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Recent ideas on the calculation of lepton anomalous magnetic moments

Michael 1. Eides’
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
(Received 2 March 2014; published 16 September 2014)
We discuss the recent claim [G. Mishima, arXiv:1311.7109; M. Fael and M. Passera, arXiv:1402.1575
[Phys. Rev. D (to be published)]] about discovery of a nonperturbative quantum-electrodynamic
contribution of order (@/x)> to lepton anomalous magnetic moments. We explain why this nonperturbative

correction does not exist.

DOI: 10.1103/PhysRevD.90.057301

Calculation of the QED corrections to lepton anomalous
magnetic moments is the classical playground of perturba-
tion theory. In fact, the very first prediction of the newly
minted QED was the Schwinger’s calculation of the one-
loop correction to the electron anomalous magnetic
moment (AMM) [1]. Nowadays all QED corrections to
the electron AMM up to and including the five-loop (a/7)’
contributions are calculated; see the review [2].

It was claimed recently [3,4] that the perturbative
calculation of the QED contributions to lepton AMMs is
incomplete and should be amended by accounting for a
“nonperturbative” effect connected with the positronium
poles in the photon polarization operator. According to
[3,4], these positronium poles in the exact polarization
operator generate a new contribution of order (/z)’ that is
missed in the standard perturbative treatment and that
should be added to the perturbative one. If correct, the
conclusion about the missing positronium poles would
affect many other high-order QED calculations.

The problem of accounting for the positronium poles in
the polarization operator in low energy QED calculations
was addressed, exhaustively explored, and solved a long
time ago in [5] (see also [6]). It was proved that in almost all
low energy perturbative calculations, when the momentum
k flowing through the polarization operator is far from the
positronium singularities |k* — 4m?| > a’>m?, perturbative
contributions provide a complete QED result. Inclusion of
positronium poles in this situation means an ill-defined
double counting. The only exception to this rule is the case
when the polarization operator enters the diagram in the
vicinity of the positronium poles |k* — 4m?| < a®>m?. Then
accounting for the positronium singularities becomes
mandatory. An example of such a situation is provided
by the vacuum polarization insertion in the diagram with
the virtual one-photon annihilation of positronium. The
contribution of the positronium singularities to the posi-
tronium hyperfine splitting in this case was calculated
in [6].
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Below we will consider in more detail calculation of the
polarization operator contribution in Fig. 1 and demonstrate
that the standard perturbative contributions give the complete
QED contribution to AMM. Nothing we will say below
is new. It is all contained in [5,6], but the claims made in
[3,4] show that the old arguments deserve to be repeated.

We start with a qualitative discussion. Recall how the
formation of a QED bound state is described in the
diagrammatic language. Consider an -electron-positron
four-point Green function (the polarization operator is just
a special case of this four-point function). This Green
function has a series of poles in the s channel (s = k%)
corresponding to the energy levels of the electron-positron
bound states—levels of positronium of the form
Z,(a)/(s — E%), E, = 2m — a*m/(4n?). These poles can
be considered as singularities (poles) in a, and an expansion
in powers of a is clearly illegitimate in the vicinity of the
poles, when |s — 4m?| < m*>a®. Besides bound states the
singularities in « are due also to the continuum scattering
states near the threshold, s — 4m? < m%a?; see [5,6]. It is
well known that these singularities arise as a result of
summation of an infinite series of the perturbation theory
diagrams; see, e.g., [7]. Consider the diagrams with the
(Coulomb) photon exchanges between the electron and
positron lines that are responsible for the formation of the
bound state. For the generic external momenta each extra
exchanged photon carries an extra suppression factor
a~1/137, and the diagrams with a large number of
photon exchanges are strongly suppressed. How is it
possible that the sum of these diagrams develops poles
at s ~ 4m? corresponding to the positronium bound states?
The only way it can happen is if the series diverges at
s ~4m? and all terms in the series are of the same order in

k

FIG. 1. Polarization operator contribution to AMM.

© 2014 American Physical Society
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the vicinity of s ~ 4m?. At first glance this cannot happen
since, as we just explained, addition of an extra rung to
the ladder of exchanged photons results in an extra small
factor a. But not so fast—this simpleminded consideration
completely ignores the kinematic dependence of the
graphs. A simple calculation shows that at s ~ 4m? each
extra photon is accompanied by an extra factor 1/v ~ 1/«

(v = /1 —4m?/s). As aresult all diagrams are of the same
order and the series diverges at s ~ 4m?. We can easily sum
the infinite series of diagrams with the Coulomb exchanges
far from the threshold, and check that the sum really
develops poles at the positions of the positronium energy
levels. For our goals it is important to emphasize that the
positronium poles in the full polarization operator arise as
a result of summation of an infinite series of one-particle
irreducible perturbation theory diagrams, and these poles
arise at the specific values of the four-momentum flowing
through these perturbation theory diagrams.

Now we are ready to return to the problem of accounting
for many Coulomb exchanges inside the polarization
operator in the diagram in Fig. 1. Let us consider the
contribution to AMM provided by the diagram in Fig. 1,
where the blob is substituted by any finite-order perturba-
tion theory diagram for the polarization operator. It is well
known that the structure of singularities in the complex k
plane is such that it allows the Wick rotation; see, e.g.,
[7,8]. After the Wick rotation, the loop (and polarization
operator) momentum is spacelike, k> = —k2 < 0. Simply
from dimensional considerations we know that the char-
acteristic integration loop momentum in this diagram is
determined by the electron mass, and the dominant con-
tribution to the diagram is produced by the region of
integration momenta where Euclidean momenta k% < m?.
This is true for calculation of the leading Schwinger
contribution [1] that is reproduced in any decent text on
quantum field theory; see, e.g., [7,8]. Insertion of a one-
particle irreducible polarization operator diagram with n
photon exchanges in the photon line in Fig. 1 changes the
large momentum behavior of the photon propagator by the
factor ~In(k%/m?) that does not change the dominant
integration momentum region. We see that the character-
istic spacelike integration momenta k> < 0 are separated
by a large gap ~4m? from the position of the positronium
singularities at timelike momenta k*> ~4m?. In this kin-
ematics, each polarization operator diagram with an extra
Coulomb exchange introduces an extra power of « and to
achieve the desired accuracy in calculation of AMM it is
sufficient to consider only a finite number of lower-order
perturbation theory diagrams. All higher-order diagrams
with a larger number of exchanged photons are suppressed
by powers of a and can be safely neglected.' The

'We do not discuss insertions of one-particle reducible
polarization operators that lead to the well-known renormalon
singularity [9].
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positronium poles are nothing but the sum of the perturba-
tion theory diagrams at k*> ~4m?, and we see that for
kinematical reasons they do not arise in calculation of the
corrections to AMM.

The discussion above can be illustrated with the help of a
toy model suggested in [3]. Consider the function f(x) =
a/(x — a) (in the context of the present discussion one can
think that x is something like k> — 4m?, and a is something
like —a>m?/n?). Expanding this function in a power series
and removing from this expansion, say, the first ten terms

we observe that the remainder function f(x) =
(a"'/x"Ma/(x — a) still has the pole with the same residue
as the original function f(x). This observation was used in
[3] as an argument demonstrating that the pole contribution
of the function f/(x) has to be accounted for together with
the first few terms in the power series expansion. It was
claimed that since the residue of the function f (x) atx = a
coincides with the residue of the function f(x), the pole
contribution of f;(x) is not suppressed in comparison
with the perturbation theory contributions. However, as
explained above, we are interested in the value of the
integral of this series expansion with a certain weight, and
the weight function chooses the values of the argument that
are far from the pole. For illustrative purposes, let us choose
the weight in the form 6(x — b), where |b — a| > a. Then

2 al()

7(b) = [ dxf()ox =) =§ + 55+ 5+ F1(b),
@)

where f,(b) = (a''/b'")[a/(b —a)]. We see that the
contribution of the “pole” term in f(b) is purely pertur-
bative in the small parameter a/b, and addition to the sum
of a few first terms of something like f(b) = a/(b — a) as
is effectively done in [3,4] is unjustified. Of course, this toy
model is just an illustration of the considerations above.
To summarize, inclusion of the positronium poles (one
pole in [3], a series of poles in [4]) on par with a few
perturbation theory diagrams is an uncontrollable approxi-
mation that leads to wrong results. The positronium poles in
the polarization operator arise from summation of the
diagrams with any number of the Coulomb exchanges.
The poles show up as divergences of this series at specific
values of momentum. Necessity for account for the
positronium poles arises when all terms in the series are
of the same order and the series diverges. In other words the
perturbation theory itself prompts when it becomes insuf-
ficient. This is not the case for the corrections to AMM, and
it makes no sense to add positronium pole terms to the
perturbation theory contributions as is done in [3,4].

057301-2
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FIG. 2. Singularities in the complex k&, plane.

One can prove the purely perturbative nature of the
vacuum polarization corrections to AMM from a slightly
different perspective [5]. The diagram in Fig. 1 with an
exact one-particle irreducible polarization operator contains
all polarization operator contributions to AMM. The exact
polarization operator has, of course, positronium poles. Let
us show that in the diagram in Fig. 1 the contribution of the
exact polarization operator reduces to a sum of contribu-
tions of a few lower-order perturbation theory diagrams.
Consider the loop integration over the loop momentum k
that coincides with the photon momentum. The singular-
ities of the integrand in the complex plane k in Fig. 2 are
due to the polarization operator singularities [poles (bold
dots) at k> = E2 = 4m? — &*>m?/n® + a*m?/(16n*) and
cuts at k> > 4m?]. There are also singularities that arise
due to other propagators in the triangle diagram (crosses in
Fig. 2). We see that, as usual in the diagrammatic
calculations, the structure of singularities allows rotation
of the integration contour to the imaginary axis. After this
rotation, the contour is at a distance about 2m from the
positronium singularities. As we discussed above for such
momenta, the exact polarization operator is a sum of a
convergent perturbation theory expansion in a, which
proves the validity of perturbation theory for calculation
of radiative corrections to AMM.

Notice that in some other cases accounting for the
positronium bound states is necessary in QED calculations.
This happens when the singularities that depend on external
momentum pin the integration contour to the positronium
singularity, or when the polarization operator for kinematical
reasons should be calculated near the positronium singular-
ities. An example of such situation is provided by the
contribution of the one-photon annihilation diagram to the
positronium hyperfine splitting. The proper way to treat this
problem was discovered and exhaustively discussed in [6].

For completeness let us consider also another argument
in favor of accounting for the positronium poles in AMM

PHYSICAL REVIEW D 90, 057301 (2014)

calculations put forward in [3,4]. It is based on the well-
known dispersion relation representation of the polarization
operator contribution to AMM

a

ra=2 / %Imn(s +ie)K(s), 3)

T

where

K(s):[)ldxzx(l—_x). (4)

x4+ (1-x)2

It is claimed in [3,4] that considering only the perturba-
tive contributions to the imaginary part in Eq. (3) one
misses the positronium pole contributions. Let us consider
this argument in more detail, and apply it to the dispersion
relation for the polarization operator itself. It is clear that
each perturbation theory contribution to the polarization
operator can be restored from its imaginary part with the
help of the dispersion relation. Summing these perturbation
theory contributions to the polarization operator, we restore
the total polarization operator that contains positronium
poles as we explained above. But notice that while restoring
this polarization operator via dispersion relations for the
perturbation theory diagrams, we never encountered the
positronium poles. Is there a contradiction? No, we just
observed that the sum of dispersion integrals of perturbative
imaginary parts does not coincide with the dispersion
integral of the sum of imaginary parts. The summation
and integration are in this case noncommutative as was first
discovered in [5] (see also [6]). The case of the dispersion
integral in Eq. (3) is similar to the case of the dispersion
integral for the polarization operator itself, and we should
not include positronium singularities in this dispersion
relation on par with the perturbation theory contributions
for the same reasons. Of course, if we knew the exact
expression for the imaginary part of the full polarization
operator, we would be able to calculate the total polariza-
tion operator contribution to AMM with the help of Eq. (3).
Since we do not know the exact polarization operator or its
imaginary part, perturbation theory remains the only
practical way of calculating the QED corrections to AMM.

In summary, we have considered the arguments in favor
of a new nonperturbative correction of order (a/x)> to the
electron and muon anomalous magnetic moments put
forward in [3,4] and proved that such contribution does
not exist.

This work was
No. PHY-1066054.

supported by the NSF Grant

Note added.—Reference [10] appeared on the arXiv on the
same day as the present paper and also came to the same
conclusions on the anomalous magnetic moment (AMM).
The authors of Ref. [4] recently updated their results and
acknowledged the absence of nonperturbative QED con-
tributions to lepton AMMs.
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