
University of Kentucky
UKnowledge

Physics and Astronomy Faculty Publications Physics and Astronomy

7-1-2015

Hard Three-Loop Corrections to Hyperfine
Splitting in Positronium and Muonium
Michael I. Eides
University of Kentucky, eides@pa.uky.edu

Valery A. Shelyuto
D. I. Mendeleyev Institute for Metrology, Russia

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and
Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Eides, Michael I. and Shelyuto, Valery A., "Hard Three-Loop Corrections to Hyperfine Splitting in Positronium and Muonium"
(2015). Physics and Astronomy Faculty Publications. 308.
https://uknowledge.uky.edu/physastron_facpub/308

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232568671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron_facpub?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/physastron_facpub?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron_facpub/308?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Hard Three-Loop Corrections to Hyperfine Splitting in Positronium and Muonium

Notes/Citation Information
Published in Physical Review D: Particles, Fields, Gravitation, and Cosmology, v. 92, no. 1, article 013010, p. 1-10.

©2015 American Physical Society

The copyright holder has granted permission for posting the article here.

Digital Object Identifier (DOI)
http://dx.doi.org/10.1103/PhysRevD.92.013010

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/308

https://uknowledge.uky.edu/physastron_facpub/308?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages


Hard three-loop corrections to hyperfine splitting in
positronium and muonium

Michael I. Eides*

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

Valery A. Shelyuto†

D. I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
(Received 1 June 2015; published 17 July 2015)

We consider hard three-loop corrections to hyperfine splitting in muonium and positronium generated by
the diagrams with closed electron loops. There are six gauge-invariant sets of such diagrams that generate
corrections of ordermα7. The contributions of these diagrams are calculated for an arbitrary electron-muon
mass ratio without expansion in the small mass ratio. We obtain the formulas for contributions to hyperfine
splitting that in the case of a small mass ratio describe corrections for muonium and in the case of equal
masses describe corrections for positronium. The first few terms of the expansion of hard corrections in the
small mass ratio were earlier calculated for muonium analytically. We check numerically that the new
results coincide with the sum of the known terms of the expansion in the case of a small mass ratio. In the
case of equal masses we obtain hard nonlogarithmic corrections of order mα7 to hyperfine splitting in
positronium.

DOI: 10.1103/PhysRevD.92.013010 PACS numbers: 12.20.Ds, 31.30.jf, 32.10.Fn, 36.10.Dr

I. INTRODUCTION

For many years hyperfine splitting (HFS) in muonium
and positronium has remained an active field of exper-
imental and theoretical research. Results of highly accurate
HFS measurements can be compared with the theoretical
predictions of quantum electrodynamics obtained from the
first principles without any adjustable parameters. Both
experiment and theory have achieved very high accuracy.
The experimental errors for HFS in muonium are now in
the interval 16–51 Hz [1,2], and a new measurement with
the goal to reduce the error to about 10 Hz or to a few parts
in 109 is now planned at J-PARC [3,4]. The current
theoretical uncertainty of HFS in muonium is about
70–100 Hz; see, e.g., reviews in Refs. [5–7]. Recent
theoretical work on HFS in muonium concentrated on
the calculation of radiative-recoil corrections of order
α3ðm=MÞEF that arise from the three-loop diagrams with
closed electron and muon loops [8–12]. The goal of this
work is to reduce the theoretical error below 10 Hz.
The hyperfine splitting in positronium is measured with

the error bars at the level of 1–2 MHz [13–16]. There is a
discrepancy of about three standard deviations between the
results of old and new experiments. A new measurement of
the positronium HFS splitting is now planned at J-PARC
[17]. All theoretical contributions to HFS in positronium of
order mα6 and logarithmic corrections of order mα7 are

already known; see, e.g., reviews in Refs. [18–20]. A new
stage in the theory of positronium HFS was opened in
Ref. [19] where the one-photon annihilation contribution of
ordermα7 was calculated. This paper was soon followed by
the works of Adkins and collaborators [20,21], who
calculated contributions of the light-by-light scattering
insertion in the scattering and annihilation channels.
Hard nonlogarithmic contributions to HFS in positro-

nium of ordermα7 are similar to the radiative and radiative-
recoil corrections to HFS in muonium of orders α2ðZαÞEF

and α2ðZαÞðm=MÞEF, respectively. We calculated these
corrections in muonium some time ago [8–12]. The
corrections in muonium are power series in the electron-
muon mass ratio with the coefficients enhanced by large
logarithms of this mass ratio. The goal of the old work on
muonium was to calculate the coefficients in this expan-
sion, at least the factors before the logarithms, analytically.
In the case of positronium the masses are equal and the hard
corrections of order mα7 are pure numbers. We apply the
approach developed for muonium to positronium. We
consider an electromagnetically bound system of two
particles with arbitrary massesM andm, and obtain general
expressions for the hard corrections to HFS of order mα7

without expansion in the mass ratio of the constituents. We
check numerically that in the case of a small mass ratio
these formulas reproduce with high accuracy the sum of all
already known terms in the expansion in the small mass
ratio for muonium. We use the general expressions for the
case of equal masses and calculate all hard three-loop
contributions to HFS in positronium of order mα7 that are
due to the diagrams with closed electron loops. The results
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of these calculations were reported in the rapid communi-
cation [22]. Below we present the details of the calculations
in the general case of arbitrary mass ratio and in the special
case of equal masses, for positronium.

II. CALCULATIONS

We start with the infrared-divergent contribution to HFS
in muonium generated by the two-photon exchange dia-
grams in Fig. 1 calculated in the scattering approximation

ΔE¼−
Zα
π
EF

3mM
16

Z
d4q
iπ2q4

Lαβ
e;skelðqÞLμ;skel;αβð−qÞ

¼−
Zα
π
EFð2mMÞ

Z
d4q
iπ2q4

ð2q2þq20ÞLðeÞ
skelðqÞLðμÞ

skelð−qÞ;

ð1Þ

where

Lαβ
e;skelðqÞ≡ −

2q2

q4 − 4m2q20
γμq̂γν ¼ 2LðeÞ

skelγ
μq̂γν ð2Þ

is the forward electron Compton scattering amplitude in the
tree approximation (the skeleton electron-line factor), and
Lαβ
μ;skelðqÞ is a similar amplitude for the muon. The Fermi

energy is defined as EF ¼ ð8=3ÞðZαÞ4m3
r=ðmMÞ, where

mr ¼ mM=ðmþMÞ is the reduced mass. In the case of
equal masses, M ¼ m, the Fermi energy EF turns into the
leading nonannihilation contribution to HFS in positronium
EPs
F ¼ mα4=3. The external electron and muon lines in the

diagrams in Fig. 1 are on the mass shell and carry zero
spatial momenta. In the second line in Eq. (1) we calculated
the projection of the matrix elements on HFS.
After the Wick rotation and transition to four-

dimensional spherical coordinates (q0 ¼ q cos θ, jqj ¼
q sin θ) we obtain

ΔE ¼ Zα
π

EF
4mM
π

Z
π

0

dθsin2θ
Z

∞

0

dq2ð2þ cos2θÞLðeÞ
skelL

ðμÞ
skel

¼ Zα
π

EF
4mM
π

Z
π

0

dθsin2θ
Z

∞

0

dq2
2þ cos2θ

ðq2 þ 4m2cos2θÞðq2 þ 4M2cos2θÞ
≡ Zα

π
EF

mM
M2 −m2

Z
∞

0

dq2fμðqÞ; ð3Þ

where in the last step we rescaled the integration momen-
tum q → qm. The dimensionless weight function fμðqÞ in
terms of an auxiliary function

fðqÞ ¼ −
1

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4

p
4q

−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4

p
q3

ð4Þ

has the form

fμðqÞ ¼ fðqÞ − 4μ2fð2μqÞ; ð5Þ

where μ ¼ m=ð2MÞ.

In the case of positronium M → m and the weight
function is simplified

mM
M2 −m2

fμðqÞjM→m
→

16þ 2q2 þ q4 − q3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4

p
4q3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4

p
≡ fpðqÞ: ð6Þ

Respectively, the skeleton integral in Eq. (3) in the case
of positronium turns into

ΔE ¼ α

π
EPs
F
4m2

π

Z
π

0

dθsin2θ
Z

∞

0

dq2L2
e;skelð2þ cos2θÞ

¼ α

π
EPs
F
4m2

π

Z
π

0

dθsin2θ
Z

∞

0

dq2
2þ cos2θ

ðq2 þ 4m2cos2θÞ2 ≡
α

π
EPs
F

Z
∞

0

dq2fpðqÞ: ð7Þ

The integrals in Eq. (3) and Eq. (7) are sums of an
infrared linearly divergent integral and a finite one. In a
more accurate approximation (with the off-mass-shell
external fermion lines) the linear divergence is cut off at

the characteristic atomic scale λ ∼mα and generates an
extra factor m=λ ∼ 1=α. As a result the infrared-divergent
term turns into a contribution of order EF that is of lower
order in α. Therefore the uncertainty connected with the

FIG. 1. Diagrams with two-photon exchanges.
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lack of knowledge of the precise value of the infrared cutoff
is hidden in the contribution to HFS that is of lower order in
α and that anyway cannot be calculated in the scattering
approximation. The remaining finite part of the integral
originates at hard integration momenta ∼m (or in the interval
from m toM in the case of unequal masses) and generates a
contribution of order αEF. In the case of unequal masses, for
muonium, the linearly infrared-divergent contribution turns
into the leading nonrecoil Fermi contribution EF to HFS,
while the finite part generates the leading recoil correction of
order αðm=MÞEF; see, e.g., Refs. [5,6]. Let us emphasize
that due to the linear (as opposed to logarithmic) nature of
the apparent divergence it leaves no finite remnant of order
αEF and should be simply thrown away. No need in
matching of high and low integration momenta arises.
This feature should be contrasted with the case of a
logarithmic infrared divergence when the cutoff at the atomic
scale λ produces a logarithm lnðm=λÞ ∼ lnð1=αÞ and uncer-
tainty in the precise value of the infrared cutoff generates
uncontrolled nonlogarithmic contributions to HFS of the
same order in α as the logarithmic term. This effect clearly
indicates that an accurate matching of hard and soft momenta
contributions is mandatory in the case of logarithmic infrared
divergences. A rigorous formal proof of these features of
linear and logarithmic infrared divergences can be found,
e.g, in Refs. [23,24].
Six gauge-invariant sets of diagrams in Figs. 2–4 and in

Figs. 6–8 generate hard radiative corrections of order mα7

that are due to the graphs with closed electron loops.1

All these diagrams can be interpreted as the results of radiative
insertions in the skeleton diagrams with two-photon
exchanges in Fig. 1. It is well known that the insertion of
radiative corrections suppresses the low-integration-
momentum region; see, e.g., Refs. [5,6,23]. Hence, all
diagrams in Figs. 2–4 and in Figs. 6–8 are infrared con-
vergent.2 Moreover, the characteristic integration momenta in
these diagrams are hard (of order∼m or in the interval fromm
to M in the case of unequal masses) and are much larger
than the atomic momenta of order ∼mα, which justifies the
validity of the scattering approximation for their calculation.
This is exactly the approximation we used above in the
calculation of the contribution of the skeleton diagrams in
Fig. 1, and all corrections calculated below are obtained by
somemodifications of the basic integrals inEq. (3) andEq. (7).

A. Analytic results for one- and two-loop polarization
insertions in the exchanged photons

Consider first the diagrams in Fig. 2 with two one-loop
polarization loops. The insertion of a polarization operator

in a photon line with momentum q (all momenta below are
measured in units of the electron mass) reduces to the
replacement in the photon propagator

1

q2
→

α

π
I1ðqÞ; ð8Þ

where ðα=πÞI1ðqÞ is the well-known representation of the
one-loop vacuum polarization [25].

α

π
I1ðqÞ ¼

α

π

Z
1

0

dv
v2ð1 − v2

3
Þ

1 − v2
1

q2 þ 4
1−v2

: ð9Þ

We see that a photon line that carries a polarization loop
has a natural interpretation as a propagator of a massive
photon with mass squared λ2 ¼ 4=ð1 − v2Þ. According to
Eq. (9) this propagator should be integrated over v with the
weight ðα=πÞv2ð1 − v2=3Þ=ð1 − v2Þ.
The contribution of the diagrams in Fig. 2 is obtained by

the insertion of the one-loop photon polarization squared
ðα=πÞ2q4I21ðqÞ in the integrands in Eq. (3) and Eq. (7). Due
to the nonsingular behavior of the polarization operator at
q2 → 0 we obtain convergent integrals where the effective
integration momenta are hard, of order ∼m (or in the
interval from∼m toM in the case of unequal masses). Then
in the general case of unequal masses the contribution to
HFS has the form

ΔE ¼ 3
α2ðZαÞ
π3

EF
mM

M2 −m2

Z
∞

0

dq2fμðqÞq4I21ðqÞ; ð10Þ

where the factor 3 before the integral has a combinatorial
origin. We checked numerically that in the small-mass-ratio
limit this integral reproduces the sum of all analytically
known terms [26,27] of the expansion of this contribution
in the small mass ratio.
In the case of positronium the integral in Eq. (10) reduces

to [compare Eq. (7)]

FIG. 2. Diagrams with two one-loop polarization insertions.

FIG. 3. Diagrams with two-loop polarization insertions.

1All gauge-invariant sets of diagrams include the graphs with
the crossed exchanged photons that we do not show explicitly.

2Linearly infrared-divergent contributions due to the anoma-
lous magnetic moment should be subtracted from radiative
corrections in Figs. 6 and 8; see more on this below.
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ΔE1 ¼ 3
α3

π3
EPs
F

Z
∞

0

dq2fpðqÞq4I21ðqÞ; ð11Þ

and after computation we obtain the contribution to HFS
of the diagrams with two one-loop polarization insertions
in Fig. 2.

ΔE1¼
�
6π2

35
−
8

9

�
α3

π3
EPs
F ¼ 0.803043294

α3

π3
EPs
F : ð12Þ

The contribution of the two-loop vacuum polarization in
Fig. 3 can be obtained by the insertion of the two-loop
photon polarization ðα2=π2Þq2I2ðqÞ [25,28] in the inte-
grands in Eq. (3) and Eq. (7)

�
α

π

�
2

I2ðqÞ ¼
2

3

�
α

π

�
2
Z

1

0

dv
v

4þ q2ð1 − v2Þ
�
ð3 − v2Þð1þ v2Þ

�
Li2

�
−
1 − v
1þ v

�

þ 2Li2

�
1 − v
1þ v

�
þ 3

2
ln
1þ v
1 − v

ln
1þ v
2

− ln
1þ v
1 − v

ln v

�

þ
�
11

16
ð3 − v2Þð1þ v2Þ þ v4

4

�
ln
1þ v
1 − v

þ
�
3

2
vð3 − v2Þ ln 1 − v2

4
− 2vð3 − v2Þ ln v

�
þ 3

8
vð5 − 3v2Þ

�
; ð13Þ

where the dilogarithm is defined as Li2ðzÞ ¼
−
R
1
0 dtlnð1 − ztÞ=t.
In the case of unequal masses the integral for the

contribution to HFS of the diagrams with the two-loop
polarization in Fig. 3 has the form

ΔE ¼ 2
α2ðZαÞ
π3

EF
mM

M2 −m2

Z
∞

0

dq2fμðqÞq2I2ðqÞ;

ð14Þ
where the factor 2 before the integral is due to combina-
torics. Again, due to the nonsingular behavior of the
two-loop polarization at small q2 → 0 the integral in
Eq. (14) is convergent, and typical integration momenta
are hard, in the interval from m to M. We checked
numerically that in the small-mass-ratio case the integral
in Eq. (14) coincides with the sum of the known terms
[26,27] of the expansion of this contribution to HFS in
the small mass ratio.
In the case of equal masses, for positronium, the

contribution to HFS of the diagrams in Fig. 3 reduces to
the integral

ΔE2 ¼ 2
α3

π3
EPs
F

Z
∞

0

dq2fpðqÞq2I2ðqÞ: ð15Þ

This integral admits an analytic calculation, and we
obtain

ΔE2 ¼
�
−
217

30
ζð3Þ þ 28π2

15
ln 2þ π2

675
þ 403

360

�
α3

π3
EPs
F

¼ 5.209 219 614
α3

π3
EPs
F : ð16Þ

B. One-loop electron factor and one-loop
polarization insertion in the

exchanged photon

The diagrams in Fig. 4 are obtained from the skeleton
diagrams in Fig. 1 by one-loop radiative insertions in one
of the exchanged photons and one of the fermion lines.3

To describe these radiative insertions it is convenient to
introduce the one-loop electron factor that is defined as a
gauge-invariant sum of the diagrams in Fig. 5 where the
external electron lines are on shell and carry zero spatial
momenta (plus the diagrams with the exchanged external
photon vertices). Physically the electron factor is a sum of
one-loop corrections to the spin-dependent amplitude of
the virtual forward Compton scattering.
The gauge-invariant electron factor ~Lμν can be written as

a sum of two gauge-invariant terms ~Lμν ¼ Lμν þ LðaÞ
μν ,

where the term LðaÞ
μν is the contribution of the anomalous

FIG. 4. Diagrams with one-loop polarization and radiative photon insertions.

3Multiplicity factors in these diagrams correspond to the case
of positronium, not muonium.
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magnetic moment (for more details see, e.g., Refs. [29,30]).
The multiloop electron factors also can be written as sums
of two gauge-invariant terms. The representation of the
electron factor in the form of a sum of two gauge-invariant
terms is convenient for calculations because these terms
have different behavior at low virtual photon momenta.
According to the generalized low-energy theorem (see, e.g.,
Refs. [5,6]) all terms linear in the small photon momentum

q are due to the term LðaÞ
μν , while the term Lμν decreases

at least as q2 at small q2. This different low-energy behavior

determines the structure of the integrals for the contribu-
tions to hyperfine splitting. In the case of the diagrams in
Fig. 6 and in Fig. 8 the contributions to HFS generated by

the term LðaÞ
μν are of lower order in α than the apparent order

of a diagram. Technically the presence of the previous order
contribution reveals itself as a linear infrared divergence of
an integral calculated in the scattering approximation.
In the diagrams in Fig. 4 the skeleton fermion line in

Fig. 1 is effectively replaced by the one-loop fermion factor
~Lμν in Fig. 5, which can be described by the substitution

Lμν
e;skelðqÞ → ~LμνðqÞ ¼ 2

α

4π

�
γμq̂γν ~LIðq2; q20Þ þ q0

�
γμγν −

qμq̂γν þ γμq̂qν

q2

�
~LIIðq2; q20Þ

�
; ð17Þ

where ~LIðIIÞ are scalar form factors. The scalar form factors
~LIðIIÞ have the form

~LI ¼ LI þ LA;

~LII ¼ LII − LA; ð18Þ

where the scalar form factors LIðIIÞ and LA correspond to

Lμν and LðaÞ
μν , respectively. The factor 2 before the brackets

arises because we normalize the scalar form factors like the

skeleton one in Eq. (2), and the factor α=ð4πÞ is due to the
one-loop integration in the fermion factor.
The one-loop electron factor Lμν with the subtracted

contribution of the anomalous magnetic moment enters
calculations of the two-loop radiative-recoil corrections to
HFS in muonium, and we derived explicit integral repre-
sentations for the respective scalar form factors LIðIIÞ a long
time ago [31–33]. After theWick rotation, a rescaling of the
integration momentum q → qm, and the transition to the
four-dimensional spherical coordinates the form factors can
be written as

LIðq2; cos2θÞ ¼
Z

1

0

dx
Z

x

0

dy

�ðq2 þ a2Þ½ðq2 þ a2Þ2 − 12b2q2cos2θ�
½ðq2 þ a2Þ2 þ 4b2q2cos2θ�3 ðc1q2sin2θ þ c2q4Þ

− ðq2 þ a2Þ2 − 4b2q2cos2θ
½ðq2 þ a2Þ2 þ 4b2q2cos2θ�2 c3q

2 þ ðq2 þ a2Þ4bq2cos2θ
½ðq2 þ a2Þ2 þ 4b2q2cos2θ�2 2c4

�
;

LIIðq2; cos2θÞ ¼
Z

1

0

dx
Z

x

0

dy

� ðq2 þ a2Þ4b
½ðq2 þ a2Þ2 þ 4b2q2cos2θ�2 c5q

2

−
ðq2 þ a2Þ2 − 4b2q2cos2θ

½ðq2 þ a2Þ2 þ 4b2q2cos2θ�2 2c6q
2 þ 2b

ðq2 þ a2Þ2 þ 4b2q2cos2θ
c7q2

�
; ð19Þ

where a2 ¼ x2=yð1 − yÞ, b ¼ ð1 − xÞ=ð1 − yÞ, and the
coefficient functions ci are collected in Table I.
The scalar form factor LA is proportional to the respec-

tive skeleton form factor Lskel in Eq. (2). After the Wick
rotation and in terms of the dimensionless integration
momentum q it has the form

LA ¼ 2

q2 þ 4cos2θ
¼ 2Lskel: ð20Þ

FIG. 5. One-loop fermion factor.

FIG. 6. Diagrams with one-loop polarization insertions in
radiative photons.
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In the case of unequal masses an analytic expression for
the contribution to HFS of the diagrams in Fig. 4 is
obtained by a modification of the skeleton integral in
Eq. (3). First, we replace the skeleton factor in the integrand

ð2þ cos2θÞLðeÞ
skel →

α

4π
½ð2þ cos2θÞ ~LI − 3cos2θ ~LII�:

ð21Þ
The factor α=ð4πÞ comes from the substitution in Eq. (17),
and the term with ~LII arises because the one-loop electron
factor in Eq. (17) contains an additional spinor structure in
comparison with the skeleton one in Eq. (2).

Second, we need to account for the polarization loops in
Fig. 4 and insert the term 2q2I1ðqÞ into the integrand in
Eq. (7). The factor 2 is due to the two ways of inserting the
polarization operator into one of the exchanged photons.
The polarization operator q2I1ðqÞ decreases like q2 at small
q, and we obtain an infrared convergent integral with hard
characteristic integration momenta of order m (or in the
interval fromm toM in the case of unequal masses). Due to
the suppression of the small integration momenta the
anomalous magnetic moment in the diagrams in Fig. 4
gives a contribution on par with the other terms in the one-
loop electron factor ~LμνðqÞ.
Then the contribution to HFS of the diagrams in Fig. 4 in

the case of unequal masses has the form

ΔE ¼ α2ðZαÞ
π3

EF
M
m

2

π

Z
∞

0

dq2q2I1ðqÞ

×
Z

π

0

dθsin2θLðμÞ
skel½ð2þ cos2θÞ ~LI − 3cos2θ ~LII�:

ð22Þ

The leading terms of the expansion of the contribution to
HFS in Eq. (22) in the small mass ratio have been known
for some time [26,33,34].

ΔE ¼ α2ðZαÞ
π3

EF

�
π2
�
−
4

3
ln2

1þ ffiffiffi
5

p

2
−
20

9

ffiffiffi
5

p
ln
1þ ffiffiffi

5
p

2
−
64

45
ln 2þ π2

9
þ 3

8
þ 1043

675

�

þ m
M

�
5

2
ln2

M
m

þ 10

3
ln
M
m

þ 11.41788

��
: ð23Þ

We have checked numerically that the integral in Eq. (22)
coincides with this analytical result in the case of a small
mass ratio.
In the case of equal masses there is an extra factor 2

before the diagrams in Fig. 4. This factor arises because
now there are two ways to insert the fermion factor into
one of the lepton lines. Hence, the respective contribu-
tion to HFS is described by the double integral in
Eq. (22) at M ¼ m. Then we obtain the contribution
of the diagrams in Fig. 4 to HFS in positronium in the
form

ΔE3 ¼
α3

π3
EPs
F
4

π

Z
∞

0

dq2q2I1ðqÞ

×
Z

π

0

dθsin2θLskel½ð2þ cos2θÞ ~LI − 3cos2θ ~LII�

¼ −1.287 09 ð1Þ α
3

π3
EPs
F : ð24Þ

C. One-loop polarization insertion in the electron factor

Consider now the diagrams in Fig. 6 with the one-loop
polarization insertions in the radiative photon.4 Effectively
these diagrams contain a massive radiative photon; see
Eq. (8) and Eq. (9). In principle, the respective electron
factor can be obtained from the one-loop electron factor in
Eq. (17) by restoring the radiative photon mass squared
λ2 ¼ 4m2=ð1 − v2Þ, followed by integration over v with
the weight ðα=πÞv2ð1 − v2=3Þ=ð1 − v2Þ. However, the
relatively compact expression in Eq. (17) is a result of
numerous cancellations in the integrand between the
contributions from different diagrams in Fig. 5, and
technically it is much easier to start the calculation
of the two-loop electron factor in Fig. 6 from scratch.
We consider this electron factor as a sum of the

TABLE I. Coefficients in the electron-line factor.

c1 16
yð1−yÞ3 ½ð1 − xÞðx − 3yÞ − 2y ln x�

c2 4
yð1−yÞ3 ½−ð1 − xÞðx − y − 2y2

x Þ þ 2ðx − 4yþ 4y2

x Þ ln x�
c3 1

yð1−yÞ2 ½1 − 6x − 2x2 − y
x ð26 − 6y

x − 37x − 2x2 þ 12xy

þ16 ln xÞ�
c4 1

yð1−yÞ2 ð2x − 4x2 − 5yþ 7xyÞ
c5 1

yð1−yÞ2 ð6x − 3x2 − 8yþ 2xyÞ
c6 −b2 x−y

x2

c7 2 1−x
x

4Multiplicity factors in these diagrams correspond to the case
of positronium, not muonium.
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contributions corresponding to the separate diagrams in
Fig. 6 with the self-energy, vertex and spanning photon
insertions in the electron line. Each of these terms is
calculated as a one-loop diagram with a massive photon
and then integrated over the auxiliary parameter v as we
just explained.
The only subtlety in further calculations is connected

with the diagrams with the vertex correction in Fig. 6. All
entries in the two-loop fermion factor except the two-loop
anomalous magnetic moment carry at least one extra power
of q2 at q2 → 0 in comparison with the skeleton electron
factor. One can separate the contribution to the two-loop
anomalous magnetic moment from the two-loop vertex in
the second diagram in Fig. 6 in a gauge-invariant way, like
we separated the one-loop anomalous magnetic moment
from the one-loop electron factor Lμν above. The two-loop
anomalous magnetic moment term in the second diagram in
Fig. 6 generates a linearly infrared-divergent contribution
to HFS. This linear infrared divergence that is cut off at the
characteristic atomic scale ∼mα indicates that the anoma-
lous magnetic moment generates a contribution to HFS of
the previous order in α. This correction of order mα6 was
already accounted for in earlier calculations and we should
simply delete the apparently divergent term that generates
it. To get rid of the spurious divergence we subtract the
gauge-invariant term with the two-loop anomalous mag-
netic moment from the two-loop electron vertex in Fig. 6.
The subtracted two-loop electron factor in Fig. 6 can be

written in terms of scalar two-loop form factors Lð2Þ
I;II

Lð2Þ
I;II ¼ Lð2;ΣÞ

I;II þ 2Lð2;ΛÞ
I;II þ Lð2;ΞÞ

I;II ð25Þ

similar to the one-loop form factors LI;II in Eq. (18). Unlike
the one-loop form factors ~LI;II in Eq. (17) these two-loop
form factors do not include contributions of the anomalous
magnetic moment.
In terms of the scalar form factors in Eq. (25) the

contribution to HFS of the diagrams in Fig. 6 in the general
case has the form

ΔE ¼ α2ðZαÞ
π3

EF
M
m

1

π

Z
∞

0

dq2

×
Z

π

0

dθsin2θLðμÞ
skel

h
ð2þ cos2θÞLð2Þ

I − 3cos2θLð2Þ
II

i
:

ð26Þ

We have derived and used explicit expressions for the
two-loop form factor in Eq. (25) in Refs. [10,35], where we
calculated the nonrecoil and radiative-recoil corrections to
HFS in muonium due to the diagrams in Fig. 6. Explicit
expressions for the contributions to the energy shifts in
Eqs. (2), (26) and (31) from Ref. [10] correspond to the
integral in Eq. (26) with the three terms on the rhs in
Eq. (25) and were obtained without expansion in the small

mass ratio. They are rather cumbersome and we will not
reproduce them here. Using these expressions we obtain a
few leading terms of the expansion in the small mass ratio
of the contribution of the diagrams in Fig. 6 to HFS that
were calculated earlier

ΔE ¼ α2ðZαÞ
π3

EF

�
−0.310742π2

þ m
M

�
3

4
ln2

M
m

þ
�
π2 −

53

6

�
ln
M
m

þ 7.08072

��
:

ð27Þ

We have checked numerically that the expression in
Eq. (26) derived for arbitrary masses reproduces the
expansion above in the case of a small mass ratio.
In the case of equal masses the contribution of the

diagrams in Fig. 6 to HFS reduces to

ΔE4 ¼
α3

π3
EPs
F
2

π

Z
∞

0

dq2
Z

π

0

dθsin2θLskel

× ½ð2þ cos2θÞLð2Þ
I − 3cos2θLð2Þ

II �; ð28Þ

where an extra factor 2 before the integral [in comparison
with Eq. (26)] arises because we can insert the two-loop
electron factor into either of the fermion lines.
After calculations we obtain

ΔE4 ¼ −3.154 41ð1Þ α
3

π3
EPs
F : ð29Þ

D. Light-by-light scattering contribution

Due to gauge invariance the light-by-light scattering
block decreases fast with the momenta of the external
(virtual) photons. Therefore, effectively all integration
momenta in the diagrams in Fig. 7 are hard, of order of
the electron mass (or in the interval from m to M in the
case of unequal masses).
The contribution of the light-by-light scattering block to

HFS in the general case of unequal masses has the form
[12,30].

ΔE ¼ α2ðZαÞ
π3

EF
3M2

32π

Z
∞

0

dq2

q2

×
Z

π

0

dθsin2θ
Tðq2; cos2θÞ

m2q2 þ 4M2cos2θ
: ð30Þ

FIG. 7. Diagrams with light-by-light scattering insertions.
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The explicit integral representation for the function
Tðq2; cos2 θÞ and its definition in terms of the light-by-
light scattering tensor can be found in Refs. [11,12]. We use
in Eq. (30) four-dimensional spherical coordinates intro-
duced above Eq. (3), so q0 from Ref. [12] becomes q cos θ.
The first terms of the expansion of this contribution to

HFS in the small mass ratio were calculated during many
years [11,12,36,37].

ΔE ¼ α2ðZαÞ
π3

EF

�
−0.472 514ð1Þπ2

þ m
M

�
9

4
ln2

M
m

þ
�
−3ζð3Þ − 2π2

3
þ 91

8

�
ln
M
m

þ 5.9949ð1Þ
��

: ð31Þ

We have checked numerically that the general expression in
Eq. (30) coincides with the sum in Eq. (31) in the case of a
small mass ratio.
In the case of equal masses the integral in Eq. (30)

reduces to5

ΔE5 ¼
α3

π3
EPs
F

3

32π

Z
∞

0

dq2

q2

Z
π

0

dθsin2θ
Tðq2; cos2θÞ
q2 þ 4cos2θ

:

ð32Þ

The calculation of this contribution to HFS in positronium
proceeds exactly like the calculation of the respective
nonlogarithmic radiative-recoil correction to HFS in muo-
nium in Ref. [12] and we obtain

ΔE5 ¼ −0.706 27ð5Þ α
3

π3
EPs
F ; ð33Þ

which coincides with the result first obtained in
Ref. [20].

E. Two one-loop electron factors

The diagrams in Fig. 8 contain the one-loop fermion
factors from Eq. (17) in both fermion lines. Naively, the
contribution of these diagrams to HFS can be obtained from
the skeleton integral in Eq. (3) by the replacement

LðeÞ
skelL

ðμÞ
skelð2þ cos2θÞ →

�
α

4π

�
2

½ð2þ cos2θÞ ~LðeÞ
I

~LðμÞ
I − 3cos2θð ~LðeÞ

I
~LðμÞ
II þ ~LðeÞ

II
~LðμÞ
I Þ þ cos2θð1þ 2cos2θÞ ~LðeÞ

II
~LðμÞ
II �; ð34Þ

where the terms on the right-hand side arise after the
calculation of the projection of the product of two electron
factors [see Eq. (17)] on the HFS structure.
The scalar form factors ~Lðe;μÞ

I;II include terms with the

scalar form factors Lðe;μÞ
A arising due to anomalous

magnetic moments; see Eq. (18). Therefore, each product
of the scalar functions in the square brackets on the right-

hand side of Eq. (34) contains the term LðeÞ
A LðμÞ

A . As we

already mentioned the form factors Lðe;μÞ
I;II decrease at least

as q2 at q2 → 0 relative to the skeleton form factors, while

the form factors Lðe;μÞ
A behave exactly like the skeleton

form factors; see Eq. (20). Hence, each integral of LðeÞ
A LðμÞ

A
is a sum of a linearly infrared-divergent and finite
contributions, compare with the skeleton integral in
Eq. (3). In a more accurate calculation the linearly
infrared-divergent contribution would be cut off at the
atomic scale ∼mα and would generate a correction of
lower order in α. It should be simply subtracted, while we
need to preserve the finite part of the integral that
generates a correction of order mα7. In the general case
of different masses (for example, for muonium) the finite
part is a recoil contribution and it was calculated in

Ref. [29]. It is equal to ð9=16ÞðmMÞ=ðM2 −
m2Þ lnðM2=m2Þ up to a normalization factor. Hence, the
subtraction of the linearly infrared-divergent contribution

due to terms with LðeÞ
A LðμÞ

A in Eq. (34) reduces to the
addition of ð9=16ÞðmMÞ=ðM2 −m2Þ lnðM2=m2Þ to the
respective contribution to HFS instead of all of the terms
on the right-hand side in Eq. (34) that are proportional to

LðeÞ
A LðμÞ

A . After this replacement of the infrared-divergent
part we obtain a convergent integral with hard character-
istic integration momenta in the interval from m toM. The
contribution to HFS of the diagrams in Fig. 8 in the case of
unequal masses has the form

FIG. 8. Diagrams with one-loop radiative photon insertions in
both fermion lines.

5There is a misprint in the respective expression in Eq. (14) in
Ref. [22].
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ΔE ¼ αðZ2αÞðZαÞ
π3

EF

�
M
m

1

4π

Z
∞

0

dq2
Z

π

0

dθsin2θdθ½ð2þ cos2θÞðLðeÞ
I LðμÞ

I þ LðeÞ
A LðμÞ

I þ LðμÞ
A LðeÞ

I Þ

− 3cos2θðLðeÞ
I LðμÞ

II þ LðeÞ
A LðμÞ

II − LðeÞ
I LðμÞ

A þ LðeÞ
II L

ðμÞ
I − LðeÞ

A LðμÞ
I þ LðeÞ

II L
ðμÞ
A Þ

þ cos2θð1þ 2cos2θÞðLðeÞ
II L

ðμÞ
I − LðeÞ

A LðμÞ
II − LðeÞ

II L
ðμÞ
A Þ� þ 9

16

mM
M2 −m2

ln
M2

m2

�
: ð35Þ

The first terms of the expansion of the contribution to HFS
of the diagrams in Fig. 8 in the small mass ratio have been
known for some time [29,38].

ΔE¼ αðZ2αÞðZαÞ
π3

EF

�
π2

2

�
ln2−

13

4

�

þ m
M

�
−
9

8
ln
M
m

−
15

8
ζð3Þ þ 15π2

4
ln2þ 37π2

24
−
147

32

�

þ 9

16

Mm
M2 −m2

ln
M2

m2

�
: ð36Þ

We have checked numerically that in the case of a small
mass ratio the expression in Eq. (35) coincides with the sum
above.
In the case of equal masses the integral in Eq. (35) is

simplified

ΔE6 ¼
α3

π3
EPs
F

�
1

4π

Z
∞

0

dq2
Z

π

0

dθsin2θdθ½ð2þ cos2θÞ

× ðL2
I þ 2LALIÞ − 6cos2θðLILII þ LALII − LALIÞ

þ cos2θð1þ 2cos2θÞðL2
II − 2LALIIÞ� þ

9

16

�
: ð37Þ

After numerical calculations we obtain the contribution of
the diagrams in Fig. 8 to HFS in positronium

ΔE6 ¼ −4.739 55 ð40Þ α
3

π3
EPs
F : ð38Þ

III. SUMMARY OF RESULTS

We have derived explicit expressions for hard three-loop
contributions to hyperfine splitting generated by the six
gauge-invariant sets of diagrams with closed electron loops
in Figs. 2–4 and in Figs. 6–8. In the case of unequal lepton
masses we confirmed numerically the already known

results for muonium obtained earlier in the form of an
expansion in the small mass ratio. We have calculated the
contributions of these diagrams to HFS in the case of equal
masses, for positronium. Collecting the results in Eqs. (12),
(16), (24), (29), (33), and (38), we obtain the total hard
contribution to HFS in positronium of order mα7 generated
by all diagrams with closed electron loops in Figs. 2–4
and in Figs. 6–8.

ΔE ¼ −3.875 0 ð4Þ
�
α

π

�
3

EPs
F ¼ −1.291 7 ð1Þmα7

π3

¼ −5.672 kHz: ð39Þ

Taking into account all other recent theoretical results
[19–21] we obtain the theoretical prediction for HFS in
positronium

ΔEtheor ¼ 203 391.89 ð25Þ MHz: ð40Þ

The latest experimental result is [16].

ΔEexp ¼ 203 394.2 ð1.6Þstat ð1.3Þsys MHz: ð41Þ

There are no contradictions between theory and experiment
at the present level of accuracy, but further reduction of
both the experimental and theoretical uncertainties is
warranted. The calculation of the remaining ultrasoft and
hard nonlogarithmic contributions of order mα7 is the next
task for the theory. We hope to report the results for the
remaining hard corrections in the near future.
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