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Applied quantum chemistry: Spectroscopic detection and characterization
of the F2BS and Cl2BS free radicals in the gas phase

Bing Jin,1 Phillip M. Sheridan,2 and Dennis J. Clouthier1,a)
1Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
2Department of Chemistry and Biochemistry, Canisius College, Buffalo, New York 14208, USA

(Received 29 January 2015; accepted 5 March 2015; published online 23 March 2015)

In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic

signatures of the X2BY (X = H, halogen, Y = O, S) free radicals have been predicted using high

level ab initio theory. The theoretical results have been used to calculate the electronic absorption

and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions.

Using these diagnostic predictions, the previously unknown F2BS and Cl2BS free radicals have been

identified and characterized. The radicals were prepared in a free jet expansion by subjecting precur-

sor mixtures of BF3 or BCl3 and CS2 vapor to an electric discharge at the exit of a pulsed molecular

beam valve. The B̃2A1–X̃ 2B2 laser-induced fluorescence spectra were found within 150 cm−1 of

their theoretically predicted positions with vibronic structure consistent with our Franck-Condon

simulations. The B̃2A1 state emits down to the ground state and to the low-lying Ã2B1 excited state and

the correspondence between the observed and theoretically derived SVL emission Franck-Condon

profiles was used to positively identify the radicals and make assignments. Excited state Coriolis

coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component

of the electronically allowed B̃–X̃ band system of Cl2BS is evident, as signaled by the activity in the

b2 modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to

a vibronic interaction of the B̃2A1 state with a nearby electronic state of 2B2 symmetry. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4915126]

I. INTRODUCTION

Free radicals of the general formula X2BY (X = H, D

or halogen, Y = O, S) are little known, although boron-

containing free radicals are important intermediates in a

variety of contexts. For example, boron has been characterized

as a key element in radical reactions where organoboron

species are used as radical initiators, chain-transfer reagents,

and radical precursors.1 In addition, boron halides and simple

boranes are used as boron sources in chemical vapor deposition

processes for the production of boron nitrides, carbides,

and amorphous boron thin films and boron-centered free

radicals are likely intermediates in such processes. The high

temperature chemistry of boron rocket fuel additives also

involves free radical reactions.2 Discoveries of new boron-

containing free radicals are both relevant and significant in

all these areas of chemistry. In the present work, aided by ab
initio predictions of their spectroscopic properties, we report

the first detection of two new species, the planar F2BS and

Cl2BS free radicals.

The only X2BY radicals previously known were the F2BO

and H2BO species. In 1965, Mathews and Innes3 presented

spectroscopic evidence that F2BO was the mostly likely source

of an emission band system at 580 nm that was obtained

from discharges through BF3/O2 mixtures. In 1966, Mathews4

showed that a group of closely spaced red-degraded emission

a)Author to whom correspondence should be addressed. Electronic mail:
dclaser@uky.edu

bands at 446.5 nm obtained in the same discharge was also due

to F2BO (or possibly F2BO+). The author could not definitively

establish if the 580 nm and 446.5 nm bands had a common

electronic state or if either band system involved transitions to

the ground state. Subsequently, Dixon et al.5 compared these

bands with those of F2CN and eliminated F2BO+ as a possible

source of the 580 and 446.5 nm band systems. Finally, in 1988,

Jacox6 reconsidered Mathews’ data and postulated that the

446.5 nm system was due to the 12A1→ X̃2B2 transition and

that the 580 nm bands were transitions from the same upper

state to a low-lying excited state (12A1→ 12B1), assignments

which were subsequently supported by detailed ab initio
calculations.7

In 2014, we reported the first laser-induced fluorescence

(LIF) and emission spectra of jet-cooled F2
11BO and F2

10BO

obtained by laser excitation of the bands near 446.5 nm.8

F2BO was generated in a pulsed discharge jet apparatus, using

a precursor mixture of 7% BF3 and 7% O2 in high pressure

argon. The emission spectrum obtained by laser excitation

of the 0-0 band clearly showed transitions down to the

ground state and a second set of bands down to the low-lying

excited state, precisely as postulated by Jacox.6 Our combined

experimental and ab initio results proved conclusively that

the previously reported emission spectra4,5 were due to F2BO

and substantially extended our knowledge of the structure,

vibrational frequencies, and electronic states of this interesting

free radical.

The only other study of an X2BY radical was the 1976

report by Graham and Weltner9 of the detection of the

0021-9606/2015/142(12)/124301/11/$30.00 142, 124301-1 © 2015 AIP Publishing LLC
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H2BO radical among the products produced by vaporizing

and trapping elemental boron in solid argon at 4-10 K.

It was identified by its ESR spectrum, which was very

similar to that of the isoelectronic H2CN free radical.10 No

further experimental observations of H2BO species have been

reported and the Cl2BO, Br2BO, H2BS, F2BS, Cl2BS, and

Br2BS free radicals have never been previously observed.

In anticipation of the possibility of finding new X2BY

radicals, Clouthier11 conducted an extensive ab initio study

of the ground and first two excited electronic states of

the H2BO, H2BS, F2BO, and F2BS free radicals and their

various isotopologues. The radicals were found to have

planar C2v geometries in the X̃2B2 ground state, the low-

lying Ã2B1 first excited state, and the higher B̃2A1 state.

The most promising method of identifying these species

in the gas phase was suggested to be absorption or laser-

induced fluorescence spectroscopy through the allowed B̃ − X̃
transitions which occur in the visible-near UV region of the

electromagnetic spectrum. Complete basis set extrapolations

of CCSD(T)/aug-cc-pVXZ (X = 3,4,5) energies were used to

accurately predict the excited state energies. Franck-Condon

profiles of the absorption and emission spectra and the

rotational structure of the B̃ − X̃ 00
0

bands were simulated from

the ab initio results. The calculated single vibronic level (SVL)

emission spectra were found to provide a unique, readily

recognizable fingerprint of each particular radical, facilitating

the experimental identification of new X2BY species in the gas

phase. These predictions were very successfully employed in

the present work to identify F2BS and similar calculations led

us to the Cl2BS radical.

II. EXPERIMENT

F2BS and Cl2BS were generated in our pulsed discharge

jet apparatus, which has been described elsewhere,12 using

precursor mixtures of 4% BF3 or BCl3 and 4% CS2 in high

pressure argon. In brief, the precursor gas was injected with

a pulsed valve into an evacuated flow channel in a vacuum

chamber. At the appropriate time, the gas pulse was subjected

to a pulsed electric discharge between a pair of stainless steel

ring electrodes placed in the flow channel, fragmenting the

precursor molecules and producing products. A short 1 cm

long reheat tube13 was added to the flow channel downstream

of the electrodes to increase the number of collisions and

enhance the production of the radicals. Natural abundance

BF3 or BCl3 (80% 11B and 20% 10B, Matheson) were used

to measure transitions for the boron-11 isotopologue, while

isotopically enriched 10BF3 (96%, Ceradyne Boron Products)

was used for measurements on F2
10BS. 10BCl3 was synthesized

by the reaction of gaseous 10BF3 with powdered AlCl3 at

elevated temperatures, in a modified literature procedure,14

and used for studies of Cl2
10BS.

Approximately, 1 cm downstream of the reheat tube,

the free jet expansion was interrogated with the beam of

a tunable dye laser (Nd:YAG pumped Lumonics HD-500)

to obtain modest resolution (∼0.1 cm−1) LIF spectra. The

fluorescence was imaged onto the photocathode of a high-

gain photomultiplier (EMI 9816QB), and the pulsed signals

were processed with a gated integrator, digitized by a National

Instruments A/D board, and recorded with LabVIEW based

software. The LIF spectra were calibrated to ±0.1 cm−1 using

a portion of the laser beam to simultaneously record the neon

and argon optogalvanic spectra using hollow cathode lamps.

For low-resolution SVL emission spectra, fluorescence

was generated by pumping the maximum of an LIF band and

then the emission was focused through f /1.5 optics onto the

entrance slit of a scanning monochromator (Spex 500M). The

spectra were calibrated to an estimated±1 cm−1 accuracy using

emission lines from an argon-filled hollow cathode lamp. The

monochromator was equipped with an 1800 lines/mm grating

blazed at 400 nm and operated with a bandpass of 0.2-0.8 nm.

The BS2 radical was also produced in our discharge and

its strong fluorescence interfered with our studies of the LIF

spectra. As in previous work,8 we used both time-gating and

synchronously scanning (sync-scan) LIF techniques to isolate

the signals of the radicals of interest. The sync-scan LIF

method used a monochromator as a tunable bandpass filter by

synchronously scanning the monochromator and the excitation

laser with a fixed wavenumber offset between the two. In this

fashion, we were able to isolate fluorescence from the species

of interest, largely free of impurity emission.

III. RESULTS AND ANALYSIS

A. Ab initio calculations on Cl2BS

Our success in identifying F2BS based on ab initio
predictions of the LIF and emission spectra11 (vide infra)

encouraged us to undertake similar theoretical studies of

Cl2BS. Due to the larger number of electrons, these were not as

extensive as the complete basis set extrapolations previously

performed for the smaller H2BO, H2BS, F2BO, and F2BS

radicals,11 but were of sufficient quality to lead to unambiguous

predictions of the expected spectra. In the present work, the

ground and two lowest energy excited electronic states were

examined with density functional theory (DFT) using the

Becke 3-parameter exchange and Lee-Yang-Parr correlation

(B3LYP) hybrid functional15,16 and coupled cluster theory

with singles, doubles, and perturbatively included triples

[CCSD(T)] using Dunning’s correlation consistent basis sets

augmented with diffuse functions17 (aug-cc-pVnZ). The basis

sets for chlorine and sulfur included a further tight d function

[aug-cc-pV(X+d)Z] which facilitated convergence.18 All the

ab initio calculations were done with the Gaussian 09

software package.19 The three electronic states were calculated

variationally by constraining the geometry to C2v symmetry,

with each state exhibiting a minimum on the potential

energy surface. The highest level CCSD(T)/aug-cc-pV(T+d)Z

vibrational frequencies and T0 values are presented in Table I,

with the geometric parameters relegated to Table VII. As in

previous work,11 the vibrational frequencies are numbered

conventionally such that the vibrations are segregated by sym-

metry species and numbered in order of decreasing frequency

within each symmetry species, so that ν1, ν2, and ν3 are the a1

modes, ν4 is the single b1 mode, and ν5 and ν6 are the b2 modes.

The ab initio calculations show that the ground state

electronic configuration of Cl2BS is . . . (13a1)2 (4b1)2 (9b2)1,

which gives rise to a 2B2 term. The 9b2 HOMO is essentially
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TABLE I. Summary of the observed vibrational fundamentals and T0 values and the corresponding ab initio (in

parentheses) harmonic frequencies for the various electronic states of F2BS and Cl2BS (in cm−1).

T0 ν1(a1) ν2(a1) ν3(a1) ν4(b1) ν5(b2) ν6(b2)

X̃2B2

F2
11BS

... 1232 683 412 578 ... 276

(1242)a (683) (410) (578) (1398) (277)

F2
10BS

... 1275 684 413 598 1452 279

(1285) (687) (410) (602) (1447) (279)

Cl2
11BS

... 960 462 237 ... 910 179

(966)b (464) (239) (432) (922) (181)

Cl2
10BS

... 1000 464 240 ... 946 180

(1006) (464) (239) (451) (959) (182)

Ã2B1

F2
11BS

3 517 1224 657 415 545 ... ...

(3 464) (1236) (660) (420) (545) (1412) (316)

F2
10BS

3 520 1248 659 415 562 ... ...

(3 463) (1277) (666) (420) (568) (1462) (318)

Cl2
11BS

4 862 901 443 256 ... 932 231

(4 769) (909) (453) (255) (409) (942) (232)

Cl2
10BS

4 865 940 448 253 ... 968 231

(4 768) (947) (453) (256) (427) (981) (233)

B̃2A1

F2
11BS

23 180 1101 610 395 573 ... 318

(23 175) (1136) (617) (394) (579) (1509) (319)

F2
10BS

23 180 1135 621 399 599 ... 324

(23 174) (1167) (625) (394) (603) (1564) (320)

Cl2
11BS

21 123 746 454 243 ... 960 256

(21 271) (756) (453) (240) (433) (986) (256)

Cl2
10BS

21 123 774 456 246 ... 998 257

(21 269) (787) (454) (242) (452) (1027) (256)

aF2BS CCSD(T)/aug-cc-pV5Z results from Ref. 11.
bCl2BS CCSD(T)/aug-cc-pVTZ results, present work.

an in-plane p orbital on the sulfur atom and can be labeled as

nonbonding (nO). The 4b1 second highest occupied molecular

orbital (SHOMO) is the out-of-plane p orbital on the sulfur

atom with some stabilization from the out-of-plane p orbital

on the boron atom, and so can be termed a πBS orbital. Finally,

the 13a1 third highest occupied molecular orbital (THOMO) is

a slightly bonding orbital between the boron and sulfur atoms,

which can be labeled σBO. Parenthetically, we note that the

ground state dipole moment of Cl2BS is predicted to be about

0.4 D, which may make microwave observations difficult. The

ν1 and ν5 fundamentals have appreciable infrared absorption

intensities (175–270 km/mol), so it might be possible to detect

Cl2BS in matrix isolation experiments in the 800–1000 cm−1

region.

Promoting a single electron from the SHOMO to the

HOMO produces the low-lying Ã2B1 state, which has a

somewhat longer B–S bond length (increase of ∼0.06 Å)

due to the removal of an electron from an orbital with π
bonding character between these two atoms. The B̃2A1 state

is formed from the promotion of an electron in the THOMO

to the HOMO, which can be considered an n–σ transition,

which again increases the B–S bond length by 0.03–0.06 Å

depending on the level of theory.

We have also used our CCSD(T)/aug-cc-pVTZ ab initio
results to perform Franck-Condon simulations of the absorp-

tion and single vibronic level emission spectra of Cl2BS,

as an aid to the experimental identification. The simulation

program, originally developed by Yang et al.,20 and locally

modified for the calculation of SVL emission spectra, requires

input of the molecular structures, vibrational frequencies, and

mass-weighted Cartesian displacement coordinates from the

ab initio force fields of the two combining electronic states.

Franck-Condon factors are then calculated in the harmonic

approximation using the exact recursion relationships of

Doktorov et al.21 taking into account both normal coordinate

displacement and Duschinsky rotation effects.

B. Spectra of F2BS

The LIF spectrum of F2
11BS is shown in Fig. 1. It

commences with a strong 0-0 band centered at 23 178.5 cm−1,

fortuitously close to T0 = 23 175 cm−1 predicted in our

previous ab initio study.11 The inset in Fig. 1 shows that

the calculated 0-0 band contour, obtained from the ab
initio rotational constants, matches experiment very well and

validates our prediction that the band should follow b-type
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FIG. 1. The low resolution LIF spec-

trum of the B̃–X̃ transition of F2BS.

The spectrum was recorded in two sec-

tions with different laser dyes so the

relative intensities of the two segments

are not meaningful. The inset shows

the observed and calculated (from our

B3LYP/aug-cc-pV5Z results) rotational

contours of the F2
11BS 0-0 band.

selection rules.11 Our Franck-Condon simulation11 of the LIF

cold band spectrum shows a very strong 0-0 band, and weaker

21
0

and 11
0

bands along with a few very weak transitions and this

is essentially what is observed. In addition, the experimental

spectrum exhibits a few weak hot bands (21
1
, 31

1
, 61

1
, 62

2
, 21

0
31

1
,

and 21
0
61

1
, not all identified in Fig. 1), analogous to those found

in the spectrum of F2BO.8 The LIF spectrum of F2
10BS is

very similar to that shown in Fig. 1, although the 11
0

band

is shifted 30 cm−1 to higher energy, in complete agreement

with the ab initio isotope shift of 30 cm−1. There can be little

doubt that the observed LIF spectrum is the B̃2A1–X̃2B2 band

system of F2BS. A list of the observed LIF bands is given in

Table II.

Unequivocal proof that F2BS is the carrier of the LIF

spectrum in Fig. 1 comes from the comparison of the observed

and calculated 0-0 band emission spectra, shown in Fig. 2. In

fact, the correspondence between the experimental spectrum

and the Franck-Condon simulation is so good that the majority

of the bands were assigned directly from their simulation

counterparts. The B̃–X̃ emission spectrum of F2
11BS consists

of a relatively small number of bands (11) with a prominent

progression in ν′′
1

out to 10
2
, consistent with the 0.06 Å

difference in the BS bond length in the two states. The

arrows in Fig. 2 highlight three features not reproduced in

the simulation. Bands #2 and #3 are the 10
1

and 10
2

transitions

of F2
10BS present in 20% natural abundance, which are

resolved from the F2
11BS bands due to the relatively large

ν′′
1

(B–S stretching) isotope effect (see Table I). Both show up

prominently in the spectrum of isotopically enriched F2
10BS.

Band #1 cannot be attributed to F2
10BS, although a similar very

weak band occurs 50 cm−1 higher in energy in the spectrum of

F2
10BS. The only other ground state vibration with frequency

lower than ν1 and with a significant boron isotope effect is

ν4 with a calculated 11B frequency of 578 cm−1 and isotope

shift of 24 cm−1 (see Table I). We therefore tentatively assign

this transition to the 40
2

band, with half the interval giving

FIG. 2. The observed 0-0 band emis-

sion spectrum of F2BS (top panel) and

the corresponding harmonic Franck-

Condon simulation (bottom panel). The

simulations involved calculating the

B̃-X̃ and B̃-Ã spectra, separately, so

there is a break in the spectrum near

20 300 cm−1. The relative intensities

of the two calculated spectra have been

normalized to the strongest feature in

the corresponding emission spectrum.
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TABLE II. Observed vibronic bands in the LIF spectra of the B̃ 2A1–X̃ 2B2 transition of the boron isotopologues

of F2BS.

F2
11BS F2

10BS

Assignment Transition (cm−1) Interval (cm−1) Transition (cm−1) Interval (cm−1)

21
1

... ... 23 116.3 00
0
−58.5

31
1

23 161.3 00
0
−17.2 23 160.8 00

0
−14.0

00
0

23 178.5 ... 23 174.8 ...

61
1

23 220.9 00
0
+42.4 23 220.1 00

0
+45.3

62
2

23 266.1 61
1
+45.2 ... ...

21
0
31

1
23 771.0 31

1
+609.7 23 777.7 31

1
+616.9

21
0
/41

0
23 788.6 00

0
+610.1 23 795.8 00

0
+621.0

21
0
61

1
23 831.7 61

1
+610.8 23 838.1 61

1
+618.0

11
0

24 279.7 00
0
+1101.2 24 309.9 00

0
+1135.1

22
0

24 400.9 21
0
+612.3 24 417.0 21

0
+621.2

TABLE III. Emission bands (in cm−1) observed by pumping the 00
0

and 21
0

absorption bands of the B̃–X̃ transition of F2BS. Unassigned lines: F2
10BS: 0-0 band

spectrum 20 063(vw); 2(1,0) band spectrum 20 028 (w).

00
0

band emission spectrum 21
0

band emission spectrum

F2
11BS F2

10BS F2
11BS F2

10BS

Assign Transition Interval Transition Interval Assign Transition Interval Transition Interval

B̃− X̃ transitionsa

00
0

23 181 ... 23 180 ... 21
0

23 796 ν′
2
= 615 23 802 ν′

2
= 622

30
1

22 769 ν3= 412 22 767 ν3= 413 41
1

23 181 ... 23 183 ...

60
2

22 629 2ν6= 552 22 621 2ν6= 559 21
1

23 113 ν2= 683 23 117 ν2= 685

20
1

22 500 ν2= 681 22 496 ν2= 684 21
1
30

1
22 711 ν3= 402 22 710 ν3= 407

40
2
? 22 031 2ν4= 1150 21 981 2ν4= 1199 20

1
41

1
22 506 ν2= 675 22 501 ν2= 682

10
1

21 949 ν1= 1232 21 904 ν1= 1276 21
2

22 438 21
1
−675 22 436 21

1
−681

20
2

21 811 20
1
−689 ... ... 10

1
41

1
21 956 41

1
−1225 21 904 41

1
−1279

10
1
30

1
21 546 10

1
−403 21 504 10

1
−400 10

1
21

1
21 884 21

1
−1229 21 846 21

1
−1271

10
1
20

1
21 273 10

1
−676 21 227 10

1
−677 21

3
21 752 21

2
−686 ... ...

10
1
40

2
? ... ... 20 711 10

1
−1193 10

1
21

2
21 214 21

2
−1224 21 168 21

2
−1268

10
2

20 728 10
1
−1221 20 642 10

1
−1262 10

2
41

1
... ... 20 641 41

1
−2542

50
2
? ... ... 20 275 2υ5= 2905 10

2
21

1
20 657 21

1
−2456 20 584 21

1
−2533

10
2
20

1
20 061 10

2
−667 ... 2 ... 10

2
20

1
41

1
20 028 ... ... ...

B̃− Ã transitionsb

00
0

19 664 X̃00+3517 19 660 X̃00+3520 21
0

20 278 ν′
2
= 614 20 283 ν′

2
= 623

30
1

19 249 ν3= 415 19 245 ν3= 415 21
0
30

1
19 862 ν3= 416 19 865 ν3= 418

20
1

19 004 ν2= 660 19 006 ν2= 654 41
1

19 695 ... 19 699 ...

30
2

18 829 30
1
−420 18 828 30

1
−417 21

1
19 620 ν2= 658 19 624 ν2= 659

20
1
30

1
18 592 20

1
−412 ... ... 30

1
41

1
... ... 19 281 41

1
−418

10
1

18 440 ν1= 1224 18 412 ν1= 1248 21
1
30

1
19 206 21

1
−414 19 207 21

1
−417

30
3

18 410 30
2
−419 ... ... 20

1
41

1
... ... 19 037 41

1
−662

... ... ... ... ... 21
2

18 962 21
1
−658 18 966 21

1
−658

... ... ... ... ... 30
2
41

1
... ... 18 863 41

1
−836

10
1
30

1
18 028 10

1
−412 17 990 10

1
−422 21

1
30

2
18 792 21

1
−828 18 791 21

1
−833

... ... ... ... ... 10
1
41

1
... ... 18 442 41

1
−1257

... ... ... ... ... 10
1
21

1
18 398 21

1
−1222 18 371 21

1
−1253

10
1
30

2
17 612 10

1
30

1
−416 ... ... 10

1
21

1
30

1
17 987 ... ... ...

aVibrational intervals are for the X̃ state unless otherwise noted.
bVibrational intervals are for the Ã state unless otherwise noted.
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ν′′
4
= 575 cm−1 and a 25 cm−1 isotope shift. The 0-0 band

emission spectrum of F2
10BS has many of the same features

but has additional very weak bands tentatively assigned as

10
1
40

2
and 50

2
. Since transitions involving two quanta of non-

totally symmetric modes are expected to be very weak, all

such assignments are only tentative as they could also be due

to impurities or emission from higher levels excited through

sequence bands overlapping the 0-0 band. A complete list of

the B̃–X̃ emission band assignments is given in Table III.

The 0-0 band B̃–Ã emission band systems of F2
11BS

and F2
10BS were very easy to assign as they matched the

simulations almost perfectly, with no extraneous features. The

major progression involves ν3 (out to 30
3
) with a small amount

of activity in ν1. Animations show that in the Ã state both

of these modes involve substantial contributions from the BS

stretching and FBF symmetric bending internal coordinates.

The assignments are summarized in Table III.

We also recorded the SVL emission spectra of the 21
0

bands, which harbored a surprise. In this case, the emission

spectra were much more complicated than the initial simula-

tion, with some bands consisting of closely spaced doublets

(particularly for F2
10BS) along with a few extraneous features.

Examining the B̃ state calculated vibrational frequencies

(Table I), it is apparent that ν2 and ν4 are almost degenerate,

differing by 38 cm−1 in F2
11BS and only 22 cm−1 in F2

10BS

and that Coriolis coupling between the B̃ state 21 and 41

levels is the likely reason for the complexity. The 21
0

band

emission spectrum of F2
10BS is shown in Fig. 3, along with

a simulation constructed by adding together Franck-Condon

simulations from the 21 and 41 levels and normalizing the

intensities to those of the observed 41
1

and 21
1

bands in each

case. The agreement is excellent, confirming that the upper

state pumped by the laser has 21/41 character. The bands

in the spectra of both isotopologues were assigned based

on observed and calculated vibrational intervals and on the

relative intensities predicted by the composite simulations.

These results are summarized in Table III.

C. Spectra of Cl2BS

Our best CCSD(T)/aug-cc-pVTZ calculations predicted

the B̃–X̃ T0 of Cl2
11BS to be 21 271 cm−1. Substituting BCl3

for BF3 and using similar experimental conditions, we readily

found a strong 0-0 band at 21 123 cm−1, 148 cm−1 lower

than predicted. The Franck-Condon simulation of the Cl2BS

cold band absorption spectrum indicates that there should

be more bands than observed in the LIF spectra of F2BO

and F2BS, which is what is found, as shown in Fig 4. In

addition to the very strong 0-0 band, there are weaker 31
0
, 21

0
,

11
0
, and combination bands. Furthermore, the spectra of both

isotopologues exhibit weak hot bands below 21 000 cm−1

which can only be assigned as 30
1

and 60
1
. The latter is

unprecedented in the LIF spectra of the fluorinated radicals

and must be vibronically induced through mixing with another

excited state. The corresponding 61
0

cold band is calculated

to lie within the rotational envelope of the noticeably broad

31
0

band (FWHM: 00
0
≈ 9 cm−1, 31

0
≈ 19 cm−1). In addition,

Cl2
11BS/Cl2

10BS shows a weak band 960/998 cm−1 above the

00
0

band which is assigned as the vibronically induced 51
0

band,

based on detailed consideration of the emission data (vide
infra). Of course, ν′

5
has the same vibrational symmetry as

ν′′
6
, so it is perhaps not too surprising that 51

0
also appears in

the Cl2BS spectrum. Finally, the Cl2BS least moment of inertia

(Ia) is in the molecular plane perpendicular to the B–S bond, so

the bands should follow a-type selection rules and not exhibit

the central minima found for F2BS (see Fig. 1), and this is what

is observed. The assignments of the LIF spectra are given in

Table IV along with some derived vibrational intervals.

The substantial number of bands in the LIF spectra

provided the opportunity to obtain many more SVL emission

FIG. 3. The F2
10BS 21

0
band emis-

sion spectrum (top panel) and the cor-

responding harmonic Franck-Condon

simulation (bottom panel). The simula-

tion was obtained by adding together

Franck-Condon simulations of emis-

sion spectra from the 21 and 41 levels

and normalizing the intensities to those

of the observed 41
1

and 21
1

bands in each

case.
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FIG. 4. A portion of the low resolution

LIF spectrum of the B̃-X̃ transition of

Cl2BS. The 3(1,0) and 6(1,0) bands are

overlapped, giving rise to a feature that

appears to be broader than any other in

the spectrum.

spectra than in the F2BO and F2BS cases. For each isotopo-

logue, we recorded dispersed emission spectra by pumping

the 30
1
, 60

1
, 00

0
, 61

1
, 31

0
/61

0
, 61

1
31

0
, 21

0
, 11

0
, and 51

0
LIF bands, along

with the 21
0
31

0
band of Cl2

11BS and the 62
0

band of Cl2
10BS.

We will not discuss the details of all these spectra but simply

refer to a few cases which illustrate the salient points of the

analysis.

The 0-0 band emission spectrum of Cl2
11BS is shown

in Fig. 5 along with our Franck-Condon simulation. It is

readily apparent that the simulation is substantially at odds

with experiment for the B̃–X̃ band system but is in quite good

agreement for the B̃–Ã transitions. The small features labeled

#1, #2 and #3 are the key to understanding this behavior.

Transitions #1 and #2 are to higher energy than the 0-0 band

that was pumped by the laser and are readily assigned as 31
0

and

61
1
, both bands that are also observed in the LIF spectra. We

conclude that the 0-0 band is overlapped by the 31
1

sequence

band (it is calculated from the known vibrational frequencies

to occur within the rotational contour of the 0-0 band) and

that the 31 (ν3 = 244 cm−1) and 61 (ν6 = 259 cm−1) levels are

Coriolis coupled. A similar complication was found in the

spectrum of F2BO.8 This conclusion is buttressed by the fact

that pumping the Cl2BS 61
1

band yields an emission spectrum

that includes a weak 31
0

band. Thus, the 0-0 band emission

spectrum in Fig. 5 contains contributions from the B̃ state

00, 31, and 61 levels, accounting for the deviations from the

harmonic Franck-Condon simulation. In addition to the bands

predicted by the Franck-Condon simulation, we have also

assigned a weak vibronically induced 60
1

band and an even

weaker 10
1
60

1
band.

Initially, further Cl2
11BS/Cl2

10BS zero-point B̃–X̃ emis-

sion bands of medium intensity with ground state intervals

of 907/949 cm−1 were difficult to assign. However, once it

was recognized that the strongest features of the emission

spectra of the LIF bands at 22 078.3/22 114.3 cm−1 (Table IV)

had the same intervals, it became apparent that these were

the ν′′
5

frequencies, with a boron isotope shift of 42 cm−1,

comparable to the ab initio value of 37 cm−1. This assignment

was confirmed by the presence of weak transitions down to the

1151 level in the 00
0

and 11
0

band emission spectra with observed

ν1 + ν5 frequency isotope shifts of 79 cm−1 in both spectra. The

expected isotope shift (from combining the observed shifts of

TABLE IV. Observed vibronic bands in the LIF spectra of the B̃ 2A1–X̃ 2B2 transition of the boron isotopologues

of Cl2BS.

Cl2
11BS Cl2

10BS

Assignment Transition (cm−1) Interval (cm−1) Transition (cm−1) Interval (cm−1)

30
1

20 881.3 ν′′
3
= 237.3 20 878.8 ν′′

3
= 237.5

60
1

20 943.9 ν′′
6
= 174.7 20 940.0 ν′′

6
= 176.3

00
0

21 118.6 ... 21 116.3 ...

61
1

21 199.4 ν6= 255.5 21 195.2 ν6= 255.2

62
2

... ... 21 278.1 61
1
+82.9

31
0

and 61
0

21 370.5 ... 21 368.9 ...

31
0
61

1
21 453.5 61

1
+254.1 21 452.9 61

1
+257.7

21
0

21 572.2 ν2= 453.6 21 572.3 ν2= 456.0

62
0

and 32
0
? 21 633.9 ... 21 632.6 ...

21
0
31

0
21 817.2 21

0
+245.0 21 814.1 21

0
+241.8

11
0

21 863.9 ν1= 745.3 21 889.8 ν1= 773.5

51
0

22 078.3 ν5= 959.7 22 114.3 ν5= 998.0

22
0
31

0
? 22 266.3 21

0
31

0
+449.1 ... ...

11
0
21

0
22 311.6 21

0
+739.4 ... ...
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FIG. 5. The observed 0-0 band emis-

sion spectrum of Cl2BS (top panel) and

the corresponding harmonic Franck-

Condon simulation (bottom panel). The

simulations involved calculating the

B̃-X̃ and B̃-Ã spectra, separately, so

there is a break in the spectrum near

18 500 cm−1. The relative intensities of

the two calculated spectra are not mean-

ingful.

TABLE V. Emission bands observed by pumping the 00
0

band of the B̃–X̃ transition of Cl2BS.

Cl2
11BS Cl2

10BS

Assignment Transition (cm−1) Interval (cm−1) Transition (cm−1) Interval (cm−1)

B̃− X̃ a

31
0

21 367 ν′
3
= 244 21 374 ν′

3
= 251

61
1

21 203 ν′
6
= 259 21 200 ν′

6
= 259

00
0

21 123 ... 21 123 ...

60
1

20 944 ν6= 179 20 942 ν6= 181

30
1

20 886 ν3= 237 20 883 ν3= 240

60
2

20 768 60
1
−176 20 764 60

1
−178

20
1

20 654 ν2= 469 20 658 ν2= 465

50
1

20 216 ν5= 907 20 174 ν5= 949

10
1

20 167 ν1= 956 20 121 ν1= 1002

10
1
60

1
19 992 10

1
−175 19 945 10

1
−176

10
1
30

1
19 927 10

1
−240 19 884 10

1
−237

10
1
50

1
19 263 10

1
−904 19 184 10

1
−937

10
2

19 209 10
1
−958 19 135 10

1
−986

10
1
30

1
50

1
... ... 18 954 10

1
50

1
−230

B̃− Ãb

31
0

16 504 ν′
3
= 243 16 504 ν′

3
= 246

00
0

16 261 X̃ 00+4862 16 258 X̃ 00+4865

30
1

16 005 ν3= 256 16 005 ν3= 253

2(0,1) 15 809 ν2= 452 15 813 ν2= 445

30
2

15 753 30
1
−252 15 750 30

1
−255

20
1
30

1
15 557 30

1
−448 15 555 30

1
−450

30
3

15 495 30
2
−258 15 494 30

2
−256

20
1
30

2
15 301 30

2
−452 15 303 30

2
−447

30
4

15 239 30
3
−256 15 238 30

3
−256

20
1
30

3
15 045 30

3
−450 15 051 30

3
−443

30
5

14 986 30
4
−253 14 986 30

4
−252

aVibrational intervals are for the X̃ state unless otherwise noted.
bVibrational intervals are for the Ã state unless otherwise noted.
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ν′′
1

and ν′′
5
) is 78 cm−1 whereas the ab initio value is 77 cm−1,

both in good agreement with experiment. The 00
0

band B̃–X̃
emission assignments are summarized in Table V.

Although the excellent agreement between Franck-

Condon simulation and experiment (Fig. 5) shows that most

of the intensity of the B̃–Ã band system originates from the

00 level, the weak feature labeled #3 is not in the calculated

spectrum, but was readily assigned as the 31
0

band. There is

no evidence for any vibronically induced features in the B̃–Ã
spectrum. The most intense bands form a progression in ν′′

3

out to 30
5
, along with weaker bands involving ν′′

2
and ν′′

2
+ ν′′

3

combinations. These are listed in Table V.

Other emission spectra with upper states involving either

ν′
3

or ν′
6

have similar complications due to the Coriolis coupling

of these two modes. Most of the remaining emission spectra

were understandable and assignable based on the assumption

of laser excitation of a single uncompromised vibrational

level, such as 11 or 21, with only modest deviations from

the calculated spectra in the harmonic approximation, due

to vibronically induced bands. Generally, it was found that

the strongest features in the emission spectra of LIF bands

involving an upper state fundamental (11
0
, 21

0
, etc.) were down

to one quantum of the same fundamental in the ground state,

in accord with expectations based on the Franck-Condon

principle. Thus, the most intense B̃ – X̃ emission bands from

laser excitation of the 11, 21, 31, 51, and 61 levels were 11
1
, 21

1
,

31
1
, 51

1
, and 61

1
, respectively.

From the analysis of the LIF and emission spectra, we

have obtained most of the fundamental frequencies in the

three combining states, as reported in Table I. Some of these

values deserve further comment. The B̃ state ν6 frequencies

were obtained from the 61
1

to 60
1

LIF band intervals and the

ground state ν6 from the emission 00
0

to 60
1

differences. The Ã
state ν6 values were calculated from the emission spectra as

00
0

(B̃ − Ã) + ν′
6
− 61

1
(B̃ − Ã) and the ν5 values were derived

in a similar fashion. The B̃ state ν3 values were taken as the

differences between the B̃–Ã 31
0

and 00
0

bands observed in the

0-0 band emission spectra, as the LIF values are compromised

by the overlap of the 31
0

and 61
0

bands. In addition, a variety

of Cl2BS X̃ and Ã state overtone and combination levels were

measured and assigned and these are collected in Table VI.

IV. DISCUSSION

A. Comparison to theory

The theoretical and experimental results are compared in

Table I. It is apparent that the calculated band origins for the

two electronic excited states are in excellent agreement with

experiment, differing by a minimum of 5 cm−1 (0.02%) for

the B̃ state of F2BS and a maximum of 148 cm−1 (0.70%)

for the B̃ state of Cl2BS. We have previously11 attributed a

similar fortuitously good level of agreement in F2BO to the

small geometry changes on electronic excitation, the lack of

spin contaimination, and the predominantly single reference

character of the wavefunctions, factors which also apply in

the present cases. The measured vibrational fundamentals

are very consistent with our CCSD(T)/aug-cc-pVnZ harmonic

vibrational frequencies, with a maximum deviation of 35 cm−1

TABLE VI. The observed overtone and combination vibrational intervals (in

cm−1) for the X̃ and Ã electronic states of Cl2BS.

X̃2B2 Ã2B1

Cl2
11BS Cl2

10BS Cl2
11BS Cl2

10BS

2ν6 355 355 ... ...

2ν3 476 487 510 509

ν3+2ν6 ... 596 ... ...

ν2+ν6 631 633 ... ...

ν2+ν3 700 702 704 703

3ν3 ... ... 766 764

2ν2 930 933 893 904

ν2+2ν3 935 ... 960 958

4ν3 ... ... 1021 1020

ν5+ν6 1088 1121 ... ...

ν3+ν5 1153 1181 1212 1249

ν1+ν6 1136 1178 ... ...

2ν2+ν3 ... ... 1150 1155

ν1+ν3 1197 1244 1155 1195

ν2+3ν3 ... ... 1216 1216

5ν3 ... ... 1275 1272

ν2+ν5 1368 1400 ... ...

ν1+ν2 1417 1460 1351 1390

2ν2+2ν3 ... ... 1398 ...

ν1+2ν3 ... ... 1412 1453

ν2+4ν3 ... ... 1460 ...

2ν3+ν5 ... ... 1464 1517

ν2+ν3+ν5 1600 1636 1661 ...

ν1+ν2+ν3 1654 1698 1605 1649

ν1+3ν3 ... ... 1665 1708

3ν3+ν5 ... ... 1720 1753

2ν5 1811 1875 ... ...

ν1+ν2+2ν3 ... ... 1857 ...

ν1+ν5 1859 1933 ... ...

2ν1 1914 1991 ... ...

ν1+4ν3 ... ... 1919 1960

4ν3+ν5 ... ... 1969 ...

ν3+2ν5 2044 2116 ... ...

2ν1+ν6 2084 2165 ... ...

2ν1+ν3 2153 2228 ... ...

3ν1 2853 2971 ... ...

(3%) and an average error of only 7 cm−1. The observed

isotope shifts are also in excellent agreement with those

calculated experimentally. Most importantly, the harmonic

Franck-Condon simulations, which hinge on reliable molec-

ular geometries, vibrational frequencies, and normal mode

Cartesian displacement coordinates of the two combining

electronic states, mimic experiment so well that they provide

unambiguous identification of the emitting species and reliable

assignments for the great majority of the emission bands.

B. Molecular structures

Since the spectra of F2BO, F2BS, and Cl2BS are too

congested for detailed rotational analysis, we must rely on

the ab initio results to compare molecular geometries. The

fact that the calculated rotational contours of the F2BO and

F2BS B̃–X̃ 00
0

bands match experiment very well and that the

Franck-Condon simulations agree so well with experiment

in cases uncomplicated by extensive Coriolis or vibronic
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TABLE VII. The ab initio ground state molecular structures of the known

gas phase X2BY free radicals and the calculated changes in geometry on

electronic excitation.

Parameter F2BO a F2BS a Cl2BS b

X̃2B2

BY (Å) 1.3639 1.8019 1.7801

BX (Å) 1.3135 1.3168 1.7544

XBX (◦) 119.29 120.56 120.89

Ã2B1

Δ[BY] (Å) +0.042 +0.048 +0.068

Δ[BX] (Å) +0.002 +0.004 −0.007

Δ[XBX] (◦) +1.44 −0.69 −2.23

B̃2A1

Δ[BY] (Å) +0.011 +0.058 +0.064

Δ[BX] (Å) −0.006 −0.018 −0.021

Δ[XBX] (◦) −0.09 +2.57 +4.93

aCCSD(T)/aug-cc-pV5Z values from Ref. 11.
bCCSD(T)/aug-cc-pVTZ values from this work.

coupling suggest that the ab initio structures are reasonably

reliable. The structures obtained from theory are compared

in Table VII. It is important to emphasize that each radical

is predicted to be planar and of C2v symmetry in all three

electronic states.

It is immediately evident that the ground state bond

angles in all three radicals are very similar and very close

to the 120◦ value expected in the simplest approximation of

sp2 hybridization on the central boron atom. The BF bond

lengths are almost identical in F2BO and F2BS, but the BS

bond length of Cl2BS is 0.02 Å shorter than that of F2BS.

The BF (1.31-1.32 Å) and BCl (1.754 Å) bond lengths are

comparable to the bond lengths of BF3 (1.307 Å) and BCl3
(1.74 Å), respectively.22,23

Our LIF spectra reflect the changes in the molecular

structure between the ground state and the B̃2A1 electronic

excited state. Table VII shows that F2BO undergoes very little

geometry change and the LIF and absorption spectra consist

of a prominent 00
0

band and little else. In F2BS, the BS bond

length elongates by about 0.06 Å and the bond angle opens

by about 2.5◦, resulting in additional absorption transitions to

the 21 and 11 states, vibrations which both involve substantial

BS stretching motions. In Cl2BS, the changes are more global

with a 0.06 Å elongation of the BS bond, a 0.02 Å decrease

in the BCl bond length and an increase in the bond angle by

5◦, which leads to activity in ν′
1

(BS stretch), ν′
2

(BCl stretch),

and ν′
3

(ClBCl bend).

The observed B̃-Ã emission spectra reflect the geometric

changes between the B̃ and Ã states. These can be determined

from the data in Table VII by taking the difference between

the Δ values of the two states. For example, for F2BS, we

have ΔBS = Δ[BY]Ã − Δ[BY]B̃ = 0.048 − 0.058 = 0.01 Å.

It is then immediately apparent that the only significant change

is in the F2B or Cl2B bond angle, which accounts for the

pronounced activity in the Ã state ν3 (symmetric bend or

scissors) mode in all the spectra.

C. Vibronic coupling

Although the observed spectra of F2BO and F2BS show

no evidence of vibronic coupling, the B̃2A1–X̃2B2 allowed

electronic transition of Cl2BS clearly contains forbidden

components which gain intensity by vibronic coupling through

the b2 vibrations. Vibronic coupling can only occur between

states that differ by no more than the species of one of

the normal vibrations.24 The involvement of the b2 vibration

implies that the 2A1 state is coupled to a nearby 2B2 state.

Although it is, in principle, possible for the vibronic coupling

to occur with the X̃2B2 ground state, it is so energetically

distant (2.6 eV) that it is unlikely to be involved. Therefore,

it must be that there is an excited 2B2 electronic state of

Cl2BS sufficiently close to the B̃ state to cause the vibronic

perturbations and that such a state does not substantially

perturb the second excited state in the fluorinated compounds.

Although no detailed calculations are available for the higher

excited electronic states of Cl2BS, MRCI calculations on the

vertical spectrum of the isoelectronic H2CO+ species25 predict

a 22B2 (2b2← 1b2) state about 1 eV above the B̃2A1 state,

ideally situated for vibronic coupling. Similarly, in F2CO+,

the 22B2 state is within 0.3 eV of the 12A1 state (calculated

at the optimized ground state geometry of F2CO) and within

0.8 eV according to the adiabatic ionization potentials from

the photoelectron spectrum.26 Of course, the 22B2–X̃2B2

transition is also electronically allowed and so the forbidden

component of the B̃-X̃ system of Cl2BS can, at least in theory,

gain intensity from the former by Herzberg-Teller intensity

stealing. Detailed calculations of the identities and energies of

the higher excited states of the X2BY radicals will be required

to further elaborate this point.

The Ã2B1 state cannot have a vibronic interaction with the

nearby X̃2B2 state as C2v molecules do not have a normal mode

of a2 symmetry.24 In a similar fashion, although the evidence

shows that the B̃2A1 state has an admixture of another 2B2

state, this vibronic perturbation cannot lead to the occurrence

of forbidden components in the B̃2A1–Ã2B1 emission band

system and no such vibronically induced bands have been

observed in the spectra of F2BO, F2BS, or Cl2BS.

V. CONCLUSIONS

In the present case, high level ab initio theory has

proven to be a powerful tool for predicting the spectroscopic

signatures of new X2BY free radicals, leading to their

experimental detection in the gas phase. The Franck-Condon

simulations of the emission spectra, in particular, were used

to provide unambiguous identification of the radicals and, in

most cases, reliable assignments of the observed transitions.

The observed spectra of F2BS are complicated by Coriolis

coupling of the ν2 and ν4 modes in the excited state, so the 21
0

band emission spectrum exhibits transitions from both upper

state levels. Even here, theory does very well—a composite

Franck-Condon simulation of emission from 21 and 41 matches

experiment very satisfactorily.

The LIF spectrum of Cl2BS exhibits more vibronic activ-

ity than those of F2BO and F2BS, a necessary consequence

of the larger geometric distortion of Cl2BS on B̃2A1–X̃2B2

electronic excitation predicted by the ab initio calculations. In

addition, Cl2BS exhibits clear evidence of the existence of a

forbidden component of the allowed electronic transition in
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the experimental spectrum, involving activity in the b2 modes,

ν5 and ν6. This subset of the observed bands gains intensity

by Herzberg-Teller intensity stealing from a nearby allowed

transition, which is most likely 22B2–X̃2B2. Finally, the Cl2BS

emission spectra are complicated by Coriolis coupling of ν3

and ν6 in the B̃ state. Both the excited state Coriolis coupling

and vibronic interactions lead to complications in the B̃–X̃
emission spectra that cannot be accounted for in the harmonic

Franck-Condon simulations. However, the B̃–Ã band systems

are largely free of such complexity and are reproduced by the

simulations with gratifying fidelity.
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