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Casimir energy of smooth compact surfaces

Joseph P. Straley! and Eugene B. Kolomeisky”
' Department of Physics and Astrononty, University of Kentucky, Lexington, Kentucky 40506-0055, USA
2Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, Virginia 22904-4714, USA
(Received 12 March 2014; published 15 July 2014)

We discuss the formalism of Balian and Duplantier [Balian and Duplantier, Ann. Phys. (NY) 104, 300 (1977);
112, 165 (1978)] for the calculation of the Casimir energy for an arbitrary smooth compact surface and use it to
give some examples: a finite cylinder with hemispherical caps, a torus, an ellipsoid of revolution, a cube with
rounded corners and edges, and a drum made of disks and part of a torus. We propose a model function that
approximately captures the shape dependence of the Casimir energy.

DOI: 10.1103/PhysRevA.90.012514

I. CASIMIR ENERGY

The basis of the Casimir effect is that introduction of
a conductor into a previously empty space modifies the
electromagnetic spectrum and thus the zero-point energy. We
can study this effect using the mode sum generating function

S(Q) =) exp(—wu/Q), ()

where « labels the modes, w, is a mode frequency for the
disturbed system, and €2 is a frequency cutoff. Previous work
[1] has established that the mode generating function for
a general spectrum of a three-dimensional system can be
expanded in powers of €2 in the form

S(Q) = ki1(Q/)*V + k(e A+ (/)T + K + 2Cc/ Q.
(2

The leading terms are local quantities: The contribution is a
sum over values defined for each point in space. Specifically,
c is the speed of light, k; and k, are pure numbers, V is the
volume of the region, A is the surface area of the object, Z
is the surface integral of a linear combination of the surface
curvatures, and /C (the Kac number) is the surface integral
of a quadratic combination of the surface curvatures. In the
last term C (the Casimir term) is a coefficient that depends
inversely on a length scale that characterizes the size of the
object. It is shape dependent in a way that has not been well
characterized.

The specific problem we study is the change S caused
by the introduction of a thin conducting surface into an
initially empty space. For this problem the expansion (2)
considerably simplifies: For empty space we have only the
leading term and since the surface does not change the volume
in which the modes exist, the first term cancels out in the
difference; the third term vanishes because the surface integral
is over both the inside and outside of the same surface, with
oppositely directed surface elements. For electromagnetism
the second term vanishes too: In the cases that have been treated
previously [1] this occurs because the transverse magnetic and
transverse electric modes make opposite contributions, but
Balian and Duplantier [2] (BD) have given an argument that
indicates this is a general property. The result is that the limit
2 — 00 can be taken. We define the Kac number [3]

K =85(Q — 00), 3)
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which represents the number of modes that are created by the
introduction of the object, and the Casimir term

| 1 _
C= 5o Jim Q*d88/dQ ~ Xa:(wa — @), (@

where @, are the mode frequencies before the introduction
of the conductor. Thus the change in the zero-point energy
is 8 = hcC. The Casimir term is nonlocal (i.e., it cannot be
calculated as a sum of contributions from separate parts); it
has hitherto been known only for a few special geometries
(sphere [4], circular cylinder [5], and cylinder of elliptic cross
section [6]). Balian and Duplantier [2] have given an approach
to the Casimir problem that allows calculation of X and C for
general closed conducting surfaces with bounded curvature.
In this paper we will comment on their method and use it to
enrich the literature with some examples.

II. BALIAN-DUPLANTIER EXPANSION

A. Mode expansion in terms of a Green function

For the case of a fixed frequency, Maxwell’s equations can
be reduced to the inhomogeneous Helmholtz equation

(V> + & /)B(R) = =V x J(R), )

subject to the constraint that the field be solenoidal
V-B(R) =0 (6)
for all R in the region. The mode frequencies w,, for a finite
region enclosed by a perfect conductor are those that allow a
solution to these equations with no sources inside the region,

subject to the boundary conditions

A-B(FH) =0, a-[VxB@F)]=0, (7)
where 7 is a unit vector perpendicular to the surface and 7 s
any point on the surface. The corresponding mode fields B,

form a complete orthonormal basis for the representation of
solenoidal fields within the region. Then in particular

Y Bu(R) ® Bo(F) = 8(R — P, ®)

©2014 American Physical Society
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where I is the unit tensor and ® denotes the dyadic product.
For general frequency w we now consider the matrix

2

T(RF) =) == Bu(R) ® Bo(F). ©)

o

Regarded as a function of ﬁ, I' satisfies the inhomogeneous
Helmholtz equation

(V24 0?/AT(R,7) = — oV x [V x ISR — )] (10)

and inherits from E(IE) the property 61& -T'= Oﬁ and the
conditions that /ig - T(R,7) = 0 and fig - [Vk x T'(R,7)] =0
when R is on the boundary. Then T'(R,7) - m is the magnetic
field at R caused by a magnetic dipole m at 7 in the presence
of the conductor: It is the Green function for that problem.
We similarly define Iy for the space in the absence of the
conductor.

We can see from Eq. (9) that there is divergent response
to the presence of an oscillating magnetic dipole at the
resonant frequencies, as would be expected on physical
grounds. Regarding w as a complex-valued variable, the Green
function has simple poles at the mode frequencies and is
analytic elsewhere. Integrating trI'(7,7) over all space turns
(9) to a sum of simple poles with residue %a)a. For o with
a small positive imaginary part this reduces to a set of
delta functions i%nw(S(a) — wy) from which the mode sum
generating function can be constructed. The argument can be
repeated for the region exterior to the conductor and for the
whole space in the absence of the conductor, leading to the
definition

P(w) = /d3rtr[r(?,7;w) —Ty(#,7;w)], (11)

where the integral is over all space, so that this contains both
the interior and exterior modes and subtracts out the modes for
empty space. It has the property

Im®(w + i€) ! Z[(S( ) — &( 0e)] (12)

m €)= -1 — wy) — — Wy

w l 2 _ w w , w ,

and thus [7]
oo+i€

8S(R2) = Im/ — exp(—w/Q)P(w)dw, (13)

0 Tw

which motivates the further discussion of T'.

B. Integral equation for the Green function
In the absence of boundaries the magnetic field due to an
oscillating magnetic dipole is given by

To(R,F) - i = [(Vg - V,) = Ve(i - V)IGo(p),  (14)

where
p=R—7. p=Ipl (15)
and
eiw,o/c
Go(p) = 2 (16)
0

is the Green function for the scalar Helmholtz equation. When
there is a conducting surface present, a surface current ]md(r)
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is induced, which gives rise to a new magnetic field éind. Thus
we are led to define another Green function M,

Bina(R) = 110 f d’r Vg x Go(R.7) jina(F)
s

= uoM(R.F) - jina(P), (17)

where the integral is over the surface of the conductor and in the
second line we introduce the convention that the repeated index
7 implies an integration over the surface. The surface current
completely represents the effect of the conducting surface, so
the total field can be regarded as the combination of the field
due to the source alone and to the field created by the induced
currents, as if the fields were propagating in free space:

T(R.7y) - i = To(R.7o) - it + M(R.7) - jinaF).  (18)

Note that ]}nd depends implicitly on the location 7y and
orientation 7 of the source.

The surface provides perfect screening: When the source is
insigle, there are no fields outside. The tangential components
of B can beqdiscontinuous across the boundary due to the
presence of ji,q. Balian and Duplantier observe that we can
use this to determine jj,g in the form

S Ur
Jind(R) = —A(R) x B(R). (19)

o
Here 71 is directed outward when the source is within the
surface and inward when the source is outside. This gives
a local relationship between ]md(R) and B(R)

The field B(R) is the total field due to all currents except
the surface current at R (this exclusion is the origin of the
factor of 2). It is defined as follows: For R close to the surface
(at distance € from it), we imagine using the first version of
(17) to calculate Bjyq(R), but exclude from the surface integral
a small region near R that is significantly larger than €. This
part of Bj,q is continuous as R moves through the surface.
The excluded region contributes a field that is discontinuous at
the surface. The surface current (19) is chosen so that Bo
and the part of Bmd(R) just computed are canceled for R just
outside the surface. In taking the limit that R is on the surface,
tbe size of the small region can go to zero; the magnetic field
B(ﬁ) is after all the result of doing the integral (17) over the
whole surface. .

Substituting Eq. (18) gives an integral equation for jigq,

Jina(R) = Jo(R) + K(R,F) - jina(P), (20)
where
K(R.7) = 2A(R) x M(R,7) Q1

describes how the magnetic field created by a current at 7
induces a current at R and

Jo(R) = 2A(R) x To(R,F) - m (22)

is the part of the surface current that is directly due to the
presence of the magnetic dipole 7 at 7. The useful feature of
(20) is that it turns a set of three-dimensional partial differential
equations for fields with three components into an integral
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equation for a two-component vector field existing on a two-
dimensional surface. This makes the numerical study of the
problem greatly simpler.

C. Series representation of the Green function

The integral equation (20) can be given a formal solution
by repeatedly substituting it into itself, giving an expansion

Joa=J + K-+ K-K-ji4 - (23)
This leads to a corresponding expansion for T’
FT=T¢+M-j,+M-K-j+---. 24)

The usual route to solving the electromagnetism problem
we are considering is to find a set of fields satisfying Maxwell’s
equations away from the boundary, then impose the boundary
conditions (7) that enforce continuity of some components of
the field, and only at the end (if ever) consider the discontin-
uous components that correspond to the surface currents and
charges. Balian and Duplantier reverse the process and find
the surface currents first. The usual boundary conditions do
not play an explicit role.

In defense of BD’s approach, we observe that induction
of surface currents is how the conducting surface screens the
electromagnetic field and that it necessarily establishes these
currents on a local basis. Balian and Duplantier’s approach is
the way that nature solves the problem.

To convince oneself that we are studying the same problem,
it is useful to consider the case of spherical geometry. Suppose
that BD’s boundary condition is not finding the correct
solution. Then there is a solution to Maxwell’s equations
that has vanishing tangential components of the magnetic
field at the surface, but nonzero radial magnetic field. Since
7. B is a solution to the scalar wave equation, the surface
components determine this quantity everywhere outside, in
the form Y A; ,, ji(wr/c)Y; ,(0,¢). It is then readily shown [8]
that for general w this implies nonzero tangential components
of the magnetic field, contrary to our starting assumption.
Although an example is less than a proof, the point is that
tangential and normal components of the magnetic field are
related to each other and even in the special case of spherical
geometry we cannot have one without the other.

The expansion (23) has the virtue that it turns a problem to
be solved (20) into an expansion to be evaluated: The explicit
form of the right-hand side of (23) is known. Yet if we had been
interested in the currents and fields at a particular frequency the
expansion would be a terrible idea. The source emits electro-
magnetic waves that are scattered on every encounter with the
surface and the mode frequencies emerge from the coherence
of many such scatterings, giving a divergent response find. This
would appear in this representation as a consequence of the
failure of the expansion to converge. However, the expansion
works fine for the intended application: When we chose the
contour for Eq. (13) to lie along the imaginary frequency axis
(and then closing at infinity), the various Green functions have
an exponential decrease with distance and the sum is rapidly
convergent. It will turn out that just the first nonvanishing term
is a good approximation.

Now returning to the evaluation of (13) using (11), the
leading term of (24) cancels. This could be anticipated from
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(2) because the surface being introduced does not change the
volume. For the remaining terms of (24), BD show that the
three-dimensional integral in (11) can be done analytically to
give

o0
D) =Y Dy,
m=1
(25)
¢, = —w—TiK(#,7y) - - K(73,72)K (72, 71),
2m dw

where the symbol Tr represents the trace over the resulting
product as well as surface integrals over the variables 7;, all of
which are on the surface. This expression can be interpreted
as a sum over all closed paths of m sites.

The sum resembles the expansion of a logarithm. A similar
expression has appeared in the evaluations of the Casimir
energy for geometries that allow separation of variables [4—6].

On physical grounds, the poles of ® should all be for real .
Then the integrand for (13) is analytic in the upper half plane.
This allows us to choose a path of integration that goes along
the imaginary o axis to large values and then returns to the real
axis along an arc at large |w|. Writing @ = iyc, we find that K
and M have no imaginary part on the y axis. Combining (21),
(17), and (16), the explicit form of K is

e (1 +yp)
2703

where p = 7, — 7| and #i, is the outward normal to the surface
at 7. Despite the singularity at p = 0, the integral of this
expression is not divergent because in that limit both 5 and fz
are tangent to the surface and thus perpendicular to 7i,; then
oA - j) —(n- ,0) j is vanishing like p?, leaving an integrable
1/p singularity.

For every closed path of sites on the surface there is a
corresponding one in which the sites are traversed in reversed
order. Physically we might expect these paths to have related
values, but the dependence of K on p suggests that reversing
the path will reverse the sign of each factor in Eq. (25), leading
to a cancellation when there is an odd number of sites. For
this reason only the even m terms need be considered. Since
K is not symmetric under an exchange of labels, the perfect
cancellation of odd-numbered terms is not obvious; however,
we believe it holds.

Balian and Duplantier give a slightly different argument
for the vanishing of the ®,, with m odd. Having calculated the
Casimir term using the magnetic Green function, they calculate
it again using the electric Green function and find that the odd
terms appear with reversed sign. However, these must agree
since knowledge of the magnetic fields completely determines
the electric fields. Thus the odd terms must vanish.

The frequency derivative that appears in the definition of
®,, gives m terms that differ only in the labeling (and thus are
numerically equal), in which one of the K factors is replaced
by

K@, r) = — (p @iy —1Ip-z), (26)

2

dK(F.7o)/dy = —= f KT, 27)

When o has a large positive imaginary part, K is exponentially
small except when p = [r; — F;| is small. This implies that
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for large |w|, ®4 (and higher-order ®,,) vanishes for large w,
while @, takes on a constant value that can be calculated by the
surface integral over a combination of the principle curvatures
k; of the surface (the explicit expression is given below).
According to (3) and (13), the Kac number is given by

oo+ie 2
K =1Im / = d(w)dw. (28)
0 Tw

The integrand is analytic in the upper half plane, so we
can choose the contour that goes from the origin along the
imaginary o axis and then returns to the real axis along an
arc at large |w|. The integrand is real on the first part of the
contour and thus makes no contribution; it is $(c0)/w on the
arc, which leads to the conclusion X = —®(ioc0).

It is significant that the integral exists, because this implies
that we can take the limit 2 — oo in Eq. (2): In the expansion
of S(€2) in powers of €2, the first three terms vanish. In contrast,
a scalar field theory would surely have a nonvanishing second
term, implying a contribution to the surface tension coming
from vacuum fluctuations of the field [9].

In the large-y limit the only contribution to (26) comes from
small separations, so K can be calculated from the curvature
elements of the surface. Explicitly,

1

= 287 J%m—«g%+&mﬂfn (29)

The second term reduces to the Gauss-Bonnet integral, which
is a topological invariant:

/Klkzdzr =471 — g), 30)

where g is the genus of the surface (g = 0 for singly connected
surfaces; g = 1 for the torus). We observe that (29) is positive
for all singly connected surfaces: The introduction of a
conducting surface slightly increases the number of modes.
The expression is also positive for surfaces of genus 1, however
this includes zero-frequency modes that represent a magnetic
field that threads the space, which properly do not belong in
the Kac number.

The Casimir term can be evaluated using the same contour.
Using (4) and (13),

oo+ie dw
C = Im/ D(w)—
0 b
oo+ie d
= Im/ [®(w) + lC]—w
0 T

= / [CD(iyc)—i-/C]d—y. (€2))
0 T

The addition of /C to the integrand does not change the integral
along the real w axis because it is adding a real number and
we only need the imaginary part; however, upon changing
the contour to the imaginary  (real y) axis, it eliminates the
contribution from the arc at large |w|. Since ®(iy) approaches
—IC at large y, the addition makes the remaining integral
convergent.

For w = iyc, the tensors K are real. There is an even number
of these in every term of & and it is a decreasing function of
y. Then it is expected that each of the ®,,, will be negative
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valued. However, the integral of ®, + K is usually positive,
with the consequence that the Casimir term will be positive.
Long cylinders are the known exception to this rule, where the
y integral of &, + K is small.

By means of the argument just presented, BD have reduced
the determination of the Kac number and the Casimir term
to the evaluation of some multiple integrals over known
integrands. In Sec. III we will use these to determine the
properties of some smooth surfaces. We note that the BD
paper goes beyond these results to discuss many other things,
including the case of finite temperature and surfaces with
sharp creases, and to verify that the expressions are consistent
with the results for the parallel planes, cylinder, and sphere
geometries calculated by other approaches.

Routes to the calculation of the Casimir interaction between
objects have been given previously [10—15]. We believe these
all develop along the same lines, differing mainly in notation
and in how the authors propose to turn their formal results
into numerical values. We note that the self-interaction case is
slightly more complicated that the case of interaction between
separate objects in that it needs the subtraction of I that
appears in Eq. (31).

III. NUMERICAL EVALUATION

The evaluation of ®,, [Eq. (25)] requires m integrals over
the surface; the result (31) is the integral over y of the sum of
the ®,,,. These integrals are sufficiently complicated to defy
analytic treatment, which is undoubtedly why BD’s method
has attracted so little attention. However, they are tractable as
numerical integrals.

A surface integral of a function F(F) can be written as
an integral over the solid angle and estimated (Monte Carlo
integration [16]) as an average over a large set of unit vectors
7; chosen randomly with uniform distribution of orientations

/F(?)dzr =/F(fs(f))W(f)dQ

N
~ % Z FF)W(#)4m, (32)
i=1

where d€2 represents an integral over solid angles and W (7;)
is the weight function that translates solid angle into surface
area, given by

2

WFE) = —. (33)
Then we can use (32) to calculate the area of the surface
a2
A= / W(#)— (34)
47

and the Kac number

K= e [ =k + s 39
= — — F)—.
1287 J, 0T R
Evaluation of the ®,, requires a little more care however.
The integrands are exponentially small when yp > 1 and are
strongly peaked near the cases where all the points are close
to each other. Evaluation of the m-fold surface integrals by
choosing m uncorrelated directions 7; will give many small
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values and a few very large ones; the average (32) will not
have good statistics, especially when y is large.

The resolution of this problem [16] is choose the random
vectors 7; from a joint distribution that emphasizes the small
separation case, with a corresponding weight function W (#).
This can be viewed as a change in variables in the integration.
For example, consider the integral

/ dQ _f2”d¢ ™ sinfdb
VI=@E-#? Jo o V1—cos?0

In the first form, the integrand becomes arbitrarily large and
evaluating it by choosing uniformly distributed 7 is not going
to work well; in the second form randomly sampling ¢ and 6
is not a uniform distribution on the sphere, but the integrand is
bounded (now regarding the sin 6 to be part of the integrand).
Consider first ®,. According to (25)—(27) it has the form

(36)

A 2\ oA V1,2
np- np -

Dy(iy) = de]/dSZ(1+yp)( : p)(224p)y

42 p

X exp(=2yp). (37)

The integrand appears to be divergent for p — 0 (that is, when
71 and 7, are close to each other); however, in this limit g
almost lies on the surface and thus is nearly perpendicular to
the surface normals 71; and 7i,. The result is that the integrand
is bounded. Calling the integrand F'(#,7,), the integral can be
rewritten as an integral over solid angles

o, = /dQl/szF(f],fz)W(fl)W(fZ)

= /f dQF(1,2)W()W(2)sin(0)dé d¢,  (38)

where in the second equation we have written 7, in terms of the
spherical angles relative to the direction #;. The second form
of the integral suggests that we can evaluate it by averaging
over (6;,¢;) randomly and uniformly distributed (thus making
the factor sin 6 part of the integrand); however, the integrand
is exponentially small for py >> 1, so only the region of small
p is important. This is equivalent to the region of small 8 since
p =~ ri6 in this limit. Therefore, we replace 6 by a new variable
Q defined by

_sin(0/2)(1 + 2yry)
0= 1 +2yr;sin(0/2) ° (39)

which has the features that@ = O correspondsto Q = 0,0 =
corresponds to Q =1, and for yr; > 1, QO = 1/2 means
yrysin(@/2) ~ 1 (and thus 6 small and yp =~ 1). It follows
from these properties that changing variables from 6 to Q gives
a new integral for which the integrand makes a significant
contribution over about half the range of integration. Ran-
domly sampling Q and ¢ involves averaging many numbers
of about the same size, where randomly sampling 6 and ¢
would be the average of a few very large numbers and many
small ones. Calculating the other ®,, benefits from this same
idea because in the large-y limit the contribution is dominated
by the configurations for which all of the 7; are close to each
other.

PHYSICAL REVIEW A 90, 012514 (2014)

IV. MODEL FOR THE CASIMIR TERM

The Casimir term is an interaction between different parts
of a surface (rather than a sum of local contributions, like
the Kac number). The ratio 1/C is a length that in some way
characterizes the size of the object, but it does not seem to
be related to the obvious metrics, such as the ratio of volume
to area or the root-mean-square separation of points on the
surface or the surface integral of the average curvature. We
give examples for various shapes in the next section; we find
that the leading term C, usually is the most important
contribution, so the Casimir term is almost the result of
a pairwise interaction between points on the object. The
explicit form for the Casimir term given by BD is sufficiently
complicated that it is difficult to anticipate what features of a
surface contribute to it. This led us to construct a geometric
quantity G that is similar to C over a wide range of geometries.

The effect of the tensor K (21) vanishes when the surfaces
at R and 7 belong to the same plane because in this case the
field created by the current at 7 is perpendicular to the surface
at R and thus induces no surface current in response. This
counteracts the large interaction between nearby points that
might be expected. These observations suggest that curvature
of the surface is important to the Casimir term.

We have constructed a representation capturing these
properties in the form of a double integral over the surface
of an integrand that depends on the separation p of point pairs.
To get the right scaling with size, the integrand must scale
as p—>. The example of (37) suggests one way to avoid a
divergence of the integral at small p is to have a numerator
with four powers of factors such as 7i - p. Symmetry and the
requirement that parallel planes attract leave few choices and
the only one that works at all well is

G = —0.007 / d*r / d*r'( - pY@H' - p)@ - 7))

(- pY + (@' pY
X .
0’
The prefactor has been chosen to match the numerical results
for C in the case of a sphere of radius R: G = 0.046/R = C.
However, it works reasonably well for other geometries:
For parallel planes with separation D the value of G/ A =
—0.0126/ D3, to be compared with the Casimir interaction
C/A = —n?/720D3 = —0.0137/D>. For the infinite cylin-
der, the value of G per unit length is zero (as is C;), while the
Casimir term per unit length is small and negative.
We ascribe no physical meaning to G beyond that just given;
it is just a geometrical quantity. However, it is much easier to
calculate than C.

(40)

V. RESULTS

In this section we report the numerical results for some
simple shapes: an ellipsoid of revolution, a circular cylinder
with hemispherical caps, a torus, a drum (parallel circular disks
joined with part of a torus), and a cube with rounded corners
and edges. For comparison please recall that for a sphere of
radius R the Kac number is 0.25 and the Casimir term is
0.04618/R and for an infinite cylinder of radius R the Kac
number per unit length is 3/64R = 0.0469/R and the Casimir
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TABLEI. Cylinder of unit radius and length b. We list the surface
area A, Kac number K, the two-point approximation C,, the four-
point approximation Cy4, the Casimir term C, and the geometric model
function G, for various values of b.

b A K G Cy C g

0.1 13.19  0.254  0.0557 —0.0008 0.055 0.046
0.2 13.82  0.259  0.0586 —0.0009  0.058  0.047
0.4 1508  0.269  0.0602 —0.0010  0.059  0.048
0.6 16.34 0278  0.0612 —0.0013 0.060  0.049
0.8 17.60  0.288  0.0623 —0.0016  0.061 0.049
1.0 18.85 0.297  0.0627 —0.0019  0.061 0.050
20 2514 0344  0.0645 —0.0035 0.061 0.050
4.0 3771 0.438  0.0669 —0.0070  0.060  0.051
80 6278  0.624  0.0700 —0.014 0.056  0.050

term per unit length is —0.01356/R?. The interaction energy
per unit area of parallel planes with separation D is given by
a Casimir term —2/720D3 = —0.014/D3.

We believe the numerical values to be accurate to the
number of places given. In most cases C; is the dominant term,
though we note again that for the infinite cylinder C;/L = 0,
so the higher-order terms are necessarily relevant. We have
calculated C,, C4, and Cg for all geometries, but suppressed the
reporting of C¢ when it turned out to be negligibly small.

For the case of the sphere, we find C =C, +C4 + Cs =
0.0497 — 0.0008 — 0.0000 = 0.048 4+ 0.001. Although this
agrees well with the accepted value, we note that it is also
an easier calculation than most that we report since the radius
and curvature are constant.

A. Cylinder with spherical caps

The Casimir energy per unit length for an infinite cylinder
is negative, while the Casimir energy for the sphere is positive.
As a way of seeing how the two limits are connected,
we considered a cylinder of length b and unit radius, with
hemispherical caps on the ends. For this object the area is
given by

A=2r2+D) 41

and the Kac number (29) is

16 +3b
64

K = (42)

0.1~
0

-0.1

-0.2
0.3}
0.4}

—-0.5L

FIG. 1. (Color online) Casimir term for the torus, as a function
of its major radius R (the minor radius is unity).
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TABLE II. Torus of unit minor radius and major radius R. The
columns report the same quantities as in Table 1.

R A K C Cy Co C g

2.0 790 0.68 0.040 —-0.112 -0.040 —-0.11 0.025
30 1180 094 0031 -0.146 —-0.047 -0.16 0.017
4.0 1580 1217 0.029 -0.188 —0.060 -0.22 0.014
50 1970 150 0.028 -0.232 —-0.073 -0.28 0.010
6.0 2370 179 0.029 -0.275 —-0.087 —0.33 0.009
80 3160 237 0.035 -0364 -0.116 —-044 0.007
10.0 3950 296 0.040 -0455 —-0.141 —-0.56 0.006

‘We considered various values for b, as listed in Table I. This
table can be simply summarized: C is small and nearly constant
over the range of b considered, C; is the dominant contribution
to C, and G is a good approximation to C.

The case b = 0 is the sphere and the case of an infinite
cylinder is relevant to the large-b limit. For large b, C, is only
growing slowly, if at all, while Cy is negative and proportional
to b. This is consistent with what is known about the infinite
cylinder, for which the Casimir term per unit length is negative.
For very large b, C is expected to go negative due to C4 and
higher-order terms, but this is not apparent from the table. C,
and G have a finite positive value from the ends and get only
a small contribution from the cylindrical part of the object; it
will be a positive quantity for all b.

B. Torus

The torus is described in parametric form by

x = (R + cosf)cos ¢,
y = (R 4 cos#)sin ¢, 43)
z =sinb,

where the major radius R has to be larger than the minor radius

(which has been chosen to be unity) and greater than 2 if we
are to avoid regions with large curvature (see Fig. 1). The area

0.1-
0 — .
o \\\SR 10
. c ~N N
—-0.2} N
Cop— — — - . :
—0.3F
G --ooeeee-
—0.4}
drum
—-0.5L

FIG. 2. (Color online) Casimir term for the drum of radius R
and height 2. For R less than 3, the curved region is dominating
the energy, which increases because the area of the curved region
is increasing. For large b the attraction between the parallel faces
is more important, with the result that the Casimir term decreases
and goes negative. For R = 10 the Casimir term is approximately
that of a pair of parallel disks with area 7 R?, which would give
Capprox = —T>R?/5760 = —0.54.
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TABLEIII. Drum, made of disks of radius R and spaced two units
apart.

R A K ) Cs C g
0.05 13.6  0.2509 0.0487 —0.0008 0.048 0.045
02 168  0.2588 0.0488 —0.0008 0.048 0.043
03 19.0 0.2666 0.0495 —0.0009 0.048 0.042
05 240 0.2856 0.0512 —0.0012 0.050 0.042
1.0 390 0.3438 0.0554 —0.0021 0.053 0.039
20 77.0 04767 0.0586 —0.0045 0.054 0.021
3.0 128.0 0.6173 0.0555 —0.0076 0.057 —0.015
40 192 0.7598 0.041  —0.011 0.040 —-0.07
50 268 0.9062 0.016  —0.015 0.001 —-0.15
6.0 357.0 1.0509 -0.018 —-0.019 —-0.037 —-0.24
80 5720 13417 -0.117 —-0.027 —0.144 —0.49

100 839.0 1.6375 -0244 —-0.036 —-028 —0.82

is A = 472 R and the value of (29) is

2

K= SJT—R (44)

324/ R?—1

Balian and Duplantier note that this counts a static magnetic
field as a mode, which in some contexts is incorrect. In
comparing the results to those for other shapes (Table II),
it should be noted that the distance around the torus is
approximately L = 2w R and that it is this dimension that
best corresponds to the parameter » for the cylinder and
ellipsoid. The Kac number is minimum (377/16) for R = +/2.
The torus is similar to the cylinder, especially when R is
large. Accordingly, the Casimir term is negative and nearly
proportional to the circumference: C ~ —0.009 x 2w R. The
leading term C, increases with R, but not as fast as the length
itself. The function G is small and positive and similar to Cs,
but these are not good approximations to C.

C. Drum

This object consists of a pair of parallel disks of radius R,
joined at their boundaries by the external part of a torus with
unit minor radius (see Fig. 2). For R = 0 it is a sphere of unit

0.25

c
! ellipsoid
0.201 |
0.15
0.10
0.05
I I I I I |
0 1 5 p

FIG. 3. (Color online) Casimir term for the ellipsoid with semi-
axes b, 1, 1. For large b the Casimir term per unit length is comparable
to that for an infinite cylinder. However, for small / (the limit of
extremely oblate ellipsoids), the energy is diverging positive, rather
than going negative: Apparently the curvature of the rim of the
ellipsoidal disk is a more important effect than the attraction between
the two nearly parallel faces.
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TABLE IV. Ellipsoid of revolution, with axes 1, 1, and b.

b A K C Cy Co c g
02 6.87 165 126

—-0.076  —0.004 1.18 2.02

03 739 0805 0414 —-0.0815 —-0.001 033 0.33
04 800 051 0.19 —-0.013 —0.0004 0.18 0.24
0.5 867 0379 0.118 —-0.0211 —-0.0002 0.096 0.13
0.6 939 0314 0.083 —0.003 —0.0001 0.08 0.087
0.8 1093 0.261 0.057 —0.001 0 0.056 0.054
1.0 12.57 0.250 0.0497 —-0.001 0.0 0.049 0.046
1.5 169 0.280 0.0527 -0.002 —0.000 0.051 0.050
20 215 0336 0.062 —0.004 —0.0001 0.058 0.061
25 26.1 0400 0.073 —0.007 —0.0039 0.062 0.075
3.0 309 0467 0.08 —0.007 —0.0005 0.07 0.090
40 405 0.609 0.115 —-0.017 —0.0100 0.083 0.12
6.0 60.0 0.899 0.175 —-0.032 —-0.0023 0.14 0.18
80 79.0 1.186 0.215 —0.050 —0.0045 0.16 0.26
100 99.0 149 0.29 —-0.075 —-0.004 021 0.32

radius, while for large R it approximates parallel planes with
separation 2 (see Table III).

D. Ellipsoid of revolution

We defined the ellipsoid of revolution by the condition
Xy 42 =1, (45)

where the ellipsoid has semiprincipal axes b, 1, and 1 (see
Fig. 3). The minimum value for the Casimir term with unit
transverse axis length occurs for the slightly prolate ellipsoid
b = 1.1. However, if we fix the area or volume, the minimum
value is for the sphere (b = 1) to the accuracy that we can
determine this (see Table IV).

E. Cube with rounded corners and edges

For large even m, the surface
X"y 47" =1 (46)

is approximately the unit cube, but with rounded edges and
corners (see Fig. 4). For large m, the area approaches 24.
The results suggest that in the limit of large m, K diverges
proportional to m, while C diverges proportional to m? (see
Table V). This conclusion is not in conflict with the calculation
by Lukosz [17], because he only considered the modes in the
interior of a cube.

cube .’

1.5F

1.0F

FIG. 4. (Color online) Casimir term for the soft-edged cube, as a
function of the exponent m.
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TABLE V. Soft-edged cube x™ + y" + z" = 1.

m A K Cy Cy C g

2 12.57 0.25 0.0487 —0.0008 0.048 0.045
4 17.59 0.43 0.17 —0.004 0.16 0.178
6 19.62 0.66 0.35 —0.010 0.34 0.43
8 20.68 0.89 0.57 —0.015 0.55 0.80
10 21.34 1.13 0.86 —0.021 0.84 1.29
12 21.78 1.37 1.14 —0.026 1.11 1.87

F. Summary

For most geometries, the value of the Casimir term is largely
due to the first term C, and then G is also qualitatively accurate.
The important exception is the cylinder and cylinderlike

PHYSICAL REVIEW A 90, 012514 (2014)

objects, for which C, is small and the higher-order terms
play a more important role. We can very roughly summarize
our results by saying that the parts of a surface of low
curvature have small self-energy, curved surfaces have a
positive self-interaction, parts of a surface that are roughly
parallel with small separation give a negative contribution,
and the interaction between distant parts of a surface do not
give a significant contribution to the Casimir term. Our model
function reproduces these features.
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