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The Human Metapneumovirus Small Hydrophobic Protein Has
Properties Consistent with Those of a Viroporin and Can Modulate
Viral Fusogenic Activity

Cyril Masante,* Farah El Najjar, Andres Chang, Angela Jones,* Carole L. Moncman, Rebecca Ellis Dutch

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA

ABSTRACT

Human metapneumovirus (HMPV) encodes three glycoproteins: the glycoprotein, which plays a role in glycosaminoglycan
binding, the fusion (F) protein, which is necessary and sufficient for both viral binding to the target cell and fusion between the
cellular plasma membrane and the viral membrane, and the small hydrophobic (SH) protein, whose function is unclear. The SH
protein of the closely related respiratory syncytial virus has been suggested to function as a viroporin, as it forms oligomeric
structures consistent with a pore and alters membrane permeability. Our analysis indicates that both the full-length HMPV SH
protein and the isolated SH protein transmembrane domain can associate into higher-order oligomers. In addition, HMPV SH
expression resulted in increases in permeability to hygromycin B and alteration of subcellular localization of a fluorescent dye,
indicating that SH affects membrane permeability. These results suggest that the HMPV SH protein has several characteristics
consistent with a putative viroporin. Interestingly, we also report that expression of the HMPV SH protein can significantly de-
crease HMPV F protein-promoted membrane fusion activity, with the SH extracellular domain and transmembrane domain
playing a key role in this inhibition. These results suggest that the HMPV SH protein could regulate both membrane permeabil-
ity and fusion protein function during viral infection.

IMPORTANCE

Human metapneumovirus (HMPV), first identified in 2001, is a causative agent of severe respiratory tract disease worldwide.
The small hydrophobic (SH) protein is one of three glycoproteins encoded by all strains of HMPV, but the function of the HMPV
SH protein is unknown. We have determined that the HMPV SH protein can alter the permeability of cellular membranes, sug-
gesting that HMPV SH is a member of a class of proteins termed viroporins, which modulate membrane permeability to facili-
tate critical steps in a viral life cycle. We also demonstrated that HMPV SH can inhibit the membrane fusion function of the
HMPV fusion protein. This work suggests that the HMPV SH protein has several functions, though the steps in the HMPV life
cycle impacted by these functions remain to be clarified.

Human metapneumovirus (HMPV) is an enveloped virus be-
longing to the Pneumovirinae genus of the Paramyxoviridae

family. HMPV is associated worldwide with severe respiratory dis-
ease, including bronchiolitis and pneumonia (1). Respiratory
tract infections caused by HMPV are an important cause of hos-
pitalizations for children under the age of five, with an annual rate
of hospitalization similar to that of influenza (2). HMPV is also an
important cause of severe respiratory illness in the elderly (3, 4).
Studies indicate that the majority of individuals over the age of five
are seropositive for HMPV (1, 5). HMPV was identified in 2001
from samples of patients with respiratory syncytial virus (RSV)-
like symptoms, as symptoms of HMPV closely resemble those of
RSV (5).

HMPV, like other paramyxoviruses, encodes two surface gly-
coproteins involved in attachment and entry: the putative attach-
ment protein, termed G for glycoprotein, and the fusion protein,
F, which promotes fusion between the cellular and the viral mem-
branes. HMPV is unique among paramyxoviridae, as the F protein
is the primary factor for viral attachment in addition to its role in
membrane fusion (6, 7). Interestingly, a subset of paramyxovi-
ruses, including members of the pneumoviruses and rubulavi-
ruses and the unclassified J virus, encode an additional surface
glycoprotein, termed SH for small hydrophobic protein. The SH
protein of most paramyxoviruses is dispensable for viral replica-

tion in vitro (8–11), though deletion of the avian metapneumovi-
rus (AMPV) SH protein significantly reduced viral replication in
cell culture and led to increased syncytium formation (12). Dele-
tion of the SH protein gene affects replication and pathogenicity of
a number of paramyxoviruses, including RSV and AMPV, in an-
imal model systems (12–14). Studies suggest that some paramyxo-
virus SH proteins inhibit apoptosis via a blockade of the tumor
necrosis factor alpha (TNF-�)-mediated apoptotic signaling
pathway (15, 16).

HMPV SH, a type II integral transmembrane glycoprotein, is
the largest SH protein of the viral family (179 amino acids [aa]
compared to 65 aa for RSV SH or 175 aa for AMPV SH). Similarly
to the RSV SH protein, which exhibits at least four different forms
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depending upon glycosylation level (17), HMPV SH exists in at
least three differentially glycosylated forms: unglycosylated (23
kDa), N-glycosylated (25 to 30 kDa), and highly glycosylated (80
to 220 kDa) (7). A recombinant HMPV lacking the SH gene was
found to replicate in both hamster and nonhuman primate mod-
els only marginally less efficiently than wild-type (WT) HMPV (7,
18), indicating that this gene is dispensable in these systems. How-
ever, all clinical isolates to date contain an intact SH gene (19, 20),
suggesting that HMPV SH plays a functional role during infection.
HMPV SH has been suggested to inhibit NF-�B transcriptional
activity in airway epithelial cells (21), potentially contributing to
pathogenicity of the virus, though a recent study did not support a
role for HMPV SH in virus replication or host gene expression
(22).

Some paramyxovirus SH proteins have been suggested to be
viral protein channels or viroporins. Viroporins are generally
small, hydrophobic proteins with one or more transmembrane
domains (TMD) which oligomerize to form channels, thereby
modifying membrane permeability to ions or small molecules
(23). The RSV SH protein is able to alter membrane permeability
in bacteria (24) and functions as a cation-selective ion channel in
artificial membranes (25), and recent work indicates it has low-
pH-activated ion channel activity (26). Fitting with other viro-
porins, RSV SH can oligomerize as a pentamer (25, 27, 28) and/or
a hexamer (29).

To clarify the potential role of HMPV SH, we examined SH
oligomerization state, cellular expression and localization, and the
effect of SH expression on the synthesis and function of the viral
glycoproteins. HMPV SH forms higher-order oligomers, and
studies using sedimentation equilibrium analysis demonstrate
that the SH protein TMD is sufficient for oligomerization. Similar
to other reported viroporins (30, 31), HMPV SH expression in-
creased cell permeability to hygromycin B. HMPV SH expression
also significantly altered intracellular localization of a fluorescent
dye, suggesting that SH also impacts permeability of intracellular
membranes. In addition, HMPV SH expression, while not altering
viral glycoprotein trafficking, negatively impacted fusion medi-
ated by the HMPV F protein and to a lesser extent other
paramyxovirus fusion proteins. These results suggest that the
HMPV SH protein has properties associated with viroporin-like
activity.

MATERIALS AND METHODS
Cell lines and virus propagation. Vero, BHK, COS-7, and BSR cells (pro-
vided by Karl-Klaus Conzelmann, Max Pettenkofer Institut) were grown
in Dulbecco’s modified Eagle’s medium (DMEM; Gibco Invitrogen,
Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin and streptomycin. The medium of BSR cells was supplemented
with 0.5 mg/ml G-418 sulfate (Invitrogen) every third passage to select for
the T7 polymerase-expressing cells. BEAS-2B cells, a human lung/bron-
chial epithelial cell line, were obtained from ATCC and grown in BEGM
medium with all the recommended supplements (Lonza, Basel, Switzer-
land). Wild-type recombinant HMPV (rHMPV) strain CAN97-83, a ge-
notype group A2 virus, kindly provided by Peter Collins and Ursula J.
Buchholz (NIAID, Bethesda, MD), was propagated in Vero cells as previ-
ously described (6).

Plasmids. The HMPV SH gene was amplified from viral RNA prepa-
rations of the wild-type recombinant HMPV strain CAN97-83 and ligated
into the pCAGGS mammalian expression vector, and a hemagglutinin
(HA) tag was inserted at either the N or C terminus. HMPV F and G genes
were kindly provided by Ursula J. Buchholz (NIAID, Bethesda, MD) and

subcloned into pCAGGS (32). The plasmids pCAGGS-SV5 F and
pCAGGS-SV5 HN were provided by Robert Lamb (Howard Hughes
Medical Institute, Northwestern University, Evanston, IL). The trunca-
tion mutants SH-Ex and SH-In were constructed by amplifying, respec-
tively, the extracellular and intracellular domain, including the trans-
membrane domain (TMD) of SH, with an HA tag inserted either
N-terminal to the TMD for SH-Ex or C-terminal to the TMD for SH-In.
For the analytical ultracentrifugation, the TMD sequence LIALKLILALL
TFFTITITINYI (residues 31 to 53) was cloned downstream of the staph-
ylococcal nuclease (SN) gene, as previously described (33). All constructs
were sequenced in their entirety.

Expression, metabolic labeling, and biotinylation of surface pro-
teins. COS-7 or Vero cells were transiently transfected with pCAGGS
expression vectors using FuGene 6 (Roche, Basel, Switzerland) or Lipo-
fectamine 2000 (Invitrogen). At 18 h posttransfection, the cells were starved,
metabolically labeled with Tran35S-label (100 �Ci/ml; PerkinElmer, Wal-
tham, MA), and either lysed or subjected to surface biotinylation prior to
lysis, as previously described (33). Antipeptide serum to HMPV F or G
(32) or the monoclonal Ab 12CA5 to the HA tag (Roche) was used to
immunoprecipitate the desired proteins as previously described (34). Bi-
otin-labeled protein was pulled down with immobilized streptavidin
(Thermo Scientific, Rockford, IL), as described previously (33). Immu-
noprecipitated proteins were analyzed via SDS-15% polyacrylamide gel
electrophoresis (SDS-PAGE) and visualized using the Typhoon imaging
system (Amersham Biosciences/GE Healthcare Life Sciences, New Jersey).
All Typhoon images were processed in Adobe Photoshop, with adjust-
ments made equally to all portions of the image.

EndoH/PNGase treatment. COS-7 cells were transfected, metaboli-
cally labeled for 4 h, and chased for 1 h as described above. Immunopre-
cipitated proteins were digested with 0.5 �l of N-glycosidase F (PNGase F;
Sigma) or 0.25 �l of endoglycosidase H (endoH; Roche) as previously
described (35). The resulting proteins were analyzed via SDS-PAGE and
visualized using the Typhoon imaging system.

Cross-linking. COS-7 or BSR cells were transfected and metabolically
labeled for 4 h as described above. Cells were then detached from their
plates with 1 ml of phosphate-buffered saline (PBS) with EDTA and sub-
jected three times to centrifugation at 1,000 � g for 5 min with PBS washes
in between. Cells were then resuspended in PBS, divided into two equal
populations, and treated with 4 �l of 10% NP-40 at 4°C. One population
was concomitantly treated with 4 �l of fresh 100 mM 3,3=-dithiobis[sul-
fosuccinimidylpropionate] (DTSSP) cross-linker (Thermo Scientific).
After 1 h of treatment, DTSSP was quenched by the addition of glycine to
a final concentration of 50 mM. Samples were lysed, and HA-tagged pro-
teins were immunoprecipitated as described above.

Recombinant protein expression, purification, and analytical ultra-
centrifugation. Recombinant protein containing the TMD of HMPV SH
fused to SN in pET-11a was expressed in Rosetta-gami cells (EMD Chem-
icals, Gibbstown, NJ) and purified as previously described (33). The pu-
rified protein, present in a solution containing 200 mM NaCl, 20 mM
Na2HPO4-NaH2PO4 (pH � 7), 29% D2O, and the Zwittergent detergent
C14SB (Sigma/Fluka, St. Louis, MO) (36), was then used for sedimenta-
tion equilibrium analysis at three protein concentrations and three rotor
speeds (20K, 25K, and 30K rpm) using a Beckman XL-A analytical ultra-
centrifuge (Beckman, Fullerton, CA) equipped with an An-60 Ti rotor at
25°C, as previously described (33, 37). The monomer molecular mass and
the partial specific volumes were calculated using SEDNTERP (http:
//sednterp.unh.edu), and the equilibrium profiles were analyzed as previ-
ously described (33, 37) using KaleidaGraph (Synergy Software, Reading,
PA) and HeteroAnalysis (38). The best fit was chosen based on the small-
est square root of the variance (SRV) at the three concentrations and three
speeds tested. Protein concentrations were determined by spectropho-
tometry, using E280 � 17,420 M�1 cm�1.

Permeability test. COS-7 or Vero cells were transfected using Fugene
6. The day after transfection, cells were starved in Cys-Met-DMEM in the
presence or absence of 500 �g/ml hygromycin B (Sigma) for 45 min. Cells
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were subsequently labeled with Tran35S for 1, 2, or 3 h in the presence or
absence of 500 �g/ml hygromycin B. After being labeled, the indicated
proteins were immunoprecipitated as described previously (32).

Cell cytotoxicity test. Vero or COS-7 cells were plated in a 96-well
plate to allow processing of quadruplicate samples. The following day,
cells were transfected with HMPV F, SH-HA, or HA-SH (empty vector as
the control). The next day, cells were washed and a mix of 80 �l of Opti-
MEM and 20 �l of cell titer solution was added according to the manu-
facturer’s instructions (Promega, Madison, WI). The absorbance of each
well was measured every 10 min using �Quant (Bio-Tek Instruments Inc.,
Winooski, VT) until the optical density (OD) reached 1.0.

Cell tracker staining. COS-7 cells were transfected using Fugene 6.
Twenty-four hours posttransfection, cells were washed once with PBS and
incubated with 10 �M CellTracker green 5-chloromethylfluorescein di-
acetate (CMFDA) (Molecular Probes) in prewarmed culture medium for
45 min at 37°C. After incubation, the staining solution was removed and
the cells were washed once with culture medium and incubated for an
additional 30 min at 37°C. Cells were then washed with PBS, fixed with
3.7% formaldehyde for 15 min at room temperature, and processed for
immunofluorescence as described below. A secondary goat anti-mouse
antibody conjugated with tetramethyl rhodamine isocyanate (TRITC)
was used to detect HA-tagged HMPV SH protein.

Syncytium assay. Syncytium assays were performed as previously de-
scribed (6, 32) using COS-7 or Vero cells in 6-well plates transiently trans-
fected with a total of 4 �g of DNA using FuGene 6 (Roche) according to
the manufacturer’s instructions. The following morning, cell monolayers
were treated with 0.3 �g/ml TPCK (L-1-tosylamide-2-phenylethyl chlo-
romethyl ketone)-trypsin for 1 to 2 h and rinsed, and PBS [pH 5 or 7,
buffered with 10 mM HEPES and 5 mM 2-(N-morpholino)ethanesulfo-
nic acid (MES) hemisodium salt] was added for 4 min. Opti-MEM with
0.3 �g/ml TPCK-trypsin was then readded to the cells, and the pH pulse
was repeated three more times (2 to 3 h apart). Cells were incubated
overnight at 33°C, and digital photographs were taken the next
morning with a Spot Insight FireWire digital camera mounted on a
Carl-Zeiss Axiovert 100-invested microscope using a 10� objective
(Thornwood, NY).

Reporter gene assay. COS-7 or Vero cells were plated in 60-mm dishes
and transfected using FuGene 6 (Roche) with 2 �g of the T7 control
plasmid (Promega) containing luciferase cDNA under the control of the
T7 promoter and 3.5 �g plasmid DNA containing the viral glycoprotein
expression constructs, as indicated. The following day, cells were overlaid
onto BSR cells, which constitutively express the T7 polymerase (39). The
combined cells were incubated at 37°C for 1 h and rinsed once with PBS
(pH 7.2), and then PBS of the indicated pH buffered with 10 mM HEPES
and 5 mM MES was added for 4 min at 37°C. The medium was replaced by
Opti-MEM with 0.3 �g/ml TPCK-trypsin, and the cells were incubated at
37°C for 2 h. Two additional buffered PBS treatments were performed 2 h
apart, and then the cells were incubated in DMEM with FBS at 37°C for 4
h to allow expression of luciferase, as previously determined (32). Finally,
cell lysates were analyzed for luciferase activity using a luciferase assay
system (Promega) according to the manufacturer’s protocol. Light emis-
sion was measured using an Lmax luminometer (Molecular Devices,
Sunnyvale, CA) (6).

Confocal microscopy. COS-7 or BEAS-2B cells were plated in 6-well
dishes containing coverslips. Cells were transfected 24 h later with 2 �g of
DNA encoding the SH constructs and 6 �l of FuGene 6. The day after, cells
were exposed to HMPV (multiplicity of infection [MOI] � 5) for 2 h and
subsequently incubated overnight. Cells were washed and fixed the next
morning with 4% paraformaldehyde for 15 min at room temperature
followed by permeabilization with 1% Triton X-100 for 15 min at 4°C.
The HA-tagged proteins were detected using a primary monoclonal anti-
body directed against HA (Roche) and a secondary goat anti-mouse anti-
body conjugated with fluorescein isothiocyanate (FITC). HMPV M pro-
tein was detected using an antibody against the avian metapneumovirus C
M protein, kindly provided by Sagar M. Goyal (University of Minnesota,

Minneapolis, MN), which has been shown to cross-react with HMPV M
(40), and a secondary goat anti-rabbit antibody conjugated with TRITC.
Pictures were taken using the Nikon 1A confocal microscope and ana-
lyzed with the NIS-Elements software. Images were processed in Adobe
Photoshop, with equivalent adjustments made to all panels.

RESULTS
Expression and modification of HMPV SH. To examine HMPV
SH expression and localization, the HA tag coding sequence was
inserted at the N terminus (HA-SH) or C terminus (SH-HA) of
the SH gene, present in the pCAGGS mammalian expression vec-
tor (41). In addition, to analyze the role of the intracellular or
extracellular domain, respectively, the extracellular (SH-In) or in-
tracellular (SH-Ex) domain was replaced by the HA tag (Fig. 1A).
Optimal expression of the different constructs was obtained in
COS-7 cells (Fig. 1B). Immunoprecipitation of metabolically la-
beled proteins with an antibody to the HA tag resulted in specific
bands for SH-HA or HA-SH at approximately 20 kDa (expected
unglycosylated size of 21.5 kDa; Fig. 1B), and higher-molecular-
mass bands were consistent with previous reports (18, 21) and
likely represented glycosylated or oligomeric forms (SHg and
SHx). The predominant form for SH-In corresponded to that ex-
pected for the unglycosylated monomer (approximately 7 kDa),
consistent with removal of the potential glycosylation sites in the
extracellular domain. SH-Ex was detected at low levels at the ex-
pected size (18 kDa). Surface biotinylation experiments (Fig. 1C)
verified that both full-length HA-tagged SH forms were present
on the cell surface, though the level of surface-expressed HA-SH
was lower, suggesting that the presence of the HA tag on the cyto-
plasmic tail may affect folding and/or trafficking. To determine if
the observed higher-molecular-mass forms were a result of N-
linked glycosylation, removal of N-glycans by treatment with ei-
ther EndoH or N-glycosidase F (PNGase F) was performed (32,
42). Treatment with either enzyme resulted in a loss of the SHg

form, confirming that this species contained N-linked glycans
(Fig. 1D). Interestingly, several bands corresponding to high-mo-
lecular-mass forms appeared after N-glycan removal (Fig. 1D, ar-
rows), potentially representing oligomeric species.

Cellular localization of HMPV SH. To confirm surface local-
ization of HMPV SH, examine intracellular localization, and de-
termine if infection state influenced SH cellular distribution,
BEAS-2B cells, derived from human bronchial epithelium, were
transfected with pCAGGS SH-HA or HA-SH. Twenty-four hours
posttransfection, the cells were infected with HMPV and then
fixed and permeabilized the following day. Immunofluorescence
analysis was performed with a primary antibody against HA (Fig.
2). Consistent with the biotinylation results (Fig. 1C), HMPV
HA-SH and SH-HA were partially detected on the plasma mem-
brane, but internal localization was also observed (Fig. 2A and C).
Coinfection with HMPV did not result in significant alteration of
SH cellular localization (Fig. 2B and D), suggesting that the pres-
ence of other viral proteins is not critical for SH localization. Sim-
ilar results were observed with COS-7 cells (data not shown).

HMPV SH forms higher-order oligomers in a process at least
partially driven by the transmembrane domain. Initial analysis
(Fig. 1) suggested the presence of higher-order oligomeric forms
of HMPV SH. To more closely analyze SH oligomerization, HA-
SH- or SH-HA-expressing BSR cells were metabolically labeled
and subjected to DTSSP cross-linking. DTSSP addition (Fig. 3A,
right) resulted in a decrease in the SH and SHg bands and a large
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increase in higher-molecular-mass forms which migrated near the
top of the gel. Similar results were observed for SH expression in
COS-7 cells (data not shown). These results suggest that HMPV
SH forms higher-order oligomeric species, with the broad band
potentially due to the presence of several oligomeric species
and/or diversity in the attached glycans. RSV SH has been dem-
onstrated to homo-oligomerize as a pentamer and/or hexamer
(25, 27–29), and this oligomerization has been proposed to be
critical for viroporin activity (26). Viroporin oligomerization has
been suggested to involve transmembrane or hydrophobic do-
main interactions (23, 28, 29). To analyze the capacity of the
HMPV SH transmembrane domain to self-associate, we con-
structed chimeric proteins containing the staphylococcal nuclease
(SN) protein linked to the transmembrane domain of HMPV SH.
SN is a monomeric protein under the conditions utilized for sed-
imentation equilibrium analytical ultracentrifugation (43), allow-
ing for determination of the transmembrane domain association
by identification of oligomeric species. The SN-SH TM chimeric
protein was expressed, purified, and exchanged into C14SB to
density match the detergent to the buffer, thus allowing the anal-
ysis of the mass of the protein species separate from the mass of the
surrounding detergent micelles (33, 37). Analysis of a chimeric
protein containing the HMPV SH TMD region (residues 31 to 53)

at three concentrations and speeds indicated that monomer-hep-
tamer or monomer-octamer (Fig. 3B) were the best-fit models,
indicating that the transmembrane domain forms a large oligo-
meric species. The small, symmetrically distributed residuals (up-
per panels in Fig. 3B) indicated that the monomer-octamer model
was consistent with the mass distributions present. These results
indicate that the HMPV SH protein transmembrane domain, sep-
arate from the rest of the protein, can form higher-order oligom-
ers, consistent with reported characteristics of viroporins.

HMPV SH expression increases cell permeability to hygro-
mycin B. To directly test whether HMPV SH expression can alter
membrane permeability, we utilized hygromycin B, an antibiotic
which blocks cellular protein translation but which does not effi-
ciently penetrate the plasma membrane when present at low con-
centrations (30, 31, 44, 45). COS-7 cells transiently expressing
HMPV F (as a control), HMPV SH-HA, or HMPV HA-SH were
metabolically labeled for 1, 2, or 3 h in the presence or absence of
500 �g/ml hygromycin B. To analyze effects on protein synthesis
in only the transfected cells, the HMPV F protein or the HA-
tagged SH proteins were purified by immunoprecipitation, and
the level of newly synthesized proteins was determined by SDS-
PAGE followed by imaging and quantitation on the Typhoon. A
minor reduction in protein synthesis was observed in the HMPV F

FIG 1 HMPV SH constructs tagged with HA are expressed at the surface of COS-7 cells in their glycosylated forms. (A) Schematic diagram of SH constructs used
in this study. For SH-In and SH-Ex, amino acid residues present in wild-type SH are indicated in parentheses. Black, SH protein; gray oval, HA tag. (B) Total
expression of HMPV SH constructs tagged with HA. COS-7 cells transfected with plasmids encoding wild-type SH (SH only), SH tagged at the C terminus
(SH-HA), SH tagged at the N terminus (HA-SH), the SH intracellular domain/TM tagged with HA (SH-In), and the SH extracellular domain/TM tagged with
HA (SH-Ex) were metabolically labeled and immunoprecipitated prior to analysis by SDS-PAGE. Multiple bands were detected, including those corresponding,
in predicted migration, to SH monomer (SH), glycosylated SH (SHg), and some higher-molecular-mass species (SHx). (C) Surface expression of HMPV SH,
SH-HA, and HA-SH in COS-7 cells. Metabolically labeled cell surface proteins were biotinylated, isolated using streptavidin beads, and analyzed by SDS-PAGE.
(D) HA-tagged constructs of HMPV SH expressed in COS-7 cells were immunoprecipitated and digested with EndoH or PNGase prior to analysis by SDS-PAGE.
Digestion with EndoH or PNGase abolished the presence of the glycosylated form of SH (SHg) and led to the appearance of several new higher-molecular-mass
forms (arrows). All images shown are representative of at least four independent experiments.
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control (approximately 15% with 1 h of hygromycin B treatment).
However, expression of SH-HA or HA-SH (Fig. 4A) reduced cel-
lular protein synthesis to a much greater extent. Protein expres-
sion was further decreased with 2 or 3 h of hygromycin B treat-
ment. These results indicate that expression of the HMPV SH
protein increases cell permeability to small compounds, consis-
tent with HMPV SH potentially functioning as a viroporin.

HMPV SH expression does not affect cell viability. To verify
that the decrease in protein synthesis observed with hygromycin B
treatment was not a result of a general decrease in cell viability, the

effect of HMPV SH expression on viable cell number was mea-
sured using a CellTiter 96 assay (Promega). Vero and COS-7 cells
were transfected with pCAGGS constructs expressing HMPV F,
HMPV SH, the HA-tagged SH constructs, or empty vector as the
control (Fig. 4B). Forty-eight hours posttransfection, the OD at
490 nm was measured every 10 min. The average slope of the OD
increase was calculated and normalized to the slope observed with
cells transfected with empty vector. No significant difference in
the number of viable cells was observed with any of the viral pro-
teins, indicating that transient expression of HMPV SH does not

FIG 2 HMPV SH localizes to plasma membrane and intracellular organelles. BEAS-2B cells transfected with plasmids encoding HA-tagged HMPV SH were
infected with HMPV 24 h posttransfection. The following day, cells were fixed and stained with an anti-HA antibody followed by a FITC-conjugated secondary
antibody (green) and an antibody that recognizes HMPV M followed by a TRITC-conjugated secondary antibody (red). DAPI (4=,6-diamidino-2-phenylindole)
stain was used to stain the cell nucleus (blue). Control images of cells expressing HA-tagged HMPV SH in the absence of HMPV infection are also shown. Images
are representative of 3 independent experiments.
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alter cell viability. Similar analysis was performed on cells infected
with wild-type HMPV or with mutant viruses lacking the HMPV
G or both HMPV G and SH proteins, and no significant difference
in cell viability was observed (data not shown), again indicating
that the presence of HMPV SH does not significantly alter overall
cell viability.

HMPV SH expression alters intracellular localization of a
fluorescent dye. Incubation of cells with CellTracker green
CMFDA, which is processed to a membrane-impermeable fluo-
rescent form, generally results in low-level fluorescence through-
out the cytoplasm and nucleus (Fig. 5A and B, MCS). Interest-
ingly, cells expressing either HA-tagged form of the HMPV SH
protein displayed significantly different CellTracker green stain-
ing patterns. A more intense signal was observed in cells express-
ing the HA-tagged SH compared to in cells that did not (Fig. 5A).
In addition, the fluorescent signal was dramatically relocalized to
discrete structures near the plasma membrane, potentially consis-
tent with intracellular vesicles or endosomes (Fig. 5B, SH-HA and
HA-SH). Immunofluorescence studies (Fig. 2 and 5) indicate that
the HMPV SH protein is present both intracellularly and on the
plasma membrane, and the alterations of CellTracker localization
are consistent with SH-promoted alterations in membrane per-
meability in both locations.

HMPV SH inhibits fusion mediated by HMPV F. As HMPV
SH is partially present on the cell surface and can alter membrane
permeability, we next examined the effect of HMPV expression on
membrane fusion promoted by the HMPV F protein or other
paramyxovirus fusion proteins. A reporter fusion assay was per-
formed as previously described (32). Interestingly, expression of

wild-type HMPV SH or either HA-tagged form inhibited HMPV
F-promoted membrane fusion to the background levels seen with
the attachment protein alone (Fig. 6A, HMPV). A more modest
decrease in fusion was observed when wild-type HMPV SH or the
HA-tagged forms were coexpressed with parainfluenza virus 5
(PIV5) F and HN (Fig. 6A, PIV5) or Hendra F and G (Fig. 6A,
Hendra), indicating that some nonspecific inhibition of fusion is
also observed. To evaluate the role of differing domains of SH in
fusion inhibition, the effect of coexpression of SH-In and SH-Ex
with HMPV F was analyzed (Fig. 6B). While inhibition of fusion
was observed with both, SH-Ex coexpression resulted in a signif-
icantly greater inhibition, suggesting that the transmembrane do-
main and extracellular region play the greatest role in the effect of
SH on membrane fusion. To verify that these results were not
assay specific, syncytial assays were performed to analyze the effect
of SH and the SH deletions on HMPV F-mediated fusion (Fig. 6C)
and Hendra F/G- and PIV5 F/HN-mediated fusion (data not
shown). Syncytial results confirmed the inhibitory effect of
HMPV SH on membrane fusion and the importance of the trans-
membrane domain/extracellular region in this process.

SH coexpression does not significantly reduce viral glyco-
protein surface expression. Membrane fusion promoted by viral
fusion proteins is strongly affected by glycoprotein surface expres-
sion. To verify that SH expression did not inhibit fusion by alter-
ing glycoprotein surface expression, biotinylation of HMPV F and
G in the presence or absence of the SH constructs was assessed.
HMPV F (Fig. 7A) and HMPV G (Fig. 7B) were properly ex-
pressed on the cell surface in the presence or absence of the various
SH constructs, and cleavage of the HMPV F0 precursor form to the

FIG 3 The transmembrane domain of HMPV SH promotes oligomerization of the SH protein. (A) BSR cells expressing HA-tagged HMPV SH at the N- and
C-terminal ends (S and H, respectively) were radiolabeled, treated with DTSSP in the presence of 0.16% NP-40, and analyzed using a 4 to 12% Bis-Tris gel
following immunoprecipitation using an anti-HA affinity matrix as previously described. The figure shown is representative of 3 independent experiments. M,
empty vector control; H, HA-SH; S, SH-HA. (B) Sedimentation equilibrium analysis for the SN-SH TMD construct. Data points are shown with the fit for a
monomer-octamer equilibrium (fitted curve in gray). �2 � 0.0016689 and R � 0.9992.
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F1 and F2 fusion active form was not altered by SH expression
(Fig. 7A). Quantitation of four independent experiments indi-
cated that no significant difference in HMPV F surface expression
was observed when wild-type SH or the HA-tagged SH versions
were present (Fig. 7C). Interestingly, radiolabeled SH-HA, HA-
SH, wild-type SH, and SH-Ex were observed to coimmunopre-
cipitate with HMPV F (Fig. 7A), whereas no coimmunoprecipita-
tion was observed with HMPV G. These results indicate that

HMPV F-mediated fusion inhibition by HMPV SH is not due to
alterations in the levels of HMPV F surface expression or proteo-
lytic activation and suggest a potential interaction between the
two proteins.

DISCUSSION

All primary HMPV isolates to date contain an SH gene (19, 20),
suggesting an important function for viral fitness, but the specific
role of the HMPV SH protein remains unclear. HMPV SH is dis-
pensable for growth in cell culture (18), and a recombinant virus
lacking the SH gene gave only a minor reduction in viral replica-
tion in a nonhuman primate model (7), indicating that the effect
of SH may be tightly species dependent. HMPV SH has been sug-
gested to alter NF-�B transcriptional activity, leading to enhanced
secretion of proinflammatory cytokines (21), but no significant
differences in expression of these genes was detected with mi-
croarray analysis (22). Our studies provide insight into two poten-
tial functions of HMPV SH: membrane permeabilization, or viro-
porin-like activity, and modulation of fusion protein activity.

A number of viruses have been shown to encode small proteins
capable of altering membrane permeability, or viroporins (23). A
series of studies have shown that the SH protein from RSV, a
closely related virus, may function as a viroporin, and our results
suggest important parallels with HMPV SH. RSV SH has been
shown to permeabilize membranes (24, 29), and our studies indi-
cate that expression of HMPV SH increases permeability of cell
membranes to hygromycin B (Fig. 4A) and alters intensity and
localization of CellTracker green (Fig. 5). RSV SH is localized both
to intracellular compartments, including the Golgi, and to the
plasma membrane (46), and similar cellular distribution was ob-
served for HMPV SH (Fig. 2). A Flag-tagged RSV SH was shown to
form ringlike multimers (29), and both the entire RSV SH protein
(26) and its transmembrane domain region (25) have been shown
to form pentamers. Our work demonstrates that the HMPV SH
protein forms higher-order oligomers (Fig. 3A) and that the
HMPV SH transmembrane domain alone is sufficient to drive
oligomerization to large multimers (Fig. 3B). RSV SH has recently
been shown to form a pH-sensitive ion channel (26), and further
research will be needed to determine if the HMPV SH protein has
a similar function. A recent study supports a role for the RSV SH
viroporin function in inflammasome activation (47), but the po-
tential role of a viroporin in the HMPV life cycle also remains to be
elucidated.

HMPV SH has been detected in viral particles both by Western
blot analysis (18, 22, 48) and by mass spectrometry analysis (22).
We performed similar liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) analysis on virions generated from Vero,
COS-7, or LLCMK2 cells which had been purified through two
sucrose cushions and two sucrose gradients. Peptides correspond-
ing to HMPV F could be readily detected in all virion prepara-
tions. Peptides corresponding to HMPV G were detected in viri-
ons prepared from Vero or COS-7 cells, but significant detection
of HMPV G in virions purified from LLC-MK2 cells required
removal of O-linked glycans, suggesting that the extent of
O-linked glycosylation for HMPV G may vary in viruses prepared
from different cell types. Interestingly, SH-specific peptides were
not observed in any virion preparations, even with prior O-linked
glycan removal (data not shown). These results suggest that the
level of HMPV SH incorporated into virions is extremely low
compared to that of the other HMPV glycoproteins. A small

FIG 4 HMPV SH increases permeability of cellular membranes without af-
fecting the cellular viability. (A) COS-7 cells transfected with plasmids encod-
ing either the HMPV F protein or an HA-tagged HMPV SH protein were
treated with 500 �g/ml of hygromycin (no treatment as the control) and sub-
sequently radiolabeled for 1, 2, or 3 h in the presence or absence of hygromy-
cin. The HMPV F or SH protein was immunoprecipitated and analyzed by
SDS-PAGE. The signal intensity of the band for samples treated with hygro-
mycin was normalized to the signal of the untreated samples at the corre-
sponding time point (n � 3). White, HMPV F alone; gray, HMPV HA-SH;
black, HMPV SH-HA. Significance was analyzed by Student’s t test and is
indicated by asterisks (*, P 	 0.09; **, P 	 0.05). Error bars � standard errors
of the means (SEM). (B) Metabolic activity of COS-7 cells in 96-well plates
transfected with empty pCAGGS or pCAGGS encoding the HMPV F or the
HMPV SH constructs SH-HA, HA-SH, or SH WT was measured as described
in Materials and Methods. Formazan production was measured at 10-min
intervals until the OD of control samples (empty pCAGGS) reached 1. Graph
represents the average OD slope increase normalized to HMPV G from four
independent experiments (n � 4) performed in quadruplicates. Statistical dif-
ferences were analyzed by analysis of variance (ANOVA).
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amount of RSV SH has been reported in RSV filaments (46), and
the influenza M2 ion channel is incorporated in small amounts
onto the viral particles (49, 50), suggesting that the level of pro-
teins which modulate membrane permeability may need to be
tightly regulated.

Interestingly, our studies also indicate that expression of the
HMPV SH protein can inhibit fusion protein function. Coexpres-
sion of HMPV SH, either untagged or SH tagged on either termini,
resulted in an approximately 90% decrease in HMPV F-promoted
membrane fusion as judged by a reporter gene assay (Fig. 6A), and

FIG 5 HMPV SH alters membrane permeability to a fluorescent dye. (A) COS-7 cells were transfected with a plasmid encoding an HA-tagged HMPV SH
protein, and 24 h posttransfection, cells were incubated with 10 �M CellTracker CMFDA for 30 min at 37°C. Cells were then incubated for an additional 30 min
in culture medium, fixed with 3.7% formaldehyde, and stained with an anti-HA antibody followed by a TRITC-conjugated secondary antibody (red). (B) COS-7
cells were transfected with empty plasmid or plasmids encoding HA-tagged HMPV SH protein and processed as described for panel A. DAPI stain was used to
stain the cell nucleus (blue).
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this fusion inhibition was confirmed in syncytial assays (Fig. 6C).
This decrease is not due to alterations in the surface expression of
the glycoproteins (Fig. 7), suggesting an effect of HMPV SH on the
membranes or proteins involved in the fusion process. HMPV SH
coexpression also reduced fusion promoted by the PIV5 and Hen-
dra F proteins (Fig. 6A), indicating that at least part of the inhibi-
tion may be nonspecific, potentially due to the ability of SH to

alter membrane permeability. The much greater inhibition ob-
served for HMPV F-promoted fusion suggests a specific effect,
and our results indicate that the transmembrane domain and large
extracellular domain are principally responsible (Fig. 6B). The
HMPV SH protein, at 179 amino acids, is considerably larger than
the 64-amino-acid RSV SH protein, and no specific function for
the larger extracellular domain has been described. Our results

FIG 6 HMPV SH decreases fusogenic activity of paramyxovirus F proteins. (A) Luciferase reporter gene fusion assay of COS-7 cells transfected with either
HMPV F or G alone, Hendra G alone or in combination with Hendra F, and PIV5 HN alone or in combination with PIV5 F in conjunction with plasmids
encoding the above-mentioned HMPV SH constructs was performed as described. Data presented are normalized against luminosity at pH 5 for HMPV F alone,
PIV5 F and HN, and Hendra F and G. Significance compared to WT was analyzed by ANOVA and is indicated by asterisks (*, P 	 0.001; **, P 	 0.005). Error
bars � SEM. (B) Fusogenic activity of COS-7 cells transfected with plasmids encoding HMPV F and constructs of HMPV SH devoid of the extracellular (SH-In)
or intracellular (SH-Ex) domains was assessed as described for panel A. Data presented are normalized against luminosity of HMPV F alone at pH 5 (n � 3).
Significance compared to WT was analyzed by ANOVA and is indicated by asterisks (*, P 	 0.05). (C) Representative images (n � 3) of syncytium production
of COS-7 cells transfected with plasmids encoding HMPV F WT and the different HMPV-SH constructs after four brief pH 5 pulses.
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indicate that both the full-length SH protein and SH-Ex efficiently
coimmunoprecipitate with HMPV F (Fig. 7A) but not with
HMPV G (Fig. 7B), so it is possible that direct interactions be-
tween the SH ectodomain and the fusion protein can result in
fusion inhibition.

While these results clearly demonstrate that HMPV SH can
modulate membrane fusion promotion, the role this may play in
HMPV infection remains to be determined. Vero cells infected
with either wild-type HMPV or a mutant lacking both HMPV G
and SH did not significantly differ in terms of number and/or size
of syncytia (data not shown). The presence of other viral proteins
may modulate the fusion inhibition by SH, restricting this func-
tion to certain times or locations during infection. Alternatively,
the level of SH protein may be important for fusion inhibition,
and this level may change throughout infection and may differ
between infected and transfected cells. No information is currently
available on the cellular expression level of HMPV SH during infec-
tion, but our experiments do indicate that the cellular localization of
the HA-tagged forms of HMPV SH does not significantly change in
the presence or absence of HMPV infection (Fig. 2). Future experi-
ments will be needed to determine whether global or local alterations
to SH concentrations may affect the function of the F protein at par-
ticular stages of the HMPV life cycle.
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