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ABSTRACT OF THESIS 

 

EVALUATION OF DIFFERENT SOURCES  
OF HYDROXYL ON BIOMASS PRETREATMENT 

AND HYDROLYSIS  

 

Lignocellulosic biomass pretreatment is a fundamental step in the production of 
renewable fuels and chemicals. It is responsible for the disruption and removal of lignin 
and hemicellulose from the lignocellulosic matrix, improving the enzymatic hydrolysis of 
cellulose. Alkaline pretreatment has been shown to be successful on agricultural residues 
and dedicated energy crops. The objective of this study was to evaluate the pretreatment 
of switchgrass, wheat straw, corn stover, and miscanthus using calcium hydroxide, 
potassium hydroxide, and sodium hydroxide at the same hydroxyl concentration, 60% 
moisture content, and two temperatures for seven days. Enzymatic hydrolysis was also 
performed and the glucose produced measured. The composition of cellulose, 
hemicellulose, and lignin before and after pretreatment were quantified according to the 
standard procedures developed by the NREL for biomass. The hydrolysis was performed 
at 50°C and 150 rpm. The enzyme loading was 60 FPU/g cellulose. Overall, calcium 
hydroxide pretreatment resulted in the lowest delignification and structural carbohydrates 
after pretreatment, as well as lowest glucose yield; In addition to having a higher cost and 
carbon dioxide emission then sodium and potassium hydroxides. Sodium hydroxide and 
potassium hydroxide had similar performance in terms of composition changes due to 
pretreatment and glucose yield after enzymatic hydrolysis. 

 

KEYWORDS: Alkaline Pretreatment, Enzymatic Hydrolysis, Agricultural 
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Chapter One: INTRODUCTION 
 
The amount of energy consumed has increased over the last century due to 

increases in the world population and industrialization. Crude oil is the largest primary 

energy source worldwide (IEA). However, its availability has been estimated to be 

declining, which could be crucial, in the view of the fact that many nations’ economies 

depend on oil (Sun & Cheng, 2002). 

Moreover, there are several local, regional, and global impacts regarding the 

utilization of energy from fossil fuels such as coal and oil. Local impacts include solid 

waste disposal sites for ash from coal burning, as well the production of carbon monoxide 

and smog as pollution. Regional impacts are generally the consequence of acid rain, 

which is generated from sulfur dioxide and nitrogen oxides released during combustion 

(Brown, 2003a). Nonetheless, the main environmental concern has to do with global 

climate change. Combustion of fossil fuels release carbon dioxide, which is believed to 

contribute to the greenhouse effect in the atmosphere, and hence global climate change 

(Kumar, Barrett, Delwich, & Stroeve, 2009). There are additional economic and political 

risks associated with fossil fuel use. In the US, a primary policy for utilizing biomass in 

the production of fuels is the Energy Independence and Security Act (EISA) of 2007, 

where the volume of renewable fuel blended into transportation fuels will increase from 

34 billion liters in 2008 to 136 billion L by 2022. By 2022, 61 billion L is mandated to be 

from cellulosic biomass (corn cobs, switchgrass, etc.) and an additional 19 billion L 

classified as an advanced biofuel that meet targets for reduced greenhouse gas emissions. 
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With increased awareness of the finite nature of fossil fuels, environmental 

concerns such as pollution control, and changes in the social, economic, and cultural 

values the international scientific community has intensively searched for alternative 

sources of energy and material (Khuad & Singh, 1993). The development of technologies 

which allow the use of energetic resources in nature, such as lignocellulosic biomass, 

could be a simple solution to these issues (Wyman & Goodman, 1993). 

Conversion of lignocellulosic biomass has numerous advantages because the 

carbon within the biomass does not result in releasing additional carbon dioxide into the 

atmosphere. Bioenergy is different from the energy that arises from burning fossil fuels, 

since it is produced from plants grown today and with short life cycle, which contributes 

to the improvement of energy security (Kumar, Barrett, Delwich, & Stroeve, 2009). One 

potential pathway to renewable liquid fuels from lignocellulosic biomass comprises the 

following three steps: pretreatment of the lignocellulosic material; hydrolysis of 

carbohydrate polymers into fermentable sugars; and sugar fermentation into a biofuel.  

The goal of pretreatment is to increase access to the cellulose and hemicellulose 

molecules by causing cell wall disruption, and reducing crystallinity of the lignocellulosic 

material, thus improving the efficiency of the hydrolysis process (Bragatto, 2010). 

Pretreatment has been identified as one of the major economic costs in biomass 

conversion (Tomás-Pejó, Alvira, Ballesteros, & Negro, 2011) and, therefore, different 

types of pretreatment have been intensively studied in order to optimize the biological 

conversion to biofuels. 
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Laureano-Perez et al., 2005 reported that some alkaline pretreatments yield highly 

digestible cellulose and produce liquid streams with significant quantities of extracted 

lignin and polymeric hemicellulose. A number of alkaline pretreatments have been 

investigated and include lime (Kaar & Holtzapple, 2000; Xu J. , Cheng, Sharma-

Shivappa, & Burns, 2010a; Sirohi & Rai, 1998), sodium hydroxide (Varga, Szengyel, & 

Réczey, 2002; Silverstein, Chen, Sharma-Shivappa, Boyette, & Osborne, 2007; Kingsley 

& Thrash Jr., 2010) , and potassium hydroxide (Bales, Kellogg, & Miller, 1979; Sharma, 

Palled, Sharma-Shivappa, & Osborne, 2013; Ong, Chuah, & Chew, 2010)  that have 

resulted in an increase in digestible cellulose. 

After pretreatment, hydrolysis of the biomass can be performed through acid or 

enzymatic catalysts. Acid hydrolysis is predominantly carried out with sulfuric or 

hydrochloric acid, which can be applied dilute or concentrated. For concentrated-acid 

hydrolysis, sulfuric acid is attractive due to its low price and high sugar yields, however 

the large volume of the acid required, and its high boiling point make recovery and reuse 

difficult. On the other hand, hydrochloric acid has higher volatility, but is significantly 

more expensive and corrosive (Brown, 2003b). With dilute-acid hydrolysis, a reduced 

quantity of acid is needed, but high temperatures are required, which result in lower 

yields of simple sugars and greater quantities of fermentation inhibitors such as acetic 

acid and furfural (Brown, 2003b).   

Enzymatic hydrolysis utilizing cellulases, which are highly specific, are applied to 

the pretreated biomass to perform hydrolysis where cellulose is the substrate (Béguin & 

Aubert, 1994). Cellulases are usually a mixture of several enzymes, including xylanases, 

that allow for hydrolysis of hemicellulose as well, thus increasing the yield of reducing 
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sugars produced (Duff & Murray, 1996). Enzymatic hydrolysis is more advantageous 

than acid hydrolysis because it is normally conduced at mild temperatures and have 

limited corrosion issues (Duff & Murray, 1996), thus reducing the environmental impact 

and the costs associated with equipment resistant to corrosion. 

Following the hydrolysis step, fermentation results in the production of a biofuel 

and CO2 by applying yeasts or bacteria to the sugar rich hydrolysate. Numerous yeast 

species, including Saccharomyces cerevisiae which is the most commonly employed, 

have been shown to be efficient at fermenting six-carbon sugars (Brown, 2003b). 

Nonetheless, the efficient conversion of lignocelullosic biomass to fuels would require 

fermentation of five-carbon sugars derived primarily from the hemicellulose fraction. 

Finding microorganisms able to ferment both pentoses and hexoses with high yields is 

still a challenge. Maximum yields obtained from organisms capable of fermenting both 

pentose and hexoses are on the order of 50g/L compared to 150g/L for hexose-fermenting 

Saccharomyces cerevisiae (Brown, 2003b).  
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1.1 Goal 

The main aim of this study was to evaluate the alkaline pretreatment chemicals 

(calcium hydroxide, potassium hydroxide, and sodium hydroxide) on biomass 

(switchgrass, wheat straw, corn stover, and miscanthus) based on compositional changes 

after pretreatment, sugar yield after enzymatic hydrolysis, cost, and potential 

environmental impacts.  

1.2 Specific Objectives 

In order to achieve the overall goal of this study, the following steps were 

accomplished: 

1.  Measure the change in composition of biomass (switchgrass, wheat straw, 

corn stover, and miscanthus) before and after pretreatment with calcium 

hydroxide, potassium hydroxide, and sodium hydroxide; 

2.  To quantify the yields of reducing sugars after pretreatment with the three 

chemicals and the four biomass types as a result of enzymatic hydrolysis; and 

3. To estimate the economic and environmental viability of the three 

pretreatment chemicals and four biomass types investigated. 
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Chapter Two: BACKGROUND 

2.1 Feedstock 

Wastes and dedicated energy crops have been considered a significant feedstock 

for the production of biobased products. Waste products are defined as agricultural 

residues and animal manures that have no apparent value, while dedicated energy crops 

refer to herbaceous crops grown for purposes other than food or feed (Brown, 2003c). 

Some of the common biorenewable resources studied are switchgrass, miscanthus, wheat 

straw and corn stover, shown in Figure 2.1. It has been estimated that there is over a 

billion tons of biorenewable resources available in the US (US Department of Energy, 

2011).  
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Figure 2.1: Biomass feedstock: (A) switchgrass (B) miscanthus (C) corn stover 

(D) wheat straw. Pictures from Michael Montross. 

 
Switchgrass is a perennial grass native to North America, where its range extends 

from Quebec to Central America (McLaughlin, et al., 1999). It is resistant to pest and 

plant diseases (Nlewem & Thrash Jr., 2010), and is capable of growing in several soil and 

climate conditions, ranging from arid sites in the shortgrass prairie to brackish marshes 

and open woods (Xu J. , Cheng, Sharma-Shivappa, & Burns, 2010b; McLaughlin, et al., 

1999). Switchgrass has a relatively low production cost since it requires few fertilizers 

and pesticides and has a high yield potential (Mann, et al., 2009). Lee (2006) reported 

annual biomass yields up to 34 dry Mg/ha (15 dry tons/acre). Moreover, it presents a high 

net energy gain, producing 540 % more energy than what was consumed to grow and 
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process it into ethanol (Schmer, Vogel, Mitchell, & Perrin, 2008). Due to its 

physiological characteristics, it is also beneficial to the soil since it is capable of fixing 

carbon by multiple metabolic pathways with a higher water use efficiency than other 

grass species (McLaughlin, et al., 1999). 

Miscanthus is a genus that comprises a group of more than ten grass species, most 

of which are native to Asia. Giant miscanthus is a perennial warm-season C4 plant with 

high yield potential (Clifton-Brown, Stampfl, & Jones, 2004; Heaton, Voigt, & Long, 

2004), efficient conversion of radiation to biomass, efficient use of nitrogen (N) and 

water, and good pest and disease resistance (Beale & Long, 1995). Small trials in the 

Midwestern United States indicated that giant miscanthus can yield more than double the 

biomass of traditional switchgrass varieties (Heaton, Dohleman, & Long, 2008). 

Wheat straw is a residue after the harvest of the grain. Since wheat is the world's 

largest cultivated crop, grown in over 115 nations and under a wide range of 

environmental conditions, wheat straw is abundantly available (Talebnia, Karakashev, & 

Angelidaki, 2010). Nelson (2005) evaluated the potential wheat straw removal in the 

Eastern and Midwestern United States based on rainfall and wind erosion. It was 

estimated that over 8 million metric tons of wheat straw spring and winter wheat were 

available based on erosion being the limiting factor. Therefore, wheat straw is a potential 

biofuel feedstock based on the planted wheat acreage. 

Corn stover is the residue of a corn plant after grain harvest, including the leaves, 

stalks, husks, and cobs. It is widely available in the United States, with an estimated 

quantity of 80-110 million dry tons that could be sustainably collected (Kadam & 
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McMillan, 2003). The majority of the available corn stover could be used as a biofuel 

feedstock since only a small portion is currently used for other applications, such as 

animal bedding, animal feed, and soil erosion protection (Schell, Farmer, Newman, & 

McMillan, 2003; Kadam & McMillan, 2003). In addition, the low costs associated with 

nutrient replacement and harvesting activities contribute to the attractiveness of corn 

stover as a feedstock for the production of ethanol and other bioenergy and biobased 

products. It has been estimated that corn stover could supply as much as 25 percent of the 

feedstocks for biofuel production by 2030 (Koundinya, 2009). 

2.2 Lignocellulosic Biomass 

Lignocellulosic biomass, such as agricultural residues and herbaceous crops, are 

complex substrates widely available in the world, which have a great potential as a 

feedstock for bioenergy and biobased product production. The potential use of these 

residues is strongly influenced by their chemical composition. Regardless of its origin, 

approximately 90% of lignocellulosic plant matter is composed of cellulose, 

hemicellulose, and lignin (Wyman & Goodman, 1993). Typically cellulose will make up 

40% to 50% of the plant dry matter; hemicellulose 25% to 35%; and lignin 15% to 25% 

of the dry matter (Wyman & Goodman, 1993). Besides these components, the 

lignocellulosic matrix also contains a small quantity of pectin, protein, extractives, and 

ash (Kumar, Barrett, Delwich, & Stroeve, 2009). The chemical composition of 

switchgrass, miscanthus, corn stover, and wheat straw is summarized in Table 2.1  
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Table 2.1: Chemical composition of lignocellulosic materials. 

Components (%wt) Lignocellulosic material 

Swtichgrass Miscanthus Corn stover Wheat straw 

Cellulose         43 38 31 33 

Hemicellulose 23 24 29 19 

Lignin 24 15 13 17 

Ash 4 2 7 10 

Other  4  6 20  17 
Source: (Brown, 2003c; Sun & Cheng, 2002; Kumar, Barrett, Delwich, & Stroeve, 2009; 
McDonald, Bakhshi, Mathews, & Roychowdhury, 1983; Zhu & Pan, 2010a; Vrije, Haas, 
Tan, Keijsers, & Claassen, 2002). 

 

Cellulose is a linear chain polymer, with the formula (C6H10O5)n, formed by only 

anhydrous glucose molecules (six carbon sugar units) linked by β-(1,4) D-glycosidic 

bonds (Aguiar & Ferraz, 2011; Jorgensen, Kristensen, & Fekby, 2007). This linkage 

forms cellobiose, the repeat unit that constitutes cellulose chains (Kumar, Barrett, 

Delwich, & Stroeve, 2009). Cellulose chains in lignocellulose aggregate in crystalline 

and amorphous portions, which are defined as organized and less organized regions, 

respectively. The different characteristics of both forms can dictate the selectiveness of 

the enzymatic degradation. The amorphous portions are more flexible than the crystalline 

ones, which are very resistant to tensile, stretch, and solvolysis (Laureano-Perez, 

Teymouri, Alizadeh, & Dale, 2005; Fengel & Wegener, 1989). 

Cellulose fibers swell when in contact with water or other solvents. Swelling can 

occur in two different ways: intercrystalline and intracrystalline. Intercrystalline swelling 
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happens when the solvent, usually water, penetrates in the amorphous components of the 

midrofibrils, as well in the space among amorphous regions. Intracrystalline swelling, in 

contrast, is characterized by infiltration of a solvent, such as acid, alkaline and salt 

solutions, in the crystalline components of cellulose (Rabelo, 2010). 

Hemicelluloses, on the other hand, are branched polysaccharides composed of a 

variety of sugars including pentoses (xylose and arabinose), hexoses (glucose, mannose, 

galactose); and a small amount of uronic acid and deoxy-hexoses (Fengel & Wegener, 

1989). Xylan is the main polysaccharide in hemicellulose, and it is formed by β-(1,4) D-

xylose bonds with acetyl group and/or arabinose unit ramifications, varying from plant to 

plant (Rabelo, 2010; Bragatto, 2010). Different from cellulose, hemicelluloses chains do 

not aggregate (Kumar, Barrett, Delwich, & Stroeve, 2009). 

Lignin is very different in that it is a naturally-occurring aromatic macromolecule 

made of phenolic monomers derived from p-coumaryl, coniferyl, and sinapyl alcohols 

cross-linked by alkyl-aryl, alkyl-alkyl, and aryl-aryl ether bonds (Kumar, Barrett, 

Delwich, & Stroeve, 2009; Jorgensen, Kristensen, & Fekby, 2007; Santos, 2012). Lignin 

can be divided into three groups based on their structural components: (i) Guaiacyl lignin 

– typical of softwoods; (ii) Guaiacyl-syringyl lignin – commonly present in hardwoods; 

and (iii) monocot lignin – co-polymer of all three lignin precursors. The solubility and 

reactivity of lignin under either acid or alkaline conditions depend on the monolignois 

forming the polymer (Bragatto, 2010; Santos, 2012). 

The three lignin precursors contribute significantly to the recalcitrance of the 

biomass, being responsible for structural support, resistance against microbial attack, 
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water and nutrient transport, and stress responses (Kumar, Barrett, Delwich, & Stroeve, 

2009; Simons, Loqué, & John, 2010).  

 
 

Figure 2.2: Plant cell wall structure of lignocellulosic materials. 
 

Figure 2.2 shows the two polysaccharides in lignocellulosic matter, cellulose and 

hemicellulose, bounded together by lignin that comprise the cell wall. The glucose chains 

are tightly linked by Van der walls and hydrogen bonds, both side-to-side and top-to-

bottom, compounding the elementary fibrils and, consequently, the microfibrils of the 

cellulose, which promote the rigidity of the plant (Kumar, Barrett, Delwich, & Stroeve, 

2009; Laureano-Perez, Teymouri, Alizadeh, & Dale, 2005). Among the cells, there is also 

a thin layer of lignin called the middle lamella, which give cohesion to the plant structure. 

Due to this cohesion and to the fact that the cell wall has low porosity, the biodegrading 
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process is difficult and slow in nature (Aguiar & Ferraz, 2011). Thus, to successfully 

convert lignocellulosic biomass into liquid transportation fuels or other chemicals, the 

lignin that provides the cohesion needs to be broken down prior to utilizing the sugars. 

2.3 Biofuels from lignocellulosic materials 

The production of biobased products from lignocellulosic based on enzymatic 

hydrolysis comprises three main steps: pretreatment, hydrolysis, and fermentation. The 

bioconversion process is summarized in Figure 2.3.  

 

Figure 2.3: Typical bioconversion process utilizing pretreatment, enzymatic 
hydrolysis and fermentation. 
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2.4 Pretreatment 

Lignocellulosic biomass pretreatment is an important first step in the 

bioconversion process since its main function is to remove lignin and hemicellulose from 

the plant material (Kumar, Barrett, Delwich, & Stroeve, 2009). Lignin and hemicellulose, 

when in high concentrations, obstruct the use of the cellulose since they hamper the 

access of the degrading enzymes. As a result, pretreatment causes cell wall disruption 

with significant increases in the surface area of cellulose (Bragatto, 2010). Besides that, 

pretreatment is responsible for a reduction in the cellulose microfibrils crystallinity, thus 

improving the efficiency of further chemical or enzymatic processes on the cellulose 

(McMillan, 1994).  
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Figure 2.4: Pretreatment effect on lignocellulosic material. Source: (Taherzadeh 

& Karimi, 2008). 
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There are a wide variety of pretreatments with the aim of removing lignin and/or 

hemicellulose and increasing the cellulose availability. Pretreatment can be classified in 

three main categories: (i) physical, (ii) chemical, and (iii) biological. Physical 

pretreatment processes have proven to be ineffective due to the high energy requirements 

and biological pretreatment methods can be expensive and time consuming (Sharma, 

Palled, Sharma-Shivappa, & Osborne, 2013). Chemical pretreatments on the other hand 

have been intensively studied and alkaline pretreatment, in particular, has been 

considered effective on agricultural residues and herbaceous crops (Hsu, 1996). Table 2.2 

summarizes the variety of pretreatment methods and their applications, as well as pros 

and cons (Taherzadeh & Karimi, 2008; Kumar, Barrett, Delwich, & Stroeve, 2009; 

Tomás-Pejó, Alvira, Ballesteros, & Negro, 2011).  

  

16 
 



Table 2.2: Summary of pretreatment methods.  
Pretreatment 

Method 
Process 

 
Technology 

 
Pros 

 
Cons 

 

Physical 

Pretreatment 

Mechanical 

Comminution 

- Chipping 
- Grinding 
- Milling 

 
 

-Reduce cellulose 
crystallinity 

 
 

- Increase surface 
area 

 
 

- No chemicals 
are required 

 
 

 
 

- High energy 
consumption 

 
- Low 

delignification 
efficiency 

 
- Not 

recommended 
for industrial 
applications 

Irradiation 

 

-Gamma-ray 
irradiation 

- Microwave 
Irradiation 

- Electron-beam 

Liquid Hot 

Water 

 

-Immersion in 
water at high 
pressures and 

elevated 
temperatures 

Chemical 

Pretreatment 

Ozonolysis 
 

-Use of Ozone as 
solvent 

 
- Reduce cellulose 

crystallinity 
 

- Increase surface 
area 

 
- High 

delignification 
efficiency 

 
- Suitable for 

industrial 

 
 
 

-Chemical 
requirements 

 
-  Need harsh 

conditions 
 

- Can be 
economically 

unviable 

Organosolv 

 

-Use of organic 
or aqueous 

solvent 

Alkali 

Pretreatment 

 

-Use of alkali 
solution as 

solvent 

Acid 

Pretreatment 

 

-Use of acid 
solution as 

solvent 

Biological 

Pretreatment 

Fungi and 
Actinomycetes 
Pretreatment 

-Use of 
microorganism 

to degrade 
lignocellulosic 

material 

 

- Minimal 
inhibitors 

production 
- No chemicals 
are required 

- High 
delignification 

efficiency 
- Reduced energy 

inputs 
-Environment-

friendly 

 
 

- Very low 
treatment rate 

 
 

- Not 
recommended 
for commercial 

applications 
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The efficiency of a pretreatment is related to several factors, such as the cellulose 

crystallinity level, the superficial area accessible to enzymes, and the natural protection 

due to lignin, hemicelluloses, and cellulose interaction (Silva, Júnior, & Júnior, 2010). To 

maximize enzymatic hydrolysis: the loss of fermentable carbohydrates needs to be 

minimized; the addition of reagents that inhibit the fermentative microorganisms should 

be avoided; minimize the use of energy, reagents and equipment, and allow for 

implementation at an industrial scale are relevant requirements for evaluating the 

efficiency of a pretreatment (Sun & Cheng, 2005). 

2.4.1 Alkaline Pretreatment 

Alkaline pretreatment refers to the application of bases to remove lignin and other 

undesirable components of the lignocellulosic matrix, and its effect depends directly on 

the nature of the biomass feedstock, primarily the lignin content (McMillan, 1994). 

Alkali pretreatment processes are relatively inexpensive (Xu J. , Cheng, Sharma-

Shivappa, & Burns, 2010b) and normally utilize lower temperatures, pressures and 

residence times compared to other pretreatment technologies (McMillan, 1994). 

Moreover, they allow for chemical and water recycling, and require lower enzyme loads 

to convert cellulose to glucose (Sendich, et al., 2008). Disadvantages of the alkaline 

pretreatment process are the potential corrosiveness of the process and the washing stage 

required to adjust pH prior to enzymatic hydrolysis and fermentation (Lillo-Ródenas, 

Cazorla-Amorós, & Linares-Solano, 2003). 

During alkaline pretreatment, high concentrations (5-20 wt-%) are used that 

induced swelling of cellulose (Brown, 2003b) that resulted in an increased internal 

surface area and a decrease in the degree of polymerization and crystallinity (Fan, 
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Gharpuray, & Lee, 1987), followed by delignification as a consequence of saponification 

of intermolecular ester bonds crosslinking hemicelluloses and other components. This 

leads to an increase in the porosity of lignocellulosic materials, in other words, fractions 

enriched in both cellulose and hemicellulose (Sun & Cheng, 2002). 

Calcium, sodium, and potassium hydroxide are suitable alkaline pretreatment 

agents (Kumar, Barrett, Delwich, & Stroeve, 2009). Among these three alkalis, sodium 

hydroxide has been the most widely studied, and has been shown to be effective. Xu et al. 

(2010b) investigated sodium hydroxide pretreatment of switchgrass for ethanol 

production and reported that at pretreatment conditions of 50 °C, 12 h, and 1.0 % NaOH, 

and 21 °C, 6 h, and 2.0 % NaOH, the total reducing sugars yield were, respectively, 453.4 

and 406.2 mg/g raw biomass, which were 3.78 and 3.39 times that from untreated 

biomass. The maximum lignin reduction at 50 and 21 °C was 77.8 % and 62.9 %, 

obtained at 48 h, 2.0 % NaOH and 96 h, 2.0 % NaOH, respectively. Another study with 

wheat straw resulted in a maximum sugar yield of 667 mg/g pretreated material attained 

with 2 % NaOH, 90 min, and 60 °C, while delignification was reduced to 42 % of the raw 

material (McIntosh & Vancov, 2011). 

Although sodium hydroxide pretreatment of lignocellulosic biomass results in 

considerable lignin reduction and high retention of the total reducing sugar content per 

gram of biomass treated (Sharma, Palled, Sharma-Shivappa, & Osborne, 2013), it 

presents the disadvantages of being more costly, dangerous to handle, and corrosive than 

other potential alkaline agents such as calcium hydroxide (lime) (Winugroho, Ibrahim, & 

Pearce, 1984). Calcium hydroxide usage has several other advantages, including the 

possibility to easily recover unreacted calcium salt after washing by neutralizing with 
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inexpensive carbon dioxide and, subsequently, employing kiln technology to regenerate 

calcium hydroxide (Kaar & Holtzapple, 2000). These advantages have led researchers to 

also investigate the effectiveness of lime as pretreatment agent for lignocellulosic 

feedstock. 

Previous research by Kim & Holtzapple (2005) showed that corn stover pretreated 

with 0.5 g Ca(OH)2/g raw biomass at 55 °C for 4 weeks achieved 91.3 % of glucan and 

51.8 % of xylan converted into glucose and xylose, respectively. Also, 87.5 % of the 

initial lignin and almost all acetyl groups were removed. Chang et al. (1997) investigated 

lime pretreatment of switchgrass and reported that at recommended conditions (100 and 

120 °C, 2 h, and 10 % Ca(OH)2), the reducing sugar yields were five times that of 

untreated switchgrass. Xu et al. (2010a) studied switchgrass and obtained reducing sugar 

yields of 433.4 and 411.7 mg/g raw biomass at pretreatment conditions of 50 °C, 24 h, 

and 10 % Ca(OH)2, and 21 °C, 96 h, and  10 % Ca(OH)2, respectively. These values were 

an increase of 3.61 and 3.43 times that of untreated biomass. However, the results 

showed limited lignin reduction, which can be attributed to the formation of calcium-

lignin complexes due to the poor solubility of calcium in water (Xu J. , Cheng, Sharma-

Shivappa, & Burns, 2010a; Winugroho, Ibrahim, & Pearce, 1984). Additional 

disadvantages of utilizing lime as a pretreatment include the tendency of treated materials 

to become moldy with time and the treatment effectiveness was influenced by the method 

of treatment and reaction time (Sirohi & Rai, 1998). 

A few researchers have evaluated potassium hydroxide for pretreatment of 

lignocellulosic biomass. Potassium hydroxide could be a prospective pretreatment agent 

due to its ability to remove acetyl compounds from the lignocellulosic matrix (Sharma, 
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Palled, Sharma-Shivappa, & Osborne, 2013) and to react with carbon nanofibers and 

carbon nanostructures, degrading highly ordered tubular structures (Raymundo-Piñero, et 

al., 2005). Sharma et al. (2013) studied switchgrass pretreated at KOH concentrations of 

0.5-2% for varying treatment times of 6-49 h, 6-24 h, and 0.25-1 h at 21, 50, and 121 °C, 

respectively. The highest yield of reducing sugar for 21 and 50 °C treatments were 582.4 

and 514.0 mg/g untreated biomass achieved at 0.5 % KOH, 12 h, and 2 % KOH, 24 h, 

while the maximum lignin reductions of 28.5 % and 41.7 % were observed at 2 % KOH, 

48 h, and 2 % KOH, 24 h, respectively. Bales, Kellogg, & Miller (1979) investigated 

potassium hydroxide pretreatment with milo stalks and reported that in vitro dry matter 

digestibility (IVDMD) improved by 55.0% for stalks treated with 5 % KOH. 

Many researchers have concluded that calcium hydroxide is not as effective of a 

pretreatment agent as other alkalis such as sodium and potassium hydroxide (Chang, 

Burr, & Holtzapple, 1997). When potassium and sodium hydroxide effectiveness as 

pretreatment agents were compared, opinions varied. Bales, Kellogg, & Miller (1979) 

reported that NaOH appeared superior to KOH, despite some of its disadvantages. Ong, 

Chuah, & Chew (2010), on the other hand, showed that KOH treatment resulted in 

significant higher sugars than NaOH treatment at similar conditions when equal 

hydrolytic enzyme loading was employed.  

Most of these comparisons were made considering a combination of treatments 

using calcium, sodium and potassium hydroxides under the same conditions, specifically 

using the same amount of the chemicals on weight basis. However, it is an imbalanced 

comparison. Calcium hydroxide, for instance, is a weaker base and to achieve an 

equivalent alkalinity requires eight times as much calcium hydroxide as sodium 
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hydroxide (Winugroho, Ibrahim, & Pearce, 1984). An experiment comparing these 

chemicals on molar basis would contribute to a better understanding of their pretreatment 

effectiveness. 

2.5 Hydrolysis 

Hydrolysis is an organic or inorganic reaction between an anion or a cation, and 

water, with supply of H + or OH- ions to the solution (Russel, 1994). Among the 

processes of hydrolysis in organic chemistry are saponification of fatty acids and other 

esters, inversion of sugars and protein breakdown (Barcza, 2010). 

There are five known categories of hydrolysis: pure, acid, alkaline, alkaline fusion 

at high temperatures and enzymatic (Barcza, 2010). For the purpose of second generation 

fuel production from lignocellulosic feedstock, acid or enzymatic hydrolysis are favored. 

Acid hydrolysis can be classified into two groups: (i) concentrated-acid hydrolysis 

and (ii) dilute-acid hydrolysis. Concentrated acids disrupt glycosidic linkages of 

polysaccharides under low temperatures, and this process is reported to give a theoretical 

glucose yield of 90%. Nevertheless, this method requires a high concentration that results 

in considerable corrosion. In addition, acid recovery is an energy-intensive process. High 

capital costs for construction and high operating costs have led to decreased interest on a 

commercial scale (Taherzadeh & Karimi, 2007). 

Dilute acid hydrolysis is carried out with low acid concentrations and short 

reaction time. However, the high temperatures required tend to degrade monomeric 

sugars, producing liquid streams rich in undesirable byproducts, which lead to inhibitors 

of the fermentation process (Taherzadeh & Karimi, 2007). 
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Taherzadeh and Karimi (2007) reported the possibility of optimization of dilute 

acid hydrolysis when carried out in two stages. The first stage is the degradation of the 

hemicellulose to monosaccharides while the second stage is the hydrolysis of the 

remaining cellulose. This method decreased the number of fermentation inhibitors 

formed and achieved greater production of hexose sugars in the second stage, minimizing 

energy consumption. 

Enzymatic hydrolysis refers to the utilization of a complex of enzymes to cleave 

the cellulose and hemicellulose polymers into fermentable sugars. Due to mild 

temperatures during the process and the specificity of enzymes, degradation of glucose is 

prevented, and, thus, fewer undesirable byproducts are generated. Hence, high yields of 

fermentable sugars are obtained without separation processes that reduced the cost 

(Rabelo, 2010; Contiero, 1992) 

2.5.1 Enzymatic Hydrolysis of Lignocellulosic Material 

 The pretreated lignocellulosic material is hydrolysed to monomeric sugars by the 

action of an enzyme complex known as cellulase. Cellulase usually contains 

cellobiohydrase I and II or exoglucanase, endoglucanase I and II, β-glucosidase, and 

hemicellulase. Cellobiohydrates work on cellulose to yield cellodextrins that will further 

be hydrolyzed into cellobiose by endoglucanases. β-glucosidase is responsible for 

breaking down cellobiose into glucose. Hemicellulase, on the other hand, degrades 

hemicelluloses, resulting in a variety of five carbon monomers (Aguiar & Ferraz, 2011; 

Jorgensen, Kristensen, & Fekby, 2007; Brown, 2003b). 
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One of the main challenges faced by researchers regarding the enzymatic 

hydrolysis of lignocellulosic materials is to discover organisms capable of producing 

enzymes specifically adapted for cellulose and hemicellulose degradation. Several studies 

have been conducted with bacteria and fungi with the aim of isolating and characterizing 

cellulolytic enzymes. These microorganisms can be aerobic or anaerobic, mesophilic or 

thermophilic (Sun & Cheng, 2002). Among the bacteria species commonly used are 

Clostridium, Cellulomonas, and Bacillus, while Trichoderma, Aspergillus and 

Penicillium are the fungi species that have mainly caught the attention of researchers 

(Sun & Cheng, 2002). 

Several structural and compositional factors affect the enzymatic hydrolysis of 

cellulose – substrates, cellulase activity, presence of inhibitors, and reaction conditions. 

The first factor in with enzymatic hydrolysis is substrate level. At low substrate levels, 

substrate concentration and the yield and reaction rate of hydrolysis are usually directly 

correlated. However, high substrate concentration can cause product inhibition by the 

substrate, which consequently decreases the yield of the hydrolysis (Ong, Chuah, & 

Chew, 2010).  Structural features of the substrate such as cellulose crystallinity, cellulose 

degree of polymerization, surface area, and lignin and hemicellulose content are factors 

that influence the susceptibility of cellulosic substrates to cellulases (Alvira, Tomás-Pejó, 

Ballesteroa, & Negro, 2010; Sun & Cheng, 2002). A second factor in enzymatic 

hydrolysis is cellulase activity. High cellulase activity results in high yield and rate of 

hydrolysis, but also increases the final cost of the products. However, cellulases can be 

recovered from the liquid supernatant or the solids residue. This recycling process can 

effectively increase the yield and rate of the hydrolysis while reducing the process cost. 
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Another factor is the presence of inhibitors. Inhibiting compounds such as weak acids, 

furan derivatives, and phenolic compounds could also be formed during the pretreatment 

and hydrolysis steps, decreasing the ethanol yield and productivity of the overall process. 

To enhance the efficiency of the process, detoxification methods and strategies are 

required (Palmqvist & Hahn-Hargedal, 2000). Finally, a fourth factor to be considered in 

enzymatic hydrolysis is reaction conditions. Residence time, pH of the medium, 

concentration of substrate in the medium, and agitation rate impact the yield of the 

enzymatic hydrolysis by influencing the generation of fermentation inhibitors. 

2.6 Fermentation  

After hydrolysis of the pretreated biomass, the hydrolysate is fermented to 

alcohol, which is then purified through distillation or filtration to obtain the desired fuel-

grade quality control (Lin & Tanaka, 2006). Fermentation is the biological process of 

transforming simple compounds such as sugars into alcohol and carbon dioxide by the 

action of yeast or alcoholic ferment (Silva, Jesus, & Rodrigues, 2011).  

In order to be considered suitable for the alcoholic fermentation process, 

microorganisms must support a wide range of temperature and acidic levels, and high 

concentration of alcohol (Silva, Jesus, & Rodrigues, 2011). Several fungi, bacteria, and 

yeasts have been used for the production of ethanol. Yeasts that belong to the 

Saccharomyces genus, mainly Saccharomyces cerevisiae, have been the most reportedly 

applied in fermenting sugars (Pinal, Cedeño, Gutiérrez, & Alvarez-Jacobs, 1997; 

Ansanay-Galeote, Blondin, Dequin, & Sablayrolles, 2001; Yu & Zhang, 2003). Among S. 

cerevisiae’s advantages, the literature cities its high inhibitor tolerance; and capacity of 

producing ethanol in concentration as high as 0.18 times of the fermentation broth, as 
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well as of growing both on the monosaccharide glucose and the disaccharide sucrose (Lin 

& Tanaka, 2006; Hahn-Hagerdal & Palmqvist, 2000). In addition, Saccharomyces 

cerevisiae is a hardy organism that makes it a good fit for industrial applications.  

Among the bacterial sources suitable as a biocatalyst for ethanol production a 

commonly studied organism is Zymomonas mobilis. In comparison to Saccharomyces 

cerevisiae, Zymomonas mobilis yields from 5 to 10% more ethanol per fermented 

glucose, and its specific ethanol productivity is 250% higher (Lin & Tanaka, 2006). 

Moreover, it is able to tolerate high concentrations of ethanol. However, the 

microorganism holds a narrow substrate range, since it only ferments glucose, fructose, 

and sucrose (Dien, Cotta, & Jeffries, 2003). 

Escherichia coli is another specie of bacteria with potential for alcoholic 

fermentation that features numerous benefits, including the ability to ferment a wide 

spectrum of sugars, no requirements for complex growth factors, and prior industrial use. 

Nevertheless, some of its disadvantages are a limited pH growth range, and are less hardy 

compared to yeast (Dien, Cotta, & Jeffries, 2003). 

Several other microbes have been considered, although unsuccessfully, for the 

cellulose-to-ethanol biotransformation, including the anaerobic thermophilic bacteria 

Clostridium thermocellum (Zertuche & Zall, 1982), as well as some filamentos fungi, 

such as Arpegillus sp. (Nakamura, Ogata, Hamada, & Ohta, 1996), Trichoderma viride 

(Iyayi & Aderolu, 2004; Gervais & Sarrette, 1990), and Neurospora sp. (Yamauchi, et al., 

1989). Fermentation processes utilizing these microorsganisms have resulted in low 
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ethanol yields and long residence time, besides the production of various byproducts, 

primarily acetic and lactic acids (Lin & Tanaka, 2006). 

The fermentation and hydrolysis processes can be performed either sequentially 

(Separated Hydrolysis and Fermentation, SHF) or concurrently (Simultaneous 

Saccharification and Fermentation; SSF). The difference between SHF and SSF lies 

mainly in the processing steps. When the hydrolysis and fermentation are performed 

separately (SHF), both steps may occur at their optimum temperature, which maximizes 

the efficiency of the hydrolysis and fermentation. However, product inhibition from 

hydrolysis could occur because of the accumulation of glucose in the reactor. Constant 

sugar removal by a yeast during hydrolysis, in other words a SSF type of process, could 

avoid such product inhibition. The combination of hydrolysis and fermentation should 

lead to less risk of contamination due to the fact that a higher ethanol concentration is 

obtained during hydrolysis. However, both the hydrolysis and the fermentation are 

performed at some temperature that is not optimal for either process. Moreover, yeast 

recirculation is more difficult when mixed with lignin residues (Drissen, Maas, Tramper, 

& Beeftink, 2009; Öhgrena, Burab, Lesnickic, Saddlerb, & Zacchia, 2007). 
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Chapter Three: EXPERIMENTAL PROCEDURE 

3.1 Biomass Preparation 

Miscanthus, corn stover, switchgrass, and wheat straw were harvested locally, air-

dried, and ground to pass through a 2 mm screen with a knife mill (Retsch GmbH, type 

SM1 # 70947). To minimize changes to the feedstocks during storage, the feedstocks 

were dried at 44.5 +-0.2°C in a Thelco Model 6 drying oven for 48 hours and left at room 

temperature for 24 hours to cool. Moisture content was less than 10% for all feedstocks. 

After cooling, the samples were stored in zipper plastic bags and placed in a refrigerator 

at 4 °C until further testing. 

3.2 Pretreatment 

Prior to testing, subsamples of the feedstocks were taken and the moisture content 

measured using an oven at 105°C for 24 hours (Rabelo, 2010). Based on the measured 

moisture content, twenty four samples of ten grams (0% moisture dry matter) of each 

biomass were weighed using an analytical balance (Denver Instrument, serial # 

PI214069010). The samples were placed in 250 ml Erlenmeyer flasks that were 

autoclaved (Steris Amsco Lab 250, Model # 0333808-21) for 30 min at 121°C and 15 psi. 

Distilled water was added to each flask to achieve a 60% moisture content (see appendix 

A for calculation). This resulted in a solids loading content of 0.4 g biomass/g of total 

material. The flasks were randomly separated into two groups for pretreatment at two 

temperature levels. Twelve flasks were placed at 50°C and shaken at 150 rpm (Innova 

4200 Incubator Shaker, New Brunswick Scientific). The other twelve flasks were placed 

into an incubator at 20°C and shaken at 150 rpm (Innova 4200 Incubator Shaker, New 

Brunswick Scientific). The flasks at each temperature level were again divided into four 
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subgroups: three would be pretreated with different sources of hydroxyl (OH-) and one 

control (distilled water). The experimental design is shown in figure 3.1 and all 

treatments were performed in triplicate. The three hydroxyl sources applied were sodium 

hydroxide (Fisher Chemical, Lot 128098), potassium hydroxide (Sigma-Aldrich, Lot 

#MKBP7659V), and calcium hydroxide (Acros Organics, Lot #A0323480). The 

molecular formulas for sodium hydroxide, potassium hydroxide, and calcium hydroxide 

are NaOH, KOH, and Ca(OH)2, respectively. The control flask had no additional 

chemical added.  The appropriate amount of each chemical used was calculated in order 

to equalize the concentration of hydroxyl per unit mass of biomass (mole/g) in all 

treatments. Calcium hydroxide was used as the base of calculation. The calculations to 

determine the appropriate quantity of calcium, potassium, and sodium hydroxide are 

shown in appendix B. The pretreatments were conducted for seven days. The quantities 

of calcium, potassium, and sodium hydroxide applied during pretreatment were 1.000 g, 

1.515 g, and 1.079 g, respectively. This resulted in a loading of 0.100, 0.151, and 0.108 g 

of pretreatment chemical per gram of dry matter for calcium, potassium, and sodium 

hydroxide, respectively. 
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Figure 3.1: Pretreatment set up. 

 

 

  



 

After pretreatment, the biomass was placed on cheese cloth and washed with 

distilled water until the pH was between 7 and 8. Subsequently, the solids were dried at 

44.5 +-0.2°C in a Thelco Model 6 drying oven for 48 hours, then left at room temperature 

for 24 hours and weighted using an analytical balance (Denver Instrument, serial # 

PI214069010). Prior to compositional analysis and enzymatic hydrolysis, they were 

stored in plastic zipper bags and placed into refrigerator at 4 °C. 

3.3 Biomass Characterization 

Untreated (raw) and pretreated materials were prepared and submitted to 

compositional analysis following the National Renewable Energy Laboratory (NREL) 

Analytical Procedure "Determination of Structural Carbohydrates and Lignin in 

Biomass" (2012) with the exception of the extractives. Samples were analyzed in 

duplicate by HPLC using a Bio-Rad Aminex HPX-87H (order #125-0140) (ion 

exclusion) column at 50°C with 0.40 mL min-1 flow rate and a 5mM sulfuric acid (Fisher 

#AC124645001) mobile phase. Chromeleon 7.1 software processed the HPLC data. 

Glucose and xylose were the only structural carbohydrates reported. 

 

 

 

 

31 
 



 

3.4 Enzyme Activity 

Enzymes were obtained from American Laboratories Incorporated (Lot # ALI 

14175-04) that were produced using Trichodema longibrachiatum. The cellulase activity 

was determined according to the NREL Laboratory Analytical Procedure (LAP) 

"Measurement of Cellulase Activities" (006, 1996) and expressed in terms of filter paper 

units (FPU). The concentration protein per milliliters of cellulase was determined 

according to a modified Bradford method provided in Carey Jr. (2014). Cellobiase 

activity was measured following a pNPG method for B-glucosidase described in Carey 

Jr. (2014). 

3.5 Enzymatic Hydrolysis of Biomass  

After the pretreated biomass and control were dried, enzymatic hydrolysis was 

carried out in 125 ml Erlenmeyer flasks. For each one of the four biomass types, samples 

of each pretreated biomass that corresponded to 0.5 g of cellulose were added to six 

flasks to allow for triplicate in the measurements, including control for each pretreated 

biomass. Untreated biomass was also enzymatically hydrolyzed as a control. Figure 3.2 

shows the experimental design for the enzymatic hydrolysis. The hydrolysis liquid was 

prepared with a 50% volume of 0.1 M sodium citrate buffer, 1% volume of 2% sodium 

azide solution, and enough distilled water to complete a final 50 mL volume of 

hydrolysis liquid. All solutions and the substrates were assumed to have a specific density 

of 1.000 g/mL. The pH of the samples with the hydrolysis liquid was measured in order 

to verify that the pH was 5 ± 0.2 which was the ideal pH required to perform the 

enzymatic hydrolysis. The flasks were sealed, and placed into a shaker at 150 rpm 
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(Innova 4200 Incubator Shaker, New Brunswick Scientific) for 72 hours at 50°C. The 

enzyme loading was 60.0 FPU/g cellulose 

During hydrolysis, 1.2 mL aliquots of the reaction mixture were collected at 

sampling times of 0, 1, 3, 6, 12, 24, 36, 48, 60, and 72h to evaluate the effect of reaction 

duration with the different pretreated substrates. Microcentrifuge tubes containing the 

aliquots were then immersed in boiling water for 15 min to stop the reaction. The liquid 

phase was separated from the solid residue by centrifuging twice (Marathon 21000, serial 

# 64640263, Fischer Scientific) at 10,000 rpm for 15 min, and analyzed in duplicate by 

HPLC to determine glucose and xylose content. 

33 
 



 

34 

 

 
Figure 3.2: Hydrolysis set up. 

 

    
 



 

3.6 Statistical Analysis 

All treatment in this study were conducted in triplicate. The experiment design 

was balanced and completely randomized. SAS 9.3 software was used to perform 

analysis of variance (ANOVA) on the experimental results to analyze the statistical 

significance of the data at 95% confidence level. ANOVA was also used to verify the 

effect of the treatment factors (pretreatment agent and temperature) on the response 

variables (lignin, carbohydrates, ash, reaction rate, and cellulose conversion rate). 
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Chapter Four: RESULTS  
 
Numerous factors influence the suitability of biomass as a feedstock for biofuel 

production. Composition (lignin, cellulose, hemicellulose, and ash) of the biomass plays 

an important role when it comes to evaluating the potential of a feedstock for biofuel 

production. The change in composition of the biomass before and after pretreatment can 

be used to evaluate the effectiveness of the pretreatment. Ultimately, the enzyme 

hydrolysis after pretreatment is a strong indicator of pretreatment effectiveness. Changes 

in composition before and after pretreatment and the enzyme hydrolysis of the biomass 

were evaluated in this study.  

4.1 Biomass Composition 

The average composition and standard deviation of unextracted raw corn stover, 

miscanthus, switchgrass, and wheat straw used in this project are shown in Table 4.1.The 

results in the table below represent the mean of three replications per biomass in the 

study. The mass balance was determined by summing the average composition and the 

standard deviation for the overall mass balance was determined by adding individual 

standard deviations in quadrature. Overall, 95% of the composition was quantified for the 

wheat straw, switchgrass, and miscanthus. However, only 86.4% of the corn stover 

composition was accounted for. 
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Table 4.1: Average composition and standard deviation of unextracted raw biomass; corn 
stover, miscanthus, switchgrass, and wheat straw. (Average of three replications). 

Component Dry weight (%) 

             Corn stover Wheat 
straw Switchgrass Miscanthus 

Acid Soluble Lignin 1.9± 0.14 1.4± 0.04 

 
 

2.0± 0.15 

 
 

1.3± 0.03 

Acid Insoluble Lignin 32.9± 0.57 34.3± 0.21 
 

27.8± 0.51 
 

30.9± 0.61 

Cellulose 35.0±1.45 40.43±1.1 
 

44.4±3.70 45.7± 4.79 

Hemicellulose 12.8±2.17 18.4±0.72 
 

22.8±3.19 19.6±0.90 

Ash 3.8±0.13 1.1± 0.04 
 

1.0± 0.14 
 

2.9± 0.56 

Mass balance 86.4±2.68 95.6±1.33 
 

98.0±4.92 
 

100.4±4.94 
 

37 
 



 

4.2 Effect of Pretreatment on Biomass Composition 

The change in composition of lignin, carbohydrates (cellulose and hemicellulose), 

and ash of all four feedstocks due to the three pretreatments plus the control (only water 

added for pretreatment) at 20°C and 50°C is summarized below. The results shown are 

the mean of three repetitions and the standard deviation is shown.   

The results indicated that the three alkaline pretreatments applied (calcium 

hydroxide, sodium hydroxide and potassium hydroxide) to the four feedstocks (corn 

stover, wheat straw, miscanthus, and switchgrass) at both temperatures (20 and 50°C) 

created some differences in the composition between raw and pretreated biomass. 

Although, the controls that were pretreated with water also had some influence on the 

change in composition depending on the feedstock and temperature. 

4.2.1 Lignin Changes Due to Pretreatment 

The reduction in total lignin (acid insoluble plus acid soluble lignin) after 

pretreatment is summarized in Table 4.2 and Figure 4.1. Controls that were treated with 

water also resulted in lower quantities of lignin than the untreated feedstock, although the 

reduction observed was smaller than for the alkaline treated samples in most cases. The 

temperature effect on biomass degradation and the effect of different pretreatment 

chemicals on the degradation are summarized below. 

Sodium hydroxide and potassium hydroxide resulted in the largest amount of 

delignification for the pretreatment chemical agents with all four feedstocks and both 

temperatures (Figure 4.1). The change in lignin composition of samples treated with 

sodium and potassium hydroxides at 20°C were statistically not different from each other 
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and were both significantly different than the raw biomass based on the Tukey’s 

correction test at a level of significance of 5%. At 50°C, sodium and potassium hydroxide 

were statistically not different, except with corn stover where sodium hydroxide had a 

higher delignification. At 50°C, the potassium and sodium hydroxide resulted in a 

statistically significant delignification of the raw biomass. Sodium and potassium 

hydroxide resulted in a 30.2 to 48.3% reduction in lignin with corn stover, miscanthus, 

and swithgrass (Table 4.2). Delignification of wheat straw was observed to be between 

20.9 and 29.2% with sodium and potassium hydroxide relative to the raw biomass (Table 

4.2). 

Calcium hydroxide was the least efficient in removing lignin among the three 

alkaline compounds evaluated in this project. In fact, in the case of corn stover pretreated 

at 50°C and wheat straw pretreated at 20°C, calcium hydroxide had no statistically 

significant effect on lignin content relative to the raw biomass. In other scenarios, 

pretreatment with calcium hydroxide led to mixed results compared to the control. 

Calcium hydroxide had a statistically significant reduction in lignin at 20°C for corn 

stover and switchgrass. With miscanthus at 20°C, calcium hydroxide did not have a 

statistically significant delignification relative to the control. At a temperature of 50°C, 

there was no statistically significant difference between the control and calcium 

hydroxide for corn stover and wheat straw. However, switchgrass and miscanthus did 

show a statistically significant delignification at 50°C between calcium hydroxide and the 

control. 
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The pretreatment control was water only. In 50%, of the circumstances analyzed, 

it had no statistically significant effect on lignin reduction relative to the raw biomass. 

This was expected under the pretreatment conditions utilized in these experiments. 

 
Table 4.2: Percent change in total lignin content due to pretreatment relative to raw 
unextracted biomass. 

Chemical Temperature 
[°C] 

Feedstock 

corn stover wheat straw miscanthus switchgrass 

Ca(OH)2 20 18.1 6.9 14.2 21.3 

50 13.3 9.6 20.6 13.1 

NaOH 20 40.0 28.5 31.7 34.9 

50 48.3 23.5 47.6 36.7 

KOH 20 37.7 29.2 33.0 30.2 

50 36.2 20.9 45.5 33.5 

Water 20 7.8 21.6 12.9 4.7 

50 8.9 10.1 9.9 1.4 
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                                                                  (a)

                                                                 (b) 
Figure 4.1: Change in lignin content for the raw biomass, three pretreatments and 

control (water) at 20°C (a) and 50°C (b). Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.2.2 Cellulose Changes Due to Pretreatment 

 
The change in cellulose content due to pretreatment is shown in Figure 4.2 and 

Table 4.3. Controls that were treated with water did not show a significant difference in 

the quantity of cellulose in the pretreated solids compared to the untreated biomass. 

As observed for the change in lignin content, potassium hydroxide and sodium 

hydroxide resulted in the largest change in cellulose content after pretreatment. In the 

case of cellulose, the concentration in the pretreated solids increased after pretreatment. 

The change in cellulose content of the solids pretreated with sodium and potassium 

hydroxides at either 20°C or 50°C showed to be statistically not different by the Tukey-

Kramer adjustment test at the 95% confidence interval. Sodium and potassium 

hydroxides increased the amount of cellulose by 19.5 to 23.7% in corn stover and 

swtichgrass when pretreated at 50°C. (Table 4.3). The lowest increase in cellulose 

content (2.5 to 6.6%) after pretreatment with sodium and potassium hydroxide was in the 

case of wheat straw pretreated at 20°C (Table 4.3). At 20°C, no statistically significant 

change in cellulose content was observed for wheat straw relative to the raw material.  

Calcium hydroxide in most cases, had similar performance to sodium and 

potassium hydroxide in increasing cellulose content, with the exception of miscanthus 

and corn stover pretreated at 50°C. Calcium hydroxide frequently did not improve 

cellulose content in comparison to pretreatment with water or the untreated biomass for 

wheat straw at 50°C, and wheat straw, corn stover and switchgrass at 20°C. The worst 

performance of calcium hydroxide occurred with switchgrass pretreated at 20°C where 

no change in cellulose composition was achieved.  
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Table 4.3: Percent gain in total cellulose content due to pretreatment relative to raw 
unextracted biomass. 

Chemical Temperature 
[°C] 

Feedstock 

corn stover wheat straw miscanthus switchgrass 

Ca(OH)2 20 8.2 2.9 15.0 0.0 

50 10.6 8.0 13.4 9.4 

NaOH 20 19.2 6.6 12.4 4.1 

50 23.7 21.2 14.7 23.1 

KOH 20 16.7 2.5 14.2 9.5 

50 19.5 11.2 18.5 20.0 

Water 20 1.7 0.7 -3.2 -5.2 

50 5.2 7.1 5.1 7.6 
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                                                                  (a)

                                                                 (b) 
Figure 4.2: Change in cellulose content for the raw biomass, three pretreatments 

and control (water) at 20°C (a) and 50°C (b). Error bars are the standard deviation of 
three replications and treatments with the same letter are not statistically significant based 
on Tukey’s correction test at a significance level of 5%. 
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4.2.3 Hemicellulose Changes Due to Pretreatment 

The change in hemicellulose content due to pretreatment is shown in Figure 4.3 

and Table 4.4. Controls that were treated with water did not show a significant difference 

in the hemicellulose content compared with untreated biomass, with the exception of corn 

stover and switchgrass at 50°C and miscanthus at 20°C. In the majority of the scenarios 

analyzed, the difference in hemicellulose content with corn stover, wheat straw, 

switchgrass, and miscanthus resulted in no significant difference based on Tukey’s 

correction at a level of significance of 5%. 

With a pretreatment temperature of 50°C, sodium hydroxide had the largest 

increase in hemicellulose content in corn stover, increasing the amount of hemicellulose 

by approximately 8 and 10 percentage points in comparison with calcium and potassium 

hydroxides, respectively, which showed to be not statistically different from each other. 

On the other hand, no clear trends in hemicellulose content were observed between 

calcium and potassium hydroxide for wheat straw and switchgrass relative to the control. 

With corn stover and switchgrass pretreated at 20°C and wheat straw pretreated at 50°C, 

no difference in hemicellulose content was observed between the control, three 

pretreatment chemicals, and the raw material.   
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Table 4.4: Percent change in total hemicellulose content due to pretreatment relative to 
raw unextracted biomass. 

Chemical Temperature 
[°C] 

Feedstock 

corn stover wheat straw miscanthus switchgrass 

Ca(OH)2 20 3.7 -1.5 1.1 1.9 

50 -0.3 -0.6 4.5 13.6 

NaOH 20 1.0 3.1 3.7 0.2 

50 7.2 5.1 -4.4 16.9 

KOH 20 -0.5 0.9 2.5 4.7 

50 -3.2 1.8 -4.7 12.1 

Water 20 -2.9 1.3 -9.1 -0.4 

50 6.4 2.0 1.5 11.4 
  

46 
 



 

 
                                                                  (a)

                                                               (b) 
Figure 4.3: Change in hemicellulose content for the raw biomass, three 

pretreatments and control (water) at 20°C (a) and 50°C (b). Error bars are the standard 
deviation of three replications and treatments with the same letter are not statistically 
significant based on Tukey’s correction test at a significance level of 5%. 
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4.2.4 Ash Changes Due to Pretreatment 

In terms of ash removal, sodium and potassium hydroxides achieved the largest 

reductions irrespective of the reaction temperature (Figure 4.4). The Tukey’s correction 

test at a level of significance of 5% resulted in no statistically significant difference in ash 

content between sodium and potassium hydroxide with the exception of corn stover 

pretreated at 50°C, to which potassium hydroxide removed 11.7% more ash than sodium 

hydroxide. In all cases, but corn stover and miscanthus pretreated at 50°C, calcium 

hydroxide had statistically equivalent performance to water. 
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(a) 

 
(b) 

Figure 4.4:.Change in ash content for the raw biomass, three pretreatments and 
control (water) at 20°C (a) and 50°C (b). Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.2.5 Temperature Effect on Pretreatment of Corn Stover 

The compositional changes with pretreatment of corn stover in terms of lignin 

(Figure 4.5), cellulose (Figure 4.6), hemicellulose (Figure 4.7) and ash (Figure 4.8) are 

shown below. Regarding the effect of temperature on the pretreatment of corn stover, it 

was observed that there was a statistically significant influence of temperature in the 

change of lignin only for samples pretreated with sodium hydroxide. Samples pretreated 

with calcium hydroxide, potassium hydroxide, and water at 20°C showed no statistically 

significant difference in delignification from samples pretreated with these chemicals at 

50°C. On the other hand, samples pretreated with sodium hydroxide at 50°C resulted in 

an 8.3% increase in the amount of delignification in comparison with samples pretreated 

at 20°C.  

With respect to the change in cellulose content, the pretreatment temperature was 

not influential. With all four treatments in this study, the composition of cellulose after 

pretreatment at 20°C was statistically equivalent to the results found at 50°C.  

Hemicellulose content of corn stover samples pretreated with sodium hydroxide, 

and control were significantly affected by the temperature of pretreatment. The 

temperature at 50°C resulted in 6.2% and 9.3% higher quantities of hemicellulose when 

pretreated with sodium hydroxide and water, respectively. No significant changes in 

quantities of hemicellulose were obtained with either calcium or potassium hydroxides. 

There was slightly higher ash removal at 20°C when pretreated with sodium 

hydroxide 9.0% reduction) and water (18.5% reduction). The reduction in ash content 
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with the alkali pretreated corn stover could have been due to the high quantity of water 

used in washing or was related to the pretreatment.  

 
Figure 4.5: Temperature effect on lignin composition of corn stover after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.6: Temperature effect on cellulose composition of corn stover after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%.  

 

 
Figure 4.7: Temperature effect on hemicellulose composition of corn stover after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.8: Temperature effect on ash composition of corn stover after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.2.6 Temperature Effect on Pretreatment of Wheat Straw 

The influence of temperature on the change in lignin (Figure 4.9), cellulose 

(Figure 4.10), hemicellulose (Figure 4.11), and ash (Figure 4.12) with wheat straw are 

summarized below. Temperature did not influence the delignification of wheat straw with 

the alkali chemicals investigated. Surprisingly, a lower lignin content was observed at 

20°C than 50°C when pretreated with water.  The only significant effect of temperature 

on the cellulose content was with sodium hydroxide. However, the temperature of 

pretreatment did not affect significantly the change in hemicellulose composition in 

wheat straw pretreated with all three alkali investigated in this study, as well as in control 

samples. Sodium hydroxide resulted in a lower ash content when pretreated at 50°C 

relative to 20°C. There was no significant effect of temperature on the ash content when 

pretreated with water, calcium and potassium hydroxides. 
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Figure 4.9: Temperature effect on lignin composition of wheat straw after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%.  

 

 
Figure 4.10: Temperature effect on cellulose composition of wheat straw after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.11: Temperature effect on hemicellulose composition of wheat straw 

after pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 

 

 
Figure 4.12: Temperature effect on ash composition of wheat straw after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.2.8 Temperature Effect on Pretreatment of Switchgrass 

The influence of temperature on the pretreatment of switchgrass in terms of lignin 

(Figure 4.13), cellulose (Figure 4.14), hemicellulose (Figure 4.15), and ash (Figure 4,16) 

content are shown. No temperature influence was observed in the change in lignin 

content of switchgrass. Cellulose and hemicellulose content were significantly increased 

when the pretreatment temperature was 50°C for all pretreatments investigated. There 

was no effect of temperature on the ash content due to pretreatment. 

The highest quantities of cellulose were attained at a temperature of 50°C. The 

highest increase in cellulose content (13 percentage points) occurred with calcium 

hydroxide. Sodium hydroxide and potassium hydroxide also increased the cellulose 

content by 11 and 9 percentage points, respectively. 

 
Figure 4.13: Temperature effect on lignin composition of switchgrass after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.14: Temperature effect on cellulose composition of switchgrass after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 

 

 
Figure 4.15: Temperature effect on hemicellulose composition of switchgrass 

after pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.16: Temperature effect on ash composition of switchgrass after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.2.7 Temperature Effect on Pretreatment of Miscanthus 

For miscanthus, the pretreatment temperature had a statistically significant 

influence in delignification for all three alkali conditions investigated (Figure 4.17). 

However, there was no significant difference in lignin content with the control. As 

expected, the lignin content decreased with the three chemicals when the temperature 

increased. In terms of cellulose content, water, sodium and potassium hydroxide had a 

statistically significant increase in cellulose content as the temperature increased (Figure 

4.18). At a temperature of 50°C, the cellulose content decreased relative to 20°C when 

pretreated with calcium hydroxide.  

Significant changes in hemicellulose content due to temperature differences were 

observed with sodium and potassium hydroxides, and the control samples (Figure 4.19). 

With the sodium and potassium hydroxide pretreatment at 50°C led to an 8 and 7 

percentage point decrease in hemicellulose relative to 20°C. While the control at 50°C 

resulted in an 11 percentage point increase in hemicellulose content. No significant 

changes in quantities of hemicellulose were noticed in calcium hydroxide pretreated. 

Ash contents had a statistically significant increase when pretreated at 50°C 

(Figure 4.20). This was not expected and was only observed with miscanthus. 
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Figure 4.17: Temperature effect on lignin composition of miscanthus after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 

 

 
Figure 4.18: Temperature effect on cellulose composition of miscanthus after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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Figure 4.19: Temperature effect on hemicellulose composition of miscanthus after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 

 

 
Figure 4.20: Temperature effect on ash composition of miscanthus after 

pretreatment with alkali and water. Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.3 Effect of Hydrolysis on Carbohydrates Digestibility 

After pretreatment, samples were enzymatically hydrolyzed. The sugars released 

after enzymatic hydrolysis were measured for all four feedstocks pretreated at the two 

temperatures and are summarized below. The results shown are the mean and standard 

deviation of three repetitions. 

The effectiveness of hydrolysis was evaluated by calculating the maximum 

reaction rate observed during hydrolysis and the percentage of cellulose converted into 

monomeric sugars.  

4.3.1 Hydrolysis Profile 

A complete hydrolysis profile was measured for all four feedstock and two 

temperatures. Plots of cellulose conversion as a function of time are shown in Figure 

4.21, Figure 4.22, Figure 4.23, and Figure 4.24. The cellulose digested shown is a mean 

of three replications. 

It can be inferred from the figures below that the glucose concentration during 

enzymatic hydrolysis varied in a similar way for the biomass pretreated with sodium 

hydroxide and potassium hydroxide in the majority of the cases analyzed. Pretreatment 

with calcium hydroxide led to a lower glucose concentration over the time allowed for 

hydrolysis. This may be attributed to the composition changes observed during 

pretreatment with sodium and potassium hydroxide. Moreover, in corn stover, there was 

no variation in the hydrolysis profile for pretreatment with calcium hydroxide, the water 

control, and untreated biomass.   
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            (a) 

 
            (b) 

Figure 4.21: Cellulose digested after enzymatic hydrolysis of untreated corn 
stover, water control, and pretreated with three alkali at 20°C (a) and 50°C (b).Error bars 
are the standard deviations of three replications. 
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(a) 

 
(b) 

Figure 4.22: Cellulose digested after enzymatic hydrolysis of untreated wheat 
straw, water control, and pretreated with three alkali at 20°C (a) and 50°C (b).Error bars 
are the standard deviations of three replications. 
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(a) 

 
                                                                          (b) 

Figure 4.23: Cellulose digested after enzymatic hydrolysis of untreated 
switchgrass, water control, and pretreated with three alkali at 20°C (a) and 50°C (b).Error 
bars are the standard deviations of three replications. 
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          (a) 

 
                                                             (b) 
Figure 4.24: Cellulose digested after enzymatic hydrolysis of untreated 

miscanthus, water control, and pretreated with three alkali at 20°C (a) and 50°C (b).Error 
bars are the standard deviations of three replications. 
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4.3.2 Maximum Reaction Rate of cellulose digestibility 

Figure 4.25 and Table 4.5 summarize the maximum reaction rate on each 

treatment investigated for all four biomass types and the two temperature levels. The 

maximum reaction rate of cellulose digestion, expressed in terms of gL-1h-1, was 

calculated applying Michaelis-Menten model for a batch reactor, as demonstrated in 

appendix C. 

At 50°C, sodium hydroxide had the highest hydrolysis reaction rate among the 

three chemicals utilized as pretreatment agents for switchgrass, corn stover, and wheat 

straw. With miscanthus, sodium and potassium hydroxide had the highest and statistically 

equivalent reaction rates. Samples pretreated with calcium hydroxide resulted in the 

lowest hydrolysis reaction rate among the alkali pretreated samples for all biomass types 

studied. 

At 20°C, for all feedstocks the hydrolysis reaction rate when pretreated with 

sodium and potassium hydroxides resulted in no statistically significant difference based 

on the Tukey’s correction test at 95% confidence. Samples pretreated with calcium 

hydroxide had the lowest hydrolysis reaction rate among the alkali pretreated samples at 

20°C. In switchgrass, miscanthus and wheat straw, all chemicals had a positive effect on 

the reaction rate in comparison with water, which did not show significant difference 

from the untreated samples for the two temperatures investigated and all four biomass. In 

corn stover, calcium hydroxide had a statistically equivalent reaction rate to water and 

untreated feedstock. 
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Table 4.5: Maximum reaction rate of cellulose digestibility for the chemically pretreated 
biomass, raw biomass with no pretreatment, and samples pretreated with water and no 
chemical addition.  

Treatment 

Maximum Rate of cellulose digestibility [gL-1h-1] 

corn stover wheat straw switchgrass miscanthus 

20°C 50°C 20°C 50°C 20°C 50°C 20°C 50°C 

Raw 0.0009 0.0009 0.0010 0.0010 0.0004 0.0004 0.0005 0.0005 

Ca(OH)2 0.0015  0.0017 0.0049 0.0071 0.0431 0.0168 0.0113 0.0053 

NaOH 0.0460  0.0578 0.0399 0.0455 0.0790 0.0941 0.0452 0.1119 

KOH 0.0485  0.0126 0.0362 0.0274 0.0785 0.0473 0.0626 0.1554 

Water 0.0017 0.0016 0.0016 0.0006 0.0004 0.0000 0.0002 0.0002 
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(a) 

 
(b) 

Figure 4.25: Maximum reaction rate of cellulose digestion for the raw biomass, 
three pretreatments and control (water) at 20°C (a) and 50°C (b). Error bars are the 
standard deviation of three replications and treatments with the same letter are not 
statistically significant based on Tukey’s correction test at a significance level of 5%. 
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4.3.3 Carbohydrate Conversion  

The percentage of polysaccharides converted into monosaccharides is one method 

to evaluate the efficiency of a pretreatment and the success of a bioconversion process. 

Figure 4.26 and Table 4.6 summarize the percentage of cellulose converted for all four 

feedstocks and the two temperatures investigated in this study. Two controls were 

utilized; raw feedstock and feedstock pretreated with water.  

Cellulose conversion rates between 31.4 and 81.4% were achieved with samples 

pretreated with either sodium hydroxide or potassium hydroxide. With the exception of 

switchgrass samples pretreated at 20°C (where a conversion of 77.6% was measured), 

calcium hydroxide led to the lowest conversion for the other treatment conditions 

(between 10.5 and 38.9%).  

Cellulose conversion for switchgrass, corn stover, and wheat straw samples 

pretreated at 50°C showed that all three alkali released different concentrations of glucose 

based on the adjusted Tukey’s test at a level of significance of 5%. A constant cellulose 

loading of 0.5 g per flask was used for the enzymatic hydrolysis experiments. Sodium 

hydroxide released the highest concentration of glucose after 72 hours of hydrolysis (7.83 

g/L, 5.94 g/L, and 6.41 g/L, respectively), followed by potassium hydroxide (6.22 g/L, 

3.49 g/L, 5.28 g/L, respectively) and calcium hydroxide (4.32 g/L, 2.04 g/L, and 2.57 

g/L, respectively). 

For switchgrass and wheat straw, at a pretreatment temperature of 20°C, sodium 

and potassium hydroxides had the same cellulose conversion that varied between 47.5 

and 70.5%. Switchgrass pretreated with calcium hydroxide led to a 77.6% cellulose 

71 
 



 

conversion at 20°C, although only 38.9% at 50°C. For corn stover, samples that were 

pretreated at 20°C with potassium hydroxide lost 81.4% of the initial cellulose after 72 

hours of enzymatic hydrolysis, which corresponded to 29.2 and 70.9 percentage points 

more cellulose digested than observed with sodium hydroxide and calcium hydroxide 

pretreated corn stover. The low conversion percentage achieved with calcium hydroxide 

pretreated samples showed to be statistically not different to the control and untreated 

corn stover.  

For miscanthus, no statistically significant difference was observed for cellulose 

conversion due to the use of either sodium or potassium hydroxides at both pretreatment 

temperatures after 72 hours of enzymatic hydrolysis that varied between 53.8 and 80.5%. 

Samples pretreated with calcium hydroxide resulted in approximately a 30 to 55 

percentage point difference in cellulose conversion compared to the other two alkali. 

Control samples, in most cases, did not show a statistical difference in cellulose 

conversion compared to untreated feedstock. 
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Table 4.6: Percent cellulose converted into glucose after 72 h of enzymatic hydrolysis.  

Treatment 

Cellulose % Conversion 

corn stover wheat straw switchgrass miscanthus 

20°C 50°C 20°C 50°C 20°C 50°C 20°C 50°C 

Raw 10.6 10.6 8.1 8.1 8.9 8.9 10.7 10.7 

Ca(OH)2 10.5 18.4 30.5 23.1 77.6 38.9 28.1 22.7 

NaOH 52.2 53.5 57.2 57.7 67.4 70.5 53.8 75.8 

KOH 81.4 31.4 57.2 47.5 65.7 56.1 61.3 80.5 

Water 13.9 9.7 14.9 8.0 5.4 4.4 4.2 5.0 
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(a) 

 
(b) 

Figure 4.26: Cellulose % conversion for the raw biomass, three pretreatments and 
control (water) at 20°C (a) and 50°C (b). Error bars are the standard deviation of three 
replications and treatments with the same letter are not statistically significant based on 
Tukey’s correction test at a significance level of 5%. 
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4.3.4 Effect of Pretreatment Temperature on Hydrolysis of Corn Stover 

A Tukey’s correction test revealed that increasing pretreatment temperature 

increased the maximum reaction rate only for the sodium hydroxide samples (Figure 

4.27). There was no difference in the maximum reaction rate for the calcium hydroxide 

and a negative impact on the reaction rate for potassium hydroxide.  

Pretreatment with sodium hydroxide at 20°C and 50°C did not result in any 

significant difference in cellulose conversion (Figure 4.28). The results were mixed with 

calcium and potassium hydroxides. Increasing the temperature with corn stover led to a 

significant increase in cellulose digested with calcium hydroxide. The biggest effect of 

temperature of pretreatment on cellulose digestion of corn stover occurred with 

potassium hydroxide. Samples of the potassium hydroxide group pretreated at 20°C led 

to double the amount of cellulose converted and a reaction rate approximately 3.8 times 

greater.  
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Figure 4.27: Pretreatment temperature effect on maximum rate of digested 

cellulose of corn stover pretreated with three alkali and water control. Error bars are the 
standard deviations of three replications. 

 

 
Figure 4.28: Pretreatment temperature effect on cellulose digestion of corn stover 

due to enzymatic hydrolysis. Error bars are the standard deviations of three replications. 
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4.3.5 Effect of Pretreatment Temperature on Hydrolysis of Wheat Straw 

A positive influence on the maximum reaction rate due to pretreatment 

temperature on wheat straw pretreated with calcium and sodium hydroxide was observed 

(Figure 4.29). However, the temperature did not positively influence the reaction rate 

when potassium hydroxide was used. No significant differences in the measured 

hydrolysis reaction rate between both temperatures in the study were observed with 

samples pretreated with sodium and potassium hydroxides. On the other hand, samples 

pretreated with calcium hydroxide at 20°C had a 1.45 times slower reaction rate than the 

ones pretreated at 50°C. Wheat straw pretreated with water showed a similar trend to 

calcium hydroxide; a lower pretreatment temperature resulted in a higher reaction rate.  

In terms of cellulose conversion, the difference in the total cellulose hydrolyzed 

after 72 h when wheat straw was pretreated with sodium hydroxide at 20°C and 50°C was 

not significant (Figure 4.30). In the case of calcium and potassium hydroxides, a lower 

pretreatment temperature resulted in a higher cellulose conversion. The maximum 

reaction rate for calcium hydroxide was achieved at 50°C, although a higher total 

cellulose conversion was obtained at 20°C were contradictory. However, potassium 

hydroxide followed the trend of increased reaction rate led to a higher total cellulose 

conversion.  
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Figure 4.29. Pretreatment temperature effect on maximum rate of digested 

cellulose of wheat straw pretreated with three alkali and water control. Error bars are the 
standard deviations of three replications. 

 

 
Figure 4.30: Pretreatment temperature effect on cellulose digestion of wheat straw 

due to enzymatic hydrolysis. Error bars are the standard deviations of three replications. 
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4.3.7 Effect of Pretreatment Temperature on Hydrolysis of Switchgrass 

Samples of switchgrass that were pretreated at 20°C with calcium and potassium 

hydroxides had a higher cellulose conversion compared to pretreatment at 50°C. 

However, sodium hydroxide was not significantly influenced between temperature levels 

(Figure 4.31). Considering only alkali pretreated samples, temperature had the greatest 

influence with the calcium hydroxide pretreated samples where decreasing the 

temperature increased the velocity of degradation by a factor of 2.57 times (Figure 4.32). 

With respect to control samples pretreated at 50°C, the measured reaction rate was 

negligible. Lower pretreatment temperatures also increased the velocity of degradation 

with potassium hydroxide by a factor of 1.66.  

Sodium hydroxide samples that were pretreated at 20°C resulted in a faster 

cellulose digestion rate after 72 hours. However, no statistically significant difference due 

to temperature effect was observed with respect to cellulose conversion (Figure 4.32). 

Control samples also did not show statistically significant difference in cellulose 

conversion due to temperature severity. For calcium and potassium hydroxides, the 

results for conversion rate followed the tendency observed in maximum reaction rate 

since samples pretreated at 20°C conducted to statistically higher conversions. The 

quantity of cellulose converted followed the trends in delignification observed with 

pretreatment. 
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Figure 4.31: Pretreatment temperature effect on maximum rate of digested 

cellulose of switchgrass pretreated with three alkali and water control. Error bars are the 
standard deviations of three replications. 

 

 
Figure 4.32: Pretreatment temperature effect on cellulose digestion of switchgrass 

due to enzymatic hydrolysis. Error bars are the standard deviations of three replications.  
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4.3.6 Effect of Pretreatment Temperature on Hydrolysis of Miscanthus 

Regarding the effect of pretreatment temperature on hydrolysis of miscanthus, the 

results showed a positive interaction due to temperature for samples pretreated with 

sodium and potassium hydroxides. Significant increases in the hydrolysis reaction rate 

were observed when the temperature was increased from 20 to 50°C (Figure 4.33). The 

higher pretreatment temperature increased the reaction by approximately 2.48 times for 

sodium and potassium hydroxides. On the other hand, calcium hydroxide pretreated 

samples showed to degrade cellulose 2.13 times faster in a 20°C environment relative to a 

pretreatment temperature of 50°C. Control samples did not show a significant difference 

in reaction rate due to the different temperature conditions.  

Similar trends were observed for the percentage of cellulose converted into 

glucose with each pretreatment agent due to pretreatment temperature with miscanthus 

(Figure 4.34). After 72 hours of hydrolysis, 22.0% and 19.2% more cellulose was 

degraded in samples pretreated with sodium and potassium hydroxides, respectively, at 

50°C in comparison with those pretreated at 20°C.  

Although the results for cellulose conversion percentage with sodium and 

potassium hydroxides followed the measured maximum hydrolysis reaction rate, calcium 

hydroxide did not follow the same trend.  
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Figure 4.33: Pretreatment temperature effect on maximum rate of digested 

cellulose of miscanthus pretreated with three alkali and water control Error bars are the 
standard deviations of three replications. 

 

 
Figure 4.34: Pretreatment temperature effect on cellulose digestion of miscanthus 

due to enzymatic hydrolysis. Error bars are the standard deviations of three replications. 
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4.4 Economic and Environmental Viability of Alkali Pretreatment 

4.4.1 Economic Viability 

The economic viability of the three pretreatment chemicals and four biomass 

types investigated was determined in terms of U$ dollars per gram of glucose released as 

following: 

𝐶𝐶𝐻𝐻
𝑆𝑆𝑅 ∗ 𝐶𝐶 ∗ 𝐺 ∗  

𝑈$ 𝑑𝑑𝑜𝑙𝑙𝑙𝑙𝐶𝐶𝑟𝑠𝑠
𝐶𝐶𝐻𝐻  

Where CH is unit mass of chemical, SR is unit mass of solids recovered after 

pretreatment, C is the unit mass of cellulose after pretreatment, G is unit mass of 

cellulose converted to glucose expressed as a percentage. 

Currently prices per kilogram of potassium, calcium and sodium hydroxides are 

U$1.00, U$0.40, and U$0.35, respectively (Alibaba, 2015). The quantity of solids 

recovered after pretreatment with corn stover, wheat straw, switchgrass, and miscanthus 

was calculated based on the solids yields percentage shown in Table 4.7, and on the 

initial amount of solids used in the pretreatment step (10 g dry matter). The chemical 

loadings used in this study were 0.1g Ca(OH)2/g biomass, 0.15 NaOHg/g biomass, and 

0.11 KOHg/g biomass, and the total cost per unit mass glucose production is shown in 

Figure 4.35. 

Biomass pretreatment with sodium hydroxide produced the lowest cost per unit 

mass of glucose with corn stover, wheat straw and miscanthus at the two pretreatment 

temperatures and with switchgrass at 50°C. Calcium hydroxide pretreatment led to the 
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lowest cost per unit mass of glucose released with switchgrass when pretreated at 20°C. 

Potassium hydroxide showed to be the highest cost per unit of glucose produced. 

Table 4.7. Solids recovery percentage after pretreatment. 
 

Treatment 

 

Solids Yields (%)a 

corn stover wheat straw switchgrass miscanthus 

20°C 50°C 20°C 50°C 20°C 50°C 20°C 50°C 

Ca(OH)2 75.7 70.1 76.4 80.8 67.2 70.8 79.6 74.3 

NaOH 63.7 56.0 76.4 81.4 62.8 58.1 66.8 66.1 

KOH 63.4 60.0 78.3 80.9 62.0 63.6 71.7 64.4 

a Solid yield is shown as percentage of the initial amount of dry matter. 
 

 
Figure 4.35: Cost of glucose production after enzymatic hydrolysis from 

pretreated biomass with three alkali and at two temperatures. Error bars are the standard 
deviation of three replications. 
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4.4.2 Carbon Dioxide (CO2) Emissions 

The carbon dioxide emissions from the three pretreatment chemicals and four 

biomass types investigated were estimated in terms of grams of carbon dioxide (CO2) per 

gram of glucose released using: 

𝐶𝐶𝐻𝐻
𝑆𝑆𝑅 ∗ 𝐶𝐶 ∗ 𝐺 ∗  

𝐶𝐶𝑂𝑂2
𝐶𝐶𝐻𝐻  

Where CH is unit mass of chemical, SR is unit mass of solids recovered after 

pretreatment, C is the unit mass of cellulose after pretreatment, G is unit mass of 

cellulose converted to glucose expressed as percentage, and CO2 is unit mass of carbon 

dioxide emitted. 

The CO2 emissions for sodium hydroxide and calcium hydroxide used were 

0.074g CO2/g NaOH, and 0.078g CO2/g CaOH2, respectively (ASSOCIATES, 

FRANKLIN, 2011) Potassium hydroxide was assumed to have equivalent emission rate 

to sodium hydroxide (ASSOCIATES, FRANKLIN, 2011). 

Biomass pretreated with calcium hydroxide emitted the highest levels of carbon 

dioxide per unit mass of glucose produced after hydrolysis of corn stover, wheat straw 

and miscanthus at the two pretreatment temperatures. In the worst scenario, calcium 

hydroxide led to 80% higher carbon dioxide emissions than sodium hydroxide or 

potassium hydroxide with corn stover pretreated at 20°C. Potassium hydroxide, which in 

general showed to be the most environmental friendly chemical in terms of CO2 

emissions, released up to 0.039 grams of carbon dioxide per kilogram of glucose 
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released. Sodium hydroxide was the best choice chemical in terms of carbon dioxide 

emissions, only with corn stover pretreated at the highest temperature investigated. 

Due to its low glucose recovery after enzyme hydrolysis, calcium hydroxide 

pretreatment consistently led to the highest carbon dioxide emissions. The only exception 

was during the pretreatment of switchgrass at 20°C where the CO2 emissions were the 

lowest of the three chemicals. 

 

 
Figure 4.36: Carbon dioxide emission per unit mass of glucose produced due to 

hydrolysis of pretreated biomass with three alkali and at two temperatures. Error bars are 
the standard deviation of three replications. 
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Chapter Five: DISCUSSION 
 

5.1 Biomass Composition 

The composition of the biomass used in this study was similar to other literature 

results. In research conducted by Sharma et al. (2013), the carbohydrate and total lignin 

(acid soluble and acid insoluble) portions of switchgrass were estimated to be 67.3% and 

24.7%, respectively. These contents are comparable to 67.2% carbohydrates and 29.8% 

lignin reported in this study.  

McIntosh & Vancov (2011) reported wheat straw had a composition of cellulose 

content of 36.0%, hemicellulose content of 26.0%, and an acid insoluble lignin content of 

7.6%. Duguid et al. (2007) found a cellulose, hemicellulose, and acid-insoluble lignin 

content of 33.4, 21.4, and 17.2%, respectively. Although the cellulose and hemicellulose 

content match the ones used in this study for cellulose and hemicellulose, the lignin 

content from this study was considerably higher. The straw used in this study was baled 

and contained a high percentage of whole stalks that have been shown to be higher in 

lignin relative to the leaves and chaff. 

Composition of corn stover showed some variation in terms of hemicellulose and 

lignin contents from previous work by McDonald et al. (1983), who reported 28.5% and 

13% of hemiellulose and lignin contents, respectively. Duguid et al. (2007) found a 

cellulose, hemicellulose, and lignin content of 36, 18, and 19%, respectively for corn 

stalks. The corn stover obtained in this study was obtained by using a small square baler 

after grain harvest and would likely contain a large amount of stalks with a potentially 

higher lignin content. 
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5.2 Effect of Pretreatment on Biomass Composition 

A number of issues complicate the direct comparison of the results from this 

study to other studies in the literature. Solids content during pretreatment (g biomass/g of 

total material), alkali loading (g hydroxyl/g biomass), time, and temperature all influence 

pretreatment (Rabelo, 2010; Sirohi & Rai, 1998; Nlewem & Thrash Jr., 2010; Kaar & 

Holtzapple, 2000). Lastly, the mass of biomass prior to pretreatment and after 

pretreatment are not equal. Some solids are lost during pretreatment making direct 

comparisons difficult. The results from this study are different from other results 

presented in the literature, but follow similar trends reported. 

Most pretreatments have been developed under low-solids conditions, where 

pretreatments are most effective (Modenbach & Nokes, 2012). This study utilized high 

solids that likely reduced the effectiveness of the pretreatments relative to other literature 

data. This was done to aid in the development of on-farm biomass processing systems 

where a high solids content is desirable.  

5.2.1 Lignin Changes Due to Pretreatment 

Potassium and sodium hydroxide performed similiarly in this study, that matched 

previous studies. Anderson & Ralston (1973) found that there was no difference in 

delignification between sodium and potassium hydroxide when pretreating rye straw with 

0.3 g of chemical/g biomass for 48 h at room temperature. Bales et al. (1979) found that 

NaOH and KOH had equivalent effect in terms of delignification on a molar basis on 

milo stalks. Delignification of corn stover with 0.075 g of sodium hydroxide per g of 

biomass for 24 hours at 20°C resulted in a 46.2% decrease in lignin with a solids content 
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of 50% (Zhu, Wan, & Li, 2010b). Their results were very similar to this study where a 

40% decrease in lignin was observed for corn stover. 

Although the results obtained in this project show the contrary, Chang et al. 

(1997) stated that calcium hydroxide has been shown to be as effective as other alkali in 

improving lignocellulose digestibility when pretreatment conditions compatible with lime 

were applied. A major difference between their study and this study was the pretreatment 

conditions used (120°C for 2 hour) and a low solids content (10%). They observed a 

29.4% loss in total lignin under their pretreatment conditions with switchgrass (Chang, 

Burr, & Holtzapple, 1997) that was similar to the 13.1 to 21.3% delignification found in 

this study.  

Calcium hydroxide features low alkalinity and solubility in water (Chang, Burr, & 

Holtzapple, 1997). Calcium hydroxide solubility is 0.173 and 0.133 grams in 100 ml of 

water at 20°C and 50°C, respectively. Potassium hydroxide and sodium hydroxide, in 

comparison, solubilize, respectively, 117.4 and 111.0 grams in 100 ml of water at 20°C 

and, 138.3 and 106.4 grams at 50°C. Because of calcium hydroxide’s features, it is 

believed that samples treated with this alkali require longer residence time to achieve the 

same lignocellulose digestibility rate as samples treated with either sodium (Winugroho, 

Ibrahim, & Pearce, 1984) or potassium hydroxides. In the interest of lignin reduction 

specifically, under alkaline conditions, calcium ions tend to link to lignin forming a 

calcium-lignin complex, which prevents an intense lignin solubilization during 

pretreatment (Xu J. , Cheng, Sharma-Shivappa, & Burns, 2010a). The time and solids 

content of the pretreatment conditions in this study likely limited the delignification 

observed with biomass pretreated with calcium hydroxide.  
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5.2.2 Cellulose Changes Due to Pretreatment 

The overall change in cellulose content obtained in this study share some of the 

reported values in the literatures. Chang, Burr, & Holtzapple (1997) reported a slight 

increase in cellulose content when switchgrass was pretreated with lime at 120°C for 2 h 

in a liquid slurry. Digman et al. (2010) also found higher cellulose, approximately 3.5%, 

for switchgrass after pretreatment with 0.05 g lime/g biomass for 60 days under anaerobic 

conditions at 22°C.  

Despite the positive changes in cellulose content achieved in this study after 

pretreatment, there were cases where the cellulose content did not increase with calcium 

hydroxide. Switchgrass pretreated with calcium hydroxide at 20°C did not show an 

increase in cellulose content. This could have been due to the intense washing process 

that the samples went through to reduce the pH to an acceptable level. Samples pretreated 

with calcium hydroxide required at least three times the volume of water used for the 

other samples to reach the desired pH value required to perform enzyme hydrolysis. 

The data from this research followed the general trend between delignification 

and increased cellulose content expected due to degradation of the lignocellulose matrix.  

5.2.3 Hemicellulose Change Due to Pretreatment 

Overall, changes in hemicellulose were not significant from the untreated 

feedstock, which matched previous research. Chang, Burr, & Holtzapple (1997) and Xu 

et al. (2010b) attributed the low susceptibility of hemicelluloses to alkaline attack to the 

high solubilization of hemicellulose. 
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5.3 Effect of Temperature on Biomass Composition 

5.3.1 Lignin Changes Due to Temperature Effect 

The majority of the results obtained in this study did not show a significant 

difference in delignification due to pretreatment temperature. The results obtained with 

this study did not follow the trend observed by Kim & Holtzapple (2005) and by Xu et al. 

(2010b). The first reported an increase of 30% in delignification of corn stover pretreated 

with an excess of calcium hydroxide (0.5g Ca(OH)2/ g raw biomass) for 6 weeks at 55°C 

in comparison with 25°C. Xu et al. (2010b) pretreated switchgrass with sodium hydroxide 

at 2% w/v and found 14.9% higher delignification at 50°C in comparison with 21°C. One 

possible reason for this may be due to the lower alkali loading utilized in this study, the 

higher solids content in this study, and the influence of pretreatment time. 

McIntosh & Vancov (2011) found that the reaction temperature was not a factor 

in delignification when low loadings of NaOH were used to pretreat wheat straw. In 

addition, Silverstein et al. (2007) pretreated cotton stalks with sodium hydroxide and 

concluded that increasing the temperature only enhanced the lignin removal for longer 

times and higher concentrations of chemical. Moreover, limited lignin reductions that 

were similar to this study were also reported by Xu et al. (2010a) with lime pretreatment 

of switchgrass utilizing 0.1 g calcium hydroxide/g raw biomass in a slurry.  
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5.3.2 Cellulose and Hemicellulose Changes Due to Temperature Effect 

The effect of pretreatment temperature on the cellulose and hemicellulose changes 

were expected to follow the trend observed for delignification. Removal of lignin has a 

direct influence on the cellulose and hemicellulose available in the pretreated solids 

(Modenbach & Nokes, 2012; Mosier, et al., 2005). The measured results, however, 

showed a mixed trend. One plausible explanation for that lies in the loss of solids during 

pretreatment, which could skew the composition results. It was impossible to recover all 

of the biomass solids after pretreatment. The chemical composition of the solids lost 

when transferring between flasks and the soluble material removed during washing were 

not quantified.  
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5.4 Enzymatic Hydrolysis 

The trend observed for maximum reaction rate from all four feedstocks suggested 

a relationship between delignification rate (Figure 4.1) and hydrolysis reaction rate 

(Figure 4.25) for all circumstances analyzed. This relationship follows the conventional 

wisdom on the role of pretreatment (Modenbach & Nokes, 2012; Mosier, et al., 2005) . 

With the breakage of the linkages in the lignocellulosic matrix, and the release of the 

lignin barrier, more cellulose is free to be easily accessed by the enzymes, and so, a 

faster, more complete conversion occurred.  

The cellulose converted in this study was similar to the carbohydrate conversions 

found by Xu et al. (2010a), Sharma et al. (2013), and Xu et al. (2010b), who also reported 

different performances with calcium hydroxide, potassium hydroxide, and sodium 

hydroxide, respectively, for similar hydrolysis conditions. However, looking at those 

three studies, potassium hydroxide appeared to have the best performance. 

The cellulose conversion from corn stover and switchgrass pretreated with 

calcium hydroxide were somewhat contradictory. It appeared that calcium hydroxide was 

effective with switchgrass, but did not have a significant difference from the controls 

with corn stover. Although, both feedstocks had a very similar rate of delignification after 

pretreatment, but vastly different cellulose conversion. 

Glucose yields from untreated switchgrass and switchgrass pretreated with lime 

for 2 h at 120°C were 12.3 and 58.0%, respectively (Chang, Burr, & Holtzapple, 1997). 

The yields from the water control and calcium hydroxide pretreatment in this study were 

approximately 50% lower. This could have been due to inhibitors in the pretreatment 

93 
 



 

solution, differences in enzymes (loading, activity, types of enzymes, etc.), and 

differences in pretreatment conditions (solids content, time, and temperature). 

Results from this study had a similar measured reaction rate with Chang et al. 

(1997). Chang et al. (1997) concluded that since calcium hydroxide led to lower reaction 

rates than sodium and potassium hydroxides, a lower conversion was expected for 

samples pretreated with calcium hydroxide. However, in order to make a fair comparison 

of the effectiveness of these three alkali as pretreatment agent for bioconversion of 

lignocellulosic feedstock, residence time compatible with calcium hydroxide reaction rate 

should be considered. 

5.4.1 Effect of Temperature of Pretreatment on Enzymatic Hydrolysis 

Overall, the pretreatment temperature had a mixed effect on cellulose conversion. 

Some conditions achieved better conversion rates with the lower pretreatment 

temperature, which is in agreement with the study by Sharma et al. (2013). They found 

higher sugar yields with a lower pretreatment temperature for switchgrass pretreated with 

0.5% potassium hydroxide for 24 hours. 

Under some conditions, higher conversions with higher temperatures were 

attained in this study. Kim & Holtzapple (2005) reported higher yields of glucose from 

corn stover pretreated at higher temperatures with an excess of calcium hydroxide (0.5g 

Ca(OH)2/ g raw biomass). Xu et al. (2010a) investigate pretreatment of switchgrass with 

calcium hyroxide at 21, 50, and 121°C and found the 50°C condition optimal in terms of 

enzymatic hydrolysis.  
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In general, the maximum reaction rate increased with increased pretreatment 

temperature. However, this trend did not follow in terms of cellulose conversion. A 

higher pretreatment temperature did not always increase the amount of cellulose 

converted to glucose. This anomaly could be attributed to the hydrolysis residence time, 

which may not allowed for maximum conversion. Other factors could have also 

influenced the cellulose conversion, such as mixture and activity of the cellulase’s and 

hemicellulase’s, contamination, solids recovery after pretreatment, sampling errors, and 

measurement errors.  
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5.5 Economic and Environmental Viability 

Although calcium hydroxide is the least expensive chemical per unit mass of 

hydroxide, sodium hydroxide resulted in the lowest cost of glucose released in this study. 

Playne (1984) concluded the opposite. In his study conducted on sugarcane bagasse 

pretreated with alkali (NaOH, NH3 (aqueous), NaOH + NH3, Ca(OH)2, and Ca(OH)2 + 

Na2CO3) at ambient temperature and in combination with steam explosion at 200°C, 6.9 

MPa, and 5 min cooking times, he concluded that lime was the least expensive chemical 

per unit of additional digestible organic matter obtained. These differences were likely 

due to the stream explosion and other conditions during pretreatment used by Playne 

(1984). 

The environmental analysis done for this study was a simplified study to evaluate 

potential environmental concerns with the pretreatment chemicals. In terms of waste 

disposal, calcium hydroxide could be more advantageous because it can be recovered 

from an aqueous reaction system as insoluble calcium carbonate by neutralizing with 

carbon dioxide. Subsequently, calcium hydroxide can be regenerated using lime kiln 

technology (Kaar & Holtzapple, 2000; Carvalheiro, Duarte, & Gírio, 2008). In addition, 

agricultural fields require large amounts of lime (calcium carbonate) to control soil pH. 

Reusing the calcium from the pretreatment could lead to lower CO2 emissions and costs 

if methods were developed to utilize the residual calcium and lignin. Calcium ions tend to 

crosslink lignin molecules (Xu J. , Cheng, Sharma-Shivappa, & Burns, 2010a) which 

could lead to benefits as a soil amendment.  

Byproducts from potassium hydroxide could also have value as a soil fertilizer. 

Farmers apply a considerable quantity of potassium chloride every year to manage soil 
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fertility. If the residual potassium was in a plant useable form, or could be converted into 

one, the cost and environmental impact of potassium hydroxide could be lessened.  

Although, sodium hydroxide had the lowest cost per gram of glucose released, it 

could potentially add to salinity issues and treated products frequently contain little 

nitrogen (Bales, Kellogg, & Miller, 1979). There could be significant additional 

environmental impacts with sodium hydroxide that were not considered. 

In terms of water consumption, calcium hydroxide was the worst choice since it 

required at least three times the volume of water for washing relative to the sodium and 

potassium hydroxide. Although water itself is not expensive, there are environmental 

concerns with cleanup and disposal after it was used for washing. The results underlined 

the importance of high glucose recovery from the pretreated solids to minimize costs and 

potential environmental impacts associated with biomass pretreatment.   
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Chapter Six: SUMMARY AND CONCLUSIONS 
 

6.1 Composition of Biomass 

The change in composition of lignin, cellulose, and hemicellulose of four biomass 

feedstocks (switchgrass, wheat straw, corn stover, and miscanthus) before and after 

pretreatment with calcium hydroxide, potassium hydroxide, and sodium hydroxide were 

measured. All feedstocks were tested at two temperature levels (20 and 50°C), with a 

constant hydroxyl loading of 0.02701 mol (OH)- per gram of biomass, and a solids 

loading of 0.4 g biomass/g of total material. Sodium hydroxide and potassium hydroxide 

had similar performance in terms of delignification ranging between 20.9 to 48.3%. 

Calcium hydroxide was statistically lower and reduced the lignin by 6.9 to 21.3%. 

Calcium hydroxide increased the cellulose content of the pretreated solids from 0 

to 15.0% and often was statistically not different from the control of water only. In many 

cases, sodium and potassium hydroxide had a slightly higher cellulose content after 

pretreatment, but was frequently statistically not different from calcium hydroxide. 

Overall, no significant changes were observed in hemicellulose content compared 

to the untreated biomass. For the few cases where there was an increase in hemicellulose 

content, sodium hydroxide was the pretreatment agent responsible, with exception for 

miscanthus pretreated at 50°C. Sodium hydroxide and potassium hydroxide were also 

similar in removing ash in the majority of the scenarios analyzed. They performed better 

than calcium hydroxide, which did not differ from the control in most cases. 
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6.2 Enzymatic Hydrolysis 

Yields of glucose after pretreatment with the three chemicals and the four biomass 

types were quantified as a result of enzymatic hydrolysis, and ranged from 1.16 g/L 

(Corn stover pretreated with calcium hydroxide at 20°C) to 9.04 g/L (Corn stover 

pretreated with potassium hydroxide at 20°C. Cellulose conversion from calcium 

hydroxide pretreated material ranged from 10.5 to 77.6%. Sodium hydroxide had a 

cellulose conversion between 52.2 to 75.8%, while potassium hydroxide varied between 

31.4 and 81.4%. In 50% of the cases studied, potassium and sodium hydroxide yielded 

equivalent glucose concentration. 

6.3 Economic and Environmental Viability 

Sodium hydroxide, in general, resulted in the lowest cost per gram of glucose 

released. The lowest cost scenario ($0.11/g glucose) was miscanthus pretreated at 50°C 

with sodium hydroxide. With sodium hydroxide the highest cost scenario was with corn 

stover at 20°C where the chemical cost was $0.21 per g glucose. Costs associated with 

calcium hydroxide were up to $1.18/g glucose for corn stover pretreated at 20°C. 

Concerning environmental issues such as carbon dioxide emissions to the 

atmosphere and water consumption, pretreatment with potassium hydroxide had the best 

overall performance, although sodium hydroxide was similar in many of the cases 

studied. It released into the atmosphere 0.2 times the amount of CO2 emitted with 

calcium hydroxide per unit mass of glucose produced due to hydrolysis of pretreated corn 

stover at 20°C, and consumed three times less volume of water during the washing step. 
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6.4 Overall Conclusion 

There was considerable variation in the performance of the source of alkaline 

pretreatment chemical on biomass (switchgrass, wheat straw, corn stover, and 

miscanthus) based on compositional changes after pretreatment, sugar yield after enzyme 

hydrolysis, cost, and potential environmental impacts varied with the temperature of 

pretreatment and with the feedstock studied. 

Under the pretreatment and hydrolysis conditions adopted in this study, potassium 

hydroxide showed to be the best option for the pretreatment of corn stover at 20°C, and 

sodium hydroxide at 50°C. In wheat straw pretreated at 20°C, potassium hydroxide was 

as effective as sodium hydroxide, which had the best performance at 50°C. Sodium 

hydroxide was also the most effective alkaline compound in the pretreatment of 

switchgrass at 50°C. At 20°C, however, calcium hydroxide was the most successful 

pretreatment agent afterwards. With miscanthus, sodium and potassium hydroxides had 

equivalent performance at both pretreatment temperatures. 

However, in order to make a fair comparison of effectiveness of calcium 

hydroxide, sodium hydroxide, and potassium hydroxide as pretreatment agents, 

pretreatment conditions compatible with all three alkali must be considered. Pretreatment 

conditions optimal for calcium hydroxide were not used in this study that lowered the 

effectiveness relative to sodium and potassium hydroxide. 
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Chapter Seven: FUTURE WORK 
 
Numerous opportunities for further research could be performed based on the 

results obtained from this study. One opportunity for future work could be the 

optimization of conditions for calcium hydroxide pretreatment, development of methods 

to increase xylose production, quantifying soluble chemicals lost during washing, a 

deeper analysis of potential use of waste products to decrease costs and environmental 

issues, and large scale testing. 

At first, in order to make a fair comparison of the three hydroxyl sources 

investigated in this study, it is crucial that the experimental procedure is adjusted to 

match the optimal pretreatment and hydrolysis condition of all pretreatment agents 

evaluated. Although the data in this study showed the contrary, calcium hydroxide has 

been proven to be as efficient as sodium hydroxide and potassium hydroxide where 

pretreatment and hydrolysis conditions compatible with its needs were considered.  

Another aspect to consider is the use of an enzyme complex with higher xylanase 

activity. The experimental data did not show significant quantities of xylose production 

due to hydrolysis with the commercial enzyme used. Adjustments should be made to the 

cellulase complex used to improve the xylanase activity and so increase total sugar 

yields.  

Another aspect would be the evaluation of the soluble chemicals lost during the 

washing step. This would allow for an accurate analysis of the change in composition of 

the lignocellulosic compounds. Thus, the pretreatment effectiveness could be better 

evaluated. In addition to a clearer understanding of the relationship between 

delignification and carbohydrate conversion.  
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Despite the efficiency of biofuel production from renewable resources, it is 

essential the production of the biofuel is commercially and environmentally feasible 

compared to oil. To achieve an economically viable process, the production cost must 

decrease to approach the corresponding cost for fossil fuels. By looking at a use for waste 

products, the cost associated for disposal could be reduced, and so the production cost. 

Moreover, a functional use of waste products would contribute to diminished 

environmental impacts. 

Finally, this study is part of a project that aims to develop on-farm biomass 

processing systems where a large production volume is desirable. Scaling up the 

experiments investigated in this study would give an idea of the feasibility of the alkali 

pretreatments studied in an overall system analysis of biofuel production from 

agricultural residues and dedicated energy crops. 
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APPENDICES 

Appendix A: Moisture Content 

The moisture content (M) is defined as the direct relationship between the mass of 

water present in a sample (mH2O) and the total mass of the sample, in other words, the 

mass of water plus the dry matter (mH2O + dm). The equation below represents the 

definition of moisture content. 

 

To calculate the amount of water required to achieve a moisture content of 60%, 

equation 1 was rearranged into equation 2. 

 

Thus, making M = 0.60,  

 

which was the equation employed in the pretreatment step of the experimental procedure 

of this project. 

 

  

𝑀𝑀 =  
𝑚𝑚𝐻𝐻2𝑂𝑂

𝑚𝑚𝐻𝐻2𝑂𝑂 + 𝑑𝑑𝑚𝑚
         

𝑚𝑚𝐻𝐻20 =  
𝑑𝑑𝑚𝑚 ∗ 𝑀𝑀
(1 −𝑀𝑀)

        

𝑚𝑚𝐻𝐻2𝑂𝑂 = 1.5 ∗ 𝑑𝑑𝑚𝑚  
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Appendix B: Determination of Appropriate Quantity of Alkali 

Compound Applied in Each Pretreatment Method 

 

Molar mass of the individual elements and molecules (Smith, 2011): 

Ca:40.0780 g*mol-1 

K:39.0893 g*mol-1 

Na:22.9898 g*mol-1 

O: 15.9994 g*mol-1; O2 = 31.9988 g*mol-1 

H: 1.00794 g*mol-1; H2 = 2.01588 g*mol-1 

(OH)-: 17.00734 g*mol-1  

Molar mass of chemical compounds: 

Ca(OH)2: 74.09268 g*mol-1 

KOH: 56.09664 g*mol-1 

NaOH: 39.99714 g*mol-1   
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Calculations: 

Dissociation equation for calcium hydroxide: 

Stechiometry: 

           1 mol Ca(OH)2                 2 mol (OH)-  

74.09268 g Ca(OH)2                   34.01468 g (OH)- 

              X g Ca(OH)2                 Y g (OH)- 

According to (Chang, Burr, & Holtzapple, 1997; Xu J. , Cheng, Sharma-

Shivappa, & Burns, 2010a), an ideal loading rate would be 0.1 g chemical* g biomass-1. 

Thus, 1 g of chemical is required per each 10 g biomass. Taking calcium hydroxide as 

base for calculation, for X = 1.00000 g Ca(OH)2 , Y =  0.45908 g (OH)-. 

In order to equalize the concentration of hydroxyl per unit mass of biomass 

(mole/g) in all treatments, the loading amount of potassium and sodium hydroxides were 

calculated to contain 0.45928 g (OH)- , or 0.02701 mol (OH)- , in each, as following 

exemplified. 

  

 𝐶𝐶𝐶𝐶(𝑂𝑂𝐻𝐻)2(𝑠𝑠) → 𝐶𝐶𝐶𝐶2+
(𝐶𝐶𝑞𝑞) + 2(𝑂𝑂𝐻𝐻)−(𝐶𝐶𝑞𝑞) 
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Potassium Hydroxide: 

Stechiometry: 

            1 mol KOH                    1 mol (OH)-  

 56.09664 g   KOH                    17.00194 g (OH)- 

     1.51470 g KOH                    0.45908 g (OH)- 

 

Sodium Hydroxide: 

Stechiometry: 

            1 mol NaOH                   1 mol (OH)-  

 39.99714 g   NaOH                    17.00194 g (OH)- 

     1.07999 g NaOH                    0.45908 g (OH)- 

In conclusion, the quantities of calcium, potassium, and sodium hydroxides 

applied to each specific pretreatment were 1.00000 g, 1.51470 g, and 1.07999 g, 

respectively.  

𝐾𝐾(𝑂𝑂𝐻𝐻)(𝑠𝑠) → 𝐾𝐾+
(𝐶𝐶𝑞𝑞) + (𝑂𝑂𝐻𝐻)−(𝐶𝐶𝑞𝑞) 

𝑁𝑁𝐶𝐶(𝑂𝑂𝐻𝐻)(𝑠𝑠)  →  𝑁𝑁𝐶𝐶+
(𝐶𝐶𝑞𝑞) +  (𝑂𝑂𝐻𝐻)−(𝐶𝐶𝑞𝑞) 
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Appendix C: Maximum Reaction Rate for Enzymatic Hydrolysis of 

Biomass 

The experimental results were analyzed based on Michaelis Mendem equation by 

assuming that the cellulose-cellulase system is an uncomplicated one-substrate reaction. 

It was also assumed a noninhibition mechanism.  

Moreover, the linear Lineweaver-Burk method was used to calculate the 

maximum reaction rate as following (Fan, Gharpuray, & Lee, 1987): 

Michaelis Mendem equation, −𝑟 =   𝑉𝑚𝑎𝑥∗𝑆
𝐾𝑚+𝑆

 , and mole balance for batch reactor 

in liquid phase, −𝑟 = −  𝑑𝑆
𝑑𝑡

  were combined, rearranged, and integrated to get 𝑡𝑡 =

 𝐾𝑚
𝑉𝑚𝑎𝑥

𝑙𝑙𝑙𝑙 𝑆0
𝑆

+  𝑆0 −𝑆
𝑉𝑚𝑎𝑥

. 

Dividing both sides by 𝑡𝑡 ∗ 𝐾𝐾𝑚 𝑉𝑉𝑚𝑎𝑥⁄ , yields 

 

Where t is time; S0 is the concentration of cellulose digested at time zero; S is the 

concentration of cellulose digested at time t; Km is the Michealis Mendem constant, and 

Vmax is the maximum reaction rate. 

 

 

1
𝑡𝑡
𝑙𝑙𝑙𝑙
𝑆𝑆0

𝑆𝑆
=  
𝑉𝑉𝑚𝑚𝐶𝐶𝑚𝑚
𝐾𝐾𝑚𝑚

−  
𝑆𝑆0 − 𝑆𝑆
𝐾𝐾𝑚𝑚 ∗ 𝑡𝑡
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Plotting 

 

gives as intersection and slope  

 

Thus, once the Michaelis Mendem constant was calculated using the scope value, 

the maximum reaction rate could be determined by multiplying the intersection value by 

the Michaelis Mendem constant. 

  

1
t

ln
S0

S
 against 

S0 − S
t

 

Vmax  
Km  

 and  
1

Km
, respectively 
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