

University of Kentucky UKnowledge

Mechanical Engineering

Ablation Workshop: Code Comparison

3-2011

Test Case Series 1

Jean R. Lachaud NASA Ames Research Center

Alexandre Martin University of Kentucky, alexandre.martin@uky.edu

Ioana Cozmuta NASA Ames Research Center

Bernard Laub NASA Ames Research Center

Follow this and additional works at: https://uknowledge.uky.edu/ablation_code

Part of the Aerospace Engineering Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Lachaud, Jean R.; Martin, Alexandre; Cozmuta, Ioana; and Laub, Bernard, "Test Case Series 1" (2011). *Ablation Workshop: Code Comparison*. 1. https://uknowledge.uky.edu/ablation_code/1

This Test case description is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has been accepted for inclusion in Ablation Workshop: Code Comparison by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 4th Ablation Workshop, 1-3 March 2011, Albuquerque, New Mexico

Ablation Workshop Test Case

Jean Lachaud Alexandre Martin Ioana Cozmuta Bernie Laub *

A simple one-dimensional test case is defined for the purpose of inter-code comparison. This year the focus is set on in-depth physics and chemistry. Material properties, boundary conditions, and output format are provided.

I. Test case objectives

Three types of material-response codes have been identified in the community:

- Type 1: CMA type codes (heat transfer, pyrolysis decomposition, simplified transport of the pyrolysis gases)
- Type 2: CMA + Averaged momentum equation for the transport of the pyrolysis gases
- Type 3: Higher fidelity codes (possibly including treatment of the finite-rate chemistry, multi-component diffusion, radiative heating, etc).

There are two objectives to this test:

- 1. inter-calibration of codes of the same type (focus: numerics and interpretation of the data);
- 2. comparison of codes of different types (focus: modeling approach).

II. Test case

For this first inter-comparison exercise, we decided to use a simple test case. The idea for this year is to compare the in-depth physics and chemistry implemented in the codes.

Summary of the one-dimensional test for 2011: sample of TACOT of 5 cm, heated on one side at 1664K for 1 minute at atmospheric pressure, adiabatic boundary condition on the other side.

Initial conditions: p=1atm (101325 Pa), T=298K. The initial gas composition in the material is left open.

Boundary conditions:

- Temperature: Top: t=0 s, T=298 K; t=0.1 s, T=1644 K; t=60 s, T=1644K / Bottom: adiabatic
- Pressure: Top: p = 1tam / Bottom: no flux.

More elaborated test cases will be defined for next year (surface recession, multi-dimensional).

III. Material data

The material properties are furnished in the attached spreadsheet. Equations referencing to the way the material properties are used in CMA/FIAT are provided in the spreadsheet. For more information on the CMA model, please consult the CMA manual (provided in the 'reference' directory).

IV. Code output

The type of output desired is provided in the directory 'output' together with two suggested plots for visual comparison (see figure 1 for illustration).

^{*} jean.lachaud@nasa.gov; alexandre.martin@uky.edu; ioana.cozmuta@nasa.gov; bernard.laub@nasa.gov

Figure 1. Suggested output for visual comparison of the results.