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INTRODUCTTOM

The purposs of  this investigation was  to determine  the
locationis) within the pavement structure showing the grestest
response (in terms of stresses, strains, etc) to wheelloads., This
analvels has bheeo limited to produce rvesults compatible with
Fentucky thickness design curves having a modulus of  elasticity
of 480 kel (3.31 GFa) for asphaltic concrete. Time and money did
not permit ivvestigaeting & Full renge of modul i, dive pressures.
thicknesses, and combinations of asphaltic covorete on dense-
graved agoregate bases.

The Chevyorn N-layer computer program (1) has besn modified
(2} to accept multiple tive loads located within an X-¥Y  ¢grid.
Superposition principles have besn incorporated so the effects of
a single load or multiple loads may be calouwlated at & specifisd
location. Strain  energy density 1z the internal  vesizstanoe
within the body at & specific locaticen that i egual o the
sxtermal  foroce applied to the body. EBEqguations o caliculate e
straly energy density at & specifised location within a thres-
dimersicnal space incorporates a combination of input  pearameters
and strains and/or stresses calculated within the computer
PTGy S .

saloculation of the total worbk caused by the ssternal force

requires a  triple integration of the calculated strain energy
density within the body. or the summation of the straln energy
density caloculated at esvery point within the body. Such  an

effort iz too massive ang expensive to be realistically possible.
Feasonabhle approximations may be made using Simpson’s rules to sum

the calculated strain snevaoy demsitlies at gspecified depths for  a
speclfic set of XY coordinates.

FATTERME OF WORE

Figura 1 prasents the caloculated strain energy density at 1-
inch  (283-mm) incvements Tor thickresses of 4, 8, and 12 inches
(102, 203 ang 30% om) of full-depth asphaltic cornorete on & CER
5 subgrade, & resilient modulus of 7,500 psi (81,7 MFPad. The
three curves for each thickrness are for bthe lnside edge of the
tive, at the center of the tive, and at the polint mid-way betwsan
that edge and the center of the tire. The aresa under the cuwrve

vepresents the distribution of work  through  the pavemsnt
struciure. These patterns ralise the guesticor, "Where is  the

locatiom of mawimum work as a function of the locations of the

imposed locads?!

LOCATION OF MaXIMUM STHAIN EMERGY DENSITY

Frior to the computer age. researchers approdimated multipls
load cornfigurations using a single loaded area because of the
complexity of the probliem. With the advent of computers. the use
of  only one load is no longer & restriction. Likewise, mary
locations may be analyzed sconomically. Thus. an  Investigation
wat  made to determine the internal work at specified locations.
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Figures 2-4 present patterns of work as & function of  location
along  the centerline of a two-tired single axleload of 18 kips
(80 kM) on 4. 8. and 146 inches (102, 200, and 40548 mm)  of Full-
glepth  asphaltic comorete on & UBR 9 subgrade covvesponding to a
resilient modulus of 7,300 psl (51.7 MFa). The "work" i1s =&
summaticn of the strain snergy density using Simpson’s rule. The
"work" is summed separately for the asphalftic conorete  thickness
and  For 8 inches (203 mm) into the subgraded these valups are
then combined to obitain the total work at that location from  the
top  of the asphaltic concrete through the top B inches (203 @mm?
of  the subgrade. MNote the changes in pattervns of  woork  with
increasing  thickness  of asphaltic concrete. The maxismwe work
alvways iz located wider the sdge of the loaded area.

Figures B-7 i1llustrate patterns of work fTor the same
atructures and axleload sxcept that fouwr equally loaded areas
replace the bwo areas used to obbain Figures 2-4.  Note that  the
locations of madimum accumlated work are still under the edge of
the loaded areas, except that the maximam has  shifted to  the
inslde edges of the dusl aresas.

There appesrs to be a family of curves velating stvain
gnergy density at specific depths as a function of thickress  of
asphaltic concrete as shown in Figure 8. Figuwre 2 pressnts a
gensitivity analysis (Wsing Simpson’'s ruwled) of  the scoumulated
strain energy denstty versus bthickrness of asphaltic concrete  for

locationse correspending to the edge of the tires the center of
the tivey, and midway between the edge and center. The sffect of
adding & layver of dense-graded aggregate varving from G bto 8

inches (0O to 202 mm) as & layer bensath the ssphaltic concrete
causes a relatively minor reduction of accumulated strain energy
density within the asphaltic conmcrete layer.

INFLUENCE OF VARIGUE COMFONENTS OF GTRAIN

Figures 1-7, particularly Figure 1. prompt  the guestioms
"Which one component oF conponents of straln cause the wids
variation in strain ensrgy density under the same loaded area?”
Figures 10-12 illustrate the distributions of strains fthrough 4.
8, and 12 inches (102, 293, and 305 me) of asphaltic corcreta.
respectivelys  caused by an 18-kip {(BOo-kN)  fouwr-—tired single
axleload. The distributicons sre shown for easch  component  of
straln Tor locations at the edge, centers and midway bebtween the
edge and center of the tive. The XX component is in the plarne of
the pavement suwrface and perpendicular to the centerline of the
axle. Component YY also is in fthe plang of the pavement suwface
and is parallel to the centerling of the avlie. Component &2 is
perpendicular  to the centevliine of the axle and increases with
increasing pavement depth. Note that there are relatively minor
differences for each coemponent except for shear (Y)Y, The shear
(XY} component for each loaded area iz fero at the center of that

area and appears to be & maximum at the edge of the area. There
ie a residual effect of shesr at the center of the area due to
octher loaded areas. However, the magnitude of shear varies

greatly with depth within the azphaltic concrete and location
within the loaded ares. Therefore, the shear component is the
2



majovy  factor influencivg variations in distributions of strain
energy density within the asphaltic concrete.

Figures 13-18 illustrate the variations In each strain
cemponent  for thicknesses of 4. 8, and 12 inches (108, 203,  and
3G mm ) of  Ffull-depth asphaltic contrete at locations
corresponding toe the inside spdge of & dual tive. Figures 16-18
present tne family of strain digtributions with depth for various
thicknesses of full-depth asphaltic conorete. A study of Figure
12 reveals that the depth at which the madimum sheayr  strain
peowrs varies with the thickness of the asphaltic concrete. Thes
variation of depth at maximum shear versus pavement thickrness is
tllustrated in Figwe 20, For an 18-kip (80-kN) single sxleload.
the maximuwn  shear for pavements up to 8.3 inches (216 mm)  of
full-depth ssphaltic concrete cocurs at a depth below the surtface
corresponding to approximately 30 to 40 perocent of  the  laver
thickrness. For example, the maximum shear for a é&~-inch  (15E-mm)
pavement occuwrs 2.3 inches (44 mm) below the surfade. For 8.3
inches (Bl mm)d, the depth is 3 inches (76 mm) below the surface.
Figurea 20 also indicates thet, for an 18-kip (B80-kEN) singls
awleload, the madimum shear will ocowr ne deeper than 230 inches
below the swurface even when the pavement thickness exceeds 8.5
inches.

ATRESE ANALYRIR

Te determine what shear strength is  reqgulired of the
asphaltic conocrete  mix  to resist  shesr  flow, Figures 21-24
display the results of analyses using stress components  instead
of  sirain components.  Filgures 2184 are similsr to Figures 19
arid 20. Filguwes 21 illusdrates the distribution of shear stiess
with depth of full-depth asphaltic concrete due to & fouwr—tired,
18~kip (BO-kN)} single axlelcad:s the stress pattern is similar  to
the stvaln pattern shown in Filguwre 19, Figure 22 shows  the
maximum stress az a function of thickness of asphaltic concrete.

A Bo-kip (ZE6-ENY tandem axleload having a contact pressure
Gf 80 psil (0.55 MPa) was applied to the same pavemesnt shructures
on a subgrade having & resilient medulus of 7,300 psil (31.8 MFa).
Figure 23 showsy that while the same general pattern exists as in
Figuwre 1% the depth of saximum shear decreases from 50 percent
of the thickness Tor a 4-inch (LOR-mm) thickness to 35 percent of
the fthickness for 9 inches (228 mm) of aspheltic concrete. For
thicknegses edceeding 9 inches (228 mmd s The depth corresponding
to maxinum shear decreases 1n & mevmer simllar to that shows  in
Figure 0.

Figures 21 and 22 indicate that a maximum sheasr stress of
467 psl (0.46 MPa) results from an 18-kip (80-kM) sivgle axleload
o & d-inch (10Z2-mm) thickness of asphaltic concrete. Hiowewvear
Figures 23 and 24 indicate the shear stress will increase to 133
psi (G721 MFa) under an BO-kip {(385H4-kM) tandem axleload. 6% the
tire comtact piresswe increases, the shear stress will increase.
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IMPLLICATIONS FOR COMPOSITE PAVEMENTS

Analvses presented in  this report 1llustrate SOME
significant impacts  for azphaltic concrete overlays. Because
ghear stresses/stralns reach a madimum within the top 40 percent
of  +the asphaltic concrete laver, rehabilitation of oldosv
pavements having two or more overlays may regulivre a  different
astrategy. Fentucky®s surface mix has the lowest modulus compared
to binder and/or base mixes. Hhen a new overlsy 1s constructed.
the older cowrses of surface mix become the zones of increased

shear stress/strain. Aggregate partlcles may hiave been
reoriented by  btraffic until they are nearly parallel +to the
pavenant surface. Tack coats are necessary to assure bonding of
the W overlay to the existing pavemesnt. Howesver s Lhe

combinaticon of an initially weasker modulus and parallel aggregate
crientaticn coupled with & teck coat leads to potential  weak
zones with regard to shesr resistence. Therefore, milling  the
old swrfare mixes and replacing that thickoess with new  materisl
and/or  reclaimed asphaltic concrete should be considersd. Fov
clder  pavements, Inditial milling and overlay costs may be
considerably higher. However, beneflits would inclwie the removal

of material alreaddy susceptible to lateral displacement
(contributing  to rutting) and placement of & thick 11iFt having
ket ber agoregate  irnterlocking  and  incressed vesistance g ul

rutting. ‘

A comboslite pavement ocroes section comslsting of 4 inches of
asphaltic corncrete on 10 inches of portland cement concrete was
analyzed. Ristribution of stresses and atraling differed
considerably from the normal patiern for flexible pavements where
siresses  &nd strains dissipate with incressing depth. Analyses
indicated higher shear stresses and strsins may ocow at the
flexible-vigid interface than nesar the surfsce and becomes move
promounced  with  increasing tive contact pressure. The rigid
laver bermath the flexible jayer s contributing resctiorary
stresses/stralns within the flexible laver. It is very possible
that Increased five contact pressure and  axleload may cause
lateral displacement of the asphaltic concrete. resulbing  in
surface rutting. Such phenomenon may suggest that some  pavement
falluwraes may be based on other thaen fatigue criteria.

RESLR. TS
i. Btrain energy density incorporates the effects of &ll
components of stralin or stress into one representative value.
& Strain energy density decreases with  depith  inko the

full-depth asphaltic concrete pavement to & depth  approsgimately
4% to 60 percent of the total thickrness and then increases in
magnitude urntll the bottom of the laver is reasched.

2. Caleculated strain engrgy densities &t the btop and bottom
of  the asphalibic concrete laver arve approximately  identical
whether the X-Y coordinate corresponds to the center of the tivre.
the edge of the tive. or midway hetween the center and tire edge.
Howavers the magnitude of the strain energy density varies
gignificantly as & function of the depth within the asphaltic
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comncrete layer and the XY location. The magrnitude iz a3 maximum
at  the edge of the tire and & mirnimum under the center of  the
tire.

4. Simpson’s vules or o a modificstion of Simpson’s rules may
be used to obtaln an approdimate sum of  the strailn energy
gistribution through the thickhneszs of the pavement for a specific
=¥ coovrdinate at the pavement swface. Simpson®s rule should be
usedd  when there avre an even number of increments to be  summed.
For an odd number of incrementss Simpson’s vule s modifisd  to
include & trapezeidasl function for the beodttom incvement.

i The summation of straln energy density in the pavement
along  the length of an axle varies as a function of  the nusber
aritd locations of loads spplied to the pavement.

&, The location of maximum summation of strain energy
density ocouwrs at thes sdges of the tires antd not at the center.
7. Use of one 9-kip (40-kM) load to represent two 4.59-kip

(20-kEN}  loads doese not produce an acourate description of the
lovation of madimum summation of stralin energy demsity within the
pavemant .

a. The location of magimam shrain energy density i under
the edge of either dual tire nearest the other dual tire. The

magnitude of the strailn energy density at the edge of the tire
nearest the other tire is approximately twice that at the centber
of the tire.

2 Comparing distributiorns of strains  covresponding to
locations at the edge of the tires center of the tire. and midway
bretwesn show  that  there s relatively little difference  in
magnl tudes for the teangential . radial, and vertical cosponents.,
but varies greatly for the shear compornent. For one given  load,
the shear must be zero at the center of the load. When twoe  or
moye loads are analyred using superpositicon privcipleszy  there
will e a small amount of shear at the center of a lead dus  to
the effects of the other loads.

10, The magnituwle of the shear componsnt reaches  its
masimun &t a depth approximately 35 to 40 percent of  the total
thickrness of asphaltic concrete up to a thickness of 8.9  inches
(214 mwm)  dus  to the appliceticon of an  18-kip  (HO-kENY  single
avleload. For thicknesses greater than 8.% inches (814 mmis the
depth of maximam shear decresses to approximately the l-inch (28~
mn) depth when the thickneess is approximately 14 inches (404 mm)
and remzains at the 1-inch (25%-mm) depth for grester thicknesses
of asphaltic concrets. For an 80-kip {(35&6-kN)  tandem axleload
with & tive contact pressuwwe pf 30 psl (0,35 MPad, the  maslmum
shear ocouwrs at 359 te 40 percent of the total asphaltic thickrness
up  to F inches 229 mm)i then the depth of maximuwm  shear
decreases from 3.1 inches (779 mm) to approximately 2.2 inchems (08
wm)  at a thichhness of 18 inches (437 mm) and appears  to reamain
constant thereafter.

11. A 17-inch (438B-mm)y  full-depth asphaltic concrete

pavemnent was {frenched in 1980 or 1%81. A visual  inspechion
showetd shear flow from the suwwface to approdimately the &-inch
(132-mm) depthi no shear flow was sevident below that depth. Thea

game observation was noted when an 18-inch (457-mm) full-depth

asphaltic concrete pavement orn another route was trenched. Those

cheervations coanfirm the theoreticsl analysesz in that the maximum
5



shea™ will coccocur at a depth of approgimately 35 to 40 percent of
the +total thickrness of asphaltic concrete. In FKentucky., a
typical 8-inch thicknese of asphaltic concrete is constructed of
fwe 2.59-inch cowrses of biltuminous base mix, ong 2-ineh course of
Bituminoeus binder mixy and one l-inch couwse of bituminous
surfacre mix. The interfece betwesn the base and binder courses

therefore is located 3 inches beleow the suwrface -— right where
the maximum shear is being generated. A& better selecticon of
pavemnsnt thickmnesses might be two 3.59-inch courses of  bDituminouos
base mix followed by the I-inch course of bitumincus surface mix.
This combination would place the second interface at 4.5 inches
below the surface. Ancother alternative combinaticn might be a 4-
inch bituminous basge mix followad by a I-inch Diltuminocus base mix
and thien the I-inch bituminous surface mis.

12. For a 4-inch (108-mmd thickness of asphaltic covcrete.
an  18~kip {(BO-kH) single adwleload causes & maximum shear stress
of &7 psi (.46 GPa). For an BO-kip (3346-kNY tandem awleload and
& tive contact prezsures of BO psi (0.85 GPal)y the maximum  shear
stress increases to 133 psi (0071 GFa) and gasily could reach 173
pei (1.21 GFPa) as the contact pressure visegs above 100 psyl (0,69
GFa)l .,

13. The traditional axleloads and lowsr  tire pressures
priov  fo the use of radial tives did net cause shear stresses
that esxceeded the tolerable shear stresses/stralns of the current
asphaltic concrete mides. Curvent adleloads  ard increased

contact pressures beve excewsded the tolerable shear stress strain
limits of curvrent mix design.

lg. For traditional thicknesses of & o B inches (158 to
A03  mn) of  asphaltiec concrete. the usual course tThickresses

specified in Fentucky have besn a 1-inch {(25%-mm) surfsce colrse
gy & 1.5 to 2-inch (38— to Sil-mm) layver of bindesr mix avwd  the
remaining  thickness composed of a base mig. Thus. for & &-inch
(158—mm)  or  S-inch (203-mm) asgphaltic conmorete  lavers  maxinem
shear will cocur &t the 2.8-inch (S%-mm) oy 3-inch (7&-mm) depth
respectively  ——  milght where a construction plang produces  bhe
least sggregste interlock. Thus., shear flow should be evpeched.

15, For composite pavements, analyses indicate shear
stresses/straing may e higher at the flexible-rigid interface
than near the swface which is contrary to the distribuotions
within full-depth asphaltic concrete construction. Increasing
tire contact pressures increases bthe stresses/strains at the
interface.

RECOMMENDATIONS

1. Traditional asphaltic concrete mix designs  showld be
analyzed Tor shear resistance. Mix designs should be developed
to withstand shear stresses of at least 200 psi (1.38 GPal.

2. Donsideration shouwld be given to elther

& increase the shear resistance of the binder mix o

b. eliminate the binder-mix layer and replace it with

a base-mix laver. Further research is  needesd o
determine which alternate iz the best.
d. The 1-inch (€%-mm) surface-mix laver should be placed on
6



& minimum of & 3—inch (74&-mm) layer of a high shear-vesistant mix
to eliminate a construction interface in the zone of  maximum
shear.

oy Favemnents bhaving two or moere overlays of  surface miy
that are candidatez for another overlay should be considered  for
milling &ll swface mixes and plecing one laver of  bDaze miv
followsd by a surface mix to 2limivate material alveady weaksned
by shear flow.

3 In-place pavenents exhibit distresses indicating shear
failures within the asphaltic concrete lavers. Resesarch is under
way to determine shesr parameters of hollow cylindrical specimens
of asphaltic concrete, but it is net clear how those valuess would
compare  to rvesulbts obitalined using sclid specimens, Critical
values for shear stresses or strainsg are not Enown at this  time.
Torszsional testing of =olid specimens may provide insight. but

development of higher-capacity equipment than is currenhly
avallable ig nmeceEsEsary. Fulure research may provide coritical
valuss of stresses and guidance for uase in design.
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Figure £21. Distribution of Shear Stresses under an 18-kip (BO-
END Four—-Tired Single Axleload from Surface teo Bobttom
o Various Thicknssses of Full-Depth fephaltic
Concrete.
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Figure 23. Distributien of Strain in XY (Bheasr? Direction under
arn  BO-kip (396~kMN) Eight-Tired Tandem Axleload from
Surfeace through Various Thickrnesses of Full-Depth
Asphialtic Concrete. )
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Eight-Tired Tandem Axleload versus Thickness of
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25



