
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Biosystems and
Agricultural Engineering Biosystems and Agricultural Engineering

2013

PRECISE EVALUATION OF GNSS POSITION AND LATENCY PRECISE EVALUATION OF GNSS POSITION AND LATENCY

ERRORS IN DYNAMIC AGRICULTURAL APPLICATIONS ERRORS IN DYNAMIC AGRICULTURAL APPLICATIONS

Michael P. Sama
University of Kentucky, michael.sama@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Sama, Michael P., "PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN DYNAMIC
AGRICULTURAL APPLICATIONS" (2013). Theses and Dissertations--Biosystems and Agricultural
Engineering. 14.
https://uknowledge.uky.edu/bae_etds/14

This Doctoral Dissertation is brought to you for free and open access by the Biosystems and Agricultural Engineering
at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural
Engineering by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Michael P. Sama, Student

Dr. Timothy Stombaugh, Major Professor

Dr. Dwayne Edwards, Director of Graduate Studies

PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN

DYNAMIC AGRICULTURAL APPLICATIONS

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the College of Engineering

at the University of Kentucky

By

Michael Patrick Sama

Lexington, Kentucky

Director: Dr. Timothy Stombaugh, Associate Extension Professor of

Biosystems and Agricultural Engineering

Lexington, Kentucky

2013

Copyright © Michael Patrick Sama 2013

ABSTRACT OF DISSERTATION

PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN

DYNAMIC AGRICULTURAL APPLICATIONS

A method for precisely synchronizing an external serial data stream to the pulse-

per-second (PPS) output signal from a global navigation satellite-based system (GNSS)

receiver was investigated. A signal timing device was designed that used a digital signal

processor (DSP) with serial inputs and input captures to generate time stamps for

asynchronous serial data based on an 58593.75 Hz internal timer. All temporal

measurements were made directly in hardware to eliminate software latency. The

resolution of the system was 17.1 µs, which translated to less than one millimeter of

horizontal position error at travel speeds typical of most agricultural operations.

The dynamic error of a TTS was determined using a rotary test fixture. Tests

were performed at angular velocities ranging from 0 to 3.72 rad/s and a radius of 0.635

m. Average latency from the TTS was shown to be consistently near 0.252 s for all

angular velocities and less variable when using a reflector based machine target versus a

prism target. Sight distance from the target to the TTS was shown to have very little

effect on accuracy between 4 and 30 m. The TTS was determined to be a limited as a

position reference for dynamic GNSS and vehicle auto-guidance testing based on angular

velocity.

The dynamic error of a GNSS receiver was determined using the rotary test

fixture and modeled as discrete probability density functions for varying angular

velocities and filter levels. GNSS position and fixture data were recorded for angular

velocities of 0.824, 1.423, 2.018, 2.618, and 3.222 rad/s at a 1 m radius. Filter levels

were adjusted to four available settings including; no filter, normal filter, high filter, and

max filter. Each data set contained 4 hours of continuous operation and was replicated

three times. Results showed that higher angular velocities increased the variability of the

distribution of error while not having a significant effect on average error. The

distribution of error tended to change from normal distributions at lower angular

velocities to uniform distributions at higher angular velocities. Internal filtering was

shown to consistently increase dynamic error for all angular velocities.

KEYWORKS: Global Navigation Satellite-based Systems, Precision Agriculture,

 Tracking Total Station, Dynamic Error, Standardized Testing

________Michael Patrick Sama__________

Student’s Signature

Date

PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN

DYNAMIC AGRICULTURAL APPLICATIONS

By

Michael Patrick Sama

_________Timothy Stombaugh__________

Director of Dissertation

_________Dwayne Edwards____________

Director of Graduate Studies

iii

ACKNOWLEDGMENTS

Throughout my graduate studies, I have benefited from the insight and direction

of several individuals.

I would like to thank my advisor, Tim Stombaugh, and committee members; Scott

Shearer; Michael Montross; and James Lumpp, for their contributions to the studies in

this dissertation. Additionally I wish to thank the department chairs; Richard Gates; Scott

Shearer; and Sue Nokes, for the opportunities they’ve provided me throughout my time

as a graduate student, staff member, and future faculty member.

Additional thanks go to the Biosystems and Agricultural Engineering graduate

students and staff. I was fortunate to have worked with three outstanding machinery

Ph.D. students; Joe Luck; Rodrigo Zandonadi; and Santosh Pitla. Together, we were able

to take on some impressive projects. The staff at the machine shop; Carl King; Lee

Rechtin; Ed Hutchens; and Brett Childers, were instrumental in providing technical and

fabrication assistance.

My family has assisted me throughout this process with their unwavering support.

First, I want to thank my wife, Diana, for her constant love and support. Next, I wish to

thank my parents; Frank and Sheila, siblings; Joseph, Michelle, and Neal for providing

motivation to always better myself. I would also like to thank my brother-in-law, Chris

Reilly, for introducing me to Biosystems and Agricultural Engineering.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 Determining Dynamic GNSS Accuracy ... 1

1.2 Objectives .. 2

1.3 Note on Terminology .. 3

1.4: Literature Review ... 3

1.4.1 Existing Research on Dynamic GNSS Testing .. 3

1.4.2 ION STD 101.. 12

1.4.3 ISO 12188-1 ... 13

CHAPTER 2: SYNCHRONIZING SERIAL DATA STREAMS WITH GNSS TIME .. 17

2.1 Introduction ... 17

2.1.1 Objective ... 19

2.2 Materials and Methods .. 19

2.2.1 Hardware Description ... 19

2.2.2 Software Description .. 21

2.2.3 Signal Timing Device Validation Procedures .. 22

v

2.3 Results and Discussion .. 24

2.4 Conclusions ... 25

CHAPTER 3: TEST FIXTURE DESIGN AND ANALYSIS .. 27

3.1 Introduction ... 27

3.2 Materials and Methods .. 27

3.2.1 Rotary Test Fixture Drive Train ... 27

3.2.2 Rotary Test Fixture Control System ... 29

3.2.3 Rotary Test Fixture Structure ... 30

3.2.4: Test Procedures ... 32

3.3 Results and Discussion .. 32

3.3.1 Angular Velocity Control ... 32

3.4 Conclusions ... 34

CHAPTER 4: TRACKING TOTAL STATION TESTING ... 35

4.1 Introduction ... 35

4.1.1 Objective ... 37

4.2 Materials and Methods .. 38

4.2.1 Test Procedures... 38

4.2.2 Data Collection ... 38

4.2.3 Data Processing .. 39

4.3 Results and Discussion .. 42

vi

4.3.1 Latency Results... 42

4.3.2 Interpolation Results ... 44

4.4 Conclusions ... 46

CHAPTER 5: DYNAMIC GNSS ERROR MODELING .. 48

5.1 Introduction ... 48

5.1.1 Objective ... 49

5.2 Materials and Methods .. 49

5.2.1 Test Procedures... 49

5.2.2 Importing GNSS and Fixture Data into MATLAB for Processing 51

5.2.3 Calculating X/Y GNSS Position Error ... 52

5.2.5 Calculating Along- and Off-Track Error .. 55

5.3 Results and Discussion .. 57

5.3.1 X/Y Position Error Results ... 57

5.3.2 Along- and Off-Track Position Error Results... 60

5.4 Conclusions ... 64

CHAPTER 6: APPLYING A DYNAMIC GNSS ERROR MODEL 66

6.1 Introduction ... 66

6.1.1 Background ... 66

6.1.2 Visualizing GNSS Accuracy .. 67

6.1.3 Resolution of Computation ... 68

vii

6.1.4 How Much Accuracy is Needed? ... 71

6.1.5 Applying a GNSS Error Model using Convolution.. 72

6.2 Materials and Methods .. 77

6.3 Results and Discussion .. 81

6.4 Conclusions ... 84

CHAPTER 7: CONCLUSIONS AND FUTURE WORK .. 85

7.1 Conclusions ... 85

7.1.1 Synchronizing Serial Data Streams with GNSS Time 85

7.1.2 Test Fixture Design and Analysis ... 85

7.1.3 Tracking Total Station Testing ... 86

7.1.4 Dynamic GNSS Error Modeling .. 87

7.1.5 Applying a Dynamic GNSS Error Model ... 88

7.2 Future Work .. 88

APPENDICIES ... 90

Appendix 1: Signal Timing Device Software ... 90

1.1 Main Program .. 90

1.2 Analog Output Header File .. 94

1.3 Analog Output Class .. 94

1.4 RS232 Header File... 95

1.5 RS232 Class ... 96

viii

Appendix 2: TTS Test Fixture Program .. 99

2.1 Main Program .. 99

2.2 RS232 Class ... 102

2.3 TTS Class .. 107

Appendix 3: GNSS Test Fixture Program... 112

3.1 Main Program .. 112

3.2 R2323 Class ... 116

Appendix 4: X and Y Error Discrete Probability Density Functions 117

4.1 No Filter ... 117

4.2 Normal Filter ... 118

4.3 High Filter.. 119

4.4 Max Filter .. 120

Appendix 5: Along-/Off-Track Error Probability Density Functions 121

5.1 No Filter ... 121

5.2 Normal Filter ... 122

5.3 High Filter.. 123

5.4 Max Filter .. 124

Appendix 6: Rotary Test Fixture Engineering Drawings ... 125

6.1 Base Assembly .. 125

6.2 Frame Assembly .. 126

ix

6.3 Cover Panels .. 127

6.4 Component Box ... 128

6.5 Frame Tube – Cross Supports ... 129

6.6 Frame Tube – Depth .. 130

6.7 Frame Tube – Vertical ... 131

6.8 Frame Tube – Width .. 132

6.9 Mounting Plate .. 133

6.10 Rain Guard ... 134

Appendix 7: TTS Testing Analysis Scripts ... 135

7.1 TTS Latency Script .. 135

7.2 TTS Interpolation Script .. 137

7.3 Sample Data ... 141

Appendix 8: GNSS Testing Analysis Scripts .. 143

8.1 GNSS Testing Script ... 143

8.2 Sample Data ... 147

Appendix 9: Application of a Dynamic GNSS Error Model 149

9.1 P/A versus Off-Rate Error Script... 149

9.2 GNSS Model Application Script ... 152

Appendix 10: Abbreviated Terminology .. 154

REFERENCES ... 156

x

VITA ... 162

xi

LIST OF TABLES

Table 1: NMEA 0183 Coordinate Format .. 16

Table 2: Sample Data from a Trimble SCS930 Universal Total Station 21

Table 3: Validation Data ... 24

Table 4: Variability in Rotary Test Fixture Performance ... 33

Table 5: Sample Data File ... 39

Table 6: Summary of Latency Results .. 43

Table 7: Correlation of TTS Measurement Error for Direction and Distance 44

Table 8: Mean and Standard Deviation of Position Error Magnitude for varying Sight

Distances and Angular Velocities ... 44

Table 9: X/Y Mean Error and Standard Deviation of Error – No Filter 58

Table 10: X/Y Mean Error and Standard Deviation of Error – Normal Filter 58

Table 11: X/Y Mean Error and Standard Deviation of Error – High Filter 58

Table 12: X/Y Mean Error and Standard Deviation of Error – Max Filter 58

Table 13: Along-/Off-Track Mean Error and Standard Deviation of Error – No Filter ... 61

Table 14: Along-/Off-Track Mean Error and Standard Deviation of Error – Normal Filter

... 61

Table 15: Along-/Off-Track Mean Error and Standard Deviation of Error – High Filter 61

Table 16: Along-/Off-Track Mean Error and Standard Deviation of Error – Max Filter . 61

Table 17: Error Distribution for a Static and Dynamic GNSS Receiver 68

Table 18: Percent Change from an Ideal Off-Rate Calculation .. 70

Table 19: Square Field Off-Rate Error Estimates ... 81

xii

Table 20: Circle Field Off-Rate Error Estimates .. 82

Table 21: Estimated Off-Track Error for Nine Typical Fields in Kentucky 83

xiii

LIST OF FIGURES

Figure 1: Signal Timing Device (Left: Top PCB, Right: Bottom PCB) 19

Figure 2: Signal Flow Diagram... 22

Figure 3: Interface Software ... 23

Figure 4: Time Delay between a Pulse and a Serial String using a Digital Oscilloscope 23

Figure 5: Linear Regression of Calibration Data .. 25

Figure 6: Fixture Drive Train and Control .. 29

Figure 7: Dimetric View of Rotary Test Fixture Structure (left) and Trimetric View of

Stand (right) .. 31

Figure 8: Rotary Test Fixture .. 31

Figure 9: Angular Velocity for Control Input 0255 .. 33

Figure 10: Linear Regression of Mean Angular Velocity versus Control Input............... 34

Figure 11: PC Program for Fixture Control and TTS Data Logging 39

Figure 12: Latency Results for Prism and Reflector Targets .. 43

Figure 13: Horizontal Position Error versus Angular Velocity .. 46

Figure 14: PC Program for Fixture Control and GNSS Data Logging 51

Figure 15: GNSS Data Filename Schema ... 51

Figure 16: File List used for Importing GNSS and Fixture Data into MATLAB 52

Figure 17: X/Y GNSS Measurements and Test Fixture Position Plot at 2.618 rad/s 54

Figure 18: X/Y Error Plot at 2.62 rad/s... 55

Figure 19: Cardinal and Reference Coordinate Systems .. 56

Figure 20: Along-/Off-Track Error Plot at 2.62 rad/s ... 57

xiv

Figure 21: X/Y Error Discrete Probability Density Functions at 2.62 rad/s – No Filter .. 59

Figure 22: X/Y Error Discrete Probability Density Functions at 2.62 rad/s – Max Filter 60

Figure 23: Off-Track Standard Deviation of Error ... 62

Figure 24: Along-Track Standard Deviation of Error... 62

Figure 25: Along/Off-Track Error Discrete Probability Density Functions at 2.62 rad/s –

No Filter .. 63

Figure 26: Along/Off-Track Error Discrete Probability Density Functions at 2.62 rad/s –

Max Filter.. 64

Figure 27: Good, Average, and Poor Standard Deviation of Error for GNSS Receivers . 68

Figure 28: Application Error for Skipped (left) and Overlapped (right) Coverage 69

Figure 29: Bivariate Gaussian Distribution .. 73

Figure 30: Convolution of an Input Map with a Position Error Distribution 74

Figure 31: Directional Error Distributions .. 76

Figure 32: Visualizing Directional Error ... 76

Figure 33: GNSS Error Distributions ... 77

Figure 34: Application Error in Square and Circle Fields .. 78

Figure 35: Application Error Inside Square and Circle Field Boundaries 79

Figure 36: Field Boundaries used for Estimated Off-Rate Application Errors 80

Figure 37: Binary Field Application Map with Highlighted Boundary 81

Figure 38: Square Field P/A Ratio versus Estimated Off-Rate Error 82

Figure 39: Circle Field P/A Ratio versus Estimated Off-Rate Error 83

1

CHAPTER 1: INTRODUCTION

1.1 Determining Dynamic GNSS Accuracy

The standard method for evaluating dynamic Global Navigation Satellite based Systems

(GNSS) error involves constraining the position and speed of a receiver to a known

value. In certain applications, the actual position at any point in time is not as important

as the path that was taken. An example of this is in row crop production where the error

along the prescribed path does not interfere with productivity when compared to error off

the path. Error off the path is commonly referred to as off-track error and is computed as

the shortest distance to the actual path (ISO, 2010). Testing for off-track error simply

requires a spatially defined test fixture and has been well documented (Han et al., 2004);

(Taylor et al., 2004); (Stombaugh et al., 2008); (Easterly et al., 2010); and (Gavric et al.,

2011). This measure of accuracy is effectively limited to one orthogonal dimension.

Computing along-track error is not possible without additional constraints to determine

the receiver’s actual position with respect to time. Along-track error is particularly

important in instances where variable rate applications are performed.

One method for determining three-dimensional position error utilized a tracking total

station (TTS) to track the location of a GNSS receiver (Sama et al., 2009). A TTS is a

survey grade instrument capable of precisely tracking a prism or reflector target under

dynamic conditions (Krischner and Stempfhuber, 2008). The TTS and GNSS devices

operate asynchronously; therefore, the position data streams from both devices do not

necessarily line up temporally or spatially. A method is needed for relating each device’s

sampling interval so that the position of one measurement device can be accurately

2

projected to another. Once known, the TTS could potentially serve as a relative position

reference for a GNSS receiver synchronous to the GNSS sampling interval. Attempts

have been made to dynamically reference the position of a TTS to a test fixture but not to

a GNSS receiver (Depenthal, 2008).

1.2 Objectives

The proposed objectives were to develop a method for determining and modeling the

two-dimensional position error of a GNSS receiver under dynamic conditions and to

investigate a method for incorporating position uncertainty in agricultural mapping

applications. The majority of this dissertation deals with the process of building a

dynamic GNSS error model and can be subdivided into the following individual

objectives.

 The synchronization of serial data streams relative to GNSS time

 The development of a rotary test fixture for controlling the angular velocity of a

TTS target and GNSS receiver

 Evaluation of a TTS for feasibility of use in dynamic GNSS accuracy testing

under ISO 12188-1 conditions

 Investigation of a dynamic GNSS error distributions for use in agricultural

mapping applications

The method for incorporating position uncertainty using a dynamic GNSS error model

has been treated independently as a separate individual objective.

 Application of a dynamic GNSS error model

3

Each objective has been divided into a chapter, each with its own introduction, materials

and methods, results and discussion, and conclusions.

1.3 Note on Terminology

Throughout this dissertation several terms relating to the Global Positioning System

(GPS) and Global Navigation Satellite System (GNSS) will be used. GPS refers to a

specific satellite based navigation system where as GNSS is a general term that includes

GPS as well as other global systems such as the Russian Global Navigation Satellite

System (GLONASS). For clarity, GNSS will be used in most instances when referring to

a satellite based navigation receiver except when the term GPS is included in the title of a

standard, publication, or product. The term GNSS accuracy includes elements of

accuracy and precision in the form of mean error and standard deviation of error,

respectively. A complete list of abbreviated terms can be found in Appendix 10.

1.4: Literature Review

The literature review for this dissertation is provided in three segments. The first is a

summary of existing research on dynamic GNSS testing in chronological order. The

second segment is a summary of the ION STD 101 standard. The third segment is a

summary of the ISO 12188-1 standard along with a brief explanation on its

implementation.

1.4.1 Existing Research on Dynamic GNSS Testing

Efforts to understand how vehicle dynamics affect GNSS receiver accuracies in

agricultural applications have dated back to the mid 1990’s. Saunders et al. (1996) were

some of the first to publish the concept of a repeatable test course by which different

4

GNSS receivers could be compared under dynamic conditions. They tested three

different commercial GNSS receivers at varying price points. All of the GNSS receivers

tested utilized some form of differential correction. Receivers were mounted to the roof

of a test vehicle and driven at 4 km/h around a surveyed test route. Navigation data were

recorded at sampling rate of 1 Hz. Results showed that two of the GNSS receivers were

not suitable for precision farming applications due to issues such as signal corruption.

They concluded that a direct comparison between GNSS receivers was an effective

method for determining which device would perform the best under actual field

conditions.

Borgelt et al. (1996) evaluated the accuracy of GNSS using course/acquisition (C/A)

code processing techniques. Their experiment consisted of a bar code reader attached to

the GNSS receiver which read a series of bar codes placed at predetermined locations.

They found that the predetermined locations could be measured using a GNSS receiver to

within 1 m. The authors concluded that the 1 m level of accuracy observed was sufficient

for yield mapping applications when used in a combine harvester. They also pointed out

that carrier phase kinematic position methods have the potential to result in higher

accuracies, but that their experimental method would need to be revised to mitigate data

acquisition problems when assessing sub-centimeter level GNSS receivers. This paper

provided a good indication of some of the problems that future research would deal with

– specifically, how to test a real-time-kinematic (RTK) GNSS receiver when, in many

cases, a RTK GNSS receiver is the most accurate means of determining 3D position in

agricultural applications.

5

Stombaugh et al. (2002) presented the concept developing a test standard specific to

assessing dynamic GNSS accuracy in agriculture. They showed that differences in the

way GNSS manufacturers presented performance specifications made it difficult to

directly compare different GNSS receivers. They also showed that the static performance

specifications typically given are not consistent with dynamic performance measured on

a rotary test fixture. They proposed a framework for GNSS manufacturers in agriculture

to follow that included standardized terminology as well as recommendations on dynamic

test fixture paths. The proposed paths were mostly typical of row crop production and

included multiple straight parallel paths connected with constant radii turns.

Han et al. (2002) published a paper on the use of Kalman filters to post process GNSS

position measurements in parallel tracking applications. They collected GNSS data from

two receivers mounted on the cab of a tractor along the centerline of the direction of

travel. The tractor was driven in parallel passes separated by 12.2 m at a speed of

1.54 m/s. The GNSS receivers were sampled at 1 Hz. They found that the maximum

cross-track error between the GNSS receiver and the actual path was 9.83 m but could be

reduced to 2.76 m through the use of a Kalman filter. However, the average cross-track

error was only slightly reduced from 0.58 m to 0.56 m. They concluded that the GNSS

receiver bias error was the cause of the lack in reduction of average cross-track error and

that more research would be needed to determine how to reduce GNSS receiver bias error

for parallel tracking applications.

Ehsani et al. (2003) presented a paper on determining the dynamic accuracy of five low-

cost GNSS receivers that were not typically used in precision agricultural applications.

Their method utilized a test vehicle with the GNSS receivers mounted in a straight line

6

along the direction of travel. An RTK GNSS receiver was used to determine the actual

path of the test vehicle. The vehicle was driven in a manner to simulate the parallel

passes of an agricultural operation. Data were collected for 15 minutes over multiple

parallel passes, a process which was repeated 5 times over a 2 month period. Results

showed that cross-track error in the north and south directions was higher than in the east

and west directions for all receivers tested and that the dynamic accuracies of the low-

cost GNSS receivers were consistent with the static accuracy specifications. They noted

that their method was limited to linear paths and would need to be updated to incorporate

curved paths and to assess pass-to-pass accuracy.

Han et al. (2004) published a study on a method for evaluating dynamic GNSS

performance under parallel tracking applications. They proposed that pass-to-pass

accuracy was the most important performance specification relative to agricultural

applications. Their method included eight different GNSS receivers with varying levels

of differential correction. GNSS receivers were mounted individually to a test vehicle

and driven manually along an existing field. A total of 68 tests were performed at

varying times over a day, with several tests removed due to issues with the RTK

correction. Results were presented as unsigned cumulative distribution functions, from

which 95% accuracy and 2-inch success rates were determined. They concluded that all

GNSS receivers tested had a large bias and that pass-to-pass accuracy was highly variable

between tests with respect to each GNSS receiver. This variability led to their decision to

use a cumulative distribution function to express the ensemble dynamic GNSS error from

multiple individual tests.

7

Taylor et al. (2004) published a study on dynamic testing of GNSS receivers that closely

resembled the subsequent ISO 12188-1 standard. They used a test fixture to precisely

control the path of a GNSS receiver. Their test fixture consisted of a 0.8 km rail track

and rail car that travelled at two speeds in both directions. They tested two GNSS

receivers that were designed specifically for precision agriculture applications over a 24

hour period and discovered several interesting results. The first discovery was that the

cross-track errors of each GNSS receiver were correlated over short periods of time. This

meant that, while over longer periods cross-track error appears to be random, over short

periods there is a deterministic component that makes analysis using standard statistical

methods difficult. The second discovery was that cross-track error was periodic, which

meant that data must be taken for a long enough time to fully capture the process. They

concluded that pass-to-pass accuracy tests were more meaningful due to the lack of

distinct frequency content and the shorter test durations required.

Cole et al. (2004) presented a paper on the development of a test fixture for measuring

dynamic GNSS performance. They constructed a closed circuit monorail track and cart

system designed to replicate traditional movements in an agricultural application. The

fixture consisted of two 91 m straight sections spaced 12 m apart that were connected by

a 6 m radius turn on one end and a variable radius turn on the other. An RTK GNSS

receiver was used to determine the tolerance of the test fixture and was found to be

approximately 2.5 cm. A low-cost GNSS receiver was subsequently tested against the

path generated by the RTK GNSS receiver and found to have deviated by a maximum of

1.75 m. The authors concluded that the test fixture would be useful for the development

of a dynamic GNSS receiver test standard specific to agriculture.

8

Smith and Thomson (2005) published a paper focusing on methods to determine the

latency of a GNSS receiver used in aerial agricultural applications. Position latency

results in linear changes in position error with respect to speed. They used an Air Tractor

402B aircraft to fly a GNSS receiver across a light beam which spatially located the

aircraft. The position measurement from the GNSS receiver was compared with the

position reference to determine deviations in the direction of flight. Results showed

maximum deviations of 9 m when travelling at 60 m/s. The authors concluded that the

deviations in position were due to timing or data processing after GNSS position

measurements were made.

Chan et al. (2006) published a study that focused on the small scale dynamic accuracy of

GNSS receivers intended for civil engineering projects. They fabricated a 2D movable

platform capable of 50 mm of motion in both directions at a maximum frequency of

2 Hz. This allowed for sinusoidal testing in a single dimension, sinusoidal testing in two

dimensions and more arbitrary patterns derived from wind-induced models on buildings.

They found that when undergoing sinusoidal motion, minimum amplitudes of 5 mm in

the horizontal planes and 10 mm in the vertical plane at frequencies less than 1 Hz were

required to accurately detect motion using a GNSS receiver when sampled at 20 Hz.

They concluded that this level of accuracy was sufficient for measuring the dynamic

displacement of tall structures under wind loading.

Wu et al. (2006) published an article on the influence of travel direction on dynamic

GNSS accuracy. They hypothesized that the distribution of GNSS satellites in the sky

had an effect on the accuracy of a GNSS receiver travelling in a given direction. Results

show that there was a significant difference in the dilution of precision (DOP) in the

9

north and east directions at their test location. They found that this affected the cross-

track error based upon the direction of travel. The authors concluded that the orientation

at which dynamic GNSS testing is conducted influences accuracy measurements.

Harbuck et al. (2006) presented a paper that incorporated the vehicle, guidance system,

and GNSS receiver into the accuracy measurement. They focused on determining the

ability of an agricultural vehicle operation under GNSS auto-guidance to navigate the

same straight path over a 15 week test period. They used a tracking total station (TTS) to

verify the path of the vehicle during each pass and found that an RTK GNSS receiver

used with the auto-guidance system was able to track the same path to within 10 cm.

Two commercially available satellite based differential correction methods on the same

GNSS receiver resulted in a maximum of 60 cm to 140 cm of error. They concluded that

the wide range in performance emphasized the need to address temporal variations in

accuracy specifications, as the results from their tests exceeded the manufacturer

specifications for pass-to-pass accuracy.

Thomson et al. (2007) published a study on latency issues when using GNSS receivers in

aircraft for geo-referencing images used in remote sensing. They used an imaging system

that was synchronized with the GNSS data output to determine the location of each image

and compared that information to reference data taken on the ground. They found that

one differentially corrected GNSS receiver lagged the actual position by as much as 8 m

where as two other low-cost standalone GNSS receivers led the actual position by over

126 m. The authors concluded some form of position compensation is needed when

using standalone GNSS receivers at high speeds for remote sensing.

10

Stombaugh et al. (2008) presented a paper on standardized evaluation of dynamic GNSS

performance. They updated the test fixture designed by Cole et al. (2004) to include a

feedback control system for maintaining constant speed throughout the test fixture. Tests

were performed at 2.5 m/s on multiple receivers to provide standard developers with data

as part of the draft ISO 12188-1 standard. They identified several of the steps that need

to be taken to collect, format, and process standardized GNSS accuracy data. Results

showed that the expected accuracy due to DOP and the standard deviation of cross-track

error of a GNSS receiver were highly correlated and varied throughout the day. This

emphasized the importance of replicating tests throughout durations long enough to fully

capture the average performance of a GNSS receiver. They concluded that the data

presented would be useful to help set constraints on dynamic GNSS receiver accuracy

testing at the ISO level.

Sama et al. (2009) presented a paper on dynamic GNSS testing and applications. They

focused on developing a ground based position reference for validating dynamic GNSS

performance. A tracking total station (TTS) was used in conjunction with a rotary test

fixture to determine the feasibility of the TTS as a position reference. The local

coordinate system defined in ISO-12188 was tested against the local coordinate system

used in the TTS and found to be consistent to within 3 mm over a 40 meter range. The

authors pointed out that some form of temporal synchronization was needed to interpolate

TTS measurements to GNSS measurements. Otherwise, the TTS data could only be used

as a reference path and not an actual reference position. Assuming temporal

synchronization was possible, they presented two interpolation methods that could be

used to calculate the position of a GNSS receiver that was co-located with a TTS target.

11

The first was a polar coordinate method and the second was a quadratic function where

the three nearest TTS points in time relative to the GNSS measurement were used to

define a second-order curve. The second method was deemed to be a superior method

because it could be efficiently implemented using linear algebra techniques on a

computer and could better represent paths other than circles. They concluded that the use

of a TTS as a position reference for dynamic GNSS accuracy testing was feasible if

future work in data synchronization was completed.

Perez-Ruiz et al. (2010) published a paper on how the type of GNSS correction signal

affects performance in assisted guidance systems used in agricultural vehicles. They

tested two agricultural GNSS receivers that, when combined, were capable of receiving

correction data from five difference sources. They mounted both devices to the cab of a

tractor and recorded position data along six 600 m rows over several weeks. They found

that all correction methods produced accuracies to within 1 m, which they deemed

sufficient for yield monitoring. Accuracies of less than 0.5 m, sufficient for broadcast

seeding, fertilizing, and herbicide application, were observed for some correction

methods but varied in terms of how many measurements fell within the tolerance.

Accuracies less than 0.04 m were not found using any correction method, including RTK

correction, which they defined as necessary for transplanting and drill seeding. They

concluded that the level of accuracy for the GNSS correction technology at the time was

sufficient for performing many of the field operations used in farming, but there are still

some limitations on the most precise operations.

Gavric et al. (2011) published an article relating to short- and long-term dynamic

accuracies for GNSS receivers using a test fixture. They designed an oval test fixture

12

with 18 m straight sections separated by 7.6 m and connected by constant radius turns.

These dimensions were 5 times smaller than what had been defined in the recently

published ISO-12188-1 standard. They tested a low-cost GNSS receiver for 24 hours and

found that the cross-track error was less than 1.3 m and the pass-to-pass error was less

than 0.7 m for 95% of the data recorded. They concluded that this level of accuracy was

sufficient for some agricultural operations but did not identify any specific operations.

1.4.2 ION STD 101

The Institute of Navigation (ION) standard on recommended test procedures for GPS

receivers (ION, 1997) has been used as a basis for much of the research relating to

dynamic GNSS accuracy in agriculture. The standard defined common testing

procedures for determining static and dynamic accuracy as well as other performance

characteristics including initialization time and reacquisition time.

Initialization time was defined for two instances, Initialized Time to First Fix (INIT

TTFF) and Warm Start Time to First Fix (WARM TTFF). The difference between these

two conditions was how long the receiver was powered off. In both instances, the

objective was to determine the amount of time it took for a GNSS receiver to output

uncorrected and corrected 3D navigation data to accuracy levels of 600 meters and 20

meters, respectively. While the accuracy level may not be near what is required for

modern auto-guidance systems in agriculture, the concept of how long it takes for a

GNSS receiver to output navigation data is still relevant.

Reacquisition time is a specific test to determine how long a GNSS receiver takes to

resume normal function after a temporary blockage of satellite signals. A key difference

13

from WARM TTFF is that the GNSS receiver is maintained in a powered on state. This

type of test is also relevant to agriculture when working around the borders of fields

where trees may obstruct satellite coverage.

The static component of ION STD 101 had the purpose of determining the accuracy to

which a GNSS receiver can determine its position relative to a reference position. The

reference position must be known to an accuracy better than 10 times the expected

accuracy of the GNSS receiver being tested. Data must be recorded for a 24 hour period

and specified as either a single measure of the difference between the measured data and

the reference position or the ensemble mean of several single measures. Accuracies at

the 50
th

, 68
th

, 95
th

, and 99.99
th

 percentiles are required for measured data with the 95
th

percentile being the primary measure of accuracy for predicting performance.

The dynamic component of ION STD 101 added testing criterion to allow the

determination of the accuracy of a GNSS receiver in a moving vehicle. Movement was

defined as a trajectory that must be repeated for 1 hour durations and replicated 3 times,

equally spaced, over a single 24 hour period. The standard provided the provision that

this component of the test can be conducted using simulated GPS signals, which can aide

in determining the effects of vehicle dynamics on GNSS accuracy. Accuracy

specifications determined from the dynamic testing are specified in the same manner as

the static component.

1.4.3 ISO 12188-1

The International Organization for Standardization (ISO) standard on test procedures for

positioning and guidance systems in agriculture (ISO, 2010) was developed as result of

14

research relating to dynamic GNSS accuracy up to its inception. The standard places an

emphasis on the dynamics under which a GNSS receiver must be tested. Instead of a

loosely defined trajectory, the standard prescribes a test fixture or course consisting of

straight parallel passes of a minimum length connected by at least one constant radius U-

turn. The speeds at which tests are performed are specified at () m/s,

() m/s, and () m/s.

Position error is segmented into several specifications including (1) absolute dynamic

accuracy, (2) relative dynamic accuracy, (3) absolute vertical position accuracy, (4)

relative vertical position accuracy, (5) short-term dynamic accuracy, (6) long-term cross

track accuracy, (7) U-turn accuracy, and (8) absolute accuracy after signal loss.

Specifications (1) through (4) are expressed as the mean plus the standard deviation of all

signed errors () in their respective directions. Specifications (5) through (8) are

expressed as the root mean squared of the mean plus the standard deviation of error

(√ ()). Short-term dynamic accuracy and long-term cross-track accuracy isolates

deviations tangent to the test fixture from absolute dynamic accuracy. These are

particularly useful specifications for agriculture as it gives a producer an indication of

how accurately they can navigate the same path on a short-term and a long-term basis.

A localized projection is used to convert the geographical coordinates generated by a

GNSS receiver into a Cartesian coordinate system. The projection is based on an

ellipsoid and converts latitudes and longitudes in decimal degrees into meters in two

orthogonal directions (Equation 1).

15

(

√
) ()

(

()

)

Equation 1

 and are the conversion factors in units of meters per degree. The latitude

location of the test site is represented by and must be within 1000 m of any point on the

test course. Choosing to be south-west of a bounding box containing the entire test

course is a convenient method for ensuring all output coordinates are in the first quadrant

of the Cartesian coordinate system (i.e. positive). The final three parameters , , and

represent the average height of the test course above the ellipsoid in meters, semi-major

axis of the ellipsoid in meters, and semi-minor axis of the ellipsoid in meters,

respectively. The semi-major and semi-minor axes vary with the form of the ellipsoid

model used in the GNSS receiver. The most commonly used ellipsoid model is the

World Geodetic System 1984 (WGS 84). Values of and

 from WGS 84 are used in this dissertation. Applying the projection

requires special precautions to eliminate rounding error. GNSS receivers capable of

providing centimeter level accuracies can generate 10 or more significant figures in the

angular minute measurement. The tester should carry all constants to enough significant

figures to preserve the precision of the projection. Geographical coordinates transmitted

using the NMEA 0183 Interface Standard (NMEA, 2000) combine integer degrees and

decimal minutes into a single decimal number using the format shown in Table 1.

16

Table 1: NMEA 0183 Coordinate Format

Latitude Longitude

DDMM.MMMMMMMM DDDMM.MMMMMMMM

D = Degree Digit, M = Minute Digit

Converting coordinates from the NMEA 0183 format into decimal degrees can be

achieved by isolating the integer degrees and decimal minutes, converting decimal

minutes into decimal degrees, and recombining. Assuming a coordinate is stored as a

floating point number, Equation 2 coverts the NMEA 0183 format into decimal degrees

using a floor (round down) operation to split out the integer degree component and the

modulus operator to split out the decimal minute component. A complete

implementation of the ISO 12188-1 projection using MATLAB (MathWorks, 2012) can

be found in Appendix 8.

 (

)

 ()

X = Latitude or Longitude in NEMA 0183 Format

Equation 2

17

CHAPTER 2: SYNCHRONIZING SERIAL DATA STREAMS WITH GNSS TIME

2.1 Introduction

Many management operations in agriculture rely on global navigation satellite-based

systems (GNSS) for navigation, data acquisition, and precise application of materials.

Standards have been developed to prescribe the methods for evaluating and expressing

GNSS accuracy under dynamic conditions (ISO, 2010). Those standards mandate that a

position reference is needed with an accuracy that is one order of magnitude better than

the GNSS device being tested. One device capable of determining three-dimensional

position of sufficient spatial precision to evaluate high precision GNSS receivers is a

tracking total station (TTS). A TTS is a survey grade instrument capable of precisely

tracking the position of a prism or other target object under dynamic conditions

(Krischner and Stempfhuber, 2008). Preliminary testing has shown how a TTS can be

used to track the location of a moving GNSS receiver (Sama et al., 2009).

When testing a GNSS receiver using a TTS as a reference, the two devices operate

asynchronously relative to each other; therefore, the position data streams from both

devices do not necessarily line up temporally or spatially. Spatial synchronization is

possible with precise benchmark backsight calibration of the TTS, but a method is needed

for relating the sampling interval of each device so that the position measurement of one

device can be accurately projected or interpolated to the other temporally. Latency in the

TTS measurement may result in position error, but it has been shown that latency

compensation is possible if the TTS signal latency is consistent (Boniger and Tronicke,

2010).

18

Modern high-precision GNSS receivers commonly include a pulse-per-second (PPS)

signal output, which is precisely synchronized to GPS time. This highly precise timing

signal could serve as the reference point for a system to synchronize GNSS and TTS data

streams. Embedded systems have been designed which can be synchronized to the PPS

signal to within 100 ns (Berns and Wilkes, 2000). This level or precision is unnecessary

for most precision agriculture operations. For example, a machine capable of travelling

at 10 m/s (which is very fast for typical agricultural field operations) only requires a

temporal resolution of 0.1 ms to achieve a spatial resolution of 1 mm. Behn et al. (2008)

developed a method for time-stamping multiple RS-232 serial streams using a MINI-ITX

(17 cm x 17 cm) computer running a Linux operating system. They primarily focused on

synchronizing the computer clock with a GPS clock but did not examine the effects of

software latency due to receiving and processing the serial data streams. Hwang et al.

(2004) outlined some important parameters to consider when synchronizing embedded

systems to GPS time. They point out that the small variability in frequency between two

quartz crystal oscillators can generate large discrepancies in measured time over long

periods; however, continuous synchronization using a PPS signal eliminated accumulated

error by updating the relative time stamp every second.

Modern digital signal processors include input capture (IC) interfaces that allow discrete

events to be time-stamped directly through hardware. Once configured, a rising or falling

edge causes the controller to latch the current state of an internal timer or counter into the

IC register for processing at a later time. This eliminates any software latency from

manually copying registers once a discrete event has been identified. Using ICs also

19

eliminates the need to factor in serial data baud rates because the time stamp is always

generated by the beginning of the message as opposed to after it has been fully received.

2.1.1 Objective

The objective of this study was to fabricate and test a signal timing device that was

capable of simultaneously time-stamping a PPS signal and an asynchronous serial data

stream. The device will be used as part of a larger study to evaluate RTK GNSS

receivers under dynamic conditions and must conform to the accuracy requirements

prescribed by the ISO-12188 standard.

2.2 Materials and Methods

2.2.1 Hardware Description

A signal timing device was designed around the dsPIC30F4011 (Microchip, Chandler,

AZ) digital signal processor (DSP). The primary features of the DSP utilized in this

study were two universal asynchronous receiver transmitter (UART) interfaces and two

input capture (IC) interfaces. The device consisted of two printed circuit boards (PCBs)

stacked on top of one another with surface mount and through-hole components

populating each PCB (Figure 1).

Figure 1: Signal Timing Device (Left: Top PCB, Right: Bottom PCB)

20

The bottom PCB contained the DSP, voltage regulators, programming interface, and

bypass capacitors. The top PCB contained the RS-232 level shifter, light-emitting diodes

(LED), and terminal headers. The DSP clock source was provided by a 15.0 MHz crystal

oscillator with a specified frequency tolerance of 30 ppm (450 Hz) and a frequency

stability of 50 ppm (750 Hz). The external clock source was divided by four to

generate an internal instruction clock frequency of 3.75 MHz, which was the base clock

used for generating baud rates and timers. A 16-bit timer was used for time-stamping the

PPS signal from the GNSS receiver and the serial output from the TTS. The timer

prescaler was set to 64, which reduced the timing frequency to approximately 58.6 KHz.

This ensured that the timer did not cycle more than once between each PPS event;

otherwise, software routines would have been needed to keep track of timing overflow

cycles, which would have prevented all time-stamping from being performed exclusively

in hardware. The temporal resolution of this method was 17.1 µs, which corresponded to

the maximum deviation between when an event occurs and the previous timer value.

The PPS signal from the GNSS receiver was connected to the IC1 pin. Since each GNSS

data point included a UTC time stamp that was synchronous with the PPS output, no

processing was necessary on the GNSS data stream. The TTS serial stream was fed into

UART1 through a level shifter. The level shifter converted the RS-232 signal voltages to

the TTL levels used by the DSP. The TTL serial stream was also fed into the IC2 pin for

edge detection. The propagation delay for a high- to low-level output through the

MAX232 level shifter was specified to be 500 ns, which was several orders of magnitude

smaller than the resolution of the signal timing device.

21

2.2.2 Software Description

The software running on the DSP was completely event driven through the use of

hardware interrupts. An interrupt service routine (ISR) was written to process serial data

as each character was received. A PPS signal event generated an interrupt where the state

of the IC1 time stamp was stored into a local variable. The time stamp, along with an

identifier, was transmitted to a PC from UART2. Serial data entering UART1 from the

TTS was processed on a character basis. The format of the TTS data stream is shown in

Table 2.

Table 2: Sample Data from a Trimble SCS930 Universal Total Station

ASCII HEX

0

37=#.######

38=#.######

39=#.######

>

30 0D

0A 33 37 3D XX XX 2E XX XX XX XX XX XX 0D

0A 33 38 3D XX XX 2E XX XX XX XX XX XX 0D

0A 33 39 3D XX XX 2E XX XX XX XX XX XX 0D

0A 3E

#: 0-9, XX: 0x30-0x39

Each time a character was received, the corresponding ISR was checked to see what

character was sent and then that character was retransmitted through UART1 to a PC.

When a ‘>’ character (0x3E) was received, the ISR enabled IC2 to record the time of the

next falling edge, which corresponded to the subsequent start bit from the first ‘0’

character of the next TTS data point. The start bit transition from high to low triggered

IC2 to capture the local time stamp from the timer. The IC2 event also generated an

22

interrupt that stored the time stamp into a local variable. The time stamp was transmitted

out of UART1 immediately after each TTS data point for post processing (Figure 2).

TTS Serial

Data Stream

UART1

Recieve

‘>’ Character

Received?

Time-

Stamped

TTS Serial

Data Stream

IC2 Input
Yes

UART1

Transmit

GNSS PPS

Event
IC1 Input

UART2

Transmit

Time-

Stamped

GNSS PPS

Event

Caclulate Time

Difference

GNSS

Synchronized

TTS Serial

Data Stream

Signal Timing Device PC Post Processing

Figure 2: Signal Flow Diagram

2.2.3 Signal Timing Device Validation Procedures

A vb.net PC program (Microsoft Corporation, Redmond, WA) was written to simulate

the TTS output and capture the serial data from the timing controller (Figure 3).

23

Figure 3: Interface Software

A function generator was used to simulate a PPS signal. A digital oscilloscope (DPO

4034, Tektronix, Beaverton, OR) was configured to capture the PPS and TTS data

streams. The delay measurement feature was configured to record the delay between the

falling edge of the PPS signal and the first falling edge of the TTS data stream, which

was equivalent to the measurement made by the signal timing device (Figure 4).

Figure 4: Time Delay between a Pulse and a Serial String using a Digital Oscilloscope

The software recorded two 16-bit numbers, tTTS and tPPS, corresponding to the local timer

value when each signal was received. The local timer values were converted to time

24

delay in seconds using Equation 3 if the timer value for the PPS time stamp was less than

the timer value for the TTS time stamp and Equation 4 otherwise.

 (tTTS – tPPS) / 58593.75
Equation 3

 (2^16 – tPPS + tTTS) / 58593.75
Equation 4

2.3 Results and Discussion

Eight samples were taken with delays between the PPS signal and TTS data stream

ranging from 30.4 ms to 760 ms using both the digital oscilloscope and the signal timing

device (Table 3).

Table 3: Validation Data

PPS

Time

Stamp

TTS

Time

Stamp

Signal

Timing

Device

(ms)

Oscilloscope

(ms)

57333 59117 30.447 30.44

35978 43548 129.19 129.1

17889 33015 258.15 258.2

51763 6118 339.47 339.4

5343 33217 475.71 475.7

61165 35014 564.42 564.4

37398 9708 645.90 645.9

12068 1970 760.11 760.1

A linear regression was performed between the digital oscilloscope and the signal timing

device (Figure 5).

25

Figure 5: Linear Regression of Calibration Data

The regression resulted in a slope of 1 and an offset of 0.0353 with a coefficient of

determination of 1. The standard error of the regression was 47.2 µs. In most cases, the

first four significant figures in each measurement were exactly the same. The small

discrepancy between the digital oscilloscope and the sensor board can be attributed to

rounding or truncation. The digital oscilloscope was limited to four significant figures

for all temporal measurements regardless of the time base while the signal timing device

was capable of measuring a fifth significant figure with a theoretical error of no more

than 17.1 µs.

2.4 Conclusions

The signal timing device developed in this study was designed to accurately time-stamp

PPS signals and asynchronous serial data streams to within 17.1 µs. Validation showed

that the sensor board time measurements closely matched time measurements made with

a digital oscilloscope. The variability between the two measurement systems was

y = 1x + 0.0353

R² = 1

0

200

400

600

800

0 200 400 600 800

S
en

so
r

(m
s)

Digital Oscilloscope (ms)

26

negligible when considered for agricultural applications. Assuming a maximum vehicle

speed of 10 m/s, all results showed that position error would be less than 1 mm as a result

of errors in time measurement. This system will be useful for testing GNSS devices and

auto-guidance systems under the ISO-12188 standard. The precision of this system may

be improved by removing the restriction that all time comparisons are made in hardware

or by using a device with IC registers that are larger than 16 bits.

27

CHAPTER 3: TEST FIXTURE DESIGN AND ANALYSIS

3.1 Introduction

Test fixtures are used in GNSS testing to control the path of a receiver under repeatable

conditions. In the case of ISO 12188-1 standardized GNSS testing (ISO, 2010) a receiver

travels along a closed path with parallel straight passes. This method simulates typical

agricultural applications but is limited in terms of spatial and temporal accuracy. The

fixed path constrains the receiver in a vertical and single horizontal direction. The

position along the orthogonal horizontal direction is unknown without the addition of a

position reference. A simple way to avoid this issue is to use a rotary test fixture, where

the path of the receiver is constrained to a circle. The position in the vertical direction is

fixed and the horizontal directions can be calculated from an angle sensor. A

disadvantage of using a rotary test fixture is that the receiver is being evaluated in a

manner which is not consistent with actual use. Therefore, the performance

specifications derived from circular testing may not reflect the performance observed in

the field.

3.2 Materials and Methods

A rotary test fixture was designed to evaluate TTS performance and to develop a dynamic

GNSS error model. It consisted of a drive train, control system, and structure.

3.2.1 Rotary Test Fixture Drive Train

Angular velocity and acceleration criteria were used to specify the fixture drive train.

Velocities similar to those used in standardized GNSS testing, 0.1 m/s to 5.0 m/s, were

28

used as minimum and maximum criteria, respectively. A conservatively high mass for

the rotation components was estimated to be 45 kg. A one meter radius circular hoop

model for the moment of inertia was calculated using Equation 5.

 () Equation 5

An angular acceleration criterion of 10 seconds from 0 to 5 m/s (Equation 6) was used to

determine the power required by the fixture (Equation 7) and the motor power

(Equation 8).

 Equation 6

 Equation 7

 Equation 8

A margin of error of two was added to account for mechanical inefficiency as well as the

reduction in torque when operating the motor as slower speeds. The resulting motor

specification was determined to be 225 W (0.3 HP). To achieve the velocity criteria, a 3-

phase inverter-duty AC motor was selected along with a 30:1 gear reduction. The motor

29

had a rated speed of 1720 RPM which was reduced to 57.3 RPM through the gear

reduction. A speed of 57.3 RPM corresponded to an output angular velocity of 6.00

rad/s, or 6.00 m/s at a 1 m radius. Powering the motor with a variable frequency drive

enabled the output angular velocity to be reduced to nearly 0.1 rad/s (Figure 6).

1/3 HP

3 Phase Motor

30:1 Gear

Reduction

SPEED

FWD

REV

C
O

N
T

R
O

L

1
2

0
 V

A
C

S
IN

G
L

E

P
H

A
S

E

L

N

G

L1

L2

L3

G2
0

8
 V

A
C

T
H

R
E

E

P
H

A
S

E
0 to 1720

RPM

0 to 57.3

RPM

SPEED: 0 to 5 VDC = 0 to 60 Hz FWD/REV: 24 VDC LOGIC

VFD

Figure 6: Fixture Drive Train and Control

3.2.2 Rotary Test Fixture Control System

The rotary test fixture was controlled using the signal timing device described in Chapter

2. A 3-wire RS232 interface (19,200-8-N-1) connected the signal timing device to a PC.

Two commands were used to update the speed and direction of the rotary test fixture.

The speed command was a fixed width string formatted as “$V,####*”. The “$V”

characters were used as an identifier and the #### characters were decimal numbers

between 0000 and 4095, which were used to represent analog output voltages to the VFD

between 0 and 5 V. The “*” character was used as a terminating character along with the

non-printable characters carriage return and line feed. The direction command was a

fixed width string formatted as “$M,#,#*”. The “$M” characters were used as an

identifier and each # character was a decimal 0 or 1 which corresponded to the FWD and

30

REV signals on the VFD. The “*” character was used as a terminating character along

with the non-printable characters carriage return and line feed.

An optical encoder with 2,500 pulses per revolution was mounted to the bottom of the

output drive shaft. When operating in 4X quadrature mode, the encoder generated 10,000

transitions between the A and B phases. This resulted in 10,000 counts per revolution or

and angular resolution of radians. The dsPIC30F4011 used in the signal

timing device included a hardware quadrature encoder interface. The A and B phases

along with I, an index pulse, were connected to the signal timing device. Any transitions

or pulses automatically incremented, decremented, or reset the quadrature encoders

counter without the need for a software routine.

3.2.3 Rotary Test Fixture Structure

A welded steel framework was fabricated to house the rotary test fixture drive train and

control system (Figure 7). The structure consisted of 3.81 cm (1.5 in) tube with 0.303 cm

(11-gauge) thick sheet metal welded to the top, middle, and bottom surfaces. The

remaining sides were covered with 0.121 cm (18-gauge) sheet metal using socket head

cap screws. A self-adhesive silicone gasket was adhered to all removable surfaces to

minimize water infiltration. A steel stand was fabricated to mount the rotary test fixture

structure to the roof of the Charles E. Barnhart Building in Lexington, KY (Figure 8). A

detailed set of engineering drawings for the rotary test fixture structure can be found in

Appendix 6.

31

Figure 7: Dimetric View of Rotary Test Fixture Structure (left) and Trimetric View of

Stand (right)

Figure 8: Rotary Test Fixture

32

3.2.4: Test Procedures

The ability to control the angular velocity of the rotary test fixture was evaluated at

twelve control settings between 0255 and 3071 in increments of 0256. Data were

sampled at 2.5 Hz for 100 seconds resulting in 250 angular velocity measurements per

control input.

3.3 Results and Discussion

3.3.1 Angular Velocity Control

The angular velocity of the rotary test fixture was stable over the test interval for each

speed tested. Figure 9 illustrates the angular velocity versus time for 100 seconds. The

minimum and maximum speeds recorded were within 0.010 rad/s of each other, which

represented 1% of the mean angular velocity. An interesting trend in the data was the

cyclical pattern in the angular velocity with respect to time. The period of the oscillations

in angular velocity for a control input of 0255 was approximately 15 seconds. Based on

and average angular velocity of 0.441 rad/s, one full revolution of the test fixture took

14.25 seconds. Therefore the angular position of the rotary test fixture may have had an

influence on angular velocity.

33

Figure 9: Angular Velocity for Control Input 0255

The amount of variability in angular velocity was small relative to the mean angular

velocity for all control inputs tested (Table 4). The standard deviation of angular velocity

ranged from 0.002 rad/s to 0.007 rad/s for control inputs of 0255 and 3071, respectively.

Table 4: Variability in Rotary Test Fixture Performance

Control

Input

Control

Voltage

(V)

Mean

Angular

Velocity

(rad/s)

Standard

Deviation

(rad/s)

0255 0.311 0.441 0.002

0511 0.624 0.848 0.002

0767 0.937 1.251 0.003

1023 1.249 1.660 0.003

1279 1.562 2.070 0.004

1535 1.874 2.481 0.004

1791 2.187 2.893 0.005

2047 2.499 3.304 0.005

2303 2.812 3.718 0.006

2559 3.125 4.124 0.006

2815 3.437 4.533 0.007

3071 3.750 4.946 0.007

0.434

0.436

0.438

0.440

0.442

0.444

0.446

0.448

0 10 20 30 40 50 60 70 80 90 100

A
n

g
u

la
r

V
el

o
ci

ty
 (

ra
d

/s
)

Time (s)

Measurement Mean +/- s

34

The mean angular velocity increased linearly with respect to the control input (Figure

10). Inverting the linear regression equation provided a calibration equation for the

control input to attain a desired output speed (Equation 9).

Figure 10: Linear Regression of Mean Angular Velocity versus Control Input

 () Equation 9

3.4 Conclusions

The rotary test fixture was able to precisely control the angular velocity of a GNSS

receiver or TTS target up to 5 rad/s with a standard deviation of 0.007 rad/s. Placing the

GNSS receiver or TTS target at a 1 m radius will result in an instantaneous velocity of 5

m/s with a standard deviation of 0.007 m/s. These specifications are well within the

speed requirements defined in ISO 12188-1.

y = 0.0016x + 0.0263

R² = 1

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0 500 1000 1500 2000 2500 3000 3500

A
n

g
u

la
r

V
el

o
ci

ty
 (

ra
d

/s
)

Control Input

Mean (rad/s) Linear (Mean (rad/s))

35

CHAPTER 4: TRACKING TOTAL STATION TESTING

4.1 Introduction

The evaluation of dynamic GNSS and auto-guidance accuracy has been accomplished

using several methods. One method uses a test fixture which confines a GNSS receiver

to an known open track (Taylor et al., 2004) or closed track (Stombaugh et al., 2008).

The other method uses a highly accurate measurement system to determine a reference

path from which performance characteristics can be derived (Easterly et al., 2010).

Up to this point, dynamic GNSS and auto-guidance testing have focused on pass-to-pass

accuracy and off-track error. While this may be sufficient for many field operations

including harvesting and tilling, it fails to address performance characteristics in variable

rate and precision planting applications.

Al-Gaadi and Ayers (1999) demonstrated a system where GIS and GPS are used to

spatially prescribe application rates based on site-specific needs. They used a laptop

computer as a control interface between a GPS receiver and a chemical pump to adjust

the application rate based on the current position and the desired application rate.

Luck et al. (2011) estimated that off-rate errors from GNSS position data due to turning

movements have resulted in up to 24% of a field receiving the wrong application rate.

Zandonadi et al. (2011) developed a computation tool for estimating off-target

application areas for a given field boundary. Results from nine field boundaries showed

that off-target application area varied from 9% to 24% and could be reduced to less than

1% when using individual section control.

36

In all of these studies, the along-path error of the vehicle was ignored. This can be

attributed to not having a viable method for measuring or predicting along-track error.

Along-track error may significantly change the interpretation of field data or predictions

of application rate in simulations. For example, GNSS latency in a section control

scenario will cause the system to incorrectly apply material near boundary transitions. A

measurement system is needed that can independently verify position accuracy under

dynamic conditions that includes off-track and along-track error.

A tracking total station (TTS) is a survey grade instrument capable of precisely tracking a

prism or other target under dynamic conditions (Krischner and Stempfhuber, 2008).

Sama et al. (2009) showed that a TTS can be accurately tied in to the local coordinate

systems used in standardized GNSS and vehicle guidance testing to within several

millimeters. These features make a TTS a possible candidate for a position reference

from which dynamic GNSS accuracy and auto-guidance performance can be evaluated

against. Krischner and Stempfhuber (2008) identified that the accuracy of a TTS under

dynamic conditions is limited by varying latency, lack of internal synchronization

between measurement subsystems, and the quality of the target. Some of these

limitations have been addressed by modern systems and the authors concluded that a TTS

can perform kinematic measurements up to 50 m with an accuracy of a few millimeters.

Testing was limited to a straight path and only off-track error was measured, which may

not describe how a TTS will perform when the target travelling at higher velocities or

along a curved path. Other issues such as the latency between the TTS measurement and

when that measurement is transmitted limit the usefulness for evaluating along-track

37

error. Time discrepancies of a few milliseconds could result in several centimeters of

additional error. The amount of latency as well as the variability in latency must be

known to better understand how accurately a TTS can track a moving target.

Using a TTS to asses GNSS accuracy and auto-guidance performance requires

synchronizing two independent measurement systems. A GNSS device computes

position at consistent interval that is accurate to within a microsecond of universal

coordinated time (UTC) (Daly et al., 1991). A TTS on the other hand operates

independently of any external clock source. This creates an issue where GNSS and TTS

measurements do not line up temporally. Calculating the error of a GNSS measurement

requires a reference that can be sampled synchronously with GNSS time. Therefore, an

interpolation method is needed to synchronize TTS measurements with GNSS time.

Many GNSS devices include a pulse-per-second (PPS) output that indicates the GNSS

second interval. This signal can be used to determine when a TTS measurement has been

made relative to GNSS time.

4.1.1 Objective

The objectives of this study were to:

 determine the latency present in a TTS measurement.

 determine the horizontal measurement error when compensating for latency.

 develop an interpolation method to calculate the TTS target position at the GNSS

time interval.

38

Parameters including the sight distance from the TTS to the target and angular velocity of

the target were investigated to see what influence they had on accuracy and precision.

4.2 Materials and Methods

4.2.1 Test Procedures

Latency of the TTS measurement relative to the test fixture was evaluated using two

different targets. The first target was a prism-based device with eight individual prisms

for tracking in any direction. The second target was an active reflector based machine

target which was designed for position control of construction equipment. Seven data

sets were recorded for varying angular velocities. Each data set consisted of 256

measurements. Horizontal position error of the TTS measurement relative to the test

fixture was evaluated using only the active reflector machine target. Thirty-three data

sets were recorded for eleven varying angular velocities at three sight distances from the

TTS.

4.2.2 Data Collection

The test fixture was operated via PC through an embedded controller. The controller

served an interface between the PC and VFD as well as a signal timing device for time-

stamping TTS position measurements and PPS events. Two RS-232 serial ports (19200-

8-N-1) were used to send and receive command, timing, and position data. The first

serial port was configured to receive speed and direction commands from the PC and

send PPS event timestamps along with the fixture position. The second serial port was

configured to receive position measurements from the TTS and retransmit each

measurement to the PC along with a timestamp and fixture position. A program was

39

written using Microsoft Visual Studio 2010 to record data into a comma-separated-value

(CSV) file and allow the speed and direction input (Figure 11).

Figure 11: PC Program for Fixture Control and TTS Data Logging

4.2.3 Data Processing

The data streams from the test fixture controller were compiled and stored in a CSV file

format. Each data file contained nine elements (Table 5).

Table 5: Sample Data File

n

1 49020 5264 -0.62628 -0.10485 -0.6321 0.002357 -0.00247 16098 4870

2 6963 5547 -0.59786 -0.21397 -0.62285 -0.10829 -0.00202 16098 4870

3 30298 5827 -0.55119 -0.31531 -0.59508 -0.21577 -0.00152 9953 5582

4 53880 6110 -0.48672 -0.40783 -0.54723 -0.3162 -0.00105 9953 5582

5 11745 6389 -0.40814 -0.48647 -0.48346 -0.40749 -0.00062 3825 6293

40

The column contained the result of a 16-bit timer running at 58.59375 kHz. The

 column represented the text fixture angle measured by the encoder. The and

 columns were the actual horizontal location of the TTS target when TTS position

measurement was received. The , and columns were the 3-D location

measured by the TTS. The and columns were the 16-bit timer value and

fixture angle at the most recent PPS event.

The average TTS measurement latency was determined using a MATLAB script

(Appendix 7) that read in the CSV file. The time stamp (Equation 10) and encoder angle

(Equation 11) of two subsequent measurements were used to calculate an instantaneous

angular velocity (Equation 12). The test fixture angle (Equation 13) based on the TTS

measurement was calculated from the xTTS and yTTS coordinates using a four-quadrant

arctangent function. The latency of each measurement (Equation 14) was calculated by

taking the difference between the actual fixture angle and TTS measured fixture angle,

and dividing by the angular velocity.

 [] () {

 [] []

 [] []

 [] []

 Equation 10

 [] () {

 ([] [])

 [] []

 ([] [])

 Equation 11

41

 [] (

)

 []

 []
 Equation 12

 [] () {

 ([] []) []

 ([] []) []
 Equation 13

 [] ()

{

 [] []

 []
 [] []

 [] []

 []

 Equation 14

TTS measurement error was evaluated using a MATLAB script that interpolated the

location of the total station at a PPS event while taking TTS latency into account. First,

the and columns were processed for changes in content. A change in PPS

values indicated that a PPS event had occurred before the current TTS measurement.

There were typically 102 PPS events for every 256 TTS measurements. Four TTS points

and their respective timestamps were used to calculate a third-order interpolation

functions in the horizontal directions, two before the PPS event and two after (Equation

15). The time at which the PPS event occurred was then used as an input to the

interpolation functions for estimating the total station position at the exact time of the

PPS event (Equation 16). The process was repeated for every PPS event in the data set

with at least two TTS measurements before and after the PPS event.

42

[

]

[

 []

 []
 []

 []
 []

 []

 []
 []

 []

 []
 []

 []]

[

 []

 []

 []

 []]

 Equation 15

 ([]

) ([]
) ([]) Equation 16

4.3 Results and Discussion

4.3.1 Latency Results

The average latencies were determined to not differ significantly between the prism and

reflector targets for all angular velocities tested based on a single factor ANOVA

(). However, there was a significant difference in the average latency for each

target with respect to angular velocity. The prism target had a P-value of 0.016 while the

reflector target had a P-value less than 0.001. More importantly, the variability in latency

measurements between the prism and reflector targets was not the same (Figure 12).

43

Figure 12: Latency Results for Prism and Reflector Targets

The prism target exhibited an increasing trend in the standard deviation of latency,

ranging from 0.0131 to 0.0731 seconds. The reflector target standard deviation of latency

measurements were consistently smaller and had a range from 0.0017 to 0.0100 seconds

(Table 6).

Table 6: Summary of Latency Results

 Prism Target Latency Reflector Target Latency

Angular Velocity

(rad/s) Mean (s)

Standard Deviation

(s)

Mean

(s)

Standard Deviation

(s)

0.442 0.2583 0.0131 0.2617 0.0100

0.847 0.2522 0.0182 0.2543 0.0060

1.251 0.2486 0.0282 0.2521 0.0017

1.660 0.2478 0.0346 0.2514 0.0026

2.069 0.2508 0.0435 0.2520 0.0032

2.482 0.2589 0.0710 0.2483 0.0063

2.894 0.2485 0.0731 0.2464 0.0066

 Mean 0.2522 0.0402 0.2523 0.0052

0.15

0.18

0.21

0.24

0.27

0.30

0.33

0.36

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

L
a

te
n

cy
 (

s)

Angular Velocity (rad/s)

Prism Target +/- 1σ Reflector Target +/- 1σ

44

4.3.2 Interpolation Results

The average measurement errors in both horizontal directions and at varying speeds were

highly correlated (Table 7).

Table 7: Correlation of TTS Measurement Error for Direction and Distance

4.255 m 14.689 m 30.184 m

4.255 m
 1.000 0.997 0.998 0.999 0.998 0.999

 0.997 1.000 0.998 0.999 0.997 0.999

14.689 m
 0.998 0.998 1.000 0.999 0.999 0.999

 0.999 0.999 0.999 1.000 0.999 0.999

30.184 m
 0.998 0.997 0.999 0.999 1.000 0.998

 0.999 0.999 0.999 0.999 0.998 1.000

Single factor ANOVA () was used to test for significant differences in the

magnitude of position error between differences in distance from the TTS at varying

angular velocities. There was a statistically significant difference in the average error for

angular velocities for 0.000, 0.441 and 0.847 rad/s, but the actual average amount of

difference was less than 1.5 mm. There was no significant difference in the average error

for all other angular velocities (Table 8).

Table 8: Mean and Standard Deviation of Position Error Magnitude for varying Sight

Distances and Angular Velocities

Angular

Velocity

(m/s)

4.255

m

14.689

m

30.184

m
P-value

0.000
0.0030 0.0029 0.0015

< 0.001
0.0005 0.0002 0.0003

0.441
0.0041 0.0038 0.0046

0.004
0.0018 0.0013 0.0020

0.847
0.0069 0.0079 0.0081

0.006
0.0021 0.0029 0.0029

1.251
0.0104 0.0107 0.0111

0.114
0.0024 0.0027 0.0023

45

1.660
0.0164 0.0170 0.0164

0.205
0.0033 0.0024 0.0025

2.069
0.0243 0.0245 0.0242

0.868
0.0054 0.0033 0.0035

2.481
0.0343 0.0351 0.0353

0.377
0.0062 0.0052 0.0046

2.893
0.0477 0.0490 0.0500

0.163
0.0094 0.0091 0.0060

3.303
0.0651 0.0663 0.0680

0.335
0.0159 0.0141 0.0098

3.718
0.0880 0.0881 0.0900

0.708
0.0195 0.0184 0.0176

Mean (m)

Stadard Deviation (m)

Both the mean and standard deviation of error tended to increase as angular velocity

increased. The larger amount of variability in error at higher angular velocities was

expected as any variation in latency is directly reflected to position error. There is

evidence that filtering in the TTS may have introduced additional position error. The

horizontal position measurement tended to shift towards the point of rotation as angular

velocity increased (Figure 13). This may be due to low-pass filtering inside the TTS for

noise reduction.

46

Figure 13: Horizontal Position Error versus Angular Velocity

4.4 Conclusions

Testing has shown that the prism and reflector targets have a similar average latency.

The variability in latency for the prism target was several times greater than the reflector

target. Since averages cannot be used for position measurements made on-the-fly, it is

recommended that the prism target not be used for dynamic applications where

millimeter resolution is required. There is a distinct and significant trend in average

latency for the reflector target. However, this may have resulted from TTS measurement

error and not actual latency. As angular velocity increased, position error increased,

which may have had an effect on the calculated phase shift between the TTS and test

fixture.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Test Fixture 0.441 rad/s 3.781 rad/s

47

Distance from the TTS to the reflector target was shown to not have a significant effect

on measurement error for most angular velocities tested. In the cases where there was a

significant difference, that difference was less than 1.5 mm, which fulfills the order-of-

magnitude accuracy requirement prescribed by the ISO 12188-1 standard. At higher

angular velocities, the accuracy of the TTS is at a similar level to the static accuracy

specified for most RTK GNSS devices. It is not known whether or not this level of

accuracy will suffice for dynamic GNSS at angular velocities because no data on

dynamic GNSS accuracy at high angular velocities has been published. Furthermore, no

comparison has been made between angular velocity and actual speed. It has been

assumed that constant change in direction is one of the worst case scenarios for the TTS

because the system is marginally stable. Both the TTS, and the interpolation method

used to calculate TTS position at PPS events are expected to perform better when

travelling in straight paths.

48

CHAPTER 5: DYNAMIC GNSS ERROR MODELING

5.1 Introduction

Much of the research on dynamic GNSS receiver accuracy focuses on testing GNSS

receivers under simulated agricultural operations. This includes features such as long

parallel passes connected by curved sections. While this technique has proven useful for

determining pass-to-pass accuracy and cross-track errors, it cannot be used directly to

determine along-track error.

Along-track error is an important component in variable rate and precision planting

applications where the position along a path is required for precise placement of a

material. Determining along-track error from test fixtures prescribed by ISO 12188-1 can

be difficult due to error in the measurement system of a test fixture.

Highly accurate RTK GNSS receivers are also difficult to test using the ISO 12188-1

standard because their accuracy exceeds the accuracy of the measurement systems used

in the test fixture. The standard requires a position reference one order of magnitude

more accurate than the device being tested. If an RTK GNSS receiver has an expected

dynamic accuracy of a few centimeters, than the accuracy of the position reference must

be a few millimeters.

Test fixtures such as the University of Kentucky GPS Test Track (Cole et al., 2004) were

designed to primarily quantify off-track error. However, a well-defined path cannot be

used to determine along-track error or exactly determine off-track error. Instead, off-

track error is calculated as the shortest distance between a GNSS measurement and the

49

predetermined path and may include a vector component of along-track error.

Incorporating a real-time position measurement system for determining position along a

predetermined path has not been published in literature. This is likely due to the lack of

viable position measurement systems that function at millimeter level accuracies over

scales required by ISO 12188-1. More instrumentation is needed than just a physical test

fixture to calculate along-track error and off-track error in curved segments.

In order to develop dynamic GNSS error models, a rotary test fixture can be used to get

an indication of how the mean and standard deviation of error will change with respect to

angular velocity as well as any internal settings of the GNSS receiver. A small rotary test

fixture has the additional advantage of being physically rigid which improves the

accuracy of the overall measurements system.

5.1.1 Objective

The objective of this study is to develop dynamic error models for a GNSS receiver for

varying angular velocity and receiver settings, with an emphasis on the distribution of

error.

5.2 Materials and Methods

5.2.1 Test Procedures

GNSS and rotary fixture data were recorded for angular velocities of 0.824, 1.423, 2.018,

2.618, and 3.222 rad/s at a 1 m radius. Each data set contained 4 hours of continuous

measurements and was replicated three times. Trimble AgGPS 252 (V3.70) and Trimble

MS990 GNSS (V4.40) receivers were configured to transmit the NMEA GPGGA

(38400-8-N-1) string at a frequency of 1 Hz. The AgGPS 252 was mounted on the test

50

fixture and the MS990 was used as a static reference for identifying uncontrollable GNSS

accuracy issues that might affect the experiment. Both receivers were configured to their

factory default settings and received RTK corrections from a Trimble NetR8 GNSS

Reference Receiver (V4.70) base station. The position of the base station was established

by recording 4 hours of raw GNSS measurements. The raw measurements were post-

processed using the Online Positioning User Service (OPUS). OPUS used the raw

measurements in conjunction with the Kentucky Transportation Cabinet’s (KTC)

Continuously Operating Reference Station (CORS) network to determine the average

position of the base station.

The PPS signal from the AgGPS 252 receiver was connected to the signal timing device

and used to time stamp GNSS measurements with the relative fixture time and position.

The AgGPS 252 included the ability to adjust the amount of position filtering between

four levels; none, normal, high, and max. Each level was tested for this receiver to better

understand how position filtering affects dynamic position measurement accuracy.

A PC program was written to interface with the test fixture and provide data logging

capabilities (Figure 14, Appendix 3). GNSS measurements and corresponding test

fixture time and position were stored in a CSV file for post processing. The date, time,

and fixture setting for each test were used to construct the filename for each test (Figure

15).

51

Figure 14: PC Program for Fixture Control and GNSS Data Logging

“mm-DD-YYYY_HH-MM-SS_FFFF.csv”

mm = Month, DD = Day, YYYY = Year,

HH = Hour, MM = Minute, SS = Second,

FFFF = Fixture Setting

Figure 15: GNSS Data Filename Schema

5.2.2 Importing GNSS and Fixture Data into MATLAB for Processing

Data sets were imported into MATLAB for post processing. A script, GNSSanaylis.m

(Appendix 8.1), was written to automate data importation and processing. The script

used two strings to identify files that corresponded to a single test. The first was a folder

string that contained the full path of the folder where all data files from test were stored.

The second was a filename string which identified a file containing the names of the data

52

files to be processed (Figure 16). The filename string was always set to “FileList.txt” and

the corresponding file was placed in the same folder as the data to be processed.

Figure 16: File List used for Importing GNSS and Fixture Data into MATLAB

The script iterated through each line in “FileList.txt” and concatenated the filenames with

the folder string which resulted in a list of filenames with their full paths. Each data file

was then imported using the built in xlsread() function and stored as an element in a cell-

structure array.

5.2.3 Calculating X/Y GNSS Position Error

GNSS measurements were converted from the NMEA format to decimal degrees and

then transformed into a local coordinate system centered about the test fixture using the

ellipsoid transformation prescribed by ISO 12811-1 (ISO, 2010). A reference latitude of

53

38.02700334 degrees North and reference longitude of -84.50963172 degrees East was

defined as the origin of the test fixture and determined by averaging the output of a RTK

GPS receiver for 15 minutes mounted atop the center of rotation of the fixture. The

transformation between radians and meters was 110996.411 m/rad and 87799.791 m/rad

for latitude and longitude, respectively. Local coordinates were calculated by taking the

difference between the GNSS receiver and the test fixture origin in radians, and

multiplying by the corresponding transformation.

The optical encoder on the test fixture was used to determine the local X/Y coordinates of

the test fixture. The encoder position , which varied between 0 and 10,000, and , a

constant for rotating the text fixture polar coordinate system to be in phase with the local

coordinate system used for GNSS measurements were used to calculate the test fixture

X/Y coordinates (Equation 17).

 (

)

 (

)

 Equation 17

The X/Y coordinates for both the GNSS measurements and text fixture were plotted for

each data set to visualize the application of the local transformation (Figure 17).

54

Figure 17: X/Y GNSS Measurements and Test Fixture Position Plot at 2.618 rad/s

Error in the X/Y cardinal directions were calculated by taking the difference between a

GNSS measurement and the test fixture measurement for each sample (Figure 18). In

some cases the X/Y error exhibited a directional dependence which was a result of the

individual X and Y error distributions having a different mean and standard deviation of

error.

-1.1

-0.55

0

0.55

1.1

-1.1 -0.55 0 0.55 1.1

Y
 (

m
)

X (m)

GNSS Measurement Fixture Position

55

Figure 18: X/Y Error Plot at 2.62 rad/s

5.2.5 Calculating Along- and Off-Track Error

Off- and along-track errors relate position error with the direction of a vehicle in terms of

the ability to track a predetermined path and the ability to perform and operation along

the path, respectively. Along- and off-track error can be calculated directly from the X/Y

errors in the cardinal directions by rotating the error about the reference point (Figure

19).

-0.05

-0.025

0

0.025

0.05

-0.05 -0.025 0 0.025 0.05

e Y
 (

m
)

eX (m)

56

x

y

x'

y'

θ

ex

ey

ex'

ey'

 – Reference

 – GNSS

y' – Along Track

x' – Off Track

e – Error

θ – Heading

Figure 19: Cardinal and Reference Coordinate Systems

The amount of rotation is determined by the heading of the reference point relative to the

original coordinate system. Because the rotary test fixture was centered at the coordinate

(0,0), the heading at any reference measurement is the four-quadrant arctangent of the

ratio of the y and x coordinates (Equation 18). The along- and off-track errors are

calculated using a rotation transformation (Equation 19) and an example of the results are

show in Figure 20.

 [] (
 []

 []
)

Equation 18

 [
 []

 []
] [

 ([]) ([])

 ([]) ([])
] [

 []
 []

]
Equation 19

57

Figure 20: Along-/Off-Track Error Plot at 2.62 rad/s

Note that the direction dependence for the data in Figure 18 is no longer present in the

same data that has been rotated about the receiver in Figure 20.

5.3 Results and Discussion

5.3.1 X/Y Position Error Results

The standard deviation of error in the X and Y cardinal directions increased with respect

to angular velocity (

Table 9 through Table 12). The amount of filtering had a direct effect on the the standard

deviation of error. The standard deviation of error steadily increased between no filter

-0.05

-0.025

0

0.025

0.05

-0.05 -0.025 0 0.025 0.05

A
lo

n
g
-T

ra
ck

 E
rr

o
r

(m
)

Off-Track Error (m)

58

and max filter settings on the receiver. The mean error was close to zero in every

instance.

Table 9: X/Y Mean Error and Standard Deviation of Error – No Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error X Y X Y X Y X Y X Y

Mean -0.002 -0.002 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001

StDev 0.014 0.016 0.014 0.014 0.014 0.014 0.015 0.015 0.019 0.020

Table 10: X/Y Mean Error and Standard Deviation of Error – Normal Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error X Y X Y X Y X Y X Y

Mean 0.000 -0.003 -0.001 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001

StDev 0.016 0.017 0.016 0.015 0.016 0.016 0.019 0.019 0.022 0.023

Table 11: X/Y Mean Error and Standard Deviation of Error – High Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error X Y X Y X Y X Y X Y

Mean -0.001 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001

StDev 0.023 0.025 0.025 0.024 0.021 0.020 0.023 0.023 0.026 0.027

Table 12: X/Y Mean Error and Standard Deviation of Error – Max Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error X Y X Y X Y X Y X Y

Mean -0.001 -0.002 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001

StDev 0.024 0.026 0.024 0.022 0.024 0.023 0.025 0.025 0.028 0.029

The level of filtering changed the shape of the distribution of error. Discrete probability

density functions were computed for each angular velocity and filter level. Lower filter

levels generally produced normal distributions (Figure 21) for all angular velocities while

59

higher filter levels produced uniform distributions (Figure 22). A complete set of the

discrete probability density functions in the X/Y directions can be found in Appendices

4.1 through 4.4.

Figure 21: X/Y Error Discrete Probability Density Functions at 2.62 rad/s – No Filter

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

60

Figure 22: X/Y Error Discrete Probability Density Functions at 2.62 rad/s – Max Filter

5.3.2 Along- and Off-Track Position Error Results

The trends in along- and off-track error were similar to what was observed in the X and Y

cardinal directions. The standard deviation of error in the along- and off-track directions

increased with respect to angular velocity (Table 13 through Table 16). The amount of

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

61

filtering had a direct effect on the the standard deviation of error. The standard deviation

of error steadily increased between no filter and max filter settings on the receiver.

Additionally, there was no significant difference between the mean error (t-test, p = 0.05)

and standard deviation of error (F-test, p = 0.05) in the along- and off-track directions

with the exception of a single test at 1.42 rad/s and high filtering (Figure 23 and Figure

24). The mean error was less than 1 mm in every instance.

Table 13: Along-/Off-Track Mean Error and Standard Deviation of Error – No Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error Off Along Off Along Off Along Off Along Off Along

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StDev 0.015 0.015 0.014 0.014 0.014 0.014 0.015 0.015 0.019 0.029

Table 14: Along-/Off-Track Mean Error and Standard Deviation of Error – Normal Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error Off Along Off Along Off Along Off Along Off Along

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StDev 0.016 0.016 0.015 0.015 0.016 0.016 0.019 0.019 0.022 0.022

Table 15: Along-/Off-Track Mean Error and Standard Deviation of Error – High Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error Off Along Off Along Off Along Off Along Off Along

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StDev 0.024 0.024 0.024 0.026 0.021 0.021 0.023 0.023 0.026 0.026

Table 16: Along-/Off-Track Mean Error and Standard Deviation of Error – Max Filter

rad/s 0.82 1.42 2.02 2.62 3.22

Error Off Along Off Along Off Along Off Along Off Along

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StDev 0.025 0.025 0.023 0.023 0.023 0.023 0.025 0.025 0.028 0.029

62

Figure 23: Off-Track Standard Deviation of Error

Figure 24: Along-Track Standard Deviation of Error

0.010

0.015

0.020

0.025

0.030

0.500 1.000 1.500 2.000 2.500 3.000 3.500

σ
(m

)

Angular Velocity (rad/s)

No Filter Normal Filter High Filter Max Filter

0.010

0.015

0.020

0.025

0.030

0.500 1.000 1.500 2.000 2.500 3.000 3.500

σ
 (

m
)

Angular Velocity (rad/s)

No Filter Normal Filter High Filter Max Filter

63

Due to the similarities in mean error and standard deviation of error, the along- and off-

track errors are presented together as a single discrete probility distribution function for

each angular velocity and filter level. Lower filter levels generally produced normal

distributions (Figure 25) for all angular velocities while higher filter levels produced

uniform distributions (Figure 26). A complete set of the discrete probability density

functions in the along- and off-track directions can be found in Appendices 5.1 through

5.4.

Figure 25: Along/Off-Track Error Discrete Probability Density Functions at 2.62 rad/s –

No Filter

0.00

0.05

0.10

0.15

0.20

0.25

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

64

Figure 26: Along/Off-Track Error Discrete Probability Density Functions at 2.62 rad/s –

Max Filter

5.4 Conclusions

The angular velocity and filter level of an AgGPS 252 GPS receiver was shown to have

no significant effect on the average error over a 20 hour period. However, the standard

deviation of error tended to increase at higher angular velocities. Increases in the filter

level also resulted in larger standard deviations in error. The difference in standard

deviation between the best and worst tests at each filter level was nearly two-fold. This

indicates that GNSS receiver dynamics may play an important role in estimating and

measuring field performance of agricultural machinery that utilize satellite based

positioning systems.

Along- and off-track errors were shown to be remarkably similar when testing under

steady-state sinusoidal conditions. This trend was not expected, as increasing angular

0.00

0.05

0.10

0.15

0.20

0.25

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

65

velocities and filter levels were hypothesized to result in a phase shift and/or a change in

the magnitude of error. Neither was observed in any test. The only consistent significant

difference in results between testing parameters was the standard deviation of error.

Given the wide range of distributions, and their shapes, it can be concluded that a mean

and standard deviation alone is not enough to fully define dynamic GNSS error.

Distributions tended to fall somewhere between normal and uniform. A discrete

probability density function for each scenario is one way to get around the issue of the

non-stationary distributions between testing parameters. However, the changes in the

distributions of error are small when compared to the scale of field operations.

Differences in standard deviations on the sub-millimeter level alone are not likely to

result in any measureable performance difference in field operations. More research is

needed to understand how the variability in GNSS measurements translates into overall

machine performance and ultimately field performance.

66

CHAPTER 6: APPLYING A DYNAMIC GNSS ERROR MODEL

6.1 Introduction

6.1.1 Background

Precision agriculture techniques are adopted based on the potential economic benefit of

reducing inputs or increasing production. Numerous studies have shown the economic

benefit of adopting these practices (Watkins et al., 1998); (Silva et al., 2007);

(Thrikawala et al., 1998); and (Robertson et al., 2009). Some of these techniques rely on

GNSS receivers for navigation while others do not. Technology including variable-rate

spraying, section control spraying, strip till fertilizing, and precision planting all use

GNSS receivers for position, speed, and orientation measurements. Broadcast fertilizing

and harvesting commonly use GNSS receivers for navigation and data collection but the

error in position measurement is relatively small when compared to the varibilitly of the

process. The ammount of potential economic benefit from knowing how much error is

present in position measurement will depend on the application. Predictions of overlaps

and skips and application rate can be refined to include position error.

One way to calculate the direct economic benefit of choosing between GNSS systems of

varying accuracies would be to determine if there is any measureable difference in

performance at the scale that is required to complete the management operation. If there

is no advantage to using RTK level corrections over a cheaper method for a given

application, then the additional capital cost can be viewed as directly reducing profit.

Setting up a local base station, data radios, and unlocking the RTK capability of a GNSS

67

can be cost prohibitive. This may make sense economically for a large farm if multiple

machines are running simultaneously because sattelite-based corrections require annual

suscriptions for each device that can quicky add up to more than a ground based solution.

Smaller farms are more likely to have less capital available for investing in top-of-the-

line navigation equipment, and yet the performance may not differ significantly when

using lower cost sattelite based corrections.

6.1.2 Visualizing GNSS Accuracy

Visualizing the standard deviation of error as a probability density function illustrates the

difference between the multiple accuracy specifications when using different DGPS

methods (Figure 27). A “good” estimate of the standard deviation of error is 2.54 cm, an

“average” estimate of the standard deviation of error is 10.2 cm, and a “poor” estimate of

the standard deviation of error is 1 m. These specifications were derived from a single

Trimble AgGPS 262 receiver under RTK, Omnistar HP, and Omnistar VBS corrections,

respectively. The distribution of error is assumed to be Gaussian with zero mean.

Realistically, there would be an offset in the mean error when switching sources of DGPS

correction. Note that the distributions shown in Figure 27 are continuous for illustration

purposes. The actual distributions used in the dynamic GNSS error model are discrete

probability density functions.

68

Figure 27: Good, Average, and Poor Standard Deviation of Error for GNSS Receivers

Preliminary data has shown that there is change in the distribution of error with respect to

the mean and standard deviation when comparing the correction method and between

static and dynamic tests (Table 17) (Sama et al., 2009). One way to interpret the data is

using the criteria shown in Figure 27. The GNSS receiver had a “good” standard

deviation of error under static RTK conditions but became “average” once the receiver

was placed in motion.

Table 17: Error Distribution for a Static and Dynamic GNSS Receiver

 Static RTK Dynamic RTK Static WAAS Dynamic WAAS

|x| (m) 0.016 0.065 0.776 0.258

σ (m) 0.003 0.131 0.091 0.070

6.1.3 Resolution of Computation

To emphasize the potential for computational error when applying GNSS error models, a

hypothetical example will be explored. This example illustrates that the effect of spatial

0

2

4

6

8

10

12

14

16

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

f X
(x

)

Error (m)

Good Average Poor

69

resolution on off-rate and off-target application error estimations due to overlaps and

skips in a field will change when the error distribution of the GNSS receiver is taken into

account. Off-rate is commonly referred to as an application rate that is outside +/- 10%

of the target rate (Luck et al., 2011). Figure 28 shows how a 25.4 cm (10 in) skipped or

overlapped area looks for each estimate standard deviation of error when compared to

theoretical skipped area of 25.4 cm. An application rate of 1 corresponds to 100% and 2

corresponds to 200%.

Figure 28: Application Error for Skipped (left) and Overlapped (right) Coverage

Under the ideal scenario, there are 9 samples out of 50 where the application rate was off-

rate when the spatial resolution is 2.45 cm and 19 samples out of 100 when the spatial

resolution is 1.27 cm. When a “good”, “average”, and “poor” estimate of the standard

devation of error was included, the number of off-rate samples inscreased to 11, 19, and 0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.25 0.51 0.76 1.02 1.27

A
p

p
li

ca
ti

o
n

 R
a

te

Distance (m)

Ideal Good Average Poor

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.25 0.51 0.76 1.02 1.27

A
p

p
li

ca
ti

o
n

 R
a

te

Distance (m)

Ideal Good Average Poor

70

for a spatial resolution of 2.54 cm. The results changed to 23, 39, and 0 samples that

were off-rate when the spatial resolution was doubled. A summary of the percent

difference from the ideal off-rate calculations is shown in Table 18. An imporant

observation is that theoretical off-rate error was underestimated when the error due to the

GNSS receiver was ignored. The spatial resolution at which off-rate error was calculated

also had an effect on the results. More investigation is needed to determine how the

spatial resolution should relate to the precision of the measurement being made. In the

case when a “Poor” quality estimate for the standard deviation of error is used, the

position error is so large with respect to the process that an off-rate calculation should not

be made at either spatial resolution.

Table 18: Percent Change from an Ideal Off-Rate Calculation

Spatial

Resolution

(cm)

“Good” “Average” “Poor”

2.54 22.2% 111% -

1.27 21.1% 105% -

Another way to interpret the results is to use a binary threshold for deciding whether or

not material was applied in an area. This type of off-target comparison is more in line

with what is commonly considered in terms of overlap in a field (Luck et al., 2010). If

the decision boundary is set to 0.5 then both the “good” and “average” standard

deviations of error do not change the area at either spatial resolution while the “poor”

standard deviation of error inteferes with the ability to determine where a skipped or

overlapped area occurred. In other words, a GNSS receiver with and specified accuracy

71

of +/- 1 m is not adequate for determing skipped and overlapped areas 25.4 cm in width.

This kind of analysis might prove to be useful in determining what the minimum level of

GNSS accuracy needs to be in order to calculate overlapped and skipped areas at a

defined level of certainty.

6.1.4 How Much Accuracy is Needed?

The level of accuracy required for a given agricultural operation has not been presented

in very consistent manner throughout literature. One problem is that there historically

hasn’t been a standard method for expressing dynamic GNSS accuracy, and then relating

that accuracy to the expected performance of an agricultural operation. Manufactures

sometimes express relevant terms such as pass-to-pass accuracy of the GNSS receiver but

the specifications should only be used as a loose guideline unless they indicate the

method used to determine the results and whether or not they respresnet absolute or

relative error. It would be extremely useful for a farmer to be able to look up what type

of system is required to achieve a required level of performace for a specific application.

Refering to the hypothetical example in 6.1.3, if the goal is to use a GNSS based

navigation system to minimize off-target applications due to overlaps and skips greater

than 25.4 cm (10 in), then there is no measurable advantage to using RTK over Omnistar

HP. However, if the goal is to minimize off-rate applications to within specifications

between passes, RTK outperforms Omnistar HP by approximately 80%. These

calculations are based solely on static accuracy specifications, which as previously stated

are better than dynamic accuracy specifications.

At low spatial resolution processes, such as yield monitoring or broadcast fertilizing, the

ammount of averaging or filtering throughout the entire process is so large that

72

estimating the additional error due to dynamic GNSS accuracy is not practical.

Therefore, the primary focus on feasibility in this chapter will be with section control and

variable-rate technologies where precise placement of material inside a boundary is

critical to efficiency. As more and more manufacturers move to individual nozzle control

in their sprayers, the spatial resolution of actuation approaches the nozzle spacing across

the boom and depends on the vehicle speed and control update rate in the direction of

travel.

6.1.5 Applying a GNSS Error Model using Convolution

Assuming GNSS receivers exhibit random fluctuations in position output with respect to

time, the two dimensional position can be modeled as a multivariate random process.

Determining the appropriate model to use requires testing the receiver in a repetitive

method to better understand the distribution of error with respect to parameters which

have an effect on error. The simplest method assumes that the random process is

stationary, or has a constant distribution regardless of varying dynamics and latency. As

such, the direction and speed of an agricultural process will not change the estimated

position error. Incorporating this error into an input map can be performed by applying a

convolution summation between the recorded input map and estimated position error.

If, for example, the position error of a typical GNSS receiver happens to exhibit a

bivariate normal distribution with no cross-correlation between the x and y directions,

then the model for error would be as follows.

 []

(

)

(

)

73

where,

The random error can be visualized in either two or three dimensions (Figure 29). As

with all discrete probability density functions, the sum off all of the “pixels” in the 2D

model, or the area underneath the surface of the 3D model is exactly one as long as the

extent of the model is large enough to encompass all values. Since a Gaussian

distribution is defined for all values, it must be clipped and normalized to ensure a proper

summation.

Figure 29: Bivariate Gaussian Distribution

74

If the cumulative distribution did not add up to one for a certain extent, then

incorporating position error into an input map would produce a difference in the total

amount of material input to a field. Ensuring that the sum of the pixels adds to one

requires controlling the extent of the error distribution to a reasonable amount if the

dynamic GNSS error model is continuous or discretizing the dynamic GNSS error model

prior to application. Larger extents ensure less computational error but increase the time

required to perform the computation. The greater the standard deviation in each

direction, the larger the extent required. Taking these requirements into consideration,

convolving the prescribed input map with the GNSS receiver error distribution will

simply redistribute the location of inputs to reflect the uncertainty in position (Figure 30).

Figure 30: Convolution of an Input Map with a Position Error Distribution

The most noticeable effect in the output is the loss of sharp transitions. Binary field

inputs such as turning sprayer nozzles on and off no longer produce binary transitions as

the exact location where they occur is no longer assumed to be precisely known. These

75

transitions are of great importance when calculating areas where application rates deviate.

Note that the predicted field inputs only change around the boarders. This property may

prove useful to reduce the complexity of estimating application error when incorporating

a dynamic GNSS receiver error model.

Assuming the position error distribution of a GNSS receiver to be a stationary process is

convenient for calculation purposes but may not correctly reflect the true nature of the

error. More complicated models will include parameters such as latency, which is

manifested as a shift in the mean error depending on the direction of travel. Allowing the

error distribution model to change with respect to direction required the convolution

between an input map and an error distribution to be divided into separate intervals for

each unique error distribution. To achieve this using a discrete method, the convolution

sum must be manually compiled point by point, taking into consideration the error

distribution at that location.

For example, if the position error of a typical GNSS receiver exhibited a bivariate normal

distribution with no cross-correlation between the x and y directions and a shifted mean

based upon the speed and direction of travel due to GNSS receiver latency, then the input

map corrected for position error will exhibit a similar shift (Figure 31).

76

Figure 31: Directional Error Distributions

Applying the directional filter to the original input map redistributed the location of

inputs with respect to the direction of travel (Figure 32).

Figure 32: Visualizing Directional Error

77

Once again, the predicted field inputs only change around the borders. In fact, the

amount of material that is applied outside of the field boundary due to latency in the

GNSS error model approaches the same value as the amount of material applied inside

the field boundary when the size of the field increases or the width of each pass

decreases. Therefore, the focus on applying a dynamic GNSS error model in actual

applications should be placed on the boundary or perimeter of the field.

6.2 Materials and Methods

Square and circle field shapes were used to predict the amount of off-rate error due to

section control around the borders of a field when using three different levels of GNSS

accuracy. A calibration curve was generated for each level of GNSS accuracy that took

the perimeter to area (P/A) ratio as an input and output the expected amount of off-rate

error around the border. GNSS accuracy levels of 2.54 cm, 10.2 cm, and 100 cm with

bivariate normal distributions were used to represent “good”, “average”, and “poor” error

distributions, respectively (Figure 33).

Figure 33: GNSS Error Distributions

78

The off-rate error for ten square and ten circle field shapes with lengths and diameters

ranging from 1 to 10 m was determined at a resolution of 1 cm by convolving the error

distribution with the field shape (Figure 34). The application maps with GNSS error

were clipped to remove applications outside of the field boundary. This resulted in the

expected application rate inside the field boundary due to GNSS error (Figure 35).

Figure 34: Application Error in Square and Circle Fields

79

Figure 35: Application Error Inside Square and Circle Field Boundaries

Off-rate error was calculated by counting the number of square centimeter pixels that

deviated from the target rate by more than 10%. Off-rate errors were tabulated along

with field area, perimeter, and P/A ratio to determine the relationship between the P/A

ratio and the expected off-rate error. Appendix 9.1 contains the script used to estimate

off-rate application errors at the field boundary based on the P/A ratio.

Boundaries from nine fields were used to represent typical farms in Kentucky. The fields

were previously used by Zandonadi et al. (2011) to determine off-target application areas.

They ranged in area between 9.4 ha and 39.6 ha (Figure 36).

80

Figure 36: Field Boundaries used for Estimated Off-Rate Application Errors

Source: Zandonadi et al. (2011)

The field boundaries were imported into MATLAB at a resolution of 1 pixel per meter.

Converting a field boundary to an application map consisted of converting the boundary

to a binary image where pixels inside the border were assigned a value of 1 (white) and 0

(black) otherwise (Figure 37). The regionprops() function in MATLAB was used to

determine the area and perimeter of the field and the bwboundaries() function was used

to highlight the field boundary as a red line. Appendix 9.2 contains the script used to

estimate off-rate application errors at field boundaries from typical fields found in

Kentucky.

81

Figure 37: Binary Field Application Map with Highlighted Boundary

6.3 Results and Discussion

For square and circle field shapes, off-rate error as a percentage of field area decreased as

the field area increased (Table 19 and Table 20). Differences in off-rate error estimates

varied by as little as 0.1% and as much as 3.8% with the higher deviations occurring in

smaller field areas.

Table 19: Square Field Off-Rate Error Estimates

L/W (m) Perimeter (m) Area (m
2
) P/A 2.54 cm 10.2 cm 100 cm

1 4 1 3.92 11.7% 46.4% 100%

2 8 4 1.98 5.9% 24.6% 100%

3 12 9 1.33 4.0% 16.7% 100%

4 16 16 1.00 3.0% 12.7% 99.5%

5 20 25 0.80 2.4% 10.2% 92.8%

6 24 36 0.67 2.0% 8.5% 84.6%

7 28 49 0.57 1.7% 7.3% 77.0%

8 32 64 0.50 1.5% 6.4% 70.3%

9 36 81 0.44 1.3% 5.7% 64.6%

10 40 100 0.40 1.2% 5.1% 59.6%

82

Table 20: Circle Field Off-Rate Error Estimates

Diameter (m) Perimeter (m) Area (m
2
) P/A 2.54 cm 10.2 cm 100 cm

1 3.1 0.8 4.00 12.8% 49.1% 100%

2 6.3 3.1 2.00 6.5% 25.3% 100%

3 9.4 7.1 1.33 4.3% 17.1% 100%

4 12.6 12.6 1.00 3.2% 12.9% 100%

5 15.7 19.6 0.80 2.6% 10.3% 96.5%

6 18.8 28.3 0.67 2.2% 8.6% 88.3%

7 22.0 38.5 0.57 1.9% 7.4% 80.4%

8 25.1 50.3 0.50 1.6% 6.5% 73.4%

9 28.3 63.6 0.44 1.4% 5.8% 67.3%

10 31.4 78.5 0.40 1.3% 5.2% 62.0%

Linear regressions were generated for the P/A ratios versus off-rate error estimates. The

offsets of the linear regressions were driven to zero to maintain the property that

percentage of a field containing off-rate errors due to GNSS accuracy approached zero as

the field area become very large. Square fields (Figure 38) exhibited a slightly smaller

slope than circle fields (Figure 39). This illustrated that the larger perimeter in circle

fields relative to area caused an increase in the estimated off-rate error due to GNSS

accuracy.

Figure 38: Square Field P/A Ratio versus Estimated Off-Rate Error

y = 0.0297x

R² = 1

y = 0.121x

R² = 0.998

y = 1.1985x

R² = 0.3181

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

E
st

im
a

te
d

 O
ff

-R
a

te
 E

rr
o

r

P/A Ratio

σ = 2.54 cm σ = 10.2 cm σ = 100 cm

Linear (σ = 2.54 cm) Linear (σ = 10.2 cm) Linear (σ = 100 cm)

83

Figure 39: Circle Field P/A Ratio versus Estimated Off-Rate Error

Estimated off-rate error due to GNSS accuracy was found to be small for the nine test

fields for all three GNSS accuracy levels tested (Table 21). Estimated off-track error at

2.54 cm and 10.2 cm levels of accuracy were less than 0.08% and 0.3%, respectively. At

a 100 cm level of accuracy, off-track error was never greater than 2.06%.

Table 21: Estimated Off-Track Error for Nine Typical Fields in Kentucky

Field

P/A

Ratio

σ = 2.54

cm

σ = 10.2

cm

σ = 100

cm

1 0.012 0.04% 0.14% 0.77%

2 0.018 0.06% 0.22% 1.22%

3 0.021 0.07% 0.26% 1.42%

4 0.017 0.05% 0.21% 1.14%

5 0.016 0.05% 0.19% 1.04%

6 0.025 0.08% 0.30% 1.65%

7 0.017 0.05% 0.21% 1.15%

8 0.020 0.06% 0.24% 1.32%

9 0.031 0.03% 0.10% 2.06%

y = 0.0321x

R² = 0.9999

y = 0.1245x

R² = 0.999

y = 1.237x

R² = 0.1011

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

E
st

im
a

te
d

 O
ff

-R
a

te
 E

rr
o

r

P/A Ratio

σ = 2.54 cm σ = 10.2 cm σ = 100 cm

Linear (σ = 2.54 cm) Linear (σ = 10.2 cm) Linear (σ = 100 cm)

84

6.4 Conclusions

A method for estimating off-rate error from an application map and a GNSS error

distribution was discussed. The estimated off-rate error was limited to the boundary of

the field, and therefore is likely to represent a lower limit on off-rate error due to dynamic

GNSS accuracy. In other words, the off-rate errors due to parallel passes were ignored in

this study. As a result, the estimated off-rate errors as a percentage of the field area were

small. One limitation of this type of analysis was that it was done in a raster format.

This limited both the size of the maps and the resolution to which off-rate error could be

calculated. Converting the analysis to a vector format may allow more precise estimates

of off-rate errors at field boundaries, as well as the ability to estimate off-rate and off-

target errors throughout the entire field.

85

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.1.1 Synchronizing Serial Data Streams with GNSS Time

The timing device developed in this study was designed to accurately time-stamp PPS

signals and asynchronous serial data streams to within 17.1 µs. Validation showed that

the sensor board time measurements closely matched time measurements made with a

digital oscilloscope. The variability between the two measurement systems was

negligible when considered for agricultural applications. Assuming a maximum vehicle

speed of 10 m/s, all results showed that position error would be less than 1 mm as a result

of errors in time measurement. This system will be useful for testing GNSS devices and

auto-guidance systems under the ISO-12188 standard. The precision of this system may

be improved by removing the restriction that all time comparisons are made in hardware

or by using a device with IC registers that are larger than 16 bits.

7.1.2 Test Fixture Design and Analysis

The rotary test fixture was able to precisely control the angular velocity of a GNSS

receiver or TTS target up to 5 rad/s with a standard deviation of 0.007 rad/s. Placing the

GNSS receiver or TTS target at a 1 m radius will result in an instantaneous velocity of 5

m/s with a standard deviation of 0.007 m/s. These specifications are well within the

speed requirements defined in ISO 12188-1.

86

7.1.3 Tracking Total Station Testing

Testing has shown that the prism and reflector targets have a similar average latency.

The variability in latency for the prism target was several times greater than the reflector

target. Since averages cannot be used for position measurements made on-the-fly, it is

recommended that the prism target not be used for dynamic applications where

millimeter resolution is required. There is a distinct and significant trend in average

latency for the reflector target. However, this may have resulted from TTS measurement

error and not actual latency. As angular velocity increased, position error increased,

which may have had an effect on the calculated phase shift between the TTS and test

fixture.

Distance from the TTS to the reflector target was shown to not have a significant effect

on measurement error for most angular velocities tested. In the cases where there was a

significant difference, that difference was less than 1.5 mm, which fulfills the order-of-

magnitude accuracy requirement prescribed by the ISO 12188-1 standard. At higher

angular velocities, the accuracy of the TTS is at a similar level to the static accuracy

specified for most RTK GNSS devices. It is not known whether or not this level of

accuracy will suffice for dynamic GNSS at angular velocities because no data on

dynamic GNSS accuracy at high angular velocities has been published. Furthermore, no

comparison has been made between angular velocity and actual speed. It has been

assumed that constant change in direction is one of the worst case scenarios for the TTS

because the system is marginally stable. Both the TTS, and the interpolation method

used to calculate TTS position at PPS events are expected to perform better when

travelling in straight paths.

87

7.1.4 Dynamic GNSS Error Modeling

The angular velocity and filter level of an AgGPS 252 GPS receiver was shown to have

no significant effect on the average error over a 20 hour period. However, the standard

deviation of error tended to increase at higher angular velocities. Increases in the filter

level also resulted in larger standard deviations in error. The difference in standard

deviation between the best and worst tests at each filter level was nearly two-fold. This

indicates that GNSS receiver dynamics may play an important role in estimating and

measuring field performance of agricultural machinery using satellite based positioning

systems.

Along- and off-track errors were shown to be remarkably similar when testing under

steady-state sinusoidal conditions. This trend was not expected, as increasing angular

velocities and filter levels were hypothesized to result in a phase shift and/or a change in

the magnitude of error. Neither was observed in any test. The only consistent significant

difference in results between testing parameters was the standard deviation of error.

Given the wide range of distributions, and their shapes, it can be concluded that a mean

and standard deviation alone is not enough to fully define dynamic GNSS error.

Distributions tended to fall somewhere between normal and uniform. A discrete

probability density function for each scenario is one way to get around the issue of the

non-stationary distributions between testing parameters. However, the changes in the

distributions of error are small when compared to the scale of field operations.

Differences in standard deviations on the sub-millimeter level alone are not likely to

result in any measureable performance difference in field operations. More research is

88

needed to understand how the variability in GNSS measurements translates into overall

machine performance and ultimately field performance.

7.1.5 Applying a Dynamic GNSS Error Model

A method for estimating off-rate error from an application map and a GNSS error

distribution was discussed. The estimated off-track error was limited to the boundary of

the field, and therefore is likely to represent a lower limit on off-rate error due to dynamic

GNSS accuracy. In other words, the off-rate errors due to parallel passes were ignored.

As a result, the estimated off-rate errors as a percentage of the field area were small. One

limitation of this type of analysis was that it was done in a raster format. This limited

both the size of the maps and the resolution to which off-rate error could be calculated.

Converting the analysis to a vector format may allow more precise estimates of off-rate

errors at field boundaries, as well as the ability to estimate off-rate and off-target errors

throughout the entire field.

7.2 Future Work

The implication of dynamic GNSS error in an agricultural process depends on several

parameters including accuracy requirements, spatial resolution, and temporal resolution.

Dynamic GNSS error models require these parameters to be well defined in a consistent

manner such that varying GNSS technologies can be directly compared to one another in

terms of expected field performance. Standardized guidelines for expressing accuracy

requirements and spatial/temporal resolution would be beneficial for producers when

selecting GNSS equipment as well as for predicting expected performance at a

meaningful level. More research is needed to better understand what GNSS error

contributes to the overall error of a system.

89

Determining the dynamic error of the highest accuracy GNSS receivers under ISO 12188

remains a difficult task due to the accuracy of position reference. Without the use of a

mechanical test fixture that forces a receiver to follow an exact path, a position reference

is required. The TTS evaluated in this dissertation showed promise as a possible

candidate for a ground-based position reference to RTK GNSS receivers. However, the

error measured from the TTS was not an order of magnitude less than the RTK GNSS

receiver at higher angular velocities. It may be possible to compensate for the large

change in magnitude observed in the TTS position output through post-processing which

would make the system a viable option for a position reference in standardize GNSS

testing. Better understand of the internal filtering process of the TTS is needed so that its

output can properly compensated for dynamics.

90

APPENDICIES

Appendix 1: Signal Timing Device Software

1.1 Main Program

//

// Title: Rotary Test Fixture Program (c) 2012 //

// Filename: main.c //

// Author: Michael P. Sama //

// Date: 1/28/11 - 5/18/12 //

//

#define SYSCLK 15000000UL //Define the system clock speed as 15 MHz

#define FCY 3750000UL //Define the instruction clock speed as 3.75 MHz

//Pin aliases for input capture modules

#define IC1_OV IC1CONbits.ICOV

//Pin aliases for on board push buttons

#define B1 PORTEbits.RE0 //Button 1

#define B2 PORTEbits.RE1 //Button 2

#define B3 PORTEbits.RE2 //Button 3

#define B4 PORTEbits.RE3 //Button 4

#include <p30fxxxx.h> //base library for the dsPIC30F4011

#include <libpic30.h> //general c30 Functions (delays, etc.)

#include <uart.h> //universal asynchronous receiver/transmiter

#include <string.h> //string manipulation

#include <stdio.h> //standard input/output

#include <InCap.h> //input capture

#include "AOUT.h" //custom analog output

#include "RS232.h" //custom RS232

_FOSC(HS) //set the oscillator to external high speed crystal

_FWDT(WDT_OFF) //turn off the watch dog timer

char TXdata[128]; //data transmit string for RS-232

char RXdata[128]; //data receive string for RS-232

unsigned int PPS = 0; //global PPS event variable

unsigned int PPStime = 0; //global PPS time variable

unsigned int TRG = 0; //global TTS event variable

unsigned int TRGtime = 0; //global TTS time variable

void __attribute__((__interrupt__)) _U1RXInterrupt(void); //declare the

interrupt handler for the UART1 Reciever

void __attribute__((__interrupt__)) _U2RXInterrupt(void); //declare the

interrupt handler for the UART2 Reciever

91

void __attribute__((__interrupt__)) _IC1Interrupt(void); //declare the

interrupt handler for the IC1

void __attribute__((__interrupt__)) _IC2Interrupt(void); //declare the

interrupt handler for the IC2

//UART1 Receive Interrupt Handler

void __attribute__((interrupt, no_auto_psv)) _U1RXInterrupt(void)

{

 IFS0bits.U1RXIF = 0; //reset the UART1 receive interrupt flag

 char Character = ReadUART1(); //read a character from UART1

 if (Character == 0x3E) //if the character is the end of a TTS

message

 {

 IC2CONbits.ICM = 2; //then enable IC2 to capture every

falling edge

 if (TRG) //if a TTS event has occured

 {

 TRG = 0; //reset the TTS event trigger

 sprintf(TXdata,"%u\r\n><",TRGtime); //form a TTS

event string

 putsUART1((unsigned int *) TXdata); //output the TTS

event string

 }

 }

 else

 {

 putcUART1(Character); //otherwise just pass the character

along

 }

}

//UART2 Receive Interrupt Handler

void __attribute__((interrupt, no_auto_psv)) _U2RXInterrupt(void)

{

 IFS1bits.U2RXIF = 0; //reset the UART2 receive interrupt flag

 char Character = ReadUART2(); //read a character from UART2

 CharacterBuffer(Character); //place the character in a buffer

for processing

}

//IC1 Receive Interrupt Handler

void __attribute__((interrupt, no_auto_psv)) _IC1Interrupt(void)

{

 IFS0bits.IC1IF = 0; //reset the IC1 interrupt flag

 PPStime = IC1BUF; //store the PPS event time

 PPS = 1; //indicate that a PPS event has occured

}

//IC2 Receive Interrupt Handler

void __attribute__((interrupt, no_auto_psv)) _IC2Interrupt(void)

{

 IC2CONbits.ICM = 0; //disable the IC2 capture after 1 event

 IFS0bits.IC2IF = 0; //reset the IC2 interrupt flag

 TRGtime = IC2BUF; //store the TTS event time

 TRG = 1; //indicate that a TTS event has occured

}

92

//Main function

int main (void)

{

 TRISC = 0b101111111111111; //PORTC digital I/O directions

 TRISD = 0b0011; //PORTD digital I/O directions

 TRISE = 0b11111111; //PORTE digital I/O directions

 TRISF = 0b010001; //PORTF digital I/O directions

 ADPCFG = 0b000000000111000; //analog input pins

 IEC0bits.U1RXIE = 1; //enable RX1 receive interrupt

 SetPriorityIntU1RX(5); //and set interrupt priority to 5

 IEC1bits.U2RXIE = 1; //enable RX2 receive interrupt

 SetPriorityIntU2RX(6); //and set interrupt priority to 6

 IEC0bits.IC1IE = 1; //enable IC1 interrupt

 SetPriorityIntIC1(7); //and set interrupt priority to 7

 IEC0bits.IC2IE = 1; //enable IC2 interrupt

 SetPriorityIntIC2(7); //and set interrupt priority to 7

 //Open UART1 19200 8-N-1

 OpenUART1 (UART_EN &

 UART_IDLE_CON &

 UART_DIS_WAKE &

 UART_DIS_LOOPBACK &

 UART_DIS_ABAUD &

 UART_NO_PAR_8BIT &

 UART_1STOPBIT,

 UART_INT_TX_BUF_EMPTY &

 UART_TX_PIN_NORMAL &

 UART_TX_ENABLE &

 UART_INT_RX_CHAR &

 UART_ADR_DETECT_DIS &

 UART_RX_OVERRUN_CLEAR,

 11);

 U1MODEbits.ALTIO = 1; //set UART1 to the default pins

 //Open UART2 19200 8-N-1

 OpenUART2 (UART_EN &

 UART_IDLE_CON &

 UART_DIS_WAKE &

 UART_DIS_LOOPBACK &

 UART_DIS_ABAUD &

 UART_NO_PAR_8BIT &

 UART_1STOPBIT,

 UART_INT_TX_BUF_EMPTY &

 UART_TX_PIN_NORMAL &

 UART_TX_ENABLE &

 UART_INT_RX_CHAR &

 UART_ADR_DETECT_DIS &

 UART_RX_OVERRUN_CLEAR,

 11);

 //Configure Timer 2

 T2CONbits.TSIDL = 0; //continue timer operation in idle mode

 T2CONbits.TGATE = 0; //timer gated time accumulation disabled

 T2CONbits.TCKPS = 2; //timer input clock prescale bits set to

1:64

93

 T2CONbits.T32 = 0; //timer2 and Timer3 form seperate

16-bit timers

 T2CONbits.TCS = 0; //internal timer clock (FOSC/4)

 T2CONbits.TON = 1; //start Timer2

 //Configure Input Capture 1

 IC1CONbits.ICM = 0; //turn off IC1 module while

configuring

 IC1CONbits.ICSIDL = 0; //input capture module will continute to

operate in CPU idle mode

 IC1CONbits.ICTMR = 1; //Timer2 contents are captured on capture

event

 IC1CONbits.ICI = 0; //interrupt on every capture event

 IC1CONbits.ICM = 2; //capture every falling edge

 //Configure Input Capture 2

 IC2CONbits.ICM = 0; //turn off IC1 module while

configuring

 IC2CONbits.ICSIDL = 0; //input capture module will continute to

operate in CPU Idle Mode

 IC2CONbits.ICTMR = 1; //Timer2 contents are captured on capture

event

 IC2CONbits.ICI = 0; //interrupt on every capture event

 //IC2CONbits.ICM = 2; //capture remains disabled, to be enabled

by serial character

 InitializeI2C(); //turn on the I2C module

 SetVoltage(0); //set analog outputs to zero volts

 //main loop

 while(1)

 {

 if (IC1_OV) //if IC1 overflows

 {

 IC1CONbits.ICM = 0; //reset module

 IC1CONbits.ICM = 2; //capture every falling edge

 }

 if (PPS) //if a PPS event has occured

 {

 PPS = 0; //reset the PPS event

 sprintf(TXdata,"$PPS,%u\r\n",PPStime); //form a PPS

time string

 putsUART2((unsigned int *) TXdata); //output the PPS

time string

 }

 if ((B3 == 0) || (B4 == 0)) //if either button 3 or 4 is

pressed

 {

 if (B3 == 0) //if button 3 is pressed

 {

 SetVoltage(1024); //set the analog output to

5*1024/4095 volts

 }

 else if (B4 == 0) //if button 4 is pressed

 {

 SetVoltage(512); //set the analog output to

5*512/4095 volts

94

 }

 __delay32(100000); //pause for 100,000 clock cycles

 }

 if (NewMessage()) //if a new serial message has been

received

 {

 strcpy(RXdata,GetMessage()); //retrieve the message

from the buffer

 if (RXdata[0] == '\0') //if nothign was actually

received

 {

 putsUART2((unsigned int *)"$RS*01\r\n");

//request a resend

 strcpy(RXdata,GetMessage()); //retrieve the

message from the buffer

 }

 putsUART2((unsigned int *)RXdata); //loop-back the

same incoming message

 if ((RXdata[0] = '$') && //if a voltage update

message was received

 (RXdata[1] = 'V') &&

 (RXdata[2] = ',') &&

 (RXdata[7] = '*'))

 {

 //update the output voltage

 unsigned int Vout = ((unsigned int) RXdata[3] -

48) * 1000 + ((unsigned int) RXdata[4] - 48) * 100 + ((unsigned int)

RXdata[5] - 48) * 10 + ((unsigned int) RXdata[6] - 48);

 SetVoltage(Vout);

 }

 }

 }

 return 0;

}

1.2 Analog Output Header File

//

// Title: Analog Output Header File (c) 2012 //

// Filename: AOUT.h //

// Author: Michael P. Sama //

// Date: 5/18/12 //

//

void InitializeI2C(void);

void SetVoltage(unsigned int V);

1.3 Analog Output Class

//

95

// Title: Analog Ouput Class //

// Filename: AOUT.c //

// Author: Michael P. Sama //

// Date: 5/18/12 //

//

#include <p30fxxxx.h> //base library for the dsPIC30F4011

#include "AOUT.h" //header file

#include <i2c.h> //I2C

//Function for intializing the I2C module

void InitializeI2C(void)

{

 unsigned int config2, config1;

 config2 = 0x36; // Baud rate is set for 100 Khz

 config1 = (I2C_ON & I2C_IDLE_CON & I2C_CLK_HLD &

 I2C_IPMI_DIS & I2C_7BIT_ADD &

 I2C_SLW_DIS & I2C_SM_DIS &

 I2C_GCALL_DIS & I2C_STR_DIS &

 I2C_NACK & I2C_ACK_DIS & I2C_RCV_DIS &

 I2C_STOP_DIS & I2C_RESTART_DIS &

 I2C_START_DIS);

 OpenI2C(config1, config2);

 IdleI2C();

}

//Function for setting the analog output voltage

void SetVoltage(unsigned int V)

{

 if (V > 4095) //if requested voltage is over 5V

 {

 V = 4095; //limit the output to 5V

 }

 //compute the settings based on desire voltage

 unsigned char V2 = (unsigned char) (V%256);

 unsigned char V1 = (unsigned char) (V >> 8);

 StartI2C(); //start the I2C transmission

 while(I2CCONbits.SEN); //wait until start sequence has completed

 IFS0bits.MI2CIF = 0; //clear I2C interrupt flag

 IdleI2C(); //return the bus to idle

 MasterWriteI2C(0x90); //write the address

 IdleI2C(); //return the bus to idle

 MasterWriteI2C(V1); //write the first data byte

 IdleI2C(); //return the bus to idle

 MasterWriteI2C(V2); //write the second data byte

 IdleI2C(); //return the bus to idle

 StopI2C(); //terminate the I2C transmission

 IdleI2C(); //return the bus to idle

}

1.4 RS232 Header File

//

// Title: RS232 Header File (c) 2012 //

96

// Filename: RS232.h //

// Author: Michael P. Sama //

// Date: 1/28/11 - 5/18/12 //

//

void CharacterBuffer(char character);

void MessageCompiler(unsigned int f, unsigned int l);

unsigned char NewMessage(void);

char *GetMessage(void);

1.5 RS232 Class

//

// Title: RS232 Class (c) 2012 //

// Filename: RS232.h //

// Author: Michael P. Sama //

// Date: 1/28/11 - 5/18/12 //

//

#include <p30fxxxx.h> //base library for the dsPIC30F4011

#include "RS232.h" //header file

#include <stdio.h> //standard input/output

#include <uart.h> //universal asynchronous receiver/transmiter

unsigned char MessageFlag = 0; //message event flag

unsigned int recieved = 0; //# of characters received

char message[64]; //message string

char buffer[128]; //character buffer

unsigned char BufferIndex = 0; //buffer length

int first = -1; //first identifier location

int last = -1; //second identifier location

//Function that pulls a message out of the buffer

void MessageCompiler(unsigned int f, unsigned int l)

{

 unsigned int i; //iterating variable

 unsigned int j = 0; //iterating variable

 if (f < l){ //if first identifier is before last

 for (i=f; i<l; i++) //for all characters between

identifiers

 {

 message[j] = buffer[i]; //form the message

 j++;

 }

 message[j] = '\0'; //terminate with a NULL character

 }

 else //otherwise message wraps around character buffer

 {

 for (i=f; i < 60; i++) //for the first part of the message

 {

 message[j] = buffer[i]; //form the message

 j++;

 }

 for (i=0; i < l; i++) //for the second part of the message

97

 {

 message[j] = buffer[i]; //form the message

 j++;

 }

 message[j] = '\0'; //terminate with a NULL character

 }

 MessageFlag = 1; //indicate a new message is available

 buffer[0] = '\0'; //clear the buffer

 BufferIndex = 0; //reset the number of characters in the buffer

}

//Function for loading new characters on the buffer

void CharacterBuffer (char character)

{

 unsigned int tempfirst;

 unsigned int templast;

 if (character == '$') //if incoming character is a '$"

 {

 first = BufferIndex; //record its location in the buffer

 }

 else if (character == 0x0D) //if incoming character is a NL

 {

 last = BufferIndex; //record its location in the buffer

 if (first != -1) //and start the compiling process

 {

 recieved++;

 tempfirst = first;

 templast = last;

 first = -1;

 last = -1;

 MessageCompiler(tempfirst,templast);

 }

 }

 buffer[BufferIndex] = character; //otherwise just load the

characer on the buffer

 buffer[BufferIndex+1] = '\0'; //and terminate the buffer with a

NULL character

 BufferIndex++; //and increment the buffer index

 if (BufferIndex == 249) //if the buffer has reached the limit

 {

 BufferIndex = 0; //start back at the begining

 }

}

//This function resets the message event flag if raised

unsigned char NewMessage(void)

{

 if (MessageFlag == 1)

 {

 MessageFlag = 0;

 return 1;

 }

 else

 {

 return 0;

 }

98

}

//This function returns the location of the data message in memory

char *GetMessage(void)

{

 return message;

}

99

Appendix 2: TTS Test Fixture Program

2.1 Main Program

'**
'* TITLE: main.vb (c)2012 *
'* AUTHOR: Michael P. Sama *
'* COMPANY: Biosystems & Agricultural Engineering, Univeristy of Kentucky *
'* DATES: 8/13/2012 - 8/16/2012 *
'* DESCRIPTION: This class is part of a VB.net form that interfaces with the *
'* rotary test fixture for making TTS accuracy measurements *
'**

Imports System.Math

Public Class Main

 Private WithEvents SerialPort1 As New TTS 'create an instance of the TTS class
 Private WithEvents SerialPort2 As New RS232 'create an instance of the RS232
class
 Private Logging As Boolean = False 'global variable used to indicate if data
is being logged
 Private nSamples As Integer 'global variable used to store the number of
samples per test
 Private SaveFile As System.Windows.Forms.SaveFileDialog 'dialog interface for
saving files
 Private DataPoints As New List(Of String) 'data stored in a list of strings
 Private PPStime As String 'pulse per second time
 Private PPSangle As String 'fixture angle at PPStime

 'this subfunction is called when the program is first run
 Private Sub Main_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 CheckForIllegalCrossThreadCalls = False 'allow access to objects in
different threads
 End Sub

 'this subfunction is called when th user clicks the connect button
 Private Sub ConnectButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ConnectButton.Click
 If SerialPort1.OpenPort("COM4", 19200, 8, "N", 1) = 1 Then 'connect to the
TTS

 End If
 If SerialPort2.OpenPort("COM3", 19200, 8, "N", 1) = 1 Then 'connect to the
test fixture

 End If
 End Sub

 'this subfunction is called when the user clicks the disconnect button
 Private Sub DisconnectButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles DisconnectButton.Click
 If SerialPort1.ClosePort Then 'disconnect from the TTS

100

 End If
 If SerialPort2.ClosePort Then 'disconnect from the text fixture

 End If
 End Sub

 'this subfunction is called when a new message is recieved from the test
fixture
 Private Sub NewPPSMessage() Handles SerialPort2.NewMessage
 Dim Data As String = SerialPort2.GetMessage 'local variable to store the
data string
 PPSTerminal.Text = Data 'display the string in a textbox
 Dim DataItems As String() = Split(Data, ",") 'local variable to spilt
elements out of the data string
 If DataItems(0) = "$PPS" Then 'check to see that the PPS message was
received
 PPStime = DataItems(1) 'fixture angle when PPS message was received
 PPSangle = DataItems(2) 'fixture angle when PPS message was received
 End If
 End Sub

 'this subfunction is called when a new TTS message is received
 Private Sub NewTTSMessage() Handles SerialPort1.NewMessage
 Dim Data As String = SerialPort1.GetMessage 'local variable to store the
data string
 Terminal.Text = Data 'display th string in a textbox
 Dim DataLine As String() = Split(Data, vbCrLf) 'local variable to split
elements out of the data string
 Dim xLine As String() = Split(DataLine(2), "=") 'x position data line
 Dim yLine As String() = Split(DataLine(1), "=") 'y position data line
 Dim zLine As String() = Split(DataLine(3), "=") 'z position data line
 Dim tLine As String() = Split(DataLine(4), ",") 'time data line
 Dim xTTS As Single = CSng(xLine(1)) 'x position
 Dim yTTS As Single = CSng(yLine(1)) 'y position
 Dim zTTS As Single = CSng(zLine(1)) 'z position
 Dim Angle As Integer = CInt(tLine(1)) 'fixture angle when TTS message was
received
 Dim LocalTime As Integer = CInt(tLine(0)) 'fixture time when TTS message
was received
 Dim xFixture As Single = 0.635 * Cos(2 * PI * Angle / 10000) 'calcualted
fixture x coordinate
 Dim yFixture As Single = 0.635 * Sin(2 * PI * Angle / 10000) 'calculated
fixture y coordinate
 Dim xError As Single = xFixture - xTTS 'x error between fixture and TTS
 Dim yError As Single = yFixture - yTTS 'y error between fixture and TTS
 xBox.Text = xTTS 'display the x position in a textbox
 yBox.Text = yTTS 'display the y position in a textbox
 zBox.Text = zTTS 'display the z position in a textbox
 AngleBox.Text = Angle 'display the angle in a textbox
 TimeBox.Text = LocalTime 'display the time in a textbox
 axBox.Text = xFixture 'display the fixture x position in a textbox
 ayBox.Text = yFixture 'display the fixture y position in a textbox
 xErrorBox.Text = xError 'display the x error in a textbox
 yErrorBox.Text = yError 'display the y error in a textbox

 If Logging Then 'if the program should log data
 If DataPoints.Count < nSamples Then 'if the number of desired data
points has not been met

101

 DataPoints.Add(LocalTime.ToString & "," & Angle.ToString & "," &
xFixture.ToString & "," & yFixture.ToString & "," & xTTS.ToString & "," &
yTTS.ToString & "," & zTTS.ToString & "," & xError.ToString & "," &
yError.ToString & "," & PPStime & "," & PPSangle)
 SamplesBox.Text = nSamples - DataPoints.Count
 Else 'stop recording a save the data to a file
 Logging = False
 LogButton.Text = "Log"
 SamplesBox.Text = nSamples
 SaveData()
 End If
 End If
 End Sub

 'this subfunction is called when the user clicks on the log button
 Private Sub LogButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LogButton.Click
 If LogButton.Text = "Log" Then 'If the user intends to start logging
 SaveFile = New System.Windows.Forms.SaveFileDialog
 SaveFile.ShowDialog()
 nSamples = CInt(SamplesBox.Text)
 DataPoints.Clear()
 Logging = True
 LogButton.Text = "Stop Log"
 Else 'the user intends to stop logging
 Logging = False
 LogButton.Text = "Log"
 SamplesBox.Text = nSamples
 SaveData()
 End If
 End Sub

 'this subfunction is called when the correct ammount of data has been recorded
 Private Sub SaveData()
 My.Computer.FileSystem.WriteAllText(SaveFile.FileName,
"Time,Angle,xFixture,yFixture,xTTS,yTTS,zTTS,xError,yError,PPStime,PPSangle" &
vbCrLf, False)
 For i As Integer = 0 To DataPoints.Count - 1
 My.Computer.FileSystem.WriteAllText(SaveFile.FileName, DataPoints(i) &
vbCrLf, True)
 Next
 End Sub

 'this subfunction is called when the user clicks on the speed button
 Private Sub SpeedButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SpeedButton.Click
 Dim SpeedSetting As String = "$V," & Format(CUInt(SpeedBox.Text), "0000")
& "*" & vbCrLf
 If SerialPort2.IsOpen Then
 SerialPort2.SendMessage(SpeedSetting)
 End If
 End Sub

 'this subfunction is called when the user clicks on th stop button
 Private Sub StopButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StopButton.Click
 Dim Msg As String = "$M,1,1*" & vbCrLf
 If SerialPort2.IsOpen Then

102

 SerialPort2.SendMessage(Msg)
 End If
 End Sub

 'this subfunction is called when the user clicks on the forward button
 Private Sub ForwardButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ForwardButton.Click
 Dim Msg As String = "$M,1,0*" & vbCrLf
 If SerialPort2.IsOpen Then
 SerialPort2.SendMessage(Msg)
 End If
 End Sub

 'this subfunction is called when the user clicks on the reverse button
 Private Sub ReverseButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ReverseButton.Click
 Dim Msg As String = "$M,0,1*" & vbCrLf
 If SerialPort2.IsOpen Then
 SerialPort2.SendMessage(Msg)
 End If
 End Sub
End Class

2.2 RS232 Class

'**
'* TITLE: RS232.vb (c)2013 *
'* AUTHOR: Michael P. Sama *
'* COMPANY: Biosystems & Agricultural Engineering, University of Kentucky *
'* DATES: 3/24/09 - Current *
'* DESCRIPTION: This class provides a method for accessing a RS232 COM Port *
'* using the SerialPort class. Input characters are buffered *
'* and searched for valid strings starting with "$" and ending *
'* with "\r". When a valid string is found, it is removed from *
'* the buffer and stored as a separate string. A public event is *
'* raised to let the parent class know a new message is available. *
'**

Public Class RS232

 Public Event NewMessage() 'event used to indicate a new message has been
received
 Private Buffer As String = "" 'character buffer
 Private Message As String 'data message
 Private WithEvents SerialPort1 As New System.IO.Ports.SerialPort 'serial port
 Private LastOutgoingMessage As String = "" 'stores the previous outgoing
message
 Public PauseSerialInput As Boolean = False 'public variable to pause serial
inputs

 'this subfunction is called when a new instance of the RS232 class is created
 Public Sub New()
 MyBase.New()
 End Sub

103

 'this subfunction is used to send a set of bytes from the computer to a device
 Public Sub Write(ByVal BytesToWrite() As Byte, ByVal StartIndex As Integer,
ByVal Length As Integer)
 SerialPort1.Write(BytesToWrite, StartIndex, Length) 'write all bytes
 End Sub

 'this subfunction is used to send a string from the computer to a device
 Public Sub SendMessage(ByVal OutgoingMessage As String)
 LastOutgoingMessage = OutgoingMessage 'store this message as the last
outgoing message
 Try
 SerialPort1.Write(OutgoingMessage) 'write the a string
 Catch ex As Exception
 Dim Dummy As Boolean = False
 End Try

 End Sub

 'this subfunction is used to resend the previous message
 Public Sub ResendMessage()
 Try
 SerialPort1.Write(LastOutgoingMessage) 'write the last outgoing
message
 Catch ex As Exception

 End Try

 End Sub

 'this function is used to retrieve a message
 Public Function GetMessage()
 Return Message
 End Function

 'this function is used to close the serial port
 Public Function ClosePort()
 If SerialPort1.IsOpen Then 'only close the port if it's already open
 Try
 SerialPort1.Close()
 Return 1
 Catch ex As Exception
 Return 0
 End Try
 Else
 Return 1
 End If
 End Function

 'this function is used to open the serial port
 Public Function OpenPort(ByVal PortName As String, ByVal BaudRate As Integer,
ByVal DataBits As Integer, ByVal Parity As Char, ByVal StopBits As Single)
 If SerialPort1.IsOpen Then 'if the port is already open
 Return 0 'return a zero
 Else
 Try
 SerialPort1.PortName = PortName 'set the port name
 SerialPort1.BaudRate = BaudRate 'set the baud rate
 SerialPort1.DataBits = DataBits 'set the number of data bits

104

 Select Case Parity 'set the parity
 Case "N", "n", "0"
 SerialPort1.Parity = IO.Ports.Parity.None
 Case "E", "e", "2"
 SerialPort1.Parity = IO.Ports.Parity.Even
 Case "M", "m", "3"
 SerialPort1.Parity = IO.Ports.Parity.Mark
 Case "O", "o", "1"
 SerialPort1.Parity = IO.Ports.Parity.Odd
 Case " ", "_", "4"
 SerialPort1.Parity = IO.Ports.Parity.Space
 Case Else
 Return 0
 End Select
 Select Case StopBits 'set the number of stop bits
 Case 0
 SerialPort1.StopBits = IO.Ports.StopBits.None
 Case 1
 SerialPort1.StopBits = IO.Ports.StopBits.One
 Case 1.5
 SerialPort1.StopBits = IO.Ports.StopBits.OnePointFive
 Case 2
 SerialPort1.StopBits = IO.Ports.StopBits.Two
 Case Else
 Return 0
 End Select

 SerialPort1.ReceivedBytesThreshold = 1 'set the receive byte
threshold
 SerialPort1.Open() 'open the port
 SerialPort1.DiscardInBuffer() 'discard any characters already
received

 'add a handler for the incoming serial data
 AddHandler SerialPort1.DataReceived, AddressOf
Me.SerialBytesReceived

 Catch ex As Exception
 Return 0 'return a zero if any of the previous steps fail
 End Try
 Return 1 'otherwise return a one to indicate the port was succefully
opened
 End If

 End Function

 'this function checks to see if the serial port is already opened
 Public Function IsOpen() As Boolean
 Return SerialPort1.IsOpen()
 End Function

 'this subfunction is automatically called when a new serial character has been
received
 Private Sub SerialBytesReceived(ByVal Sender As Object, ByVal e As
System.IO.Ports.SerialDataReceivedEventArgs)

 If Not PauseSerialInput Then 'if the serial input is not paused
 Try

105

 AddToBuffer(SerialPort1.ReadExisting) 'add incoming characters to
the buffer
 Catch ex As Exception

 End Try
 Else
 SerialPort1.DiscardInBuffer() 'otherwise throw out the existing
character
 Buffer = "" 'and clear the character buffer
 End If
 End Sub

 'this subfunction adds characters to the character buffer and calls
stringsearch()
 Private Sub AddToBuffer(ByVal characters As String)
 Buffer += characters 'add the character to the buffer
 StringSearch() 'search for a complete data message
 End Sub

 'this subfunction searches for complete data messages
 Private Sub StringSearch()

 'temporarily stop buffering characters to allow time to process the buffer
 RemoveHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

 Dim First As Integer = -1 'initialize the location of the first
identifying chararcter
 Dim Last As Integer = -1 'initialize the location of the last identifying
character
 Try
 First = Buffer.IndexOf("$") 'check if a '$' has been received
 Last = Buffer.LastIndexOf(vbCrLf) 'check if a carriage return and line
feed has been received
 Catch ex As Exception

 End Try

 Try
 If (First <> -1 And Last <> -1) And (Last > First) Then 'if
identifiers have been received in the correct order
 Message = Buffer.Substring(First, (Last - First)) 'pull out the
message
 Buffer = Buffer.Remove(0, Last) 'and remove the message from the
character buffer
 If Not PauseSerialInput Then
 RaiseEvent NewMessage() 'raise the new message event if the
serial port is not paused
 End If
 End If
 Catch ex As Exception

 End Try

 'restart buffering characters
 AddHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

 End Sub

106

 'this function gets a list of available port names
 Public Function GetComPortNames()
 Dim PortNames As New List(Of String) 'a lost to store the port names
 For i As Integer = 0 To (My.Computer.Ports.SerialPortNames.Count - 1)
 PortNames.Add(My.Computer.Ports.SerialPortNames(i)) 'add each port
name on the computer to a list
 Next
 BubbleSort(Of String)(PortNames) 'sort the list in alphabetical order
 Return PortNames 'return the list of port names
 End Function

 'this subfunction sorts any list alphabetically
 Private Sub BubbleSort(Of ItemType)(ByRef SortByName As List(Of ItemType))
 Dim x As Integer, y As Integer
 For j As Integer = 0 To (SortByName.Count)
 For k As Integer = (SortByName.Count - 1) To 1 Step -1
 x = Mid(SortByName(k).ToString, 4, SortByName(k).ToString.Length -
3)
 y = Mid(SortByName(k - 1).ToString, 4, SortByName(k -
1).ToString.Length - 3)
 If x < y Then
 Swap(Of ItemType)(SortByName(k), SortByName(k - 1))
 End If
 Next
 Next
 End Sub

 'this subfunction swaps two items in a list
 Private Sub Swap(Of ItemType)(ByRef v1 As ItemType, ByRef v2 As ItemType)
 Dim temp As ItemType
 temp = v1
 v1 = v2
 v2 = temp
 End Sub

End Class

107

2.3 TTS Class

'**
'* TITLE: TTS.vb (c)2012 *
'* AUTHOR: Michael P. Sama *
'* COMPANY: Biosystems & Agricultural Engineering, University of Kentucky *
'* DATES: 8/13/12 – 8/16/12 *
'* DESCRIPTION: This class provides a method for accessing a RS232 COM Port *
'* using the SerialPort class. Input characters are buffered *
'* and searched for valid strings starting with "<" and ending *
'* with ">". When a valid string is found, it is removed from *
'* the buffer and stored as a separate string. A public event is *
'* raised to let the parent class know a new message is available. *
'**

Public Class RS232

 Public Event NewMessage() 'event used to indicate a new message has been
received
 Private Buffer As String = "" 'character buffer
 Private Message As String 'data message
 Private WithEvents SerialPort1 As New System.IO.Ports.SerialPort 'serial port
 Private LastOutgoingMessage As String = "" 'stores the previous outgoing
message
 Public PauseSerialInput As Boolean = False 'public variable to pause serial
inputs

 'this subfunction is called when a new instance of the RS232 class is created
 Public Sub New()
 MyBase.New()
 End Sub

 'this subfunction is used to send a set of bytes from the computer to a device
 Public Sub Write(ByVal BytesToWrite() As Byte, ByVal StartIndex As Integer,
ByVal Length As Integer)
 SerialPort1.Write(BytesToWrite, StartIndex, Length) 'write all bytes
 End Sub

 'this subfunction is used to send a string from the computer to a device
 Public Sub SendMessage(ByVal OutgoingMessage As String)
 LastOutgoingMessage = OutgoingMessage 'store this message as the last
outgoing message
 Try
 SerialPort1.Write(OutgoingMessage) 'write the a string
 Catch ex As Exception
 Dim Dummy As Boolean = False
 End Try

 End Sub

 'this subfunction is used to resend the previous message
 Public Sub ResendMessage()
 Try
 SerialPort1.Write(LastOutgoingMessage) 'write the last outgoing
message
 Catch ex As Exception

108

 End Try

 End Sub

 'this function is used to retrieve a message
 Public Function GetMessage()
 Return Message
 End Function

 'this function is used to close the serial port
 Public Function ClosePort()
 If SerialPort1.IsOpen Then 'only close the port if it's already open
 Try
 SerialPort1.Close()
 Return 1
 Catch ex As Exception
 Return 0
 End Try
 Else
 Return 1
 End If
 End Function

 'this function is used to open the serial port
 Public Function OpenPort(ByVal PortName As String, ByVal BaudRate As Integer,
ByVal DataBits As Integer, ByVal Parity As Char, ByVal StopBits As Single)
 If SerialPort1.IsOpen Then 'if the port is already open
 Return 0 'return a zero
 Else
 Try
 SerialPort1.PortName = PortName 'set the port name
 SerialPort1.BaudRate = BaudRate 'set the baud rate
 SerialPort1.DataBits = DataBits 'set the number of data bits
 Select Case Parity 'set the parity
 Case "N", "n", "0"
 SerialPort1.Parity = IO.Ports.Parity.None
 Case "E", "e", "2"
 SerialPort1.Parity = IO.Ports.Parity.Even
 Case "M", "m", "3"
 SerialPort1.Parity = IO.Ports.Parity.Mark
 Case "O", "o", "1"
 SerialPort1.Parity = IO.Ports.Parity.Odd
 Case " ", "_", "4"
 SerialPort1.Parity = IO.Ports.Parity.Space
 Case Else
 Return 0
 End Select
 Select Case StopBits 'set the number of stop bits
 Case 0
 SerialPort1.StopBits = IO.Ports.StopBits.None
 Case 1
 SerialPort1.StopBits = IO.Ports.StopBits.One
 Case 1.5
 SerialPort1.StopBits = IO.Ports.StopBits.OnePointFive
 Case 2
 SerialPort1.StopBits = IO.Ports.StopBits.Two
 Case Else
 Return 0

109

 End Select

 SerialPort1.ReceivedBytesThreshold = 1 'set the receive byte
threshold
 SerialPort1.Open() 'open the port
 SerialPort1.DiscardInBuffer() 'discard any characters already
received

 'add a handler for the incoming serial data
 AddHandler SerialPort1.DataReceived, AddressOf
Me.SerialBytesReceived

 Catch ex As Exception
 Return 0 'return a zero if any of the previous steps fail
 End Try
 Return 1 'otherwise return a one to indicate the port was succefully
opened
 End If

 End Function

 'this function checks to see if the serial port is already opened
 Public Function IsOpen() As Boolean
 Return SerialPort1.IsOpen()
 End Function

 'this subfunction is automatically called when a new serial character has been
received
 Private Sub SerialBytesReceived(ByVal Sender As Object, ByVal e As
System.IO.Ports.SerialDataReceivedEventArgs)

 If Not PauseSerialInput Then 'if the serial input is not paused
 Try
 AddToBuffer(SerialPort1.ReadExisting) 'add incoming characters to
the buffer
 Catch ex As Exception

 End Try
 Else
 SerialPort1.DiscardInBuffer() 'otherwise throw out the existing
character
 Buffer = "" 'and clear the character buffer
 End If
 End Sub

 'this subfunction adds characters to the character buffer and calls
stringsearch()
 Private Sub AddToBuffer(ByVal characters As String)
 Buffer += characters 'add the character to the buffer
 StringSearch() 'search for a complete data message
 End Sub

 'this subfunction searches for complete data messages
 Private Sub StringSearch()

 'temporarily stop buffering characters to allow time to process the buffer
 RemoveHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

110

 Dim First As Integer = -1 'initialize the location of the first
identifying chararcter
 Dim Last As Integer = -1 'initialize the location of the last identifying
character
 Try
 First = Buffer.IndexOf("<") 'check if a '<' has been received
 Last = Buffer.LastIndexOf(">")'check if a '>' has been received
feed has been received
 Catch ex As Exception

 End Try

 Try
 If (First <> -1 And Last <> -1) And (Last > First) Then 'if
identifiers have been received in the correct order
 Message = Buffer.Substring(First, (Last - First)) 'pull out the
message
 Buffer = Buffer.Remove(0, Last) 'and remove the message from the
character buffer
 If Not PauseSerialInput Then
 RaiseEvent NewMessage() 'raise the new message event if the
serial port is not paused
 End If
 End If
 Catch ex As Exception

 End Try

 'restart buffering characters
 AddHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

 End Sub

 'this function gets a list of available port names
 Public Function GetComPortNames()
 Dim PortNames As New List(Of String) 'a lost to store the port names
 For i As Integer = 0 To (My.Computer.Ports.SerialPortNames.Count - 1)
 PortNames.Add(My.Computer.Ports.SerialPortNames(i)) 'add each port
name on the computer to a list
 Next
 BubbleSort(Of String)(PortNames) 'sort the list in alphabetical order
 Return PortNames 'return the list of port names
 End Function

 'this subfunction sorts any list alphabetically
 Private Sub BubbleSort(Of ItemType)(ByRef SortByName As List(Of ItemType))
 Dim x As Integer, y As Integer
 For j As Integer = 0 To (SortByName.Count)
 For k As Integer = (SortByName.Count - 1) To 1 Step -1
 x = Mid(SortByName(k).ToString, 4, SortByName(k).ToString.Length -
3)
 y = Mid(SortByName(k - 1).ToString, 4, SortByName(k -
1).ToString.Length - 3)
 If x < y Then
 Swap(Of ItemType)(SortByName(k), SortByName(k - 1))
 End If
 Next
 Next

111

 End Sub

 'this subfunction swaps two items in a list
 Private Sub Swap(Of ItemType)(ByRef v1 As ItemType, ByRef v2 As ItemType)
 Dim temp As ItemType
 temp = v1
 v1 = v2
 v2 = temp
 End Sub

End Class

112

Appendix 3: GNSS Test Fixture Program

3.1 Main Program

'**
'* TITLE: main.vb (c)2013 *
'* AUTHOR: Michael P. Sama *
'* COMPANY: Biosystems & Agricultural Engineering, University of Kentucky *
'* DATES: 9/1/12 - Current *
'* DESCRIPTION: This class is part of a VB.net form that interfaces with the *
'* rotary test fixture for making GNSS accuracy measurements. *
'**

Public Class Main

 Private WithEvents GPS1 As New RS232 'create an instance of the RS232 class
for the dynamic GPS receiver
 Private WithEvents GPS2 As New RS232 'create an instance of the RS232 class
for the static GPS receiver
 Private WithEvents PPS As New RS232 'create an instance of the RS232 class
for the test fixture
 Private Testing As Threading.Thread 'create a background thread for executing
a test
 Private Logging As Threading.Thread 'create a background thread for logging
data
 Private NewGPS1 As Boolean = False 'global variable used to determine if a
message has been received from GPS1
 Private NewGPS2 As Boolean = False 'global variable used to determine if a
message has been received from GPS2
 Private NewPPS As Boolean = False 'global variable used to determine if a
message has been received from the test fixture

 'this subfunction is called when the program is first run
 Private Sub Main_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 CheckForIllegalCrossThreadCalls = False 'allow access to objects in
different threads
 End Sub

 'this subfunction is called when the user clicks the connect button
 Private Sub CommConnect_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CommConnect.Click
 GPS1.OpenPort("COM4", 38400, 8, "N", 1) 'connect to the dynamic GPS
receiver
 GPS2.OpenPort("COM5", 38400, 8, "N", 1) 'connect to th static GPS receiver
 PPS.OpenPort("COM3", 19200, 8, "N", 1) 'connect to the test fixture
 End Sub

 'this subfunction is called when th user clicks the disconnect button
 Private Sub CommDisconnect_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CommDisconnect.Click
 GPS1.ClosePort() 'close the connection to th dynamic GPS receiver
 GPS2.ClosePort() 'close the connection to the static GPS receiver
 PPS.ClosePort() 'close the connection to the test fixture
 End Sub

113

 'this subfunction is called when a new message has been recieved from the
dynamic GPS receiver
 Private Sub GPS1_Message() Handles GPS1.NewMessage
 Try
 GPS1Terminal.Text = GPS1.GetMessage 'output the new message in a text
box
 NewGPS1 = True 'indicate that a new message has been received
 Catch ex As Exception

 End Try

 End Sub

 'this subfunction is called when a new message has been recieved from the
dynamic GPS receiver
 Private Sub GPS2_Message() Handles GPS2.NewMessage
 Try
 GPS2Terminal.Text = GPS2.GetMessage 'output the new message in a text
box
 NewGPS2 = True 'indicate that a new message has been received
 Catch ex As Exception

 End Try

 End Sub

 'this subfunction is called when a new message has been recieved from the test
fixture
 Private Sub PPS_Message() Handles PPS.NewMessage
 Try
 PPSTerminal.Text = PPS.GetMessage 'output the new message in a text
box
 NewPPS = True 'indicate that a new message has been received
 Catch ex As Exception

 End Try

 End Sub

 'this subfunction is called when the user clicks the stop button
 Private Sub StopButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StopButton.Click
 Try
 If Testing.IsAlive Then
 Testing.Abort() 'abort the testing thread if it is running
 End If
 Catch ex As Exception

 End Try
 StartTestButton.Enabled = True 're-enable the start test button
 Dim Direction As String = "$M,1,1*" & vbCrLf 'form a string to send to the
test fixture
 If PPS.IsOpen Then
 PPS.SendMessage(Direction) 'update the test fixture settings
 End If
 End Sub

114

 'this subfunction is a background thread when a test is in progress
 Private Sub TestingThread()
 StartTestButton.Enabled = False 'disable to start test button
 Dim Speeds As String() = Split(SpeedsBox.Text, ",") 'retrieve the desired
test speeds from a textbox
 Dim Duration As Integer = CInt(DurationBox.Text) 'retrieve the duration of
each test from a textbox
 Dim Delay As Integer = CInt(DelayBox.Text) 'retrieve the delay between
tests from a textbox
 Dim Replications As Integer = CInt(ReplicationsBox.Text) 'retrieve the
number of replications

 Dim DurationTimer As New Stopwatch 'create a stopwatch for measuring the
elapsed time of each test
 Dim Direction As String 'create a string to store the direction

 For i As Integer = 1 To Replications 'for each replication
 For j As Short = 0 To Speeds.Length - 1 'for each speed
 Dim SpeedSetting As String = "$V," & Speeds(j) & "*" & vbCrLf
'form a string to send to the test fixture
 If PPS.IsOpen Then
 PPS.SendMessage(SpeedSetting) 'update the test fixture speed
setting
 End If
 Threading.Thread.Sleep(2000) 'wait 2 seconds before sending
another message
 Direction = "$M,1,0*" & vbCrLf 'form a string to send to the test
fixture
 If PPS.IsOpen Then
 PPS.SendMessage(Direction) 'update the test fixture direction
setting
 End If
 Threading.Thread.Sleep(Delay * 1000) 'wait the desired ammount of
time before recording data
 DurationTimer.Reset() 'reset the stopwatch
 DurationTimer.Start() 'start the stopwatch
 SamplesBox.Text = 0 'reset the number of data samples
 NewGPS1 = False 'reset the new data indicator
 NewGPS2 = False 'reset the new data indicator
 NewPPS = False 'reset the new data indicator
 Dim FolderName As String = "C:\GPSTestData\" 'create a folder
location to store a new data file
 Dim FileNamePrefix As String = My.Computer.Clock.LocalTime.Month &
"-" & My.Computer.Clock.LocalTime.Day & "-" & My.Computer.Clock.LocalTime.Year &
"_" & My.Computer.Clock.LocalTime.Hour & "-" & My.Computer.Clock.LocalTime.Minute
& "-" & My.Computer.Clock.LocalTime.Second & "_"
 Dim FileNameSuffix1 As String = Speeds(j) & "_Mobile.csv"
 Dim FileNameSuffix2 As String = Speeds(j) & "_Static.csv"
 While DurationTimer.Elapsed.TotalSeconds < Duration 'while the
duration of a test has not been exceeded
 Try
 If NewGPS1 And NewGPS2 And NewPPS Then 'if new data has
been received from all three inputs, record it
 NewGPS1 = False 'reset the new data indicator
 NewGPS2 = False 'reset the new data indicator
 NewPPS = False 'reset the new data indicator

115

 My.Computer.FileSystem.WriteAllText(FolderName &
FileNamePrefix & FileNameSuffix1, GPS1Terminal.Text & "," & PPSTerminal.Text &
vbCrLf, True)
 My.Computer.FileSystem.WriteAllText(FolderName &
FileNamePrefix & FileNameSuffix2, GPS2Terminal.Text & vbCrLf, True)
 SamplesBox.Text = CInt(SamplesBox.Text) + 1
 End If
 Catch ex As Exception

 End Try

 End While

 Next
 Next

 'Stop the test fixture...
 Direction = "$M,1,1*" & vbCrLf 'form a string to send to the test fixture
 If PPS.IsOpen Then
 PPS.SendMessage(Direction) 'update the test fixture direction setting
 End If
 StartTestButton.Enabled = True
 End Sub

 'this subfunction is called when the user clicks th start test button
 Private Sub StartTestButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StartTestButton.Click
 Testing = New Threading.Thread(AddressOf TestingThread) 'initialize the
testing thread
 Testing.Start() 'start the testing thread
 End Sub

 'this sub function is a background thread for logging static data
 Private Sub LoggingThread()
 Dim FolderName As String = "C:\GPSTestData\" 'create a folder location to
store a new data file
 Dim FileNamePrefix As String = My.Computer.Clock.LocalTime.Month & "-" &
My.Computer.Clock.LocalTime.Day & "-" & My.Computer.Clock.LocalTime.Year & "_" &
My.Computer.Clock.LocalTime.Hour & "-" & My.Computer.Clock.LocalTime.Minute & "-"
& My.Computer.Clock.LocalTime.Second & "_"
 Dim FileNameSuffix1 As String = "0000_Mobile.csv"
 Dim FileNameSuffix2 As String = "0000_Static.csv"
 NewGPS1 = False 'reset the new data indicator
 NewGPS2 = False 'reset the new data indicator
 NewPPS = False 'reset the new data indicator
 SamplesBox.Text = 0 'reset the number of data samples
 While CInt(SamplesBox.Text < 3600) 'for one hour...
 If NewGPS1 And NewGPS2 And NewPPS Then 'if new data has been received
from all three inputs, record it
 NewGPS1 = False 'reset the new data indicator
 NewGPS2 = False 'reset the new data indicator
 NewPPS = False 'reset the new data indicator
 Try
 My.Computer.FileSystem.WriteAllText(FolderName &
FileNamePrefix & FileNameSuffix1, GPS1Terminal.Text & "," & PPSTerminal.Text &
vbCrLf, True)
 My.Computer.FileSystem.WriteAllText(FolderName &
FileNamePrefix & FileNameSuffix2, GPS2Terminal.Text & vbCrLf, True)

116

 SamplesBox.Text = CInt(SamplesBox.Text) + 1
 Catch ex As Exception

 End Try

 End If
 End While
 End Sub

 'this subfunction is called when the user clicks the static log button
 Private Sub StaticLogButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StaticLogButton.Click
 Logging = New Threading.Thread(AddressOf LoggingThread) 'initialize the
logging thread
 Logging.Start() 'start the logging thread
 End Sub
End Class

3.2 R2323 Class

See Appendix 2: 2.2 RS232 Class

117

Appendix 4: X and Y Error Discrete Probability Density Functions

4.1 No Filter

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08
f X

(x
)

Y Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

3.22

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

3.22

rad/s

118

4.2 Normal Filter

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

3.22

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

3.22

rad/s

119

4.3 High Filter

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

3.22

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

3.22

rad/s

120

4.4 Max Filter

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

0.82

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

1.42

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.02

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

2.62

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

X Error (m)

3.22

rad/s

0

0.1

0.2

0.3

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Y Error (m)

3.22

rad/s

121

Appendix 5: Along-/Off-Track Error Probability Density Functions

5.1 No Filter

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)
Error (m)

0.82

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

1.42

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.02

rad/s

0.00

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

0.00

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

3.22

rad/s

122

5.2 Normal Filter

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

0.82

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

1.42

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.02

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

3.22

rad/s

123

5.3 High Filter

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

0.82

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

1.42

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.02

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

3.22

rad/s

124

5.4 Max Filter

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

0.82

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

1.42

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.02

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

2.62

rad/s

0.00

0.10

0.20

-0.08 -0.04 0 0.04 0.08

f X
(x

)

Error (m)

3.22

rad/s

125

Appendix 6: Rotary Test Fixture Engineering Drawings

Note: The following drawings are not to scale. All units are in inches.

6.1 Base Assembly

126

6.2 Frame Assembly

127

6.3 Cover Panels

128

6.4 Component Box

129

6.5 Frame Tube – Cross Supports

130

6.6 Frame Tube – Depth

131

6.7 Frame Tube – Vertical

132

6.8 Frame Tube – Width

133

6.9 Mounting Plate

134

6.10 Rain Guard

135

Appendix 7: TTS Testing Analysis Scripts

7.1 TTS Latency Script

%%%
% Title: TTSanalysis.m %
% Author: Michael P. Sama (c) 2012 %
% Date: 8/25/12 %
% Function: This script reads in a TTS data file and %
% calculates the latency of TTS measurements. %
%%%

clear; %clear all variables
clc; %clear the command window

%read in a data file and sort the columns
DATA = csvread('C:\Users\michael.sama.BAE-UK\Dropbox\PhD

Project\TTSTestData\Tripod\Test13_3071.csv',1,0);
Time = DATA(:,1);
Ang = DATA(:,2);
xFIX = DATA(:,3);
yFIX = DATA(:,4);
xTTS = DATA(:,5);
yTTS = DATA(:,6);
zTTS = DATA(:,7);
xERR = DATA(:,8);
yERR = DATA(:,9);

%calculate the change in fixture time per sample
dTime = zeros(length(Time)-1,1);
for i=1:length(Time)-1
 if (Time(i+1) > Time(i))
 dTime(i) = Time(i+1)-Time(i);
 else
 dTime(i) = 65536-Time(i) + Time(i+1);
 end
end
dTime = dTime / 58593.75;

%calculate the change in fixture angle per sample
dAng = zeros(length(Ang)-1,1);
for i=1:length(Ang)-1
 if (Ang(i+1) > Ang(i))
 dAng(i) = Ang(i+1)-Ang(i);
 else
 dAng(i) = 10000-Ang(i) + Ang(i+1);
 end
end
dAng = dAng * 2*pi / 10000;

%calculate the velocity
k = 2:length(Time);
Vel = dAng./dTime;

136

%plot the velocity versus sample
figure(1)
plot(k,Vel);
xlabel('Sample')
ylabel('Angular Velocity (rad/s)')

%plot the fixture angle versus sample
figure(2)
AngTTS = atan2(yTTS,xTTS);
for i=1:length(AngTTS)
 if (AngTTS(i) < 0)
 AngTTS(i) = 2*pi+AngTTS(i);
 end
end
fAng = Ang* 2*pi / 10000;
plot(1:256,fAng,1:256,AngTTS)
axis([130,150,0,2*pi]);

%plot the difference between the TTS angle and fixture angle
eAng = zeros(size(fAng));
for i=1:length(fAng)
 if (fAng(i) > AngTTS(i))
 eAng(i) = fAng(i) - AngTTS(i);
 else
 eAng(i) = 2*pi - AngTTS(i) + fAng(i);
 end
end

%plot the latency
figure(3)
delay = zeros(size(Vel));
for i=1:length(Vel)
 delay(i) = eAng(i+1) / Vel(i);
end
plot(delay)

%plot the X measurements of the TTS and fixture versus sample
figure(4)
plot(1:256,xTTS,1:256,xFIX,[1,256],[0,0])
axis([37,38,-0.65,0.65]);

%plot a histogram of the TTS latency
figure(5)
hist(delay,16)

%plot the X/Y measurements of the TTS and fixture
figure(6)
plot(xFIX,yFIX,'X',xTTS,yTTS,'+')
axis square

%calculate the mean latency and standard deviation of latency
MeanDelay = mean(delay)
StdDelay = std(delay)
xMSE = mean(abs(xERR))

137

yMSE = mean(abs(yERR))

A = mean(Vel)
V = mean(Vel)*0.635

7.2 TTS Interpolation Script

%%%
% Title: TTSinterpolate.m %
% Author: Michael P. Sama (c) 2012 %
% Date: 8/30/12 %
% Function: This script reads in a TTS data file and %
% calculates the latency of TTS measurements. %
%%%

clear; %clear all variables
clc; %clear the command window

%read in a data file and sort the columns
DATA = csvread('C:\Users\michael.sama.BAE-UK\Dropbox\PhD

Project\TTSTestData\Far\Test4_0767.csv',1,0);
Time = DATA(:,1);
Ang = DATA(:,2);
xFIX = DATA(:,3);
yFIX = DATA(:,4);
xTTS = DATA(:,5);
yTTS = DATA(:,6);
zTTS = DATA(:,7);
xERR = DATA(:,8);
yERR = DATA(:,9);
timePPS = DATA(:,10);
anglePPS = DATA(:,11);

%calculate the cumulative time
accTime = zeros(length(Time),1);
accTime(1) = 0;
for i=2:length(Time)
 if (Time(i) > Time(i-1))
 accTime(i) = accTime(i-1) + (Time(i) - Time(i-1))/58593.75;
 else
 accTime(i) = accTime(i-1) + (65536-Time(i-1) +

Time(i))/58593.75;
 end
end

%calculate the change in fixture time between samples
dTime = zeros(length(Time)-1,1);
for i=1:length(Time)-1
 if (Time(i+1) > Time(i))
 dTime(i) = Time(i+1)-Time(i);
 else
 dTime(i) = 65536-Time(i) + Time(i+1);
 end

138

end
dTime = dTime / 58593.75;

%calculate the change in fixture angle between samples
dAng = zeros(length(Ang)-1,1);
for i=1:length(Ang)-1
 if (Ang(i+1) > Ang(i))
 dAng(i) = Ang(i+1)-Ang(i);
 else
 dAng(i) = 10000-Ang(i) + Ang(i+1);
 end
end
dAng = dAng * 2*pi / 10000;

%calculate the velocity at each sample
k = 2:length(Time);
Vel = dAng./dTime;

%calculate the TTS angle
AngTTS = atan2(yTTS,xTTS);
for i=1:length(AngTTS)
 if (AngTTS(i) < 0)
 AngTTS(i) = 2*pi+AngTTS(i);
 end
end

%calculate the error between the TTS and fixture angles
fAng = Ang* 2*pi / 10000;
eAng = zeros(size(fAng));
for i=1:length(fAng)
 if (fAng(i) > AngTTS(i))
 eAng(i) = fAng(i) - AngTTS(i);
 else
 eAng(i) = 2*pi - AngTTS(i) + fAng(i);
 end
end

%calculate the TTS measurement latency
delay = zeros(size(Vel));
for i=1:length(Vel)
 delay(i) = eAng(i+1) / Vel(i);
end

%compensate for TTS measurement latency
accTime = accTime - mean(delay);

%remove any redundant PPS timestamps
ind = zeros(length(timePPS),1);
for i=2:length(timePPS)
 if (timePPS(i) == timePPS(i-1))
 ind(i) = i;
 end
end
ind = find(ind~=0);
timePPS(ind) = [];

139

anglePPS(ind) = [];

%convert timestamps from a 16-bit number to seconds
accPPStime = zeros(length(timePPS),1);
if (timePPS(1) < Time(1))
 accPPStime(1) = (timePPS(1)-Time(1))/58593.75;
else
 accPPStime(1) = -1*(65536-timePPS(1)+Time(1))/58593.75;
end
for i=2:length(timePPS)
 if (timePPS(i) > timePPS(i-1))
 accPPStime(i) = accPPStime(i-1) + (timePPS(i)-timePPS(i-

1))/58593.75;
 else
 accPPStime(i) = accPPStime(i-1) + (65536-timePPS(i-

1)+timePPS(i))/58593.75;
 end
end

%calculate the x and y position of the fixture at each PPS event
xPPS = zeros(length(anglePPS),1);
yPPS = zeros(length(anglePPS),1);
for i=1:length(anglePPS)
 xPPS(i) = 0.635*cosd(360*anglePPS(i)/10000);
 yPPS(i) = 0.635*sind(360*anglePPS(i)/10000);
end

%interpolate fixture measurements at the PPS interval to the TTS

interval
%and plot as a video
xINT = zeros(length(timePPS),1);
yINT = zeros(length(timePPS),1);
for i=1:length(accPPStime)
 tPPS = accPPStime(i);
 [~,I] = min(abs(accTime-tPPS));
 if (accTime(I)>tPPS)
 k = I;
 else
 k = I+1;
 end
 if (k < 3)
 k = 3;
 elseif (k > length(accTime)-1)
 k = length(accTime) - 1;
 end

 xCAL = [accTime(k-2)^3,accTime(k-2)^2,accTime(k-2),1; ...
 accTime(k-1)^3,accTime(k-1)^2,accTime(k-1),1; ...
 accTime(k)^3,accTime(k)^2,accTime(k),1; ...
 accTime(k+1)^3,accTime(k+1)^2,accTime(k+1),1]^-1 ...
 * [xTTS(k-2);xTTS(k-1);xTTS(k);xTTS(k+1)];
 yCAL = [accTime(k-2)^3,accTime(k-2)^2,accTime(k-2),1; ...
 accTime(k-1)^3,accTime(k-1)^2,accTime(k-1),1; ...
 accTime(k)^3,accTime(k)^2,accTime(k),1; ...
 accTime(k+1)^3,accTime(k+1)^2,accTime(k+1),1]^-1 ...

140

 * [yTTS(k-2);yTTS(k-1);yTTS(k);yTTS(k+1)];
 figure(1)
 t = accTime(k-2):1/58593.75:accTime(k+1);
 fxINT = xCAL(1)*t.^3+xCAL(2)*t.^2+xCAL(3)*t+xCAL(4);
 fyINT = yCAL(1)*t.^3+yCAL(2)*t.^2+yCAL(3)*t+yCAL(4);
 [~,I] = min(abs(t-accPPStime(i)));
 xINT(i) = fxINT(I);
 yINT(i) = fyINT(I);
 subplot(2,1,1);
 plot(accTime,xTTS,'Xk',t,fxINT,'r',accPPStime,xPPS,'o')
 axis([accPPStime(i)-10,accPPStime(i)+10,-0.8,0.8])
 xlabel('Time (s)');
 ylabel('X Position (m)');
 subplot(2,1,2);
 plot(accTime,yTTS,'Xk',t,fyINT,'r',accPPStime,yPPS,'o')
 axis([accPPStime(i)-10,accPPStime(i)+10,-0.8,0.8])
 xlabel('Time (s)');
 ylabel('Y Position (m)');
 F(i) = getframe(gcf);
end
for k = 0:length(xTTS)-4
xCAL = [accTime(1+k)^3,accTime(1+k)^2,accTime(1+k),1; ...
 accTime(2+k)^3,accTime(2+k)^2,accTime(2+k),1; ...
 accTime(3+k)^3,accTime(3+k)^2,accTime(3+k),1; ...
 accTime(4+k)^3,accTime(4+k)^2,accTime(4+k),1]^-1 ...
 * [xTTS(1+k);xTTS(2+k);xTTS(3+k);xTTS(4+k)];
figure(1)
t = accTime(1+k):0.01:accTime(4+k);
xINT = xCAL(1)*t.^3+xCAL(2)*t.^2+xCAL(3)*t+xCAL(4);
plot(accTime,xTTS,'Xk',t,xINT,'k')
axis([accTime(1+k)-10,accTime(4+k)+10,-0.8,0.8])
F(k+1) = getframe(gcf);
end
figure(2)
movie(F)

%calcualte the error between the interpolated measurements and the

fixture
xError = abs(xPPS-xINT);
xError(1) = [];
xError(length(xError)) = [];
yError = abs(yPPS-yINT);
yError(1) = [];
yError(length(yError)) = [];
xMeanError = mean(xError)
xStdError = std(xError)
yMeanError = mean(yError)
yStdError = std(yError)

%plot the error
figure(2)
subplot(2,1,1)
hist(xError,10)
xlabel('Error (m)')
ylabel('X Count')
subplot(2,1,2)

141

hist(yError,10)
xlabel('Error (m)')
ylabel('Y Count')

7.3 Sample Data

Time, Angle, xFixture, yFixture, xTTS, yTTS, zTTS, xError, yError, PPStime, PPSangle

34918, 6767,-0.2822242 ,-0.5688361,-0.372631,-0.513605,0.002079,0.09040681,-

0.05523109, 54309,6212

58452,7048,-0.1779255,-0.6095634,-0.277994,-0.570675,0.002762,0.1000685,-

0.03888839,48155,6924

16229,7327,-0.06888809,-0.6312523,-0.172593,-0.608698,0.003306,0.1037049,-

0.02255428,48155,6924

39509,7606,0.04226086,-0.6335921,-0.062953,-0.628411,0.003557,0.1052139,-

0.005181134,48155,6924

63864,7898,0.1571451,-0.6152483,0.048492,-

0.628828,0.004013,0.1086531,0.01357973,41990,7636

21804,8181,0.2634916,-0.5777519,0.158394,-

0.60948,0.004241,0.1050976,0.03172815,41990,7636

45078,8460,0.3602158,-0.5229432,0.264929,-

0.570329,0.004562,0.09528679,0.04738581,35826,8348

2210,8731,0.4436206,-0.454341,0.361479,-

0.513876,0.004648,0.08214158,0.059535,35826,8348

25659,9012,0.5165253,-0.3693597,0.447105,-

0.441513,0.0046,0.06942034,0.07215333,35826,8348

49851,9301,0.5747349,-0.2700088,0.517332,-

0.355686,0.004561,0.05740291,0.08567724,29668,9061

7867,9584,0.6134317,-0.1640932,0.572205,-

0.258604,0.004221,0.04122669,0.09451084,29668,9061

31319,9868,0.6328173,-0.0526053,0.609962,-

0.153314,0.004343,0.02285528,0.1007087,23500,9774

54790,150,0.6321818,0.05975878,0.627016,-

0.043225,0.004148,0.005165815,0.1029838,23500,9774

142

12770,433,0.611644,0.170636,0.627126,0.069272,0.003802,-

0.01548201,0.101364,23500,9774

36013,713,0.5723376,0.2750539,0.605549,0.179042,0.00342,-

0.03321135,0.09601192,17349,489

59569,996,0.5146622,0.3719513,0.563584,0.282776,0.002885,-

0.04892182,0.08917531,17349,489

17464,1278,0.4410443,0.4568424,0.505985,0.378005,0.002317,-

0.06494075,0.07883736,11182,1203

40759,1560,0.353616,0.5274284,0.431908,0.460707,0.001836,-

0.07829198,0.06672138,11182,1203

64302,1845,0.2540185,0.581979,0.343135,0.530093,0.001307,-

0.08911648,0.05188602,11182,1203

22109,2126,0.1478498,0.6175479,0.244575,0.581947,0.00048,-

0.09672518,0.0356009,5026,1919

45619,2408,0.03668593,0.6339394,0.138086,0.616589,-2E-05,-

0.1014001,0.01735038,5026,1919

2833,2682,-0.07245661,0.6308526,0.028085,0.630991,-0.000596,-0.1005416,-

0.0001383424,64402,2634

26915,2972,-0.1855712,0.6072794,-0.081561,0.627076,-0.000911,-0.1040102,-

0.01979661,64402,2634

49741,3249,-0.2879284,0.5659702,-0.193223,0.60164,-0.001292,-0.0947054,-

0.0356698,64402,2634

7717,3534,-0.3841323,0.5056356,-0.296837,0.557848,-0.001682,-0.08729526,-

0.05221236,58234,3352

31021,3816,-0.4672416,0.430012,-0.391923,0.496717,-0.001845,-0.07531855,-

0.06670502,58234,3352

55364,4109,-0.5380637,0.3372127,-0.473307,0.419951,-0.001728,-0.06475669,-

0.08273825,52079,4069

12387,4380,-0.587424,0.2411597,-0.541136,0.33035,-0.00159,-0.04628801,-

0.08919029,52079,4069

143

Appendix 8: GNSS Testing Analysis Scripts

8.1 GNSS Testing Script

%%%
% Title: GPSanalysis.m %
% Author: Michael P. Sama (c) 2012 %
% Date: 12/7/12 %
% Function: This script reads in a series of GNSS tests %
% and calcualtes X/Y, along-, and off-track %
% errors. %
%%%

clear; %clear all variables
clc; %clear the command window
format long; %display all significant figures

wb = waitbar(0,'Reading List File...'); %progress bar for monitoring

status
folder = 'C:\Users\michael.sama.BAE-UK\Dropbox\PhD

Project\GPSTestData\Filter Max\'; %folder containing GNSS data files
fid = fopen([folder,'FileList.txt']); %open the file containing a list

of GNSS data files to process
txt = textscan(fid,'%s'); %read all filenames to process
ID = txt{1}; %sort by lines
fclose(fid); %close the file
samples = length(ID); %number of data files to read
%*** Initialize Data Variables ****
FileList = {zeros(samples),1}; FileList = FileList';
Speeds = zeros(samples,1);
MobileData = {zeros(samples),1}; MobileData = MobileData';
MobileLat = {zeros(samples),1}; MobileLat = MobileLat';
MobileLon = {zeros(samples),1}; MobileLon = MobileLon';
MobileX = {zeros(samples),1}; MobileX = MobileX';
MobileY = {zeros(samples),1}; MobileY = MobileY';
MobileFix = {zeros(samples),1}; MobileFix = MobileFix';
StaticData = {zeros(samples),1}; StaticData = StaticData';
StaticLat = {zeros(samples),1}; StaticLat = StaticLat';
StaticLon = {zeros(samples),1}; StaticLon = StaticLon';
StaticX = {zeros(samples),1}; StaticX = StaticX';
StaticY = {zeros(samples),1}; StaticY = StaticY';
FixtureAng = {zeros(samples),1}; FixtureAng = FixtureAng';
FixtureX = {zeros(samples),1}; FixtureX = FixtureX';
FixtureY = {zeros(samples),1}; FixtureY = FixtureY';
ErrorX = {zeros(samples),1}; ErrorX = ErrorX';
ErrorY = {zeros(samples),1}; ErrorY = ErrorY';
ErrorA = {zeros(samples),1}; ErrorA = ErrorA';
ErrorO = {zeros(samples),1}; ErrorO = ErrorO';
ErrorOstd = zeros(samples,1);
ErrorAstd = zeros(samples,1);
ErrorSstd = zeros(samples,1);

%*** Read all data files listed in the 'FileList.txt' document ***
j = 1;

144

for i=1:samples
 waitbar(i/samples,wb,['Reading Raw Data File ',num2str(i),'...']);
 FileList(j) = {[char(ID(i)),'_Mobile.csv']};
 FileList(j+1) = {[char(ID(i)),'_Static.csv']};
 [~,~,MobileData{i}] = xlsread([folder,char(FileList(j))]);
 [~,~,StaticData{i}] = xlsread([folder,char(FileList(j+1))]);
 j = j + 2;
end

%*** Extract the fixture speed from each file ***
FileElements = regexp(FileList,'_','split');
j = 1;
for i=1:samples
 X = FileElements{j};
 Speeds(i) = str2double(cell2mat(X(3)));
 j = j + 2;
end

%*** Extract latitudes, longitudes, and fixture angle ***
for i=1:samples
 waitbar(i/samples,wb,['Extracting Positions From File

',num2str(i),'...']);
 X = MobileData{i};
 MobileFix{i} = X(:,7);
 I = find(cell2mat(MobileFix{i})==4);
 MobileLat{i} = X(I,3);
 MobileLon{i} = X(I,5);
 FixtureAng{i} = X(I,18);
 Y = StaticData{i};
 StaticLat{i} = Y(:,3);
 StaticLon{i} = Y(:,5);
end
clear X
clear Y

%*** Convert latitudes and longitudes from DDMM.MM format to D.DD ***
for i=1:samples
 waitbar(i/samples,wb,['Converting Positions From File

',num2str(i),'...']);
 X = cell2mat(MobileLat{i});
 Y = cell2mat(MobileLon{i});
 Z = cell2mat(StaticLat{i});
 W = cell2mat(StaticLon{i});
 MobileLat{i} = (floor(X/100)+mod(X,100)/60);
 MobileLon{i} = -1*(floor(Y/100)+mod(Y,100)/60);
 StaticLat{i} = (floor(Z/100)+mod(Z,100)/60);
 StaticLon{i} = -1*(floor(W/100)+mod(W,100)/60);
end
clear X
clear Y
clear Z
clear W

%*** Transform latitdues and longitudes to local coordinate system ***
for i=1:samples

145

 waitbar(i/samples,wb,['Transforming Positions From File

',num2str(i),'...']);
 refLat = 38.027003344143857;
 refLon = -84.509631727984825;
% refLat = mean(MobileLat{i});
% refLon = mean(MobileLon{i});
 Phi = refLat * pi/180; %Convert the latitude from degrees to

radians
 h = -33.022; %Set the height above the elipsoid
 a = 6378137; %Set the semimajor-axis of the elipsoid
 b = 6356752.3142; %Set the semiminor-axis of the elipsoid
 Flat = (pi / 180) * (((a ^ 2 * b ^ 2) / ((a ^ 2 * cos(Phi) *

cos(Phi) + b ^ 2 * sin(Phi) * sin(Phi)) ^ (3 / 2))) + h);
 Flon = (pi / 180) * ((a ^ 2 / sqrt(a ^ 2 * cos(Phi) * cos(Phi) + b ^

2 * sin(Phi) * sin(Phi))) + h) * cos(Phi);
 MobileX{i} = (MobileLon{i}-refLon) .* Flon;
 MobileY{i} = (MobileLat{i}-refLat) .* Flat;
 refLat = mean(StaticLat{i});
 refLon = mean(StaticLon{i});
 Phi = refLat * pi/180; %Convert the latitude from degrees to

radians
 h = -33.022; %Set the height above the elipsoid
 a = 6378137; %Set the semimajor-axis of the elipsoid
 b = 6356752.3142; %Set the semiminor-axis of the elipsoid
 Flat = (pi / 180) * (((a ^ 2 * b ^ 2) / ((a ^ 2 * cos(Phi) *

cos(Phi) + b ^ 2 * sin(Phi) * sin(Phi)) ^ (3 / 2))) + h);
 Flon = (pi / 180) * ((a ^ 2 / sqrt(a ^ 2 * cos(Phi) * cos(Phi) + b ^

2 * sin(Phi) * sin(Phi))) + h) * cos(Phi);
 StaticX{i} = (StaticLon{i}-refLon) .* Flon;
 StaticY{i} = (StaticLat{i}-refLat) .* Flat;
end

%*** Remove the mean error for all dynamic tests ***
for i=2:samples
 MobileX{i} = MobileX{i} - mean(MobileX{i});
 MobileY{i} = MobileY{i} - mean(MobileY{i});
end

%*** Caculate the fixture position at each sample and X/Y position

error **
for i=1:samples
 A = cell2mat(FixtureAng{i});
 FixtureX{i} = 1.*cos(A./10000.*2.*pi-3.736); %3.726 Test 1, %3.755

5800
 FixtureY{i} = 1.*sin(A./10000.*2.*pi-3.736);
 ErrorX{i} = MobileX{i} - FixtureX{i};
 ErrorY{i} = MobileY{i} - FixtureY{i};
end

%*** Calcuate along-, off-track errors, and standard deviations ***
for i=1:samples
 waitbar(i/samples,wb,['Calculating Off- and Along-Track Errors From

File ',num2str(i),'...']);
 A = -1*cell2mat(FixtureAng{i});
 EX = ErrorX{i};
 EY = ErrorY{i};

146

 ESX = StaticX{i};
 ESY = StaticY{i};
 EV = sqrt(ESX.^2+ESY.^2);
 X = zeros(length(EX),1);
 Y = zeros(length(EX),1);
 for j = 1:length(EX)
 XY = [cos(A(j)),-sin(A(j));sin(A(j)),cos(A(j))]*[EX(j);EY(j)];
 X(j) = XY(1);
 Y(j) = XY(2);
 ErrorO{i} = X;
 ErrorA{i} = Y;
 ErrorOstd(i) = std(X);
 ErrorAstd(i) = std(Y);
 ErrorSstd(i) = std(EV);
 end
end

%*** Plot the X and Y positions ***
figure(1)
for i = 1:samples
 subplot(1,samples,i);
 plot(MobileX{i},MobileY{i},'.',FixtureX{i},FixtureY{i},'.')
 axis([-1.1,1.1,-1.1,1.1])
 axis square
end

%*** Plot the X and Y errors ***
figure(2)
for i = 1:samples
 subplot(1,samples,i);
 plot(ErrorX{i},ErrorY{i},'.')
 axis([-0.2,0.2,-0.2,0.2])
 axis square
end

%*** Plot the along- and off-track errors ***
figure(3)
for i = 1:samples
 subplot(1,samples,i);
 plot(ErrorO{i},ErrorA{i},'.')
 axis([-0.2,0.2,-0.2,0.2])
 axis square
end

%*** Plot the X and Y positions of a static receiver ***
figure(4)
for i = 1:samples
 subplot(1,samples,i);
 plot(StaticX{i},StaticY{i},'.')
 axis([-0.2,0.2,-0.2,0.2])
 axis square
end

%*** Plot the along- and off-track standard deviations of error ***
figure(5)
plot(Speeds,ErrorOstd,'.',Speeds,ErrorAstd,'.')

147

axis([500,2750,0,0.05]);

close(wb) %closs the progress bar

8.2 Sample Data

$GPGGA,184338.00,3801.61965289,N,08430.57795676,W,4,07,2.1,316.958,M,-

33.022,M,1.0,0000*7D,$PPS,24142,3362

$GPGGA,184339.00,3801.61978985,N,08430.57743988,W,4,07,2.1,316.959,M,-

33.022,M,1.0,0000*73,$PPS,17202,4675

$GPGGA,184340.00,3801.62018922,N,08430.57722149,W,4,07,2.1,316.928,M,-

33.022,M,1.0,0000*78,$PPS,10263,5986

$GPGGA,184341.00,3801.62059377,N,08430.57743916,W,4,08,1.4,316.909,M,-

33.022,M,1.0,0000*79,$PPS,3323,7295

$GPGGA,184342.00,3801.62073047,N,08430.57795595,W,4,07,2.1,316.946,M,-

33.022,M,1.0,0000*7C,$PPS,61920,8601

$GPGGA,184343.00,3801.62052491,N,08430.57843994,W,4,07,2.1,316.985,M,-

33.022,M,1.0,0000*77,$PPS,54981,9907

$GPGGA,184344.00,3801.62011484,N,08430.57858229,W,4,07,2.1,316.998,M,-

33.022,M,1.0,0000*78,$PPS,48041,1216

$GPGGA,184345.00,3801.61973996,N,08430.57829877,W,4,07,2.1,317.013,M,-

33.022,M,1.0,0000*75,$PPS,41102,2525

$GPGGA,184346.00,3801.61966301,N,08430.57776146,W,4,07,2.1,316.988,M,-

33.022,M,1.0,0000*72,$PPS,34163,3838

$GPGGA,184347.00,3801.61992105,N,08430.57731923,W,4,07,2.1,316.938,M,-

33.022,M,1.0,0000*7D,$PPS,27223,5152

$GPGGA,184348.00,3801.62034828,N,08430.57725879,W,4,08,1.4,316.945,M,-

33.022,M,1.0,0000*7A,$PPS,20284,6463

$GPGGA,184349.00,3801.62068164,N,08430.57760665,W,4,08,1.4,316.931,M,-

33.022,M,1.0,0000*72,$PPS,13345,7772

$GPGGA,184350.00,3801.62069023,N,08430.57815791,W,4,07,2.1,316.950,M,-

33.022,M,1.0,0000*70,$PPS,6405,9077

148

$GPGGA,184351.00,3801.62038226,N,08430.57854170,W,4,07,2.1,316.979,M,-

33.022,M,1.0,0000*75,$PPS,65002,389

$GPGGA,184352.00,3801.61996054,N,08430.57851770,W,4,07,2.1,316.979,M,-

33.022,M,1.0,0000*7C,$PPS,58062,1697

$GPGGA,184353.00,3801.61968180,N,08430.57810494,W,4,07,2.1,316.957,M,-

33.022,M,1.0,0000*74,$PPS,51123,3008

$GPGGA,184354.00,3801.61972258,N,08430.57756296,W,4,07,2.1,316.980,M,-

33.022,M,1.0,0000*7D,$PPS,44184,4322

$GPGGA,184355.00,3801.62007118,N,08430.57724087,W,4,07,2.1,316.949,M,-

33.022,M,1.0,0000*71,$PPS,37244,5635

$GPGGA,184356.00,3801.62048602,N,08430.57733625,W,4,07,2.1,316.988,M,-

33.022,M,1.0,0000*70,$PPS,30305,6946

$GPGGA,184357.00,3801.62072150,N,08430.57780736,W,4,07,2.1,316.961,M,-

33.022,M,1.0,0000*74,$PPS,23366,8254

$GPGGA,184358.00,3801.62061671,N,08430.57833242,W,4,07,2.1,316.960,M,-

33.022,M,1.0,0000*7D,$PPS,16426,9561

$GPGGA,184359.00,3801.62022586,N,08430.57858283,W,4,07,2.1,317.003,M,-

33.022,M,1.0,0000*7D,$PPS,9487,871

$GPGGA,184400.00,3801.61982257,N,08430.57840338,W,4,08,1.4,316.992,M,-

33.022,M,1.0,0000*7C,$PPS,2548,2181

$GPGGA,184401.00,3801.61965097,N,08430.57789959,W,4,08,1.4,316.974,M,-

33.022,M,1.0,0000*75,$PPS,61144,3495

$GPGGA,184402.00,3801.61982299,N,08430.57740706,W,4,08,1.4,316.963,M,-

33.022,M,1.0,0000*74,$PPS,54205,4809

$GPGGA,184403.00,3801.62024071,N,08430.57722759,W,4,08,1.4,316.925,M,-

33.022,M,1.0,0000*7B,$PPS,47266,6122

$GPGGA,184404.00,3801.62062202,N,08430.57748019,W,4,08,1.4,316.936,M,-

33.022,M,1.0,0000*75,$PPS,40326,7430

$GPGGA,184405.00,3801.62073230,N,08430.57801512,W,4,08,1.4,316.926,M,-

33.022,M,1.0,0000*78,$PPS,33387,8739

149

Appendix 9: Application of a Dynamic GNSS Error Model

9.1 P/A versus Off-Rate Error Script

%%%
% Title: ErrorExample.m %
% Author: Michael P. Sama (c) 2010 %
% Date: 10/8/2012 %
% Function: This script simulates the effect of dynamic %
% GNSS error on an application map. %
%%%

clear; %clear all variables
clc; %clear the command window

n = 400; %set the size of the error filter kernal (cm)
m = n;

sx0 = 2.54; %standard deviation 0 (cm)
sy0 = 2.54;
sx1 = 10.2; %standard deviation 1 (cm)
sy1 = 10.2;
sx2 = 100; %standard deviation 2 (cm)
sy2 = 100;

mx = floor(n/2)+1; %find the center of the error distribution
my = floor(m/2)+1;

D0 = zeros(m,n); %initialize the error distribution variables
D1 = zeros(m,n);
D2 = zeros(m,n);

%calculate the error distributions using a bivariate normal

distribution
for i=1:n
 for j=1:m
 D0(j,i) = (1/(2*pi()*sx0*sy0))*exp((-1/2)*(((i-mx)/sx0)^2+((j-

my)/sy0)^2));
 D1(j,i) = (1/(2*pi()*sx1*sy1))*exp((-1/2)*(((i-mx)/sx1)^2+((j-

my)/sy1)^2));
 D2(j,i) = (1/(2*pi()*sx2*sy2))*exp((-1/2)*(((i-mx)/sx2)^2+((j-

my)/sy2)^2));
 end
end

%plot the error distributions
figure(1)
subplot(1,3,1)
imagesc(D0)
title('\sigma = 2.54 cm')
xlabel('Off-Track Error (cm)')
ylabel('Along-Track Error (cm)')
colormap gray
axis image

150

subplot(1,3,2)
imagesc(D1)
title('\sigma = 10.2 cm')
xlabel('Off-Track Error (cm)')
ylabel('Along-Track Error (cm)')
colormap gray
axis image
subplot(1,3,3)
imagesc(D2)
title('\sigma = 100 cm')
xlabel('Off-Track Error (cm)')
ylabel('Along-Track Error (cm)')
colormap gray
axis image

%*** Use the following line to load a custom application map ***
%S = double(~imread('test.bmp'));

%*** Use the following lines to set the application map as a square ***
% S = zeros(400,400);
% S(100:300,100:300) = 1;

%*** Use the following lines to set the application map as a circle ***
N = 400;
S = zeros(N,N);
d = 200;
x = size(S,1)/2;
y = size(S,2)/2;
for i = 1:size(S,1)
 for j = 1:size(S,2)
 if sqrt((i-x)^2+(j-y)^2) <= d/2
 S(i,j) = 1;
 end
 end
end

%conver the application map to a binary image and display parameters
BW = im2bw(S,graythresh(S));
PAR = regionprops(BW,'area','perimeter');
Area = PAR.Area
Perimeter = PAR.Perimeter

%plot the application map
figure(2)
imagesc(S)
title('Application Map without Position Error')
colormap gray
axis image

%integrate GNSS error using convolution
V0 = conv2(S,D0,'same');
V1 = conv2(S,D1,'same');
V2 = conv2(S,D2,'same');

%plot the application maps with GNSS error

151

figure(3)
subplot(1,3,1)
imagesc(V0)
title('\sigma = 2.54 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image
subplot(1,3,2)
imagesc(V1)
title('\sigma = 10.2 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image
subplot(1,3,3)
imagesc(V2)
title('\sigma = 100 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image

%plot the applications maps with GNSS error inside the boundary
figure(4)
Y0 = V0.*S;
Y1 = V1.*S;
Y2 = V2.*S;
subplot(1,3,1)
imagesc(Y0)
title('\sigma = 2.54 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image
subplot(1,3,2)
imagesc(Y1)
title('\sigma = 10.2 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image
subplot(1,3,3)
imagesc(Y2)
title('\sigma = 100 cm')
xlabel('X-Direction (cm)')
ylabel('Y-Direction (cm)')
colormap gray
axis image

%find the elements inside the boundary that correspond to off-rate

error
y0 = find(0<Y0 & Y0<0.9);
y1 = find(0<Y1 & Y1<0.9);
y2 = find(0<Y2 & Y2<0.9);

152

%plot the applications maps with GNSS error outside the boundary
figure(5)
Z0 = V0.*(1-S);
Z1 = V1.*(1-S);
Z2 = V2.*(1-S);
subplot(1,3,1)
imagesc(Z0)
title('Application Outside Boundary')
colormap gray
axis image
subplot(1,3,2)
imagesc(Z1)
title('Application Outside Boundary')
colormap gray
axis image
subplot(1,3,3)
imagesc(Z2)
title('Application Outside Boundary')
colormap gray
axis image

%find the elements outside the boundary that correspond to off-rate

error
z0 = find(Z0>0.1);
z1 = find(Z1>0.1);
z2 = find(Z2>0.1);

%display the off-rate error inside the boundary as a percentage of

field area
Average_Error1 = length(y0)/Area
Average_Error2 = length(y1)/Area
Average_Error3 = length(y2)/Area

9.2 GNSS Model Application Script

%%%
% Title: GNSSmodel.m %
% Author: Michael P. Sama (c) 2012 %
% Date: 3/15/12 %
% Function: This script reads in an application map and %
% estimates the off-rate error due to boundary %
% effects in the field. %
%%%

clear; %clear all variables
clc; %clear the command window

%read in the application map, convert to a binary image, and find the
%perimeter and area
I = imread('C:\Users\michael.sama.BAE-UK\Dropbox\PhD

Project\Dissertation\Field Boundaries\Field8.png');
BW = im2bw(I, graythresh(I));
BW2 = bwperim(BW,4);

153

[B,L] = bwboundaries(BW,'noholes');
[N,M] = size(BW);
S = regionprops(BW,'area','perimeter');
a = S.Area;
p = S.Perimeter;
pa = p/a;

%estimate off-rate errors based on three levels of GNSS accuracy
good = (0.0297+0.032)/2*pa;
average = (0.1176+0.1221)/2*pa;
poor = (0.6737+0.6512)/2*pa;

%plot the results
figure(1)
imshow(BW)
hold on
boundary = B{1};
plot(boundary(:,2),boundary(:,1),'r', 'LineWidth', 3);
title(['P/A = ',num2str(pa),', Good = ',num2str(good*100),'%, Average =

',num2str(average*100),'%, Poor = ',num2str(poor*100),'%'])
hold off

154

Appendix 10: Abbreviated Terminology

CORS – Continuously Operating Reference Station

CSV – Comma-Separated Values

DGPS – Differential Global Position System

DOP – Dilution Of Precision

GLONASS – Globalnaya Navigatsionnaya Sputnikovaya Sistema (Russian Global

Navigation Satellite System)

GNSS – Global Navigation Satellite based System

GPS – Global Positioning System

ION – The Institute of Navigation

ISO – International Organization for Standardization

KTC – Kentucky Transportation Cabinet

OPUS – Online Position User Service

P/A – Perimeter to Area

PPS – Pulse Per Second

RTK – Real Time Kinematic

TTFF – Time To First Fix

TTS – Tracking Total Station

155

VFD – Variable Frequency Drive

WAAS – Wide Area Augmentation System

WGS – World Geodetic System

156

REFERENCES

Al-Gaadi, K. A., and P. D. Ayers. 1999. Integrating GIS and GPS into a spatially variable

rate herbicide application system. Applied Engineering in Agriculture 15(4):255-262.

Behn, M., V. Hohreiter, and A. Muschinski. 2008. A scalable datalogging system with

serial interfaces and integrated GPS time stamping. Journal of Atmospheric and Oceanic

Technology 25(9):1568-1578.

Berns, H. G., and R. J. Wilkes. 2000. GPS time synchronization system for K2K. Ieee

Transactions on Nuclear Science 47(2):340-343.

Boniger, U., and J. Tronicke. 2010. On the Potential of Kinematic GPR Surveying Using

a Self-Tracking Total Station: Evaluating System Crosstalk and Latency. Ieee

Transactions on Geoscience and Remote Sensing 48(10):3792-3798.

Borgelt, S. C., J. D. Harrison, K. A. Sudduth, and S. J. Birrell. 1996. Evaluation of GPS

for Applications in Precision Agriculture. 12(6):633-638.

Chan, W. S., Y. L. Xu, X. L. Ding, Y. L. Xiong, and W. J. Dai. 2006. Assessment of

dynamic measurement accuracy of GPS in three directions. Journal of Surveying

Engineering-Asce 132(3):108-117.

Cole, J. T., T. S. Stombaugh, and S. A. Shearer. 2004. Development of a Test Track for

the Evaluation of GPS Receiver Dynamic Performance. ASABE.

157

Daly, P., I. D. Kitching, D. W. Allan, and T. K. Peppler. 1991. Frequency and Time

Stability of Gps and Glonass Clocks. International Journal of Satellite Communications

9(1):11-22.

Depenthal, C. 2008. A Time-referenced 4D Calibration System for Kinematic Optical

Measuring Systems. In 1st International Conference on Machine Control & Guidance.

Easterly, D. R., V. I. Adamchuk, M. F. Kocher, and R. M. Hoy. 2010. Using a vision

sensor system for performance testing of satellite-based tractor auto-guidance. Computers

and Electronics in Agriculture 72(2):107-118.

Ehsani, M. R., M. D. Sullican, T. L. Zimmerman, and T. S. Stombaugh. 2003. Evaluating

the Dynamic Accuracy of Low-Cost GPS Receivers. ASABE.

Gavric, M., M. Martinov, S. Bojic, D. Djatkov, and M. Pavlovic. 2011. Short- and long-

term dynamic accuracies determination of satellite-based positioning devices using a

specially designed testing facility. Computers and Electronics in Agriculture 76(2):297-

305.

Han, S., Q. Zhang, and H. Noh. 2002. Kalman filtering of DGPS positions for a parallel

tracking application. Transactions of the Asae 45(3):553-559.

Han, S., Q. Zhang, H. Noh, and B. Shin. 2004. A dynamic performance evaluation

method for DGPS receivers under linear parallel-tracking applications. Transactions of

the Asae 47(1):321-329.

158

Harbuck, T. L., J. P. Fulton, T. P. McDonald, and C. J. Brodbeck. 2006. Evaluation of

GPS Autoguidance Systems over Varying Time Periods. ASABE.

Hwang, S. Y., D. H. Yu, and K. J. Li. 2004. Embedded system design for network time

synchronization. Embedded and Ubiquitous Computing, Proceedings 3207:96-106.

ION. 1997. ION STD 101 Recommended Test Procedures For GPS Receivers Revision

C. The Institute of Navigation.

ISO. 2010. Tractors and machinery for agriculture and forestry -- Test procedures for

positioning and guidance systems in agriculture -- Part 1: Dynamic testing of satellite-

based positioning devices. International Orginization for Standardization.

Krischner, H., and W. Stempfhuber. 2008. The Kinematic Potential of Modern Tracking

Total Stations. In 1st International Conference on Machine Control & Guidance.

Luck, J. D., S. K. Pitla, R. S. Zandonadi, M. P. Sama, and S. A. Shearer. 2011.

Estimating off-rate pesticide application errors resulting from agricultural sprayer turning

movements. Precision Agriculture 12(4):534-545.

Luck, J. D., R. S. Zandonadi, B. D. Luck, and S. A. Shearer. 2010. Reducing Pesticide

over-Application with Map-Based Automatic Boom Section Control on Agricultural

Sprayers. Transactions of the ASABE 53(3):685-690.

MathWorks. 2012. MATLAB. Ver. 7.14.0.739 (R2012a). Natick, Massachusetts: The

MathWorks Inc.

159

NMEA. 2000. NMEA 0183 Interface Standard. National Marine Electronics Association.

Perez-Ruiz, M., J. Carballido, J. Aguera, and J. A. Gil. 2010. Assessing GNSS correction

signals for assisted guidance systems in agricultural vehicles. Precision Agriculture

12(5):639-652.

Robertson, M., P. Carberry, and L. Brennan. 2009. Economic benefits of variable rate

technology: case studies from Australian grain farms. Crop & Pasture Science 60(9):799-

807.

Sama, M. P., T. S. Stombaugh, R. S. Zandonadi, and S. A. Shearer. 2009. Dynamic

GNSS Testing and Applications.

Saunders, S. P., G. Larscheid, B. S. Blackmore, and J. V. Stafford. 1996. A Method for

Direct Comparison of Differential Global Positioning Systems Suitable for Precision

Farming. Precision Agriculture acsesspublicati(precisionagricu3):663-674.

Silva, C. B., S. M. L. R. do Vale, F. A. C. Pinto, C. A. S. Muller, and A. D. Moura. 2007.

The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: a

case study. Precision Agriculture 8(6):255-265.

Smith, L. A., and S. J. Thomson. 2005. Gps position latency determination and ground

speed calibration for the SATLOC Airstar M3. Applied Engineering in Agriculture

21(5):769-776.

160

Stombaugh, T. S., M. P. Sama, R. S. Zandonadi, S. A. Shearer, and B. K. Koostra. 2008.

Standardized Evaluation of Dynamic GPS Performance.

Stombaugh, T. S., S. A. Shearer, J. P. Fulton, and M. R. Ehsani. 2002. Elements of a

Dynamic GPS Test Standard. ASABE.

Taylor, R. K., M. D. Schrock, J. Bloomfield, G. Bora, G. Brockmeier, W. Burton, B.

Carlson, J. Gattis, R. Groening, J. Kopriva, N. Oleen, J. Ney, C. Simmelink, and J.

Vondracek. 2004. Dynamic testing of gps receivers. Transactions of the Asae 47(4):1017-

1025.

Thomson, S. J., L. A. Smith, and J. E. Hanks. 2007. An instrumentation platform and

GPS position latency issues for remote sensing on agricultural aircraft. Transactions of

the ASABE 50(1):13-22.

Thrikawala, S., A. Weersink, G. Kachanoski, and G. Fox. 1998. Economic feasibility of

variable rate technology for nitrogen on corn. American Journal of Agricultural

Economics 80(5):1176-1176.

Watkins, K. B., Y. C. Lu, and W. Y. Huang. 1998. Economic and environmental

feasibility of variable rate nitrogen fertilizer application with carry-over effects. Journal

of Agricultural and Resource Economics 23(2):401-426.

Wu, C., P. D. Ayers, and A. B. Anderson. 2006. Influence of travel direction on GPS

accuracy for vehicle tracking. 49(3):623-634.

161

Zandonadi, R. S., J. D. Luck, T. S. Stombaugh, M. P. Sama, and S. A. Shearer. 2011. A

Computational Tool for Estimating Off-Target Application Areas in Agricultural Fields.

Transactions of the ASABE 54(1):41-49.

162

VITA

MICHAEL P. SAMA, P.E.

EDUCATION

Ph.D. 2013: University of Kentucky – Biosystems and Agricultural Engineering

M.S. 2008: University of Kentucky – Biosystems and Agricultural Engineering

B.S. 2004: Rensselaer Polytechnic Institute – Computer and Systems Engineering

LISCENSURE

Professional Engineer, Electrical and Computer Engineering, Kentucky, 2011– Current

PROFESSIONAL EXPERTISE

Machine Systems Automation Engineering, Software Development, Instrumentation,

Data Acquisition, Serial Communication, Embedded Control Systems, Computer-Aided

Design

TEACHING

Instructor, BAE 658: Instrumentation for Engineering Research, 2009 – Current

Assistant, BAE 658: Instrumentation for Engineering Research, 2005 – 2006

Lab Instructor, BAE 305: DC Circuits and Microelectronics, 2005 – 2012

ADVISING

Advisor, UK Quarter Scale Tractor Team, 2010 – Current

PROFESSIONAL MEMBERSHIP

American Society of Agricultural and Biological Engineers

Alpha Epsilon: The Honor Society of Agricultural, Food, and Biological Engineering

Gamma Sigma Delta: The Honor Society of Agriculture

AWARDS

Outstanding Doctoral Student, Gamma Sigma Delta, 2012

New Faces of Engineering, National Engineers Week, 2012

New Faces of ASABE, American Society of Agricultural and Biological Engineers, 2012

Sunkist Young Designer Award, American Society of Agricultural and Biological

Engineers, 2011

Outstanding Masters Student, Gamma Sigma Delta, 2006

163

SERVICE

FFA Planning Committee, ASABE, 2012 – Current

PM-54 (Precision Agriculture) Member, ASABE, 2011 – Current

Computer Committee, Biosystems and Agricultural Engineering, 2005 – 2011

Cooking Crew, Ag Roundup, 2005 – Current

Team Member, UK Quarter Scale Tractor Team, 2005 – 2010

Presenter, Engineering Day, 2005 – 2013

RESEARCH & PROJECTS

Mobile Device Applications for Agricultural Machine Monitoring, 2012 – Current

Wind Tunnel Pressure Control, 2011– 2012

Variable Flow Rate Nozzle Controller, 2011 – 2012

Evaluating GPS Autoguidance for Specialty Crop Management, 2011

Scalable Control and Data Acquisition for Variable-Rate Applications, 2010 – Current

Instrumentation of a Grain Compaction Device, 2010 – 2011

High Pressure Liquid Pesticide Metering and Injection System, 2009 – 2012

Water Level Sensor for Shrimp Tanks, 2008

Gas Measurement Control System for Multiple Biofilters, 2008

Fan Assessment Numeration System (FANS), 2007 – Current

Rainfall Simulator Control System, 2006

Controlling Feedlot Runoff in a Basin, 2005 – 2008

Standardized Testing of Satellite-Based Navigation Systems, 2005 – Current

Analyzing Sprayer Droplet Distribution using MATLAB, 2005 – 2007

Low-Cost Remote Sensing in Agriculture, 2004 – 2008

Camera & Controls for Big Blue 3, 2004 – 2005

FUNDING - $428,778

Pitla, S.K., M.P. Sama, J.D. Luck. 2012. AgStatMonitor: A Mobile Device Application

for Agricultural Machine Monitoring. ASABE Mobile App Challenge. $9,397.

Sama, M.P., G.B. Day. 2011. Fan Assessment Numeration Systems (FANS) for

Agricultural Building Ventilation Measurement in Emissions Testing. Individual

Contracts with UIUC (1), IASU (1), UGPH (1), UDEL (1). $39,000.

Sama, M.P., T.S. Stombaugh, J.D. Luck. 2010. Scalable Control and Data Acquisition

for Variable-Rate Applications. USDA-NIFA. $48,710.

Luck, J.D., S.K. Pitla, M.P. Sama, S.A. Shearer. 2010. Sprayer Controller Evaluation

for Improving Spatial Application of Pesticides. USDA-NIFA. $49.976.

Zandonadi, R.S., T.S. Stombaugh, M.P. Sama. 2009. Reduced Equipment Set for

Multiple Vehicle Guidance. USDA-CSREES. $49,992.

164

Luck, J.D., S.K. Pitla, M.P. Sama, S.A. Shearer. 2009. A Pneumatic Nozzle Control

System for Variable-Rate Pesticide Application. USDA-CSREES. $49,432.

Sama, M.P., T.S.Stombaugh, S.A.Shearer. 2008. A System for Implementing Dynamic

Accuracy Standards for Machine Guidance Technology in Agriculture. USDA-CSREES.

$62,271.

Gates, R.S , M.P. Sama, G.B. Day. 2007. Fan Assessment Numeration Systems (FANS)

for Agricultural Building Ventilation Measurement in Emissions Testing. Contract with

Purdue University. $60,000.

Gates, R.S., M.P. Sama, G.B. Day. 2007. Fan Assessment Numeration Systems (FANS)

for Agricultural Building Ventilation Measurement in Emissions Testing. Individual

Contracts with ISU(2), SDSU(1), UMN(1), UAR(1), USDA-ARS-MS(1). $60,000.

REFEREED PUBLICATIONS

Sama, M.P., T.S. Stombaugh, J.E. Lumpp. A Hardware Method for Time-Stamping

Asynchronous Serial Data Streams Relative to GNSS Time. (In Review)

Maupin, T.P., C.T. Argouridis, D.R. Edwards, C.D. Barton, R.C. Warner, M.P. Sama.

Specific Conductivity Sensor Performance: II. Field Evaluation. International Journal of

Mining, Reclamation and Environment.

Zandonadi, R.S., T.S. Stombaugh, J.D. Luck, M.P. Sama, S.A. Shearer. 2011. A

Computational Tool for Estimating Off-Target Application Areas in Agricultural Fields.

Transactions of ASABE. PM-08498-2010.

Luck, J.D., S.K. Pitla, R.S. Zandonadi, M.P. Sama, S.A. Shearer. 2011. Estimating Off-

Rate Pesticide Application Errors Resulting from Agricultural Sprayer Turning

Movements. Precision Agriculture. 12(4): 534-545.

Zandonadi, R.S., T.S. Stombaugh, S.A. Shearer, D.M. Queiroz, M.P. Sama. 2010.

Laboratory Performance of a Mass Flow Sensor for Dry Edible Bean Harvesters.

Applied Engineering in Agriculture. Vol. 26(1): 11-20.

INVITED SPEAKER PRESENTATIONS

Sama, M.P., T.S. Stombaugh. 2007. Low Cost Remote Sensing Platform. IV Simpósio

Internacional de Agricultura de Precisão, 23 a 25 de outubro de 2007, Viçosa-MG.

(Presented by T.S. Stombaugh).

CONFERENCE PRESENTATIONS

165

Agouridis, C., T. Maupin, C. Barton, D. Edwards, R. Warner, M.P. Sama. 2012.

Assessing Conductivity Sensor Performance: A Laboratory and Field Study. 2012

Southeast Regional Stream Restoration Conference.

Sama, M.P., L.M. Pepple, G.B. Day, D.G. Overhults, G.M. Morello, I.M. Lopes, J.

Earnest, K.D. Casey, R.S. Gates. 2012. Calibration Drift Assessment and Upgrades to the

Fan Assessment Numeration System (FANS). Paper Number 121337770, 2012 ASABE

Annual Meeting.

Sama, M.P., G.M. Morello, I.M. Lopes, G.B. Day, D.G. Overhults. 2012. Visualizing

Airflow Using the Fan Assessment Numeration System (FANS). Paper Number

121337883, 2012 ASABE Annual Meeting.

Luck, J.D., M.P. Sama, S.K. Pitla, S.A. Shearer. 2012. Droplet Spectra Characteristics

from a Variable-Orifice Nozzle at Constant Pressures. Paper Number 121337472, 2012

ASABE Annual Meeting.

Lopes, I.M., F.A. Damasceno, G.B. Day, M.P. Sama, D.G. Overhults. 2012. WINTAC: A

Wind Tunnel Transition Assessment Chamber at the Biosystems and Agricultural

Engineering Department at University of Kentucky. Paper Number 121337360, 2012

ASABE Annual Meeting.

Luck, J.D., M.P. Sama, S.A. Shearer. 2012. Spray Pattern and Droplet Spectra

Characteristics from an Actively Controlled Variable-Orifice Nozzle. 2012 International

Conference on Precision Agriculture.

Black, R.A., T.S. Stombaugh, S.R. Luciani, M.P. Sama, R.L. Klingefus, A.B. Klingefus,

J.M. Bewley. 2012. Potential for a Real-Time Location System for Dynamic Tracking of

Dairy Cow Location within Dairy Facilities. 2012 American Dairy Science Annual

Meeting.

Sama, M.P., R.S. Zandonadi, J.D. Luck, T.S. Stombaugh, S.A. Shearer. 2011. A Static

Evaluation of Continuously Operating Reference Stations. 2011 ASABE Annual

Meeting.

Montross, M.D., W.C. Adams, L. Mathis, S. McNeill, M.P. Sama, S. Thompson, J.

Boac, M. Casada. 2011. Laboratory Data with Hard Red Winter Wheat to Support New

Grain Packing Factors. 2011 ASABE Annual Meeting.

Zandonadi, R.S., T.S. Stombaugh, M.P. Sama, S.K. Pitla, R. Baldo. 2011. Evaluation of

a Reduced Equipment Set for Multiple Vehicle Guidance Using Distance Sensors to

Determine Relative Position between Vehicles. 2011 ASABE Annual Meeting.

Sama, M.P., R.S. Zandonadi, J.D. Luck, T.S. Stombaugh, S.A. Shearer. 2010.

Development of a Scalable Control System for Variable-Rate Applications. 2010

ASABE Annual Meeting.

166

Luck, J.D., M.P. Sama, S.K. Pitla, S.A. Shearer. 2010. Pneumatic Control of a Variable

Orifice Nozzle. 2010 ASABE Annual Meeting.

Sama, M.P., T.S. Stombaugh, R.S. Zandonadi, S.A.Shearer. 2009. Dynamic GNSS

Testing and Applications. Paper Number 096714, 2009 ASABE Annual Meeting.

Sama, M.P., T.S. Stombaugh, R.S. Zandonadi, S.A. Shearer, W.C. Adams, 2009. A

Mechanism for Evaluating Dynamic GNSS Accuracy on a Test Fixture. 2009 ASABE

AETC.

Sama, M.P., R.S. Gates, W.C.Adams, G.B.Day, C.L.King, 2008. Fan Assessment

Numeration System (FANS) Scaling and Upgrades. Paper Number 084723, 2008 ASABE

Annual Meeting.

Sombaugh, T.S., M.P. Sama, R.S. Zandonadi, S.A. Shearer, 2008. Standardized

Evaluation of Dynamic GPS Performance. Paper Number 084728, 2008 ASABE Annual

Meeting.

Zandonadi, R.S., T.S.Stombaugh, S.A.Shearer, M.P. Sama, 2008. Laboratory

Performance of a Low Cost Mass Flow Sensor for Combines. Paper Number 084167,

2008 ASABE Annual Meeting.

Dougherty C.T., E.S. Flynn, R.J. Coleman, M.P. Sama, T.S. Stombaugh, 2006. Remote

Sensing of Equine Bermudagrass Pastures from a Helikite™.

Sama M.P., T.S. Stombaugh, B.K. Koostra, 2006. Calibration and Verification of Low-

Cost Image Tools for Remote Sensing. Paper Number 061166, 2006 ASABE Annual

Meeting.

Brown D., T. Arrowsmith, A. Mylin, R. Koontz, A. Fox, N. Phelps, D. Thomas, J. Rowe,

R. Jones, D. Jackson, A. Groves, M.P. Sama. 2005. AIRCAT: Airborn Intelligent

Research Craft for Autonomous Technology. 2005 AUVSI Unmanned Systems Meeting.

Sama M.P., D.E. Hershman, T.S. Stombaugh, S.G. McNeill, P. Needham. 2005. An

Analysis of Sprayer Droplets Using Matlab. 2005 National Soybean Rust Symposium.

Sama M.P., T.S. Stombaugh. 2005. Adaptation and Modification of Digital Imaging

Systems for Remote Sensing. Paper Number 051016, 2005 ASAE Annual Meeting.

	PRECISE EVALUATION OF GNSS POSITION AND LATENCY ERRORS IN DYNAMIC AGRICULTURAL APPLICATIONS
	Recommended Citation

	TITLE PAGE

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Determining Dynamic GNSS Accuracy
	1.2 Objectives
	1.3 Note on Terminology
	1.4: Literature Review
	1.4.1 Existing Research on Dynamic GNSS Testing
	1.4.2 ION STD 101
	1.4.3 ISO 12188-1

	CHAPTER 2: SYNCHRONIZING SERIAL DATA STREAMS WITH GNSS TIME
	2.1 Introduction
	2.1.1 Objective

	2.2 Materials and Methods
	2.2.1 Hardware Description
	2.2.2 Software Description
	2.2.3 Signal Timing Device Validation Procedures

	2.3 Results and Discussion
	2.4 Conclusions

	CHAPTER 3: TEST FIXTURE DESIGN AND ANALYSIS
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Rotary Test Fixture Drive Train
	3.2.2 Rotary Test Fixture Control System
	3.2.3 Rotary Test Fixture Structure
	3.2.4: Test Procedures

	3.3 Results and Discussion
	3.3.1 Angular Velocity Control

	3.4 Conclusions

	CHAPTER 4: TRACKING TOTAL STATION TESTING
	4.1 Introduction
	4.1.1 Objective

	4.2 Materials and Methods
	4.2.1 Test Procedures
	4.2.2 Data Collection
	4.2.3 Data Processing

	4.3 Results and Discussion
	4.3.1 Latency Results
	4.3.2 Interpolation Results

	4.4 Conclusions

	CHAPTER 5: DYNAMIC GNSS ERROR MODELING
	5.1 Introduction
	5.1.1 Objective

	5.2 Materials and Methods
	5.2.1 Test Procedures
	5.2.2 Importing GNSS and Fixture Data into MATLAB for Processing
	5.2.3 Calculating X/Y GNSS Position Error
	5.2.5 Calculating Along- and Off-Track Error

	5.3 Results and Discussion
	5.3.1 X/Y Position Error Results
	5.3.2 Along- and Off-Track Position Error Results

	5.4 Conclusions

	CHAPTER 6: APPLYING A DYNAMIC GNSS ERROR MODEL
	6.1 Introduction
	6.1.1 Background
	6.1.2 Visualizing GNSS Accuracy
	6.1.3 Resolution of Computation
	6.1.4 How Much Accuracy is Needed?
	6.1.5 Applying a GNSS Error Model using Convolution

	6.2 Materials and Methods
	6.3 Results and Discussion
	6.4 Conclusions

	CHAPTER 7: CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.1.1 Synchronizing Serial Data Streams with GNSS Time
	7.1.2 Test Fixture Design and Analysis
	7.1.3 Tracking Total Station Testing
	7.1.4 Dynamic GNSS Error Modeling
	7.1.5 Applying a Dynamic GNSS Error Model

	7.2 Future Work

	APPENDICIES
	Appendix 1: Signal Timing Device Software
	1.1 Main Program
	1.2 Analog Output Header File
	1.3 Analog Output Class
	1.4 RS232 Header File
	1.5 RS232 Class

	Appendix 2: TTS Test Fixture Program
	2.1 Main Program
	2.2 RS232 Class
	2.3 TTS Class

	Appendix 3: GNSS Test Fixture Program
	3.1 Main Program
	3.2 R2323 Class

	Appendix 4: X and Y Error Discrete Probability Density Functions
	4.1 No Filter
	4.2 Normal Filter
	4.3 High Filter
	4.4 Max Filter

	Appendix 5: Along-/Off-Track Error Probability Density Functions
	5.1 No Filter
	5.2 Normal Filter
	5.3 High Filter
	5.4 Max Filter

	Appendix 6: Rotary Test Fixture Engineering Drawings
	6.1 Base Assembly
	6.2 Frame Assembly
	6.3 Cover Panels
	6.4 Component Box
	6.5 Frame Tube – Cross Supports
	6.6 Frame Tube – Depth
	6.7 Frame Tube – Vertical
	6.8 Frame Tube – Width
	6.9 Mounting Plate
	6.10 Rain Guard

	Appendix 7: TTS Testing Analysis Scripts
	7.1 TTS Latency Script
	7.2 TTS Interpolation Script
	7.3 Sample Data

	Appendix 8: GNSS Testing Analysis Scripts
	8.1 GNSS Testing Script
	8.2 Sample Data

	Appendix 9: Application of a Dynamic GNSS Error Model
	9.1 P/A versus Off-Rate Error Script
	9.2 GNSS Model Application Script

	Appendix 10: Abbreviated Terminology

	REFERENCES
	VITA

