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ABSTRACT OF DISSERTATION 

 

 

OPTIMAL USES OF BIOMASS RESOURCES IN DISTRIBUTED 
APPLICATIONS  

 
 

Biomass production is spatially distributed resulting in high transportation costs when 
moving dedicated biomass crops and crop residues. A multifaceted approach was taken to 
address this issue as the low bulk and energy density of biomass limits transportation 
efficiency. Two systems were analyzed for the conversion of biomass into a denser 
feedstock applicable to on-farm use. Pelletization was able to densify the material into a 
solid fuel. Using a pilot scale flat ring pellet mill, the density of the material was able to 
be increased to at least 4.4 times that of uncompressed material. Pellet durability was 
found to be strongly related to the moisture content of the material entering the mill. 
Unlike with ring roller pellet mills, a higher durability was typically seen forbiomass 
materials with a preconditioned moisture content of 20% (w.b.). 
 
From a liquid fuel standpoint, the conversion of lignocellulosic material into biobutanol 
on-farm was the second method investigated. For the pretreatment of biomass, alkaline 
hydrogen peroxide spray was demonstrated to be an effective enhancer of 
saccharification. The viability of on-farm biobutanol preprocessing bunker facilities 
within Kentucky was analyzed using Geographic Information systems (GIS) to 
specifically address transportation related factors. The spatial variability of corn field 
production, size, and location were resolved by utilizing ModelBuilder to combine the 
various forms of data and their attributes. Centralized and Distributed preprocessing with 
Centralized refining (DC) transportation systems were compared. Centralized was 
defined as transport of corn stover directly from the field to a refinery. Distributed-
Centralized was specified as going from the field to the biobutanol bunker with corn 
stover and from the bunker to the refinery with a dewatered crude biobutanol solution. 
For the DC design, the location of the field and refinery were fixed with the biobutanol 
bunker location being variable and dependent upon differing maximum transportation (8-
80 km) cutoffs for biomass transport from the field to biobutanol bunkers. The DC 
designs demonstrated a lower (38 - 59%) total transportation cost with a reduced fuel use 
and CO2 emissions compared to the centralized system. 



 

 

KEYWORDS: biomass transport, pelletization, alkaline hydrogen peroxide spray 

pretreatment, GIS location-allocation, distributed biomass collection 
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  INTRODUCTION 

The utilization of biomass for energy is becoming increasingly important since 

biomass can be used for electricity, heat, and biofuels (primarily liquid transportation 

fuels). Due to concerns related to national security, energy independence, and 

sustainability, the government has mandated in the Energy Independence and Security 

Act that 36 billion gallons of biofuels be produced annually by 2022 (Grabber, Quideau 

et al., 1996). Approximately 10 billion gallons of biofuels are currently being produced as 

corn ethanol, but in order to meet the stated goal the remaining 26 billion gallons will 

need to utilize a variety of feedstocks. Corn stover, wheat straw, miscanthus, and 

switchgrass are example feedstocks that could be produced from farms in the US and 

used as biofuels. These biomass feedstocks could be utilized to produce liquid fuels such 

as butanol or as pellets for heating applications. Nonetheless, a continued push for 

biofuels produced from lignocellulosic materials (agricultural residues, perennial 

herbaceous crops, and woody material) will likely continue due to governmental 

mandates.  

While the focus has begun to shift toward the collection of agricultural residues, 

the production of grains and other commodities will always be a driving factor on farms 

with the production of residues being a secondary goal from the current economic 

perspective as the ratio of the value of the grain to stover is 7.47:1 (Luo, van der Voet et 

al., 2009). Greater than 80% of the agricultural residues are accounted for by corn stover 

and wheat straw, making efficient harvest and storage of these two biomass materials 

essential (U.S. Department of Energy, 2011). Additionally, the use of dedicated biomass 

crops, such as switchgrass and miscanthus which have potential yields of over 5 tons per 

acre, could also have a major impact on the production of cellulosic biofuels. 

Biofuels production is heavily dependent upon the cost associated with harvest, 

transport, and storage (Hess, Wright et al., 2007). The transportation costs of getting 

biomass to a biorefinery becomes significant as transportation costs increase linearly with 

distance but can decrease with increased bulk and/or energy density. The primary 

difficulty of cellulosic biomass is that there is a high volume of a material that manifests 

a low energy and bulk density characteristic and variable moisture content. Densifying or 
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processing the biomass on-farm would minimize the difficulties in transporting and 

handling biomass. 

The standard model for biomass to biofuel transport consists primarily of a 

centralized biorefinery that either accumulates the biomass directly or has satellite 

locations that collect, store, and preprocess the material (You and Wang, 2011). There are 

two options for densifying biomass on-farm: pelletization or conversion to a crude 

biofuel. Pelletization of biomass, which itself requires an energy input, is able to 

mechanically increase the bulk density and amount of energy transported per truck. 

Pellets are also more uniform and flowable than raw biomass. A recently proposed 

improvement on this model is on-farm crude butanol production (Nokes, Lynn et al., 

2013). In this system, preprocessing and concentration would take place on-farm. This 

would allow the material’s energy density to be increased at the beginning of the supply 

chain, and it would allow existing infrastructure to be used to transport the crude butanol 

to the biorefinery, thus increasing transportation efficiency.  

In addition to deciding what crops should be grown, producers will need 

information on the benefits and costs of pelletization versus biofuel production versus 

forage production. Pelleted biomass could have advantages relative to storing forages in 

bales. On-farm biofuel production would require pretreatment to improve the digestibility 

of the biomass. Mechanical, physico-chemical, chemical, and biological types of 

pretreatment exist, and one or a combination of these methods could be used to improve 

the subsequent digestibility for biofuels (Kumar, Barrett et al., 2009, Galbe and Zacchi, 

2012). This pretreated biomass could also be utilized alternatively for livestock 

production (Kerley, Fahey et al., 1986, Atwell, Merchen et al., 1991, Willms, Berger et 

al., 1991). 

One way in which differing production and transport models could be accounted 

for is by utilizing Geographic Information System (GIS) (Graham, English et al., 2000, 

Haddad and Anderson, 2008, You and Wang, 2011, You, Tao et al., 2012). GIS is ideal 

for the representation of biomass accumulation, storage, and transport as it allows for the 

theoretical yield, spatial distribution, and transportation network to be accounted for 

simultaneously. There are economies of scale for biomass processing facilities, yet the 

spatial variability of biomass production limits the benefits (Panichelli and Gnansounou, 
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2008, Jack, 2009, Bowling, Ponce-Ortega et al., 2011). Thus the overall spatial 

distribution and cost would dictate whether the processing facilities’ location is organized 

in a centralized, distributed, or distributed-centralized fashion (You and Wang, 2011). 

The impact of biomass production and transport (bales vs. pellets vs. crude butanol), 

models would have to be analyzed in GIS. Information provided by GIS can be combined 

with Life Cycle Analysis (LCA) and Life Cycle Costing (LCC) to determine which 

production model would limit the overall environmental impact and cost (You, Tao et al., 

2012). From an environmental perspective, each would need to be compared in the 

context of overall production of greenhouse gases (CO2, CH4, NOX, etc.). The economic 

perspective would allow for the comparison of market and potential income and cost 

associated with each system.  

1.1 Project Objectives 

 

The overall goal of the project is to quantify the changes in biomass (corn stover, 

wheat straw, switchgrass, and miscanthus) due to pelleting and alkaline hydrogen 

peroxide pretreatment for conversion to biofuels. On-farm pelleting versus on-farm 

conversion to biofuels will be compared with a GIS model to evaluate the potential 

impacts of distributed biomass processing. The specific objectives and hypotheses are: 

1. Evaluate the energetic value of pelleted biomass (corn stover, wheat straw, 

switchgrass, and miscanthus) from a flat ring die system appropriate for on-farm 

use and determining the Higher Heating Value (HHV), production rate, 

percentage of pellets produced, specific energy, and durability based on treatment 

(moisture preconditioning).  

Hypothesis: Appropriate moisture contents for a ring die system will be different 

than traditional pelleting systems and will govern production rate, pelleting performance 

and durability.  

2. Quantify the effect of alkaline hydrogen peroxide spray pretreatment on 

lignocellulosic material (corn stover, wheat straw, switchgrass, and miscanthus) 

in terms of compositional changes (cellulose, hemicellulose, and lignin) and 
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subsequent enzymatic hydrolysis to sugars. The treatments will include three 

concentrations of NaOH and three concentrations of H2O2.  

Hypothesis: The spray AHP treatment will allow for the increased digestion of 

biomass for potential on-farm butanol production. Increased H2O2 concentration with 

extended pretreatment times will improve enzymatic saccharification. 

3. Develop a model for comparing alternative on-farm processing of biomass into 

liquid fuels (distributed preprocessing with centralized refining) and centralized, 

within a GIS framework. 

Hypothesis: The distributed preprocessing of on-farm processing facilities will 

allow for an increased cost saving and improved environmental impact associated with 

reduced transportation requirements as indicated by the GIS model.  

Justification – Distributed processing of biomass will allow farmers to capture 

additional value in the product and reduce the overall environmental burden of biofuel 

production. Farmers could utilize a number of processing options for biomass that is 

harvested and stored on-farm. These include pelleting, animal feed, or conversion to a 

crude butanol stream. The most appropriate end-use of the biomass will be a function of a 

wide range of variables. However, this investigation will evaluate the potential benefits in 

terms of compositional changes of the biomass due to pretreatment and changes in energy 

density relative to transportation costs using a GIS approach. 

1.2 Organization of Thesis 

Chapter 1 establishes the general rationale and justification of this research and 

identifies the specific objectives that will be addressed within this dissertation. Chapter 2 

explores prior research that is germane to the transformation of raw lignocellulosic 

material into a more usable product from a conversion and transportation standpoint. 

Pelleting performance by varying moisture content for a pilot scale flat ring die will be 

addressed in Chapter 3. Chapter 4 discusses the methodology and findings from the use 

of high solids alkaline hydrogen peroxide spray of pretreatment upon several different 

biomass types. Chapter 5 examines the feasibility of using on-farm biobutanol bunkers 

using a GIS case study to evaluate how the distributed processing would affect the 

system. Chapter 6 provides a general summary and conclusion. Chapter 7 discusses 
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future work. The appendix possesses additional tables and graphs relevant to the 

dissertation but not included within the main body.   
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 LITERATURE REVIEW  

Within the Unites States and other parts of the world, a paradigm shift is taking 

place with respect to energy production, and renewable fuels are gaining increasing 

interest in comparison to fossil fuels. Concerns about climate change, energy 

independence and security, and sustainability are driving the emphasis of renewable 

energy sources. While there are many different forms of renewable energy such as wind, 

solar, geothermal, and hydroelectric, one renewable energy source of particular 

importance is lignocellulosic material. Lignocellulosic material, or biomass as it is 

commonly referred, is composed of plant tissue of which the cellulose, hemicellulose, 

and lignin fractions are specifically germane to the bioenergy fuel development. In the 

United States, the majority of the biofuel produced to date has been ethanol derived from 

corn (Shinners, Boettcher et al., 2010). Lignocellulosic material is preferred to corn based 

ethanol or soybean based biodiesel as lignocellulosic material does not directly compete 

with food and feed supplies. This is not to say that biomass would not have any impact on 

food production since shifts in land management strategies for the production of biomass 

could inherently impact other types of agricultural production. Nonetheless, the type of 

lignocellulosic material grown is related to the production characteristics specific to each 

location within a region but is typically derived from three different sources: agricultural 

residues, dedicated biomass crops and woody residues.  

2.1 Agricultural Residues 

Agricultural residues are composed of any of the byproducts of a commodity, or 

grain, produced such as corn, wheat, barley, oats, pearl millet, sorghum and rice straw to 

name a few. World-wide, wheat straw is the most abundant renewable feedstock and 

possesses a low lignin content which makes it more acceptable for enzymatic hydrolysis 

and fermentation than other crops (Qi, Chen et al., 2009). However within the US, corn 

stover was estimated to be the largest source of agricultural residue (U.S. Department of 

Energy, 2011). 

2.2 Dedicated Biomass Crops 

The use of dedicated energy crops (cellulosic biomass that would be utilized for 

non-food or feed purposes) would be needed to supplement corn grain used for the 
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production of 36 billion gallons of renewable fuels (Larson, Yu et al., 2010, Shinners, 

Boettcher et al., 2010). Dedicated biomass crops are typically perennial grasses that are 

high yielding and efficient with nutrients. These crops can be harvested in the late fall or 

early spring depending upon condition and can be produced upon marginal crop ground. 

Miscanthus and switchgrass are considered to be the two most likely crops for dedicated 

biomass (U.S. Department of Energy, 2011).  

2.2.1 Miscanthus  

Miscanthus giganteus is the most common hybrid proposed as an energy crop 

(Heaton, Dohleman et al., 2008). Miscanthus, a non-native grass, is a non-wood 

rhizomatous tall grass originating in Eastern Asia and pacific islands (Lewandowski, 

Clifton-Brown et al., 2000, Brosse, Dufour et al., 2012). Originally used as an ornamental 

plant, the Miscanthus genus is composed of 17 species and also utilizes the more efficient 

C4 photosynthetic pathway (Naidu, Moose et al., 2003) and has been shown to have a 

potential yield greater than switchgrass.  

2.2.2 Switchgrass 

Established via seed and a native grass, switchgrass (Panicum virgatum) has 

numerous advantages as a bioenergy crop. Switchgrass, a warm season grass, produces a 

large quantity of biomass (Mulkey, Owens et al., 2006) and can be harvested multiple 

times during the growing season or after the first heavy frost. The more frequent harvest 

of switchgrass can result in greater yields (Thomason, Raun et al., 2005, Fike, Parrish et 

al., 2006). However, these increased yields come at an increased cost. Thomason, Raun et 

al. (2005) showed that three harvests and the addition of 488 kg N/ha resulted in the 

highest yield (18 Mg/ha), but no fertilization resulted in 16.9 Mg/ha. The additional yield 

of 0.5 US ton cost approximately $500. Thus, high N fertilization rates do not appear to 

have a viable economic return. However, the plant uptake of K increases with yield so 

this nutrient may be more important to add (Thomason, Raun et al., 2005).  

  

2.3 Biomass Recalcitrance 

Biomass recalcitrance, the attributes of the plant cell wall that make the plant 

more resistant to degradation by enzymatic and catabolic means (Li, Foster et al., 2012), 
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is one of the primary challenges facing the biofuels industry and livestock producers 

desiring to use alternative fodder (agricultural residues or switchgrass) as a feedstuff. 

Two major factors with biomass recalcitrance are cellulose crystallinity and lignin. 

Cellulose crystallinity is the result of numerous polymers of cellulose arranged in a 

crystalline structure held together by intra and intermolecular hydrogen bonds. Lignin’s 

physiological role within the plant cell wall is to provide structural strength, supply a 

protective barrier against pathogens, and impair water transport through cell types. The 

inability of biomass to be digested directly is why pretreatment of the material must take 

place.  

2.4 Pretreatment 

The pretreatment of lignocelluosic material is essential for the efficient 

conversion of biomass into monomers of carbohydrates readily available for enzymatic 

hydrolysis/fermentation (Kumar, Barrett et al., 2009, Galbe and Zacchi, 2012). The 

primary goal of pretreatment is to maximize the amount of carbohydrates available for 

hydrolysis and minimize the energy demand, cost, and potential downstream inhibitors. 

Four general methodologies exist for the pretreatment of biomass (Figure 2-1): physical, 

chemical, physico-chemical, and biological.  

 
Figure 2-1 Visual breakdown of pretreatment strategies 
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2.4.1 Physical/Mechanical 

Mechanical pretreatment consists of grinding, chipping, or milling to a reduced 

particle size which would decrease the crystallinity of the cellulose and increase the 

surface area for enzymatic reactions to take place (Kumar, Barrett et al., 2009, Silva, 

Couturier et al., 2012). The energy and time required for grinding biomass is related to 

the final particle size, biomass type, and the type of grinder (tub grinder, chipper, hammer 

mill, knife mill, ball mill, etc) (Kumar, Barrett et al., 2009, Silva, Couturier et al., 2012). 

Milling of the material is also advantageous to pelletization as the reduced biomass size 

allows for the material to pack together more densely and improve the durability of the 

pellets.  

 
Figure 2-2. Reducing particle size increases surface area and downstream yield by 

enzymatic reactions (Silva, Couturier et al., 2012) 

2.4.2 Chemical 

Chemical pretreatment is dependent upon the pH of the compounds being applied and 

the compounds used can be acidic, neutral, or basic (Keith and Daniels, 1976, Jackson, 

1977, Klopfenstein, 1978, Chen, Chen et al., 2012). Acid hydrolysis can utilize either 

concentrated or dilute acid. The implementation of concentrated or dilute acid (H2SO4 

and/or HCl) in the pretreatment phase results in effective downstream enzymatic 

hydrolysis. However, the cost of recovery and corrosion resistant reactors will likely limit 

the application for on-farm processes. The alkaline treatment of biomass has been 

demonstrated to effectively increase enzymatic hydrolysis and can use NaOH, lime, and 

other basic compounds to increase fiber digestion (Pavlostathis and Gossett, 1985, Kaar 

and Holtzapple, 2000, Kim, Kim et al., 2003, Kim and Lee, 2007). 
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2.4.3 Physico-Chemical  

Physico-chemical pretreatment uses a combination of both physical (temperature, 

pressure, or both) and chemical methods to improve the digestibility of cellulosic 

material (Sewell, Berger et al., 2009, Brodeur, Yau et al., 2011). One example is 

ammonia fiber explosion (AFEX) which uses ammonia at high temperatures and 

pressures to make biomass more susceptible to enzymatic degradation and fermentation 

(Bals, Murnen et al., 2010). Although effective on low lignin material, this method 

requires the use of high energy inputs and pressurized vessels. 

2.4.4 Biological 

The biological pretreatment of lignocellulosic material typically utilizes fungus (i.e. 

Phanerochaete chyrsoporium) to breakdown the structure. Although biological 

treatments are relatively safe and environmentally friendly, they are time intensive 

(weeks) and some dry matter losses from the forage would occur (Streeter, Conway et al., 

1982, Hatakka, 1983, Jung, Valdez et al., 1992, Zadrazil, Kamra et al., 1996, Shrivastava, 

Thakur et al., 2011). 

2.4.5 H2O2 Oxidative Delignification  

Hydrogen peroxide is a potential chemical used in pretreatment that is assumed to be 

an environmentally safe compound that is stable and decomposes slowly at a rate of 1% 

per year into water and oxygen (Hart and Rudie, 2007). Alkaline hydrogen peroxide 

(AHP) treatment, also referred to as oxidative delignification (Kumar, Barrett et al., 

2009), has been demonstrated to increase the digestibility of many different 

lignocellulosic materials (Gould, 1984). This method classically uses a combination of 

NaOH and H2O2 to improve subsequent enzymatic saccharificaiton by either ruminal 

bacteria or processes for biofuel production (Kerley, Fahey et al., 1986, Qureshi, Saha et 

al., 2008). For this type of pretreatment to be effective, a pH greater than or equal to 11.5 

is required for partial solubilization of hemicelluloses, lignin and silica and a pH below 

10 results does not allow for improved cellulose digestibility (Gould, 1984). Ambient 

temperatures of 20 - 25 °C are acceptable for AHP pretreatment to result in increased 

cellulose hydrolysis (Gould, 1984). The use of ambient or near ambient temperatures at 

atmospheric pressure allows for minimal costs and energy inputs for pretreatment.  
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2.4.5.1 Mode of Action 

The effect of AHP treatment is twofold as both the sodium hydroxide and H2O2 act 

upon the biomass. The use of NaOH to treat lignocellulosic material is not a new concept 

and has been utilized for nearly a century to increase the digestibility of wheat straw 

(Jackson, 1977). The alkalinity of the NaOH impairs the intermolecular hydrogen bonds 

between cellulose and this causes swelling. The swelling allows for more accessibility to 

the cellulose structure. Furthermore, the lignin, hemicellulose, and silica are dissolved by 

hydrolysizing the acetyl moieties attached to hemicellulose (Jackson, 1977).  

AHP is most effective when the pH is close to the pka of H2O2 pka of 11.5 so that a 

perhydroxyl anion (OOH- can be formed) 

H2O2 ↔ H+ + HOO-  

The perhydroxyl from this reaction leads to the formation of hydroxyl and superoxide 

radicals which can lead to the solubilization of lignin.  

H2O2 + HOO- → HO⁻· + O⁻· +H2O 

The hydroxyl radical species causes alkyl –ester scission in lignin which at the 

alkaline pH would allow for the improved solubilization of lignin which would further 

propagate delignification (Li, Foster et al., 2012). Gould (1984) found that 45-55% of the 

lignin could be solubilized with the AHP treatment. Uncertainty remains as to the 

effectiveness of AHP treatment upon cellulose crystallinity. 

2.4.5.2 Lab Scale AHP Pretreatment 

The initial research performed by Gould and Freer (1984) demonstrated that the 

majority of the cellulose was utilized after AHP pretreatment. This method used 1 g 

biomass (2% (w/volume pretreatment solution) biomass loading), an H2O2 loading of 0.5 

g/g biomass (1% w/v), and 24 hours residence time. Variations of this have been 

performed to ascertain the optimum conditions. The concentration has been altered to 

0.125, 0.25, and 0.5 g H2O2/g biomass (Banerjee, Car et al., 2011). Compared to 0.25 and 

0.5 g/g biomass, the lowest concentration AHP 0.125 g/g biomass exhibited the lowest 

percentage yield of glucose and xylose. Nonetheless, this could be compensated for by 

increasing the residence time to 48 hours for the AHP pretreatment and continually 

adjusting the pH to the optimum level of 11.5 during the pretreatment period. The 

biomass loading was evaluated from 2% to 20% and a concentration of 20% was found to 
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the most effective for subsequent enzymatic saccharification (Banerjee, Car et al., 2011). 

Most of the research has been conducted on a gram scale with ground material. A more 

scalable method must be developed if AHP pretreatment is going to be used on a large 

scale. To-date, most experiments have utilized lab scale methodologies. 

2.4.5.3 Field Scale AHP Pretreatments 

For the process to be commercially viable for animal feed and biofuels, other 

application options for AHP pretreatment were developed (Atwell, 1990, Cameron, 

1990). The high solids or”dry” method of AHP treatment was developed and can be 

utilized to process whole round bales. The procedure involves grinding the biomass in a 

tub grinder with a 10 mm to 100 mm screen size. For most forage operations, this would 

most likely involve the use of a silage baler or a forage chopper that has the ability to 

reduce particle size. The biomass material is then mixed with a solution of 5% NaOH, 

and 2% H2O2 to obtain a moisture content of 37%. However, the dry method does not 

allow for the loss of solubilized hemicelluloses due to the lower moisture level.  

2.4.5.4 Timing of H2O2 Application  

The addition of H2O2 to treat biomass can take place either simultaneously with the 

alkaline solution (NaOH) or application of H2O2 can be delayed. The concomitant 

addition and 12 hour delayed addition of H2O2 demonstrated equivalent (p > 0.05) dry 

matter disappearance (DMD) of 62.4 and 63.7%, respectively after 24 hours (Lewis, 

Holzgraefe et al., 1987). Nonetheless, after 36 hours of reaction time, the delayed 

addition of H2O2 resulted in a DMD that was 17% greater that exhibited by the 

simultaneous addition of AHP solution. The delayed addition allowed more time for the 

NaOH to react and open up the lignin. 

2.4.5.5 Concerns 

The use of NaOH to reduce the pH has caused some concerns due to the fact that the 

additional Na would cause a reduction in the formation of butanol downstream (Qureshi, 

Saha et al., 2008). This type of pretreatment could allow for all other processes 

(enzymatic hydrolysis and fermentation) to be carried out without washing, but pH 

adjustments would have to take place (Banerjee, Car et al., 2012). It has been proposed 

that field chopped corn stover could be used (unpublished work by Banerjee, Car et al. 



13 

 

(2012)), but this variable may need further validation. The addition of hydrogen peroxide 

has been performed in many different ways (Gould, 1984, Kerley, Fahey et al., 1985, 

Lewis, Holzgraefe et al., 1987, Chaudhry and Miller, 1996, Banerjee, Car et al., 2011, 

Chen, Chen et al., 2012). The method used by (Willms, Berger et al., 1991) is preferred 

as it could be modified for use in a bunker silo. For their analysis, the particle size of 

wheat straw was reduced using a tub grinder and fed into a mixer where NaOH, H2O2, 

and water were added. The treated material was sequentially stored until use.  

2.4.6 Hornification 

The drying of samples after pretreatment for storage or other processes can 

negatively influence the formation of glucose monomers after enzymatic hydrolysis. 

Hornificaiton is the irreversible changes in plant structure that occurs as a result of 

drying. Prior to drying, the water sorption capacity is higher than it is after drying and 

rewetting. The loss of this sorption capacity is specifically related to reductions in pore 

volume, which have been observed to decrease from 35 Å to 25 Å, and pore numbers 

related as a result of initial water loss (Kato and Cameron, 1999). Temperature is 

surmised to have a dominating influence as oven, or heated drying, results in greater 

hornificaiton than air drying, which impact lignocellulosic material to a lesser extent 

(Luo and Zhu, 2011). Time is a factor that is inversely correlated with temperature. As 

time increases, the temperature to reach an equivalent degree of hornification decreases. 

The collapse of pore space is thought to occur in one of two ways. For one, the drying 

creates void space which brings the microfibers closer together and allows them to form 

H-bonds which propogates and closes the pores. The other method assumes that as water 

leaves the pore space, the surface tension of the remaining water pulls the walls and 

fibers together. The larger pores will collapse first and are more susceptible to collapse 

than smaller pores. The goal of pretreatment is to remove or alter barriers to enzyme 

hydrolysis such as hemicellulose and lignin. Typically in successful pretreatment, pores 

are created and swelling occurs. Thus the drying of pretreated samples is thought to 

reduce the effectiveness of pretreatment. 
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2.5 Transportation Costs 

The major goal of processing biomass on-farm is to allow for decreased 

transportation costs, which can account for 30% of the feedstock cost with current 

biomass handling systems (Hess, Wright et al., 2007). Increasing the bulk density of 

bales will decrease the collection and transportation cost, and if the material is in the form 

of pellets, transportation costs to a biorefinery will be the lowest. Reducing transportation 

costs would likely require densification at distributed locations – either by pelleting or 

processing to liquid fuels.  

Geographic Information Systems (GIS) have been used in many different studies and 

in varying capacities to evaluate biomass quantities and transportation models (Ayoub, 

Martins et al., 2007, Haddad and Anderson, 2008, Larson, Yu et al., 2010, Cattafi, 

Gavanelli et al., 2011, Martinez and Maier, 2011). These researchers used similar tools, 

but employed differing methodologies for their studies. The Network Analysis Extension 

of ArcMap has proved to be a powerful tool in determining the optimum location of 

biomass collection points (Martinez and Maier, 2011). Instead of inaccurately using a 

linear distance between the farm and the biomass collection point, GIS can calculate the 

actual distance using existing roads from the farm to the biomass collection point or other 

points of interest.  

A main objective of utilizing biofuels is to reduce energy consumption and the 

associated environmental impacts, in terms of CO2, NOx, SO2, and N2O emissions, from 

fossil fuel consumption. Life Cycle Analysis (LCA) is used to ascertain the 

environmental impact of different production systems. In addition to determining the 

environmental impact with LCA, Life Cycle Costing (LCC) can also be used to 

determine the cost associated with the various production options (Luo, van der Voet et 

al., 2009). Commonly, the transportation of raw biomass over large distances is assumed 

to require more energy than what is actually produced (Cattafi, Gavanelli et al., 2011). 

The location of the processing facility for biomass is of extreme importance. Oftentimes, 

economies of scale dictate that the processing facility for biomass must be high-tonnage 

and require expansive supply areas (Bowling, Ponce-Ortega et al., 2011). However, this 

assumption will be challenged by the use of distributed on-farm biomass processing 

facilities. 



15 

 

As previously stated, the transportation of the feedstock from the field to the 

processing plant has numerous costs associated with it, including costs in terms of dollars 

and energy. De and Assadi (2009) accounted for the monetary costs in the examination of 

co-firing biomass in coal plants by assuming a biomass distribution density around the 

plant and determining the total distance that would need to be traveled annually to supply 

the plant. Kumar and Sokhansanj (2007) evaluated the feasibility of supplying 

switchgrass to a biorefinery with a capacity of 1814 dry tonnes per day. Energy expended 

in the transportation of the biomass was estimated at 4.8% to 6.3% of the total energy 

content of the material. At an assumed yield of 11 dry metric tons/ha, the plant required a 

transportation range of 77 km and the analysis showed transport costs increased or 

decreased with plant size because of increased travel distance to supply larger facilities. 

Steffe (1996) examined transport scenarios for supplying agriculture residues and 

wood chips for conversion to biofuels or direct combustion to produce electricity. The 

study examined standalone trucking; and trucking in combination with rail, ship, and 

pipeline transportation. The study noted that the low density of baled biomass often made 

volume the limiting factor for transportation, and found rail transport was economical 

after 500 km, whereas shipment via pipeline and ship were economical after 1500 km and 

3000 km, respectively. 

2.6 Geographic Information System GIS 

Over the past two decades, improvements in GIS software, hardware, and computer 

networks have made geospatial data more readily available and complete. Geospatial data 

is generally composed of the following: mapsheet and plans, aerial/remote sensed 

images, surveys, or digital data products (Graham, English et al., 2000, Malczewski, 

2004). GIS has been used in varying capacities to evaluate biomass quantities and 

transportation models (Ayoub, Martins et al., 2007, Larson, Yu et al., 2010, Cattafi, 

Gavanelli et al., 2011, Martinez and Maier, 2011). The use of GIS to identify bioenergy 

crop yield dates back to studies performed by Ramsey and Cushman in the 1980’s and 

biomass facility location optimization back to 1996 with the Biomass Resource 

Assessment Version One (BRAVO) model (Noon and Daly, 1996).  



16 

 

2.7 Yield/Acreage Estimations for GIS Biomass Studies 

The accurate determination of crop production areas and yield is essential to the 

determination of subsequent transportation costs. The United States Department of 

Agriculture (USDA) National Agriculture Statistics Service (NASS) collect information 

pertaining to both crop area and yield though surveys and provides this annual data for 

crop production on a county and state level. The NASS crop area and yield data, 

however, does not provide the distribution or variation in production that can occur and a 

uniform production distribution has been assumed in most studies. 

Cropland data layer (CDL) is a land cover data set that specifically relates to 

agriculture and is derived from satellite imagery with a 30 by 30 meter pixel resolution. 

Originally developed in 1997, CDL has allowed researchers to examine crop rotation, 

crop expansion, crop distribution, bioenergy potential, ecological impact, and yields 

within a geospatial format (Mueller and Harris). With CDL identifying the area of 

production, the total yield from a production area of interest can be determined using a 

number of different methods. A constant yield can be assumed for all the areas identified 

by the study, a yield factor could be based upon soils data, or remotely sensed data could 

be used. Each one has inherent advantages and drawbacks. A constant yield allows for 

the quick and easy calculation to be performed; however, the constant yield assumption 

would not take into account known spatial variations in production. Data layers 

containing the geospatial soils information would allow for the spatial variance in crop 

production potential to be accounted for in studies. Remote sensing could also be used to 

predict the yield but the satellite resolution may not be ideal for field less than 25 hectares 

(Doraiswamy, Hatfield et al., 2004). The use of drones could ameliorate the resolution 

issue, but the commercial use of unmanned aerial vehicles is still problematic. Soil 

properties can account for 30% of the expected yield variation (Kravchenko and Bullock, 

2000), yet temporal yield variation has been shown to be 1.1 to 3.9 times greater than 

spatial variation (Bunselmeyer and Lauer, 2015). While models may predict the potential 

yield, numerous exogenous factors (planting date, harvest date, precipitation, nutrient and 

pest management, and climate) ultimately influence the final yield (Lobell, Cassman et 

al., 2009).   
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2.7.1 Candidate Site Selection for Biomass Facilities 

The location of biomass processing facilities and satellite collection/preprocessing 

facilities has typically been refined using two differing mechanisms: suitability and 

optimization. Suitability analysis ascertains what spatial factors would be favorable 

(proximity to power grid, water resources, and other distribution networks) and 

unsatisfactory (proximity to schools, environmentally sensitive areas, etc) to implement 

siting of biomass facilities. Thus, suitability of a biomass processing facility can be 

evaluated as either exclusionary or preferential site development (Dong, 2008). From the 

optimization of biomass perspective, mixed integer linear programming (Xie, Zhao et al., 

2009), location-allocation (Möller, 2003, Sultana and Kumar, 2012), and other methods 

have been used to optimize biomass facility size and location.  

2.7.2 Network Analysis 

The use of Network Analysis for transportation applications has become 

ubiquitous as the ability to analyze multiple modes of transportation separately or 

simultaneously exists (Curtin, 2007). Within network analysis, ArcGIS possesses many 

different features for transportation analysis: routing, vehicle routing, service area, origin 

to destination (O-D) cost matrix, and location-allocation. For the transportation analysis 

options listed, Dijkstra's algorithm (Dijkstra, 1959) or a modified version is to determine 

the shortest path for transport given a defined road network with the exception of 

location-allocation (Environmental Systems Research Institute (ESRI)). 

Routing and vehicle routing has been used in studies that deal with transport 

between the field and processing facilities as well as models which have processing 

equipment that need to be moved from location to location such as harvesting and 

preprocessing equipment (Simpson, Hamann et al., 2007, Perpina, Alfonso et al., 2009, 

Cavalli and Grigolato, 2010) (Dean, 1997, Chiueh, Lee et al., 2012). Furthermore, routing 

can be an effective tool for analyzing and minimizing the cost of transport using either a 

time or distance parameter. Routing is used when there are relatively few or specific 

routes that need to be analyzed. The movement of mobile biomass processing equipment 

was specifically analyzed with routing as it allows for the minimization of travel distance 

overall (Ha, Munster et al., 2011, Ha, Munster et al., 2014). 
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Service area has also been used in GIS biomass supply chain management studies 

(Haddad and Anderson, 2008, Martinez and Maier, 2011). The service area can be 

defined by either a distance or travel time from a point of interest. The service area can be 

combined with the use of concentric rings (annuluses) to ascertain how much biomass is 

within a specified boundary of the biomass plant. Service area is ideal when the location 

of the biomass plant has been predefined or hypothetical. Although not part of the service 

area feature, many researchers have used the buffer tool to create areas of interest around 

potential biomass locations (Velazquez-Marti and Annevelink, 2009, Nolan, Donnell et 

al., 2010, Stephen, Sokhansanj et al., 2010). 

Origin to destination (OD) cost matrices can be used by GIS to evaluate transport 

costs between origin and destination points within a spatial analysis (Parker, Tittmann et 

al., 2010). OD cost matrixes are effective when there are a large number of locations 

which need to have routes developed. The development of a matrix allows for the 

manipulation of the distance to be performed in spreadsheets outside of ArcGIS. 

Using metaheuristics, location-allocation has been used to identify potential sites 

for bioenergy plants (Möller, 2003). Transport costs based on either distances or times 

between the biomass source points (demand points) and bioprocessing facilities are 

minimized with most of these analyses. Suitability and optimization are typically 

combined using this format (Wilson, 2009). Demand at the bioprocessing facility can be 

designated as either capacitated or uncapacitated for the analysis (Dong, 2008). Within 

location-allocation there are many differing types of problems: p-median, maximize 

coverage, minimize facilities, maximize attendance, maximize market share, and target 

market share.  

2.7.3 Transportation Assumptions 

The maximum one-way transportation distance for biomass to a collection hub, 

pre-processing facility, or processing facility has been used as a variable (varying 

between 5 and 200 km) in most studies (Shi, Elmore et al., 2008, Rentizelas, 

Tatsiopoulos et al., 2009, Alex Marvin, Schmidt et al., 2012). The traveled distance has 

been measured both using Euclidean distances and GIS road networks (Shi, Elmore et al., 

2008, Rentizelas, Tatsiopoulos et al., 2009, Alex Marvin, Schmidt et al., 2012, Yu, Wang 

et al., 2012). Euclidian measurement for overall distance traveled requires an assumption 
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on the tortuosity of the road. Tortuosity is typically surmised to range from 1.2 - 3 for 

straight and curvy roads, respectively (Overend, 1982, Jack, 2009). The use of GIS road 

networks allows for the inference to be more accurate (Sultana and Kumar, 2014). In 

other trials, the estimated duration of transport has been used to ascertain a practical level 

of transport distance given current producer sentiment. A maximum transport distance of 

50 km (or 30 miles) is typically assumed according to Miranowski (Overend, 1982, Jack, 

2009).  

Trucking costs are defined in different ways and can be based upon time or 

distance. The distance dependent costs can be broken down into fixed and variable costs 

(Mahmudi and Flynn, 2006). The fixed transportation costs ($/Mg) are the expenses that 

are incurred at any distance, examples include the cost associated with loading and 

unloading biomass, taxes, and insurance. The variable cost ($ / Mg-km) is dependent 

upon the miles traveled and includes: fuel use, labor, transport vehicle payments, 

maintenance, and other costs. Costs have also been assumed to vary given the distance 

traveled (Petrolia, 2008). 

The average speed of transportation vehicles for biomass has been defined by 

whether the vehicle is loaded or unloaded (Rentizelas, Tatsiopoulos et al., 2009), by type 

of road (Haddad and Anderson, 2008), and by the specified road statute within GIS 

shapefiles (Sultana and Kumar). The speed of the vehicle can then be used to ascertain 

the time and/or labor required for transportation. 

Biomass crops possess a low volumetric energy content and low bulk density 

which makes the transportation of biomass less desirable than the transportation of coal 

or liquefied energy products. Nonetheless the transportation efficiency has been 

improved using a number of different mechanical densification technologies to make 

bales, cubes, pucks, briquettes, or pellets. 

Baling of biomass can be performed using either a large round or square baler 

with each method having inherent advantages and disadvantages. Round balers are owned 

by the majority of farmers who accumulate forage for livestock hay. In areas of high rainfall, 

such as the Southeastern US, round bales are advantageous due to the fact that they can 

“shed” water (Amit, Carol et al., 2010, Larson, Mooney et al., 2010). Round bales can be 

wrapped using several different methods such as the following: sisal twine, plastic twine, 
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mesh net wrap, plastic wrap, and breathable non-woven film (Shinners, Boettcher et al., 

2010). Net wrapping is preferred since twine wrap takes considerably more time to perform 

and takes on more water than net wrap (Shinners, Boettcher et al., 2010). However, round 

bales are considerably more difficult to transport than large square bales since they deform 

under a static load and cannot stack as easily (Sokhansanj, Mani et al., 2009).  

Compared to round bales, large square bales produce more dense bales with bulk 

densities of approximately 149 kg/m3 (9.3 lb/ft3) and 109 kg/m3 (6.8 lb/ft3) for square and 

round bales, respectively (Amit, Carol et al., 2010). Furthermore, square bales are easier to 

handle and stack than round bales which results in a lower transportation cost (Sokhansanj, 

Mani et al., 2009). The production of bales is also expedited when using a square baler as 

compared to round baler since the operator of the square baler does not have to stop to wrap 

or tie the bale (Larson, Mooney et al., 2010). However, large square balers manifest a higher 

initial cost than round baler which could result in in a purchasing price that is greater than 

three times that of a large round baler (Larson, Mooney et al., 2010). Square bales are also 

more susceptible to spoilage and dry matter losses when compared to round bales as square 

bales lack the ability to shed water. Even though each baling system has advantages and 

disadvantages, both round and square baling will have to be utilized until either another 

accumulation method is developed or one baling system is selected as the preferred method.  

Baled biomass presents challenges associated with handling and transportation 

(specifically, energy density and bulk density of the product). The low bulk density (40- 

200 kg/m3) of baled material can cause trucks to “cube out”. Volume as opposed to weight 

limits the total amount of biomass that is able to be transported. The density of the bale is 

affected by baler type, baler age, biomass material, bale size, shape, crop, moisture content, 

travel speed, and baler settings. Approximately 14% of the weight capacity of the truck is lost 

due to limitation with volume (Turner, 2014). Efforts have been made on a laboratory setting 

to increase the bale density to the minimum desired bale density of 256 kg/m3 by altering 

structural components of biomass material by subjecting bulk samples to further compression 

to break the plant nodes and reduce elastic response of the baled material (Turner, 2014). 

2.8 Pelleted Biomass 

Pelletization of biomass creates a more uniform product and allows for biomass to be 

handled, transported, and stored with greater ease than baled biomass. Handling of the 
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material is improved by the fact that pelleted material possesses greater flowability and 

bulk density. Logistically speaking, pelleted biomass transport is dependent upon the 

distance traveled as the cost will determine the preferred mode of transport (tractor, truck, 

rail, and ship) (Forsberg, 2000). Additionally, pelleted biomass is easier to move between 

the different modes of transport, enhancing handling efficiency. With regard to truck 

transport, the improved bulk density of pelleted biomass allows for the weight of the 

biomass to become the limiting factor in transport as opposed to volume. Storage of the 

biomass can also be moved from outdoor or under tarp to inside a grain bin. Ideally when 

the solid biomass leaves the farm gate, it would need to be in a pelleted form for ease and 

efficiency of transport and distribution. Again, this is another process that could take 

place on-farm to produce a denser, flowable product.  

The quality of pellets formed has been based on a number of different factors. The 

bulk density of the final pellets formed is essential since pelleted biomass can possess 

three times the density of ground material. A second quality factor is pellet resilience. 

Assessing the pellet resilience against breaking due to handling, transport, and storage is 

assessed with the pellet durability index (PDI). Pellet durability can be measured in a 

number of different ways (tumbling, Holmen tester, and Ligno tester), but the Kansas 

tumbling test which eventually became the American Society of Agricultural and 

Biological Engineers (ASABE) Standard for Densified Products for Bulk Handling – 

Definition and Method (ASAE S269.5 OCT2012) is generally regarded as the industry 

standard for feed mills. The Pellet Fuel Institute (PFI) uses the ASABE standard as one of 

the characteristics to certify their three different grades of pellets with the minimum 

standard for the durability being 95% of pellets remaining intact after the test. The 

formation of fines is undesirable to the consumer as that part of the product is generally 

lost in handling.  

2.8.1 Pellet Mill Characteristics 

Different types of pellet mills and operational scale allow for many variations in 

quality and performance characteristics to exist. Within the solid biofuels industry and 

research community, there are three types of pellet mills. Used primarily within academia 

on a lab scale, the single piston pellet mill allows for the compressive strength of each 

individual pellet to be assessed. Commonly used within the feed industry, the other two 
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types of pellet mills use either a flat ring or ring roller dies. Ring roller dies are more 

common with a large industrial setting typically while flat ring dies are used for research 

trials or smaller volumes of material (Tumuluru, 2014). Flat ring dies are known for their 

compact design and robustness for pelletizing different materials. The feed input from the 

top allows for quick access to the pellet chamber and pellet production can be visibly 

monitored. However, the ring roller die create more friction which increases die 

temperature and allows for better pellets to be produced. The extra fiction increased the 

energy consumption of the pelleting process (Garcia-Maraver and Carpio, 2015). The 

investment cost of flat and ring dies vary with the price depending upon the scale and 

availability (Thek and Obernberger, 2004, Garcia-Maraver and Carpio, 2015).  

The die properties have been shown to influence pellet quality as well. Carbon steel 

alloy, stainless steel alloy, and high chrome alloy are typically used to make the die as 

they must be durable enough to allow for pellet formation (Garcia-Maraver and Carpio, 

2015). As the thickness of the die increases the durability of pellets produced increases, 

however throughput of material was reduced because of it. With alfalfa, the larger 

diameter die was able to handle higher moisture contents but resulted in less durable 

pellets than the smaller die diameter (Tabil and Sokhansanj, 1996). The shape and 

number of holes in a mill influence the quality of pellets as well. Die speed has been 

shown not to influence pellet production for a ring roller die (Tabil and Sokhansanj, 

1996). For a flat ring die increasing the speed increased the throughput of pellets 

reducing the specific energy but the bulk density and PDI remained the same (Hoover, 

Tumuluru et al., 2014). The temperature of the die is very important as 90°C is generally 

regarded as the minimum temperature required for pelletization (Stelte, Sanadi et al., 

2012).  

The specific energy cost (kWh/Mg pellets produced) is one of the more important 

measures since the electrical consumption costs of the pellet mill long-term will outweigh 

the investment cost (Thek and Obernberger, 2004). Furthermore, the pelletization process 

uses the most electricity in a pellet production facility with grinding consuming the 

second most electricity (Thek and Obernberger, 2004). Thus, the specific energy is often 

termed as pellet production efficiency. The production efficiency is largely based upon 
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the throughput which is dependent upon the type of material, preconditioning 

characteristics, type of mill, and other factors.  

2.8.2 Material Characteristics 

Pelletization characteristics will be crop dependent and be influenced by the 

composition of the biomass: lignin, sugars, cellulose, amino acids and other components. 

Components such as lignin, starch, and protein can act as natural binders. Temperature, 

moisture content, and pressure allow for the binding of particles to be enabled (Kaliyan 

and Morey, 2010). Generally, the melting temperature for lignin is considered to be 140 

°C (Mani, Tabil et al., 2006), however the glass transition temperature in wheat straw 

was found to occur at 53 °C - 63C (Stelte, Clemons et al., 2011) (Stelte, Clemons et al., 

2012). 

The moisture content of the biomass entering the pellet mill is a critical variable to 

the pelletization process and can manifest a varied effect on biomass as water can 

enhance binding and act as a lubricant (Kaliyan and Morey, 2009). Attractive forces such 

as the Van der Wall forces and hydrogen bonding are enhanced as water allows for more 

bonds to occur between particles which strengthens formation and durability. 

Furthermore, the moisture acts as a binder by allowing the glass transition temperature to 

be achieved at a lower level, which enhances solid-bridge formation. Moisture can be 

added directly during pelletization, mixed prior to the pelletization, or conditioned with 

steam. Of the moisture addition options, steam requires the most energy and is typically 

used in commercial applications. For pelletization with a ring roller die, the 

preconditioned moisture content has been observed to range from 8 to 15%. The addition 

of superfluous moisture can also deleteriously influence pellet production as die plugging 

or choking has been observed with ring roller dies above 10% for a smaller diameter die 

and 13 to 15% for larger diameter die.  

While numerous factors can influence pellet quality, this study will seek to focus 

mainly upon process variables such as material moisture content which influence PDI, 

density, and pellet formation (Jiang, Pu et al., 2009) and the resulting energy  
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Figure 2-3. Relationship for durability, moisture content, and die temperature of a 

ring roller die for wheat DDGS (Jiang, Pu et al., 2009).  

2.9 Production of Butanol 

Another method available to increase the volumetric energy content of material is to 

convert the lignocellulosic material on-farm into liquid fuel. The majority of the biomass 

research efforts to date have focused on the conversion of lignocellulosics to ethanol. A 

model for the biomass crops associated with butanol production has yet to be developed 

(Jin, Yao et al., 2011). Butanol production could take place on-farm significantly altering 

the proposed biofuel production system. Ideally, the system would utilize a rotation of 

wheat straw, corn stover, and a dedicated biomass crop (i.e. switchgrass or miscanthus) 

with the goal being to produce fuel year round and minimize biomass storage. The 

production of butanol on-farm should hypothetically allow 175 tons of biomass to 

produce ~7,000 gallons of crude butanol (approximately 70% butanol, 25% ethanol, and 

5% acetone). Converting baled biomass into an easy to pump and handle liquid product 

would significantly reduce costs and increase the energy density of the material 

transported.  
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 OBJECTIVE 1: DENSIFICAITON OF BIOMASS INTO 

PELLETED MATERIAL USING A PILOT SCALE MILL 

3.1 Summary 

The production characteristics of a pilot scale flat ring die pellet mill for use on-

farm was evaluated for four different biomass materials (miscanthus, corn stover, 

switchgrass, and wheat straw) to determine the effect of different moisture 

preconditioning upon pelletization. The moisture content of the material entering the 

pellet mill was 10%, 15%, 20% and 25% for miscanthus, switchgrass, and wheat; while, 

only 15%, 20%, and 25% moisture content was evaluated for corn stover. For the flat ring 

die, moisture contents of 10% were not conducive to the formation of pellets from 

miscanthus, switchgrass, and wheat straw. Similarly, the material at a moisture content of 

15% did not allow for pellet formation from switchgrass or wheat straw. For miscanthus, 

switchgrass, and wheat straw at the highest moisture content (25%), the pellet formation 

was readily achieved with the percent pellets produced being 92%, 92%, and 96%, 

respectively. For corn stover, 15% preconditioned moisture resulted in the highest rate of 

pellet formation, lowest specific energy requirement and similar durability to the other 

measured moisture contents. For the differing biomass materials, the specific energy 

requirements for the flat ring pellet mill was demonstrated to vary between 101 to 324 

kWh/Mg. Across the different biomass types, energy input of pelletization was 2 to 7% of 

the final energy content of the pelletized product produced.  

 

3.2 Introduction 

The volumetric energy content for lignocellulosic material used for biofuels is 

lower than traditional fossil fuel sources (Brown, 2003) and this low energy density is 

largely the result of low bulk densities of biomass materials. Densifications of the 

biomass is essential to improved transportation, storage, and handling capabilities. 

Pelletization is one of the technologies that has been proposed to mechanically increase 

the bulk density of biomass. The advantages of pelletization go beyond increases in bulk 

density as the handling and storage of pelleted biofuel can be performed similar to grain 

(Mani, Sokhansanj et al., 2006). Biomass pellets can serve a variety of purposes with 
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some being used on a smaller scale for residential heating or on a more industrial scale 

where they could be co-fired with coal at power plants (Holm, Henriksen et al., 2006). 

Worldwide the total production of pellets increased 10 fold from 2000 to 2010 with the 

US being one of the leaders in pellet production (Lamers, Junginger et al., 2012). The 

increased demand of pelleted fuel sources in Europe and domestically could allow for 

more biomass material resources to be used such as dedicated biomass crops or crop 

residues. The expansion of pellet production as a solid fuel source is expected to be 

essential to future biofuel uses.  

From a transportation standpoint, the densification of biomass at localized 

satellite pelletization facilities or at larger on-farm facilities would allow for the greatest 

benefit in increased bulk density associated with transport to be realized. Pelletization has 

been performed using either a flat ring die or a ring roller die (Stelte, Sanadi et al., 2012). 

Advantages and disadvantages exist with each type of mill. For ring roller dies, 

pelletization properties have been assessed at many different moisture contents (Larsson 

and Rudolfsson, 2012). However, the flat ring die is suggested to have more robustness 

with input biomass material and the purchase price seems to be lower. The potential to 

use flat ring dies has yet to be fully assessed for the biomass industry. Flat ring die 

studies have been performed for poplar and other material (Mediavilla, Fernández et al., 

2009, Mediavilla, Esteban et al., 2012) along with high (28% - 38%) moisture 

(Tumuluru, 2014) and pretreated corn stover (Hoover, Tumuluru et al., 2014). 

Nonetheless, the objective of this study was to characterize the sensitivity of the flat ring 

die to changes in the initial preconditioned moisture content for miscanthus, corn stover, 

switchgrass, and wheat straw. The most important variable in pellet production is 

moisture content as this property will ultimately determine the durability and density of 

pellet (Samson, Mani et al., 2005, Larsson and Rudolfsson, 2012). The quality of the 

pellets for a flat ring die will be evaluated by measuring the percentage of pellets 

produced, bulk density, and durability. Furthermore, data is not available characterizing 

the specific energy consumption of a flat ring die pelleting system given varied moisture 

contents. 
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3.3  Materials and Methods  

Switchgrass (Alamo) and miscanthus (Miscanthus x giganteus) used in these 

studies were harvested at the University of Kentucky’s North Farm, Lexington, KY. The 

sample material was harvested in late winter 2011, 2012 and 2013 using a disk mower 

and baled into small square bales. The bales were stored in a barn prior to transportation 

to campus. A No. 20 Hammer mill (C.S. Bell Co., Tiffin, OH) was used to grind the 

biomass and collected using a cyclone (Cincinnati Fan and Ventilation Inc., Mason, OH). 

Screen sizes of 3 mm, 5 mm, and 10 mm were used with the hammer mill.  

3.3.1 Sample Conditioning 

After grinding, samples were preconditioned in batches with 9 kg (20 lb) being 

rewetted within plastic storage containers. The moisture content of the ground material 

was approximately 8%. Material was rewetted and mixed to 10%, 15%, 20%, and 25% 

moisture contents (wet basis) using a pump sprayer. The moisture contents were 

randomly tested throughout the conditioning process and analyzed using an Ohaus 

moisture analyzer (Ohaus Corporation, Parsippany, NJ) with a 1 gram sample dried at 

130°C. The measurement with the Ohaus were equivalent to that of the dried standard 

ANSI/ASAE (May2012) (r2 > 0.9). Thus, the Ohaus was used since the determination of 

moisture content was conducted in minutes as opposed to days. The conditioned material 

was sealed inside the container and allowed to sit overnight. The material moisture 

content was retested the following morning and pelletized if the average was within 0.5% 

of the target value. 

3.3.2 Pellet Mill 

Material was fed into the pellet mill using a belt conveyor system with a paddle at 

the end to allow for uniform feeding. Pelletization was performed using a Model PM605 

(Buskirk Engineering, Ossian, IN) pellet mill flat ring die with a 3.7 kW (5 horsepower) 

grease-packed gear motor that possessed the capacity to pelletize up to 90 kg/hour (200 

lb/hour) according to manufacturer’s specifications. The dimensions of the die used were 

15.2 cm (6 in) diameter and 3.8 cm thick machined die plate. Typical pellets formed were 

approximately 6 mm in diameter and 18 mm in length. Prior to conducting each test, the 

die was preheated to 90 °C as this temperature is generally considered the minimum 
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threshold for pelletization (Holm, Henriksen et al., 2006). Preheating of the die to 90 °C 

was conducted using distillers grain and was sequentially flushed with the lignocelluosic 

material that would follow. The die did not possess any form of heater, only the friction 

from the pellet formation increased the temperature. The die temperature was measured 

using a Fluke Hydra Series datalogger (Fluke Corporation, Everett, WA) with three type 

T thermocouples connected to side of the die as shown in Figure 3-2. The temperature 

was monitored during the test to ensure steady state operation and the temperature upon 

the completion of each pellization run was recorded.  

3.3.3 Power Consumption 

The pellet mill operated on a 230V three phase electrical system. Current within 

each line was measured with an AcuAMP current transducer (AutomationDirect, 

Cumming, GA, part number ACT050-10-S) which possessed a 1% accuracy. The voltage 

ouput from the current transducers was calibrated using an Extech Power Analyzer 

380803 (Nashua, NH) with various sources providing the amperage source for calibration 

points. The current transducers were placed on the output side of the variable frequency 

drive (VFD) (Lenze Americas Corporation, Uxbridge, MA, USA) that drove the pellet 

mill. Current was logged using a Measurement Computing USB 1408FS analog to digital 

board (Norton, MA) and a program written using Visual Studio (Microsoft, Redmond, 

WA) to log the data onto a tablet. The software clock was used to achieve a sampling rate 

of 10 Hz. The voltage was measured on the output side of the VFD using a Fluke 

multimeter. The total power was calculated in terms of rms magnitude for a balanced wye 

load as shown in Equation 3-1 (Nilsson and Riedel, 2000).  

 

PT is power total (kW); VL is the line voltage (V); IL is the line current (A); and Pf 

is the power factor (dimensionless). The power factor for the inductive cyclo drive motor 

was not directly measured. However, the motor specification stated a power factor of 

0.817 under full load (Sumitomo Drive Technologies). Power factor is known to change 

𝑃𝑃𝑇𝑇  (𝑘𝑘𝑘𝑘)  =  
√3 × 𝑉𝑉𝐿𝐿  × 𝐼𝐼𝐿𝐿  × 𝑃𝑃𝑃𝑃

1000
 

 

Equation 3-1 
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with load (Burt, Piao et al., 2008, Sharma, Khan et al., 2013), but for cyclo drives they 

can remain constant over a range of speeds (Shakweh, 2011). For the pellet mill used, all 

tests were performed at a constant speed of 1730 rpm. Furthermore, the feed rate of 

material into the pellet mill was manually controlled to allow for the VFD to consistently 

draw approximately 10 A or greater which would allow for the full-load amperage to 

approach 75% of full load (motor name plate specification for full load amperage was 

13.1 A). Operation at 75% of full-load and greater, the power factor would be relatively 

constant (U.S. Department of Energy Motor Challenge, Natural Resources Canada, 2004, 

Burt, Piao et al., 2008). Thus, a constant power factor of 0.817 was assumed. The mass 

flow rate of the pellets was quantified by measuring the amount of pellets produced 

during a 120 second time span with the pellet mill operating at steady state conditions. 

3.3.4 Pellet Durability Index (PDI) 

Once the pellets had cooled to within ambient temperature, pellet durability was 

determined in accordance with the ASABE standard S269.4 to simulate the losses of 

pellets that would occur with handling, storage, and transport. The 5 mm diameter pellets 

were sieved on a 4.8 mm (12/64 in) screen. A 500 gram sample of the sieved pellets were 

rotated in a 300 mm (12 in) by 300 mm by 50 mm deep (2 in) box with a 290 mm (9 in) 

long baffle of 50 mm angle iron for 10 minutes as shown in Figure 3-3. The final pellet 

durability was determined using Equation 3-2. 

𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (%)

=  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 × (100) 

Equation 3-2 

 

3.3.5 Bulk Density (wet) 

The bulk density was performed according to USDA Grain Inspection, Packers and 

Stockyard (GIPS) adminstration Equipment Handbook Chapter 5 - Test Weight Per 

Bushel Apparatuses. Pellets were loaded into a funnel that was 50.8 mm (2 inches) above 

the top of a 1.102 liter (1 US dry quart) kettle. The bottom of the funnel was opened and 

pellets were loaded into the kettle. The excess pellets above the top rim of the kettle were 

removed by taking three strokes across the top of the kettle with a 4.76 mm (3/16 inch) 

rounded edge 305 mm by 44 mm by 10 mm (12 in by 1-3/4 in by 3/8 in) stick. With the 
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tared kettle, the weight of pellets per volume were recorded and the bulk density 

calculated (wet). 

3.3.6 Higher Heating Value (HHV) 

Samples of each biomass crop were further ground to pass through a #60 mesh. The 

samples were processed by the Kentucky Center for Applied Energy Research to perform 

proximate analysis and heating value assessment. The higher heating value was measured 

using bomb calorimetry. The percent or fraction of energy used to make the pellets was 

measured according to Equation 3-3. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (%) =  
𝑃𝑃𝑇𝑇  × 60 𝑠𝑠𝑠𝑠𝑠𝑠

�𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
60 𝑠𝑠𝑠𝑠𝑠𝑠 � × 𝐻𝐻𝐻𝐻𝐻𝐻 

 Equation 3-3 

 

Where: 

PT = Total power (kw) 

HHV = Higher Heating Value (MJ/kg)  

3.3.7 Statistics 

SAS (Statistical Analysis System, Cary, NC) v. 9.4 was used for the analysis. The 

Proc GLM procedure was used to perform the least significant differences (LSD) 

pairwise multiple comparison between the different moisture contents for each biomass 

crop. 
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3.4 Results and Discussion 

Particle size had a major impact on pellet quality and throughput. Initial testing 

with the pellet mill demonstrated that material ground through the 10 mm screen 

demonstrated matting of the material as it entered the pellet mill and in front of the 

wheels. Consequently the 10 mm material would not pelletize. The 3 mm material would 

pelletize; however, with this grinding screen size the majority of the biomass was 

captured by the filter bag on the cyclone during grinding potentially skewing the sample 

quality. Consequentially only material that was ground through a 5 mm screen was used 

for pelletization. 

3.4.1 Trends in Pellet Formation 

For miscanthus, switchgrass, and wheat straw at a moisture content of 10%, no 

pellets were produced and only fines passed through the die (Figure 3-4, Figure 3-5, and 

Figure 3-6). Similar results were observed at a moisture content of 15%, although 60% of 

the material was pelleted with miscanthus. The viable production of miscanthus, 

switchgrass, and wheat straw pellets took place at moisture contents above 20% with the 

greatest percentage of pellets being produced at a moisture content of 25%. The 

numerically highest pellet production rate was also observed at the highest moisture 

content for these biomass materials. The improved formation of pelleted biomass as the 

moisture increased for these biomass types was indicative of the improved binding 

among the particles. The improved pellet production rate was also indicative of the 

lubricating aspects of water. 

Corn stover exhibited a different trend than the other biomass materials (Figure 

3-7). The percentage of pellets produced was equivalent at the 15 and 25% moisture level 

with the greatest percent of pellets being produced at 20%. For corn stover, the mass flow 

rate of pellets decreased 44% and 64% as the moisture increased from 15% to 20% and 

from 15 to 25%, respectively (Figure 3-8). With a flat ring die, (Tumuluru, 2014) 

achieved pelletization of corn stover at even higher moistures (28 - 38%) than conducted 

in this study but did not report the rate of production. 

Unlike the ring roller die, the flat ring die demonstrated a greater capability of 

making pellets at a higher moisture content. When used to pelletize alfalfa, the ring roller 

die was shown to be able to handle moisture contents up to 9 - 12% before plugging of 
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the die occurred (Groesbeck, McKinney et al., 2008). The lower moisture observed with 

alfalfa was likely due to differences in the composition between the biomass materials. 

3.4.2 Effects of Moisture Content on Durability 

Moisture content demonstrated a varied effect on pellet durability as well. For 

miscanthus, switchgrass, and wheat straw, the durability increased with increasing 

moisture content as shown in Figure 3-4, Figure 3-5, and Figure 3-6. Increasing the 

moisture content from 20 to 25% improved the pellet durability index by 23%, 17%, and 

42% for miscanthus, switchgrass, and wheat straw, respectively. For corn stover pellets, 

the greatest durability was demonstrated at a 20% moisture content with the 15 and 25% 

moisture content demonstrating equivalent, but slightly lower PDI (Figure 3-7).  

3.4.3 Pellet Mill Throughput 

For miscanthus, switchgrass, and corn stover, the increased preconditioned 

moisture allowed for the improved formation of pellets and inherently augmenting the 

pellet throughput as shown in Figure 3-8. The increased moisture content allowed for 

more binding of material to form pellets and also acted as a lubricant with more pellets 

being produced (Kaliyan and Morey, 2009). For livestock pelletization with a ring roller 

die, a 5% increase in moisture allowed for the production rate to be increased by 31 to 

50% (Moritz, Cramer et al., 2003). For corn stover, the increase binding of the material at 

20% and 25% moisture inhibited the rate of pellet formation.  

3.4.4 Bulk Density 

The bulk density of 5mm loose (uncompressed) material at 10% moisture was 86, 

95, 77, and 91 kg/m3 for miscanthus, switchgrass, wheat straw, and corn stover, 

respectively. For miscanthus, the 15% and 20% moisture level resulted in comparable 

values, yet the 25% moisture level resulted in a value that was 27% and 38% higher than 

the 15% and 20% moisture content values (Figure 3-9). For switchgrass, the increase in 

moisture content from 20% to 25% elevated bulk density by 29%. For wheat straw, 

pellets formed at 25% precondition moisture resulted in a bulk density value that was 

29% greater than that of pellets created at 20%. When compared to the 15% 

preconditioned moisture content, increasing the moisture to 20% and 25% for corn stover 

resulted in 16% and 15% increase in bulk density respectively. The Pellet Fuel Institute 
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(PFI) standard for bulk density is a minimum of 609 kg/m3 and was achieved with only 

corn stover at 20% and 25%. The PFI premium standard of 641 kg/m3 was not achieved 

by any of the pelleted material in this study. The lower than expected bulk densities of 

this study were surmised to be related to the differences in protocol for bulk density. PFI 

calculated the bulk density using the ASTM E 873 Standard -Test Method for Bulk 

Density of Densified Particulate Biomass Fuels which takes a 7.08 L (0.25 ft3) container 

of densified materials and tapped the container on a solid surface 25 times from a height 

of 2.54 cm (1 in). The bulk density for corn stover at 25% in this study was 635 kg/m3 

that was comparable to the 618 kg/m3 measured by (Tumuluru, 2014) with a 60 hz die 

speed, a die temperature of 110 °C, and a 28% moisture content.  

3.4.5  Energy Consumption 

The specific energy consumption (kWh/Mg pellets) is indicative of pellet 

production efficiency (Tabil and Sokhansanj, 1996, Groesbeck, McKinney et al., 2008). 

For the differing biomass crops in this study, the flat ring die demonstrated a varied 

energy consumption with corn stover at 15% moisture content demonstrating the lowest 

specific energy of 101 kWh/Mg, and the highest average of 324 kWh/Mg was recorded 

with the miscanthus at 15% (Figure 3-10). For miscanthus at 15% moisture content, 

increasing the moisture content to 20% and 25% resulted in the specific energy 

reductions of 24% and 42%, respectively. Similar to the response of miscanthus, 

switchgrass, and wheat straw, pelleted livestock feedstuffs demonstrated increased PDI 

and reduced specific energy consumption for increased preconditioned moisture contents 

(Moritz, Cramer et al., 2003). A 5% increase in moisture content resulted in 16 - 19% 

reduction in specific energy. Corn stover exhibited the opposite trend for moisture 

content and energy requirements. When compared to corn stover at 15%, increasing the 

moisture content of corn stover to 20% or 25% resulted in the specific energy 

consumption being increased by 80% and 168%, respectively. 

When feedstuffs were processed, ring roller dies have exhibited production 

efficiencies of approximately 6 to 37.1 kWh/Mg (Young, Pfost et al., 1963, Skoch, 

Binder et al., 1983, Gilpin, Herrman et al., 2002, Groesbeck, McKinney et al., 2008). The 

pelletization of poultry by-product meal showed that increased moisture content resulted 

in increased operating costs due to higher specific energy requirements. The range for 
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specific energy requirements for the ring roller was determined to be approximately 30 – 

80 kWh/Mg for poultry by-product meal (Mohammad, Tawfik et al.). 

For alfalfa pelletization, production efficiency was 26 to 33 kWh/Mg. Pellet 

production efficiency of biomass was stated as varying from 16 to 74 kWh/Mg (Stelte, 

Sanadi et al., 2012). For different studies, the flat ring die pelletization efficiency is stated 

to vary from 50 to 150 kWh/Mg for high moisture (28-38%) feedstocks (Tumuluru, 

Cafferty et al., 2014), 169 kWh/dry Mg for vine shoots (Mediavilla, Fernández et al., 

2009), 121 kWh/dry Mg for industrial cork residue (Mediavilla, Fernández et al., 2009), 

and 166 kWh/dry Mg for pine sawdust (Mediavilla, Fernández et al., 2009). The flat ring 

die energy consumption increased to 138 – 408 kWh/dry Mg for poplar (Mediavilla, 

Esteban et al., 2012). Those authors also found that the addition of either lignosulfiante, 

corn starch, or both reduced the energy consumption to 95 – 123 kWh/dry Mg. The 

specific energy requirements from this study seemed to fit within the range that has been 

observed with other studies that had used flat ring die pellet mill, but also indicated that 

the flat ring die pellet mills may not be as efficient as those with ring roller dies. Stelte, 

Sanadi et al. (2012) stated that the production rate and energy use are strongly related 

which explains why the most desirable production efficiency was observed with the corn 

stover at 15% moisture content as this material possessed the highest pellet mass flow 

rate.  

With ring roller die pellet mill, increases in the specific energy requirements 

resulted in an increased pellet durability (Tabil and Sokhansanj, 1996). Fahrenholz 

(2012) demonstrated that an uncertain relationship exists between the PDI and energy 

consumption as numerous variables could allow for the direct or indirect relationship to 

exist. Factors such as the addition of lignosulfinate or steam conditioning could increase 

both PDI and decrease energy consumption; while, adding oil or altering the composition 

could result in a decrease in both. The inconsistent relationship between the PDI and 

energy consumption seen by (Fahrenholz, 2012) was observed in this study. Bulk density 

and energy consumption have been surmised to be related. However, in this study, bulk 

density and pelletization efficiency were not related.  

In relation to the final pelleted product, the fraction of energy that went into 

producing pellets was also shown to be dependent upon the biomass type and moisture 
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content. Across the different biomass types, the percent of final pellet energy used to 

make pellets ranged between 2 to 7% which was generally higher than the 1-3% stated by 

Stelte, Sanadi et al. (2012). Again the higher energy consumption could be an inherent 

property of the flat ring die.  

3.5 Conclusion 

For a flat ring die, biomass moisture content was found to be influential in the 

formation and quality of pellets. For miscanthus, switchgrass, and wheat straw, 

preconditioned moisture contents less than 20% resulted in the poor (0 – 41%) formation 

of pellets. At moisture contents of 20% and 25%, the percentage of pellets formed 

increased to 73 - 96%, and the highest rate of pellet production was observed at the 

highest (25%) moisture content. Additionally the durability of miscanthus, switchgrass, 

and wheat straw pellets responded positively to the increasing moisture content with 

durabilities of 92%, 92% and 96% being observed for the 25% preconditioned moisture 

content. Corn stover demonstrated a different trend with the moisture content as the 

percentage of pellets formed (92% and 93%) was similar at the 15% and 25% moisture 

content level, with a moisture content level of 20 showing the highest percentage pellet 

formation (97%). Similarly, the PDI values for corn stover were also shown to be the 

greatest at the 20% precondition moisture content. Yet, the pellet production rate for corn 

stover decreased with increased moisture. When compared to 15% moisture content, corn 

stover pellet production rates for 20% and 25% moisture contents were reduced by 60% 

and 64%, respectively. For different biomass crops at the varied moisture contents, pellet 

production specific energy was found to range from 101 to 324 kWh/Mg for the flat ring 

die. The production efficiency of flat ring die formed pellets was surmised to limited by 

the pellet production rate. When compared to the uncompressed material, pelleted 

material increased the bulk density by 4.8 - 6.6, 4.5 - 5.8, 4.9 - 6.2, and 6.0 – 7.0 times 

that of uncompressed material for miscanthus, switchgrass, wheat, and corn stover, 

respectively.  
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Figure 3-1 Different Screen Sizes used in the Hammer Mill (from left to right 3 

mm, 5mm, and 10 mm) 
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Figure 3-2 Location of thermocouples on die 

 

 

 

 
Figure 3-3 Pellet durability index apparatus built to ASAE standard S269.4 
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Figure 3-4 Percentage of fines, pellets, and pellet durability index for miscanthus 

at four moisture contents. a,b,c,d Means bearing differing superscripts within a group 

(Fines, Pellets, PDI) are significantly different (p < 0.05) 

 
Figure 3-5 Percentage of fines, pellets, and pellet durability index for switchgrass 

at four moisture contents. Means bearing differing superscripts within a group (Fines, 

Pellets, PDI) are significantly different (p < 0.05) 
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Figure 3-6 Percentage of fines, pellets, and pellet durability index for wheat straw 

at four moisture contents. a,b,c,d Means bearing differing superscripts within a group 

(Fines, Pellets, PDI) are significantly different (p < 0.05) 

 

 
Figure 3-7 Percentage of fines, pellets, and pellet durability index for corn stover 

at four moisture contents. a,b,c,d Means bearing differing superscripts within a group 

(Fines, Pellets, PDI) are significantly different (p < 0.05) 

 



40 

 

 

 
Figure 3-8 Production rate of pellets (g/min) at four moisture content levels for 

the four biomass feedstocks a,b,c, Means bearing differing superscripts within a feedstock 

are significantly different (p < 0.05) 
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Figure 3-9 Bulk density of four feedstocks at three moisture content levels. a,b,c, 

Means bearing differing superscripts within a feedstock are significantly different (p < 

0.05) 
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Figure 3-10 Pellet production efficiency measured in the specific energy 

consumption of the mill per Mg of pellets produced a,b,c, Means bearing differing 

superscripts within a feedstock are significantly different (p < 0.05) 
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 OBJECTIVE 2: THE EFFECT OF ALKALINE HYDROGEN 

PEROXIDE SPRAY PRETREATMENT ON LIGNOCELLULOSIC MATERIAL 

4.1 Summary 

On-farm biobutanol production would require pretreatment to improve the 

digestibility of biomass. Many differing types of pretreatment exist, but the goal of this 

research was to use one that could be easily, safely, and effectively utilized on-farm. 

Thus, oxidative delignification of wheat straw, corn stover, miscanthus, and switchgrass 

using alkaline hydrogen peroxide (AHP) spray was analyzed. AHP is a process that can 

be performed at ambient temperature and pressure making it attractive for potential on-

farm use. For each biomass crop, 300 g of material ground through a 5 mm screen 

received no treatment (control), water, 5% NaOH, 5% NaOH with 2% H2O2, 5% NaOH 

with 5% H2O2, 10% NaOH, 10% NaOH with 2% H2O2, and 10% NaOH with 5% H2O2 

The compositional changes were measured using both detergent fiber analysis for 

potential feed value and compositional analysis based on the National Renewable Energy 

Laboratory protocol. 

The AHP mixture was prepared by grinding small square bales of miscanthus, 

switchgrass, corn stover, and wheat straw with a hammer mill through a 5 mm screen. 

Water, sodium hydroxide, and hydrogen peroxide were sprayed and mixed into the 

biomass sequentially to achieve a final product with a nominal dry matter content of 65% 

DM. Three levels of H2O2, two levels of NaOH, and a control were analyzed in this 

study. After mixing, the treated biomass (300 g) was placed in air tight containers for 

storage and subsequent sampling. the results demonstrated that AHP spray can be a 

beneficial and effective means of biomass pretreatment. 

4.2 Introduction 

As a potential renewable energy source, lignocellulosic material (consisting of 

either crop residues or dedicated biomass crops) is desirable since the material is widely 

available and manifests a limited impact upon the food supply. The transformation of this 

feedstock into a useable fuel for transportation involves the breakdown of the complex 

structures into monomers such as glucose and xylose using enzymatic hydrolysis. After 

the enzymatic hydrolysis, fermentation allows for the formation of biofuels such as 
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ethanol and biobutanol. The formation of sugar for the fermentation step is limited by the 

hemicellulose and lignin that are naturally present within biomass. To reduce the 

deleterious effect that hemicellulose and lignin can have on sugar yield, biomass material 

is typically pretreated using either physical, chemical, physico-chemical, and/or 

biological means. With each methodology of pretreatment there are inherent tradeoffs 

that must be considered. The cost of the chemicals or machinery, potential byproducts 

formed that could inhibit downstream fermentation such as salts, energy intensiveness, 

and hazards associated with handling the product. One form of pretreatment that 

possesses many desirable qualities is oxidative delignification using alkaline hydrogen 

peroxide (AHP). AHP partially solubilizes hemicelluloses, lignin, and silica by using a 

combination of NaOH and H2O2 to improve subsequent enzymatic digestion. AHP has 

been conducted primarily using two different methodologies. One methodology 

developed by Gould (1984) uses a low solids loading (1 - 2% (w/v Distilled H2O)) with 

high concentration biomass relatively high concentration H2O2 of 0.5 g H2O2/g biomass. 

While, the other methodology uses an AHP spray and mixing for a high solids (“dry”, 

~65% DM) pretreatment with a low concentration of NaOH (5% w/w Dry Matter (Dm) 

biomass) and H2O2 (2% w/w DM biomass). The AHP spray pretreatment of the biomass 

material used in this study was based off of the large scale AHP spray treatment of wheat 

straw for use in livestock operations performed by Cameron, Fahey Jr et al. (1990) and 

Willms, Berger et al. (1991). The spray treatment requires less water for pretreatment 

than the typical method of soaking the biomass in AHP. The spray AHP pretreatment has 

been demonstrated to allow for low quality spray AHP forages to perform similar to 

higher quality forages with respect to animal performance characteristics (Cameron, 

1990, Willms, Berger et al., 1991). The use of water is especially important when 

considering the final fuel produced. For fermentation, ethanol production uses 11.4 – 15.1 

L water per L of ethanol produced (3 - 4 gallons water per gallon of ethanol) and 

biobutanol which forms acetone, butanol, and ethanol (ABE) would require substantially 

more water at an estimated 17 L of water per L of ABE (45.4 gallons per gallon ABE) 

(Xue, Zhao et al., 2014). The goal with this trial was to not only apply less water for the 

initial pretreatment step but also less NaOH. Washing will still be required and will likely 

be the largest user of water. This study will seek to analyze and compare the response of 
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AHP spray and alkaline spray for pretreatment and particle sizes of 2 and 5 mm for the 

enzymatic hydrolysis.  

4.3 Materials and Methods 

Samples of Alamo switchgrass (Panicum virgatum) and miscanthus (Miscanthus 

giganteus) were harvested and baled at the University of Kentucky North Farm in 

Lexington, Kentucky in March 2013. Corn stover and wheat straw samples were 

collected from the University of Kentucky C. Oran Little Research Unit, Versailles, 

Kentucky in June and September of 2013, respectively. A No. 20 Hammer mill (C.S. Bell 

Co., Tiffin, OH) was used to grind the biomass through a 5 mm screen and collected 

using a cyclone system (Cincinnati Fan and Ventilation Inc., Mason, OH).  

4.3.1 AHP Pretreatment 

Three hundred grams of the ground biomass were spray treated with their 

respective treatments as shown in Figure 4-1: control (no treatment or raw); water 

(treated with equivalent amount of water and washed); 5% NaOH (w/w dry matter (DM) 

biomass); 5% NaOH (w/w DM biomass) and 2% H2O2 (w/w DM biomass); 5% NaOH 

(w/w DM biomass) and 5% H2O2 (w/w DM biomass); 10% NaOH (w/w dry matter (DM) 

biomass); 10% NaOH (w/w DM biomass) and 2% H2O2 (w/w DM biomass); and 10% 

NaOH (w/w DM biomass) and 5% H2O2 (w/w DM biomass). The NaOH (Fisher 

Chemical, Bridgewater, NJ) for the required pretreatments was diluted in 75 ml of water 

and sprayed onto the biomass as it was being mixed with a plastic bottle sprayer. 

Immediately sequential to this the desired amount of 30% H2O2 (MacNan Enterprises, 

Birmingham, AL) was diluted with water until the final moisture content of each 

treatment was approximately 35% and sprayed on with a plastic bottle sprayer. The 

biomass materials were mixed for 5 minutes. Upon the completion of mixing, the treated 

biomass was placed into an air tight PVC pipe (0.1 m in diameter and 0.31 m in length) 

that was sealed at each end. The biomass material was allowed to react within the 

container for 7 days.  

Following the pretreatment, the pH of the samples was measured according to 

Mishra, Chaturvedi et al. (2000) with 10 g of lignocellulosic material being added to 50 

ml of water with manual mixing of the sample using a stir rod. After the pH 
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measurement, the biomass was washed with 60 ml of DI water per gram of biomass 

through cheese cloth. The biomass was dried at 45 °C for 72 hours and placed into a 

storage container at room temperature until use.  

4.3.2 Detergent Fiber Analysis 

The detergent fiber analysis procedure was performed both prior and subsequent 

to washing for the different biomass types and pretreatments. The composition of the 

biomass was determined using the Ankom 200 (Ankom, Macedon, NY) Filter Bag 

Technique for Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), and Acid 

Detergent Lignin (ADL) in a daisy incubator. Before analysis, the biomass material was 

further ground to 1 mm using a Wiley knife mill (Thomas Scientific, Swedesboro, NJ). 

For this analysis, 0.5 g of each sample was loaded into pre-weighed filter bags. 

Measurements were serially taken as listed: NDF, ADF, and ADL following the Ankom 

procedure.  

The NDF solution (18.61 g ethylenediaminetetraacetic disodium salt (dehydrate), 

6.81 g sodium borate, 4.56 g sodium phosphate dibasic (anhydrous), and 10.0 ml 

triethylene glycol per one liter distilled water (DI) was combined with 4 ml of alpha-

amylase and the filter bags containing 0.5 + 0.05 g of biomass were agitated for 75 

minutes at 100 ± 0.5 °C and a pressure of 69 - 172 kPa (10 - 25 psi). Sodium sulphite was 

added at a concentration of 1g/100ml NDF solution. The NDF solution was drained and 

90 °C DI water and 4 ml of alpha-amylase was used to agitate the filter bags containing 

biomass for two 5 minute cycles. One final agitation was performed with only 90 °C DI 

water. The DI water was drained and superfluous water was removed from the bags by 

squeezing the bags. The bags were completely submerged in acetone for 3 - 5 minutes, 

placed upon a rack and air dried. Upon the complete evaporation of the acetone, the filter 

bags were placed into a 100 °C oven for 2 - 4 hours. The weight after drying was taken 

and used in Equation 4-1. 

% 𝑁𝑁𝑁𝑁𝑁𝑁 =
100 𝑥𝑥 (𝑤𝑤3 − (𝑤𝑤1 𝑥𝑥 𝑐𝑐1))

𝑤𝑤2 𝑥𝑥 𝐷𝐷𝑀𝑀
 

 

Equation 4-1 

 

Where: 

 w1 = Empty bag weight 
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 w2 = Sample weight 
 w3 = Oven dried weight of bag and sample after NDF analysis 
 c1 = Blank bag correction factor (Oven dried blank bag weight/original blank bag 
weight)  

 

The ADF solution (20g cetyl trimethylammonium bromide (CTAB) per 1L 1N 

H2SO4) was agitated with the filter bags for 1 hour. After agitation the filter bags were 

rinsed with 70 - 90 °C DI water for a minimum of 3 rinse cycles with a duration of 5 

minutes per cycle. Similar to the NDF procedure, the bags were completely submerged in 

acetone for 3 - 5 minutes, placed upon a rack and air dried. After complete evaporation of 

the acetone, the filter bags were placed into an oven at 100 °C for 2 - 4 hours. The weight 

after drying was taken and used in Equation 4-2 to calculate the percent ADF. 

% 𝐴𝐴𝐴𝐴𝐴𝐴 =
100 𝑥𝑥 (𝑤𝑤3 − (𝑤𝑤1 𝑥𝑥 𝑐𝑐1))

𝑤𝑤2 𝑥𝑥 𝐷𝐷𝐷𝐷
 

 

Equation 4-2 

Where: 

 w1 = Empty bag weight 
 w2 = Sample weight 
 w3 = Oven dried weight of bag and sample after ADF analysis 
 c1 = Blank bag correction factor (Oven dried blank bag weight after ADF/original 
blank bag weight)  

 

After the completion of the ADF assay, the ADL assay was performed by placing 

the filter bags in 500 ml of 72% (w/w) H2SO4 for 3 hours and rinsed until the pH was 

neutral. Once again, the bags were soaked in acetone for 3 - 5 minutes, air dried, and then 

dried in an oven at 100 °C. The weight was taken after it had cooled to room temperature 

in a desiccator bag and the calculation is shown in Equation 4-3. 

% 𝐴𝐴𝐴𝐴𝐴𝐴 =
100 𝑥𝑥 (𝑤𝑤3 − (𝑤𝑤1 𝑥𝑥 𝑐𝑐1))

𝑤𝑤2 𝑥𝑥 𝐷𝐷𝐷𝐷
 

 

Equation 4-3 

 

Where: 

 w1 = Empty bag weight 
 w2 = Sample weight 
 w3 = Oven dried weight of bag and sample after ADL analysis 
 c1 = Blank bag correction factor (Oven dried blank bag weight after ADL/original 
blank bag weight)  
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The NDF, ADF, and ADL values obtained were used to predict hemicellulose and 

cellulose. Hemicellulose was calculated as the difference in NDF and ADF. Cellulose 

was calculated as ADF minus the ADL. 

4.3.3 NREL National Renewable Energy Laboratory Compositional Analysis 

Procedure 

Following washing, cellulose, hemicellulose, ash, and lignin were also determined 

using the National Renewable Energy Laboratory (NREL) procedure “Determination of 

Structural Carbohydrates and Lignin in Biomass” with the values for cellulose and 

hemicellulose being derived from glucose and xylose, respectively (Sluiter, Hames et al., 

2004). Glucose and xylose were measured using an UltiMate 3000 Standard LC Systems 

(Dionex, Sunnyvale, CA) with a Bio-Rad Aminex HPX-87H column at 50 °C being used 

for the separation and a flow rate of 400 µl/min. The mobile phase was 5 mM H2SO4, and 

concentrations of the sugar monomers was determined using a Shodex RI-101 (Showa 

Denko America, Inc., New York, NY) refractive index detector with Chromeleon 7.1 

software processed the chromatographs.  

4.3.4 Cellulase Activity 

The cellulase used in this study was generously provided by Alltech (Alltech, 

Nicholasville, KY). The NREL procedure LAP 006 “Measurement of Cellulase Activity” 

was used to determine the filter paper units (FPU) per ml of the enzyme (Adney and 

Baker, 1996). For this analysis, a 1 cm x 6 cm strip of number 2 filter paper was rolled up 

and loaded into a glass tube. Another set of tubes was prepared without the filter paper 

and was used for either enzyme blanks or for the glucose curve that had to be developed. 

Into each of the tubes 1 ml of sodium acetate was added. The 2.255 g lyophilized Alltech 

enzyme powder was added to 25 ml of 0.01 M Na-citrate buffer to create the stock 

solution for the enzyme analysis.  

4.3.5 Enzyme Hydrolysis 

Enzyme hydrolysis was conducted in 50 ml centrifuge tubes with 1 g DM of each 

pretreated biomass being loaded into each tube. The biomass solids loading was 2% in a 

0.01 M Na-Citrate buffer (pH 4.8) at 50 °C. Two different enzyme concentrations were 
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compared: 15 FPU/g solids and 60 FPU/g solid. Beta-glucosidase was added at a 

concentration of 2 cellobiase unit (CBU) per FPU. Samples were agitated at 190 rpm 

using an Innova 4200 Incubator Shaker (New Brunswick Scientific, Edison, NJ) for a 

total of 72 hours. Aliquots of 1 ml were taken at hour 6, 12, 24, 48, and 72 hours and 

loaded into 1.5 ml microcentrifuge tubes for sugar analysis. The microcentrifuge tube 

samples were placed into a 95 °C water bath for 5 minutes to stop enzyme activity. 

Afterwards, samples were vortexed and glucose concentration was immediately 

determined using the YSI 2900 Biochemical Analyzer (Xylem Inc. Rye Brook, NY) 

without being frozen or stored. Cellulose conversion % as a result of hydrolysis was 

defined as glucose  

Cellose conversion % =
 [𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒+] − [𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒−] 𝑥𝑥 0.9 𝑥𝑥 100)

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

 

Equation 4-4 

 

Where: 

Glucosee+ = Hydrolysis performed with enzyme 

Glucosee- = Hydrolysis conditions replicated but without enzyme 

Respective pretreatment NREL cellulose = cellulose composition after washing of 

5% NaOH, 5% NaOH with 2% H2O2, 5% NaOH with 5% H2O2, 10% NaOH, 

10% NaOH with 2% H2O2, and 10% NaOH with 5% H2O2 

4.3.6 Statistics 

For this completely randomized experimental design, SAS (Statistical Analysis 

System, Cary, NC) v. 9.4 was used to ascertain the differences in cellulose, 

hemicellulose, lignin, and ash by utilizing PROC GLM. The control and wet were 

considered separately with a 2 (NaOH-5% and 10%) by 3 (H2O2-0%, 2%, and 5%) 

treatment structure. The correlation between the dietary fiber and detergent fiber analysis 

was conducted using PROC CORR and PROC REG.  

4.4 Results  

4.4.1 Effect of Pretreatment  

The pH of the initially applied chemicals were all greater than 11.5. Upon 

removal from the limited air pretreatment chambers (PVC pipe with caps on the end). 
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The pH was also measured after seven days of pretreatment to ascertain the differences 

between the various treatment levels. Across the four biomass types: miscanthus (Figure 

4-2), corn stover (Figure 4-3), switchgrass (Figure 4-4), and wheat straw (Figure 4-5), all 

but one of the treatments possessed a significantly different (p < 0.0073) pH from the 

positive control that received only water. The exception to this was corn stover with 5% 

NaOH and 5% H2O2 treatment which was not significantly different (p = 0.0502) from 

the positive control. Within the specific feedstocks, the pH of the biomass was largely 

influenced by the level of NaOH. As expected, the 10% NaOH pretreated biomass had a 

significantly higher pH for all biomass types then the 5% NaOH pretreated biomass.  

Following washing, the dry matter content was determined in orderto quantify the 

dry matter lost due to pretreatment and washing (Figure 4-6). Across the biomass types, 

the dry matter losses were found to range from 7 to 31% with the lowest numerical losses 

occurring with water pretreated biomass. Additionally, the highest DM losses appeared to 

be associated with the highest concentration of NaOH and to a lesser extent higher 

concentrations of H2O2 for all the biomass materials. 

4.4.2 Detergent Fiber Composition  

The composition of the biomass materials was measured after pretreatment and 

after washing to characterize the effect of pretreatment and washing on the material. This 

also allowed for these data to be compared with prior trials that had been performed using 

detergent fiber analysis. 

4.4.2.1 Miscanthus  

Prior to washing, miscanthus pretreated with water was not significantly different 

from the control while all of the chemical pretreatments resulted in a 20-35% decline in 

NDF (Figure 4-7). For ADF, only the 5% NaOH with 2% H2O2 and 10% NaOH with 2% 

H2O2 resulted in a significant decrease (27%) relative to the control. The water pretreated 

material manifested a 49% increase for ADL; while, 5% NaOH with 2% H2O2 and all the 

pretreatments with 10% NaOH regardless of H2O2 resulted in 17 - 36% decrease in ADL 

when compared to the control. With respect to the control, all the chemical pretreatments 

exhibited a 30 - 57% decrease in hemicellulose. For cellulose, the control and water 
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treatment were similar. None of the chemical treatments were different from the water 

pretreatment in terms of cellulose content. 

After washing (Figure 4-11), the miscanthus demonstrated varied results. For the 

NDF, the water pretreated material demonstrated a 9% increase with respect to the 

control (p < 0.05). When compared to the control, the ADF for all the pretreatments 

including water was found to be significantly higher (p < 0.05) by 5-12%. The ADL 

values demonstrated that only 10% NaOH and 10% NaOH with 5% H2O2 treated 

materials were significantly decreased, by 34%, when compared to the control. 

Furthermore, hemicellulose was decreased by 31 - 52% (p < 0.05) for all the chemical 

pretreatments with 10% with 2% H2O2 and 10% with 5% H2O2 exhibiting the greatest 

decrease across the treatments. Similar to ADF, the cellulose values showed that all the 

pretreated material had a significantly higher cellulose content (p < 0.05) than the control, 

but not significantly different from each other.  

4.4.2.2 Corn Stover 

Prior to washing, corn stover pretreated with water manifested an elevated (13%, 

125%, and 15%) value for ADF, ADL, and cellulose, respectively with a 12% decreased 

hemicellulose content compared to the control treatment (Figure 4-8). For the chemical 

pretreatments (NaOH and AHP), NDF declined 20 - 33% when compared to the control. 

ADL values for the chemical pretreatments were not significantly different from the 

control with the exception of the 10% NaOH and 10 NaOH with 2% H2O2 pretreatments 

which were increased by 23% and 63%. Hemicellulose decreased by 35 - 40% and 59 - 

63% for the 5% NaOH across the differing H2O2 levels and 10% NaOH across the 

differing H2O2 levels. For cellulose only the 10% NaOH, 10% NaOH with 2% H2O2, and 

10% NaOH with 5% H2O2 were decreased relative to the control by 4 - 8%.  

After washing (Figure 4-12), the NDF for all the different pretreatment methods 

was determined to be equivalent to the control. For ADF, the control manifested the 

lowest value for ADF (46%) with the other pretreatments being 19 - 26% higher than the 

control. Concerning ADL, the washed sample was (p < 0.05) greater than the control by 

76%; nonetheless, the chemical pretreatments were found to be equivalent to the values 

obtained for the control. Hemicellulose manifested similarities between the control, 

water, and 5% NaOH sample. The greatest decrease (51% and 47%) in hemicellulose was 
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observed with the 10% NaOH with 2% H2O2 and 10% NaOH with 2% H2O2 and the 

remaining pretreatments decreased the hemicellulose by 30-34%. The water pretreated 

sample demonstrated a 10% increase in cellulose propotion when compared to the 

control. Samples treated with 5% alkaline pretreatments regardless of hydroxide 

treatment were found to be similar and increase the by 18 to 20% when compared to the 

control. Regardless of hydroxide addition levels, the 10% alkaline pretreatment also 

demonstrated a statistically equivalent 27 - 31% increase in cellulose when compared to 

the control. 

4.4.2.3 Switchgrass 

Prior to washing, the NDF for the control and water pretreatment were similar, 

but the chemical pretreatments had a significant decline of 11 – 38% when compared to 

the control (Figure 4-9). For ADF, a mixed result was observed with some chemical 

pretreatments similar to the control, some increased relative to the control, and the 

material treated with 10% NaOH significantly decreased from the control. ADL 

demonstrated that 5% NaOH with 5% H2O2 and 10% NaOH across all the level of H2O2 

decreased relative to the control by 41 to 53%. When compared to the control, 

hemicellulose decreased for all the chemical pretreatments by 17 to 56%. Cellulose also 

exhibited a varied response to pretreatment as 5% NaOH increased (9%) while the 10% 

NaOH with all the H2O2 levels decreased.  

After washing, the NDF for water pretreatment increased by 2% with respect to 

the control yet significantly decreased by 8 - 16% for the chemical pretreatments (Figure 

4-13). ADF values demonstrated that the control and water pretreatment were equivalent, 

but the chemical pretreatments resulted in an increase (8 – 11%) in ADF when compared 

to the control. For ADL, the control, water, and 5% NaOH were demonstrated to not be 

significantly different. When compared to the control, the ADL values were shown to 

decrease by 15%, 16%, 27%, 36%, and 44% for 5% NaOH with 2% H2O2, 5% NaOH 

with 5% H2O2, 10% NaOH, 10% NaOH with 2% H2O2, and 10% NaOH with 5% H2O2 

respectively. For hemicellulose, the water treatment increased ADL by 2% relative to the 

control. The chemical pretreatments resulted in decreased (23-49%) hemicellulose when 

compared to the control with the greatest decrease occurring with 10% NaOH with 2% 

H2O2 and 10% NaOH with 5% H2O2. Concerning cellulose, the control and washed 
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sample were not significantly different. Regardless of hydrogen peroxide levels, the 5% 

alkaline treatment resulted in increased cellulose by 13 to 14 %. While, 10% NaOH, 10% 

NaOH with 2% H2O2, and 10% NaOH with 5% H2O2 resulted in elevated cellulose when 

compared to the control by 19%, 21%, and 21%  

4.4.2.4 Wheat Straw  

Prior to washing, the NDF for all the chemical pretreatments manifested a 

decreased (6 - 34%) composition relative to the control (Figure 4-10). Large decreases in 

NDF were observed for wheat straw pretreated with 10% NaOH at all H2O2 levels. ADF 

increased (5%) relative to the control for 5% NaOH and decreased (20 - 23%) for 10% 

NaOH across the different H2O2 concentrations. ADL was shown to increase only when 

pretreated with 5% NaOH. Hemicellulose decreased by 18 - 53% with the chemical 

pretreatments. Cellulose exhibited a 4% decrease for 5% NaOH with 2% H2O2 and 16 - 

18% decrease for 10% NaOH across the different H2O2 concentrations. 

Following washing (Figure 4-14), NDF was shown to be increase with water 

pretreatment compared to the control and decrease for all of the chemical pretreatments 

relative to the control. When compared to the control, the NDF values for the water 

pretreatment demonstrated a 4% increase while the other remaining pretreatments 

exhibited a decrease of 3-8%. The control and the water samples were not significantly 

different for ADF; nonetheless, the chemical pretreatments all resulted in values that 

were 8-12% higher than that of the control. ADL values demonstrated that the chemical 

pretreatments were not significantly different from the control with the exception of 10% 

NaOH with 2% H2O2 and 10% NaOH with 5% H2O2 which were decreased by 26 and 

42%, respectively. For water, hemicellulose values were increased by 8% with respect to 

the control. For the chemical pretreatments the hemicellulose was decreased by 17 - 35% 

with the greatest decrease observed for 10% alkali pretreatment. Cellulose values were 

not significantly different for the control, water, and 5% NaOH. The remainder of 

pretreatments were increased by 12 – 21% with respect to the control.  

4.4.3 NREL Composition 

The composition of the biomass material was determined following the NREL 

procedure (4.3.3) after the material was pretreated and washed. In the case of the control, 
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the material was washed as in the chemical pretreatments, but no water was added during 

the pretreatment.  

4.4.3.1 Miscanthus  

Acid insoluble lignin (AIL), acid soluble lignin (ASL), and cellulose 

demonstrated (p > 0.05) no significant differences due to pretreatment (Figure 4-15). For 

ash, 5% NaOH with 2% H2O2 demonstrated the lowest value when compared to all the 

other samples with the exception of 5% NaOH. For hemicellulose, no significant 

difference existed between the differing pretreatment methods and the control. 

4.4.3.2 Corn Stover 

For the various pretreatments, AIL, ASL, ash, and cellulose were all statistically 

similar (Figure 4-16). For hemicellulose the control and water were determined to be 

equivalent; nonetheless, 5% NaOH and 5% NaOH with H2O2 were shown to have 

increased hemicellulose by 33% when compared to the control. 

4.4.3.3 Switchgrass 

For AIL, ASL, ash, and cellulose, no significant difference existed among the 

pretreatments (Figure 4-17). Furthermore, hemicellulose values for the pretreatments 

were determined to not be significantly different from the control. 

4.4.3.4 Wheat Straw 

AIL, ASL, ash, and cellulose demonstrated no significant difference among the 

pretreatments (Figure 4-18). For hemicellulose, the control was also found to not be 

significantly different from the control but differences among pretreatments existed.  

4.4.4 Comparison Between NREL and Detergent Fiber Composition 

The correlation between NREL and the detergent fiber analysis was determined to 

ascertain how changes in each would be related. For cellulose, the correlation across the 

different biomass materials was r = 0.459 (p = 0.081) (Figure 4-19). For hemicellulose 

and lignin, the correlation across the differing biomass types between the two methods 

was r = 0.0863 (p = 0.639) and r = 0.0734 (p < 0.0001) respectively (Figure 4-20 and 

Figure 4-21). The regression data for cellulose, hemicellulose, lignin was characterized in 

Table 4-1. 
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4.4.5 Enzyme Hydrolysis  

4.4.5.1 Miscanthus  

Figure 4-22 summarizes the cellulose conversion from pretreated and washed 

miscanthus at two particle sizes (2 and 5 mm) and two enzyme loadings (15 and 60 

FPU/g DM). Across the differing particle sizes, the 60 FPU/g substrate manifested a 14% 

higher (p < 0.001) glucose yield than that of the 15 FPU/g substrate. For the 2 mm 

material, cellulose conversion was increased by 17% with the higher enzyme 

concentration (60 FPU/g substrate); while, the 5 mm only saw a 10% increase due to the 

higher concentration of enzyme.  

With regard to particle size, the 5 mm particles manifested a 6% lower cellulose 

conversion when compared to the 2 mm material. For the 15 FPU/g substrate enzyme 

loading, the 2 and 5 mm glucose yields were not significantly different yet the highest 

yield was exhibited by the 60 FPU/g substrate and smallest particle size (2 mm).  

For the differing particle sizes and enzyme concentrations, the control and water 

pretreated samples demonstrated equivalent (p < 0.05) values. For the samples that had 

been treated with similar amount of NaOH, the addition of hydrogen peroxide was found 

to not significantly increase the conversion efficiency of miscanthus with the exception of 

10% NaOH with 2% H2O2 with a 2 mm particle size and enzyme loading of 60 FPU/g 

which had the highest conversion efficiency for miscanthus. Although, the standard 

deviation of the results were also the highest. 

4.4.5.2 Corn Stover 

Across the particle sizes, 60 FPU/g allowed for 16% higher cellulose conversion 

than the 15 FPU/g (Figure 4-23). Within the 5 mm and 2 mm particle size, the higher 

enzyme concentration resulted in 18% and 15% more cellulose conversion. The influence 

of particle size on cellulose conversion showed that the 5 mm material allowed for 7% 

more conversion than the 2 mm material (p < 0.05).  

Within the particle size and enzyme concentration, at a 5% NaOH pretreatment 

level, the addition of H2O2 did not significantly improve the cellulose conversion (Figure 

4-23). A mixed effect was observed at the 10% NaOH with equivalent AHP pretreatment 

resulting in 9% increase (2% AHP with 15 FPU/g at 5 mm); decreased 13 to 15% (for all 
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5% AHP) and 4% (2% AHP with 60 FPU/g at 5 mm); and with the remainder of samples 

exhibiting no change. 

4.4.5.3 Switchgrass 

Across the different particle sizes, the 60 FPU/g substrate manifested a 17% 

higher cellulose conversion when compared to the 15 FPU/g substrate ( 

Figure 4-24). For the 2 mm material, the 60 FPU/g substrate resulted in a 13% 

higher conversion and 20% higher conversion for the 5 mm when compared to the 15 

FPU/g substrate. When compared to the 2 mm, the 5 mm material displayed a 4% lower 

mean for cellulose conversion.  

The control and water pretreated material manifested equivalent cellulose 

conversion, but the chemical pretreatment resulted in greater conversions as shown in  

Figure 4-24. The numerically highest cellulose conversion occurred with the 2 

mm material at 60 FPU/g substrate and 10% NaOH with 2% H2O2 pretreatment. At the 

highest NaOH loading level, the 5% addition of H2O2 demonstrated a decrease of 10%, 

11%, and 11% for 2 mm with 15 FPU/g, 2 mm with 60 FPU/g, and 5 mm with 15 FPU/g, 

respectively. When compared to the 5% NaOH level, the 2% and 5% H2O2 additions 

resulted in a decrease of cellulose conversion by 12 to 23% within their respective 

enzyme and particle sizes.  

4.4.5.4 Wheat Straw 

Across the various particle sizes, the 60 FPU/g substrate demonstrated 20% more 

conversion than 15 FPU/g substrate (Figure 4-25). Within particle size, the 60 FPU/g was 

18% and 22% greater than 15FPU/g for 2 mm and 5 mm material. Concerning the effect 

of particle size, the 5 mm material displayed 4% lower conversion than the 2 mm 

material. 

When compared to the alkaline treatment only, the addition of hydrogen peroxide 

demonstrated a varied effect with increases, decreases, and no change being observed 

(Figure 4-25). When compared to the 5% NaOH pretreatment, the 5% NaOH with 

2%H2O2 at 15 FPU/g substrate allowed for 10% and 15% increase in cellulose 

conversion for 2 mm and 5 mm material, respectively. When compared to the 10% NaOH 

pretreatment, the AHP pretreatments (2% and 5%) at 60 FPU/g demonstrated a 6 to 13% 
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decrease in conversion for the different particle sizes. Additionally, the 15 FPU/g resulted 

in a 12% decrease for the 2 mm 5% AHP pretreated material and a 7% decrease for the 5 

mm 2% AHP pretreatment when compared to the respective 10% NaOH pretreatments.  

4.5 Discussion 

4.5.1 Effect of Pretreatment 

Similar to the other trials that had used AHP spray pretreatment (Atwell, 1990, 

Cecava, Merchen et al., 1990, Cameron, Cameron et al., 1991, Willms, Berger et al., 

1991, Chaudhry and Miller, 1996), this experiment did not adjust the pH during 

pretreatment. Without the corrections, the pH for AHP tends to drift downward with the 

formation of acetic acid by the biomass and hydrogen peroxide breakdown (Williams, 

2014). Furthermore, pH corrections during pretreatment have been demonstrated to allow 

for greater enzyme hydrolysis yield, but this can be remediated by allowing the 

pretreatment reaction time to increase (Banerjee, Car et al., 2011). This study differs from 

most of the soaking AHP pretreatments in that instead of 24 - 48 hours being used for the 

reaction time, a 7 day pretreatment was used. When performed at farm scale, AHP 

pretreatment would not be adjusted for pH during pretreatment and long pretreatment 

times would be feasible. 

Upon completion of the 7 day pretreatment, the addition of H2O2 was found to not 

significantly alter the pH when compared to the samples with similar alkaline loading 

with the exception of miscanthus at the 10% NaOH level. Gray (2013) used a hydrogen 

peroxide solution with a pH of 3.337, and the pH of the acetonitrile stabilized hydrogen 

peroxide used in this analysis was 2.204. Gray (2013) did not report the pH after 

pretreatment, but a much higher concentration of NaOH (40 g/g DM) and H2O2 (0.5 g/g 

DM) was used compared to this study with a NaOH loading of 0.05 g/gDM or 0.1g/g DM 

and 0 to 0.05g H2O2/g DM used in this study. The high NaOH loading in Gray’s study 

probably limited the decrease in pH due to the addition of H2O2 that was observed in this 

study with miscanthus with the increasing addition of H2O2.  

For the differing biomass types, a similar trend with dry matter loss during 

pretreatment was observed. The increasing concentration of NaOH was generally shown 

to increase the amount of dry matter lost. To a lesser extent increasing concentrations of 



58 

 

H2O2 showed a slight trend in increased dry matter loss. These results are comparable to 

other studies (Chen, Chen et al., 2012) where dry matter losses of 27-35 % occurred 

during pretreatment of three biomass feedstocks (silvergrass, napiergrass, and rice straw) 

with 10% Ca(OH)2 or 3% NH4OH. For corn stover, it has been proposed that NaOH 

loading over 8% may improve conversion, but this improvement is offset by the 

destruction of carbohydrates during pretreatment (Chen, Stevens et al., 2013). 

4.5.2 Detergent Fiber Composition 

Per the ANKOM protocol, sodium sulphite was added during the NDF analysis. 

The addition of sodium sulphite reduces the nitrogen contamination by removing 

proteinacous material from the fiber (Mertens, 2002, Udén, Robinson et al., 2005). For a 

number of years within the research community, concerns have existed with the use of 

sodium sulphite since measured ADL values were shown to be lower than ADL values 

for samples which had been analyzed without sodium sulphite. Research with forage 

legumes suggests that the difference in ADL values with and without sodium sulphite 

could be due to proanthocyanidins (Krueger, Albrecht et al., 1999). Nonetheless, the most 

recent recommendations still suggest using sodium sulfite (Mertens, 2002, Udén, 

Robinson et al., 2005) since it will remove any skewing from proteins. Although none of 

the biomass materials used in this study are considered to have high values for protein 

content, the use of sodium sulfite was considered acceptable with respect to the ADL 

determination. 

Across the different biomass types, the composition after chemical pretreatment 

and prior to washing demonstrated a general decrease in the NDF and hemicellulose with 

the ADF, ADL, and cellulose demonstrating varied results relative to the control. After 

washing, the ADF and cellulose composition increased while hemicellulose decreased 

with respect to the control. Prior to washing, the NDF decrease relative to the control was 

presumed to be related to a rinsing effect during the NDF analysis. The NDF analysis 

dissolves all of the easily soluble sugars, pectin, and protein. Thus, it is not unconceivable 

this would also remove the chemicals that were applied during pretreatment. The NDF 

after washing resembled the value for the control more closely. The increased ADF after 

washing was reflective of hemicellulose being decreased. Decreases in hemicellulose 

have been observed with both alkaline and AHP pretreatments.  
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The addition of H2O2 was expected to decrease the lignin content, however a 

varied response was observed in these experiments. Based on the detergent fiber analysis, 

ADL was not strongly influenced by the addition of H2O2. In addition, the AIL was not 

influenced by the H2O2 levels applied based on the NREL protocols. Based on both 

measurement techniques, the addition of H2O2 would appear to have a minor impact on 

the lignin content of the four biomass feedstocks investigated under these pretreatment 

conditions.  

The percentage point decrease in NDF and ADF of the 5% NaOH and 2% H2O2 

treated wheat straw prior to washing was similar to results obtained by Cameron (1990). 

Wet AHP pretreated wheat straw demonstrated an approximately 13% decrease in 

hemicellulose (Lewis, Montgomery et al., 1988).  

4.5.3 NREL Composition 

Contrary to what Modenbach (2013) saw with corn stover, no significant 

increases in the proportion of cellulose were observed with the alkaline addition at 4 or 

10%, nonetheless, numerical increases in the proportion of cellulose were observed for 

chemical pretreatment. For miscanthus, corn stover, switchgrass, and wheat straw, wet 

AHP resulted in increased cellulose and decreased hemicellulose and lignin contents 

(Gray, 2013); however, the concentration of NaOH and H2O2 was much higher than 

utilized in the current study. Furthermore, the current experiment used a greater volume 

of water for washing along with a longer duration of pretreatment. The altered 

hemicellulose of (Gray, 2013) could also be explained as Modenbach (2013) 

demonstrated with corn stover, that concentrations of NaOH over 20 g/g DM resulted in 

decreased hemicellulose. Across the measured biomass materials there was no clear and 

consistent alteration in the NREL composition yet enzymatic hydrolysis would indicate 

that a distinct difference existed between the controls and chemical pretreatments. Thus, 

perhaps the lignin and hemicellulose matrix was not solubilized but rather modified as 

with mild pretreatments such as hot water and dilute acid pretreatment (Selig, Viamajala 

et al., 2007, Donohoe, Decker et al., 2008). 
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4.5.4 NREL and Detergent Fiber Composition Comparison 

The composition of the different biomass crops was determined using the 

detergent fiber analysis and NREL methodology with the goal being to see if one was 

more indicative of the potential benefits of pretreatment to enzyme hydrolysis. Detergent 

fiber analysis has been used for a number of years in forage studies and animal trials 

since its original conception in the early 1960s. Consequently, the detergent fiber analysis 

possesses a large data set of knowledge to provide comparable values. For the different 

biomass materials analyzed in this study, the detergent fiber analysis demonstrated a 

decreased hemicellulose content for the chemical pretreatments for both prior and 

subsequent to washing. In contrast, composition determined using the NREL protocols 

demonstrated an equivalent hemicellulose value after washing. This could explain why 

there was no correlation for hemicellulose. 

As one of the primary barriers to digestion, lignin represents an important part of 

the plant structure and accurate lignin measurements are essential. The NREL method 

allows for the determination of both soluble and insoluble (Klason) lignin. Generally, 

ADL and Klason have been demonstrated to be an important indicator of subsequent 

digestion for lignocellulosic material with the exception of C4 (corn) crops (Jung, 

Mertens et al., 1997). Klason lignin will typically provide a higher (2 – 4 times) value for 

lignin than ADL as some of the lignin is lost during the ADF analysis with the low 

sulfuric acid conditions removing phenolic compounds. Jung, Mertens et al. (1997) stated 

that conceptually ADL and Klason lignin are inherently similar processes, but the order 

of reactions is different. For ADL, the low concentration of sulfuric acid is used before 

the high concentration; while, the opposite is true for the Klason lignin (acid insoluble 

lignin, AIL). The NREL procedure seems to provide more resolution for changes in the 

lignin composition relative to the ADL values. With the biomass materials analyzed this 

study, the R2 value for AIL and ADL was highest when compared to the cellulose and 

hemicellulose methods.  

4.5.5 Enzyme Hydrolysis  

As predicted for all of the biomass crops, a higher concentration of enzymes 

demonstrated the greatest conversion efficiency. Reducing the particle size from 5 mm to 
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2 mm after pretreatment also demonstrated an improved conversion with all the crops 

except corn stover.  

4.5.5.1 NaOH Loading 

The enzyme hydrolysis demonstrated varied results for each of the biomass types, 

but an increasing concentration of NaOH was shown to increase the enzyme hydrolysis 

effectiveness for the different biomass types by almost doubling the conversion 

efficiency. For corn stover, other researchers have shown that increasing the 

concentration of NaOH loading from 4 to 10 g/g DM increased cellulose conversion by 

35 to 215% (Chen, Stevens et al., 2013, Modenbach, 2013). This increase in enzymatic 

hydrolysis was likely the result of structural and morphological changes that can occur 

when alkali concentrations are greater than 6%. For NaOH, the concentration of NaOH 

(g/g DM) was found to more indicative of potential digestion than the solution 

concentration (g/ml of chemical solution). Another study with corn stover, found that 

increasing the NaOH concentration in mustard straw, the main effect of NaOH 

significantly increased cellulose regardless of hydrogen peroxide addition, yet the highest 

level IVODM was observed with the addition of H2O2 (Mishra, Chaturvedi et al., 2000). 

4.5.5.2 H2O2 Loading 

The addition of 2% hydrogen peroxide in this study was shown to have mixed 

results, either numerically decrease or increase the effectiveness of enzyme hydrolysis 

when compared to the respective alkaline treatment. Across biomass types, the 5% H2O2 

was shown to reduce the glucose yields during hydrolysis. These results are contrary to 

the results seen in other studies which have specifically analyzed AHP as a means to 

improve the subsequent digestion over the sole addition of NaOH (Gould, 1984, Gould 

and Freer, 1984, Banerjee, Car et al., 2011, Li, Foster et al., 2012, Williams, 2014). The 

main explanation for this difference would be related to how the pretreatment was 

performed (time, temperature, NaOH loading, moisture content, etc.), sample storage, 

and further processing before enzyme hydrolysis.  

A number of the studies (Gould, 1985, Banerjee, Car et al., 2011, Gray, 2013) 

used “wet AHP pretreatment” or “slurries” as a means for pretreating the material. The 

increased water content during pretreatment has been shown to increase the effectiveness 
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for wheat straw pretreatment in some studies (Gould, 1985), yet (Chaudhry, 1998) 

demonstrated that biomass responded similarly at different moistures. For AHP 

pretreated corn stover slurry, increasing the solids loading from 12.7 to 29.3% (w/w) for 

pretreatment resulted in increased glucose yields yet further increasing the solids loading 

from 29.3 to 33.3% resulted in a decrease in glucose yield after 24 h of pretreatment 

(Williams, 2014). For the spray pretreatment, mixing of the material took place while the 

AHP spray was applied and after which no further agitation was performed during 

pretreatment. For the “wet or slurry” pretreatment, the samples are either agitated (gyro-

shaker ~ 200 rpm) or mechanically mixed with a stir bar throughout the pretreatment 

process. Gould (1985) showed simply soaking the material caused no morphological 

changes yet there were benefits to mechanical agitation. Another important factor was the 

concentration of H2O2, used in wet pretreatment which was generally higher and used 

concentrations as high as 0.5 g/g DM.  

Sample storage prior to hydrolysis involved drying which has been presumed to 

lead to the phenomenon of hornification (Minor, 1994, Diniz, Gil et al., 2004, Jeoh, 

Ishizawa et al., 2007, Luo and Zhu, 2011). Hornification, irreversible alterations of the 

physical/chemical characteristics of biomass due to drying, was surmised to limit the 

effectiveness of AHP when compared to similar NaOH pretreatments. Increased duration 

of drying and drying methodology (oven vs air) can enhance the severity of hornificaiton 

which in turn reduces the saccharification efficiency (Luo and Zhu, 2011). For AHP 

pretreated wheat straw, water absorption has been demonstrated to decrease by 17% due 

to drying at 110 °C for 24 hours (Gould, 1985). Wet (non-dried) pretreated wheat straw 

has been shown to have 12% higher enzymatic hydrolysis yields over the equivalent 

dried samples (Sun and Chen, 2008). For this study, drying at 45°C for 3 days would 

have reduced the internal surface area created by the chemical pretreatments that enhance 

enzyme saccharification. The further processing (grinding) that occurred in other studies 

prior to enzymatic hydrolysis could have been a key difference leading to the significant 

differences between tests (Lewis, Montgomery et al., 1988, Banerjee, Car et al., 2011, Li, 

Foster et al., 2012). (Minor, 1994, Diniz, Gil et al., 2004, Jeoh, Ishizawa et al., 2007, Luo 

and Zhu, 2011).  
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Changes in the enzymatic hydrolysis due to hornification could have skewed the 

results in this study. However, all samples were subjected to drying after pretreatment 

and it is believed that comparisons between treatments and feedstocks would be useful.  

4.5.5.3 Corn Stover 

Corn stover was the only one of the biomass feedstocks in this study in which the 

5 mm material showed a 16% increase in cellulose conversion than material that was 

ground through a 2 mm screen. Generally, the surface area to volume increases with 

decreasing particle size, and this increase in the surface area allows for more potential 

locations for the enzyme complex to bind (Vidal Jr, Dien et al., 2011). Nonetheless, 

particle size reduction does not guarantee improved cellulose conversion characteristics. 

Ammonia fiber explosion (AFEX) pretreatment demonstrated paradoxical behavior for 

particle size with reduced glucose conversion for corn stover that had been ground to a 

smaller particle size (10 to 0.85 mm) (Chundawat, Venkatesh et al., 2007). The rationale 

for the decreased activity with smaller particle size in the AFEX study was surmised to 

be attributed to different composition of the smaller particle sizes. Reducing the particle 

size of dilute NaOH pretreated corn stover from 2 to 0.25 mm has been shown to increase 

the glucose yields by 42.5% (Li, Ruan et al., 2004). Nonetheless, this same study found 

that with homogenization combined with the NaOH pretreatment found that reduced 

particle size (2 mm to 0.25 mm) resulted in glucose yields that were not significantly 

different. For this study, the 2 mm material was ground directly from the 5 mm pretreated 

corn stover. Thus, the difference was surmised to be related to material lost during the 

grinding process.   

Corn stover that had passed through a 0.25 - 0.5 mm screen prior to hydrolysis, 

neutralized with HCL (not washed), heated to 90 °C for 15 minutes, and lyophilized 

(Banerjee, Car et al., 2011) demonstrated increasing glucose yield (51 to 84%) with the 

increasing H2O2 concentration (0.125  50 g/g DM) with an enzyme loading of 45 

FPU/g.   

4.5.5.4 Switchgrass 

For switchgrass, the AHP pretreatment showed either equivalent or reduced 

cellulose conversion values when compared to the equivalent pretreatments with only 
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alkaline loading. Switchgrass pretreated as an AHP slurry material demonstrated 

increasing activity with increasing (0 – 0.25 g H2O2/g DM) H2O2 concentration 

(Williams, 2014). 

4.5.5.5 Wheat Straw 

The addition of hydrogen peroxide to wheat straw also resulted in mixed results 

with regard to cellulose converted. Lewis, Montgomery et al. (1988) used a soaking 

pretreatment with 10% H2O2, no washing, and further grinding after pretreatment (10 mm 

for pretreatment and ground further through a 425 µm screen after pretreatment) and 

found that H2O2 increased the in vitro dry matter degradation by 31% compared to NaOH 

alone. (Lewis, Holzgraefe et al., 1987) demonstrated that material ground to 10 mm and 

soaked in 10% AHP demonstrated equivalent dry matter disappearance in sacco for AHP 

and NaOH pretreated material with the straw in this study being kept wet before use. For 

an AHP slurry, increasing the level of H2O2 from 0 to 4.5% (v/v) resulted in greater sugar 

yields, up to H2O2 concentrations of 2.12% upon which further additions did allow for the 

for greater increases in sugar yields (Saha and Cotta, 2006).  

4.6 Conclusion 

Alkaline hydrogen peroxide spray pretreatment of corn stover, switchgrass, wheat 

straw, and miscanthus demonstrated mixed results. After pretreatment and washing, the 

cellulose content trended upward and the hemicellulose content trended downward based 

on the detergent fiber analysis. As expected, the cellulose content increased and the 

hemicellulose content decreased to a greater extent when pretreated with higher 

concentrations of NaOH. However, no clear trends were observed in cellulose and 

hemicellulose contents when higher concentrations of H2O2 were utilized.  

Using the NREL composition procedure, minor changes in the composition were 

observed after washing between the various pretreatment methods. The concentration of 

NaOH was found to significantly influence the enzymatic hydrolysis of each biomass 

type. Although, the addition of H2O2 spray with the conditions analyzed in this study 

were found to not significantly enhance cellulose conversion. With respect to particle 

size, the reduction of particle size from 5 to 2 mm after pretreatment was found to be 

beneficial for all of the biomass material except corn stover. At the higher enzyme 
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concentration, the biomass materials also demonstrated the greatest cellulose conversion. 

Drying after the pretreatment (hornificaiton) could have partially confounded the results 

for the chemical pretreatment.  

 

  



66 

 

 

 

Figure 4-1 Pretreatments and conditions applied to 300 g (dry matter) of each 

biomass type 

 



  

 

 
Figure 4-2 Miscanthus pH following 7 day pretreatment. Error bars represent the standard deviation from three replicates.  

 

 

 

 

 

 

a

b b b

c
d

e

0

2

4

6

8

10

12

14

Water 5% NaOH 5% NaOH &
2% H202

5% NaOH &
5% H202

10% NaOH 10% NaOH &
2% H202

10% NaOH &
5% H202

pH

67 



  

 
Figure 4-3 Corn stover pH following 7 day pretreatment. Error bars represent the standard deviation from three replicates. 
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Figure 4-4. Switchgrass pH following 7 day pretreatment. Error bars represent the standard deviation from three replicates. 
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Figure 4-5 Wheat straw pH following 7 day pretreatment. Error bars represent the standard deviation from three replicates. 
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Figure 4-6 Dry matter loss after 7 day of pretreatment 
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Figure 4-7 Miscanthus detergent fiber composition prior to washing 

1Hemi= Hemicellulose (NDF – ADF) 
2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscript’s within a group are significantly different (p < 0.05) 
 
i 
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Figure 4-8 Corn stover detergent fiber composition prior to washing 

1Hemi= Hemicellulose (NDF – ADF) 
 2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-9 Switchgrass detergent fiber composition prior to washing 

1Hemi= Hemicellulose (NDF – ADF) 
 2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-10 Wheat straw detergent fiber composition prior to washing 

1Hemi= Hemicellulose (NDF – ADF) 
 2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-11 Miscanthus detergent fiber composition after washing 

1Hemi= Hemicellulose (NDF – ADF) 
2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
 
 
 

76 



  

 
Figure 4-12 Corn stover detergent fiber composition after washing 

1Hemi= Hemicellulose (NDF – ADF) 
 2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-13 Switchgrass detergent fiber composition after washing 

1Hemi= Hemicellulose (NDF – ADF) 
2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-14 Wheat straw detergent fiber composition after washing 

1hemi= Hemicellulose (NDF – ADF) 
 2Cellulose = ADF – ADL 
a,b,c,d,e,f,g,Means bearing differing superscripts within a group are significantly different (p < 0.05) 
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Figure 4-15 Miscanthus composition determined using NREL procedures after pretreatment and washing 
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Figure 4-16 Corn Stover composition determined using NREL procedures after pretreatment and washing  
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Figure 4-17 Switchgrass composition determined using NREL procedures after pretreatment and washing  
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Figure 4-18 Wheat straw composition determined using NREL procedures after pretreatment and washing 
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Table 4-1 Regression characteristics for listed figures 
Figure Dependent Variable Independent Variable Slope Intercept R2 
Figure 4-19 NREL Glucose Cellulose (ADF - ADL) 0.50 ± 0.18 0.23 ± 0.08 0.2113 
Figure 4-20 NREL Xylose Hemicellulose (NDF-ADF) 0.14 ± 0.30 0.20 ± 0.07 0.0074* 
Figure 4-21 NREL Acid Insoluble Lignin ADL 0.37 ± 0.06 -0.001 ± 0.0133 0.5382 
± standard error 
* correlation not significant     
      

 

 

84 



  

 
Figure 4-19 Average cellulose composition after washing determined using Ankom and NREL procedure for all crops studied 
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Figure 4-20 Average hemicellulose composition after washing determined using Ankom and NREL procedure for all crops 

studied 
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Figure 4-21 Average lignin composition after washing determined using Ankom (Acid Detergent Lignin, ADL) and NREL 

(Acid Insoluble Lignin, AIL) procedure for all crops studied 
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Figure 4-22 Cellulose conversion after enzymatic hydrolysis at 72 hours with a pH of 4.8 with a 2% solids loading at two 

enzyme concentrations (15 and 60 FPU/g DM) from pretreated and washed miscanthus ground through a 2 and 5 mm screen 
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Figure 4-23 Cellulose conversion after enzymatic hydrolysis at 72 hours with a pH of 4.8 with a 2% solids loading at two 

enzyme concentrations (15 and 60 FPU/g DM) from pretreated and washed corn stover ground through a 2 and 5 mm screen 
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Figure 4-24 Cellulose conversion after enzymatic hydrolysis at 72 hours with a pH of 4.8 with a 2% solids loading at two 

enzyme concentrations (15 and 60 FPU/g DM) from pretreated and washed switchgrass ground through a 2 and 5 mm screen 
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Figure 4-25 Cellulose conversion after enzymatic hydrolysis at 72 hours with a pH of 4.8 with a 2% solids loading at two 

enzyme concentrations (15 and 60 FPU/g DM) from pretreated and washed wheat straw ground through a 2 and 5 mm screen 
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 OBJECTIVE 3: GIS COMPARISION OF DISTRIBUTED 

NETWORK OF BIOBUTANOL PREPROCESSING FACILITIES 

5.1 Summary 

Traditional centralized processing facilities were compared to the proposed 

distributed preprocessing with centralized refining facilities in terms of transportation 

efficiencies. Centralized was defined as transport of corn stover in bales directly from the 

field to the refinery. Distributed preprocessing with centralized refining was specified as 

corn stover bales from the field to the biobutanol bunker and from the bunker to the 

centralized refinery with a dewatered crude biobutanol solution. Complete dewatering 

was assumed to be achieved at the distributed bunker facilities. For both transportation 

systems, the location of the corn fields and refinery were fixed. With the distributed 

system, the biobutanol bunker locations were variable and dependent upon differing 

maximum transportation (8 - 80 km) cutoffs for biomass transport from the field to 

biobutanol bunkers. With this case study, site specific transportation costs and biobutanol 

production capacities were developed for the differing transportation systems. The 

distributed designs produced a 38 - 59% reduction in total transportation cost when 

compared to the centralized system. Furthermore, the distributed design showed 

decreased (50 - 90%) fuel use and emissions when compared to the centralized system. 

The GIS transportation model demonstrated that “on-farm” biofuel production could be 

an effective means of producing biofuel and reducing the transportation costs. 

 

5.2 Introduction 

5.2.1 Butanol Rationale 

The Renewable Fuel Standard Two (RFS2) mandated that 21 billion gallons of 

renewable fuel be produced from cellulosic biomass by 2022 (Urbanchuk and 

Association, 2009). One of the potential second generation biofuels to meet this demand 

is biobutanol. Biobutanol as a fuel source has many desirable qualities when compared to 

fuel ethanol. Biobutanol has a higher energy density (29 vs 19 MJ/L), is less miscible, 

can be combined at higher concentrations with gasoline without engine modification 
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(40% for butanol vs 10% for ethanol), and is less corrosive than ethanol (Bankar, Survase 

et al., 2013). 

Despite these advantages, many challenges exist in the commercial viability of 

biobutanol or bioethanol. There is a direct relationship between the size of the 

bioprocessing facility and the distribution of biomass surrounding the plant, but 

diseconomies of scale are encountered as the size of the bioprocessing facility increase 

beyond a point due to transportation costs (Kumar and Sokhansanj, 2007). Biomass 

transportation costs for biomass ethanol processing facilities have been demonstrated to 

be 35 - 60% of the total cost depending on the conversion rate (Judd, Sarin et al., 2011). 

Transportation of bulk biomass (round baled, square baled, or ground) is constrained by 

volume rather than by weight because transportation vehicles will reach a maximum 

volume before the maximum weight is achieved due to the biomass density. The low bulk 

and energy density make the minimization of biomass transport costs imperative (Zewei, 

Shastri et al., 2011). Preprocessing biomass is one way to improve transport efficiency. 

Preprocessing for transport typically involves increasing the bulk and energy density of 

material through the formation of cubes, briquettes, and pellets (Morey, Kaliyan et al., 

2010). However, the benefits of increased density are only realized when the 

preprocessing facility is located in close proximity to biomass production. Since the 

production of biomass (residue or dedicated biomass crops) is naturally distributed, 

consequently, the collection points for the preprocessing would also have to be 

distributed. From a logistics standpoint, satellite storage facilities (biomass collection 

points) with the ability to densify the material have been demonstrated to be effective 

means for reducing the delivered cost of corn stover (Judd, Sarin et al., 2012). The 

location and size of these preprocessing/processing facilities is primarily dependent upon 

the spatial availability of biomass and the distance along the road network to the 

preprocessing facility. The spatial availability of biomass and transportation network is 

reconciled with the use of suitability and optimization analysis. Suitability analysis 

allows for the potential bioenergy sites to either include or preclude potential locations 

based upon the positive or negative attributes of the surrounding area. Optimization of the 
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system uses various methodologies, such as location-allocation to determine the most 

desirable locations for bioenergy facilities. 

One of the proposed solutions to reduce biomass transportation costs is the 

localized or on-farm production of crude biobutanol using distributed on-farm (or 

cooperative operated) preprocessing facilities. The conversion of biomass to a crude 

dewatered, biobutanol stream will be accomplished on-farm utilizing a distributed 

farmer/cooperative operated processing facility. This is believed to result in a more 

energy dense product that can be more efficiently transported for further processing than 

hauling the raw, baled biomass. The crude, dewatered biobutanol stream is assumed to be 

acetone (5%), butanol (95%), and ethanol (<0.1%) (ABE) (Gunawardhana, 2014). From a 

volumetric energy content perspective, corn stover bales with an approximate density of 

256 kg/m3 (16 lb/ft3) would possess 4.67 GJ/m3 while completely dewatered crude 

biobutanol would possess an approximate energy density of 29.97 GJ/m3. Furthermore, 

other studies with biodiesel have demonstrated that small-scale on-farm production of 

biodiesel to be energetically plausible and efficient methodology for biofuel production 

(Fore, Porter et al., 2011). 

The assessment of localized biofuel production is dependent upon a number of 

geospatial data sources, such as mapsheet and plans, aerial/remote sensed images, 

surveys, and digital data products (Graham, English et al., 2000, Malczewski, 2004). The 

transformation of this geospatial data into useable data is aided by the use of Geographic 

Informational Software (GIS). The use of GIS to identify bioenergy crop yield dates back 

to studies performed by Ramsey and Cushman in the 1980’s and biomass facility location 

optimization back to 1996 with the Biomass Resource Assessment Version One 

(BRAVO) model (Noon and Daly, 1996).  

Many different methodologies have been utilized to ascertain the acreage and 

yield of biomass through spatial analysis. The United States Department of Agriculture 

National Agricultural Statistics Service (NASS) provides annual data for crop production 

on a county and state level and has been used as a foundation in multiple studies to 

estimate the supply of biomass (Petrolia, 2008, Ekşioğlu, Acharya et al., 2009, Alex 

Marvin, Schmidt et al., 2012). For studies that use NASS or equivalent production 
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statistics, the spatial variation of biomass has typically been assumed to be uniformly 

distributed across the study area (Voivontas, Assimacopoulos et al., 2001, Shastri, 

Hansen et al., 2011). 

To identify specific areas of crop production within a study site at a more detailed 

scale than uniformly distributed NASS data, cropland data layers (CDL) have been used. 

CDL was developed by the USDA from satellite imagery and has been demonstrated to 

accurately identify 85% to 95% of the major crop ground (USDA, NASS et al., 2014). A 

constant yield (kg/ha) has generally been assumed in studies that utilize CDL or 

equivalent data layers (Perpina, Alfonso et al., 2009, Ha, Munster et al., 2014). To 

account for spatial variation in yield, soil type and other attributes can be combined with 

the CDL to more accurately quantify potential yields (Graham, English et al., 2000)  

5.2.2 Candidate Site Selection for Biomass Fields and Processing Facilities 

The selection of biomass facility locations using GIS has taken many formats and 

depends largely upon the scale in which the researchers have analyzed the area. For 

studies that focus on state, regional, or national models, a common assumption can be 

made that either the centroid of the county (Parker, Tittmann et al., 2010) or county seat 

is used as the primary collection point or location for the county. Grid design has also 

been used to predict biomass location (Wilson, 2009) with biomass origins and 

destinations being located at the center of these grids (Perpina, Alfonso et al., 2009). Grid 

designs lend themselves well to biomass analysis with the formation of rasters and the 

use of flow direction tools. The intersection of different transportation systems has also 

been used as potential candidate facility locations (Haddad and Anderson, 2008). Road 

intersections and junctions with other transportation networks have been demonstrated to 

be viable points for candidate facility site selections as these points are automatically 

created and represent the convergence point for differing transportation systems.  

5.2.3 Transportation Network Analysis 

Transportation network analysis can be used to exclusively analyze differing 

modes of transportation for biomass (road, rail, or barge), or combinations of transport 

systems can be examined in a multimodal analysis (Haddad and Anderson, 2008, Zhang, 

Johnson et al., 2011). The creation of transportation networks within GIS allows for the 
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transportation costs to be more accurately represented and evaluated. Within the network 

analysis extension, ArcGIS possesses many different features for transportation analysis: 

routing, vehicle routing, service area, origin to destination (O-D) cost matrix, and 

location-allocation. Of these, location-allocation is the most versatile as this problem 

allow for the optimization of facility location to minimize travel distance required, 

number of facilities, time, or other factors.  

 Objective 

The objective of this analysis was to evaluate the potential transportation benefits 

of distributed preprocessing of baled corn stover to produce a crude, dewatered 

biobutanol (butanol, ethanol, and acentone) stream versus transportation of baled corn 

stover to a centralized refinery (Figure 5-1). The two scenarios investigated were:  

a. Transportation of baled corn stover to a centralized biorefining facility that 

performs all of the conversion and refining to a final product (referred to as centralized 

processing and abbreviated as CP); 

b. Distributed processing at on-farm biobutanol facilities where the maximum 

one-way transportation distances for the baled corn stover from the field to the on-farm 

facility was 8, 16, 32, 48, 64, and 80 km. The crude biobutanol stream was dewatered and 

transported from individual on-farm facilities to a centralized refiner to produce the final 

products (referred to as distributed processing and abbreviated as DP). 

The primary focus of the study was the costs associated with transportation. This 

model focuses on how transportation costs vary at differing transportation radii for 

intercounty scales and their application to the development of distributed on-farm 

biomass preprocessing facilities. Additionally, this study addressed how spatial variation 

in production influenced biomass availability with the inclusion of corn yield data for soil 

types across the state.  

5.3 Materials and Methods 

5.3.1 Geographic Information Systems (GIS) 

ArcMap 10.2.1 (Environmental Systems Research Institute, Redlands, CA) was 

used to visualize and process data for this analysis with ModelBuilder being used to 
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automate geoprocessing operations. Corn stover residue was considered to be the primary 

source of lignocellulosic material to narrow the scope. The collection of corn stover was 

assumed to be economically viable and an activity that all corn growers would engage in. 

The 2013 corn planted cropland data raster layer identified by CropScape was considered 

as the potential acreage for the collection of corn stover (NASS, 2013). GIS was utilized 

to combine this data with the line vector road network (Kentucky Transportation 

Cabinet), the line vector rail network (Kentucky Transportation Cabinet), area vector 

network for Kentucky counties (Network), and raster soil maps from the Soil Survey 

Geographic (SSURGO) database to predict grain yields and biomass availability that 

have been developed over the past century (Soil Survey Staff, 2014). Four different 

United States Department of Agriculture (USDA) agricultural regions within Kentucky 

were analyzed and are shown in Figure 5-2. 

The network analysis extension of ArcMap was utilized to determine the optimum 

location of the on-farm biomass processing points. What made this trial unique was that 

the location-allocation tool was specifically used to minimize facilities for different 

maximum transportation distances within the agricultural regions across Kentucky.  

5.3.2 Data Preparation/Geoprocessing 

5.3.2.1 Soil Quality and Corn Stover Yield 

The tabular data in Microsoft Access for the soil shapefiles were converted into 

Excel sheets. The SSURGO soil shapefiles (85 total for Kentucky) were added to the map 

and joined using the “mukey” field with the Excel tabular data containing crop yield in 

kg/hectare. The yield values were added to a new field within the soil data shapefile. 

The CDL raster had to be transformed into a shapefile using the raster to polygon 

tool with the corn crop type being selected before the shapefile was converted for ease of 

representation and manipulation. The CDL polygons formed were not smoothed to allow 

for increased computational speed. This resulted in disjointed areas of production that did 

not represent actual fields. The aggregate polygon tool was used to combine polygon 

areas of corn production within a specified distance of 100 meters into fields and allow 

for only those greater than 2 hectares (5 acres) to be created. Furthermore, the aggregate 

polygon tool was used to fill holes in the CDL with 0.8 hectares (2 acres) representing the 
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minimum size hole that was filed. The identified corn producing fields were split by 

using the road and rail network line shapefiles. Splitting increased the number of 

identified Kentucky corn fields to 43,132 from 16,788. Of this number, only 22,367 were 

selected again to be greater than 2 hectares. Before splitting, the largest corn field 

identified was 29,712 hectares (73,421 acres) and after splitting the largest field identified 

was 1,419 hectares (3,508 acres). The ability to split a polygon (identified corn fields) 

using lines (road and rail network) was not an option that was available within the 

standard GIS toolbox. Thus, splitting required the use of multiple GIS tools. The corn 

fields were transformed using the feature to lines tool and merged with the road and 

railroad lines. A temporary polygon shapefile was created from these merged lines using 

the feature to polygon tool. The geometric intersection of the overlapping portions from 

the corn field shapefile before splitting and the temporary polygon was conducted using 

the identify tool. The shapefile now possessed the split attributes. 

After splitting, the identified corn field polygon was intersected with the 

SSURGO soil based grain yield data. For this analysis, the mass of stover available was 

surmised to be equal to the mass of grain (1:1 ratio of corn grain to stover) (Haddad and 

Anderson, 2008, Ekşioğlu, Acharya et al., 2009). An additional field was created in the 

intersected attribute table which would allow for the area of each individual soil type 

within the intersected polygon to be calculated. The area of each soil type and associated 

corn yields allowed for the overall estimation of stover yields. Intersected soils were 

dissolved based on the overall corn field identified and possessed accumulated corn 

stover yields. Subsequently, the feature to point tool could be used to transform the 

polygons to points which allowed for the spatial data for yields to be prepared for 

subsequent network analysis functions. These farm fields served as demand points for the 

on-farm biomass processing facilities. 

County level corn production data was obtained from NASS to ensure that the 

results from this analysis did not deviate meaningfully from the predicted yields and 

hectares. A paired t-test was performed using SAS (Statistical Analysis System) v. 9.4 to 

compare the NASS and GIS calculated values.  
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5.3.2.2 Trucking Assumptions 

Trucking was assumed to be performed using a class 8 vehicle with a loaded fuel 

consumption of 0.008941 L/Mg-km and unloaded fuel consumption of 0.025671 L/Mg-

km (Davis, Diegel et al., 2014). The bales were assumed to weigh 714 kg (1575 lb) at a 

moisture content of 23% w.b. and would result in a payload of 23.6 Mg (52,000 lb). 

Payloads under 4.5 Mg (10,000 lb) were neglected. Diesel fuel was assumed to cost $1.06 

L-1 ($4.00/gal) and labor costs were assumed to be $18 h-1. Fixed loading and loading 

cost were assumed $5.29/Mg of corn stover. For both the trucking and loading 

contracting was assumed. 

5.3.3 Location-Allocation 

5.3.3.1 Corn Field to On-Farm Biomass Processing Facility 

Location-allocation, within the network analyst function, was used in GIS to 

select the optimal locations for the on-farm processing facilities. The road shapefile was 

transformed into a road network in GIS and network junctions were automatically created 

at each intersection. The candidate facilities for on-farm processing facilities were located 

along these network junctions (at road intersections). The road data set was used to 

narrow the potential number of candidate facility locations by selecting against “CITY” 

type roads; this would prevent the location of an on-farm processing facility within city 

limits. The road shapefile was input into the feature vertices to points tool and created 

points that dangled (located at the end of the road-dead ends) from the network. The 

dangled points created were used in combination with select by location to remove these 

points from the analysis.  

The demand points (fields over 2 ha where corn was grown) were loaded into the 

location-allocation model by region. Harvesting costs were neglected for this analysis and 

mid-size rectangular bales with dimensions of 0.9 x 1.2 x 2.4 m (3 x 4 x 8 ft) were 

assumed to be at the field edge. This analysis assumed only 25% of the total corn stover 

would be removed from the field for biobutanol to account for the residue that would be 

used by livestock, soil stability, and other purposes (Alex Marvin, Schmidt et al., 2012). 

The minimum bunker size was assumed to be 63.5 Mg (70 US tons) and each bunker 

would be able to complete four 80 day “treatment” cycles per bunker per year. Therefore, 
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the minimum quantity of corn stover that could be delivered to a potential on-farm 

processing system was 254 Mg (280 tons) per year. 

Loading the demand points into the location-allocation tool was not time 

intensive, yet loading was improved by creating a spatial index for the road network. The 

bales on the field edge were assumed to be located at a point that was closest to any road. 

The tolerable impedance (km from demand point to facility) was user defined and for this 

study was selected to be 8, 16, 32, 48, 64, and 80 km.  

5.3.3.2 Minimize Facilities Problem 

Every rural road intersection was a potential on-farm processing facility. The 

number of biobutanol bunker facilities within the areas of interest were minimized using 

the Minimize Facilities Problem Solver within the Location-allocation feature. The 

Minimize Facility Problem actually seeks to solve a Maximize Coverage problem with 

the impedance cutoff being specified as the maximum one-way travel distance with the 

number of facilities (P) being minimized by the solver (Church and Velle, 1974). 

Maximize: 

𝑧𝑧 = �𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

Subject to the following constraints: 

 

� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑁𝑁𝑖𝑖

≥ 𝑦𝑦𝑖𝑖;  𝑖𝑖 ∈ 𝐼𝐼 (1) 

�𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐽𝐽

= 𝑃𝑃 (2) 

𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑖𝑖 = (0,1);  𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽  

𝑁𝑁𝑖𝑖 = �𝑗𝑗 ∈ 𝐽𝐽�𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆�  
 

 

where i,I = index and set of demand points (fields) ; j,J = index and set of 

candidate facility locations (bunkers); S = cutoff distance (tolerable impedance); dij = 

shortest distance between demand point i and candidate facility site j; Ni = set of facilities 

eligible to cover point i within a distance less than or equal to S; ai = population or 

resources to be served at demand point i; P = number of facilities to be located; xj =1 if 
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facility is chosen, = 0 otherwise, yi = 1 if site is allocated to a facility, = 0 otherwise. 

Facilities within the specified cutoff distance must be greater than or equal to 1 for yi to 

equal 1 as indicated by Constraint (1). Constraint (2) forces the number of facilities to be 

equal to P, and P was determined by the solver. 

5.3.3.3 Bunker to Refinery 

For the subsequent location-allocation analysis, the chosen biobutanol bunker 

facilities were designated as the demand points. The conversion efficiency for the bunker 

system was assumed to be 167 liters of ABE product per dry Mg of corn stover with only 

dewatering of fuel taking place at the biobutanol bunker. The dewatered ABE solution 

would be shipped by tanker truck to the refinery for separation. Four potential refineries 

within the state were located by an internet search and were geolocated so that a points 

shapefile. These were located near Ashland, Hopkinsville, Louisville, and Somerset, KY. 

For this analysis, all the refineries were assumed to have capabilities to process the 

biomass for the centralized design or the crude biobutanol for the distributed processing 

design. The transport of the crude butanol to and from the refinery was performed using a 

class eight vehicle with an approximately 26,500 liter (7,000 gallons) tanker trailer with a 

minimum load for transport being 2,650 liters. The minimum petroleum volumetric 

loading and unloading rate of 570 liters per minute (150 gallons per minute) was assumed 

along with an additional 20 minutes to connect and disconnect the associated equipment 

(Jones and Stan, 2006). The distribution of the fuel past the refinery was not considered 

in this analysis but the assumption was made that the refineries would use their existing 

distribution system for the fuel produced.  

5.3.3.4 Transportation to the Refinery - P-median Problem 

Transportation costs between the biobutanol bunker and the refinery, as well as 

the cost between the farm field and refinery was minimized using the P-Median Problem 

(PMP). The PMP seeks to minimize the impedance (distance traveled). For the PMP, the 

number of refineries was defined as four with no impedance being specified. The PMP 

seeks to solve the following (Longley and Batty, 1996, Church, 1999, Daskin, 2011): 
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Minimize: 

𝑍𝑍 =  �𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

𝑑𝑑𝑖𝑖𝑖𝑖 

Subject to the following constraints: 

 

�𝑥𝑥𝑖𝑖𝑖𝑖 = 1; 𝑖𝑖 ∈ 𝐼𝐼
𝑗𝑗

 (3) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≤  𝑦𝑦𝑖𝑖;  𝑖𝑖 ∈ 𝐼𝐼 𝑗𝑗 ∈ 𝐽𝐽  

�𝑦𝑦𝑗𝑗
𝑗𝑗

= 𝑝𝑝 (4) 

𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑗𝑗  ∈ {0,1} 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽  

 

where i,I = index and set of demand points (bunkers or fields); j,J = index and set 

of candidate facility locations (refineries); dij = shortest distance between demand none i 

and candidate facility site j; ai = amount of demand at node i; p = number of facilities to 

be located; xij = 1 if site i is allocated to a facility j, = 0 otherwise; and yj =1 if facility is 

chosen, = 0 otherwise. Constraint (3) allow for demand points to be restricted to located 

facilities; while, constraint (4) fixes the number of facilities to be equal to P. 

5.3.4 ModelBuilder 

Within GIS, Modelbuilder was used to combine differing ArcGIS functions into 

specific tools and automate the workflow within the developed models. Modelbuilder has 

been used in other studies to create and execute tools associated with the conversion of 

cropland data layer (CDL) for service area calculations (Martinez and Maier) and for 

mobile pyrolysis units [12]. For this analysis, four separate tools were created to process 

the data. Joining cropland data to crop yields for the given soil type was one of the tools 

developed. Going from this CDL to the point shapefile with the total yield of corn stover 

was another. Evaluation of the transportation cost from the farm to the biobutanol facility 

was analyzed as another separate tool. Transportation from the biobutanol bunker to the 

refinery was the final model developed.  
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5.4 Carbon Dioxide Equivalents (CO2-e) 

The Alternative Fuel Life-Cycle Environmental and Economic Transportation 

(AFLEET) Tool (Laboratory, 2014) was used to determine the total GHG footprint for 

each region, cutoff distance, and transportation design. Default values were used with the 

exception of the following: Kentucky was selected as the state, combination long haul 

was selected as the vehicle type, 2000 was assumed for semi-truck model year. The GIS 

calculated distances traveled and fuel usage were inputs to determine the overall CO2-e 

produced. 

5.5 Results 

5.5.1 Area and Yield Data 

The total corn production and hectares predicted by the GIS model on a county 

basis were compared to the NASS reported values. For the 73 Kentucky counties with a 

reported corn harvest area in the 2013 NASS Survey, there was no significant difference 

(p = 0.9866) between CDL identified corn ground (greater than 2.02 hectares) and the 

NASS survey data. For the 74 counties with a 2013 NASS corn yield value, there was a 

significant difference (p < 0.001) between the NASS Survey results and the yield values 

calculated by the model. Using the soil attributes from the SSURGO model, an estimated 

average yield of 7,700 kg/ha (123 bu/acre) was calculated. The metadata indicated that 

the SSURGO yield values for corn were last updated in 2008 and the average corn yields 

have increased since that time. The previous 35 years of NASS yield data for Kentucky 

counties was fit to a linear regression line and predicted an average yield for 2013 of 

8,980 kg/ha (143 bu/acre). A 17% adjustment factor was used to account for the lower 

values within the GIS calculation. The average yield for the CDL identified corn fields 

was 8368 kg/ha (133 bu/acre) and was increased by 17% to 9760 kg/ha 156 bu/acre). The 

comparison of the 2013 NASS and the adjusted GIS yield data demonstrated no 

significant difference.  
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5.5.2 Regional Location-Allocation 

5.5.2.1 Potential Sites Within a Region 

Based on the road networks, 20,529; 23,726; 19,837; and 16,723 potential bunker 

preprocessing sites were potentially available in the Bluegrass, Central, Midwestern, and 

Purchase regions respectively. These were locations where two or more rural roads had 

an intersection, that were not within city limits, and were not on a dead end road. Figure 

5-3 demonstrates the selection of potential sites meeting the siting criteria. 

5.5.2.2 Identified Bunker Sites Meeting Capacity Constraints 

With the 8 km travel distance, in the Bluegrass and Central regions only 45% and 

70% of potential facilities located at road intersections possessed enough corn stover to 

satisfy one biobutanol bunker, respectively. The Midwestern and Purchase Agricultural 

Regions demonstrated a higher concentration of potentially available corn stover at a 

maximum distance of 8 km, with 98% and 91% of the potential facilities identified 

satisfying the minimum biomass requirements, respectively. Within the Bluegrass and 

Central Regions, minimum biomass availability was still an issue at some potential 

facility locations with the 16 km maximum travel distance. With a maximum 

transportation distance 32 km or greater, achieving the minimum biomass supply at all 

bunkers was no longer an issue. The number of candidate facilities to be constructed in 

each region for the various transportation distances is shown in Figure 5-4. 

5.5.2.3 Fuel Consumption  

Across the regions, the sum of the fuel used going from the field to the bunker (F-

B) increased with increasing maximum transportation distance (Figure 5-5). F-B 

transportation within the Bluegrass Region at the 80 km maximum one way transport 

distance resulted in a 9.6 fold increase in fuel consumed when compared to 8 km 

maximum distanced. Similarly, the Midwestern, Purchase, and Central Regions also 

showed 7.2, 8.0, and 9.5 fold fuel consumption increases, respectively for the 80 km 

maximum transport distance compared to the 8 km maximum.  

For the differing transportation constraints from F-B, fuel use between the bunker 

and refinery (B-R) were found to be relatively similar within a region. Within the 
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Bluegrass Region, B-R fuel consumption increased by 20 percent with the increasing 

transportation cutoff from F-B. However in the other regions, the B-R fuel consumption 

decreased by up to 12% with the increasing F-B transportation constraint. For these 

regions the decreased number of facilities resulted in a reduced fuel usage. The 

breakdown of percentage of fuel across regions is shown in Figure 5-6. F-B fuel use was 

determined to be 28% at the 8 km transportation distance and increased to 79% at the 80 

km transportation distance.  

For the centralized analysis, going directly from the field to the refinery resulted 

in a greater overall fuel use than the distributed system with bunkers. The total fuel used 

for the four Regions is shown in Figure 5-5 comparing the distributed system with the 

centralized system. As expected, the fuel consumption increased as the on-farm bunker 

facilities drew a wider catchment area. Fuel required for the centralized method of 

transport resulted in over double the fuel use at 80 km in the Bluegrass Region. A similar 

trend is seen in the other regions as well with the centralized fuel use being 107%, 163%, 

and 108% higher for the Midwestern, Purchase and Central Regions, respectively. 

5.5.2.4 Transportation Costs 

The transportation costs followed a similar trend as the fuel usage. Across the 

regions, the average cost to get the material from the farm field to the bunker was 

$6.97/Mg for the 8 km maximum distance and $10.51/Mg for the 80 km transport 

distance with small differences seen between the regions, as shown in Figure 5-8. The 

cost to deliver corn stover to the bunker was largely dependent upon the cost to load and 

unload the truck with the shorter transportation distances to the bunker. Approximately 

54 to 92% of the transportation cost at the shorter transportation distances was due to 

handling (both loading and unloading). Bunker to Refinery costs were similar within a 

region regardless of the maximum transportation distance from field to bunker. Across 

regions the unit transport cost ($/L) were similar, but the average amount of biomass 

processed at each bunker varied within each region. The production of corn stover by 

region showed the greatest production in the Midwestern Region followed by the 

Purchase, Central, and Bluegrass Regions (Figure 5-7).  
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Across the regions, distributed processing with bunkers resulted in lower (42-

62%) total unit transport costs than the centralized design Figure 5-9. The lowest total 

transportation cost was found with the most distributed system processing system with a 

maximum transportation distance of 8 km for each region. Within the regions, the total 

unit cost of transport for the 80 km maximum impedance to the bunker was 45-56% 

greater than the 8 km maximum impedance distance.  

5.5.2.5 Carbon Dioxide Emissions 

Across all regions, the annual weight of CO2 equivalents per Mg (kg CO2e/Mg) of 

biomass produced as a direct result of truck transport increased (114 - 3090%) for the CP 

method than for the DP method as shown in Figure 5-10. For DP, the CO2e/Mg for the 

Bluegrass Region was observed to be 3 – 232% higher than the other regions. For the CP 

transportation design, the Purchase Area demonstrated a 25-51% increase in the 

CO2e/Mg when compared to the other regions.  

5.6 Discussion 

5.6.1 Area and Yields 

The spatial variability of corn production, size, and location in Kentucky was 

resolved by utilizing ModelBuilder to combine the various forms of data and their 

attributes. Granted other biomass resources could be procured in a real world situation, 

yet corn stover was assumed to be the minimum baseline biomass supply for this 

analysis. The use of CDL allowed for corn production areas within Kentucky to be 

identified at a more detailed scale than NASS. CDL, developed by the USDA from 

satellite imagery, has been demonstrated to accurately identify 85 to 95% of the major 

crop production areas (USDA, NASS et al., 2014). The CDL harvest area was equivalent 

to that of the NASS survey data. However, the yield estimates had to be adjusted. A 

constant yield (kg/ha) has been assumed in studies that utilize CDL or equivalent data 

(Perpina, Alfonso et al., 2009, Ha, Munster et al., 2014). To better account for spatial 

variation in yield, soil type and other attributes have been combined with the CDL 

(Graham, English et al., 2000). Corn production was identified to take place upon some 

non-traditional soils and consequently yield data for these soils were lacking. Wilson 



 

107 

 

 

(2009) used the NASS county yields to create an adjustment factor for calculated crop 

yields to account for inconsistent data. Similarly, an adjustment factor of 17% was used 

in this trial to account for differences between the NASS and GIS calculated corn yields. 

Prior to the adjustment, the data “appeared” to consistently underestimate the total 

potential corn yields. The underestimation of the productivity (kg/hectares) could be 

attributed to the development of crop yield data based upon 2008 soil estimates 

(Metadata). In this trial, the soils with “no data” for the corn yields composed 4% of the 

acreage across the state and no adjustment or correction factor was used. As corn 

production averages increase across the state, a correction factor would have to be 

developed for future analysis to account for the future increases. 

The automated geoprocessing of crop production data using ModelBuilder was 

surmised to be easier than manual identification. Faulkner (2012) visually identified corn 

and wheat production areas for the Purchase Region using Google Maps and calculated 

transportation costs to potential biorefineries using Google Maps. This methodology 

lacked repeatability and was labor intensive; while, GIS manifested less human induced 

error and reduced processing time (Martinez and Maier, 2011). Taking into account the 

spatial and yield variation in field level production area allowed for the interpretations to 

be more representative of actual transport costs than assuming uniformity of yield and 

distribution (Jenkins, Arthur et al., 1983).  

5.6.2 Location-Allocation 

Noon Noon, Zhan et al. (2002) stated that the capital and operational cost are 

largely equivalent, but the cost associated with biomass procurement can have a great 

influence upon economic viability of biofuel processors. The location-allocation tool 

allowed for the site specific transportation costs to be developed as well as site specific 

corn stover availability given the varied distance constraints. The suitability aspects of 

this analysis were primarily reliant upon the distributed nature of the biomass and the 

exclusion of points within 305 m (1000 ft) of “CITY” roads along with dead end points in 

the network being removed from the Region analysis. Removing the candidate bunker 

facilities from the “CITY” and dead ends makes the location-allocation analysis more 

computationally feasible [13] and allows the bunker site selection to be focused upon 
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rural areas. Factors other than “CITY” roads could have been used in regards to the 

suitability analysis.  

Road intersections and junctions with other transportation networks have been 

demonstrated to be viable points for candidate facility site selections as these points are 

automatically created and represent the convergence point for differing roads. From a 

practical standpoint, this is a reasonable constraint and most producers would locate 

bunker facilities at road intersections. 

The minimize facilities tool within ArcMap was used to locate the biobutanol 

bunkers while most other studies have used PMP as the primary location-allocation tool 

for biofuel facilities (Möller, 2003, Dong, 2008, Sultana and Kumar, 2012). The 

objectives of PMP and minimize facilities are different. With PMP, the number of 

facilities and the maximum impedance can be modified to achieve the minimized 

weighted or unweighted transportation cost in distance or time. In the case of centralized 

processing, PMP was used because four potential refining locations were identified 

within the state. Minimize facilities seeks to maximize the coverage of all the demand 

points within the given impedance. In the case of on-farm facilities, the locations were 

determined and in this case the minimum number of bunker facilities for each 

transportation distance were desired and the minimize facilities tool was most 

appropriate. With equivalent impedance and facilities parameters, the location of fire 

stations in Kuwait demonstrated no difference between the use of PMP and minimize 

facilities, but the researchers surmised this could have been partially due to the reduced 

spatial variation in demand points (Algharib, 2011). PMP was used to analyze transport 

from the biobutanol bunker to the refinery as minimizing the transport cost where 

locating the number and location of the centralized refineries was not the overall goal. A 

weighted factor consisting of fuel consumption was used for location-allocation analysis 

transport to the bunker and refinery. 

5.6.3 Regional Variations 

The prevailing thought was that there would be a greater spatial distribution of 

biomass within the Bluegrass Region as compared to the other regions and would 

manifest a higher cost of transport from the farm to the bunker. Nonetheless, costs per 
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Mg were demonstrated to be relatively equivalent for each region. This was largely due 

to the high cost associated with bale loading and unloading relative to transporting corn 

stover over a short distance. From an overall transportation perspective, the use of 

distributed preprocessing of corn stover into a dewatered, crude biobutanol solution 

resulted in a greater cost saving than the exclusive use of centralized refineries. The 

greatest saving from a transportation standpoint was demonstrated with a maximum 

distance of 8 km from the field to the bunker. The capital and operational costs associated 

with the bunkers would be similar with the exception of the heat and processing units. 

However, these capital and operational costs were excluded from the current analysis as 

some have yet to be finalized. The inclusion of these costs would be utilized to ultimately 

determine the optimal travel distance to the bunker. With a 18,225 km2 area and greater, 

You and Wang (2011) demonstrated that distributed ethanol processing resulted in the 

minimized overall (capital, production, and transportation) cost and minimized unit cost 

when compared to a centralized design. The transportation costs of the biobutanol bunker 

system seem promising, but the capital and processing cost would ultimately determine 

the viability of ABE production.  

Within this study, the transportation related carbon dioxide equivalents were 

found to be higher for the centralized transport as compared to the distributed centralized 

transport. You and Wang (2011) had demonstrated that from a transportation standpoint 

the distributed-centralized approach resulted in more total transport greenhouse gas 

(GHG) emissions. The difference between the two studies could be related to the use of 

actual road networks in this study. Across all DP transportation distances, the greatest 

amount of CO2-e/Mg baled corn stover was found in the Bluegrass Region. The elevated 

GHG emissions per bale would be indicative of the more disperse nature of production 

taking place in that region. For the centralized design, the Purchase Area exhibited the 

greatest CO2-e/Mg baled and this was surmised to be related to more biomass being 

transported from the lower edge of the state and the road network in the far western 

corner of the state. For travel distances ranging from 32 km to 160 km, the integrated 

biomass supply analysis and logistics (IBSAL) model found GHG emissions for trucking 

to be higher at 49.875 CO2-e/Mg (Sokhansanj, Kumar et al., 2006).  
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This analysis assumed corn stover was delivered and processed as large square 

bales. Differences in the type of bale (round versus square) was ignored for this analysis. 

Bale type would only change the analysis if the load/unloading characteristics and overall 

mass loaded onto a truck were different. Transportation of bales was assumed to be 

conducted only with class eight vehicles that are the largest trucks available for moving 

biomass. 

5.6.4  Limitations 

Models are only as resilient as the data that was obtained, and this is one of the 

main limitations of the GIS approach (Panichelli and Gnansounou, 2008). Yearly 

variability in the biomass supply would only account for changes in acreage planted and 

not with other intrinsic factors such as rainfall, growing degree days, dates planted, or 

harvest time that would determine the amount of corn stover available. Differing weather 

patterns could be used to adjust the overall yield and equipment required on the farm 

(Shastri, Hansen et al., 2011). Harvested dates can affect the total ratio of corn 

grain:stover ratio but would vary depending upon a number of factors. Furthermore the 

model only considered corn stover. The use of other crop residues or dedicated biomass 

crops would alter the location of potential facilities. Nonetheless, the methodology 

developed here for corn stover could be used for the other biomass resources.  

Differing unit costs and energy usage exist for the differing baling (square vs 

round) schemes in switchgrass (Kumar and Sokhansanj, 2007) and distinct advantages 

and disadvantages exist with the differing baling methods (Larson, Mooney et al., 2010). 

The conversion of biomass into crude biobutanol uses a bunker system designed for the 

use of square bales.   

From a completeness of data standpoint, the road shapefile (AllRds) lacked speed 

limits. The average speed of transportation vehicles for biomass has been defined by 

whether the vehicle is loaded or unloaded [30], by type of road [27], and by the specified 

road statute within GIS shapefiles [15]. The use of speed limits would have enhanced the 

analysis, but the assumed speed was in line with average speed used in equivalent studies 

(Noon, Zhan et al., 2002). 
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The most time consuming portion of this analysis was the location-allocation 

minimize facilities tool. The processing time for minimized facilities was an average of 

20 minutes for an 8 km maximum distance and over an hour for the 50 km distance. In 

order to improve processing time, the number of candidate sites for on-farm conversion 

facilities would need to be reduced with further selection criteria for the suitability 

analysis. The farms themselves could be used at the potential candidate facility sites as 

the results of the transportation analysis indicated that the 8 km travel distance would be 

preferable.  

Economies of scale for the on-farm processing versus the centralized processing 

facilities could have impacts far greater than the transportation. The proposed on-farm 

biomass processing scheme should have minimal capital costs, but would still be 

sensitive to economies of scale. To date, no concrete numbers are available to estimate 

the costs associated with the on-farm processing system. It was assumed that the crude 

ABE solution was fully dewatered. On-farm dewatering research is still on-going, but the 

investments (in terms of energy and capital) to dewater the crude biobutanol solution 

could have a major impact.  

5.7 Conclusion 

Within GIS, the use of the actual road network and calculated corn yields based 

on soil type resulted in a more representative measurement of transportation costs. Site 

specific transportation costs were developed for corn stover and crude biobutanol. Across 

the regions, the total unit cost ($/L) was found to be similar within the differing 

transportation cutoff to the biobutanol bunker. The number and capacity of biobutanol 

bunker facilities was characterized by the differences in region and cutoff distance to the 

bunker. This GIS based model provides a good tool for the development of an overall 

comparison between the distributed-centralized and centralized production of biobutanol. 

Across the regions, distributed-centralized production exhibited a lower total 

transportation cost than the centralized design.   

The use of ModelBuilder for this analysis allowed for automated workflow and 

could be performed with differing biomass types, transportation costs, and areas. In this 
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analysis, the minimize facility tool demonstrated effectiveness to locate biobutanol 

facilities.  
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Figure 5-1 Illustrative example of transportation designs analyzed. The location of 

the farm field and refinery was fixed. The location of the bunker was minimized with 

respect to maximum transportation distance and location of corn fields 
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Figure 5-2 Agricultural district where corn production was prevalent in the state 

[Bluegrass Region (15,319 km2), Purchase Area (9,357 km2), Midwestern Region 

(16,422 km2), Central (23,792 km2)] and counties that were randomly selected [Logan 

(1,443 km2) and Mercer (655 km2)] for individual analysis 
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Figure 5-3 (a) Highlighted squares are network junctions that were selected as 

potential candidate sites for biobutanol bunker facilities while points located along “city” 

roads were excluded from the analysis. (b) Highlighted squares are network junctions that 

were selected as potential candidate sites for biobutanol bunker facilities and example of 

dangle points (dead end of roads) that were removed from consideration. 
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Table 5-1 Assumptions used to select bunker sites in GIS analysis 

Parameter Value Reference 

Crude BioButanol Transport (BioButanol Bunker to Refinery) 

Class 8 Truck Max. Payload 23.6 Mg (52,000 lb) 

 Max. Volume 26,498 L (7,000 gal) 

 ABE Conversion 151 L ton-1 (40 gal/dry ton) 

 Trucking Costs 

Diesel Fuel Costs $1.06 L-1  

Other Variable Costs(non-fuel) $0.339/km (Trego and Murray, 2010) 

Labor Cost $18 hour-1 Trego and Murray (2010) 

Transport speed 72.4 km h-1  

Loading/Unloading $5.29/Mg  
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Figure 5-4 Number of identified bunker sites by region (Only facilities with more 

than 254 Mg of available biomass were considered)  
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Figure 5-5 Total diesel fuel use for transport (a) Bluegrass Region, (b) Purchase 

Region, (c) Midwestern Region, and (d) Central Region 
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Figure 5-6 Percentage of fuel use across regions for distributed preprocessing 
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Figure 5-7 Average annual corn stover processed at on-farm facilities with one 

standard deviation. 

  



 

121 

 

 

 

Figure 5-8 Total transportation and handling costs for distributed processing and 

centralized processing by region in terms of dollars per Mg 
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Figure 5-9 Total transport cost for distributed processing and centralized 

processing by region in terms of dollars per liter of dewatered ABE solution with one 

standard deviation 
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Figure 5-10. Annual truck transportation GHG emissions totals per Mg of baled 

material moved 
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Figure 5-11. Liters of Crude biobutanol produced at each Bunker Facility (a) 8 km 

maximum impedance cutoff (b) 16 km maximum (c) 32 km maximum impedance cutoff 

(d) 48 maximum impedance cutoff (e) 64 maximum impedance cutoff (f) 80 maximum 

impedance cutoff (g) centralized  
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  SUMMARY AND CONCLUSIONS 

The primary goal of this dissertation was to ascertain the viability of on-farm 

preprocessing methodologies to convert biomass to either liquid or solid biofuels. For the 

solid biofuel, the influence of moisture content upon the mechanical densification of 

biomass into pelleted material by a flat ring die was assessed and determined to have a 

dynamic response that depended upon the biomass. For miscanthus, switchgrass, and 

wheat straw, preconditioned moisture contents above 20% resulted in consistent pellet 

formation, and a moisture content of 25% produced the most durable pellets of 92%, 92% 

and 96%. Corn stover produced pellets at the measured 15%, 20% and 25% moisture 

contents with the greatest rate of pellet production at 15%. The pellet production 

efficiency, or specific energy consumption, of the biomass used in this study was found 

to vary from 101 kWh/Mg to 324 kWh/Mg and depended upon the biomass and moisture 

content. For miscanthus, the pellet throughput increased with moisture content which led 

to improved pellet production efficiency for biomass. Unlike the other biomass material 

in this study, corn stover displayed the best efficiency of 101 kWh/Mg at a 15% moisture 

content.  

With regard to the conversion of material to liquid fuel such as biobutanol, the 

pretreatment of miscanthus, corn stover, switchgrass, and wheat with alkaline hydrogen 

peroxide was evaluated at different enzyme concentrations and grind sizes. Grind size 

was found to improve the efficiency of hydrolysis with all the biomass material except 

corn stover. The higher concentration of enzyme (60 FPU/g DM) was found to increase 

the conversion efficiency for all the biomass crops. For the alkaline and AHP 

pretreatments, hornification was surmised to have partially limited the response. 

Nonetheless for the different biomass materials, AHP was generally shown to not 

significantly enhance the cellulose conversion efficiency when compared to alkaline 

pretreatments.  

From a transportation standpoint, the use of distributed preprocessing into liquid 

fuel was determined to be more cost effective and produce less CO2 equivalents than a 

the transportation of biomass to centralized refineries. Kentucky was chosen as the study 

area with the four different Agricultural Regions being analyzed. For this case study, 
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ArcMap was used to assess the different variables associated with this analysis as both 

tabular and spatial data can be effectively combined. For this analysis to accurately assess 

the difference between the distributed-centralized and centralized design, a number of 

factor had to be assessed such as crop, location, and yields of biomass had to be defined. 

The 2013 cropland data layers were used to ascertain the location of corn production. The 

CDL were aggregated together to remove holes in the data, and for a more practical 

representation of field size CDL were split using roads and railroads. The variable rate of 

collection of corn stover was based upon the soil characteristics and adjusted for 2013 

NASS yields. Candidate locations for biomass production was defined as using junction 

points (intersections) of the transportation network. The analysis was more 

computationally feasible with network junctions along the city road and the end point 

(dead end of roads) being removed as potential candidate facilities. Within the Network 

Analysis, Location-allocation with minimize facilities was performed to calculate the 

impact that varying the distance to the bunker facility (8 km, 16 km, 32 km, 48 km, 64km 

and 80 km could have on overall transportation costs. The cost of transport from the edge 

of the field to the distributed preprocessing facilities increased with increasing 

transportation distance to the bunker with a 51% increase in the cost per Mg being 

observed as the distance increased from 8 km to 80 km. Nonetheless, the conversion of 

fuel at distributed preprocessing location reduced the total cost/Mg by 38 -59 % when 

compared to the centralized transport of corn stover directly to the refinery. Furthermore, 

the CO2 equivalent produced and fuel use were reduced by at least 50% for the 

distributed design when compared to the centralized design. 
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  FUTURE WORK 

The distributed preprocessing of biomass into a liquid fuel with complete 

dewatered crude ABE was shown to be viable from a transportation standpoint. The 

degree to which separation would influence subsequent transportation costs warrant 

evaluation. The total cost savings associated with levels of separation would help 

ascertain how much to invest in separation technologies. With many small to medium 

sized farming operations within the state, the direct transport of crude biobutanol from 

the preprocessing facility to the refinery could be enhanced by the use of milk-run 

logistics. The cost and potential saving associated with this has yet to be directly studied.   

The flat ring die pelletization characteristics for biomass at varied moisture was 

determined, and the characteristics for different types of woody biomass would need to 

be evaluated as there exists considerable forest residue available within the eastern region 

of the state. Furthermore, pelleted material could be handled and stored similar to corn; 

thus, mechanical properties associated with handling and storage would need to be 

studied. The influence of scale and diameter of the die would need to be assessed as a 

larger diameter flat ring die with more rollers may result in greater, equivalent, or lower 

pellet production efficiency. 

 With respect to the AHP and NaOH pretreatment, hornification is known to 

impair conversion efficiency. Consequently, the quantifiable impact of hornification upon 

chemical pretreatments requires further studies. 
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APPENDICES 

 Pelleting Data 

Appendix Table 1 Proximate Analysis for Biomass Crops 

  
Proximate Analysis (Dry)1 

Biomass 
Material 

HHV (MJ/kg) 
(Dry) 

% Volatile 
Matter % Ash 

% Fixed 
Carbon 

Miscanthus 18.09 82.98% 2.53% 14.49% 
Corn stover 17.86 80.24% 3.93% 15.82% 
Switchgrass 18.61 83.65% 2.99% 13.37% 
Wheat straw 18.30 78.61% 5.49% 15.89% 
1Analysis conducted by Kentucky Center for Applied Energy Research 

 
 

 USDA NASS Kentucky Average Corn Yield 
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 ABE Yield Assumptions for GIS Analysis  

 

𝐶𝐶𝐶𝐶 × 𝐷𝐷𝐷𝐷 × 𝑃𝑃𝐶𝐶&𝑀𝑀  × 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  × BCon/Sep Appendix Eqn. 1 

Where: 

Cs = Corn stover (as is) 

Dm = Dry matter content (0.77) 

PC&M = Percent cellulose and hemicellulose (0.6) 

Ceff = Conversion Efficiency of cellulose and hemicellulose to sugar monomers (0.7) 

BCon/Sep = Conversion efficiency of sugars monomers into ABE products (0.42) 

  

 Cost of Tractor for Loading/Unloading Bales on the Class 8 Semi-Truck 

and Trailer (American Society of Agricultural and Biological Engineers., 2011) 

 

𝐶𝐶𝑂𝑂 = �
1 − 𝑆𝑆𝑣𝑣
𝐿𝐿

+  
1 + 𝑆𝑆𝑣𝑣

2
𝐼𝐼 +  𝐾𝐾2�  × 100 

 Appendix Eqn. 2 

Where: 

CO = Annual cost of ownership (%) 

Sv = Salvage value factor (0.3) 

L = Machine life (12 years) 

I = Interest rate (0.08) 

K2 = Ownership factor (taxes, housing, and insurance) (0.02) 

 

𝐴𝐴𝑂𝑂𝑂𝑂 =
𝑃𝑃𝑃𝑃  ×  𝐶𝐶𝑂𝑂

𝐻𝐻
 Appendix Eqn. 3 

Where: 

AOC = Annul Ownership Cost per hour ($/hr) 

PP = Purchasing Price ($60,000) 

CO = Annual cost of ownership (0.13) 

H = Annual operating hours (225 hours) 
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𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 = 0.305 × 0.73 𝑥𝑥 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 (𝑆𝑆𝑆𝑆) Appendix Eqn. 4 

𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 = 0.06 × 0.73 𝑥𝑥 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ)  

Where: 

Qavg = Average hourly fuel consumption 

Ppto = Maximum PTO (power take off) power (~78 kW, 105 hp ) 

 

 Fixed Cost of Transport of Baled Biomass 

 
Appendix Table 1 Fixed Cost of Transport ($/Mg) 

Operation 
Time 
(min) 

Labor 
Cost ($) 

Fuel 
Cost ($) 

Ownership 
Cost  
($) 

Total 
Cost ($) 

Loading 45 $13.50 $13.86 $26.07 $53.43 
Unloading 45 $13.50 $13.86 $26.07 $53.43 
Wait 60 $18.00 

  
$18.00 

Overall Cost per truckload ($) 
  

$124.85 
Total Cost per Mg ($/23.6 Mg) 

  
$5.29 

$60,000 loader tractor with ~78 kW (105 pto hp) 
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 Variable Cost of Transport 

Appendix Table 3 Variable Cost of Transport Based upon Distance 

 
Costs per mile Cost per km 

Vehicle Based Costs 

Trego 
and 

Murray, 
(2010) 

Adjusted 
for 2008-

2014 
Inflation1 

Tredo 
and 

Murray, 
(2010) 

Adjusted 
for 2008-

2014 
Inflation1 

Truck/Trailer Lease or 
Payment  $0.21 $0.23 $0.13 $0.14 
Repair and Maintenance $0.09 $0.10 $0.06 $0.06 
Fuel Taxes $0.06 $0.07 $0.04 $0.04 
Truck Insurance Premiums $0.06 $0.07 $0.04 $0.04 
Tires $0.03 $0.03 $0.02 $0.02 
Licensing and Overweight-
Oversized Permits $0.02 $0.03 $0.01 $0.02 
Tolls $0.02 $0.02 $0.01 $0.01 
Total $0.49 $0.55 $0.31 $0.34 
1 Inflation calculated using http://www.usinflationcalculator.com/ 

 

 Total Transportation Cost   
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 SAS Results for Original Yield data 

 The SAS System 

 
The TTEST Procedure 

  
Difference: NASS - CALC 

N Mean Std Dev Std Err Minimum Maximum 

74 454196 557463 64803.8 -532963 2290044 

 

Mean 95% CL Mean Std Dev 95% CL Std Dev 

454196 325042 583350 557463 479870 665224 

 

F t Value Pr > |t| 

3 7.01 <.0001 
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 SAS Results for Adjusted Yield data 

 The SAS System 

 
The TTEST Procedure 

  
Difference: NASS - CALC 

N Mean Std Dev Std Err Minimum Maximum 

74 40561.0 613323 71297.3 -1230800 2966541 
 

Mean 95% CL Mean Std Dev 95% CL Std Dev 

40561.0 -101534 182656 613323 527955 731882 
 

F t Value Pr > |t| 

3 0.57 0.5712 
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Table 4 County Stover Yields for GIS Calculated Values Based upon 2008 

SSURGO Data, 17% Adjusted Value, and 2013 NASS Data 

County Name 
2008 Yield 

Values (Mg) 

Adjusted Yield 
Values for 2013 

(Mg) 
2013 NASS 

Values (Mg) 
Morgan 254 278 922 
Whitley 911 1063 1146 
Grant 348 381 1257 
Kenton 319 374 1562 
Laurel 689 787 1580 
Clay 616 713 1616 
Knox 938 1093 1913 
Campbell 912 1058 1981 
Carter 2031 2309 2050 
Jessamine 2342 2915 3023 
Greenup 2788 3248 3658 
Owen 1414 1671 3963 
Rowan 2527 7083 4090 
Pendleton 2612 3540 4572 
Garrard 2938 3426 4902 
Estill 3235 3773 5512 
Lewis 3184 3647 5995 
Rockcastle 4482 5292 7316 
Woodford 8494 10264 8840 
Montgomery 2705 3462 9144 
Bullitt 8056 9360 9424 
Boone 5483 6416 9881 
Russell  11287 13515 11024 
Bath   7715 9734 11456 
Oldham 7173 8442 11532 
Scott 9298 11365 12574 
Fleming 7404 8579 15571 
Clark 7452 9530 16536 
Spencer 11194 14719 16892 
Edmonson 18419 16872 16917 
Fayette 10314 12611 17247 
Boyle 11196 13050 19102 
Harrison 9444 11106 19838 
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Bourbon 11525 14210 22683 
Hart 20828 25563 26163 
Wayne 17802 20959 29923 
Casey 20957 25245 30075 
Mercer 22408 26645 30735 
Adair 27354 32186 31955 
Henry 14587 18471 32869 
Mason 12703 15252 36146 
Hancock 33608 40760 36984 
Green 25578 31157 38559 
Lincoln 24426 28524 40235 
Marshall 41918 48958 41150 
Pulaski 30139 35636 42699 
Marion 41522 49701 49024 
Muhlenberg 70310 92030 56772 
Mccracken 53686 64260 63376 
Crittenden 57565 68508 75035 
Meade 57301 68637 80369 
Butler 67884 80775 83265 
Barren 79300 95358 91622 
Breckinridge 67938 79301 95204 
Shelby 61486 72932 104196 
Carlisle 80443 93629 108209 
Trigg 95100 122929 108768 
Ballard 101958 122543 112222 
Hopkins 125509 149696 122637 
Caldwell 110880 134806 137547 
Hardin 117545 144295 141612 
Calloway 123134 145200 141739 
Warren 115884 138275 148749 
Ohio 133140 166169 151086 
Simpson 167823 189251 193557 
Hickman 141655 166548 193887 
Todd 188865 228498 203159 
Mclean 166557 212770 217815 
Logan 262412 297774 253072 
Graves 232680 279588 279413 
Daviess 278162 330551 299124 
Henderson 344032 438159 362805 
Christian 310681 384142 368850 
Union 346156 420035 379036 
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