 

materials, quartz (SG : 2.65), kaolinite (SG : 2.6) and partially illite (SG : 2.6 – 2.9), 2.95 

to float the remained illite and also calcite (SG : 2.71), and to sink pyrite (SG : 5 – 5.02). 

Lithium Metatungstate (LMT) Heavy liquid was used for density fractionation. For density 
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fractionation, the samples first poured in the LMT with 2.95 SG and well mixed manually. 

Enough time was then given for material to either float or sink. The sink material (2.95 

sink fraction) was then well washed and dried for the leaching test, and 2.95 float material 

was also washed and dried. After getting representative sample from cumulative 2.95 float 

material for leaching test the sample was subjected for density fractionation at 2.68 float. 

The Sink and float fractions were washed and dried and representative samples from 2.68 

float material was taken for the leaching study. Any required density fractionation is easily 

achievable by manipulating the coal processing plant in case some fractions are identified 

for separation and isolation for sustainably disposing coal waste streams. Colum leaching 

tests as described in the chapter 3 was then conducted on the individual generated fractions 

as well as original samples. Figure 5.2 demonstrate the laboratory set-up of series of 

column leaching tests. 
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Figure 5.2. Column leaching tests set-up 
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5.3 Results and discussion 

 

5.3.1 Leaching characteristics of origin waste streams 

 

pH and EC of the waste streams leachates were measured on a weekly base (Figures 5.3 

and 5.4). Low pyritic waste streams generated the circumneutral pH and low EC in contact 

with water. Slightly decrease of pH of FR of low pyritic coal may be due to the high release 

rate of the buffering capability of the sample, and also release of humic acid from such an 

oxidized coal. Therefore the pH of effluent decreased down to the pH of leachant (D.I water 

with pH of 5.5).  
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Figure 5.3. Leaching characteristics of low pyritic coal refuse streams (a) pH and (b) EC 

 

 

(a) 

(b) 
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Thickener underflow and fine refuse sump samples of high pyritic coal seam demonstrated 

pH of close to neutral during entire period of tests due to lower pyritic content and their 

self-buffering capability. Fine refuse sump sample of medium pyritic coal, showed slightly 

lower pH and higher EC than thickener underflow sample, which shows the effect of 

addition of high frequency underflow to fine refuse streams, and it is suggested that high 

frequency underflow is treated with multi gravity separation (MGS) prior to addition to 

fine refuse stream. This treatment may even further decrease the EC supernatant water in 

contact with the fine refuse stream in coal waste impoundment.  

 

High frequency samples that contain high calcite and pyrite concentration (Tables 5.1 and 

5.2) generated alkaline pH at the first several weeks due to the rapid dissolution of calcite. 

By decreasing the buffering capability after several weeks its pH drops to 5 and remained 

weekly acidic in entire period of the test. Dense medium vessel refuse of medium pyritic 

coal seam, with low pyritic and low calcite content also showed slightly acidic condition. 

However, dense medium cyclone refuse with relatively high pyrite and low calcite content 

caused acidic pH of its supernatant liquid. The same behavior was observed for the coarse 

refuse.  

 

Comparison of EC of all the waste streams samples from the plant treating high pyritic coal 

seam, revealed that total coarse refuse stream has higher EC than all of its sub-streams. 

This is due to the fact that the addition of the high frequency to dense medium vessel and 

dense medium cyclone, increases the pyrite content while its related calcite content is 

diluted. This also explain the very acidic condition of total coarse refuse stream. The high 
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conductivity of the coarse refuse streams is mostly being driven with high acidity and EC 

of dense medium cyclone, and subsequently with the high frequency overflow (Figure 5.3). 

 

As a result of these analysis, it is suggested that coarse refuse sub streams are treated to 

separate the high density fractions which is mostly contain pyrite and calcite to decrease 

the EC of the water breached from embankment prior to discharge of refuse pond water to 

water streams.  
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Figure 5.4. Leaching characteristics of high pyritic coal refuse streams (a) pH and (b) EC 

Leaching characteristic of refuse streams as a function of material properties. 

(a) 

(b) 
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5.3.1.1 Low pyritic coal refuse streams 

  

For low pyritic waste streams, 2.95 sink and 2.95 float material (mostly pyrite, calcite and 

partially illite) were removed from coarse refuse and high frequency overflow samples and 

leaching characteristics of 2.68 float material were compared to those of original samples.  

The removed fractions from coarse refuse and high frequency overflow contain only 1.6 

and 1.7 percent, respectively, of the total samples. The comparison of pH of leachates from 

2.6 float material with the original samples (Figures) showed by removing less than 2% of 

the materials from those waste streams, the pH of the solution remains almost constant and 

close to the pH of deionized water (5.50) which was used as the leachant in the column 

leaching test.  The EC of leachates were also remained below 500 µS/cm for the entire 

period of the experiments. The EC o the fine refuse is below 500 µS/cm except the first 

few weeks. Higher EC of the first few weeks of this fraction is due to the oxidation of the 

surface of the sample during filtration and oven drying, which is not the case for the mining 

practice. This indicate that crushing to coarse refuse sample to 6.35 mm, rejecting 2.68 sink 

fraction (1.6% by weight), and removing the magnetic fraction of fine refuse  streams 

(1.6% by weight) assures the effluent of waste streams could be discharged without any 

chemical or physical water treatment. 
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Figure 5.5. (a) pH and (b) EC of supernatant liquid in contact with low pyritic coal refuse 

samples. 

(a) 

(b) 
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5.3.1.2 High pyritic coal refuse streams 

 

Colum leaching tests were performed to evaluate the leaching characteristics of density 

fractionated samples (2.95 sink, cumulative 2.95 float, and cumulative 2.68 float) of high 

pyritic coarse refuse and its associated sub-streams, i.e. DMVR, DMCR and HFO (Figures 

5.6 to 5.8). For all the fractions 2.95 sink showed significantly higher EC than the rest 

fractions as well as original samples. Isolating that fraction resulted in %62 reduction of 

the EC of the coarse refuse stream which is due to the rejecting mostly pyrite from the 

sample. Additional isolation of 2.95 float, which is expected to be mostly calcite and 

partially illite, resulted in additional %6 reduction in the EC. Although the second stage 

reduction in EC is not significant as first stage, since even very small reduction in EC result 

in reduction of physical or chemical treatment and also the processing cost is typically less 

for achieving lower cut-densities in processing plants, it is suggested to separate and isolate 

2.68 float materials from the coarse refuse streams.  

 

Comparison of the results for different sub-streams indicates that higher reduction in EC 

after isolating 2.95 sink and 2.95 float occurs in the high frequency overflow. This is due 

to the lower size distribution of this fraction (0.15 to 1mm) and the minerals are relatively 

liberated in this streams, resulting in more efficient separation of minerals into different 

density fractions. 
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Figure 5.6. EC of supernatant liquids in contact with original and different density 

fractionated samples of (a) dense medium vessel and (b) dense medium cyclone refuse 

streams. 

(a) 

(b) 
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Figure 5.7. Figure 5.6. EC of supernatant liquids in contact with original and different 

density fractionated samples of (a) high frequency overflow and (b) coarse refuse 

streams. 

(b) 

(a) 
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Figure 5.8. Figure 5.6. Average and maximum EC of supernatant liquids in contact with 

original and different density fractionated samples of high pyritic refuse streams. 

 

The high pyritic processing plants capacity is 1600 (tph). The mass yield (mass percentage 

of the plant feed reporting to the clean coal product stream) of the plant is %78. Out of 

1600 (tph) feed, 1244 (tph) is reported to the clean coal stream, 258 (tph) to coarse refuse 

and 98 (tph) to the fine refuse streams. In Coarse refuse streams, 40 and 54 percent are 

reported from dense medium vessel and dense medium cyclone separation units, 

respectively, and the remaining %6 material is reporting to the coarse refuse streams 

through high frequency over flow. Table shows the weight percentages of the density 

fraction of the coarse refuse stream and its sub-streams, indicating isolating only less than 

%5 of materials (2.95 sink and 2.95 float) in the coarse refuse stream, results in %69 

reduction of max EC and %67 reduction of average EC of the leachate from refuse ponds. 
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Table 5.3. Size distribution of the density fraction of high pyritic refuse streams. 

Sample 2.68 Float 2.95 Float 2.95 Sink 

DMVR 95.74 96.17 3.83 

DMCR 95.74 96.17 3.83 

HFO 84.47 86.43 13.57 

CR 95.04 95.57 4.43 

 

The results is in consistent with the conductivity screening-level (CSL) test, and shows the 

efficiency of the short CSL test for identifying high generating conductivity fractions that 

need to be separated and isolated.  

 

For further decrease of EC it is suggested that DMVR and DMCR crushed to finer top size 

(1mm) for more liberation of high density materials and more efficient separation of those 

fractions followed by isolation.  

 

Based on the data provided by conducting long term leaching characteristics, the following 

modification could be applied for the coal processing plants for mineral segregation in 

waste streams to minimize the release of trace elements: 

 

1- Addition of mineral spiral to the fine (0.15 to 1mm) circuit for rejecting high density 

fractions 

2- Crushing DMVR and DMCR streams to top size of 6.35 for liberating high density 

materials  
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3- Addition of gravity separator units such as jig for separation of liberated high 

density fractions 

4- An alternative for the second and third stages would be crushing the samples to 

1mm  top size and rejecting the high density fraction through mineral spirals 

(further economic and geotechnical analysis is suggested to be performed for 

evaluation of the alternative). 

 

5.4 Conclusions 

 

Waste material generated in coal processing plants are disposed in coal refuse 

impoundments and refuse ponds. Mineral oxidation and dissolution in the waste may cause 

environmental issues especially regarding to mitigation of trace elements and possibly 

increasing total dissolved solids and conductivity level of water streams.  

 

In order to develop strategies to minimize the conductivity level of discharged water from 

refuse ponds, long term leaching characteristics of refuse streams from processing plants 

treating low and high pyritic Appalachian coal seams were first examined as a function of 

density. The long term leaching studies were conducted through column leaching 

experiments. 

 

The results showed that removing 2.68 material from coarse refuse of low pyritic coal 

which contains %1.6 of the waste material, results in reduction of conductivity level of 

leachate below 500 µS/cm, the limit of conductivity level Appalachian perennial streams. 
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For the high pyritic coarse refuse sample, excluding 2.95 sink material which contains 

%4.4 of the total refuse material decreased the average EC of the leachates from 3834  

µS/cm to 1250 µS/cm (%62 reduction). Additional exclusion of 2.95 float material which 

is only 0.5% of the total materials, resulted in further %6 reduction of EC and the leachate 

of the average of EC of remaining material (2.68 float fraction) was 1250 µS/cm. This 

significant reduction of EC of the leachate could significantly reduce downstream physical 

or chemical treatment of the leachate prior to discharge. 

 

Comparison of the EC results from separation of high density fraction from sub-streams of 

coarse refuse stream suggested that the EC of the leachate can even further decrease if 

material is crushed to finer top size (1mm). This size reduction causes more liberation and 

higher efficient separation of the high generating EC fractions. 

 

The density separation required for separation and isolation of high density material in 

refuse streams can be easily achieved by manipulating the coal processing plants for 

treating the refuse material prior to disposal. This study suggests addition of mineral spirals 

to fine circuit for treating spiral refuse stream, crushing the coarse and medium circuits 

(dense medium vessel and dense medium cyclone) to top size of 6.35 and rejecting high 

density fractions through dense medium cyclone units.  
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6. CONCLUSIONS AND FUTURE WORK 

 

The research objectives and tasks stated in the chapter 1 were successfully performed and 

the major research findings and recommendations for future research are summarized in 

this chapter. 

 

6.1 Conclusions 

 

Coal processing plants take advantage of various low cost solid-solid and solid-liquid 

separation processes for increasing the heating value of coal and/or meeting the market 

specifications. The upgrading of coal is achieved by rejecting the mineral matter in coal, 

thereby generating coarse and fine refuse materials as byproducts. Waste material 

generated in coal processing plants are disposed in engineered refuse piles and refuse 

impoundments or ponds. Oxidation and dissolution of enriched mineral content of the 

coal waste streams may cause environmental issues especially with regards to mitigation 

of trace elements and possibly increasing total dissolved solids and electrical conductivity 

(EC) level of water streams.  

 

The main objective of the work described in the dissertation was to develop strategies to 

minimize the environmental impacts of coal refuse disposal. A comprehensive literature 

survey suggested a fundamental knowledge and practical operation gap between the 

current status and desirable sustainable coal waste disposal. Therefore, a thorough 

fundamental investigation of short-term and long-term leaching characteristics of coal 

waste streams and identification of sources for environmental contamination by current 
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status of coal waste disposal was conducted in this work. In addition, experiments 

conducted to specifically identify the environmental issues as a function of material 

properties that can be exploited for separation such as particle size and density and the 

modification of coal processing plants for more sustainable coal waste disposal were 

suggested.  Major conclusions and contributions were derived from the research: 

 

1-  Understanding the effect of parameters on conductivity is necessary for developing a 

quick and inexpensive test for conductivity screening-level. The research studied the 

effect of surface area, volume-to-surface area ratio, and the amount of oxidant on the 

electrical conductivity of the leachate generated from contacting with coal refuse. The 

results of a parametric study based on a 3-level Box-Behnken design were used to 

develop empirical models for predicting the conductivity as a function of the 

aforementioned parameters. Separate models were developed for two particle size 

fractions and two density fractions to assess the impact of mineral composition on 

conductivity.  

 

2- Based on the model results, the order of significance on electrical conductivity was: 

Volume-to-surface area ratio >> amount of oxidant ≈ interaction effect of oxidant and 

volume to surface area ratio > interaction effect of volume-to-surface area ratio and 

surface area. The independent effect of surface area was not significant in all the 

models.  

 

3- Based on these results, a standard test was developed for conductivity screening-level 

test (CSLT) which involved the following steps: i) particle size analysis by sieving, ii) 



156 
 
 

particle density measurement, surface area calculation using equation 2.1., iii) the 

addition of a given volume of water to the solid sample in an amount that provides a 

1:1 ratio for volume-to-surface area, iv) agitation of the water and solid mixtures 

contained in a capped container for 15 min, and v) measurement of electrical 

conductivity after allowing time for particle settling. This procedure can be applied for 

conductivity screening-level assessment of various waste stream types. 

 

4- The conductivity screening-level tests were utilized to quantify the electrical 

conductivity (EC) as a function of material properties such as mineralogy, particle size 

and density, which could be used to identify environmental sensitive fractions that 

require separation and isolation to remedy environmental concerns. The results showed 

that the EC of leachate derived from coarse refuse streams are much higher than fine 

refuse streams. Based on the conductivity screening-level tests where the same leachant 

water-to-surface area ratio of 1:1, the order of electrical conductivity from highest to 

lowest was: dense medium vessel reject > dense medium cyclone reject > high 

frequency overflow > fine reject stream > thickener underflow.  

 

5- The results of CSLT indicated that less than 5% of material in the coal refuse is the 

primary source of the environmental issues associated with elevated total dissolved 

solids level of supernatant liquids in contact with coal processing waste streams, as 

indicated by high EC level in the water discharged from coal processing waste streams. 

The high generating EC fractions appear in the highest density fractions (SG > 2.68).  

Liberation and separation followed by isolation of this fraction results in significant 

reduction of EC in the discharged water from coal processing waste streams. 
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6- Characterization of the coal refuse streams showed a significance variance in 

mineralogy between the coal waste streams. As a result of processing, coarse refuse 

streams are enriched in pyrite and therefore have higher acid generating potential than 

fine refuse Furthermore, fine refuse streams are enriched in clay minerals and calcite 

and therefore have natural-buffering capability. The variation in the mineralogy 

between waste streams in a given coal processing plant arises due to the differences in 

particle size and density distributions between the various mineral types, which effects 

their movement into the various process streams of a coal cleaning plant. Classifying 

cyclones and spirals were found to play integral roles in the fractionation of minerals 

into the waste streams. The differences in the mineralogy, therefore, resulted in 

variation in leaching characteristics.  

 

7- Long-term leaching characteristics of the coarse and fine refuse streams of three U.S. 

processing plants treating high, medium and low pyritic bituminous coal seams were 

examined. When placed in contact with water, the coarse refuse of the high and medium 

pyritic sulfur coals generated the most acidic conditions (pH~3) throughout the test 

period, while the pH of supernatant liquids in contact with fine refuse samples and 

coarse refuse of low pyritic coal were close to neutral. The elemental data analysis 

suggested that most of the trace elements were released under the acidic pH conditions 

in which pyrite oxidation was elevated by the ferrous iron ions in the leachate. 

Therefore, an effective strategy to minimize the release of trace elements is keep the 

medium pH close to neutral. 
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8- The highest amount of trace element release was obtained from dynamic leaching 

column tests involving the high and medium coarse refuse materials, while the least 

amount of released trace elements were related to low pyritic refuse streams. This 

suggest that higher pyrite content of the coarse refuse streams is the cause of acid 

generation and release of trace elements to the effluent. As a result, separation and 

isolation of the high density fraction, i.e. pyrite, of coarse refuse streams prior to the 

disposal minimize the environmental impact of coal waste disposal significantly. 

Subsequent co-disposing of remaining coarse refuse with fine refuse streams can buffer 

the supernatant water through the release of the self-buffering capability of the fine 

refuse stream. This also can suppress the oxidation of low remaining pyrite content in 

the system, due to any inefficiency of the separation processes. 

 

  

9- In order to develop strategies to minimize the conductivity level of discharged water 

from coal refuse, long term leaching characteristics of refuse streams from processing 

plants treating low and high pyritic Appalachian coal seams were examined as a 

function of density. The results showed that removing material with S.G. greater than 

2.68 from the coarse refuse of low pyritic coal, which represented 1.6% of the waste 

material, results in a reduction of the conductivity level to values below 500 µS/cm, 

which is the conductivity limit for Appalachian perennial streams. 

 

10-  For the high pyritic Appalachian coarse refuse sample, excluding 2.95 SG sink 

material which represented 4.4% of the total refuse material decreased the average 

electrical conductivity from 3834 µS/cm to 1250 µS/cm (62% reduction). Additional 
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exclusion of 2.68 x 2.95 S.G. material which is only 0.5% of the total materials, resulted 

in further %6 reduction of EC and the leachate of the average of EC of remaining 

material (2.68 float fraction) was 1250 µS/cm. This significant reduction of EC of the 

leachate could significantly reduce downstream physical or chemical treatment of the 

leachate prior to discharge. 

 

11-  Comparison of the conductivity results from the separation of high density material 

from sub-streams of coarse refuse stream suggested that the conductivity of the leachate 

can be further decreased if material is crushed to a top size of 1mm. The particle size 

reduction created liberation of the minerals having natural buffering capabilities and of 

the high density fractions which made the separation process more effective.  

 

12-  The density separation required for separation and isolation of high density material in 

refuse streams can be easily achieved by modifying the coal processing plants for the 

treatment of the refuse material prior to disposal. This study suggested the addition of 

mineral spirals to the fine circuit for treating the spiral refuse stream, crushing the 

coarse and intermediate size fraction circuits (dense medium vessel and dense medium 

cyclone) to a top size of 6.35 and rejecting the high density fractions through density 

based separators.  
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6.2 Recommendations for Future Work 

  

Based on the research work performed, the following recommendations are suggested for 

future work with excellent avenues for research improvements in this field: 

 

1- The short term conductivity screening-level tests demonstrated relative liberation 

of high generating EC materials where the coarse refuse samples are crushed down 

to 6.35 mm. However, such fractions were more liberated where the coarse refuse 

material were crushed down to 1mm top size. Long term leaching evaluations in 

this study addressed the effectiveness of crushing coarse refuse samples to 6.35 mm 

top size for liberation and segregation of high density fractions for minimizing 

environmental impacts of coal waste disposal. For improving the hypothesis 

suggested in this research which separation and isolation of high density fractions, 

future work can conduct long term leaching evaluation study of segregation of high 

density material after the samples are crushed down to 1mm. 

 

2- Application of multi-gravity separation (MGS) technology for rejecting high 

density fraction of fine refuse streams, followed by long term leaching 

characteristics of its product streams is suggested to be performed for further 

decrease of EC of supernatant liquid in contact with fine refuse streams.  

 

3- Application and efficiency evaluation of different separation technologies to reject 

the high density fraction material in refuse streams Economic analysis of 
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segregation of high density fractions after crushing the samples to 6.35 and 1mm 

needs to be performed. 

 

4- Geotechnical analysis is suggested to be performed for stability analysis of making 

embankment of impoundments using coarse refuse materials with 6.35 and 1 mm 

top sizes. 

 

5-  The elemental analysis of density fractionated samples (See the Appendix) 

demonstrated that after the segregation of 5% high density material, the remaining 

%95 material contain close to 400 ppm of rare earth elements. Recovery of rare 

earth elements from coal processing refuse streams can provide significant avenue 

for coal mining company, and it could pay-off the further refuse stream treatments. 

Evaluation of rare earth elements extraction from coal refuse streams, therefore, 

would be extremely significant for achieving sustainable coal waste disposal from 

which valuables can be recovered for commercial use while the remaining materials 

are processed to generate environmentally benign material. 

 

6- Acid mine drainage may result in release of significant amount of lithophilic and 

calcophilic trace elements. Evaluation of processes to recover the elements from 

acid mine drainage in coal mining could also provide significant improvement for 

sustainably coal waste disposal. 
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