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EVALUATING ALGAL GROWTH AT DIFFERENT TEMPERATURES 
 

 
In recent years, there has been a concern for the amount of carbon dioxide released into 
the atmosphere and how it will be captured.  One way to capture carbon dioxide is with 
algae. In this study, algae's growth was measured at different temperatures.  The first part 
of the study was to grow Scenedesmus and Chlorella with M8 or urea growth media at a 
temperature of 25, 30 or 35ºC.  It was found that 30ºC had the best growth rates for both 
algae.  The second part studied Scenedesmus growth with urea, more in-depth, and found 
the optimum growth temperature to be 27.5ºC with a growth rate of 0.29 1/hr. The last 
part of the study was a heat transfer model which predicted the temperature of a 
greenhouse and an outdoor unit. The model could also predict the growth rate of the algae 
and the temperature if flue gas is mixed in with the algae. 
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CHAPTER 1 : INTRODUCTION 

For centuries, flue gas from coal-fired power plants has been a problem for our 

atmosphere and our water supply (i.e. acid rain).  At one point in our history, toxic 

chemicals in flue gas were allowed to leak into the environment without regulations. As 

people took notice of the pollution, SOx scrubbers, precipitators, low NOx burners, and 

other regulator devices were put in place to control pollutants. Today, there is an elevated 

concern for the addition of carbon dioxide into the environment and how the additional 

carbon dioxide might affect the environment. 

There have been numerous studies that claim carbon dioxide is the cause of global 

warming (Goreau, 1990; Rogers, 1990). In an effort to reduce this effect, several carbon 

mitigation strategies have been considered (Herzog, 2009).  One of the most promising 

strategies is using algae to mitigate the amount of carbon dioxide emitted to the 

atmosphere. Algae can achieve carbon fixation at a faster rate than most other plants and 

can be used for several products, such as biofuels, pharmaceuticals, as well as in 

agriculture. In addition, algae have the ability to tolerate flue gas pollutants such as sulfur 

oxide and nitrogen oxide.  

Before algae cultivation systems can be used for CO2 mitigation, several obstacles need 

to be overcome. One challenge will be keeping the algae cultivation system at a constant 

temperature that optimizes growth and CO2 mitigation rate.  By closely evaluating the 

relationship between the temperature of the incoming flue gas (with or without pre-

conditioning), the optional greenhouse, and the photobioreactor (PBR) to the growth of 

the algae, important heat and mass transfer decisions can be made about the best way to 

run the integrated system.  

1.1 FLUE GAS  

Flue gas is a mixture of gases at approximately 140°F (60°C) released from coal-fired 

power plant smoke stacks. The combustion of coal is mainly used for the generation of 

steam, which then can produce electricity or heat. In Kentucky, coal is used for both heat 

and electricity. About 93% of Kentucky’s electricity is generated from coal (American 

Coalition for Clean Coal Electricity, 2010).     
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Typical flue gas derived from coal combustion is comprised of nitrogen oxides (NOx), 

sulfur oxides (SOx), particulates, carbon monoxide, hydrochloric acid, water, and carbon 

dioxide (CO2). NOx are primarily nitric oxide (NO), which oxidizes into nitrogen dioxide 

(NO2) when introduced into the environment resulting in acid rain (National Energy 

Technology Laboratory, 2009).  To avoid acid rain, low NOx burner and catalytic 

reduction are used. After treatment the typical amount of NOx released from coal is 

approximately 40-100 ppmv  (Chen et al., 2010).  

The sulfur content of flue gas is made up of sulfur dioxide (SO2) and sulfur trioxide 

(SO3).  If sulfur dioxide combines with water vapor, it will form dilute acid (National 

Energy Technology Laboratory, 2009), resulting in acid rain. To prevent acid rain, 

scrubbers are used to capture about 90% of sulfur dioxide (National Energy Technology 

Laboratory, 2009). 

During the combustion of coal, particulate matter and ash can be found in the flue gas. 

The particulate matter composition will depend on the composition of the coal; the bulk 

of coal is made up of sulfur, sodium, and potassium (Chen et al., 2010). There is a range 

of ways of collecting the particulate matter and ash, but if the particular matter escapes it 

will cause health problems such as lung disease and esophageal cancer (Finkelman et al., 

2002).  

Typically carbon dioxide levels are 10-15% of the flue gas released from the combustion 

of coal (Lee et al., 2000). While there are currently no statutory regulations limiting 

carbon dioxide emissions, many companies are seeking for methods to voluntarily reduce 

CO2 emissions in order to meet corporate environmental performance goals. 

1.2 CURRENT RESEARCH ON CAPTURING CO2 

There are several proposed strategies for CO2 capture, including monoethanolamine 

(MEA) absorptions process, underground carbon dioxide storage, and capturing carbon 

dioxide with algae. Using MEA scrubbers is proven technology, but the use of these 

scrubbers on a large scale is cost prohibitive. The underground storage and algae 

strategies are still being researched (Keller et al., 2008). Some possibilities show 
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potential of success; however, it is unknown what the long term effects and the cost will 

be of these methods (Keller et al., 2008).   

A scrubber or amine-based scrubber with monoethanolamine (MEA) absorption process 

can be used to capture carbon dioxide. It has the ability to capture 96% of CO2 from coal 

combustion. The system works by first removing carbon dioxide by a unit using MEA 

from the other flue gas products such as water and NOx. The carbon dioxide is absorbed 

by MEA and sent to the stripper. The stripper will heat the MEA solution to release the 

CO2. The lean MEA solution will then be recycled. The carbon dioxide will be 

dehydrated and stored (Herzog, 2009).  The disadvantages with this system are the power 

needed for compressing the carbon dioxide and once the carbon dioxide is compressed it 

is a waste product that needs to be properly disposed (Haslbeck, 2002).  

Underground carbon dioxide storage is an option to decrease carbon dioxide emissions.  

Carbon dioxide is stored in the pores of oil mined land.  Currently, this strategy has not 

been tested on a large scale but there are plans to implement underground storage on a 

large scale. There are uncertainties of the cost and what effect it might have on the 

environment (Rankin, 2009).   

Another sustainable option is capturing carbon dioxide with algae (Kurano et al., 1995; 

Ogbonna et al., 1997). Algae use carbon dioxide as a carbon source and the energy from 

the sun to produce biomass and oxygen. Along with producing biomass and oxygen, it 

also produces complex organic compounds from simple inorganic compounds, such as 

urea.  This type of research has not been implicated on a large scale but procedures have 

been established (although not optimized) for processing, recycling, and disposing of 

algae once it converts the carbon dioxide.    

1.3  SELECTION OF ALGAE 

There are many types of algae: blue green, green, and red. Algae can be both harmful and 

helpful. Algae can be grown in different environments, high or low temperatures, with or 

without light, in fresh water or in salt water.  In order to find the best way to cultivate 

algae and maximize carbon dioxide consumption, several parameters need to be 
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considered, including algae strain, light requirements, temperature requirements, and 

media requirements.  

1.3.1 Algae Strains 

In Kentucky, the majority of the water is fresh; if there is salt then it is considered a 

contamination (Waller, 2005). There are about 40,598 square miles of ground and surface 

water that make up Kentucky’s water resource and about 4 billion gallons are used every 

day (Dinger, 1997). For a large-scale algal system in Kentucky, the algae should be fresh 

water, for example Chlorella or Scenedesmus. 

Chlorella vulgaris shows great potential for capturing carbon dioxide.  It will grow at a 

fast rate (0.6 g/L day) and tolerate 10-15% carbon dioxide (Lee et al., 2000). Chlorella 

vulgaris can also grow in extreme environments, high temperatures of 30-35°C (Converti 

et al., 2009) and acidic environments such as a pH of 3 (Mayo, 1997). When it comes to 

flue gas, it can tolerate up to 200 ppm of NOx and 50 ppm of SOx (Lee et al., 2000). 

Once the algae is used for carbon dioxide consumption, it can be used in a secondary 

process or product such as animal feed.  For secondary processes, Chlorella vulgaris has 

a high percent of proteins, minerals, and vitamins (Lee et al., 2001). 

In sewage treatment plants, Scenedesmus takes up CO2 and provides oxygen to bacteria 

as it breaks down organic matter (Encyclopedia Britannica Online, 2010). Hence, 

Scenedesmus is an attractive candidate for CO2 mitigation with flue gas because it can 

tolerate being grown in wastewater. The rate of daily carbon dioxide consumption is 

28.08% at a 6% carbon dioxide level (de Morais and Costa, 2007). The temperature in 

which Scenedesmus will grow ranges from 10 to 40°C (Christov et al., 2001). 

Currently, Spirulina is widely used in food applications and has the potential to consume 

carbon dioxide. Its carbon fixation rate is 318.6 mgCO2/ L day at 5% CO2 (Sydney et al., 

2010). It has the ability grow in temperatures ranging from 20 to 40°C, but the 

temperature will affect the protein and carbohydrate levels (Oliveira et al., 1999). The 

composition of Spirulina is mostly protein (Sydney et al., 2010).  It also has the potential 

to grow on manure, capture carbon dioxide and produce biogas (Shelef et al., 1980).  In 
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this study, Spirulina will not be considered due to the scope of the current project, but it 

may be considered in future work. 

The overarching algae CO2 mitigation project focuses on Chlorella and Scenedesmus; 

this specific work will focus on the same two algal species. Chlorella vulgaris was 

selected because it is used often in research and has been shown to grow rapidly and 

easily, even in presences of elevated CO2 levels (Lv et al., 2010).  Scenedesmus sp. has 

also been shown to grow easily and rapidly; this particular species was collected locally, 

illustrating the fact that it grows well in the Kentucky climate.  It is unknown how 

Scenedesmus sp. will react at different temperatures, due to conflicting studies. One study 

says its optimum temperature is 37°C (Martinez et al., 1999) and other study says that it 

does well at 30°C (Christov et al., 2001).  

1.3.2 Autotrophic versus Heterotrophic 

Algae can grow either heterotrophically (without light) or autotrophically (with light).  

Autotrophic growth uses simple inorganic compounds and light energy to produce 

complex organic compounds, including biomass.  With autotrophic growth an increase in 

light intensity can influence the overall growth rate.  In one experiment, the light was 

increased from 163 µmol/m2 s to 310 µmol/m2 s and the growth rate increased from 2 

g/L d to 4 g/L d (Ogbonna et al., 1997). More importantly, autotrophic growth results in 

the removal of carbon dioxide from the environment.   

Heterotrophic growth is used in fermentation processes to produces nutraceutical or 

health food (Apt and Behrens, 1999). This type of growth uses organic carbon (i.e., 

carbohydrates) to produce carbon dioxide, a simple inorganic compound, and does not 

require energy from the sun.  Heterotrophic and autrophic growth can be combined into 

one system to increase the production of biomass. In one study, Chlorella was used to 

grow heterotrophically and autrophically to increase the biomass and the carbon dioxide 

produced from the heterotrophic phase was used in the autotrophic phase.  (Ogbonna et 

al., 1997). The disadvantages associated with heterotrophic growth are that carbon 

dioxide is produced, nutrient media cost more due to the addition of a carbon source, and 
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there is a higher risk of a bacterial contamination, since bacteria can also grow in the 

presence of a carbohydrate carbon source (Feofilova et al., 2010).  

1.3.3 Light Requirements 

Light is an essential energy source in autotrophic growth and is required for 

photosynthetic activity.  Studies have shown that green algae grow better in blue and red 

light because they contain chlorophyll a and b which are major light harvesting pigments 

that are sensitive to these wavelengths.  In one study, for several cell concentrations of 

Chlorella vulgaris the absorption of light was in the 400-500 nm (blue) and 625-675 nm 

(red) range while the rest of the light was scattered amongst the cells (Yun and Park, 

2001). In another study, it was found that in red light (625-675 nm) Scenedesmus 

obliquus increased significantly in cell volume and the division of nuclei occurred earlier 

(Cepak et al., 2006).   

1.3.4 Temperature Requirements 

Temperature is an important element for growing algae. It strongly influences cellular 

chemical composition, the uptake of nutrients, carbon dioxide fixation, and the growth 

rates for every species of algae. It is know that the growth rate will increase with the 

increase in temperature up to its optimum and once it reaches its optimum, growth rate 

will decrease drastically with the increase in temperature. 

 For Chlorella vulgaris, the optimum temperature ranges from 25 to 30°C.  Chinnasamy 

et al. (2009) reported an increase in biomass content and in chlorophyll content at 

elevated carbon dioxide (6%) and optimum temperature (30°C).  Converti et al. (2009) 

reported that lipids would increase from 5.9 to 14.7% when the temperature decreased 

from 30°C to 25°C; at temperatures over 38°C oleic acid, a monounsaturated omega-9 

fatty acid, production increased. Bajguz (2009) noted that under heat stress or heat shock 

the algal protein content will decrease and will produce abscisic acid (ABA), a stress 

hormone. If the stress hormone is produced, it is considered a key factor in controlling 

downstream responses such as growth and gene expressions.  Mayo (1997) found that 

when raising the temperature above 40oC, Chlorella vulgaris was less resistant to acidic 

pH than when it was grown at 35oC or lower temperatures.    
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The optimum temperature to grow Scenedesmus sp. is between 20-40°C (Sanchez et al., 

2008).  Christov et al. (2001) studied Scenedesmus sp. at temperatures of 15 to 36°C and 

found at lower temperatures the chlorophyll and protein levels were reduced, while levels 

of  carotenoids, saccharides, and lipid were increased.  They also observed an increase of 

30% of the sugars and lipids at extreme temperatures (36°C). Powell et al. (2008) studied 

how temperature affected the phosphorus content of wastewater using algae; they found 

phosphorus content in biomass is higher at higher temperatures (25°C) than at lower 

temperatures. Demon et al. (1989) observed the effect of temperature (0- 22°C) on the 

uptake of arsenic, cadmium, copper, lanthanum, tungsten, and zinc; they noticed an 

increase in arsenic, tungsten, zinc and cadmium uptake as the temperature increased.    

1.4 PAST USES OF ALGAE  

For large-scale production, wastewater treatment has been using algae for years (de la 

Noue et al., 1992).  The algae are used to remove nitrogen and phosphorus, while 

providing oxygen to bacteria (Rai and Gaur, 2001). Algae can also remove heavy metals 

such as cadmium zinc, nickel, and lead (Mehta and Gaur, 2005). This process is 

considered environmentally sound, recycles nutrients more efficiently, does not lead to 

and secondary pollution, produces biomass that can be harvested (unless the algae 

removes heavy metals), and produces oxygen (de la Noue et al., 1992).  

Another large-scale production of algae is food production. It can be used for human 

consumption or animal consumption.  Algae can contain high amounts of protein β-

carotin, and omega-3 (Varfolomeev and Wasserman, 2010).  Algae improved immune 

reaction and reproduction of animals, since they are a good source of vitamins, minerals 

and fatty acids (Varfolomeev and Wasserman, 2010). It can also help with stomach ulcers 

and wounds. Algae show great potential for diabetes, cancer and AIDS treatment (Holdt 

and Kraan, 2010).  

1.5 RESEARCH OBJECTIVES 

Kentucky derives more than 90% of its electricity from traditional coal-fired power 

plants.  Due to this high dependence on coal, the Commonwealth has a large economic 

exposure should federal regulations seek to limit carbon dioxide emissions into the 
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atmosphere. The commonwealth is actively pursuing technologies to reduce carbon 

dioxide emissions from energy production.  The overarching project objective is to 

determine the feasibility of using algae to mitigate carbon dioxide emissions effectively 

and efficiently. The objectives for this specific project focus on the role of temperature in 

the overall process. The project objectives are to: 

• Determine how temperature (25, 30, and 35oC) affects the growth of Scenedesmus 

and Chlorella. Along with testing the temperature, two different media formulas (M8 and 

urea) were tested to determine which one enhances the growth rate. Each experiment was 

done over 5 days, where sampling was taken every 24 hours (n=3).  At each sampling, 

dry weight and pH were measured and the resulting growth rates were calculated for 

statistical comparison. 
 

• Develop a model to relate the temperature of the greenhouse (or outside of a 

greenhouse) and to incorporate into the model the temperature of the PBR system with 

the addition of flue gas to the temperature of the algae photobioreactors. This model 

could then be used to determine a temperature control strategy involving either injecting 

the pre-conditioned flue gas directly into the algae culture system or using the heat from 

flue gas to heat up the greenhouse.  
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CHAPTER 2 : MATERIALS AND METHODS 

2.1 ALGAE CULTURE AND MEDIA PREPARATION 

The two algae strains selected were Chlorella vulgaris and Scenedesmus spp.  Chlorella 

vulgaris was purchased from Carolina Biological Supply Company, Burlington, NC.  

Scenedesmus spp. was purchased from UTEX The Culture Collection of Algae (#72, 

Austin, TX).  The pre-cultures were grown at 3% CO2, room temperature and with a 16 

hour light/8 hour dark cycle (Sylvania cool white, model no.  FO32/735/ECO). Each of 

the algae starter cultures was grown on different media, Chlorella vulgaris was grown on 

M8 media (Table 2.1) and Scenedesmus was grown on urea media (Table 2.1) at room 

temperature, about 25°C.  

The flask cultures were inoculated with a concentration of about 0.01 g/L.  Three sets of 

flasks were grown at a cool (ranging from 15 to 32.5°C), medium (ranging from 20 to 

35°C), or hot (ranging from 22.5 to 37.5°C) temperatures. The light source was four 

warm fluorescent bulbs (32W Philips) and two cool fluorescent bulbs (30 Sylvania), 

which were on a 16 hour light/ 8 hour night cycle.  The cultures were supplied with an air 

mixture of 98% house air and 2% carbon dioxide.  

Table 2.1.  Growth medium composition. 
  Concentration (g/L) 
Compound M8 Urea 
Urea  0.55 
KNO3 0.75  
KH2PO4 0.185 0.1185 
NaHPO4 0.065  
CaCl2.2H2O 0.00325 0.055 
FeSO4.7H2O 0.0325  
MgSO4.7H2O 0.1 0.109 
Na.EDTA.Fe 0.01 0.02 

 

2.2 EXPERIMENTAL SET UP 

In order to test three different temperatures, a thermogradient table was used. The table 

was constructed out of a 27 in x 27 in x 0.5 in (68.58 cm x 68.58 cm x 1.27 cm) 

aluminum sheet with a series of aluminum tubing welded underneath.  Holes were drilled 
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on all sides to connect the aluminum tubing to plastic hose barbs.  The temperature was 

controlled with two water baths (Model RTE 10, Neslab Instruments, Newington, NH or 

Model RTE 211, Neslab Instruments, Newington, NH), connected to the table via vinyl 

tubing (ID = 0.38, 0.96 cm).  

Initially, the thermogradient table tolerance was tested. The water baths controlled the 

temperature of the water in the reservoir, but once it left the water bath the temperature 

would change before entering the thermogradient table. Tests were done to determine the 

relationship between the temperature settings on the water baths and the resulting 

temperatures in flasks placed on the thermogradient table (Figure 2.1). 

 
Figure 2.1. Flask placement on the thermogradient table. 

With a cold water bath setting of 20°C and a warm water bath temperature of 55°C, the 

resulting flask temperatures are shown in Figure 2.2.  Various cold and warm bath 

temperatures were tested to determine the correct settings to achieve the desired 

temperature levels for subsequent experiments. 
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Figure 2.2.Temperature versus time for nine flasks placed on the thermogradient table 
with a cold water bath temperature of 20°C and a warm water bath temperature of 55°C. 

In order to ensure the temperature was as constant as possible and not substantially 

affected by the ambient temperature of the lab, a chamber made up of 0.25 in (0.64 cm) 

thick polycarbonate enclosed the thermogradient table. The chamber also supported the 

gas manifold with one input on one side and nine outputs on the opposite side. The input 

was the gas mixture and the nine outputs were connected to tubing that supplied air to 

nine 500 mL Erlenmeyer flask.  A schematic diagram and a picture of the experimental 

set up are shown in Figure 2.3 and Figure 2.4.  
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Figure 2.3. Schematic of the experimental set up, including the thermogradient table, 
chamber, manifold, and nine 500 mL flasks. 

 
Figure 2.4. Photo of the experimental set up. 

Thermocouples 

TL 
supply 

TL return 

Controlled Environment Chamber 

Light Source (16 hour day/8 hour night) 

5% 
CO2 

 

Thermogradient Table 

~ 300 mL Samples 
500 mL Flasks 

Gradient Temperature 

TH 
supply 

TH  return 

Gas manifold 



13 
 

The gas mixture flow rate to the manifold was 5.3 L/min, controlled with a rotameter 

(Riteflow, Sciencewares, Pequannock, NJ) to make sure each culture got the proper 

amount of mixing and gas of 97% of house air and 3% of carbon dioxide. The carbon 

dioxide level of 3% was selected based on previous experiments, which showed that with 

the 500 mL flasks CO2 concentration in the liquid phase was saturated at 3%. A type K 

thermocouple, connected to a data acquisition (Fluke hydraseries II, Everett, WA), was 

also placed in each flask; temperature measurements were recorded every 15 min 

throughout the experiment. 

Once the pre-cultures reached exponential phase growth, a 5 to 15 mL aliquot was taken 

and placed in a 500 mL Erlenmeyer flask, containing 300 mL of urea or M-8 medium 

(Table 2.1).  Once the samples were prepared, the flasks were randomly placed in the 

experimental set-up chamber for five days.   

2.3 ANALYTICAL METHODS 

During the 5 day culture experiment, a ten milliliter sample was taken at hour 0, 24, 48, 

72, and 96. At each sampling, pH (Figure 2.5) and dry weight were measured (NREL, 

2008). The pH was measured with a Model AR15 pH meter (Fisher Scientific, Pittsburgh, 

PA), shown in Figure 2.5. The dry weight was found by placing the sample in a dry 

(105oC for 24 hours) tared crucible with a 1.5µm pore size, 24 mm diameter glass 

microfiber filter (Whatman, UK), rinsed with distilled water, and dried at 105°C for 24 

hours. The change in the weight of the crucibles with the addition of the rinsed algae after 

drying off all of the water was considered the dry weight.  An example of the samples in 

crucibles can be seen in Figure 2.6   
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Figure 2.5. Photo of the pH measurements. 

 
Figure 2.6. Photo of the crucibles containing algae samples and filters after drying. 

Before experimentation, the light intensity was measured with a light sensor 

(Spectroradiometer, Apogee, Logan, UT).  The light was measured above the chamber 
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and inside the chamber to see how much light the algae will receive, shown in Figure 2.7. 

From this graph it appears that the layer of plexiglass between the light source and the 

algae culture flasks is absorbing some of the light intensity, but is not shifting the 

wavelengths of the light.   

 
Figure 2.7. The light intensities for the experiment on the thermogradient table, where the 
lighter colors are inside the chamber and the darker colors are on top of the chamber  

2.4 GROWTH RATE 

The dry weights were used to calculate the growth rate of algae. The specific growth rate, 

µ, is defined as (Shuler and Kargi, 2002):   

 
𝜇 =

1
𝑥
𝑑𝑥
𝑑𝑡

 
(2.1) 

where x is the concentration of algae (g/L) and t is the culture time. Hence, from 

concentration over time data, the specific growth rate can be determined by:  
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µ =

ln � 𝑥𝑥0
�

t
 

(2.2) 

Additional step by step procedures for preparing media, inoculating the samples, running 

the temperature experiments, and finding the dry weight, can be found in Appendix B. 
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CHAPTER 3 : TEMPERATURE EXPERIMENTS 

3.1 VARYING STRAINS AND MEDIA RESULTS 

Typical growth curves for Chlorella and Scenedesmu,s with the two different media 

types, grown at room temperature (25°C) are shown in Figure 3.1. The Chlorella vulgaris 

with the M-8 media showed the highest overall growth rate, but did not perform as well 

in the urea media. Scenedesmus appeared to thrive in the urea initially, but thrive in M-8 

after 4 days of culture.  

 
Figure 3.1. Algae dry weight for Scenedesmus and Chlorella vulgaris with urea and M-8 
media for a four day cultivation time at 25°C. 

Initially, both Chlorella and Scenedesmus were tested at 25, 30, and 35°C using both M-8 

and urea growth media. The growth rates were calculated to compare the growth of the 

two species in the two mediums, using equation (2.2). The resulting growth rates are 

shown in Figure 3.2 and with standard errors provided in Table 3.1.   
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Figure 3.2. The growth rate of Scenedesmus and Chlorella in M-8 and Urea grown at a 
variety of temperatures. 

Table 3.1. Gradient experiment growth rates (µ) and standard error (Stan Err) with n=3 
for both Scenedesmus (Sc) and Chlorella vulgaris (Ch).  

  Sc Urea Sc M8 Ch Urea Ch M8 
T(°C)  µ (1/hr) Stan Err µ (1/hr) Stan Err µ (1/hr) Stan Err µ (1/hr) Stan Err 

25 0.0169 0.01683 0.0211 0.02927 0.0214 0.01213 0.0109 0.0157 
30 0.0191 0.0206 0.0235 0.02913 0.0292 0.01113 0.017 0.0161 
35 0.0194 0.02017 0.0147 0.0235 0.0275 0.01207 0.0137 0.02539 

 

As Sorokin and Krauss (1962) predicted, that algae growth is slow at colder 

temperatures, reaches an optimum growth temperature and grows slower or not at all at 

hotter temperatures.  Chlorella vulgaris had the best growth rates; however, as the 

literature notes, it will not grow very well over temperatures of 30°C. Converti et al. 

(2009) said temperatures over 30°C affect the growth and Bajguz (2009) said above 30°C 

was considered a heat stress.  On the other hand, Scenedesmus has more consistent 

growth with favorable temperatures ranging from 20 to 40°C (Sanchez et al., 2008) and 

30°C tends to be the optimum (Christov et al., 2001).   
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The statistical analysis of these results showed that the interactions between strain, media, 

and temperature were not significantly different (p-value > 0.05). When looking at just 

the main effects, (Table 3.2), strain and temperature were not significantly different (p-

value > 0.05) and media was significantly different (p-value < 0.05).  

Table 3.2. ANOVA table of the main effects of Chlorella and Scenedesmus. 
Source SS. d.f. MS. F P-value 

Strain 0.00069 1 0.00069 0.91 0.3408 
Media 0.00309 1 0.00309 4.09 0.0436 
Temperature 0.00335 2 0.00168 2.22 0.1095 
Error 0.40375 535 0.00075   
Total 0.41088 539    

 

Along with overall statistical analysis, individual ANOVA tests were performed. 

Chlorella (Table 3.3) showed no significant difference (p-value > 0.05) between the 

interaction between media and temperature. Scenedesmus (Table 3.4) statistical analysis 

proved there was a significant different (p-value < 0.05) between media and temperature.  

Table 3.3. ANOVA for Chlorella 
Source SS d.f. MS F P-value 

Media 0.03582 1 0.03582 37.33 0 
Temperature 0.00446 2 0.00223 2.32 0.0999 
M*T1 0.00229 2 0.00115 1.2 0.3042 
Error 0.25332 264 0.00096   
Total 0.2959 269       

1 Interaction between media and temperature 
 

Table 3.4. ANOVA for Scenedesmus 
Source SS d.f. MS F P-value 

Media 0.01225 1 0.01225 32.61 0 
Temperature 0.00023 2 0.00011 0.3 0.7382 
M*T1 0.00264 2 0.00132 3.52 0.0311 
Error 0.09917 264 0.00038   
Total 0.11429 269       

1 Interaction between media and temperature 
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Along with ANOVA test, pairwise t-tests were used to analyze the data for Chlorella and 

Scenedesmus. The test showed that there was no significant difference (p-value > 0.05) 

between any of the growth rates at different temperatures. 

Table 3.5. The p-value of difference in temperature for Scenedesmus and Chlorella. 
(°C)/ (°C) 25/30 25/35 30/35 

Scenedesmus, urea 0.441 0.339 0.906 
Scenedesmus, M-8 0.984 0.482 0.508 
Chlorella, urea 0.731 0.981 0.652 
Chlorella, M-8 0.907 0.273 0.288 

 

3.2 SCENEDESMUS AND UREA MEDIA RESULTS 

Based on its robustness and growth potential, Scenedesmus was selected for additional 

temperature testing. Urea growth media was chosen because it was more economical. The 

results of further temperature studies with urea are shown in Figure 3.3 and with standard 

errors in Table 3.6. The maximum growth rate was found at a temperature less than 30°C, 

but the same overall trend to peak in the middle was seen. 

 
Figure 3.3. Growth rate of Scenedesmus at varying temperatures, shown with standard 
error bars.  
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Table 3.6. Scenedesmus growth rates for various temperature standard errors. 
Temp (°C) Growth Rate (1/hr) Average Standard Error n 

15 0.0064 0.0064 0.0067 0.0065 0.0001 3 
20 0.009 0.007 0.004 0.0067 0.0015 3 
22.5 0.0117 0.0277 0.0272 0.0222 0.0053 3 
25 0.0247 0.0166 0.0257 

0.0157 0.0024 9 0.0084 0.0093 0.0062 
0.0113 0.018 0.0212 

27.5 0.0385 0.0346 0.029 
0.0284 0.0033 6 0.0178 0.0304 0.02 

30 0.0152 0.0169 0.0138 
0.0180 0.0019 6 0.014 0.024 0.0238 

32.5 0.0126 0.0153 0.0221 
0.0126 0.0022 6 0.0093 0.008 0.008 

35 0.0109 0.0098 0.0072 
0.0147 0.0025 6 0.0221 0.0193 0.0191 

37.5 0.007 0.0092 0.0127 0.0096 0.0017 3 
 

For the Scenedesmus grown on urea experiment, a pairwise t-test (Table 3.7) was carried 

out to compare growth rates at each temperature.  The comparison found the optimum 

temperature (27°C) was significantly different (p-value < 0.05) from all other 

temperatures except for 22.5°C.  This contradicts what other studies have found.  

Westerhoff et al. (2010) found growth rates do not vary with temperatures ranging from 

27-39°C. 

Table 3.7. Pairwise comparison for Scenedesmus grown on urea.  Bold p-values indicate 
the two treatments are significantly different with α = 0.05.  
(°C)/(°C)  15 20 22.5 25 27.5 30 32.5 35 37.5 
15 - 0.914 0.040 0.059 0.003 0.005 0.108 0.061 0.133 
20 - - 0.046 0.066 0.003 0.007 0.129 0.072 0.250 
22.5 - - - 0.233 0.332 0.372 0.082 0.182 0.085 
25 - - - - 0.007 0.519 0.382 0.791 0.198 
27.5 - - - - - 0.021 0.003 0.008 0.007 
30 - - - - - - 0.098 0.335 0.029 
32.5 - - - - - - - 0.532 0.427 
35 - - - - - - - - 0.226 
37.5 - - - - - - - - - 
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Along with concentration, pH was also measured (Figure 3.4). All the temperatures had 

similar results, the pH would drop within the first day then gradually rise each day after 

that.  The temperature will affect the solubility of CO2 in the water phase, which may also 

contribute to the change in pH and subsequently the growth of the algae. 

 
Figure 3.4. pH measurements for Scenedesmus grown in urea at various temperatures 
over a four day cultivation time. 

These experiments determined the expected growth rate as a function of temperature. 

This relationship is used in the model development, discussed in the next chapter, to 

estimate the algae growth rate at different temperatures in or outside of the greenhouse 

with varying temperatures of the flue gas. 
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CHAPTER 4 : THE MODEL 

4.1  INTRODUCTION 

Temperature is a key growth parameter especially for growing algae at its optimum. 

Optimum growth means the growth rate is at its maximum as well as having maximum 

conversion of nutrients, gas, and sunlight. In an ideal environment, temperature would be 

kept constant and the algae would grow at its optimum. However, in natural 

environments, this is not possible. In this study, a model was developed to calculate how 

the algae will react at different temperatures if grown inside a greenhouse.  

Keeping the greenhouse at a constant temperature can be a challenge, due to typical 

temperatures swings during the summer months in Kentucky. During the summer 

months, Lexington, KY has humidity of about 75% and can reach the upper 90’s (30°C). 

The Center for Applied Energy Research (CAER) greenhouse is equipped with an 

evaporative cooling pad which is not effective when the humidity is high. 

There is also a concern about the heat from the flue gas and how it will be distributed. 

The flue gas could be added directly into the photobioreactor to heat the algae culture on 

cold days or excess heat could be recovered from the flue gas when the algae culture is 

already at the correct temperature.  

4.2 THE FLUE GAS ENERGY BALANCE 

4.2.1 Introduction 

The flue gas will be pumped directly into the bioreactor. If the temperature from flue gas 

is too hot for the algae, it might have to go through a heat exchanger. Flue gas does not 

consist of just temperature; it is made up of other components such as ash, carbon 

dioxide, nitrogen oxides, and sulfur oxides, which tolerate 200 ppm of NOx and 50 ppm 

of SOx (Lee et al., 2000) and elevated carbon dioxide levels.  

For each of the models, a flue gas energy balance was added in order to show how the 

flue gas will affect the temperature of the bioreactor. The energy balance was developed 

on the basis of a simple mixture problem (Figure 4.1).  
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Figure 4.1. Diagram of the flue gas energy balance. 

The resulting algae growth rate, as a function of temperature, with or without the addition 

of flue gas, was determined based on the growth rate versus temperature relationship 

found in the previous chapter (Figure 4.2).  

 

Figure 4.2. Growth rate used in the Greenhouse Model to determine the algae growth rate 
at various temperatures. 

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

<17.5 20.0 20.6 23.8 27.5 30.0 32.5 35.0 37.5 >38.75 

Sp
ec

ifi
c 

G
ro

w
th

 R
at

e 
(1

/h
r)

 

Culture Temperature (°C) 

Flue gas: 
14% CO2 
86% N2 

Eg 

Algal and Water Mixture 
EL 

Water and Gas Mixture 
Eg+L 



25 
 

4.2.2 Assumptions 

The following assumptions were made for model development purposes: 

• The flue gas will be made up of 14% carbon dioxide and 86% nitrogen. 

• The algae and water mixture entering and exiting the boundary will be mostly 

water; therefore, fluid properties will be based on water’s properties (i.e., density 

and specific heat). 

• The flue gas temperature is assumed to be the same throughout the day.  

• All densities and specific heats are specified at 25°C. 

4.2.3 The energy balance 

The equation used to calculate the flue gas energy balance is: 

 𝐸𝑖𝑛 = 𝐸𝑜𝑢𝑡 (4.1) 

 

 
𝑇𝑙,𝑜𝑢𝑡 =

��𝑚𝑐𝑝�𝐶𝑂2 + �𝑚𝑐𝑝�𝑁2� 𝑇𝑔,𝑖𝑛 + 𝑚𝑐𝑝𝑇𝑙,𝑖𝑛
�𝑚𝑐𝑝�𝐻2𝑜

 
(4.2) 

 

Where, Tl,out is the water mixture temperature exiting the system, m is the mass of the 

compound, cp is the specific heat, Tg,in is the flue gas temperature entering the system, 

and Tl,in is the water mixture entering the system.  In the base case, the temperature of the 

flue gas is assumed to be at 316°C (600°F) and the flue gas flow rate is assumed to be 

10% of the liquid flow rate. The specific heat capacities for nitrogen, carbon dioxide, and 

water were 1.041, 0.851, and 4.18 J/g°C , respectively (Incropera and DeWitt, 1996). 

4.3 THE GREENHOUSE MODEL 

4.3.1 Introduction 

The Greenhouse Model will be based on a greenhouse used at Center of Applied Energy 

Research (CAER) at the University of Kentucky, Lexington, KY. The area of the CAER 

greenhouse is 2700 sq ft (251m2).  The semicircle roof and walls are made up of GE 

Lexan 8mm Thermoclear Plus (Pittsfield, MA) and the floor is concrete. The building is 

equipped with a CELdek 7090-15 evaporative cooling pad (Munters, Mason, MI) and 
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three DCA42 Windmaster fans (ACME, Muskogee, OK) for the summer months and 

radiant floor heating with an additional propane heater for the winter months. In addition 

to the fans and cooling pad, misters have been attached to the bioreactor to help cool the 

algae. Figure 4.3 and Figure 4.4 show the CAER greenhouse.   

 
Figure 4.3. Schematic of the CAER greenhouse, top and side views. 

 

 
Figure 4.4. Photo of the CAER greenhouse.  

4.3.2 Assumptions 

For model development purposes, the following assumptions were made: 

• It is assumed the system is at steady state. 
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• The temperature of the bioreactor is the same as the temperature of the 

greenhouse.   

• The solar radiation is an average of that hour. 

4.3.3 The Greenhouse Model 

The Greenhouse Model was formulated based on other studies with similar goals, 

specifically, Iga et al. (2008) and Perdigones et al. (2008). Iga et al. (2008) looked at 

effects of air density variations on a greenhouse model, caused by the humidity changes 

on the air temperature in a greenhouse growing tomatoes in Marin, Mexico. The model 

also included a fog system, fans, shade cloths, heat transfer through the greenhouse and 

the soil, heat loss due to evaporation from transpiration, and heat loss due to condensation 

of water vapor.  Perdigones et al. (2008) looked at cooling strategies for a greenhouse 

growing African daisies in the summer months in Madrid, Spain. The cooling strategies 

they looked at were a fogging system and a shade screen. 

The same greenhouse equation was used in Iga et al. (2008)  and Perdigones et al. (2008), 

but the assumptions and inputs for CAER greenhouse are slightly different. While the Iga 

et al. (2008)  and Perdigones et al. (2008) model looked at fog systems, shade cloths, and 

heat influences from the crop, the CAER greenhouse model only has to consider fans, 

evaporative cooling pad and/or the misters and heat transfer through the greenhouse. The 

resulting equation for the CAER greenhouse is; 

Where Ti is the greenhouse temperature, τ is the transmittance of the greenhouse, b is the 

percentage of solar radiation converted into sensible heat, s is the solar radiation, U is the 

overall heat transfer coefficient, To is the temperature outside of the greenhouse Cg, is the 

greenhouse heat capacity and t is the time. The outdoor temperature and the temperature 

inside the greenhouse were collected by CAER.  The temperature data were 

automatically acquired using an in-house developed data acquisition system using 

 
𝑇𝑖(𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑖𝑜𝑑) = 𝑇𝑖 + �

𝜏𝑏𝑠 − 𝑈(𝑇𝑖 − 𝑇𝑜)
𝐶𝑔

� × ∆t 
(4.3) 
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LabView hardware and software purchased from National Instruments.  The greenhouse 

heat capacity, Cg, can be calculated by the following equation (Iga et al., 2008): 

The constants used in the model for this equation can be found in Table 4.1.  Where ρair is 

the density of air, cp heat capacity of air, Vg is the volume of the greenhouse, and Ag is 

the area of the greenhouse roof. For these equations, the constants are shown in Table 

4.1. 

Table 4.1. Constants for the greenhouse model.  
Air and Greenhouse Characteristics 
ρ 1.29 kg/m3 dry air density at 0°C# 

Cp 1010 J/kgoC specific heat of air# 

U 3.29 W/m2 °C overall heat transfer coefficient* 

Vg 1108.78 m3 volume of the greenhouse 
Ag 263.82 m2 area of the greenhouse 
# (Iga et al., 2008)  
*www.structuredproducts.ge.com  

4.3.4 Results 

The model is formulated in Microsoft Excel ( Figure 4.5). The user must supply the 

hourly outside temperatures and the hourly solar radiation from 6 am to 9 pm, the 

temperature and the flow rate percentage of the flue gas.  The solar radiation can change 

from day to day, based on whether it is sunny, cloudy, or rainy.  Solar radiation is 

represented in the model using a constant, which is based on historical data.  The solar 

radiation, was taken as an hourly average, was determined using a University of 

Kentucky resource (The KY Mesonet Hourly Database, 2011) which measured radiation 

every hour.  To minimize error due to cloud cover, the information was then averaged out 

every hour for every day for each month.  

 
𝐶𝑔 = 𝜌𝑎𝑖𝑟𝑐𝑝

𝑉𝑔
𝐴𝑔

 (4.4) 
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Figure 4.5. Excel screenshot of the Greenhouse Model. 

The product of the transmittance and the percentage of solar radiation converted to 

sensible heat, τb, must be found through a calibration step.  The output of the model 

includes the temperature with the fan or the misters, with and without the addition of flue 

gas and the resulting algae growth rate for all four cases.  Data for the fans calibration 

was taken on June 24, 2011 and for the misters on June 30, 2011.  The τb for the fans was 

0.021 and was 0.027 for the misters with a RMSE of 1.41 and 1.47, respectively.  
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Figure 4.6. Calibration data for determining τb for fans and misters. 

Using the calibrated values for τb and validation data for the fans from June 23, 2011 and 

for the misters on June 29, 2011, Figure 4.7 shows the observed and predicted values 

used for validation of τb.  The RMSE for the fans was 1.65 and for the misters was 1.60. 

While the validation of the model would be improved with more data from various 

seasons (currently unavailable), these results show a reasonable agreement between the 

observed and predicted models.  When plotting observed versus predicted values, the 

confidence interval (α = 0.05) for the slopes are 0.88 < β < 1.26 for fans and 0.88 < β < 

1.24 for misters.  Since unity is a part of both confidence intervals, the agreement 

between the observed and predicted values can be considered not significantly different. 
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Figure 4.7. Validation data for fans and misters. 

Sensitivity to the Solar Radiation Constant 

The τb values for the fans and the misters were determined in a calibration step assuming 

the solar radiation to be an average over the entire month of June 2011.  In an effort to 

identify the sensitivity of the model on the solar radiation value, predicted temperatures 

based on an average over a month were compared to predicted temperatures based on the 

same day (using the calibration data).  The results are shown in Figure 4.8. For the fans, 

the RMSE when using the same day solar radiation was 1.64, while it was 1.41 when 

using the average solar radiation. For the misters the RMSE when using the same day 

radiation was 1.7, while it was 1.47 when using the average solar radiation.  These results 

suggest that we can use an average solar radiation in the model.  However, the length of 

time over which the solar radiation is averaged should be based on the data over the 

entire year. It may be taken over a 30 day period or over shorter periods of time. This will 

be determined when addition temperature data are available. 
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Figure 4.8. Observed and predicted temperatures for fans and misters using solar 
radiation averaged over June 2011 and using the solar radiation from the same day the 
observed values were taken.  

Influence of Flue Gas 

Based on the validation data, the temperature of the PBR with the introduction of the flue 

gas was determined for the fans’ case. The base case was based on the values expected, 

based on original design plans for the algae based system for CO2 mitigation at a 

Kentucky coal-fired plant.  The temperature of the flue gas was assumed to be 316°C 

(600°F), which would be the temperature after moderate cooling measures.  The flow rate 

of the gas inlet was assumed to be 10%.  These results are shown in Figure 4.9, where the 

base case is too hot for nine hours of the day.  By varying the inlet temperature of the flue 

gas and flue gas flow rate, the temperature of the PBRs can be kept under the upper limit 

of 38.75°C.  For example, by using either 10% flue gas at 149°C or 5% flue gas at 316°C, 

the temperature of the PBRs is below the upper limit. 
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Figure 4.9. Predicted temperatures for the PBR system when flue gas is also introduced, 
based on the validation data. 

For the Greenhouse Model, the solar radiation from the same month of interest appeared 

to result in adequate model predictions. The calibrated values for τb resulted in an 

agreement between the observed and predicted values for a separate set of validation 

data.  Further tuning of these model constants could be done to further improve the model 

predictions, when data are available for months other than June.  
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CHAPTER 5 : CONCLUSIONS 

As this study mentioned, carbon dioxide emission might be the cause of global warming, 

and one way to reduce the emission is by algae. Like all living things, algae needs the 

correct environment in order for it to perform at its best, and, for this case, capturing 

carbon dioxide. From this study, the optimum temperature for the algae growth was 

found and a heat transfer model was developed to see how the temperature of the 

greenhouse would affect algae growth. 

In this study, the growth of algae was measured at different temperatures, showing that as 

temperature rises the algal growth will increase, reach an optimum, and then decrease.  

This type of growth pattern was observed for Chlorella and Scenedesmus grown on M-8 

and urea growth media. The temperatures tested were 25, 30, and 35°C, where 30°C was 

considered as an optimum for both strains.  The growth rate was 0.0191 and 0.0235 1/hr 

for Scenedesmus grown on urea and M-8 and 0.0292 and 0.017 1/hr for Chlorella grown 

on urea and M-8. Chlorella had the best growth rate of 0.0292 1/hr while grown on urea 

growth media; however, other studies (Converti et al. (2009) and Bajguz (2009)) have 

said it will not grow very well with temperatures above 30°C. Scenedesmus' growth was 

more consistent and favors temperatures ranging from 20-40°C. This information and the 

consistent growth rate led to further testing of Scenedesmus grown on urea growth media. 

The further testing proved Scenedesmus' optimum temperature is 27°C with a growth rate 

of 0.0284 1/hr.  The test also proved the growth rate was statistically different from the 

other temperatures.  

A heat transfer model was developed for the flue gas introduction, algae bioreactor, and 

the greenhouse. The model will predict the inside temperature of the greenhouse using 

the outdoor temperatures and solar radiation. In addition, the temperature of the PBRs 

with the introduction of flue gas can be predicted, such that the expected algae growth 

rate can be determined.  

 



35 
 

CHAPTER 6 : FUTURE WORK 

To the best of our knowledge, the heat transfer model is the first of its kind. There are 

similar models, but none involve algae photobioreactors in a greenhouse with flue gas 

being pumped directly into the photobioreactors.  To fully validate the model, additional 

data was required in order to determine the appropriate constants for the varying solar 

radiation values due to clouds and weather changes during the day.  There is also a need 

for experimental validation of how the flue gas temperature will affect the temperature in 

the bioreactor.  

Other items to consider for the heat transfer models are 1) the effect of evaporation, 2) 

input of mechanical heat from the pump, 3) the use of a more realistic flue gas 

composition (e.g., including water), and 4) the inclusion of the changes in algae growth 

rate as a function of both temperature and light. 

Once the model has been adequately validated, it can be used to test various strategies for 

controlling the temperature using excess heat from the flue gas.  With a better 

understanding of how the climate will affect the growth of algae being used for CO2 

mitigation, the system can be optimized. 
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APPENDICES 

Appendix A: MODEL DEVELOPMENT DATA 

Table A.1. Solar radiation data used in the Greenhouse Model. 

 
Radiation 

Hour 6/23/2011 6/24/2011 6/29/2011 6/30/2011 June 2011 
7 30.10 16.90 0.00 51.30 32.23 
8 129.80 120.30 292.60 240.90 158.60 
9 181.70 174.00 439.70 433.10 275.93 
10 617.00 286.30 621.20 612.60 374.88 
11 265.70 903.40 781.20 772.70 505.20 
12 315.70 310.20 893.40 882.00 623.59 
13 426.70 531.90 957.40 943.60 690.58 
14 198.20 511.50 961.90 947.10 698.05 
15 963.90 504.40 903.20 900.90 661.46 
16 173.10 977.40 792.70 795.50 621.03 
17 639.80 299.10 652.70 648.30 463.28 
18 499.60 457.50 485.60 472.60 365.58 
19 255.20 116.60 304.00 288.90 209.10 
20 116.90 55.40 126.00 107.30 77.86 
21 5.50 4.50 6.60 8.30 3.30 
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Table A.2. Temperature values for outside of the CAER greenhouse. 

 
Outside 

Hour 6/23/2011 6/24/2011 6/29/2011 6/30/2011 
6 20.04 19.84 16.39 16.82 
7 24.74 21.14 23.95 24.39 
8 28.95 22.92 28.98 30.67 
9 33.57 25.76 31.61 34.22 
10 33.05 27.49 34.04 35.98 
11 30.76 29.41 35.00 36.68 
12 30.08 30.45 34.68 36.39 
13 31.48 27.95 31.43 33.04 
14 30.29 27.44 30.98 32.32 
15 30.68 27.38 30.17 31.91 
16 29.84 25.37 29.66 31.68 
17 28.49 24.36 28.47 30.19 
18 27.03 23.70 27.01 28.72 
19 25.13 22.08 25.29 26.95 
20 22.72 20.52 21.93 23.59 
21 21.93 18.29 19.88 21.54 

 

 

  



38 
 

Table A.3. Temperature values for inside of the CAER greenhouse. 

 
Inside 

 
Fans Misters 

Hour 6/23/2011 6/24/2011 6/29/2011 6/30/2011 
6 22.98 22.31 21.83 21.69 
7 26.58 23.44 23.62 23.83 
8 29.72 25.23 27.27 28.49 
9 33.22 27.54 29.86 32.12 
10 34.05 29.12 33.09 36.27 
11 32.58 31.55 35.44 38.70 
12 34.80 34.65 36.97 40.43 
13 37.49 32.61 37.22 39.82 
14 36.09 31.23 38.03 39.66 
15 36.02 30.67 37.66 39.18 
16 34.62 29.16 35.99 37.09 
17 34.23 29.05 34.25 35.14 
18 31.85 27.67 31.24 32.25 
19 28.85 24.08 28.27 29.37 
20 24.84 22.87 24.11 25.82 
21 24.00 22.21 22.62 24.57 
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Appendix B: TEMPERATURE EXPERIMENT PROTOCOL 

Preparing Media 

1. Prepare media 24 hours before experimentation. 
2. 2, 2L jar with tops are autoclaved. 
3. Measure out media (Table 2.1).   
4. Mix 2L of tap water, media and 2 pellets of sodium bicarbonate for about 30 min.  
5. Filter media through a 0.2 µm nylon membrane filter, 47 mm diameter (Nalgene, 

Rochester, NY) and pour into filtered media into an autoclaved jar. 

Algae Inoculation 

1. For this experiment, place aluminum foil on nine flask openings. 
2. Autoclave the nine flasks on “labwares” setting.  
3. After flasks are cooled, turn on laminar flow hood light and air. 
4. Spray methanol all over the inside of the laminar flow hood and gloves. 
5. Place flask, media and algae inoculums into the laminar flow hood. 
6. Turn on gas and light Bunsen burner.  
7. Remove aluminum foil and brush the flask opening over the flame.  
8. Pour 400 mL of media into each flask. 
9. Brush flask opening over the flame and replace aluminum foil.  
10. After all flasks contain media, repeat step 7. 
11. Add a sample of 5 to 15mL of pre-culture to each flask. Note: the sample will depend 

on the growth of the pre-culture. 
12. Brush flask opening and place a foam cork containing an ID tube into the flasks 

opening. 
13. Randomly place the flasks in the chamber. 
14. Once in the chamber connect flasks to the air supply by the ID tube and place a 

thermocouple inside the flask. Make sure the thermocouple is clean by wiping each 
with methanol.  

Sampling 

1. For this experiment, collect 27 test tubs, 9 pipettes, and 1 pipettor. 
2. Shake each of the flasks to make sure the algae are evenly distributed.  
3. With one pipette, take three 10 mL samples from flask. 
4. Pour each 10 mL sample into a test tube. 
5. Repeat for the rest of the flasks making sure to use a new pipette for each flask. 
6. After sampling, measure dry weight and pH. 
7. pH is measured by a AR15 pH meter (Fisher Scientific, Singapore). 
8. Dry weight is then measured using the following procedure.  

Measuring Dry Weight 

Prepare crucible with filters 24 hours prior to any sampling. 
1. Set a crucible on top of the vacuum flask. 
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2. Place a 1.5µm pore size, 24 mm diameter glass microfibre filter (Whatman, UK) at 
the bottom of the crucible. 

3. Connect the vacuum flask to the vacuum. 
4. Turn on vacuum. 
5. Pour about 5 mL of distilled water onto the filter. 
6. Turn off vacuum and remove crucible from the vacuum flask. 
7. The crucibles are placed in a convection oven for 24 hours at 105oC. 
8. After 24 hours, remove crucible and place into a desiccator for 2 hours to cool. 
9. When crucibles are cool, remove from the desiccator and take initial weight.  
10. Store in a desiccator for at least 24 hours before adding the algae samples to the 

crucibles. 
11. Set the crucible onto the vacuum flask. 
12. Turn on vacuum. 
13. Pour 10mL of sample into the crucible. 
14. In order to make sure all of the sample is measured, pour distilled water into test tub 

and vortex. 
15. Pour distilled water mixture into the crucible. 
16. Turn off vacuum 
17. Remove crucible and put in convection oven for 24 hours at 105oC. 
18. After 24 hours, remove crucible and place into a desiccator for 2 hours to cool. 
19. Once the crucible is cool, weigh. 
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Appendix C: CALIBRATION OF EQUIPMENT 

Thermocouples 

Before the experiments were performed a thermocouple calibration curve was generated. 
To test the thermocouples, they were place in a water bath for ten minutes at one 
temperature.  After ten minutes, the temperatures of the thermometer and the 
thermocouples were recorded.  

Table C.4. Calibration curve of thermocouples. 

Temp. Thermometer 2 3 4 5 6 7 8 9 10 
20 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 
30 30 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 
40 40 40.2 40.1 40.2 40.2 40.2 40.1 40.2 40.2 40.1 
50 49 50.1 50.1 50.1 50 50.1 50 50.1 50.1 50 
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Carbon Dioxide Flow Meter 

A carbon dioxide calibration curve was made to ensure that the right amount of carbon 
dioxide was being delivered to the algal cultures. A known flow rate was attached to the 
flow meter and recorded.  

 

Figure C.1. Carbon dioxide flow meter calibration curve.  
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