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MATHEMATICAL MODELING OF CLOSTRIDIUM THERMOCELLUM’S METABOLIC 

RESPONSES TO ENVIRONMENTAL PERTURBATION 
 

Clostridium thermocellum is a thermophilic anaerobe that is capable of producing 
ethanol directly from lignocellulosic compounds, however this organism suffers from low 
ethanol tolerance and low ethanol yields.  In vivo mathematical modeling studies based on 
steady state traditional metabolic flux analysis, metabolic control analysis, transient and 
steady states’ flux spectrum analysis (FSA) were conducted on C. thermocellum’s central 
metabolism. The models were developed in Matrix Laboratory software ( MATLAB® (The 
Language of Technical Computing), R2008b, Version 7.7.0.471)) based on known 
stoichiometry from C. thermocellum pathway and known physical constraints.  Growth on 
cellobiose from Metabolic flux analysis (MFA) and Metabolic control analysis (MCA) of wild 
type (WT) and ethanol adapted (EA) cells showed that, at lower than optimum exogenous 
ethanol levels, ethanol to acetate (E/A) ratios increased by approximately 29% in WT cells  
and 7% in EA cells. Sensitivity analyses of the MFA and MCA models indicated that the 
effects of variability in experimental data on model predictions were minimal (within ±5% 
differences in predictions if the experimental data varied up to ±20%). Steady state FSA 
model predictions showed that, an optimum hydrogen flux of ~5mM/hr in the presence of 
pressure equal to or above 7MPa inhibits ferrodoxin hydrogenase which causes NAD re-
oxidation in the system to increase ethanol yields to about 3.5 mol ethanol/mol cellobiose.  
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CHAPTER 1  INTRODUCTION 

1.1 GENERAL BACKGROUND 

Lignocellulosic biomass made of lignin, hemicelluloses and cellulose has been 

identified over the years as a r elatively feasible and economical way for producing 

ethanol fuel with the help of microbial cells made of enzyme complex [1-5]. However, the 

complex nature of the composition and s tructure of microbial cells cause the cells, 

behavioral characteristics that are difficult to understand. An appropriate description or 

interpretation of cell behavior will depend upon the extent to which the cell’s metabolism 

is understood. A better understanding of the cell’s metabolism is expected to enhance 

the ability to establish a definite relationship between the cell’s environment, membrane 

and cytoplasm (genotype and phenotype). The genotypic and phenotypic components of 

the cell are characterized by individual processes that take place in the cell’s metabolism 

known as the “metabolic pathway”. Given that the metabolic pathway provides 

sequential connection between the metabolic reactions of the cell, computer simulation 

and mathematical modeling have been es tablished as underlying methods for 

formulating steady state and dy namic metabolic models of the cell as an en gine. 

Metabolic models have been successfully developed for steady and dynamic states of 

cellular subsystems. However, metabolic modeling approaches by incorporating relevant 

cell properties influenced by statics and dynamics have been identified as a more 

realistic way of capturing metabolism of the ”whole cell”, such as predicting cellular 

behavior, proposing efficient optimal metabolic control and design for metabolic network 

processes, and determining the functional properties of genome-scale metabolic 

networks. Many conceptual models combining experimental data with modeling have 

been proposed to help broaden the understanding of cell behavior [6, 7]. Whole cell 

modeling aims to determine the relationship between the desired phenotype and 
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genotype or particular environmental factors. This study focuses on applying the 

fundamental principles of whole cell modeling to investigate responses of the end-

products of Clostridium thermocellum glycolytic metabolism to exogenous ethanol level, 

dissolved hydrogen gas and hy drostatic pressure during continuous culture 

fermentation.  C. thermocellum was chosen because of the thermophilic and anaerobic 

characteristics coupled with a solid enzyme system (cellulose) it possesses which 

enable the bacteria to directly degrade abundantly lignocellulosic substrate (preferable 

cellobiose) into ethanol. 

 

1.2 LITERATURE REVIEW 

A microbial cell can be viewed as a self-contained bioreactor because the cell 

membrane separates the cell from its environment.  C ompounds that enter the cell 

through the membrane are termed substrates while compounds that exit the cell across 

the membrane are termed products.  The conversion of substrates to products in the cell 

is called metabolism. Bio-chemicals formed inside the cell while remaining in the cell to 

be converted to other compounds are intracellular metabolites.  The cell is influenced by 

the external environment in which it is contained, including the concentrations of 

extracellular chemicals, pressure, pH, temperature, and agitation of the fermenter [8, 9]. 

As a bioreactor, the cell can take up different amounts and types of substrates, and 

depending on the processing of these substrates, produce different types and amounts 

of products. The cell represents a dynamic system, capable of adjusting its metabolic 

response to various changing environmental conditions and inputs that may result in 

shifts in products, product ratios, and/or product concentrations. The complete set of 

potential pathways in an organism is referred to as the cell’s metabolic genotype [10]. 
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The particular set of pathways used under a given set of environmental and chemical 

conditions is termed the metabolic phenotype [9].  

Cells control their metabolism by regulating enzyme concentrations and 

activities, which affect material flows through different pathways. Breakdown of 

macromolecules such as proteins, carbohydrates and lipids into subunits such as amino 

acids, simple sugars, and fatty acids and g lycerol, respectively occur in the cytosol. 

These are further broken down into simple molecules accompanied by the production of 

energy, a process known as catabolism. The carbohydrate product undergoes glycolysis 

to produce pyruvate and acetyl CoA, which are also degradation products of amino 

acids. Fatty acid degradation produces only acetyl CoA. ATP and NADH are released as 

by-products/co-factors. Acetyl CoA undergoes oxidative phosphorylation to produce 

water, carbon dioxide and more ATP. ATP is often utilized as source of energy in the 

synthesis of cell constituents from simpler molecules such as organic and/or inorganic 

precursors through anabolism [11, 12]. 

Limited petroleum-based fuels are becoming an increasing concern as the 

world’s industrialization and motorization grow. This has prompted the need to research 

and develop alternative fuels that can be pr oduced from abundant renewable natural 

resources. Ethanol produced from renewable resource has been recognized as a 

potential alternative to fossil fuels [13-15] because of its beneficial greenhouse effect 

due to negligible release of unwanted gases into the atmosphere. Eventually, the 

agricultural economy will be improved as well as providing employment avenues and a 

greater scope of energy source will be s ustained [13, 15, 16]. Efforts to produce fuel 

from abundantly available and renewable lignocellulosic biomass is one of the promising 

goals to encourage bioethanol production [16, 17] but research has shown limitations in 

developing and implementing effective techniques for utilizing biomass within economic 

means [18, 19]. “Highly effective cellulases and hemicellulases”, “efficient and robust 
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fermentative microorganisms” and “low-cost thermochemical pretreatment” are 

comprehensive measures that are being employed for biomass conversion into fuels and 

chemicals [18]. However, it has been di scovered that fermentation conditions for 

producing high ethanol yield require the application of inhibitor-tolerant strains of 

microorganisms to metabolize all sugars (substrates) into ethanol as the major product 

[20]. Various microorganisms have been employed to explore such desirable properties.  

Saccharomyces cerevisiae (traditional yeast) for ethanol production has been the 

most commonly used microorganism in conventional fermentation [21]. Yeast cannot 

metabolize pentose sugars, but another fungus Trichoderma reesei was discovered by 

Palmqvist and coworkers to be capable of fermenting hemicelluloses (mostly dominated 

by pentoses), removing toxins from the fermentation process and eliminating product 

inhibitors [22]. Even though Saccharomyces cerevisiae and Trichoderma reesei are 

usually favored fermentative strains for ethanol production, they are incapable of 

degrading lignocellulosic biomass because they are not configured with enzyme 

complexes like some bacteria possess. Yeast also produces inferior ethanol yields 

compared to bacteria [20, 23-25]. Dien and C o noted that Escherichia coli, Klebsiella 

oxytoca, and Zymomonas mobilis have shown the most successful ethanol-only 

production [20]. Although E. coli and K. oxytoca easily ferment various sugars they 

require a lot of work (hydrolysis of sugar, fermentation and addition of enzymes at high 

costs) to selectively produce ethanol. Zymomonas mobilis on the other hand produces 

high ethanol yields but ferments only glucose and fructose [20].  

It has been determined that cellulase and hemicellulase production can occur 

simultaneously with hydrolysis and fermentation of pentose and hex ose sugars in a 

single step called consolidated bioprocessing. Consolidated bioprocessing (CBP) is a 

highly efficient and low cost process considered to be advantageous over conventional 

ethanol production [26]. The nature of CBP suggests the benefits of increasing ethanol 
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production from possible high hydrolysis rates when thermophiles of enzyme-microbe 

synergy and complex cellulase system are involved [26]. Thermophilic bacteria, such as 

Thermoanaerobacter ethanolicus, Thermoanaerobacter thermohydrosulfuricus, 

Thermoanaerobacter thermosaccharolyticum and Clostridium thermohydrosulfuricum 

have been investigated for hemicellulosic ethanol production [25]. Thermoanaerobacter 

ethanolicus and Thermoanaerobacter mathranii have also demonstrated the ability to 

ferment sugar polymers into high ethanol yields at elevated temperatures and ar e 

relatively highly tolerant of ethanol [25, 27]. Others have also demonstrated the potential 

of genetically engineered microorganisms (using recombinant DNA technology) to 

enhance ethanol production and yield [25, 28]. Thermophilic bacteria such as C. 

thermocellum, C. thermosaccharolyticum and C. thermohydrosulfuricum (have shown 

the promise to achieve direct microbial conversion of lignocellulosic biomass into ethanol 

(CBP) [21, 29].  

The presence of the enzyme complex (cellulase) in the anaerobic thermophile, C. 

thermocellum characterized as gram positive bacteria enables the bacteria to readily 

break down complex polysacharrides into simple sugars and ferment the sugars into 

ethanol. The microorganism has been us ed by Cardona and C o to demonstrate the 

usefulness of CBP which showed a substrate conversion of 31% higher than T. reesei 

and S. cerevisiae [23]. Previous studies have suggested that C. thermocellum is easier 

to work with for fermenting lignocellulose into ethanol than yeast [30]. Recent studies 

have sought to perform fermentation in the absence of oxygen (anaerobic conditions) 

due to the expense of supplying oxygen [31]. Therefore it is advantageous to work with 

an organism that is an obligatory anaerobe such as C. thermocellum.  

With C. thermocellum, cooling costs are reduced because the organism grows at 

a temperature of 60oC, which is optimal for the purposes of a simple cooling system, 

pure fermentation process, and easy ethanol extraction. A high percentage of the 
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substrate goes toward product formation because the fermentative activity of C. 

thermocellum results in low cell yields [32]. Unfortunately, this microorganism has shown 

characteristics of ethanol inhibition and thus gives relatively low ethanol yield. Emerging 

technologies such as organism genetic modifications and env ironmental manipulations 

have been identified as feasible techniques for improving biomass conversion to ethanol 

[26, 33]. With regards to the fact that Department of Energy reported in 2004 t hat C. 

thermocellum genome sequencing is complete, this study proposes to focus on adjusting 

the organism’s environment (by regulating pressure in a continuous culture system as 

this is expected to affect acetate and ethanol production) to demonstrate its metabolic 

pathway responses to identify and predict phenotypes that maximize ethanol-only 

production. This type of fermentation control has been pr eviously identified to greatly 

influence the metabolic selectivity of C. thermocellum [34-38]. Adjusting or manipulating 

the microbial environment results in metabolic responses like changes in product yields, 

product ratios, and product concentrations. The organism’s metabolic response 

represents its phenotype while the complete metabolic pathway forms its genotype. The 

phenotype is a subset the genotype [39].  

The National Academy of Science in 1999, recommended advanced models 

using optimization techniques in process engineering methods such as metabolic 

modeling to improve bioethanol production [23]. The importance many researchers place 

on making valuable products (for example, ethanol, butanol and hydrogen) available to 

the global market have resulted in the need to implement engineering tools (the design 

and application of mathematical models) for more exploration of cell metabolism 

because mathematical models can be us ed as simplifying abstractions for the 

relationship between phenotypes and genotypes to collect quantitative information on a 

microorganism and pr edict the desired outcomes that are transformed into biological 

insight [40-42].  
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1.3 CLOSTRIDIUM THERMOCELLUM 

The use of thermophilic bacteria in industrial processes offers great promise and 

has potential benefits including: higher reaction rates at elevated temperatures, 

increased mass transfer, greater thermo-stability of enzymes and c atalytic pathways, 

and less potential for contamination by other organisms [31, 43]. More importantly, 

thermophilic anaerobes are found in various habitats and are capable of providing 

thermodynamically feasible processes in the degradation of organic matter [43, 44]. 

Clostridium thermocellum is one of the most extensively studied anaerobic thermophiles 

with high cellulose degradation into cellobiose and c ellodextrins and subsequently to 

ethanol production [36, 45, 46]. Cellobiose is then converted by the microorganism to its 

final end products of ethanol, lactate, acetate, CO2 and H2  [31].  A simplified pathway of 

the catabolic process of C. thermocellum’s metabolism is presented in Figure 1-1. 
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Figure 1-1: Simplified Clostridium thermocellum catabolic network 

 

Clostridium. thermocellum is sensitive to low concentrations of ethanol and 

produces low ethanol yield as a result of organic acid such as lactate and acetate, 

formation.  The organism’s response to relevant environmental perturbations has shown 

preference for cellobiose over glucose in continuous cultures but otherwise in batch 

cultures; increases in ethanol to acetate ratios due to increased dissolved hydrogen gas 

concentrations at elevated hydrostatic pressures compared to atmospheric pressure 
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conditions; cell growth unaffected by different substrate concentrations ; potential for 

hydrogen production as bio-fuel [38, 47-49]. The results of genetic manipulation and 

natural adaptation of C. thermocellum have primarily been interpreted from end product 

concentrations, and the expression of RNA [50]. However, major interest in C. 

thermocellum lies in the potential to provide large scale ethanol production from 

cellulosic biomass especially due to its stability at high temperatures [26, 51-53]. With 

the availability of complete genomes and sufficient bioinformatic resources (which are 

substantial to understanding the microorganism’s metabolic activities), enhanced 

biomass conversion by C. thermocellum can be achieved by developing mathematical 

models to predict the cellular phenotype and also create the platform for relevant genetic 

manipulation. 

 

1.3.1 Wild Type Clostridium thermocellum Cells 

The growths of cells that thrive on cellobiose or avicel have a well structured 

cellulase system made of a polypeptide composition. While cellobiose grown cells form 

compacts of protuberant structures, corridor-like structures have been obs erved for 

growth on avicel (or cellulose) [54, 55]. Optimal growth temperature for the cells varies 

and activation energy is higher compared to mutant strains as verified by its anisotropic 

measurements. Fast growth rates accompanied by high cell yields are observed in wild 

type cells in the absence of exogenous ethanol. The cells are highly inhibited at low 

ethanol concentrations. Sensitivity to low ethanol concentrations occur beyond 1%v/v 

[56-58]. Cell membranes are highly permeable and thus relatively more fluid compared 

to its mutant, ethanol adapted cell [52, 57]. A high percentage short fatty acid chains 

(less than 16:0) exist in the membrane. However, carbohydrate levels are believed to be 
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about 5 times less than mutant, ethanol adapted cells. Membrane fluidity increases in 

the presence of exogenous ethanol as a result of interruption of protein function [57].  

 

1.3.2 Ethanol Adapted Clostridium thermocellum Cells 

These are anteiso-branched, modified wild type cells that are ethanol tolerant but 

with a more rigid membrane caused by the presence of high percentage long-chained 

fatty acids. Fatty acid chain lengths exceed 16:0 in the membrane under similar 

environmental conditions to wild types but with fewer amounts of total lipid contents 

(56μg/mg dry cell weight hr) compared to wild type’s 82μg/ mg dry cell weight hr. 

Ethanol adapted cells are capable of withstanding the inhibition by low ethanol 

concentration beyond optimal conditions. Ethanol tolerance is as high as 8%v/v [56-58]. 

Anisotropy of cells is less affected by temperature variations compared to wild type cells. 

Fatty acid phase transitions occur at higher temperatures relative to wild type cells. 

Higher percentages of plasmalogen compounds exist in ethanol adapted cell 

membranes compared to wild type cells. In the absence of exogenous ethanol, lower 

growth rates are observed in ethanol adapted cells [57]. A relatively low amount of 

protein expression associated with carbohydrate transport are found in ethanol adapted 

compared to wild types. Due to down regulated cellulosomes in ethanol adapted cells, 

lignocellulose degradation by these cell is relatively lower compared to wild type cells 

[58]. 

 

1.4 METABOLIC MODELING 

Microbial cells are capable of adapting/adjusting their metabolic response to a 

various environments, which may result in shifts in products, product ratios, and/or 

product concentrations.  Metabolic modeling forms the platform on which computational 
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or mathematical methods are used to quantify and i nterpret cell behavior based on 

information available on genotypes and phenotypes from experimental measurements. 

Deterministic or stochastic models based on static or dynamic principles may be 

developed depending on t he microbial metabolic process of interest [59, 60]. 

Deterministic models provide numerical solutions that derive from differential equations. 

Stochastic models provide random (unpredictable) solutions based on statistical analysis 

[59]. Predictions from deterministic models come from the mean of variables. A model is 

static when it is used to develop the future state of an object given its current state. A 

dynamic model predicts the behavior of a system at each time point. Each of these has 

its own advantages and disadvantages. However, for a particular problem, the modeler 

is responsible for implementing the appropriate method (modeling approach) to suit the 

problem. 

 

1.4.1 Metabolic Flux Analysis 

Metabolic Flux Analysis (MFA) is one of the powerful tools used in modeling 

microbial systems for interpreting the channeling of their metabolic network towards 

desired metabolite production. Information derived from this method may be based on 

steady state and dynamic in vivo analysis [12, 61]. Mass balances are applied around 

key intracellular metabolites in central metabolic pathways to calculate intracellular 

fluxes from measured fluxes. Metabolic reactions are represented by a s et of 

mathematical equations. Based on the number of measurements available for estimating 

the unknown variables, modeling may require stoichiometric constraints or appropriate 

objective functions to solve the problem. The system is often underdetermined [62, 63]. 

Limitations to metabolic flux analysis occurs from having singularities in the 

stoichiometric matrix when cyclic, bidirectional and par allel reactions exist in the 
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metabolic network under study [12, 62]. Most of metabolic flux analysis applications 

include predicting product yields, identifying the effects of substrate types, determining 

possible adaptations of metabolites to environmental perturbation, and implementing 

new measures if any to improve cellular properties [12, 62].  

Steady-state metabolic flux analyses  have been done on many clostridia 

organisms [64]. The specific growth rate is fixed for the steady state conditions to make 

flux estimates relatively easy to determine. However, this may prevent detailed analysis 

of the kinetic information in metabolic regulation of the microbe. To account for any 

missing transient responses, time profiles of growth rate and metabolite concentrations 

are predicted from metabolic models using the flux analysis concept [65, 66]. 

In transient metabolic flux analysis the metabolic behavior of the microorganism 

is accounted for over time step intervals to monitor any dynamic property of the microbe. 

An approximated derivative of species concentration with respect to time is estimated 

from experimental measurements using Euler methods or polynomial fitting [67-69]. The 

approximated derivative is then substituted into a r ate of consumption or production 

equation from which the corresponding metabolite flux is estimated as shown in equation 

(1) below, where D is the dilution rate (hr-1), Cin is the feed concentration (g/L), C is the 

measured concentration of extracellular metabolite (g/L), rp is the corresponding flux of 

metabolite (g/L/hr), and 
dt
dC is the approximated change in concentration of metabolite 

over time [70]. Once the measured fluxes are determined, the intracellular metabolite 

fluxes can be calculated from metabolic flux analysis [68-70].  

rp = dC
dt

+  D(C − Cin )  

Equation 1-1: Flux calculation from approximated derivative, dilution rate, influent 
concentration and metabolite concentration (Mass balance around extracellular species [70]). 
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In this study, steady-state and transient state metabolic flux analyses in addition 

to metabolic control analysis were employed to model the metabolic adaptations and 

responses of C. thermocellum catabolism to environmental perturbation. 

 

1.4.2 Metabolic Control Analysis 

Metabolic control analysis (MCA) begun with Kacser and Burns, and Heinrich 

and Rapport in the 1970’s [71]. Metabolic control analysis is another powerful metabolic 

modeling tool that has been extensively exploited for mathematical modeling of microbial 

systems [9, 72-74]. Understanding the kinetic properties of the phenotype and genotype 

in the metabolic network forms the basis of MCA [72, 74, 75]. Metabolic control analysis 

is used to quantify both steady-state and t ransient state behaviors of a metabolic 

pathway in the form of control coefficients. Log-linear stoichiometric models that include 

enzyme kinetics data for each reaction step in the metabolic network have been adapted 

for MCA [9, 74, 76]. The system is characterized by enzyme kinetics (known as 

parameters) and, concentration and fluxes (known as variables)used to describe 

changes in fluxes and metabolite concentration due kinetic parameters [77, 78]. The 

influence of parameter variations on the system’s state is derived by computing the flux 

and concentration control coefficients from measured data. Computations are based on 

local variables known as elasticity coefficients. An elasticity coefficient represents the 

relative change in an isolated reaction step due t o infinitesimal changes in the 

concentration of a metabolite given that all others are constant [71, 78]. The control 

coefficients are fractional changes in fluxes and c oncentrations respectively due t o 

changes in enzyme activities. These sensitivity coefficients may be denot ed as
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vector of enzyme kinetic parameters, S is the vector of extracellular substrate 

concentrations, and E is the vector of active enzyme concentrations.  

Computations of control coefficients are based on summation theorems which state that 

the sum of all flux control coefficients must equal unity and the sum of all concentration 

control coefficients must equal zero at steady state [9, 71, 79-81]. By letting the symbols 

CF and CC denote flux and concentration control coefficients and ε denote elasticity 

coefficient; we use an illustration by Fell et al., [71] to describe the metabolic control of a 

simple linear pathway as shown in Figure 1-2, where X is the metabolite and E is the 

enzyme.  

X1 X2X0 X3
E1 E2 E3

 

Figure 1-2:  Schematic metabolic pathway (Fell and Sauro 1985) 
 

Based on the summation theorems, CF1 + CF2 + CF3  = 1 and CC1 + CC2 = 0 where   

CC1 = 1
11εFC  , CC2 = 2

12εFC   for X1 as product and substrate with enzymes E1 and E2 

respectively. For X2, we have CC1 = 2
22FC ε   , CC2 = 3

22FC ε   which leads to 3 equations: 

 

CF1 + CF2 + CF3  = 1  ……………………………..   (A) 

1
11εFC  + 2

12εFC = 0 ……………………………….   (B) 

2
22FC ε   + 3

22FC ε = 0 ………………………………... (C) 

Equation 1-2: Connectivity Theorem Illustration 

 

Equations A, B and C together may be expressed in matrix form to solve for CF, 

CC and ε. Metabolic control analysis has been treated extensively in the literature [71, 80, 

81]. 
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1.4.3 Whole Cell Modeling 

Several attempts have been m ade at developing a c omplete model of the cell 

geared towards predicting the dynamic behavior of living cells [82, 83]. The concept of 

whole cell modeling is typically based on cell growth ability and variable volume [82-84]. 

A few of the proposed whole cell modeling methods are mentioned here and discussed 

later. Tomita [82] reports that the first whole cell model is the E-Cell software developed 

in 1996 at  Keio University in Japan [82]. In 2004, Morgan et al., proposed a general 

framework for whole cell modeling applicable to all cell types [84]. A time dependent 

multi-algorithm simulation system has also been developed for whole cell modeling [85]. 

One other model for simulating whole cell is the DBsolve model developed by Goryanin 

et al., 1999 [86]. A minimal cell model built on an original E. coli model was proposed by 

Browning and Shuler [87].  

The E-cell model is a graphical user interface computer simulation system written 

in C++ for molecular processes in a cell. The model has been designed into components 

denoted by “substance”, “reactor” and “system”. Inputs such as concentrations of 

metabolites (extracellular and intracellular), proteins, and enzymes, cell volume, pH and 

temperature are accepted in the “substance” section of the program to describe the state 

of the cell at a par ticular time [83]. Changes are made in the concentrations in an 

increment order over time by a simulator engine. The set of reactions in the metabolic 

pathway (mass action, equilibrium, and kinetic reactions) of the cell are defined in the 

reactor component while information on t he genes (transcription and t ranslation) goes 

into the system component of the model. Numerical integration methods of Euler and 

Runge Kutta have been integrated into the model to solve the set of equations discretely  
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[83]. The E-cell model allows user-defined inputs and as sumes constant volume. The 

model interface is shown in Figure 1-3 below.  

 
Figure 1-3: E-cell model user-interface (Tomita et al. 1999) 

 

As an ex ample of the E-CELL, the ‘virtual self-surviving cell’ was developed 

based on t he metabolism of Mycoplasma genitalium known for having the smallest 

genome size among all living organisms and thus represents the best standard for whole 

cell modeling [82, 83]. The modeling method involved inputs from the cell’s cytoplasm 

(glycolysis) and m embrane (lipid biosynthesis pathway). Components of the set of 

reactions included stochastic processes, complexes formed from substrates, 

transportation reactions and enzymatic roles, which yielded decreases in substrates and 

increases in products. The model was designed to observe cell behavior such as protein 

functions, “protein-protein interactions”, “protein-DNA interactions” and gene expressions 

in a gr aphical user interface. A set of 127 genes, 22 RNA-coding genes, 105 p rotein-

coding genes and 495 metabolic reactions were incorporated into the simulation. 

Glucose is converted to lactate and A TP while the ATP enhances protein synthesis 

which transcribes the 127 genes into mRNAs [82, 83]. Observations from cell behavior 

showed changes in the concentrations of proteomic interactions [82, 83]. Other 
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examples of E-CELL models reported in the literature include ‘human erythrocyte 

model’, ‘mitochondria model’ and ‘signal transduction’ [82]. 

The framework of whole cell mathematical model proposed by Morgan et al., 

2004 consists of a der ived system of ordinary differential equations based on t he 

assumptions that: (1) the total volume of the cell is the sum of the volumes of its 

cytoplasm and membrane when the cell is at rest; (2) the cell has constant osmotic 

pressure regulation; (3) reactions occur within the same regions or between adjacent 

regions in the cell;  (4) the volume rate of change of the cytoplasm and membrane are 

not constant. So, given a system of reactions in a cell, the number of moles and 

concentrations of components in the cytoplasm and membrane are related through a set 

of ordinary differential equations governed by the rate of conversion of nutrients in the 

cell’s environment into metabolites in the cytoplasm, the rate of conversion of 

metabolites into proteins and g enes within the cytoplasm, and t he reversible rate of 

protein conversion between the cytoplasm and membrane. By letting M, N, G, P, and 

Pmem denote concentrations of metabolites, nutrients, genes, proteins in the cytoplasm, 

and proteins in the membrane, the ordinary differential equations were defined as 

follows:   
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Equation 1-3: Set of differential equations (Morgan et al. 2004) 
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C, k, א, and V cyt denote a vector containing the various concentrations, vector of rate 

constants, the ratio of membrane volume to cytoplasm volume and volume of cytoplasm 

respectively. F1, F2, F3, F4 and α all denote functions of C, k and א while H is a function 

of Vcyt.  The fifth equation suggests that variable volume is assumed in this method. The 

system of equations were further reduced by steady state assumptions and s olved 

numerically in Maple using the seventh and ei ghth order Runge-Kutta method.  The 

modeling method accounts for periodic changes in the cell while predicting a m ore 

realistic cellular behavior (because of inclusion of activities in both the cytoplasm and 

membrane) compared to other steady state modeling methods [84]. 

The DBsolve model is an object-oriented multi-functional program written in C++ 

for analyzing cellular metabolism and regulation. It takes input from a text file into a 

derived mathematical model, solves non-linear algebraic and ordinary differential 

equations, and performs constrained optimization to fit parameters to experimental data. 

The mathematical model accepts data in text file format containing experimental values, 

cell reactions and processes, cell components and database records. Cell reactions are 

converted to differential equations that are solved by built-in ODE and Implicit/Explicit 

solvers or a bi furcation analyzer depending on the type of problem. The resulting 

parameters may be optimized or fitted to experimental data. Figure 1-4 shows the 

DBsolve interface.  
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Figure 1-4: DBsolve (Goryanin et al. 1999) 

   

The ODE solver is used to generate a s et of initial values at steady state after 

performing a series of numerical method integrations. Any other forms of equation may 

be defined in the “RHS” environment and s olved using the explicit solver. When it is 

desired to observe the effect of changes such as substrate and enzyme concentrations 

on product concentrations, control coefficients and overall steady flux, the implicit solver 

may be used. The bifurcation analyzer is used to determine whether a certain type of 

model method is feasible for non-linear systems [86]. 

The time dependent multi-algorithm simulation system for whole cell modeling 

consists of “data structure”, “driver algorithm” and “integration algorithm” modules. Within 

the data structure are defined classes for grouping data into a vector containing 

“steppers” and state variables (the model class). The steppers are further defined as a 

sub-vector component known as the “stepper class” to contain cell reactions or 

processes, time of reaction, time interval, step interval, step method and interruption 

method. Each “stepper” has an assigned state variable both of which change over time. 

This information is used to calculate a stepper dependency which is defined as a 

function of cellular processes and t ime. The driver algorithm outlines the steps to be 
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carried out in the simulations. Initial values of time and s tep intervals are defined for 

computing an i nitial stepper dependency which is updated at step size intervals over 

time. The original steppers are notified of the changes by an interruption procedure that 

replaces previous steppers with current ones. Corresponding state variables are 

recorded at the same time. The process continues for as long as the iteration runs until 

final time.  The integration then uses the Euler method with a second order error term to 

compute the discretized form stepper equation as shown below:  

∑

∑

∈

∈

=

−=∆∆+∆+=

kPl
lkkj

jijj

Sk

kjjjij

x

tttOxtxx

,
'
,

2'
, ),()(

~

δρ

ττ

 

Equation 1-4: Euler method equation (Takahashi et al. 2004) 

 

jx is the last state variable, iτ is the local time, jt  is the last updated global time, lk ,ρ  is 

the change in velocity of jx by the thl process of the thk stepper and jt∆ is the 

corresponding change in time.  T he program was implemented by using an object-

oriented programming languages like C++ and Python [85].  

Browning and S huler sought to develop a whole cell model for general cases 

based on an original E. coli model.  They described this model as a “dynamic model of a 

free-living cell”. The concept of identifying the relationship between a cell’s genome and 

phenotype is adhered to here. Components of the E. coli model involved a set of time-

dependent cell reactions (ODE-based kinetic equations) that requires initial conditions 

for solution.  The model derives from the assumptions that cell characteristics such as 

shape, size and c omposition vary with environmental changes and thusrespond to 

changes in the concentrations of carbon and nitrogen sources in a minimal medium to 

predict macromolecular composition, cell size, shape, cell replication and cell division 
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periods, point of initiation, and gr owth rate. All of DNA and R NA processes were 

“lumped” into single DNA and R NA equations respectively without losing a de tailed 

representation of the cell.  

Whereas the lumped equations in the E. coli are not constrained, the generalized 

cell model requires that the summation of mass balances for individual cell units must be 

equal to their respective lumped equations. The main objective of the generalized model 

was to be able to account for cell composition, growth rate, environmental changes, etc. 

based on scaling kinetic ratios. The kinetic ratio was defined as the ratio of the rate of all 

enzyme catalyzed reactions in a given model (for another organism) to the rate of all 

enzyme catalyzed reactions in the E. coli model. The “scaling” (for the generalized 

model) involved multiplying the kinetic ratios by each of the enzyme catalyzed equations 

in the cell under study to effect changes in the rate of occurrence of biosynthetic 

reactions. This is expected to cause dynamic changes in the cell from which schemes 

are developed for predicting cellular functions. To illustrate how “scaling” is done, an 

example of enzyme catalyzed reaction for amino acid biosynthesis is given below: 
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Equation 1-5: An example of enzyme catalyzed equation (Browning and Shuler 2001) 

 

Where 1P  is the mass of amino acids per cell, 1A  is the mass of intracellular ammonium 

ion, 2A  is the mass of intracellular glucose and associated compounds, V is the cell 

volume, 1k  is the maximum rate of amino acid synthesis per unit cell volume, and 
1PK , 

11APK , 
21APK  are saturated constants. So, multiplying the above equation by the kinetic 
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ratio in the generalized model will change 1k and eventually change the mass of amino 

acid cells with respect to time. The same is applied to growth rate equations and other 

perturbation equations. Thus the effects of growth rate, cell composition, mutations or 

environmental changes are reflected in cell behavior. The generalized cell model is 

basically geared towards predicting reaction kinetics and mass transport process based 

on dimensionless parameters [88].  

 

1.4.4 Errors/Sensitivity Analyses Applications 

General areas of scientific and en gineering require reliable and s table statistical 

computations.  In mathematical modeling the major issues of concern are measurement 

and computational errors that can lead to inaccurate results especially when model 

performance is based on raw data. In reality, measurement data and computations are 

not entirely free of errors [89]. Errors may be random or systematic. Common sources of 

errors in these areas include pipettes, instrument readings, noise and biased data [90, 

91]. Extensive studies on error and sensitivity analyses by Altman et al [89, 92] and 

highlight the need to avoid key sources of modeling errors such as  “ un-modeled 

measurement error”, computer bugs”, “errors in data input”, ill-conditioned input data, 

“floating point underflow or overflow”, “rounding”, “non-random structure in random 

number generators”, “local optima or discontinuities in optimization landscapes”, 

“inappropriate or unlucky choices of starting values” and inadequate stopping criteria 

[89].  

Metabolic flux analysis of biotechnological processes is somewhat complicated 

mostly due to scarcity of highly accurate and reliable measurement data [44, 93, 94] and 

possible inaccurate predictions from the model which may lead to loss of information on 

identifying key reactions [94, 95]. In MCA, errors are commonly associated with control 
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coefficients resulting from scaled first derivatives [96]. Errors due to noise have been 

identified as the source of most error effects on model. Filters in the presence of dynamic 

processes are primarily used to minimize noise error [94]. Errors from measurements and 

estimates may be eliminated by additional contributions from balancing techniques [94]. 

Consistency checks with respect to linear constraints in metabolic flux analysis have 

been applied to detect errors [97]. Indirect methods involving the use of elasticity and co-

response coefficients for computing control coefficients have been proposed for better 

accuracy in MCA results [96]. Mass conservation balances may result in residual values 

used as estimated measurement errors. A common statistical test associated with 

modeling microbiological systems is the use of an ‘ h’ function which determines the 

confidence level at which the resulting residual values are relatively close to zero (no 

gross errors are associated with measurements) [91, 98]. 

Statistical methods such as chi-square tests and Monte Carlo simulations have 

been established for error/sensitivity analysis in metabolic modeling [91, 99]. Chi-square 

tests determine the quality of data fit based on confidence interval estimates in a linear 

model [100]. In the Monte Carlo method, random numbers are generated from the mean 

and standard deviations of measured data. This is intended for simulating possible 

errors in measurements enough to reflect propagated errors in the model results. Monte 

Carlo simulations identify which experimental measurement need to be repeated for a 

considerable number of times and determined the shape of error distributions [99]. 

This study intends to develop predictive mathematical models (expected to 

reasonably reflect or capture and thus predict the behavior of “whole cell” model) based 

on steady-state and transient analysis (of C. thermocellum cell influenced by exogenous 

ethanol and dissolved hydrogen gas) in the presence of elevated pressures in 

continuous culture fermentations. Quality statistical evaluation of results considers chi-

square tests and M onte Carlo simulations (MCS) of measurement data for 
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error/sensitivity analysis with MCS the most extensively used to determine the extent of 

uncertainty in measured data and model predictions [94, 96, 101-103].  

 

1.5 OBJECTIVES 

 Clostridium thermocellum glycolytic metabolism will be investigated to develop a 

metabolic model for: i) its wild type and ethanol adapted cells toward end-product yields 

from cellobiose; ii) quantifying effects of dissolved hydrogen gas and pressure on end-

product recovery/formation in wild type cells. The goal is to develop a predictive model 

for metabolic fluxes which corresponds to all metabolic phenotypes and genotypes for C. 

thermocellum glycolytic metabolism. This is expected to provide the platform for 

formulating optimal control theory to maximize ethanol yield.  

 

1.6 THESIS ORGANIZATION 

Chapter 1 (Introduction) provides general background and l iterature on m icrobial 

metabolism, metabolic modeling, organism selection and t he need t o develop a 

metabolic model for C. thermocellum. 

 

Chapter 2 ( Metabolic Flux and C ontrol Analyses (MFCA) of Wild Type and E thanol 

Adapted C. thermocellum Cells) presents a comparison between the technical details for 

constructing, calibrating, verifying, and evaluating flux distributions and control from 

measured amounts of some metabolites (both extracellular and intracellular) at steady 

state for both wild type (WT) and ethanol adapted (EA) cells.   
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Chapter 3 (Sensitivity Analysis of Clostridium thermocellum metabolic flux model) using 

the MFCA model to determine accuracy in modeling estimates from experimental data 

using inferential and descriptive statistical analyses (for example, chi-square distribution 

and Monte Carlo simulation). 

 

Chapter 4 (Modeling Dissolved Hydrogen Gas (MDGG) and pressure effects in 

continuous culture fermentation of C. thermocellum) quantifies dissolved hydrogen gas 

flux on end-product recovery/formation of acetate and et hanol in the presence of 1) 

atmospheric ; 2) elevated pressure at steady state. 

 

Chapter 5 (Transient Metabolic Flux Modeling of C. thermocellum) quantifies effects of 

dissolved hydrogen gas concentration on end-product recovery/formation of acetate and 

ethanol in the presence of 1) atmospheric ; 2) elevated pressure over time. 

 

Chapter 6 (Future Development) 
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CHAPTER 2 METABOLIC FLUX AND CONTROL ANALYSES OF    
WILD TYPE AND ETHANOL ADAPTED CLOSTRIDIUM 
THERMOCELLUM CELLS  

 

2.1 SYNOPSIS 

A metabolic model based on metabolic flux and control analyses was developed to 

evaluate the glycolytic pathway of Clostridium thermocellum. The catabolism of C. 

thermocellum wild type (WT) and ethanol adapted (EA) cells grown on cellobiose in 

continuous culture were evaluated. Wild type cells averaged a 4%  increase in 

carbohydrate uptake while only a 1% increase was observed in EA cells in the presence 

of exogenous ethanol. Less carbon was distributed towards lactate in WT (~4%) than in 

EA (~6%). Ethanol to acetate ratios increased in WT (4.8:1 to 6.1:1) at lower levels of 

exogenous ethanol while no s ignificant changes in these ratios were observed for EA 

(5.1:1 to 5.5:1). However, WT cells appeared to be v ery sensitive to higher levels of 

exogenous ethanol (>1%v/v) and thus significantly decreased its ethanol to acetate ratio 

(i.e. from 4.8:1 to 2.1:1).  

 

Keywords: Metabolic flux analysis; Control analysis; Clostridium thermocellum. 

 

 

 

 

 

 



 

27 
 

2.2 INTRODUCTION 

2.2.1 Motivation for Lignocellulose Degradation 

Increasing demands and prices of petroleum-based fuels have prompted the 

need to research and develop alternative fuels that can be produced from abundant 

renewable biomass. Ethanol has been identified as a potential alternative to fossil fuels 

[13-15]. Ethanol, as an oxygenated molecule, can  reduce emissions of carbon dioxide, 

carbon monoxide, nitrogen oxide and hydrocarbons in compression-ignition engines 

[13]. Biomass production for alternative fuels affects the agricultural economy by 

increasing markets for farm owners and by  increasing employment to process the 

biomass to fuels [13, 15, 16]. Tremendous efforts are being made to introduce 

renewable ethanol fuel production to reduce the world’s dependence on non-renewable 

fuel resources. Since lignocellulosic biomass is a globally abundant source of stored 

energy, it seems appropriate to suggest lignocellulose for bioethanol production [16, 17]. 

Thus, renewable biomass resource conversion to ethanol continues to attract attention 

but economic assessment and research has shown limitations in developing and 

implementing effective techniques for utilizing biomass economically [18, 19]. “Highly 

effective cellulases and hemicellulases”, “efficient and robust fermentative 

microorganisms”, and “low-cost thermochemical pretreatment” are comprehensive 

measures that are being employed for biomass conversion into fuels and chemicals [18]. 

The importance many researchers placed on economically viable target products calls 

for more exploration of design and application of models. The National Biofuels Action 

Plan of 2008 states that increased knowledge of microbes and enzymes at the system 

level is needed t o optimize the production of ethanol [104]. Metabolic flux and control 

analyses are process engineering (or metabolic modeling) methods that have been used 

to elucidate microbial and enzyme behavior at the system level. Process modeling and 
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simulation have been identified as promising tools for the dynamic analysis of ethanol 

fermentation process[23]. However, it has been discovered that fermentation conditions 

for producing high ethanol yield require the application of inhibitor-tolerant strains of 

microorganisms to metabolize all sugars (substrates) into ethanol as the major product 

[20]. Cells control their metabolism by regulating enzyme concentrations and activities, 

which affect material flows through different pathways. Thus, knowledge of the carbon 

flow through the microorganism will allow better understanding of metabolic processes 

such as catabolism, anabolism, and cell growth, enabling the controlled production of 

useful products in the chemical, engineering, fuel and pharmaceutical industries. 

 

2.2.2 Organism Selection  

Clostridium thermocellum is one of the most extensively studied anaerobic 

thermophiles. It is widely distributed in soil, has a very active cellulase system and has 

shown promise to achieve direct conversion of lignocellulosic biomass into ethanol at 

elevated temperatures [21, 29, 105] through consolidated bioprocessing (CBP). 

Consolidated bioprocessing is a term for a process where cellulase and hemicellulase 

production, hydrolysis and fermentation of pentose and hexose sugars occur 

simultaneously in the same reactor. Consolidated bioprocessing occurs in a single step 

and is considered to have outstanding potential because of its higher efficiency and low 

cost compared to other ethanol production methods [106]. The nature of CBP suggests 

the possibility of increasing ethanol production from higher hydrolysis rates when 

thermophiles, containing substrate-enzyme-microbe synergy, are involved [106]. 

Clostridium thermocellum is capable of converting cellulosic substrates in one reactor 

(known as consolidated bioprocessing) into products such as acetate, ethanol, lactate, 

H2, CO2 and recently formate [26, 45, 107, 108]. Clostridium thermocellum is one such 
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thermophile that has been used to demonstrate the usefulness of CBP  in which the 

organism showed a cellulose conversion rate of 31% higher on than Trichoderma reesei 

and Saccharomyces cerevisiae [23]. The primary products of cellulose degradation by C. 

thermocellum’s cellulosome are cellobiose and cellodextrins [106]. However, research 

focus has been directed at improving ethanol production for commercial purposes by 

examining ethanol adaptation of C. thermocellum in relation to cell membrane fluidity 

[52, 56-58, 109-111]. Gram positive Thermoanaerobacter ethanolicus shares a common 

metabolic characteristic with C. thermocellum and the function of its alcohol 

dehydrogenase coupled with long chained fatty acids effects on ethanol production have 

been studied [38, 52, 57, 58, 110, 112, 113]. Alcohol dehydrogenase has been 

determined to prevent ethanol consumption in the presence of exogenous ethanol, 

resulting in increasing ethanol yield  [113]. Upon detecting that nicotinamide adenine 

dinucleotide (NADH) inhibits pyruvate dehydrogenase (PDH) from channeling carbon 

from pyruvate to metabolic products in Escherichia coli; mutation of PDH minimized the 

inhibition effect. With the dominating effect of lactate dehydrogenase (LDH) on pyruvate, 

in relation to pyruvate formate-lyase (PFL) and PDH (all of which convert carbon from 

pyruvate to other products), a deletion of LDH in the E. coli cell was observed to 

increase metabolic product yields [114]. This concept may be exploited for C. 

thermocellum. Similarly, other studies claimed that a deletion of ferrodoxin-hydrogenase 

(participating in the NADH and hydrogen production cyclic reaction between pyruvate 

and acetylCoA) in C. thermocellum has been detected to generate a maximum of 15-fold 

increase in ethanol production [115].   

The use of exogenous ethanol revealed different sensitivity levels of WT and EA 

C. thermocellum cells in extensive studies of product selectivity and shift studies. In the 

presence of exogenous ethanol (solvent) the cells’ metabolism and growth were 

influenced by protein function loss due to the interaction between cell membrane and 
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solvent. Changes in fluidity influence permeability through the membrane [56, 57, 109, 

111, 112, 116]. Ethanol adapted cells accumulate a high percentage of longer fatty acid 

chains (>16:0) compared to wild type cells which accumulate shorter fatty acid chains 

(<16:0) in the presence of solvents. Wild type cells are sensitive to exogenous ethanol 

above the 1% level whereas ethanol adapted cells can tolerate as much as 8% 

exogenous ethanol. In the presence of exogenous ethanol, wild type cell membrane are 

less rigid (hence membrane fluidity increases) compared to ethanol adapted cell 

membrane. Ethanol adapted cell membrane seems not to tolerate any level of 

exogenous ethanol beyond 8% as was seen with increasing membrane rigidity (i.e. 

decreasing fluidity) [111]. Membrane fluidity thus affects growth rate [56] which in turn is 

inversely proportional to metabolic flux. 

Optimum temperature is hindered by increasing amounts of exogenous ethanol 

in WT compared to EA [56]. Loss of protein function is affected by the presence of 

exogenous ethanol (or organic solvent) due to the interaction between cell membrane 

and solvent. Cell membrane lipid viscosity, which is a function of membrane thickness, 

increases with increasing amount of exogenous ethanol. Exogenous ethanol makes the 

membrane more rigid and thus, causes low fluid permeability through the membrane. 

Consequently, membrane fluidity changes coupled with loss of protein function 

influences cell growth and metabolism [56, 57, 109, 111, 112, 116]. Product selectivity 

and shifts in both exogenous ethanol containing WT and EA C. thermocellum are 

affected accordingly. Wild type tolerates exogenous ethanol amounts up to 1.5% 

(vol/vol), thereby producing short chained fatty acids in the WT cells [57, 58, 111-113]. 

Ethanol adapted cells favor beyond 5% vol/vol (as high as 8% vol/vol) exogenous 

ethanol to increase membrane fluidity [57, 58, 112, 113]. A higher percentage of long 

chained fatty acids were detected in EA cells due to high ethanol tolerance. In the 

presence of exogenous ethanol, ethanol adapted cells accumulate a high percentage of 
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longer fatty acid chains (>16:0) compared to wild type cells which accumulate shorter 

fatty acid chains (<16:0). This observation probably suggests why ethanologenic 

thermophiles have high tolerance to alcohols [113].  

The progress of cellulose conversion by C. thermocellum may be hindered by a) 

relatively low ethanol tolerance and yield compared to yeast, and b) reduced cellulase 

synthesis under some typical growth and substrate conditions. An inverse relationship 

between membrane fluidity and order of fatty acid chains in the cell has been used to 

measure the cell’s ethanol tolerance [111]. The mechanism known as anisotropy (A) is 

determined from the ratio of the orientation of light intensities from DPH labeled cells. 

Intensities are determined for horizontal and vertical excitations and emissions [111]. 

The ratio of horizontal excitation and vertical emissions (Ihv) to both horizontal excitation 

and emission (Ihh) defines a grating factor (g) for calculating A, where A =
𝐼𝑣𝑣−𝑔𝐼𝑣ℎ

𝐼𝑣𝑣+2𝑔𝐼𝑣ℎ
  . A 

high value of A corresponds to high order of fatty acids and hence, low membrane 

fluidity  [111]. 

The limitations mentioned above have been recently addressed through genetic 

engineering (transcriptome and proteome analyses). Meanwhile, proteomic and 

transcriptome analyses do not sufficiently assess biological function [117], hence the 

need for intracellular metabolite analysis [118]  to determine microorganisms’ responses 

to important environmental stimuli (such as exogenous ethanol, substrate type, and 

substrate concentration). Measuring cellular response to a genetic or environmental 

perturbation provides a basis for rational "metabolic design" of these microorganisms 

[106]. However “metabolic design” is most effective to improve the  performance of C. 

thermocellum when a metabolic model exists for the organism [119].  

Mathematical models are simplifying abstractions that synthesize information and 

transform datasets into biological insight [40]. Existing essential tools for such modeling 
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include metabolic flux and control analyses. Metabolic flux analysis quantifies rate of 

material flow (distribution of fluxes) during metabolism in a microorganism. 

Stoichiometric models, such as those used in metabolic flux analysis (MFA), have 

emerged as a powerful analysis tool to relate observable extracellular states with the 

intracellular carbon flux and energy distribution of an organism to form network models 

[120].  The stoichiometry for the central catabolic pathway of C. thermocellum is well-

established. However, a metabolic model has not been developed for this organism.  

Metabolic control analysis (MCA) characterizes the sensitivity of steady-state 

metabolic responses to changes in enzyme parameters using parameters such as 

elasticity coefficients, flux control coefficients and concentration control coefficients. The 

elasticity coefficients (ECs) are derived from the kinetics of the enzymes and can be 

defined as the fractional change in metabolite concentration with respect to rate of 

enzyme reaction. Elasticity coefficients are known as local parameters that describe the 

behavior of each pathway step in response to the respective enzyme activities and/or 

perturbation [121, 122]. The ECs are often used for estimating the flux and concentration 

control coefficients (FCCs and CCCs) that describe the extent to which enzyme activity 

or intracellular metabolite concentrations affect pathway components [71, 123].  The 

FCCs and CCCs are system parameters that illustrate the effects of changes in fluxes 

and metabolite concentrations on the metabolic pathway as a result of steady state 

perturbations. Metabolic control analysis (originally developed by [124]; and [125]) uses 

mathematical modeling to quantify the responses of metabolic pathways to control 

processes.  The control process often involves perturbations in the microorganism’s 

environment to generate possible effects on products of interest [126]. These effects are 

expressed in the form of FCCs and CCCs. This study focuses on investigating the 

capability of wild type and ethanol adapted C. thermocellum cells to adapt/adjust their 

metabolic responses to exogenous ethanol. Our capacity to collect quantitative 
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information on a microorganism has surpassed our ability to interpret these data [127]. 

The objective of the study was to develop a mathematical model to predict the 

responses of the wild type and ethanol adapted cells to w/v % ethanol treatment and to 

identify observable similarities and differences that may point to relevant information for 

enhancing/optimizing the cells’ ethanol-producing pathway.  

 

2.3 EXPERIMENTAL DATA AND STATISTICAL ANALYSIS 

End-product concentrations produced by wild type (WT) and ethanol adapted (EA) 

C. thermocellum cultures grown on cellobiose substrate in steady state perturbations 

were taken from [118] for varying exogenous ethanol levels of  0%, 0.5%, 1% (for WT) 

and 0%, 1%, 5% (for EA). Wild type and EA strains were grown at 60oC and 55 oC 

respectively at atmospheric pressure and fed with 4g/l cellobiose. Ethanol adapted 

strains are WT strains gradually adapted to increasing exogenous ethanol over time 

[118]. Replicates of metabolite concentrations within the experimental treatments 

(exogenous ethanol level) of WT and EA cells were analyzed using SAS PROC TTEST 

procedure to test the hypothesis of equal variances between observed metabolite 

concentrations. In the absence of replicate differences, we may then proceed to use the 

experimental data to perform metabolic flux and control analyses to determine elasticity 

coefficients, flux control coefficients (FCC) and concentration control coefficients (CCC). 

The observed levels of pyruvate in WT were reported [118] to be below detection limit so 

random values of pyruvate concentrations between 0.01mM and 0.09mM for all wild type 

cells were assumed.  
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2.4 MODELING METHODS 

MFA and MCA were used to investigate the response of C. thermocellum 

metabolism to perturbations of exogenous ethanol concentrations in WT and EA strains.  
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Figure 2-1: Overview of MFA and MCA methods 

 

2.4.1 Metabolic Flux Analysis 

Intracellular fluxes of metabolites in microbial cells are good indicators of cell 

phenotype.  A metabolic flux analysis (MFA) is helpful to estimate the intracellular flux 

distributions given measured extracellular fluxes [121, 128].  MFA builds on the 

assumption that intracellular fluxes are in equilibrium with extracellular fluxes when the 

cells are at steady state.  This assumption is satisfied when cells are grown in 

continuous cultures with nutrient limited growth [121].   
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               Figure 2-2: Simplified C. thermocellum Central Metabolic Pathway 

 

Evaluation of the metabolic flux model suggested the system was consistent and 

determined. From Figure 2-2, mass balance principles were applied around each 

intracellular metabolite which resulted in a determined system of equations, consisting of 

an 8 x  14 s toichiometric matrix. The stoichiometric matrix N was used to develop a 

metabolic flux model in MATLAB. Let v denote the vector containing all fluxes then  

0v.N =                                                                                                  (A) 

N was determined as: 
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-1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 
1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 -23.8 -24.2 -21.6 0.0 0.0 0.0 
0.0 1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.7 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.3 0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 
0.0 0.0 0.0 0.0 1.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 

 

Equation (A) was partitioned into measured and non-measured fluxes that were 

rearranged with the unknown fluxes preceded by the known fluxes [12] as : 

 

bbnn

bbnn

vNvN
0vNvN

•−=•
=•+•

                                                                               (B) 

Equation 2-1: Partition between measured and non-measured fluxes 

 

Nb and vb denote the stoichiometric matrix and flux vector corresponding to 

measured fluxes respectively. Nn and vn denote corresponding matrix and vector for non-

measured fluxes respectively.  Nn and Nb  were determined to be: 

Nn=  
-1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.7 0.0 -1.0 -1.0 0.0 0.0 

0.0 0.0 0.3 0.0 0.0 0.0 -0.3 0.0 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 

0.0 0.0 0.0 0.0 1.0 0.0 0.0 -0.5 
 
Nb =  

0.0 0.0 0.0 0.4 0.0 0.0 

-23.8 -24.2 -21.6 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 -0.4 0.0 

0.0 0.0 0.0 0.0 0.0 -0.4 

0.0 0.0 0.0 0.0 0.0 0.0 
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An algorithm was developed for which the user is allowed to input known fluxes 

of extracellular metabolites for the prediction of fluxes of intracellular metabolites. 

Measured fluxes (mg metabolites /gram dry cell weight /hr) were obtained from 

experimental data by multiplying measured concentrations (in mM) by dilution rate (hr-1) 

and metabolite molar mass (g/mol) and dividing by cell density (gcdw/l) for acetate, 

cellobiose, and lactate. Measured fluxes of cellobiose, lactate, and acetate were used as 

inputs in the model to predict intracellular fluxes and other extracellular fluxes. Glucose-

6-phosphate, pyruvate and acetylCoa were identified as the key branch points. The 

principle of MFA has been previously described [64]. 

 

2.4.2 Flux Control Coefficient (FCC) and Concentration Control    

Coefficient (CCC) 
With varying steady state perturbations of exogenous ethanol in WT and EA 

strains, the double modulation method was used to determine elasticity coefficients (an 

indirect way of determining control coefficients) and control coefficients to describe the 

metabolic system’s behavior in response to perturbation. The method is based on the 

assumption that the steady state system is clearly defined with constant substrates and 

product concentrations.  

The MCA procedure is illustrated by considering a simple linear pathway (Figure 

2-3) to determine flux control coefficients, concentration control coefficients and elasticity 

coefficients.  

PIIS 321
21 →→→ εεε

 

Figure 2-3: Schematic of simple linear pathway 

S = substrate, ε= elasticity coefficient, I = intracellular metabolite, and P = product 
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Step 1: Write control matrix from pathway: 

















2
3

2
2

2
1

1
3

1
2

1
1

321

CCCCCCCCC

CCCCCCCCC

FCCFCCFCC
 

FCC  = flux control coefficient, CCC = concentration control coefficient 

FCC1 = FCC due to 1st reaction 

FCC2 = FCC due to 2nd reaction 

FCC3 = FCC due to 3rd reaction 

1
1CCC = CCC due to 1st reaction with respect to 1st intracellular metabolite 

2
1CCC = CCC due to 1st reaction with respect to 2nd  intracellular metabolite 

1
2CCC  = CCC due to 2nd reaction with respect to 1st intracellular metabolite 

2
2CCC  = CCC due to 2nd reaction with respect to 2nd intracellular metabolite 

1
3CCC  = CCC due to 3rd reaction with respect to 1st intracellular metabolite 

2
3CCC  = CCC due to 2nd reaction with respect to 2nd intracellular metabolite 

Step 2: Write elasticity matrix from pathway: 

















εε

εε

εε

2
3

1
3

2
2

1
2

2
1

1
1

1

1

1

 

ε1, ε2, and ε3 = elasticity coefficients due to 1st , 2nd and 3rd reactions respectively.  
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1
1ε = elasticity due to 1st reaction with respect to 1st intracellular metabolite 

1
2ε = elasticity due to 2nd reaction with respect to 1st intracellular metabolite 

1
3ε = elasticity due to 3rd reaction with respect to 1st intracellular metabolite 

2
1ε = elasticity due to 1st reaction with respect to 2nd intracellular metabolite 

2
2ε = elasticity due to 2nd reaction with respect to 2nd  intracellular metabolite 

2
3ε = elasticity due to 3rd reaction with respect to 2nd  intracellular metabolite 

Step 3: Apply the summation and connectivity theorem: sum of flux control coefficients 

equal one, sum of concentration control coefficients equal zero, the sum of product of 

elasticity coefficients and their respective flux control coefficients for each reaction equal 

zero and the sum of product of elasticity coefficients and their respective concentration 

control coefficients for each reaction equal negative one. Given known elasticity (the 

approach to determining elasticity is detailed in the methods) coefficients, the FCCs and 

CCCs can be solved algebraically from the following expression:  

















2
3

2
2

2
1

1
3

1
2

1
1

321

CCCCCCCCC

CCCCCCCCC

FCCFCCFCC
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 =









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





−−
−−

110
110

001
                          (C) 

Six (6) key pathway steps and three (3) intracellular metabolites were used in the MCA 

model (Figure 2-4). Therefore the elasticity coefficients (denoted by ε ) with respect to 

steps 1 through 6 were computed by incorporating small changes in fluxes and 

concentrations of glucose-6-phosphate, pytuvate and acetylCoA at different steady 

states. 
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Figure 2-4: Six key pathway steps and intracellular metabolites identified for MCA model development 

 

Eight elasticity coefficients denoted by 𝜀1
𝐺6𝑃 , 𝜀2

𝐺6𝑃 , 𝜀2
𝑃𝑦𝑟, 𝜀3

𝑃𝑦𝑟, 𝜀4
𝑃𝑦𝑟, 𝜀4

𝐴𝑐𝐶𝑜𝐴, 𝜀5
𝐴𝑐𝐶𝑜𝐴, 𝜀6

𝐴𝑐𝐶𝑜𝐴 

due to glucose-6-phosphate, pyruvate and acetylCoA (intracellular metabolites) were 

computed. Subscripts and superscripts represent each pathway step and intracellular 

metabolites (G6P, Pyr and AcCoA as nodes) respectively. For example to determine the 

elasticity coefficients of pyruvate and glucose-6-phosphate due to step 2 (the EMP 

pathway) in WT, small changes in the respective fluxes and concentrations between 

WT0% and WT0.5%, and between WT0% and WT1% (all assumed to be perturbed at 

steady state) may be used in simultaneous equations to solve for the unknown elasticity 

coefficients as in Equations (1) and (2) below.  

∆𝐽𝐴𝐵 =  𝜀2
𝐺6𝑃∆𝐶𝐺6𝑃

𝐴𝐵 + 𝜀2
𝑃𝑦𝑟∆𝐶𝑃𝑦𝑟

𝐴𝐵 …………………….. (1)   

∆𝐽𝐴𝐶 =  𝜀2
𝐺6𝑃∆𝐶𝐺6𝑃

𝐴𝐶 + 𝜀2
𝑃𝑦𝑟∆𝐶𝑃𝑦𝑟

𝐴𝐶  ………………………. (2) 
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∆𝐽𝑗𝑘 = 𝑙𝑛𝐽𝑘 − 𝑙𝑛𝐽𝑗 ; ∆𝐶𝑗𝑘 = 𝑙𝑛𝐶𝑘 − 𝑙𝑛𝐶𝑗. ΔJAB is the small (differential) change in 

metabolite fluxes between treatments WT0% and WT0.5% and ΔJAC is the changes 

between WT0% and WT1%. Similarly, ∆𝐶𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
𝑗𝑘   represents small changes in 

concentrations of the same metabolite between the j and k treatments. The unknown 

parameters 𝜀2
𝐺6𝑃 and 𝜀2

𝑃𝑦𝑟, are the elasticity coefficients  of G6P and pyruvate as 

described earlier. The same procedure is used to determine the other elasticity 

coefficients of intracellular metabolites in the other steps for WT and EA. Using Equation 

C, the FCCs and CCCs can be estimated accordingly [121, 124, 128-132]. These papers 

further demonstrate other alternatives to performing metabolic control analyses. 

 

2.4.3 Statistical Analyses 

The effects of exogenous ethanol treatment on carbon flux distribution, flux 

control and concentration control were considered for WT and EA types of the C. 

thermocellum pathway. An assessment of how much control of flux or concentration may 

be needed and the rate at which carbon is distributed within the pathway is of significant 

importance to relate phenotypic to genomic information. 

T-tests were performed by pairing each of the exogenous ethanol treated strains 

(WT0%, WT0.5%, WT1%, EA0%, EA1% and EA5%) to determine how sensitive the 

level of exogenous ethanol in a cell type is to the rate of material flow (flux) through the 

pathway. The paired t-test was based on the null hypothesis (as shown below with the 

alternate hypothesis) that there is no significant difference (at both the 5% and 10% 

significance levels) between averages of paired fluxes (say between WT0 and EA0).  

H0: µWT0 = µEA0 = µEA1 = µEA5;   H0: µWT0.5= µEA0 = µEA1 = µEA5;   H0: µWT1= µEA0 = µEA1 = µEA5;   

H1: µWT0 ≠ µEA0≠ µEA1≠ µEA5;   H1:  µWT0.5≠ µEA0≠ µEA1≠ µEA5;   H1:  µWT1≠ µEA0≠ µEA1 ≠ µEA5.         
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As an example, the paired t-test between WT0 and EA0 were defined using SAS 

as: 

Data CthermGrowth; 

Input Wtflux0 EAflux0; 

Datalines;  

7.20 10.92 
5.22 8.94 
0.27 0.94 
4.95 8.01 
2.74 4.50 
0.56 0.83 

 

Proc ttest; 

Paired Wtflux0*EAflux0; 

Run; 

 

Independent t-tests involving FCCs and CCCs grouped under WT and EA cells 

to determine whether flux and/or concentration controls are affected by the level of 

exogenous ethanol in both type of cells were also performed in SAS. Two types of null 

hypotheses (and alternate hypotheses) were set for this case (within strains and 

between strains) as: 

H0: µWT0 = µWT0.5= µWT1;   H0: µEA0 = µEA1 = µEA5;   H0: µWT= µEA   

H1: µWT0 ≠ µWT0.5≠ µWT1;   H1: µEA0 ≠ µEA1≠ µEA5;   H1:  µWT≠ µEA 

For example, the PROC TTEST between WT0 and WT0.5 CCCs were defined as: 

Data CthermGrowth; 

Input treatment $ G6P Pyr AcCoA; 

Datalines;  

WT0 -2.295 -0.117 -0.330 
WT0 4.291 0.982 2.765 
WT0 -0.126 -0.055 -0.081 
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WT0 -2.307 -1.000 -1.487 
WT0 0.363 0.157 -0.720 
WT0 0.074 0.032 -0.147 

WT05 -2.280 -0.111 -0.325 
WT05 4.161 0.926 2.721 
WT05 -0.085 -0.037 -0.055 
WT05 -2.225 -0.964 -1.455 
WT05 0.371 0.161 -0.768 
WT05 0.057 0.025 -0.118 

Proc ttest; 

Class treatment; 

Var  G6P Pyr AcCoA   

Run; 

Proc boxplot; 

Plot G6P* treatment; 

Plot Pyr* treatment; 

Plot AcCoA* treatment; 

Run; 

 

2.5 RESULTS AND DISCUSSION 

The metabolic responses of WT and EA C. thermocellum to exogenous ethanol 

perturbations were compared by examining their carbon flux distributions, FCCs and 

CCCs with the intention of identifying any differences in their respective metabolisms.  

In a two-way analysis of variance, predicted exogenous ethanol treatment effects 

and differences in flux distribution (rate of flow of material through pathway) were 

evaluated (Table 2-1 and Table 2-2). Exogenous ethanol treatment effects were blocked 

on node or flux location (glucose-6-phosphate, pyruvate and acetylCoA) for statistical 

analysis. There is a statistically significant probability that at least one flux varied with 

treatment in both WT and EA.  Further analysis was required to determine which 

treatment means were significantly different from the others. 
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Paired t-tests were  performed and evaluated at critical levels (α) of 10% within 

WT and EA cells to determine if these samples come from the same distribution with 

equal means or not (Table 2-3 and Table 2-4). The paired t-tests compared treatments 

at each pathway flux. A ‘p’ value less than α indicates that statistically, the means were 

significantly different from each other. At the 10% level, the p-values indicate significant 

differences between all WT pairs. In this case, the metabolic activities all WT cells vary 

with each increase in exogenous ethanol. The p-values at the 10% level show that at 

least one of the means of EA0 and EA1 are the same (Table 4). There is an indication 

that EA0 is significantly different from EA5 and EA1 is significantly different from EA5. 

The reaction of acetylCoA branch point towards acetate reaction involves acetate 

production from AMP and pyrophosphate (PPi) or from ADP and Pi. The former pair 

requires 3H+, which causes a less thermodynamically feasible acetate production than 

the latter pair [45]. The ATP/ADP ratio determines cellular energy, thus the higher this 

ratio the less likely it is for the reaction to go towards acetate. ATP/ADP ratios decreased 

across EA0, EA1 and EA5 (i.e. EA5 had the lowest ATP/ADP ratio, hence directs the 

reaction towards forming acetate where more ATP is produced for energy. Thus, the 

difference in EA1 and EA5 could be attributed to possible activation of the latter pair by 

the 5% exogenous ethanol concentration towards acetate production as shown in Figure 

2-7 and Figure 2-8 



 

45 
 

 
Table 2-1: Two-way ANOVA for WT flux distribution 
Source SS df MS F Prob>F 
Flux node 161.046 5 32.2092 106.7 0 
Treatment 6.282 2 3.1404 10.4 0.0036 
Error 3.019 10 0.3019   
Total 170.345 17    
 
Table 2-2: Two-way ANOVA for EA flux distribution 
Source SS df MS F Prob>F 
Flux node 309.595 5 61.919 695.65 0 
Treatment 0.893 2 0.4467 5.02 0.031 
Error 0.89 10 0.089   
Total 311.378 17    
 
Table 2-3: Paired T-tests evaluated within WT  
Paired T-tests   WT0% –WT0.5% WT0% –WT1% WT0.5% –WT1% 

p 0.03 0.0168  0.0515 

 
Table 2-4: Paired T-test evaluated within EA  
Paired T-tests  EA0% –EA1% EA0% –EA5% EA1% –EA5% 

p *NSE(0.0903) 0.0689 0.0234 

*NSE: no significant effect @ 0.1: this value is relatively very close to 0.1 
 

 

2.5.1 Carbon Flux Distribution 

Carbon flux distribution for the wild-type C. thermocellum cultured in differing 

concentrations of exogenous ethanol is presented in Figure 2-5, expressed in 

milliequivalent carbon per gram of dry cell weight per hour (meC(gdcwh)-1), and in Figure 

2-6 in percent of the total carbon flow.  
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Figure 2-5: Predicted carbon flux distribution in a simplified model of C. thermocellum’s central pathway (units in 
meC/g cell h) – Wild type (a- WT0%, b-WT0.5% and c-WT1%) 
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Figure 2-6: Flux Distribution in WT cells (a - WT0%, b -WT0.5%, c - WT1%) shown for key pathway steps.  The first 
number in each triad represents the carbon flow in the WT0% treatment, the second and third number represents 
the WT0.5% and WT1% respectively. 

 

The carbon distributed towards pyruvate, acetylCoA, and ethanol increased by 

4%, 5%, and 5% respectively for the WT perturbed with 0.5% exogenous ethanol versus 

the WT with no exogenous ethanol.  However the carbon diverted towards biosynthesis 

decreased by 4% when there was 0.5 exogenous ethanol compared to no exogenous 

ethanol. In the presence of 1% exogenous ethanol, carbon distribution in WT increased 

(6% over 0% and 2% over 0.5%) towards pyruvate but decreased carbon flow towards 

ethanol (5% decrease compared to the 0% exogenous ethanol treatment and 10% 

decrease compared to 0.5% exogenous ethanol treatment). Carbon flow towards 

acetylCoA was unchanged from the % carbon flow towards acetylCoA for WT with 0.5% 

exogenous ethanol, and slightly decreased towards biosynthesis (2%) compared to 

WT0.5%. Carbon distribution towards acetate in WT1% was approximately twice that of 

both WT0% and WT0.5%.  
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Timmons et al. (2009) quantified membrane fluidity (measured using  anisotropy) 

for WT C. thermocellum and found that membrane fluidity is higher in the absence of 

exogenous ethanol [111]. It can be seen in Figure 2-5 and Figure 2-6 that the carbon flux 

distribution through the central pathway increased in WT cells as the amount of 

exogenous ethanol added increased from 0% and 1%.This may be at tributed to more 

energy being required for maintenance leaving less for anabolism when the cells are 

ethanol stressed. Increasing the amount of exogenous ethanol causes the cell 

membrane to become more fluid and l eakier, thereby decreasing membrane potential 

and proton efflux (proton towards outer membrane) while increasing proton influx (proton 

towards inner membrane). Electrochemical gradient is then decreased, which leads to 

subsequent decrease in proton motive force which requires cells to use more energy for 

metabolism [133, 134]. This hypothesis is consistent with the carbon flux distribution 

pattern in WT0%, WT0.5% and WT1%. As more energy is required for maintenance, 

more carbon is directed towards acetate formation due to the ATP generation involved 

with its formation [45], which is consistent with the pattern of carbon flux distribution in 

WT0%, WT0.5% and WT1% towards ethanol and ac etate (less carbon flux towards 

ethanol and m ore towards acetate in WT1%).  Figure 2-7 presents carbon flux 

distribution in ethanol adapted C. thermocellum. The changes in carbon distribution 

going from EA0% to EA1% and from EA0% to EA5% were identical except for acetate 

which showed a s light increase at the 5% exogenous ethanol level. Ethanol adapted 

cells generally had a lower percentage of their carbon branching off the pathway (Figure 

2-8) towards biosynthesis compared to WT (9% less in the absence of exogenous 

ethanol and 4% for the 1% exogenous ethanol treatment).  
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Figure 2-7: Carbon Flux Distribution in the simplified C. thermocellum central pathway (units in meC/g cell h) – 
Ethanol Adapted (a-EA0%, b-EA1% and c – EA5%) 
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Figure 2-8: Flux Distribution in EA cells (d - EA0%, e -EA1%, f - EA5%) shown for key pathway steps.  The first 
number in each triad represents the carbon flow in the EA0% treatment, the second and third number represent 
the EA1% and EA5% respectively. 

 

Ethanol adapted cells’ response to carbon distribution through the central 

pathway in the absence and presence of exogenous ethanol may be attributable to its 

ethanol tolerance mechanism. Cells’ adaptation to ethanol cause changes in the 

composition of membrane fatty acids that influences membrane fluidity [111]. The more 

adapted cells are to ethanol, the longer the fatty acid chain and t he less rigid the 

membrane becomes [58, 111], consequently directing more energy towards catabolism 

(as shown by the increases in carbon fluxes of the EMP pathway) and less towards 

anabolism in EA cells. However, in the presence of exogenous ethanol the membrane 

becomes too rigid [58, 111] to continuously allow further increases in catabolism, which 

explains why carbon flux distributions through the central pathway in EA1% and EA5% 

were not significantly different from EA0%. 

Ethanol adapted exhibited the same pattern as WT except for acetate. However, 

the carbon flux distributions indicated some differences in WT and EA metabolic 
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activities. The predicted difference in carbon flux directed towards biomass and 

extracellular enzymes (biosynthesis) in EA0% and WT0% (Figure 2-5 and Figure 2-7) is 

consistent with the findings of Williams et al., (2007) that lower growth rates and cell 

yields occur in EA cells compared to WT in the absence of exogenous ethanol [58] It 

may be noted that EA cells in the presence of high exogenous ethanol levels (EA5%) did 

not decrease the carbon flux towards ethanol (contrary to WT in high exogenous ethanol 

concentrations). This suggests that EA cells do not need more energy in the presence of 

exogenous ethanol because energy is preserved by the cells’ adaptation to ethanol as a 

result of increased membrane integrity [111, 135]. Similarly the predicted fluxes towards 

carbon dioxide in all strains suggest that exogenous ethanol may have no i nhibitory 

effect on gaseous products.  

Membrane fluidity, which affects growth rate, is inversely proportional to 

metabolic flux. The effect of membrane fluidity on flux may be accounted for by flux 

behavior within the Embden-Meyerhof-Parnas (EMP) pathway of the simplified metabolic 

networks shown in Figure 2-5 (for WT) and Figure 2-7 (for EA). This previous 

observation is supported by Williams et al., 2007 who found that  proteins were down-

regulated by 73% in the carbohydrate metabolism of ethanol adapted cells  [58]. 

Knowledge of metabolic pathway flux distribution patterns will help interpret and 

understand the metabolic activity towards target product formation [112, 136].  

 

2.5.2 Flux and Concentration Control Coefficients  

A two-way analysis of variance to determine the effects of exogenous ethanol 

treatments on both FCCs and CCCs within WT and EA is shown in Table 2-5 and Table 

2-6. The p-value results for CCCs are similar, and so are not shown. Rows represent 

exogenous ethanol treatment effect whereas columns indicate control coefficients for 
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each pathway. There were no significant differences in the control coefficients within the 

same type of strain regardless of exogenous ethanol treatment (WT (p=1) and EA 

(p=0.9999)).  Meanwhile, flux control coefficient for each pathway was strongly affected 

by exogenous ethanol (WT (p=0) and EA (p=0)). 

Table 2-5: Two-way ANOVA for WT flux control coefficients 
Source SS df MS F Prob>F 
Flux node 22.4698 5 4.49396 1788.96 0 
Treatment 0 2 0 0 1 
Error 0.0251 10 0.00251   
Total  17    
 
 
Table 2-6: Two-way ANOVA for EA flux control coefficients 
Source SS df MS F Prob>F 
Flux node 15.4546 5 3.09092 7448.03 0 
Treatment 0 2 0 0 0.9999 
Error 0.0041 10 0.00041   
Total 15.4588 17    
  

We may therefore deduce that the FCCs and CCCs in the catabolic pathway of 

C. thermocellum are independent of exogenous ethanol treatments. Thus values for 

control coefficients were averaged over same strain type (Table 2-7 and Table 2-8) at 

each flux location.  

 
Table 2-7: Flux control coefficients (FCCs) for wild type and ethanol adapted strains at each reaction stage 

Pathway Step Wild Type Ethanol Adapted 

1 -0.72 3.47 
2 0.89 -1.66 
3 0.03 -0.04 
4 0.45 -0.41 
5 0.30 -0.31 
6 0.06 -0.05 
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Table 2-8: Concentration control coefficients (CCCs) for wild type and ethanol type strains at each reaction stage 

Pathway Step 

CCCs of metabolite due to each pathway step 

Glucose-6-phosphate Pyruvate AcetylCoA 

WT EA WT EA WT EA 

1 -5.26 -41.79 1.17 20.68 -2.42 -18.80 
2 2.71 28.18 -1.44 -9.92 2.97 9.02 
3 0.09 0.68 0.01 -0.54 0.10 0.22 
4 1.38 6.90 0.14 -5.46 1.51 2.21 
5 0.92 5.18 0.10 -4.10 -1.82 6.32 

6 0.17 0.85 0.02 -0.67 -0.34 1.03 
 

 

2.5.2.1 Model - Wild Type 

Flux control is shared among the cellobiose phosphorylase (CBP) activity step, 

enzymes within the EMP pathway, pyruvate ferredoxin oxidoreductase (PFO) and 

combined step of acetyl dehydrogenase and alcohol dehydrogenase activities (denoted 

as ADH). Activities of the enzymes within the EMP pathway (step 2) were determined to 

be the major controlling step for the wild-type strain adjusting to exogenous ethanol.  

This step is considered the major controlling step because it had the highest FCC as 

shown in Table 2-7 (0.89). Negative FCCs observed in metabolic networks normally 

occur in the of the presence of branched pathways that generate precursors for forming 

other products leading to increases in the outflow  from that node and decreases 

glycolytic fluxes [137]. The negative FCC observed in the first step  (-0.72) suggests that 

an increase in the enzyme activity of this step causes a decrease in flux [129, 138]. A 

corresponding negative CCC (-5.26) was observed in the same step. This can be 

interpreted as a 1% increase in enzyme activity between cellobiose and glucose-6-

phosphate decreases the concentration of the latter by 5.26% [138]. G6P is formed from 

G1P and glucose which are branched products of cellobiose catalyzed by the enzyme, 

CBP (Figure 2-9). Additionally, G6P reversibly forms G1P. Thus, if an increase in CBP 
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activity causes a decrease in the flux towards G6P, then it is possible that the amount 

G6P reaches a limit beyond that required for central metabolism hence redirecting G6P 

towards G1P. This redirection could account for the decrease predicted in both flux and 

concentration of G6P when CBP activity is increased. Figure 2-7 and Figure 2-8 also 

show that an increase in the EMP pathway enzymes activity (denoted by step 2) will 

increase the concentrations of glucose-6-phosphate and acetylCoA (i.e. CCCs of 2.71 

and 2.97 respectively) but decrease pyruvate concentration. 
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Figure 2-9: Central Metabolic Pathway of Clostridium thermocellum
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2.5.2.2 Model - Ethanol Adapted 

Typical values of FCCs fall between 0 and 1. However, it is possible to have 

FCCs of larger magnitudes in some cases, particularly when there are branched 

pathways involved [139] due to the summation theorem [139, 140]. Small FCCs (positive 

or negative) compared to the largest FCC represent negligible  control effects from that 

pathway step [139].  Similar to WT, flux control is shared among the cellobiose 

phosphorylase (CBP) activity step, EMP pathway, and PDH and ADH activity steps 

except that the CBP pathway is the major controlling step in this case. The largest flux 

control coefficient (3.47) occurs between cellobiose and glucose-6-phosphate (Table 

2-7). From Table 2-7 and Table 2-8, it can be seen that an increase in CBP activity will 

increase the flux in this pathway step and all fluxes downstream of G6P decrease in 

response to increases in the downstream enzyme activities. This means EA will not 

increase the rate of catabolism when enzyme activities increase downstream. Glucose-

6-phosphate and acetylCoA concentrations increased in response to increases in 

enzyme activities downstream of G6P while pyruvate concentration decreased. The 

major controlling step (step 1) is reflected in the increasing concentration of G6P.  

Decreases in the pyruvate concentration may be attributed to an increasing shift in the 

metabolite reaction towards lactate  as a result of allosteric activation of lactate 

dehydrogenase (LDH)  by fructose-1,6-phosphate. This shift is then likely to cause the 

activation of the ferredoxin-dependent hydrogenase that catalyzes pyruvate, CoA, and 

Fd(ox) towards acetylCoA, hence an increase in acetylCoA concentration (Figure 2-7 and 

Figure 2-8).   

The main difference between carbon flux distribution in EA and WT happened to 

lie in the effect of enzyme activities upstream and downstream of glucose-6-phosphate, 

indicating that flux control mainly occurs upstream of EMP in EA. The control of flux 
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exerted at the beginning of the pathway in EA (compared to WT) indicates that cells 

adapt to exogenous ethanol by changing protein expression relative to cellobiose 

metabolism. This shift in control parameters in EA cells may be due to changes in the 

response of ethanol adapted cells to CBP activity which catalyzes cellobiose 

metabolism. A study by [58]on C. thermocellum adapted to exogenous ethanol 

investigated protein expression. One third of the protein that were down-regulated were 

involved in cellobiose metabolism [58]. Cellobiose metabolism here refers to cellobiose 

uptake up to G6P and thus slow the building of biosynthetic precursors for growth of EA 

cells (as reported in Thakur’s work [118] ). Thakur 2008 studied intracellular metabolite 

responses of Clostridium thermocellum WT and EA cells to ethanol stress. G6P 

concentrations were observed to be 1.25mM and 0.6mM in EA and WT cells in the 

absence of exogenous ethanol respectively.  As exogenous ethanol increased in the 

cells’ environment, the concentrations of G6P decreased for EA ( 1.25mM EA0 , 0.75mM 

EA1 and 0.3mM EA5%) and increased for WT (0.6mM WT0, 0.9mM and 1.5mM) [118]. 

These observations are consistent with our findings of higher magnitude CCC values of 

G6P in EA than WT in the EMP pathway where G6P is the substrate towards 

biosynthesis and catabolism. Non-detected pyruvate and close to zero acetylCoA 

concentrations were found in WT while the corresponding pyruvate values observed for 

EA, showed 1mM EA0,  1.25mM EA1 and 2.75mM EA5. From our findings, the 

magnitude of CCCs for pyruvate, the substrate for steps 3 and 4 (i.e. towards lactate and 

acetylCoA formation) were lower in WT than in EA.  It may however be emphasized that 

the flux control coefficients at step 3 in both EA and WT are basically zero and thus 

indicate that changes in the microorganism’s metabolism due to exogenous ethanol 

have negligible effect on the rate of lactate production. 
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The general results from control coefficients represent the property of the system 

as a whole according to the summation theorem where all FCCs sum up to unity and 

CCCs sum up to zero [141]. 

 

2.6 CONCLUSION 

The observations made in this study lead to the deduction: 1) that the effects due 

to environmental perturbations such as exogenous ethanol treatment on the system are 

minimally influenced by the presence of lactate ; 2) that the organism likely does not 

have the ability to shut down by-product pathways to achieve high production of ethanol; 

3) that the pathway is not controlled by one particular step or enzyme activity but a 

combination of several [139] ; 4) that metabolic control analysis identified differences in 

C. thermocellum.  

An error and sensitivity analysis of the flux models are addressed in the Chapter 3. 
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CHAPTER 3 SENSITIVITY ANALYSIS OF CLOSTRIDIUM 
THERMOCELLUM METABOLIC FLUX MODEL 

 

3.1 SYNOPSIS 

Metabolic flux and c ontrol analyses were implemented to model the catabolic 

pathways of wild type (WT) and ethanol adapted (EA) Clostridium thermocellum to 

predict fluxes and control coefficients of intracellular and other relevant metabolites from 

measured extracellular fluxes. These fluxes and control coefficients may be influenced 

by error in the measured fluxes. It is therefore important to determine the level of 

uncertainty (by standard statistical techniques and sensitivity analyses) of measured 

data. Uncertainty is used as an i ndicator of the level of experimental and consequent 

model accuracy. Experimental data perturbation (small changes in measurements), chi-

square distribution and M onte Carlo simulation methods were applied to evaluate the 

model predictions and experimental data quality. Relatively small percentage errors 

were detected between model predictions and experimental data. Random error 

estimations of experimental input data within plus or minus 5% consistently produced 

minimal errors in model predictions. Standard errors of means of the predicted flux 

control coefficients from Monte Carlo simulations were compared to the corresponding 

model predictions from experimental data. Model predictions of fluxes and c ontrol 

coefficients were smaller in EA strains (within 0.001 – 0.083) than in the WT (within 

0.001 – 0.122). The chi-square distribution and Monte Carlo simulations methods for 

error and sensitivity analysis demonstrated the ability to detect, evaluate and possibly 

minimize variability between experimental data and metabolic model predictions.  

Keywords: Error propagation; Model sensitivity analysis; Uncertainty.  
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3.2 INTRODUCTION 

A metabolic flux model is a mathematical tool for describing the metabolism of 

microbial organisms into understandable variables that quantify the organisms’ response 

to metabolic changes [142-144]. Metabolic flux and c ontrol analyses models were 

developed to evaluate carbon flux distribution patterns in C. thermocellum catabolism 

and to identify key pathway(s) that maximize ethanol production or yield. Metabolic 

fluxes are functions of measured cell growth rate, substrate, product concentrations 

(extracellular) and i ntracellular components (which are predicted from the extracellular 

fluxes). Experimental flux data and om itted relevant reactions in the model may be 

common sources of fundamental errors that are likely to affect the outcome of model 

results. Consequently, predicted fluxes (which may be s ensitive to errors from 

measurements) from the model may misrepresent quantified parameters that describe 

cell physiology [101, 145]. Applying sensitivity analysis will verify model accuracy. 

Sensitivity analyses can identify potential problems in an algorithm or model in the 

absence of benchmark tests and experimental data [89]. Improved experimental 

procedures may be required to overcome these identified error sources. 

Confidence interval analysis and Monte Carlo simulations have been identified as 

suitable methods to perform sensitivity analysis checks on pr edictive models. 

Confidence interval estimates determine the extent to which error in experimental data 

may affect the model’s robustness [146, 147]. Confidence interval and chi-square 

distribution combined with error-weighted fitting or gaussian error propagation have also 

been used recently to evaluate the effects of error in some metabolic modeling methods 

[100, 101, 146]. Linear metabolic flux models are better suited to prokaryotes and fungi 

because there exists a linear relationship between metabolic and t hermodynamic 

properties such as closed balances (element, energy or stoichiometric), achievable 
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equilibrium (steady reaction rates) and k inetics (cell growth rate and mass transfer). 

Eukaryotic cells (for example the mammalian cell) lack the necessary data to meet 

thermodynamic property requirements [148, 149]. Metabolic flux models derived from 

stoichiometric or mass balances are often linear with parameters estimated  us ing 

general least square techniques [148, 150]. The least squares solutions method 

simplifies propagation of errors for model accuracy [148]. Kurata and co [151]discovered 

that models that include branched pathway reactions improve model accuracy. The 

model requires establishing enzyme-reaction rates and fluxes-genomics relationships 

relevant to the specific problem. Enzyme activities related to flux control in mutant and 

wild type Escherichia coli have shown relatively large errors in flux prediction for the 

mutant compared to wild [151]. Thus, augmenting a model, to include genetic modeling, 

requires the ability to identify the particular gene crucial for altering pathway reactions 

that lead to the desired product.  

Predictive metabolic models require input variables (usually metabolic fluxes may 

be converted from experimental measurements) that are quite expensive, tedious and 

scarce to obtain especially for large systems [152]. Robust methods, including standard 

Monte-Carlo simulations (involving perturbing data) and chi-square tests have been 

suggested for sensitivity analyses on large scientific and engineering systems [89, 92, 

103, 145, 153, 154] to minimize such problems. The methods identify key experimental 

data requirements, i.e., the replications required to achieve better precision [99, 155]. 

Continuous progress in science and t echnology provides mathematical modeling tools 

such as MATLAB, MAPLE, C++, R etc., available for simulating real-world systems 

including error or sensitivity analysis [102, 156, 157]. Most of these systems often have 

built in functions performing the sensitivity analyses.  

This paper focuses on combining experimental data perturbation, chi-square 

distribution and M onte Carlo analyses for checking the extent to which random and 
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systematic errors in experimental data and model predictions influence the metabolic 

flux and control coefficients estimates for WT and EA C. thermocellum cells grown on 

cellobiose in continuous culture.  

 

3.3 METHODS 

Applications of inferential (chi-square distribution test) and des criptive statistical 

methods (experimental data perturbation and Monte Carlo simulations), were 

implemented to minimize variability between experimental data and model, establish 

model stability, and evaluate prediction accuracy and robustness in model.  

 

3.3.1 Sensitivity Analysis by Introducing Error into the Measured Data 

The model inputs of measured fluxes of cellobiose, lactate and ac etate were 

changed by plus or minus 5%, 10% and 20% to determine the effect of potential 

measurement errors on the predicted ethanol fluxes.  The inputs were changed one at a 

time while keeping the others constant at the measured value and rerunning the model. 

Ethanol flux predictions from these adjustments were examined and c ompared to the 

originally predicted ethanol fluxes.  Figure 3-1 through Figure 3-12 present results for 

predicted ethanol fluxes and et hanol to acetate ratios due t he changes in cellobiose, 

lactate and acetate.  

  

3.3.2 Sensitivity Analysis by Chi-Square Tests  

Further analysis was performed by implementing an i nferential statistical test 

based on chi-square distribution. The chi-square statistical test is useful for determining 

gross errors and consistency in measurements. For a given metabolic pathway, material 

balances formulated at steady state is generally of the form: 
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N·v=0………………………………………………….(1) 

Equation (1) is reformulated into measured (m) and unknown /non-measured(n) 

components as: 

N𝐦·v𝐦= -Nnvn………………………………………………….(2) 

Equation (2) holds for ideal situations (i.e. there are no measurement errors). 

However, this may not be possible under practical conditions. Thus error terms εm and 

εn can be introduced to account for any measurement and predicted errors such that 

Equation 2 becomes: 

N𝐦·v𝐦 + εm= -Nnvn + εn ………………………………………………….(3) 

Given Equation (3), a statistical hypothesis test may be performed to establish a 

level of confidence that errors in model prediction are less than or equal to measurement 

errors using the chi-square distribution because all measured values are from the same 

distribution. The test was carried out by considering four (4) different cases; namely 

base case, scenario 1, scenario 2 and s cenario 3 def ined as: Base case: input original 

values of acetate, cellobiose and lactate -> get predictions 

Scenario 1: keep acetate and lactate constant, change cellobiose-> get predictions. 

Scenario 2: keep acetate and cellobiose constant, change lactate-> get predictions 

Scenario 3: keep lactate and cellobiose constant, change acetate-> get predictions 

The base case hypotheses (Equation 4) and scenarios hypotheses (Equation 5, 

6 and 7) are stated as follows: 

�                   H0 : εn≤εm     
                                  H1 : εn>εm                               

� ………………………………………………….(4) 

�                                      H0 : εn≤εm ∓ 𝟓%     
                               H1 : εn>εm ∓ 𝟓%            � ………………………………………………….(5) 

�                                      H0 : εn≤εm ∓ 𝟏𝟎%     
                               H1 : εn>εm ∓ 𝟏𝟎%            � ………………………………………………….(6) 

�                                      H0 : εn≤εm ∓ 𝟐𝟎%     
                               H1 : εn>εm ∓ 𝟐𝟎%            � ………………………………………………….(7) 
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The errors of measured values may be assumed to be normally distributed with a 

certain mean and variance. Uniformly distributed errors or small variations in model 

predictions would establish model stability (representing how reliable the model is in this 

case). The test statistic of the chi-square distribution in this case, estimates the 

probability of finding significant or non significant differences between measurement and 

predicted errors at a certain level of confidence. To estimate the chi-square test statistic, 

𝜒2, standard deviations and means of metabolite fluxes were calculated from their 

measured replicates and compared with values in the chi-square distribution table at 

both 5% and 10% probabilities (or 95% confidence and 90% confidence), where  

𝝌𝟐 = � ��
[𝒎𝒆𝒕𝒂𝒃𝒐𝒍𝒊𝒕𝒆] − 𝝁([𝒎𝒆𝒕𝒂𝒃𝒐𝒍𝒊𝒕𝒆])

𝝈([𝒎𝒆𝒕𝒂𝒃𝒐𝒍𝒊𝒕𝒆])
�

𝟐

� … … … … … … … ( 𝟖) 

A calculated chi-square value less than the chi-square statistic from tables at a certain 

degree of freedom would suggest no evidence to reject the null hypothesis. The 

calculation of the chi-square statistic was addressed in two ways. In the first case, the 

replicate fluxes of acetate, cellobiose and l actate were averaged separately and t heir 

respective variances determined. The same calculations were repeated for fluxes of 

pyruvate, acetylCoA, and ethanol. In the second case, the replicate fluxes of acetate, 

cellobiose and l actate were averaged between measurement groups along with the 

determination of the respective variances. Again, the same calculations were repeated 

for fluxes of pyruvate, acetylCoA, and ethanol. 

 

3.3.3 Sensitivity by Monte Carlo Simulation 

Monte Carlo simulations were run in MATLAB 7.7.0 by assuming independently 

normally distributed experimental data, with means and s tandard deviations equal to 

the mean and s tandard error of mean for experimental data replicates. It was also 

assumed that errors associated with experiments were normally distributed. There were 
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three replicates for each experimental measurement. Standardized normal distributions 

of 2000 values were generated for each of acetate (A), lactate (L) and cellobiose (CB) 

using the following formula in MATLAB:  

  𝑟𝑖 = ∑ �
𝑟𝑎𝑛𝑑𝑛(𝑖, 1)     1
𝑟𝑎𝑛𝑑𝑛(𝑖, 2)    1
𝑟𝑎𝑛𝑑𝑛(𝑖, 3)   1

� ∙ �𝑆𝐷𝐴     𝑆𝐷𝐿     𝑆𝐷𝐶𝐵
𝜇𝐴        𝜇𝐿         𝜇𝐶𝐵

�3
𝑖=1   

 (𝑟 is the simulated data point, 𝑠𝑑 is the observed standard error of mean, 𝜇 is the mean 

of experimental data replicates and 𝑛 is the number of observations [2000 values in this 

case] from the standard distribution and 𝑟𝑎𝑛𝑑𝑛 is the MATLAB command used for 

generating normally distributed values). The means and s tandard deviations of 

experimental data were compared to the means and standard deviations generated from 

Monte Carlo to check for similar estimates of these statistics. The acetate, cellobiose 

and lactate fluxes were used as inputs for predicting 2000 fluxes for each of the non-

measured metabolites. The corresponding control coefficients were generated from the 

respective measured and predicted fluxes of metabolites and elasticity coefficients. The 

procedure for calculating control coefficients has been described elsewhere [73, 80, 81, 

138]. Normal distribution and probability plots (from normality tests) were obtained for all 

Monte Carlo results (using MATLAB) to show and c ompare the normality of error 

distributions in each of the fluxes and c ontrol coefficients (Figure 3-13, Figure 3-14, 

Figure 3-15 and Figure 3-16). Further Monte Carlo applications may be found elsewhere 

[99, 158]. 

 

3.4 RESULTS AND DISCUSSION 

Ethanol was used as the primary model output for evaluating the effect of errors in 

measured values on the model predictions.    
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Figure 3-1 presents the ethanol flux predicted by the MFA when the measured 

lactate flux was decreased 5%, 10% and 20%.  Model  predictions  were unaffected by 

possible lactate flux measurement errors up to 20% change for both wild-type and 

ethanol adapted treatments (Figure 3-1 and Figure 3-4). This can be seen in Figure 3-1 

by comparing the circle markers (representing WT in 0% ethanol).  When the measured 

lactate value was changed by 5%, 10%, and 20%, the predicted ethanol value did not 

change (approx. 3.5 meC/g dcwh). Changes in acetate measurements resulted in little 

change in the predicted fluxes for all wild type and ethanol adapted treatments (Figure 

3-2 and Figure 3-5). However, the 20% change in acetate showed relatively large effects 

on flux predictions compared to the corresponding 5% and 10% changes for both types 

of treatments. The 5% changes in measured cellobiose fluxes showed very small error 

effects on the predicted fluxes while noticeable error effects were observed for 10% and 

20% changes in cellobiose fluxes for both wild type and ethanol adapted treatments 

(Figure 3-3 and Figure 3-6). Standard deviations were larger in the ethanol predictions 

for both 10% and 20% changes in cellobiose fluxes for ethanol adapted treatments, but 

this was an artifact of the method (standard deviation of input data varied with the mean, 

and hence standard deviation of the output data varied with the mean because the 

model is a linear transformation of the input data). The responses of model predictions to 

error were mostly affected by the 20% change in cellobiose fluxes (Figure 3-3) 

compared to the corresponding acetate and l actate. The predicted fluxes for all 

treatments may be unaffected by measurement errors due to lactate as a result of the 

low lactate values. Measurement errors of more than plus or minus 5% of the measured 

acetate and cellobiose fluxes significantly affect model predictions. Model predictions 

obtained within 5% of measured lactate, acetate, and cellobiose showed the least error 

effect thus representing the maximum level of data quality needed for model predictions. 
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Figure 3-1: Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
lactate for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing 
sensitivity of predicted ethanol fluxes to possible errors 

 

 

Figure 3-2: Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only acetate for 
exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity of predicted 
ethanol fluxes to possible errors in acetate. 
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Figure 3-3:  Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only cellobiose 
for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in cellobiose. 
 

 

Figure 3-4: Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only lactate for 
exogenous ethanol treatments of 0%, 0.5% and 1% on ethanol adapted (EA). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in lactate. 
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Figure 3-5: Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only acetate for    
exogenous ethanol treatments of 0%, 0.5% and 1% on ethanol adapted (EA). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in acetate. 
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Figure 3-6: Predicted ethanol flux response to 5% (yellow), 10% (blue) and 20% (red) decreases in only cellobiose 
for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in cellobiose. 
 
 
 

 

Figure 3-7: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
lactate for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in lactate. 
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Figure 3-8: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
acetate for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity of 
predicted ethanol fluxes to possible errors in acetate. 

 

 

Figure 3-9: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
cellobiose for exogenous ethanol treatments of 0%, 0.5% and 1% on wild –type (WT). Error bars showing sensitivity 
of predicted ethanol fluxes to possible errors in cellobiose. 

 

             

Acetate flux (meC/gDcwh)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

E
/A

 ra
tio

0

2

4

6

8

10

WT0
WT0.5
WT1

             

Cellobiose flux (meC/gDcwh)

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

E
/A

 ra
tio

0

2

4

6

8

10

WT0
WT0.5
WT1



 

  72 
 

 

Figure 3-10: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
lactate for exogenous ethanol treatments of 0%, 0.5% and 1% on ethanol adapted (EA). Error bars showing 
sensitivity of predicted ethanol fluxes to possible errors in lactate. 

 

 

Figure 3-11: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only 
acetate for exogenous ethanol treatments of 0%, 0.5% and 1% on ethanol adapted (EA).  Error bars showing 
sensitivity of predicted ethanol fluxes to possible errors in acetate. 
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Figure 3-12: Ethanol to acetate ratio (E/A) response to 5% (yellow), 10% (blue) and 20% (red) decreases in only  
cellobiose for exogenous ethanol treatments of 0%, 0.5% and 1% on ethanol adapted (EA). Error bars showing 
sensitivity of predicted ethanol fluxes to possible errors in cellobisoe 

 

As stated earlier, chi-square test statistics were calculated for two cases. For 

example for the first case, in WT cells, the three replicates of cellobiose flux (in 

meC/gdcwh) are 7.13, 7.18 and 7.18 with mean and standard deviation, 7.163 and 0.029 

respectively. Therefore, 

XCB
2 = �

7.13 − 7.163
0.029

�
2

+  �
7.18 − 7.163

0.029
�

2
+ �

7.18 − 7.163
0.029

�
2

= 2 

For acetate, the replicate fluxes are 1.02, 0.61, and 0.61 with mean, 0.747 and standard 

deviation, 0.237.The corresponding 

Xace
2 = �

1.02 − 0.747
0.237

�
2

+  �
0.61 − 0.747

0.237
�

2
+  �

0.61 − 0.747
0.237

�
2

= 2 

For lactate flux, we have replicates of 0.37, 0.37, and 0.32 with mean, 0.353 and 

standard deviation, 0.029. The test statistics 

Xlac
2 = �

0.37 − 0.353
0.029

�
2

+  �
0.37 − 0.353

0.029
�

2

+ �
0.32 − 0.353

0.029
�

2

= 2 
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In the second case, for the first group of measurements the fluxes (in 

meC/gdcwh) were cellobiose (7.13), acetate (1.02) and l actate (0.37). The mean and 

standard deviation are 3.729 and 2.84 respectively. Therefore, 

X1
2 = �

7.13 − 3.729
2.84

�
2

+ �
1.02 − 3.729

2.84
�

2
+ �

0.37 − 3.729
2.84

�
2

= 2 

For second group of measurements, the fluxes are cellobiose (7.18), acetate (0.61) and 

lactate (0.37) with mean, 3.864 and standard deviation, 2.72. The corresponding chi-

square statistic is calculated as 

X2
2 = �

7.18 − 3.864
2.72

�
2

+  �
0.61 − 3.864

2.72
�

2
+ �

0.37 − 3.864
2.72

�
2

= 2 

The third data set gives cellobiose flux (7.18), acetate flux (0.61) and lactate flux (0.32) 

with mean, 3.880 and standard deviation 2.72. Therefore, 

X3
2 = �

7.18 − 3.880
2.72

�
2

+  �
0.61 − 3.880

2.72
�

2
+ �

0.32 − 3.880
2.72

�
2

= 2 

Since both cases gave similar χ2 results, the second case was used to determine the χ2 

for the predicted fluxes (pyruvate, acetylCoA and ethanol), calculated as follows: 

𝑋1
2 = �

5.14 − 1.624
4.023

�
2

+  �
4.77 − 1.624

4.023
�

2
+  �

2.16 − 1.624
4.023

�
2

= 2 

𝑋2
2 = �

5.2 − 1.401
4.213

�
2

+ �
4.83 − 1.401

4.213
�

2
+  �

2.61 − 1.401
4.213

�
2

= 2 

𝑋3
2 = �

5.2 − 1.395
4.24

�
2

+ �
4.88 − 1.395

4.24
�

2

+  �
2.64 − 1.395

4.24
�

2

= 2 

Table 3-1 and Table 3-2 show the calculated test statistic together with the 

corresponding values from chi-square distribution tables. The chi-square distribution test 

showed similar variance between the measured and predicted fluxes as indicated by the 

same calculated chi-square (χ2) value of 2 which was less than the test statistic at both 

5% and 10%  significant levels (see Table 3-1 and Table 3-2) thus, satisfying the null 

hypothesis. It is important to note that these analyses were performed on previously 
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taken off-line measurements which are typically obtained at low sampling rate which is 

more likely to provide better accuracy than on-line measurements. 

 

 
Table 3-1: Fluxes of measured extracellular and predicted key metabolites (WT 0% ETOH) 

 
 
 

Table 3-2: Fluxes of measured extracellular and predicted key metabolites (EA 0% ETOH) 

 

Monte Carlo simulations showed little variation in model predictions compared to 

the corresponding model predictions from experimental measurements for all types of 

treatments. The same observations were made in the corresponding predicted fluxes. 

Metabolites 
Replicates 

Mean 
Standard 

Deviation 

Calculated  

Chi-Square, Χ2 

Χ2 @ 90% 

From tables 

Χ2 @ 95% 

From tables 1 2 3 

Cellobiose 7.13 7.18 7.18 7.163 0.029 

2 4.61 5.99 

Lactate 0.37 0.37 0.32 0.353 0.029 

Acetate 1.02 0.61 0.61 0.747 0.237 

Pyruvate 5.14 5.20 5.20 5.180 0.034 

AcetylCoA 4.77 4.83 4.88 4.827 0.055 

Ethanol 2.16 2.61 2.64 2.470 0.269 

Metabolites 
Replicates 

Mean 
Standard 
Deviation 

Calculated  
Chi-Square, Χ2 

Χ2 @ 90% 
From tables 

Χ2 @ 95% 
From tables 1 2 3 

Cellobiose 10.57 10.34 10.82 10.577 0.240 

2 4.61 5.99 

Lactate 0.81 0.98 1.10 0.963 0.382 

Acetate 1.54 0.82 0.96 1.107 0.963 

Pyruvate 8.59 8.36 8.84 8.597 0.240 

AcetylCoA 7.78 7.38 7.74 7.633 0.220 

Ethanol 3.65 4.10 4.20 3.983 0.293 
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Estimates of control coefficients from the Monte Carlo analysis were also not 

significantly different from control coefficients obtained from the fluxes of experimental 

measurements (appendix B). The variability in results from both Monte Carlo simulations 

and experimental measurements showed normal distributions for all wild type (WT) and 

ethanol adapted (EA) treated strains. Figure 3-13 and Figure 3-14 show normal 

probability plots for assessing whether our predictions come from a normal distribution 

using ethanol flux predictions from WT and EA respectively. More importance is 

attached to the ethanol results here because it was the target product for our metabolic 

modeling analyses. In Figure 3-15 and Figure 3-16 Monte Carlo predictions for flux 

control coefficients were compared to the predictions from experiments for WT and EA, 

respectively. Model simulations were consistent with experimental data, implying that in 

the absence of sufficient data and certainty (this is a big challenge in bioprocess control 

[152, 159]), metabolic models can be us ed to determine the solution spaces that 

accurately represent the physicochemical system. 

 

 

Figure 3-13: Normal probability plot for predicted ethanol fluxes - WT 
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Figure 3-14: Normal probability plot for predicted ethanol fluxes - EA 

 

 

 

Figure 3-15: A comparison between experiments and Monte Carlo simulations by normal distribution 
curve in WT 
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Figure 3-16: A comparison between experiments and Monte Carlo simulations by normal distribution 
curve in EA 

 

 

 

3.5 CONCLUSION 

Sensitivity analysis provides an evaluation of confidence in model predictions that 

error in measurement inputs do not lead to model instability (i.e model predictions with 

that have high error). Model robustness and how well it performs depends on the type of 

sensitivity or error analysis approach used. Experimental measurement uncertainty was 

found to contribute to minimal error in predicted and measured input variables subjected 

to perturbation changes. Statistical analytical methods for determining normal 

distribution of data provide reliable insight into measurement errors and m odel 

predictions. The chi-square distribution provides a good platform for normality testing. An 

observation that data is normally distributed indicates that experimental data and model 

predictions are free of systematic error, thus, enhancing model correctness. The Monte 
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errors. Monte Carlo analysis also accounts for an interdependent relationship between 

measured and predicted data. The overall sensitivity analyses satisfy the ultimate goal of 

achieving an ac curate representation of the solution space for the central metabolic 

network of C. thermocellum.  
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CHAPTER 4 STEADY STATE MODELING OF DISSOLVED HYDROGEN 
GAS EFFECT ON THE METABOLISM OF WILD TYPE 
CLOSTRIDIUM THERMOCELLUM CELLS 

 

4.1 SYNOPSIS 

It has been experimentally demonstrated that during the conversion of cellobiose 

by C. thermocellum, increased pressure and increased dissolved hydrogen gas 

concentrations shift the acetate/ethanol ratio in favor of ethanol production. However the 

mechanism underlying this shift has not been elucidated. Flux Spectrum Analysis (FSA) 

is a tool  for evaluating metabolic models and provides indicators of the confidence with 

which we can ascribe biological significance to model predictions because FSA 

incorporates interval bands (to avoid predicting point-wise values) in order to document 

uncertainties in the flux distribution. Additionally, FSA predicts reversibility constraints to 

partially determine the thermodynamic plausibility of the pathway flux. The catabolic 

pathway consisting of cellobiose conversion into acetate, biomass, ethanol, lactate, 

carbon dioxide, and hydrogen formed the basis of the metabolic network. Product 

formation as a function of dissolved hydrogen gas concentration was predicted by 

stoichiometric modeling of the cell based on FSA.  Ethanol yields (mol ethanol/mol 

cellobiose) were predicted to increase from a range of 0 - 0.5 (@ 0.1MPa) to 1.5 - 2 (@ 

7MPa) and 2 – 2.5 (@ 17.3MPa) under conditions of increasing pressure and hydrogen 

flux across all dilution rates. The model predicted an ef fect of even small amounts of 

dissolved hydrogen gas in the under elevated pressure on C. thermocellum product 

selectivity. Based on the model predictions, it was determined that as high as 3 - 3.5 mol 

ethanol/mol cellobiose can be obt ained when hydrogen flux is maintained below 4.81 

mM/hr (optimum hydrogen flux) with pressure increased to 17.3MPa. The predicted 

range of ethanol and ac etate yields under conditions of dissolved hydrogen gas 
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concentration and hy drostatic pressures agreed with the corresponding experimental 

observations for ethanol and ac etate yields. The m odel was used to quantify the 

influence of dissolved hydrogen on the cofactor - metabolite relationships which partially 

regulate C. thermocellum catabolism. 

 

4.2 INTRODUCTION 

Several studies have been c onducted to determine the influence of dissolved 

hydrogen gas on the metabolism of fermentative anaerobes. Hydrogen gas is produced 

in the cell from reversible oxidation reactions involving NAD(P)H/NAD(P).  Additionally, 

hydrogen coupled with high partial pressure greatly impacts the oxidation of cofactor 

Nicotinamide adenine dinucleotide (NADH) and limits acetate production [44, 160-164]. 

Therefore the concentration of hydrogen gas affects the direction of the oxidation 

reactions, which in turn affect the fermentation product distribution. The main 

fermentation products, including acetate, lactate, and ethanol, are derived from pyruvate 

which is formed as a result of NADH/NAD re-oxidation. Thus the re-oxidation of 

NADH/NAD forms the core of most fermentation processes. Gibbs free energy changes 

(ΔG) due to hydrogen partial pressure control the direction of this reaction. Therefore 

according to Equation 1 which describes this process (as defined in Rodriguez et al. 

([44]), an increase in the hydrogen partial pressure will increase the NAD(P)H/NAD (P) 

ratio in the metabolic pathway. As a result of the increased partial pressure of hydrogen, 

acetate formation is inhibited [38, 44, 165-168]. 

NADH
NAD

=PH2∙10pHint∙ exp �
∆GH

° -∆Gmin

R∙T �  ------------------------------------------- (1) 
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Where  pHint is intracellular pH, ∆Gmin is minimum Gibbs energy change required 

by the reaction (kJ/mol), ∆GH
°  is the Gibbs free energy change of the hydrogen 

production path from NADH/NAD (kJ/mol), R is the gas constant (JK-1mol-1), T is the  

temperature (K) and PH2 is the partial pressure of hydrogen. 

Metabolic parameters including growth rate, product yield and selectivity have 

been reported to be influenced by dissolved gas concentrations (hydrogen or carbon 

dioxide) under elevated pressures [38, 169]. Experimental observations of cellobiose 

fermentation by C. thermocellum under conditions of elevated hydrogen partial 

pressures have shown product shifts towards ethanol production [34, 38]. Significant 

research interests in large scale ethanol production by C. thermocellum from cellulosic 

biomass have led to studying cell metabolism at both the phenotypic and genomic level 

using metabolic models in addition to laboratory studies.  Measurements of metabolites, 

especially intracellular metabolites in anaerobic fermentation (including gases) pose a 

challenge because of possible culture contamination issues and difficulties involved in 

measuring the controlled variable(s), thus leading to measurement uncertainties. To 

simplify the biotechnological process, metabolic models have been utilized to reduce 

measurement tasks, predict the microbial metabolic profile and optimize process control. 

Traditional metabolic flux analysis (MFA) is useful for describing flux distributions 

in metabolic network systems. The method depends solely on s toichiometry and t he 

amount of available measured data for flux analysis. MFA has consistency limitations 

due to uncertainty in measurement data, lack of sufficient data, and mathematical 

problems with the set of metabolic flux equations, namely redundancy, determinancy, 

calculability, and balanceability (causing redundancy) of fluxes [68, 150, 152]. Recent 

studies have shown the importance of applying other constraints to obtain more reliable 

flux estimates. Metabolic modeling methods that implement constraints include flux-sum 
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analysis, flux spectrum analysis (FSA) or a probability distribuition approach called 

possibilistic metabolic flux analysis (PMFA) of the metabolic network [93, 152, 170]. 

Flux-sum analysis (using a metabolite-centric approach by implementing mixed integer 

programming) accounts for metabolite turnover rates and imposes nonlinear constraints 

which are otherwise absent in MFA. The method is capable of capturing key metabolite 

functions that relate target products to the phenotypic properties of the biotechnological 

process. The method is based on m ixed integer programming [170] compared to the 

MFA, FSA and PMFA which use linear programming. 

The flux spectrum analysis applies an interval approach to MFA. Thermodynamic 

principles pertaining to reversibility of reactions are also applied in this method. Linear 

programming is used to obtain the solutions. The flux-spectrum method provides time-

interval estimates of fluxes even in the absence of sufficient data (for example during the 

transition period after the cultivation is perturbed). Flux predictions can be obtained for 

determined, underdetermined and ov erdetermined systems. Consistency and 

uncertainty in data are also accounted for by the flux spectrum approach. PMFA is a 

more flexible and ef ficient version of the flux spectrum approach as it is capable of 

handling large-scale metabolic networks [68, 152]. Further details on flux-sum analysis, 

FSA and PMFA are available in the literature [93, 152, 170].  

FSA was used in this study to produce ranges/bands of feasible estimates of 

metabolite activities and flux distributions to reflect measurement and prediction 

uncertainties. The aim of this study was to develop a steady-state metabolic model using 

the flux spectrum approach of metabolic flux analysis to predict ethanol and acetate flux 

responses to changes in the presence of dissolved hydrogen concentrations under 

anaerobic continuous culture fermentation of cellobiose by C. thermocellum.  
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4.3 MATERIALS AND METHODS 

4.3.1 Experimental Data 

Experimental data for offline measured extracellular metabolites from continuous 

culture growth of C. thermocellum on cellobiose under conditions of pH 6.7, temperature 

60oC and varying hydrostatic pressure conditions of 0.1MPa, 7MPa and 17.3MPa [38] 

was used to validate model. Measured concentrations of cellobiose (mM), acetate (mM), 

ethanol (mM), lactate (mM), and biomass (or cell density in OD (600 nm) converted to 

g/L) at 0.05/hr, 0.21/hr and 0.32/hr for all pressure conditions were available  from the 

literature [38]. Maximum solubility values (mM) of dissolved hydrogen gas were 

determined by the temperature dependent Henry’s law for 0.1MPa, 7MPa and 17.3MPa 

and assumed to be always the case in the model [38]. The concentrations of the 

metabolic products (acetate, lactate and acetate) and s ubstrate (cellobiose) 

consumption (mM) were converted to fluxes as functions of cell density (g/l) and dilution 

rates for the modeling by dividing the concentration by the total fermentation time 

elapsed at the sampling time and the cell density when the sample was taken. Hydrogen 

fluxes were calculated as functions of cell physical properties (cell diameter and length) 

and Henry’s law at 60oC. Maximum solubilities of hydrogen at each pressure are given in 

Table 4-1. Standard deviations associated with acetate, ethanol, and lactate 

measurements were given and thus incorporated into the measured fluxes [38]. For our 

modeling purposes, the accumulation of glycogen was assumed to be very small (hence 

a flux of 0.005mM/hr was assumed) because it is typically near zero values when 

constant limited cellobiose concentration is fed into the culture and thus very low 

contribution to carbon recovery in cellulolytic clostridia [163, 171, 172].   Detailed flux 

calculations may be found in appendix C.  
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Table 4-1: Selected experimental data (measured concentrations of metabolites) on pressurized continuous culture 
growth of C. thermocellum on cellobiose from literature (Bothun et al. 2004) 
Parameter 0.1MPa       7MPa       17MPa 
  

0.05/hr dilution ratee 
  

Biomass conc (g/l) b 0.450 0.2625 0.1500 
Residual cellobiose (mM)c 0.142 0.192 0.042 
Acetate produced (mM) a 20.2 ±0.7 8.5±1.6 7.4±0.3 
Ethanol produced (mM) a 1.0 ±0.3 12.2±2.0 17.6±3.5 
Lactate produced (mM) a 1.0 ±0.2 2.0±0.5 0.9±0.3 
Maximum solubility of hydrogen (mM)f      0.7 

 
0.15/hr dilution ratee 

   50.9    130.4 

Biomass conc (g/l) b 0.500 0.3000 0.1875 
Residual cellobiose (mM)c 0.19 0.100 0.150 
Acetate produced (mM) a 14.5±1.2 10.2±0.4 8.8±1.4 
Ethanol produced (mM) a 2.9±1.6 16.5±0.2 17.4±1.3 
Lactate produced (mM) a 

Maximum solubility of hydrogen (mM)f 
1.0±0.2 

     0.7 
0.4±0.2 

50.9 
0.9±0.5 

   130.4 
  

0.21/hr dilution ratee 
  

Biomass conc (g/l)b 0.525 0.350 0.2500 
Residual cellobiose (mM)c 0.017 0.317 0.767 
Acetate produced (mM)a 
Ethanol produced (mM)a 
Lactate produced (mM) a 

Maximum solubility of hydrogen (mM)f 

14.1±0.3 
4.4±1.3 
1.2±0.2 

     0.7 

9.5±0.2 
15.0±1.7 

0.4±0.2 
50.9 

8.2±1.4 
16.6±2.1 

0.4±0.2 
130.4 

 
 

 
0.32/hr dilution ratee 

  

Biomass conc (g/l)b 0.550 0.400 0.1500 
Residual cellobiose (mM)c 0.017 0.042 1.942 
Acetate produced (mM)a 
Ethanol produced (mM)a 
Lactate produced (mM) a 

Maximum solubility of hydrogen (mM)f 

Cellobiose feed (mM)d 

12.6±0.3 
4.6±0.5 
0.9±0.2 

     0.7 
 

5.84 

10.1±0.8 
16.1±0.7 

0.4±0.3 
50.9 

 
5.84 

7.4±0.3 
10.4±0.8 

0.2±0.1 
    130.4 

 
5.84 

    
a     ±standard deviations from mean experimental measurements 
b,c  values were read from graph 
d    Constant cellobiose feed (converted from the 2g/l cellobiose feed given) at all pressures 
e    For convenient comparison between pressures, dilution rates 0.16 and 0.15 were assumed equal. The   
      assumption was made for dilution rates 0.20 and 0.21  
f    Maximum solubility of dissolved hydrogen gas for each pressure 
 
 
 

4.3.2   Central Metabolic Network of Clostridium thermocellum 

Estimates of flux distributions as a function of dissolved hydrogen gas and cell 

physical properties (diameter and length) were predicted from a metabolic model based 

on a simplified C. thermocellum’s catabolic pathway (Figure 4-1). 
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Figure 4-1: Simplified glycolytic pathway of C. thermocellum. JUPT: Cellobiose available for uptake 
(Cellobiose_out), Intracellular cellobiose (JCBP: consumed; Cellobiose_in), Hydrogen inside cell 
(environment; Jh2Dsolv), Extracellular production of acetate, ethanol and lactate denoted by JEXTACE, 
JEXTETH and JEXTLAC respectively.   

4.3.3 Metabolic Flux Analysis Using Flux Spectrum Approach

A stoichiometric matrix (15 x 21), N was generated from the simplified metabolic 

network shown in Figure 4-1, corresponding to 15 intracellular metabolites and 21 fluxes 

(i.e. 21 r eactions). By letting u represent the vector containing all fluxes, a p seudo-

steady state equation was formulated as: 

N ·u = 0                                                                                                                          (1) 
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N represents the overall stoichiometric matrix of the network. Equation (1) was 

partitioned into measured and non -measured fluxes and r earranged such that the 

unknown fluxes preceded the known fluxes [12] as shown in equation (2).  

 

Nm · um +  Nn · un= 0                                                                           (2) 

Nm and um denote the stoichiometric matrix and flux vector corresponding to measured 

fluxes respectively. Nn and un denote corresponding matrix and vector for non-measured 

fluxes respectively. However, the flux spectrum approach requires constrained solutions 

to maximum and minimum values based on Equation 2 as follows:  

Min  u≥0  

s.t  

Nm · um = -  Nn · un                                                                                                  (3) 

Max  u≥0  

s.t  

Nm · um = -  Nn · un       

 

The method is better understood by illustrating with a simple example. Figure 4-2 shows 

a hypothetical metabolic network which involves the uptake of metabolite A and 

production of metabolites C, D, and E . A, C, D and E  are extracellular metabolites 

whereas B and C are intracellular metabolites. Mass balance at steady state (based on 

the MFA concept) is applied at nodes B and C. 
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Figure 4-2: A hypothetical metabolic network for illustrating the FSA method 

Assuming J1, J2 and J4 are measured, Nm, um, Nn and un, according to Equations 1 and 2 

are determined from the network as:  

Nm= � 1            0    -1
  0           1         0 � ,       

  Nn = � -1            0    
        0          -1        �           

un = � J3
  J5 �           

um = �
J1
  J2
J4

�           

This partition is useful even in FSA for convenient arrangement of the stoichiometric 

matrix in order of unmeasured and then measured metabolites. This way, the input 

fluxes will be r epresented in the latter columns of the matrix N and indexing for 

programming becomes easier. In this case, the rearranged N becomes: 

  𝑵 =    �−𝟏      𝟎     𝟏   𝟎   − 𝟏
𝟎     – 𝟏   𝟎   𝟏       𝟎 �           

A   c onstraint is set assuming that all fluxes are irreversible. Once the stoichiometric 

matrix is generated, FSA is initiated by defining uncertainties within which reasonable 
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results are expected to provide high degree of confidence. Let us assume measurement 

uncertainty within 5% (relative error) of experimental data, (just an example to illustrate 

the FSA concept). However, the best case scenario is to define maximum and minimum 

flux vectors by mixing absolute and relative error tolerance to avoid boundary problems 

with near zero measurements. For example, if one of the input fluxes is 0.15mM/hr and 

is within ± 0.05mM/hr (absolute error, denoted by abserr), and the relative error (relerr) is 

defined as 5%, the product of the flux and r elative error (i.e. 0.15*relerr) gives 

0.0075mM/hr which is less than the absolute error so the maximum and minimum of the 

flux are calculated as 0.15mM/hr ± 0.05mM/hr. Assume another flux is 2mM/hr and is 

also within ± 0.05mM/hr, then the product of the flux and relative error  (2*relerr) gives 

0.1mM/hr which is greater than the absolute error. In this case, the maximum and 

minimum of the flux are defined as 2mM/hr ± 0.1mM/hr. At this stage, the problem may 

be solved using any programming language to perform the flux spectrum analysis. Using 

MATLAB, a function (named vspectrumCb_opt and given in appendix C) was written to 

automatically solve Equation 3 [68]. 

The estimated maximum and minimum flux vectors are passed to this function to solve 

the example problem. 

clear all 
clc 
  
%% Stoichiometric Matrix 
N=[-1   -1  0   1   0; 
    0   0   -1  0   1]; 
%% All fluxes assumed to be irreversible 
irrev=[ones(1,5)];  
%% Indexed measured fluxes 
ind=   [3, 4, 5];   
  
%% assumed vector of measured data for the known fluxes  
 J1 = 0.3 ; J2 =0.08 ;  J4=0.7 ; 
  
%% assuming +/- 5% uncertainty in measurements  
%mixed relative and absolute error tolerance 
a_max=max(0.4,J1*1.05);  
a_min=min(0.2,J1*0.95); 
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[a_min a_max];  
  
b_max=J2*1.05; 
b_min=J2*0.95; 
[b_min b_max];  
  
c_max=max(0.8,4*1.05); 
c_min=min(0.3,J4*0.95);     
  
Jm_max= [a_max b_max c_max ]'; 
Jm_min= [a_min b_min c_min]'; 
  
% Initializing resulting flux spectrum  
     Rmin=[]; 
     Rmax=[]; 
      
for i=1:length(J1) 
   options=optimset('LargeScale','off','Simplex','on'); 
    [J_mina,J_maxa,flag] = 
vspectrumCb_opt(N,irrev,ind,Jm_min(:,i),Jm_max(:,i),options); 
   if exist('Rmin','var') 
       Rmin=[Rmin J_mina]; 
       Rmax=[Rmax J_maxa]; 
   else 
        Rmin=[]; 
        Rmin=[J_mina]; 
        Rmax=[J_maxa]; 
    
    end  
  
end 
  
%% plot results 
figure() 
%% To calculate midpoint, lower and upper values of each flux. 
    J_midpoint=(Rmax+Rmin)/2; 
    J_lower=J_midpoint-Rmin; 
    J_upper=Rmax-J_midpoint; 
     
   %% Errorbar Plot. 
    h3= errorbar(1:5,J_midpoint,J_lower,J_upper,'>','LineWidth',2, 
'Color', [ 1 0 1]); 
    hold on; 
 %% Measured data plot differentiated by color. 
    
h2=errorbar([3;4;5],[J_midpoint(3);J_midpoint(4);J_midpoint(5)],[J_lowe
r(3);J_lower(4);J_lower(5)],[J_upper(3);J_upper(4);J_upper(5)],'ob','Li
neWidth',2); 
    xlabel('Flux Index'),ylabel('Flux Value'),grid 
    set(gca,'XTick',[1 2 3 4 5]) 
    set(gca,'XLim',[0.5 5.5]) 
    set(gca,'YLim',[0 1]) 
    set(gca,'FontSize',11); 
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Figure 4-3: Plot of results for above example – the intervals denoted by blue represents measured inputs and the 
intervals denoted by magenta represent predicted fluxes of Met C and Met E. 

 

Figure 4-3 shows the maximum, mean and minimum possible flux range/spectrum 

(within +/- 5%) for both measured (inputs) and predicted fluxes. The narrowly observed 

intervals of predicted fluxes indicate that any uncertainties in the measured inputs may 

have little or no impact on prediction uncertainties. 

For this study, in order to model hydrogen at atmospheric pressure mass 

balances for both liquid and g as phases were required. At elevated pressures (7MPa 

and 17MPa), the system required only a liquid phase balance because the experimental 

conditions provided no headspace in which gaseous hydrogen could partition. The 

method for estimating liquid-to-gas mass transfer in anaerobic processes given in the 
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literature [173] was modified and applied to the hydrogen balance for only the liquid 

phase when there was no headspace (and therefore no gaseous hydrogen) when the 

system was hydrostatic. The rate of change of hydrogen was defined as: 

dH
dt

=Biological rate+Kla�[H2]*�                                                                  (4) 

Where Kla is the volumetric transfer coefficient (hr-1) for hydrogen and [H2]* is the 

solubility of hydrogen (mM). The biological rate was assumed to be represented by the 

pyruvate: ferredoxin oxidoreductase flux branching off the pyruvate node t oward FdH2 

and subsequently toward H2 with a s toichiometric ratio of 2:1 between Fd and H 2 

respectively. The effect of hydrogen on catabolism in the model is represented by Jpfo. 

The gas phase balance (mainly involving volumetric gas production rate and gas partial 

pressure) was added to only atmospheric pressure conditions and in this case is defined 

as: 

dH
dt

=- �Vl
Vg

Kla�[H2]*�� -D P
RT

                                                                           (5) 

Where D is the dilution rate (hr-1), P is the partial pressure of hydrogen gas (Pa), 

R is the universal gas constant (8,314 Lmol-1K-1Pa), Vl is the volume of reactor (ml) and 

Vg is the volume of gas (ml). In addition to the hydrogen and cofactor (NADH/NAD) 

balances, intracellular cellobiose, glucose-1-phosphate, glucose-6-phosphate, pyruvate, 

and AcCoA were considered to be t he key branch points in the catabolic pathway at 

which the stoichiometric balances were obtained. Stoichiometric balances for 

intracellular fluxes of cellobiose, ethanol, lactate and acetate were linked to their 

corresponding extracellular components in order to reduce the system’s degrees of 

freedom (i. e. to minimize under-determinancy). 

In validating the model with Bothun et al. (2004) data, it was taken into account 

that hydrogen was produced in both liquid and gas phases at atmospheric pressure but 

remained in the liquid phase only at elevated pressures. Thus, only Equation 4 was used 
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when modeling data for higher pressures (7MPa and 17MPa) because there is no H2 in 

the headspace in a hydrostatic system. 

The stoichiometric matrix, N was generated in MATLAB using traditional MFA. 

This work combines MFA analysis that checks matrix sensitivity, determinancy, 

redundancy, balanceability and calculability with an adapted previously described FSA 

model for estimating the flux distributions. Further details to the FSA solution using the 

procedure described by [68] in MATLAB is available in appendix C. The solutions to flux 

vector were optimized through linear programming in MATLAB’s optimization toolbox. 

Even though one can assume reversibility for any flux, for this case, fluxes of pyruvate 

↔ lactate; glucose-1-phosephate ↔ glucose-6-phosphate; and NADH ↔ H2 reactions 

were assumed to be exceptions to the irreversibility constraint of fluxes set in the model 

because these reactions are capable of proceeding in either direction [45, 164, 174]. 

Redox balances (O/R) were checked to ensure that the fermentation was balanced. 

“Available” hydrogen balance, O/R ratio and c arbon balance constituted the redox 

balance checks using cellobiose, acetate, lactate, ethanol carbon dioxide, hydrogen and 

biomass. The number of carbons and hydrogen in each of these compounds were 

determined and recorded. For each corresponding flux of a compound, the O/R ratios 

were calculated from the oxidation states of the elements making up the compound. The 

fluxes were multiplied to their corresponding O/R values. The number of hydrogen atoms 

present in each compound was also determined and multiplied by their corresponding 

fluxes. Carbon equivalents of the fluxes were estimated as the product of the number of 

carbons and fluxes. 
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4.4 RESULTS 

Cellobiose, hydrogen, lactate, biomass and glycogen fluxes were defined as 

independent variables (i. e. used as model inputs) while ethanol and acetate fluxes were 

predicted along with other intracellular metabolites including the NADH flux for the 

reversible NADH/NAD reaction. Glycogen flux was assumed to be 0.005mM/hr because 

it is almost negligible. Product yields from cellobiose consumed were also calculated to 

determine sensitivity of the products’ distribution to changes in pressure. Using a ±20% 

uncertainty band, the predicted flux for ethanol and acetate fluxes generally provided 

estimates consistent with experimental data. Predicted ethanol yields were higher than 

the corresponding acetate yields at elevated pressures (> 0.1 MPa). As an ex ample, 

Table 4-2, Table 4-3, and Table 4-4 show model predictions of ethanol and ac etate 

compared to experimental data for all pressures (0.1MPa, 7MPa and 17.3MPa) 0.05/hr 

dilution rate. 

 

Table 4-2: Predicted ethanol and acetate fluxes versus their measured fluxes for 0.05hr-1 at 0.1MPa 
Model Experiment 

(mM/hr) Max Min Value Std 

Ethanol 0.067 0.0 0.05 ±0.015 

Acetate 1.129 1.039 1.01 ±0.035 

 

 
Table 4-3: Predicted ethanol and acetate fluxes versus their measured fluxes for 0.05hr-1 at 7MPa 

Model Experiment 

(mM/hr) Max Min Value Std 

Ethanol 0.856 0.265 0.64 ±0.1 

Acetate 0.748 0.00 0.43 ±0.08 
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Table 4-4: Predicted ethanol and acetate fluxes versus their measured fluxes for 0.05hr-1 at 17MPa 

Model Experiment 

(mM/hr) Max Min Value Std 

Ethanol 1.158 0.637 0.88 ±0.175 

Acetate 0.505 0.00 0.37 ±0.08 

 

4.4.1 Redox Balance 

Table 4-5: Fermentation equation balance, hydrogen balance and carbon recovery estimates 

Compound Carbon Hydrogen 
Flux 

(mmol/Lhr) 

Oxidation/Reduction 

(O/R) 

O/R 

(mmol/Lhr) 

Available 

H 

Available H 

(mmol/hr) 

meC/Lh 

Cellobiose  12 22 0.34 0 0 44 14.960 4.080 

Acetate  2 4 1.08 0 0 8 8.672 2.168 

Lactate  3 6 0.05 0 0 12 0.600 0.150 

Ethanol  2 6 0.03 -2 -0.0668 12 0.401 0.067 

CO2 1 0 1.08 2 2.16 0 0.000 1.080 

H2 0 2 1.51 -1 -1.51 2 3.020 0.000 

Biomass 

(C5H7O2N) 
4 7 0.21 -1.5 -0.315 8 1.680 0.840 

A     -1.892  14.373 4.305 

B     0.876  1.041 1.055 

A: 1) Sum of O/R ratio for all others except CO2 = -1.892 ,  2) Sum of available H in all products =14.373 and 3) The ratio 

of sum of milliequivalent of all other compounds except cellobiose = 4.305 

B: 1) Ratio of absolute value of the sum of O/R for all others divided by CO2 O/R ,  2)  Ratio of available hydrogen in 

cellobiose divided by sum of available H in all products = 1.041 and 3) The ratio of ratio of sum of milliequivalent carbon of 

all other compounds divided by milliequivalent carbon of cellobiose. 

 

4.4.2 Effect of Pressure 

  At elevated pressures (7MPa and 17MPa), predicted ethanol fluxes were greater 

than the predicted acetate fluxes. The 17MPa pressure showed relatively higher 
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predicted ethanol fluxes than predicted acetate fluxes. These observations are 

consistent with experimental data as shown in  

Figure 4-4 below for 0.05hr-1 dilution rate.  

 

Figure 4-4: Flux spectrum analysis results for predicted ethanol and acetate fluxes at 0.05hr-1 dilution rate. The 
predicted flux interval estimates are shown in bands with triangles for ethanol and circles for acetate. The 
corresponding measured fluxes are denoted in bands with crossbars and stars respectively. The numbering on the 
x-axis corresponds to each metabolite at a certain pressure where,”1” denotes ethanol at 0.1MPa, “2” denotes 
ethanol at 7MPa, “3” denotes ethanol at 17MPa,”4” denotes acetate at 0.1MPa, “5” denotes acetate at 7MPa, “6” 
denotes acetate at 17.3MPa. 

 

Predicted NADH flux consumed for hydrogen production by the hydrogenase in 

the reversible NADH + H ↔ NAD +H2 increased with increasing pressure at all dilution 

rates (Table 4-6). Similarly the total NADH consumed by fluxes of lactate 

dehydrogenase and alcohol dehydrogenase increased with increasing pressure at all 

dilution rates (Table 4-6). However, NADH consumption fluxes by the hydrogenase 
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(Jnadh) were higher than NADH consumption fluxes by lactate and alcohol 

dehydrogenases at atmospheric pressure (0.1MPa) while NADH consumption fluxes by 

lactate and alcohol dehydrogenases were higher than  NADH consumption fluxes by the 

hydrogenase at elevated pressures , 7MPa and 17.3MPa (Table 4-6). 

Table 4-6: Predicted fluxes of NADH consumed for hydrogen production by hydrogenase compared with fluxes of 
NADH consumed by lactate and alcohol dehydrogenases at all pressures over dilution rates (hr-1). 

Dilution 
rate 
(hr-1) 

0.1MPa 7MPa 17.3MPa 
Jnadh NADH 

consumed 
Jnadh NADH 

consumed 
Jnadh NADH 

consumed 
0.05 0.38 0.12 0.8 1.23 1.35 1.85 
0.16 1.21 0.34 1.77 2.96 2.32 3.72 
0.21 1.52 0.32 2.22 3.73 2.81 4.58 
0.32 2.44 0.35 3.12 5.31 3.86 6.80 

 

 

4.4.3 Effect of Dissolved Hydrogen Gas 

Considering the fact that many carbon sources including cellobiose, utilize 

NADH/NAD for cell growth, the effect of hydrogen on metabolic products due to NADH 

consumption was tracked by defining an NADH flux (Jnadh) for the reversible reaction 

NADH + H ↔ NAD+ + H2 in the model. Hydrogen flux is a f unction of this Jnadh. 

Predicted Jnadh flux increased with increasing hydrogen flux along with the predicted 

total NADH consumption by ethanol (Jadh) and lactate production (Jldh). This defined a 

linear relationship between predicted dissolved hydrogen gas and NADH (Figure 4-5).  
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Figure 4-5: Relationship between Hydrogen flux and NADH consumption by lactate and alcohol 
dehydrogenases (NADHcell), and NADH consumption by hydrogenase 

 

4.4.4 Predicted Combined Effect of Hydrogen and Pressure 

 Flux estimates of NADH consumed by the lactate and alcohol dehydrogenases, 

ethanol, and acetate are represented in 3-D (Figure 4-6, Figure 4-7 and Figure 4-8) to 

depict the solution space that encompasses possible flux distributions of both predicted 

and measured fluxes when varying hydrogen and pressure. The solution space 

corresponds to all metabolic phenotype and genotype.  
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Figure 4-6: Effect of both pressure and hydrogen flux on mean predicted Jnadh flux 

 
Figure 4-7: Effect of both pressure and hydrogen flux on mean predicted ethanol yields 
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Figure 4-8: Effect of both pressure and hydrogen flux on mean predicted acetate yields 

4.5 DISCUSSION  

The difficulty associated with measuring key biotechnological process control 

parameters and the lack of adequate data from steady state experiments for metabolic 

flux analysis motivates the need to develop a model that incorporates some level of 

uncertainty in describing/interpreting microbial pathway metabolic flux distribution. 

Common errors associated with experimental measurements (whether offline or online) 

are expected to be minimized [44, 68, 159]. Metabolic flux distribution provides 

quantitative insight into how substrate is utilized towards end-product formation and 

other relevant metabolic steps. However, metabolic modeling based on stoichiometry 

requires as many measurements as  possible to accurately predict  the flux solution 

space [44, 68].  
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Experimental observations from literature have shown increased ethanol 

production (the target product) and decreased acetate production (the by-product) under 

conditions of elevated pressures and/or pH and the presence of increasing dissolved 

hydrogen gas [34, 38, 44]. These conditions continue to influence the control of 

NADH/NAD pairs towards target product formation [162, 175, 176]. The model predicted 

the flux spectrum of metabolic distribution to account for ethanol and acetate yields as 

functions of dissolved hydrogen gas and pressure alongside the NADH/NAD effect. 

Acetate and ethanol yields mostly agreed with the corresponding values reported as 

shown in Table 4-2, Table 4-3, and Table 4-4 [38]. Product selectivity mainly shifted from 

acetate to ethanol at elevated pressures. The pattern of acetate and ethanol production 

at different dilutions rates were similar to this study [38]. The assumed zero flux of 

glycogen had little or no impact on the predicted flux spectrum and consequently the 

effect dissolved hydrogen gas and pressure. However, based on model predictions, 

varying hydrogen flux across dilution rates for each pressure versus keeping hydrogen 

flux constant for each pressure significantly influenced ethanol yields. These 

observations provide important information for conditions under which ethanol yields 

may be highest. It was determined that ethanol yields are at their highest when hydrogen 

flux is maintained at about 4.81 coupled with pressure at 7MPa and above (Figure 4-7). 

All products formed in the cytoplasm must be transported across the cell 

membrane. However some of the products require facilitated or active transport across 

the cell membrane.  Acetate, being the main competitor to ethanol in C. thermocellum 

catabolism requires this phenomenon while products are being formed. This suggests 

that ethanol yields may be i mproved at high dilution rates by introducing an ac tive 

transport or facilitated diffusion medium for which more acetate is transported across the 

cell since the literature reports high intracellular concentrations of acetate due to simple 

diffusion [161, 177-180].  



 

  102 
 

The role of NADH/NAD is significant for controlling product selectivity in 

fermentation processes [163, 164, 176]. It is expected that more NADH consumption will 

continuously produce hydrogen in the oxidation-reduction which will in turn inhibit 

acetate formation and cause acetylcoA to move towards ethanol and hence  result in  a 

higher ethanol yield [176]. This explains the linear relationship observed between NADH 

consumption flux and hydrogen flux (Figure 4-6) under conditions of elevated pressures 

which confirms NADH’s effect on the metabolic flux distribution. It is also useful to note 

that the observed linear relationship between NADH consumption and hydrogen flux is 

analogous to the relationship between NADH/NAD ratio and hydrogen under pressure 

reported in the literature [165, 175, 180].  For this reason, it was useful to incorporate an 

NADH flux due to the reversible NADH reaction into the model in order to quantify and 

interpret the effect of relative changes in NADH/NAD ratio due to hydrogen and pressure 

on the metabolic flux distribution end-products especially ethanol. It was determined that 

ethanol is brought up to an approximate ratio of 1.4: 1 of NADH flux due to the reversible 

NADH reaction when pressure is elevated. 

 

4.6 CONCLUSION 

Flux spectrum approach provides a convenient way for describing microbial 

physiology in the absence of adequate data. The less measurement data available for 

model input, the more under-determined the system. The model presented another way 

of estimating the flux distribution in C. thermocellum catabolism by combining 

stoichiometry with partial thermodynamic principles incorporated in FSA. It has been 

postulated that the FSA approach eliminates the need to conduct statistical hypothesis 

test for measurement consistency (as is often the case when performing MFA) assessed 

by the chi-square (χ2) method [68]. Hence the flux interval estimates provide statistically 
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significant results.   Predicted fluxes with narrow interval bands indicate that they are the 

least sensitive to uncertainties in measured inputs. This determines reliability of the 

predicted fluxes. Carbon redirection towards acetate and et hanol due to glycolytic 

reactions involving NADH/NAD, Fdox/Fdred, and H+/H2 was incorporated into the model. 

This allows for the quantification of NADH fluxes to determine how much of an influence 

it has on et hanol production. Experimental measurements obtained under similar 

conditions are expected to meet model specifications. Meanwhile, the model may be 

improved by integrating dynamic flux estimates into the FSA approach.  

A metabolic model solely based on s toichiometry does not reflect the transient 

profile of the microorganism. Transient state models are expected to give more realistic 

predictions of the biological process as they describe the dynamic behavior of the 

microorganism. This then gives better understanding of the interrelationship between the 

science and m athematics involved in the biological process. The development of a 

model to predict the transient profile of the microorganism based on experimental data 

measured over time is discussed in chapter 5.  
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CHAPTER 5 TRANSIENT STATE MODELING OF DISSOLVED 
HYDROGEN GAS EFFECT ON THE METABOLISM OF 
WILD TYPE CLOSTRIDIUM THERMOCELLUM CELLS 

 

5.1 SYNOPSIS  

Biotechnological process and control would be enhanced by the development of 

dynamic models for simulating microbial metabolic networks to estimate and p redict 

whole cell metabolic responses to environmental stimuli. However, limited kinetic 

information continues to hinder complete dynamic whole cell metabolic modeling. 

Regardless, most studies have exploited available information to quantify and describe 

metabolic profile changes over time to establish the microorganism’s genotypic and 

phenotypic relationship. A dynamic model based on the flux spectrum approach of 

metabolic flux analysis was developed to investigate the metabolic responses of 

anaerobic C. thermocellum production in the presence of dissolved hydrogen gas. The 

results showed that ethanol yield increased by approximately 300% while acetate 

decreased by ~400% at elevated pressures. Acetate was produced at 3 times the rate of 

ethanol production under atmospheric conditions. A significant shift in product selectively 

resulted in an ethanol production about 6 times the rate of acetate production at elevated 

pressures. The model established significant relationship between hydrogen gas, 

cofactor (NADH) and metabolic products (acetate and ethanol) changes over time. 

These observations were consistent with what has been reported in the literature. The 

model is capable of predicting changes in themetabolic profile (solution space) over time 

from which genetic modifications to NADH consumption pathways may be deduced. It 

has been demonstrated that in the absence of sufficient data, reliable fluxes estimates 

may be predicted for key metabolites in C. thermocellum’s central metabolism from 
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which concentrations can be der ived. Also the Gibbs free energy estimate provided 

more insight into the possibility of more ethanol being retained in the cell. 

 

5.2 INTRODUCTION  

Steady state flux analyses of microbial cell metabolism have limitations, such as 

the inability to   exploit kinetic data [65, 180-182]. Difficulty associated with obtaining 

kinetic data on i ntracellular metabolites has led to the alternate approach of coupling 

stoichiometric or mass balances with Gibb’s free energy for predicting 

thermodynamically feasible fluxes [44, 68, 180, 181] and their response to environmental 

perturbation. Predicting the transport of extracellular fluxes across the cell membrane in 

the model has been useful for thermodynamic analyses [44, 180]. Additionally, 

accounting for cell volume fractions has been used to provide more information 

regarding the concentration of metabolites in the cell, and the metabolic regulation of the 

cells [183]. 

Kinetic models typically consist of differential equations describing substrate 

uptake and production formation. The dynamics of the system with regard to all species 

present can be obtained by solving the entire set of differential equations and there are 

existing models that have  implemented this approach for describing microbial dynamic 

performance [184, 185]. Metabolic models based on mass balances constrained by key 

thermodynamic parameters have been found to provide a better interpretation of cell 

biochemical behavior [180].  Thermodynamic data are readily available in the literature 

[180, 186, 187]. Thermodynamics provide scientific insight to help identify the regulatory 

components of cell metabolism [186] and consequently, the metabolic capabilities of 

whole cell [187, 188].  More reliable model predictions from thermodynamics-based 
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constraints than from model predictions based solely on s toichiometry have been 

demonstrated for E. coli [181, 186, 188].  

Notwithstanding the benefits demonstrated by thermodynamic-based metabolic 

flux modeling, it is necessary to consider situations where measured data are limited or 

unavailable [93, 182]. Linear programming has been used to predict solutions spaces of 

fluxes (flux spectrum) over time [68, 93]. This aspect of metabolic modeling considers a 

flux-spectrum and pr obability based analyses for predicting metabolic fluxes over time 

[68, 182]. The flux spectrum approach (FSA) incorporates basic thermodynamic 

properties by imposing thermodynamic constraints on t he direction of metabolic 

reactions for the best possible flux solution. The probability-based approach, known as 

possibilistic metabolic flux analysis (PMFA) aims at predicting the closest possible 

solution of the flux states comparable to experimental data. Both FSA and P MFA 

methods can also be c oupled with isotopic tracer experiments. PMFA have been 

demonstrated to provide relatively more reliable and r icher flux estimates (stochastic 

solution) than FSA. PMFA is also suitable for large metabolic network systems   

The objective of this study is to predict the time-variant metabolic flux spectrum 

of C. thermocellum ethanol and acetate production responses to changes in dissolved 

hydrogen concentrations and pressure under anaerobic conditions.  

 

5.3 MATERIALS AND METHODS  

5.3.1 Experimental Data 

Data were taken from experimental measurements of extracellular metabolites 

from continuous culture growth of C. thermocellum on cellobiose at 60oC under varying 

hydrostatic pressure conditions of 0.1MPa, 7MPa and 17. 3MPa [38]. Measured 

concentrations of cellobiose (mM), acetate (mM), ethanol (mM), lactate (mM), and 
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biomass (or cell density in g/l) at 0.05/hr, 0.21/hr and 0.32/hr dilution rates for all 

pressure conditions were obtained. Maximum solubility values (mM) of dissolved 

hydrogen gas were calculated for 0.1MPa, 7MPa and 17.3MPa to be 0.7mM, 50.9mM 

and 130.4mM respectively [38].  

 

Table 5-1: Selected experimental data on pressurized continuous culture growth of C. thermocellum on 
cellobiose from literature [38] 
Parameter 0.1MPa       7MPa       17MPa 
  

0.05/hr dilution 
ratee 

  

Biomass conc (g/l) b 0.450 0.2625 0.1500 
Residual cellobiose (mM)c 0.142 0.192 0.042 
Acetate produced (mM) a 20.2 ±0.7 8.5±1.6 7.4±0.3 
Ethanol produced (mM) a 1.0 ±0.3 12.2±2.0 17.6±3.5 
Lactate produced (mM) a 1.0 ±0.2 2.0±0.5 0.9±0.3 
Dissolved hydrogen gas (mM)f      0.7     50.9    130.4 
 
 

 
0.32/hr dilution ratee 

  

Biomass conc (g/l)b 0.550 0.400 0.1500 
Residual cellobiose (mM)c 0.017 0.042 1.942 
Acetate produced (mM)a 
Ethanol produced (mM)a 
Lactate produced (mM) a 

Dissolved hydrogen gas(mM)f 

 

Cellobiose feed (mM)d 

12.6±0.3 
4.6±0.5 
0.9±0.2 

     0.7 
 

5.84 

10.1±0.8 
16.1±0.7 

0.4±0.3 
  50.9 

 
5.84 

7.4±0.3 
10.4±0.8 

0.2±0.1 
    130.4 

 
5.84 

    
a     ±standard deviations from mean experimental measurements 
b,c  values were read from graph 
d    Constant cellobiose feed (converted from the 2g/l cellobiose feed given) at all pressures 
e    For convenient comparison between pressures, dilution rates 0.30 and 0.32 were assumed equal.  
f    Maximum solubility of dissolved hydrogen gas for each pressure 
 
 
 

For studies involving dynamic behavior, approximation methods (for example 

Euler or Runge Kutta) and non-linear observers are available for estimating fluxes from 

measured metabolite concentrations. The non-linear observers are typically preferred for 

online measurements whereas for offline measurements, approximation methods are 

preferred. Fluxes are directly obtained from the non-linear observer equation. For this 

study, we are interested in determining and interpreting the transient profile of 

organism’s central metabolic pathway when moving from one s teady state that has 

experienced perturbation to the next steady state. Therefore we used the non-linear 
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observer method because the method allows for direct conversion of measured 

concentrations to fluxes compared to approximation methods that require estimating the 

derivative before converting of the measured metabolite concentrations to fluxes.  

The concentrations of cellobiose, lactate and biomass were converted to fluxes at time 

step intervals. Given measured concentrations of extracellular metabolites, the non-

linear observer dynamic balance equation (Equation 1) was implemented using the 

algorithm presented in [68] and used to solve for the fluxes using the standard MATLAB 

solver, ode45.  The ode45 combines both 4th and 5th order Runge-Kutta method to solve 

first order differential equations numerically. 

dCobs
dt

=Jobs∙X-D∙C-2∙θ∙�Cobs-C�      (1) 

dJobs
dt

=-θ2∙ �Cobs-C�
X

                                                                              

Where Cobs is the observed extracellular concentration (mM), Jobs is the 

corresponding flux of observed metabolite concentration (mM/hr), C is the metabolite’s 

concentration determined at each time point, D is the dilution rate (hr-1) , X is biomass 

concentration (g/l) and  is a c onstant variable referred to as unique adjustable 

parameter for regulating errors and filtering measurements. The choice of   depends on 

whether data sensitivity to noise or fast convergence is more important to the modeler. 

For our modeling purposes, preference was given to the maximum allowable values 

for which error is minimized [68, 189].  As a function of dilution rate,  was chosen to be 

0.11 for 0.05hr-1 and 0.20 for 0.32hr-1.The accumulation of glycogen was assumed to be 

negligible. Due to the large number of iterations required to predict each dataset 

modeling predictions were limited to two dilution rates (0.05/hr and 0.32/hr). For 

illustrative purposes, the cellobiose flux at 0.05hr-1 dilution rate is calculated with each of 

the parameters defined as: Cobs = 5.84mM; D= 0.05hr-1 ; X=0.45g/l and θ=0.11. The set 

of differential equations defined previously becomes, 



 

  109 
 

dCobs
dt

= Jobs ∙ 0.45 − 0.05 ∙ C − 2 ∙ 0.11 ∙ (5.84 − C)                       

dJobs
dt

= −0.112 ∙ (5.84−C)
0.45

                                                              (2)                                           

Initial conditions, Co=0.15mM (for residual cellobiose) and Jobs
o ≅0.02mmol/gdcwh 

(corresponding flux for residual cellobiose) were used to solve Equation (2). Choosing 

initial time t = 0hr and final time t = 24hr, a window size n= 600, to implement Runge 

Kutta, and the time step h equals 0.04. Using MATLAB, an m-file is created to define a 

function dy as: 

function dy= cellobiose(t,CB) 

global C  Jobs Co  Jobs
o      %C and Jobs are components of CB 

dy=zeros(2,1) % to ensure dy is a column vector 

dy(1)=Jobs∙0.45-0.05∙C-2∙0.11∙�5.84-C�                       

𝐝y(2)=-0.112∙
(5.84-C)

0.45
 

end 

Another m-file is created to solve for CB as follows: 
 
global C  Jobs  Co  Jobs

o  

t=[0:0.04:24]; 

Co=0.15; 

Jobs
o =0.02; 

[t,CB]= ode45(‘dy’, t,[Co  ;Jobs
o ]); 

The resulting flux estimates are given in the second column of CB. The 

respective flux estimates of lactate and hydrogen are calculated by repeating the same 

procedure.    

 



 110 
 

5.3.2 Central Metabolic Network of Clostridium thermocellum 

Figure 5-1: Modified glycolytic pathway of C. thermocellum. Cellobiose uptake (Cellobiose_out), 
Intracellular cellobiose (consumed; Cellobiose_in), Hydrogen transport across cell membrane as a 
function of hydrogen outside cell (environment; H2_out) and Hydrogen inside cell (environment; 
Jh2Dsolv), Extracellular production of acetate, ethanol and lactate denoted by JEXTACE, JEXTETH and JEXTLAC 

respectively.   

Estimates of flux distributions as a function of dissolved hydrogen gas and cell 

physical properties were predicted from a metabolic model based on the simplified C. 

thermocellum’s catabolic pathway shown in Figure 5-1. 
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5.3.3 Metabolic Flux Estimation over Time Using Flux Spectrum 
Approach 

 

A stoichiometric matrix (15 x 21), N was generated from the simplified metabolic 

network shown in Figure 5-1, corresponding to 15 intracellular metabolites and 21 fluxes 

(i.e. 21 r eactions). By letting u represent the vector containing all fluxes, a p seudo-

steady state equation was formulated as: 

N ∙u = 0                                                                                                                                                  (2) 

 

N represents the overall stoichiometric matrix of the network. Equation (2) was 

partitioned into measured and non -measured fluxes and r earranged such that the 

unknown fluxes preceded the known fluxes [12] as shown in Equation (3).  

 

Nm ∙ um +  Nn ∙ un= 0                                                                           (3) 

Nm and um denote the stoichiometric matrix and flux vector corresponding to measured 

fluxes respectively. Nn and un denote corresponding matrix and vector for non-measured 

fluxes respectively. However, the flux spectrum approach requires constrained solutions 

to maximum and minimum values based on Equation 3 as follows:  

Min  u≥0  

s.t  

Nm · um = -  Nn · un                                                                                                  (4) 

Max  u≥0  

s.t  

Nm · um = -  Nn · un       

The method is better understood by illustrating with a simple example. Figure 5-2 shows 

hypothetical metabolic network involving the uptake of metabolite A and pr oduction of 

metabolites C, D, and E. A, C, D and E are extracellular metabolites whereas B and C 
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are intracellular metabolites. Mass balance at steady state (based on MFA concept) is 

applied at nodes B and C. 

 

Figure 5-2: A hypothetical metabolic network for illustrating the FSA method 

Assuming J1, and J2 are measured over time, Nm, um, Nn and un, according to Equations 1 

and 2 are determined from the network as:  

Nm= � 1            0    
  0            1       � ,       

  Nn = � -1          -1         0    
        0            0     -1        �           

um = � J1
  J2 �           

um = �
J3
  J4
J5 

�           

The partitioned stoichiometric matrices and v ectors for measured and non -measured 

metabolites are useful even in FSA for convenient order of arrangement. The measured 

fluxes will be represented in the latter columns of the matrix N preceded by non-
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measured fluxes so that indexing becomes easier for programming purposes. In this 

case, the rearranged N becomes: 

 

  𝑵 =    �−𝟏      𝟎     𝟏   𝟎   − 𝟏
𝟎     – 𝟏   𝟎   𝟏       𝟎 �          

 

 For this simple example, we assume all reactions occur in one direction and set 

a constraint assuming that all fluxes are irreversible. Once the stoichiometric matrix is 

generated, we may proceed with FSA by defining uncertainties around measured data 

(J1 and J2) say ±5%. In chapter four, measured inputs were scalars (i.e. represented 

each flux distributions at one particular instant). In the current case J1 and J2 are now 

vectors because they represent multiple datasets measured over time. So they are 

defined slightly different in MATLAB from the example shown in chapter 4. Based on the 

±5% uncertainty, the maximum and m inimum flux vectors may be d efined for the 

measurements by multiplying them with 1.05 and 0.95 respectively. At this stage, 

suitable programming language may be i mplemented to solve for the metabolic flux 

spectrum.  Due to the multiple datasets for each measured flux as input data, a “for loop” 

is implemented in a simple FSA function named vspectrumCb_opt defined in an m-file, 

(see appendix D) to solve for the problem given in Figure 5-2. The “for loop” was needed 

to handle multiple datasets.  

clear all 
clc 
  
%Stoichiometric Matrix  
N=[-1   -1  0   1   0; 
    0   0   -1  0   1]; 
  
irrev=[ones(1,5)]; 
ind=   [4,   5]; 
% assumed vector of measured data for the two known fluxes (J1 and J2) 
% this data fulfills the constraints  
J1=[0 0.4 0.7 0.75 0.7 0.6 0.3 0.1]'; 
J2=[0 0.7 1.2 1.45 1.7 1.9 2 2]'; 
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% assuming +/- 5% uncertainty in measurements 
J1_max=max(0.001,J1*1.05);  
J1_min=J1*0.95; 
[J1_min J1_max]; % need an even minimal interval 0-0.001 
  
J2_max=max(0.001,J2*1.05); 
J2_min=J2*0.95; 
[J2_min J2_max];  
Jm_max= [J1_max J2_max]'; 
Jm_min= [J1_min J2_min]'; 
    
     
% Initializing resulting flux spectrum  
     Rmin=[]; 
     Rmax=[]; 
      
for i=1:length(J1) 
   options=optimset('LargeScale','off','Simplex','on'); 
    [J_mina,J_maxa,flag] = 
vspectrumCb_opt(N,irrev,ind,Jm_min(:,i),Jm_max(:,i),options); 
   if exist('Rmin','var') 
       Rmin=[Rmin J_mina]; 
       Rmax=[Rmax J_maxa]; 
   else 
        Rmin=[]; 
        Rmin=[J_mina]; 
        Rmax=[J_maxa]; 
    
    end  
  
end 
  
%% plot results 
figure 
for i=1:1:size(N,2)   
   subplot(2,3,i) 
    hold on,xlabel('Time'),ylabel('flux'), grid, box,axis([0 10 0 2.5]) 
    set(gca,'FontSize',11); 
    FScenter = (Rmin(i,:)+Rmax(i,:))/2; 
    FSdown   = FScenter-Rmin(i,:); 
    FSup     = Rmax(i,:)-FScenter; 
    h3= errorbar(1:length(a),FScenter,FSdown,FSup,'.r'); 
    set(h3, 'LineStyle', 'none', 'LineWidth', 1, 'Color', [0 1 0]); 
end 
  
 
Figure 5-3 shows the results for flux estimates over time for the above example. It may 

be observed that uncertainty in measured fluxes, J1 and J2 practically did not affect 

predictions for fluxes J3, J4 and J5 as shown by their small interval sizes.  Again, this 

demonstrates the benefits of the FSA method in the absence of sufficiently known data.  
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Figure 5-3: Resulting flux (mM/hr)  (both predicted and inputs) over time using FSA 

 

In contrast to the steady state assumptions made in chapter 4, the stoichiometry 

of hydrogen at both atmospheric and el evated pressures was derived from both 

Equations 5 and 6. Hydrogen fluxes were calculated as functions of cell physical 

properties and temperature dependent Henry’s law given the maximum solubilities of 

hydrogen at each pressure. The gaseous metabolite balance method given in a previous 

study [173] was simplified by assuming zero physicochemical rate, zero influent and 

effluent rates and applied to hydrogen balance for liquid phase defined as: 

dH
dt

=Biological rate+Kla�[H2]*�                                                                  (5) 

Where Kla is the volumetric transfer coefficient (hr-1) for hydrogen and [H2]* is the 

solubility of hydrogen (mM). The biological rate was denoted by the pyruvate:ferredoxin 

oxidoreductase flux branching off pyruvate node toward FdH2  and subsequently toward 
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H2. The gas phase balance was applicable to only the atmospheric pressure condition in 

this case is defined as: 

dH
dt

=- �Vl
Vg

Kla�[H2]*�� -D P
RT

                                                                           (6) 

D is the dilution rate (hr-1), P is the partial pressure of hydrogen gas (Pa), R is the 

universal gas constant (8,314 Lmol-1K-1Pa), Vl is the volume of reactor (ml) and Vg is the 

volume of gas (ml). Glucose-1-phosphate, glucose-6-phosphate, pyruvate, and AcCoA 

were the key nodes considered for intracellular metabolite mass balances. Mass 

balances based on metabolic flux analyses derived for cellobiose transport, ethanol, 

lactate and acetate transports were also included.  

The overall equations for producing acetate, ethanol and lactate have been 

derived for C. cellulolyticum, an organism with similar metabolic network as C. 

thermocellum  [172]. Based on t he principle in previous studies [180], the equations 

were applied to estimate the transport and glycolytic components of Gibbs energy (∆G) 

for acetate and ethanol production predicted fluxes. An estimate resulting in negative 

(∆G) value is indicative of an energetically favorable reaction. The maximum predicted 

ethanol and acetate fluxes were used for the computations (data not shown). Standard 

Gibbs free energy values were estimated from the Handbook of Chemistry and Physics 

[190].  

The stoichiometric matrix N was generated in MATLAB using traditional MFA. 

This work combines MFA analysis that checks matrix sensitivity, determinancy, 

redundancy, balanceability and calculability with an adapted previously described FSA 

model [68, 152] for estimating the flux distributions. N was consistent and determined. 

The solutions to metabolic flux spectrum were estimated from an improved version of 

vspectrumCb defined as vspectrumCb_opt. The latter applies the option to switch 

between large scale and s implex optimization methods. All MATLAB codes are made 
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available in appendix D. The optimized solutions to the metabolic flux distribution were 

obtained using MATLAB’s optimization toolbox for linear programming. Fluxes of 

pyruvate ↔ lactate; glucose-1-phosephate ↔ glucose-6-phosphate; and NADH ↔ H2 

reactions were exceptions to the irreversibility constraints of fluxes as these were 

allowed to be reversible.  

 

5.4 RESULTS AND DISCUSSION  

Cellobiose consumption patterns were compared between 0.05hr-1 to 0.32hr-1 

dilution rates over 24hr and 120hr . Time profile fluxes of cellobiose consumption, 

acetate, ethanol, lactate and hydrogen production were observed for increases in 

pressure from 0.1MPa to 7MPa and 17 MPa over 120hr. The resulting ethanol and 

acetate yields were also estimated over time. NADH consumption relative to increases in 

hydrogen flux and pressure were also predicted. The model predicted a high correlation 

between hydrogen flux and NADH consumption (Figure 5-13 and Figure 5-14) that was 

consistent with what is known from the literature [176]. The combined effect of pressure 

and dissolved hydrogen gas fluxes on acetate and ethanol demonstrates the extent to 

which the metabolic shifts in products occur.  
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                Figure 5-4: Amount of Cellobiose (mM) remaining over 24hr 

 

 
 

Figure 5-5: Amount of Cellobiose (mM) remaining over 120hr (input to model) 
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Observations from Figure 5-4 and Figure 5-5 indicate that cellobiose is consumed more 

quickly at higher dilution rates until steady state is reached. Cellobiose flux uptake at 

0.05hr-1 and 0.32 hr-1 dilution rates were determined and compared over to time at each 

pressure of 0.1MPa, 7MPa, and 17. 3MPa. Figure 5-6, Figure 5-7 and Figure 5-8 

generally show similar patterns of cellobiose uptake (in terms of flux (mM/hr)) for the 

same dilution rate regardless of pressure conditions. That is, the cellobiose uptake at 

0.1MPa, 7MPa and 17MPa followed similar patterns for 0.05hr-1. This is also true for the 

0.32 hr -1 dilution rate. However, it may be seen that more cellobiose was utilized at the 

0.32 hr -1 for all pressures. At atmospheric conditions (0.1MPa) cellobiose uptake at 0.32 

hr-1 dilution rate approximately increased by 5 times that of 0.05hr-1 at any given time 

during the transition. Cellobiose utilized at 0.32 hr-1 at both 7MPa and 17MPa pressures 

were approximately 4 times that of 0.05hr-1.  
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Figure 5-6: Cellobiose consumption fluxes for 0.05hr-1 (x) and 0.32hr-1 (+) at atmospheric pressure (predicted by 
model) 
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Figure 5-7:  Cellobiose consumption fluxes for 0.05hr-1 (x) and 0.32hr-1 (x) at 7MPa pressure (predicted by model) 



 122 
 

 
Figure 5-8: Cellobiose consumption fluxes for 0.05hr-1 (x) and 0.32hr-1 (+) at 17MPa pressure (predicted by model) 
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The relationship between predicted NADH and predicted hydrogen fluxes was examined 

at all pressures and compared to the predicted fluxes and yields of acetate and ethanol. 

Hydrogen fluxes increases correlated well with NADH fluxes and consequent influences 

on ethanol and ac etate fluxes. Before the 80hr, NADH consumption decreased in 

response to elevated pressure (7MPa and 17MPa) as negligible amounts of hydrogen 

fluxes are produced. Under the same elevated pressure conditions at 80hr and beyond, 

hydrogen and NADH flux started increasing simultaneously (Figure 5-13 and Figure 

5-14), which caused ethanol flux and the corresponding ethanol yields (Figure 5-9 and 

Figure 5-10) to increase while acetate and the corresponding acetate yields decreased 

(Figure 5-11 and Figure 5-12). This demonstrates the direct correlation between 

NADH/NAD and hydrogen and their effect on anaerobic metabolic end- products 

(acetate and ethanol) [38, 162, 176]. All plots are based on the maximum predicted flux 

distribution of metabolites. In this study, significance importance was attached to ethanol 

and acetate yields rather than ethanol to acetate ratios. Ethanol to acetate ratios may 

potentially mask the real picture. 

The predicted ethanol and acetate flux pattern shown in Figure 5-9 and Figure 

5-11 indicate that at atmospheric pressure (0.1MPa), both ethanol and acetate are 

produced at a fast rate from 0hr until 40hr, after which acetate begins to drop slightly 

while ethanol increased slightly. The ethanol and acetate yields followed similar patterns 

except for the near constant acetate yield observed throughout. Despite the observed 

increases in ethanol values the maximum yield and f lux of 0.9 mol ethanol/mol 

cellobiose and 0. 3mM/hr remained less than the corresponding acetate flux and y ield 

(2.5 mol ace/mol cellobiose and 0.9mM/hr). Under elevated pressure ethanol flux begun 

to rise while acetate flux decreased over time. This can be seen at time of 80hr when 

ethanol started increasing as, acetate drops. Similar patterns were observed for their 
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corresponding yields. A maximum ethanol flux of 0.65mM/hr was reached as acetate flux 

minimized to as low as 0.1mM/hr. Ethanol yields improved to about 3 mol ethanol/ mol 

CB consumed. Yields of acetate decreased to 0.5mol acetate/mol CB consumed. Figure 

5-11 and Figure 5-12 indicate that during the fermentation process, pressure takes effect 

on the cell’s metabolism after a period of time. The pattern observed in predicted ethanol 

flux at 17MPa is similar to predicted ethanol flux at 7MPa (Figure 5-9). However, relative 

increases in ethanol yields and fluxes were observed at 17MPa compared to the 

corresponding values at 7MPa.  A cetate fluxes and y ields again followed the same 

pattern. Maximum ethanol yield of about 3.5 mol ethanol/mol CB consumed was 

obtained. Acetate yield went slightly below 0.5mol acetate/mol CB consumed. Based on 

the behavioral pattern shown by ethanol and acetate formation over time (Figure 5-9 and 

Figure 5-11), it is evident that during continuous culture growth of C. thermocellum under 

pressurized conditions (perturbation) coupled with hydrogen production, cell metabolism 

does not immediately shift end-products towards ethanol. The cell’s metabolic profile 

adapts from one perturbation to another over a period of time before responding to the 

changes.  
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Figure 5-9: Predicted ethanol flux (mM/hr) over time @ 0.05hr-1 compared between 0.1MPa, 

                                        7MPa and 17.3MPa 
 

 
Figure 5-10: Predicted ethanol yield (mol ethanol/mol cellobiose consumed) over time @ 0.05hr-1 

                       compared between 0.1MPa,7MPa, and 17MPa. 
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Figure 5-11: Predicted acetate flux (mM/hr) over time @ 0.05hr-1 compared between 0.1MPa, 

                                        7MPa and 17.3MPa 
 
 

 
Figure 5-12:  Predicted acetate yield (mol acetate/mol cellobiose consumed) over time @ 0.05hr-1 

                              compared between 0.1MPa,7MPa, and 17MPa. 
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Figure 5-13: Predicted dissolved hydrogen gas flux (mM/hr) over time @ 0.05hr-1 compared between 0.1MPa, 

                            7MPa and 17.3MPa 
 

 
Figure 5-14: Predicted NADH consumption flux (mM/hr) over time @ 0.05hr-1 compared between 0.1MPa, 

                            7MPa and 17.3MPa 



 

  128 
 

 

The flux spectrum method was implemented with 20% variation in experimental 

measurements. The time profile estimates of metabolic flux distribution show great 

sensitivity of acetate and ethanol to hydrogen and pressure increases during the 

fermentation process. Cellobiose uptake was kept at a c onstant maximum under 

elevated pressures compared to atmospheric pressure conditions. Transient metabolic 

flux distribution of well studied NADH/NAD dependent pathways [162] supports the 

observed increases in ethanol flux and N ADH consumption relative hydrogen flux 

increases over time. A maximum percentage increase (~ 300%) of ethanol yield 

corresponded to a m aximum percentage decrease of 400% acetate yield at elevated 

pressure. This suggests that, in order for ethanol yields to improve significantly, the 

system should be s ubjected to relatively high pressures which will cause NADH to 

increase, thereby increasing ethanol production. At the same time, intracellular 

concentrations of acetate decrease and the thermodynamically feasible acetate 

production process which requires ADP and Pi will become infeasible and thus decrease 

acetate production [44, 45].  

It has been demonstrated that Gibb’s free energy of a m etabolic reaction plays a 

significant role in describing the metabolic properties of the cell [44, 180, 191]. It was 

determined that the total Gibbs free energy of production (due to transport and 

glycolysis) for acetate was negative while that of ethanol was positive. This indicates that 

while acetate formation process in the forward direction, ethanol formation proceeds in 

the reverse direction, which means some ethanol, is retained inside the cell and requires 

more energy for it to be t ransported across the cell membrane. In that case, 

incorporating the Gibbs free energy of production due to transport and glycolysis into the 

model is recommended and ex pected to give more insight into the dynamics of the 

metabolic flux distribution. 



 

  129 
 

 

5.5 CONCLUSION 

The current study applied the FSA to quantify time-variant responses of C. 

thermocellum metabolism to pressure perturbations, given limited kinetic information. 

The results collectively suggest that ethanol production from C. thermocellum may be 

improved under conditions of elevated pressures in the presence of dissolved hydrogen 

concentration with a devised strategy to at least ensure that the reaction, NAD + H2 ↔ 

NADH + H+ is at equilibrium to maintain thermodynamic feasibility of increased hydrogen 

production. 

 In the absence of kinetic information, FSA effectively demonstrated significant 

time influence on metabolic flux distribution relative to steady state observations. Model 

predictions indicated that changes in acetate production and e thanol production 

respectively, do not happen immediately upon increases in hydrogen concentrations and 

pressures but occur after at least two-thirds of the time taken to reach steady state after 

the perturbation. However, a more sound approach (PMFA) to predict the metabolic flux 

distributions compared to FSA may be p referred. The improved version, PMFA 

subsequently provides more efficient and reliable estimates.   
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CHAPTER 6  FUTURE DEVELOPMENTS 

Microbial activities resulting in metabolic product yield patterns are known to be 

greatly influenced by both phenotypic and genotypic profiling. Therefore, the absence of 

genome-scale information may affect the prediction of a true metabolic profile of the 

microorganism in the model [45, 192, 193]. It is desirable to produce a more 

comprehensive model to further improve the potential of the overall model. A constraint-

based whole cell model involving metabolomic, genomic and t hermodynamic 

components sensitive to pressure-controlled fermentation process of the microorganism 

is proposed for future developments. Existing conceptual whole cell modeling 

frameworks [6, 194-196] may serve as relevant pointers for further developing the 

proposed model.  

Since the quality of model predictions may be affected by data scarcity, pairing 

labeling experiments (13C, mass spectrometry (MS) or nuclear magnetic resonance 

spectroscopy (NMR)) with modeling/simulation is recommend as these methods would 

improve the prediction of flux distribution to provide more accurate physiological details 

of the biological system or metabolic network. For example, 13C-MFA would provide 

measurable intracellular fluxes rather than just intracellular concentration, thereby 

increasing the accuracy of measured flux (as flux is measured directly).  NMR and MS 

are interchangeable labeling measurement techniques for intracellular data except that 

the latter allows high quality data measurements at sensitive and high speed operating 

levels [193, 195, 197, 198]. Notwithstanding the above facts, our study involving C. 

thermocellum growth on cellobiose in a continuous culture fermentation process satisfied 

the quasi-steady state conditions assumption of MFA [197]. Also the future model should 

be able to deal with structural validation of the model and to predict a wider spectrum of 

products [44].  
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APPENDIX A  - CHAPTER 2 

A.1      EXAMPLE MATLAB CODE USED FOR MCA (WILD TYPE)   

clear all 

clc 

m =6; n =6;             %number of matrix rows and columns 

I = eye(m,n);           %Identity matrix 

ContA = [m,n];          %dimension of control coefficient matrix (WT0) 

ContB = [m,n];          %dimension of control coefficient matrix 

(WT0.5) 

ContC = [m,n];          %dimension of control coefficient matrix (WT1) 

  

M = [m,n];              %matrix containing elasticities with respect  

                        %to intracellular metabolites 

                         

ELG6P1 = 0.561;        % G6P elasticity with respect to enzyme 1 

ELG6P2 = 0.067;        % G6P elasticity with respect to enzyme 2 

ELPyr2 = 1.140;       % Pyruvate elasticity with respect to enzyme 2 

ELPyr3 = -0.702;       % Pyruvate elasticity with respect to enzyme 3 

ELPyr4 = 2.159;        % Pyruvate elasticity with respect to enzyme 4 

ELAcCoA4 = 0.165;     % AcCoA elasticity with respect to enzyme 4 

ELAcCoA5 = 0.811;      % AcCoA elasticity with respect to enzyme 5 

ELAcCoA6 = 1.162;      % AcCoA elasticity with respect to enzyme 6 

  

J2A = 5.20;             %Flux from G6P to Pyruvate      [A-WT0] 

J3A = 0.27;             %Flux from Pyruvate to Lactate 

J4A = 4.95*2/3;         %Flux from Pyruvate to AcCoA 

J5A = 2.74;             %Flux from AcCoA to Ethanol 

J6A = 0.56;             %Flux from AcCoA to Acetate 

  

J2B = 6.54;             %Flux from G6P to Pyruvate      [B-WT0.5] 

J3B = 0.24;             %Flux from Pyruvate to Lactate 

J4B = 6.30*2/3;             %Flux from Pyruvate to AcCoA 

J5B = 3.64;             %Flux from AcCoA to Ethanol 

J6B = 0.56;             %Flux from AcCoA to Acetate 
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J2C = 7.62;             %Flux from G6P to Pyruvate       [C-WT1] 

J3C = 0.50;             %Flux from Pyruvate to Lactate 

J4C = 7.13*2/3;             %Flux from Pyruvate to AcCoA 

J5C = 3.20;             %Flux from AcCoA to Ethanol 

J6C = 1.55;             %Flux from AcCoA to Acetate 

  

M1A= ones(1,n);                                % Row1 of Ma 

M2A= [ELG6P1,ELG6P2,zeros(1,n-2)];             % Row2 of Ma 

M3A= [0,ELPyr2,ELPyr3,ELPyr4,0,0];             % Row3 of Ma 

M4A= [0,0,0,ELAcCoA4,ELAcCoA5,ELAcCoA6];       % Row4 of Ma 

M5A= [0,0,1-(J3A/J2A),-(J3A/J2A),0,0];          % Row5 of Ma 

M6A= [zeros(1,n-2),-(J6A/J4A),1-(J6A/J4A)];     % Row6 of Ma 

  

Ma=[M1A;M2A;M3A;M4A;M5A;M6A];                  % Matrix Ma 

 Va=[1 -1 -1 -1 J4A/J2A J6A/J4A]'; 

 ContA =inv(Ma)*diag(I*Va); 

%ContA =inv(Ma)*eye(m,n); 

%ContA = [ContA(:,1) (-1*ContA(:,2:n-2))];  

  

M1B= ones(1,n);                                % Row1 of Mb 

M2B= [ELG6P1,ELG6P2,zeros(1,n-2)];             % Row2 of Mb 

M3B= [0,ELPyr2,ELPyr3,ELPyr4,0,0];             % Row3 of Mb 

M4B= [0,0,0,ELAcCoA4,ELAcCoA5,ELAcCoA6];       % Row4 of Mb 

M5B= [0,0,1-(J3B/J2B),-(J3B/J2B),0,0];         % Row5 of Mb 

M6B= [zeros(1,n-2),-(J6B/J4B),1-(J6B/J4B)];    % Row6 of Mb 

  

Mb=[M1B;M2B;M3B;M4B;M5B;M6B];                  % Matrix Mb 

 Vb=[1 -1 -1 -1 J4B/J2B J6B/J4B]'; 

 ContB =inv(Mb)*diag(I*Vb); 

%ContB =inv(Mb)*eye(m,n); 

% ContB = [ContB(:,1) (-1*ContB(:,2:n-2))];  

  

M1C= ones(1,n);                                % Row1 of Mc 

M2C= [ELG6P1,ELG6P2,zeros(1,n-2)];             % Row2 of Mc 

M3C= [0,ELPyr2,ELPyr3,ELPyr4,0,0];             % Row3 of Mc 

M4C= [0,0,0,ELAcCoA4,ELAcCoA5,ELAcCoA6];       % Row4 of Mc 

M5C= [0,0,1-(J3C/J2C),-(J3C/J2C),0,0];         % Row5 of Mc 
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M6C= [zeros(1,n-2),-(J6C/J4C),1-(J6C/J4C)];    % Row6 of Mc 

  

Mc=[M1C;M2C;M3C;M4C;M5C;M6C];                  % Matrix Mc 

 Vc=[1 -1 -1 -1 J4C/J2C J6C/J4C]'; 

 ContC =inv(Mc)*diag(I*Vc); 

%ContC =inv(Mc)*eye(m,n); 

%ContC = [ContC(:,1) (-1*ContC(:,2:n-2))];    

  

  

disp('Control Coefficients A') 

disp(ContA) 

disp('Control Coefficients B') 

disp(ContB) 

disp('Control Coefficients C') 

disp(ContC) 
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APPENDIX B - CHAPTER 3 

B.1      MFA AND MCA ESTIMATES FROM  MODEL  

 Treatment 
  

 Statistics 
  

Predicted fluxes from MFA model using experimental measurement inputs 

Vcbp Vemp Vpdh Vldh Vadh Vak Vexteth Vextco2 

WT0 means 7.16 5.18 4.83 0.35 2.47 0.75 2.47 1.61 

  variance 0.0010 0.0010 0.0027 0.0008 0.0716 0.0556 0.0715 0.0003 

  stdev 0.0316 0.0316 0.0520 0.0283 0.2676 0.2358 0.2674 0.0173 

                    

WT05 means 8.52 6.54 6.27 0.27 3.36 0.83 3.36 2.09 

  variance 0.0002 0.0002 0.0018 0.0025 0.1235 0.1431 0.1234 0.0002 

  stdev 0.0141 0.0141 0.0424 0.0500 0.3514 0.3783 0.3513 0.0141 

                    

WT1 means 9.69 7.71 7.17 0.54 3.46 1.32 3.46 2.39 

  variance 0.000008 0.000008 0.0006 0.0005 0.2970 0.3122 0.2967 0.00006 

  stdev 0.0028 0.0028 0.0245 0.0224 0.5450 0.5587 0.5447 0.0077 

                    

                    

EA0 means 10.58 8.60 7.64 0.96 3.99 1.11 3.98 2.54 

  variance 0.0585 0.0585 0.0482 0.0215 0.0866 0.1460 0.0865 0.0053 

  stdev 0.2419 0.2419 0.2195 0.1466 0.2943 0.3821 0.2941 0.0728 

                    

EA1 means 11.41 9.43 8.76 0.67 4.93 0.91 4.93 2.92 

  variance 0.0030 0.0030 0.0014 0.0003 0.0073 0.0070 0.0073 0.0002 

  stdev 0.0548 0.0548 0.0374 0.0173 0.0854 0.0837 0.0854 0.0141 

                    

EA5 means 11.01 9.03 8.24 0.79 4.08 1.42 4.07 2.74 

  variance 0.4372 0.4372 0.4553 0.0011 0.2213 0.0085 0.2211 0.0505 

  stdev 0.6612 0.6612 0.6748 0.0332 0.4704 0.0922 0.4702 0.2247 

 

 

 

 

 

 

 



 

  135 
 

B.2      MFA AND MCA ESTIMATES FROM  MONTE CARLO SIMULATION   

Treatment Statistics Predicted fluxes from MFA model using Monte Carlo Simulation  inputs 

Vcbp Vemp Vpdh Vldh Vadh Vak Vexteth Vextco2 

WT0 means 6.96 4.98 4.62 0.36 2.24 0.84 2.24 1.54 

  variance 0.0156 0.0156 0.0141 0.0001 0.0086 0.0044 0.0086 0.0016 

  stdev 0.1249 0.1249 0.1187 0.0100 0.0927 0.0663 0.0927 0.0400 

                    

WT05 means 8.29 6.31 6.03 0.29 3.03 0.99 3.03 2.01 

  variance 0.0173 0.0173 0.0164 0.0002 0.0163 0.0119 0.0163 0.0018 

  stdev 0.1315 0.1315 0.1281 0.0141 0.1277 0.1091 0.1277 0.0424 

                    

WT1 means 9.40 7.42 6.89 0.53 3.04 1.56 3.04 2.29 

  variance 0.0279 0.0279 0.0248 0.0001 0.0311 0.0258 0.0310 0.0028 

  stdev 0.1670 0.1670 0.1575 0.0100 0.1764 0.1606 0.1761 0.0529 

                    

                    

EA0 means 10.47 8.50 7.48 1.01 3.72 1.27 3.71 2.49 

  variance 0.0212 0.0212 0.0197 0.0019 0.0188 0.0122 0.0188 0.0022 

  stdev 0.1456 0.1456 0.1404 0.0436 0.1371 0.1105 0.1371 0.0469 

                    

EA1 means 11.18 9.20 8.54 0.66 4.77 0.93 4.76 2.85 

  variance 0.0209 0.0209 0.0186 0.0001 0.0067 0.0007 0.0067 0.0021 

  stdev 0.1446 0.1446 0.1364 0.0100 0.0819 0.0265 0.0819 0.0458 

                    

EA5 means 11.05 9.07 8.29 0.78 4.10 1.43 4.10 2.76 

  variance 0.0661 0.0661 0.0621 0.0002 0.0233 0.0012 0.0233 0.0069 

  stdev 0.2571 0.2571 0.2492 0.0141 0.1526 0.0346 0.1526 0.0831 
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APPENDIX C - CHAPTER 4 

C.1      FLUX  CALCULATIONS 

Extracellular metabolite flux  (mmol/gdcwh)= [Extracellular metabolite] (mM)
cell density (g/l_

×dilution rate (hr-1) 

 OR 

Extracellular metabolite flux (mM/hr)= [Extracellular metabolite] (mM)×dilution rate (hr-1) 

 

Biomass flux (mmol/gdcwh) =  [Biomass] (mg/l)
cell density �g

l �×molecular weight ( g
mol)

×1000×dilution rate (hr-1) 

 

OR 

Biomass flux (mM/hr) =   
[Biomass] (mg/l)

molecular weight ( g
mol )

×1000×dilution rate (hr-1) 

 

 

Hydrogen flux (mmol/gdcwh) =  
2×D (cm2

s )

d(cm)
×A �cm2

cell
� ×n(cells/ml)×[H2]*      [199] 

[H2]*= maximum solubility of hydrogen gas (mM) at each pressure 

A  = cell surface area of contact  

D = effective diffusion coefficient of hydrogen  

d = representative diameter of cell 

OR 

Hydrogen flux (mM/hr) =  �[H2]l- [H2]*�×dilution rate (hr-1) 

[H2]*= maximum solubility of hydrogen gas (mM) at each pressure 

[H2]L = dissolved hydrogen concentration in media  

 

 

C.2      EXAMPLE MFA FOR GENERATING STOICHIOMETRIC MATRIX 
clear all 

clc 

 %% METABOLIC FLUX MODELING........................... 

% Created in 2005 by Bless Adotey.................................. 

% Edited in 2005 by Tae Hoon Yang .................................. 

% Revised by Bless Adotey (2009, 2010, 2011) 

%% 
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%% STEP 01: involved fluxes as cell string 

.......................................................................   

  % intracellular fluxes 

intfluxcell = {'Jcbp'; 

'Jpgm';'Jemp';'Jpdh';'Jnadh';'Jnh3';'Jh20';'Jatp';'Jbio'; 'Jadh';'Jak'; 

                  'Jldh';'Jextco2';'Jupt';'Jh2Dsolv'}; 

        

  % extracellular fluxes 

    extfluxcell = 

{'Jextace';'Jexteth';'Jextbio';'Jextlac';'Jgly';'Jh2press'}; 

 

  % all fluxes participating in the network       

    fluxcell = [intfluxcell;extfluxcell];     % always intracellular 

(immeasurable) followed by extracellular (measurable) fluxes 

 

    %% 

 %STEP 02: symbolize variables 

.......................................................................

.......................................................... 

  for k = 1:length(fluxcell) 

      flux = char(fluxcell(k)); 

      eval(['syms ',flux]);                                % 

symbolizing 

      eval(['fluxvector(',num2str(k),',1) =',flux,';'])    % symbolized 

fluxes as a vector notation 

  end 

  

%% STEP 03: Steady state stoichiometric equations 

.......................................................................

equation(1,1)  = Jupt-Jcbp-1/3*Jbio;                                       

% Cellobiose transport (Balance around CBin including biomass stoic)      

          

equation(2,1)  = Jcbp + Jpgm - Jemp;                                      

% Balance around glucose G6P   

                                                                        

equation(3,1)  = Jcbp - Jpgm - Jgly;                                         

% Balance around glucose 1P     
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equation(4,1)  = 2*Jemp - Jldh - Jpdh;                                         

% Balance around pyruvate          

equation(5,1)  = Jpdh - Jak - Jadh;                                            

% Balance around acetyl CoA     

                                                  

equation(6,1)  = Jldh - Jextlac;                                             

% lactate transport out of cell membrane 

 

equation(7,1)  = Jak - Jextace;                                              

% Acetate transport out of cell membrane 

 

equation(8,1)  = Jadh - Jexteth;                                              

% Ethanol transport out of cell membrane 

 

equation(9,1)  = Jpdh - Jextco2;  

% Carbon dioxide balance 

 

equation(10,1) = Jbio - Jextbio;                                            

% Biomass transport out of cell membrane 

  

%% NADH, Hydrogen 

% Reversible NAD + H2 reaction and nad consumption tied to H2.  

equation(11,1)= Jnadh+Jemp-(Jldh+2*Jadh)- 0.58*Jbio;  

equation(12,1) = -Jnadh+Jh2Dsolv+Jpdh-Jh2press;   

    

%% Ammonia,ATP,H20 

equation(13,1)= Jnh3 - Jbio;                                                                                                                                                                                         

equation(14,1)= Jatp -7.93*Jbio;  

equation(15,1)= Jh20+ 1.67*Jbio-Jemp;  

 

%%  

% STEP 04: symbolic differentiation and its evalualtion 

.......................................................................

................................. 

  Nsym = jacobian(equation, fluxvector); 

  N    = eval(Nsym); 
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  disp(' ') 

  disp('>>> overall stoichiometric matrix 

...............................') 

  N 

 [row,col] = size(N); 

%% 

% STEP 05: system matrix partitioning and checking consistency 

....................................................................... 

  disp(' ') 

  disp('>>> partial stoichiometric matrix: immeasurable 

fluxes...........') 

  Nn       = N(:,1:length(intfluxcell)); 

  Nnsym    = Nsym(:,1:length(intfluxcell)); % symbolic 

  nfluxsym = fluxvector(1:length(intfluxcell),1); 

   

  disp(' ') 

  disp('>>> partial stoichiometric matrix: measurable fluxes 

............') 

  Nb       = N(:,length(intfluxcell)+1:col); 

  Nbsym    = Nsym(:,length(intfluxcell)+1:col); % symbolic 

  bfluxsym = fluxvector(length(intfluxcell)+1:length(fluxvector),1); 

   

  disp(' ') 

  disp(['Rank of matrix Nn: ' num2str(rank(Nn))]) 

  disp(['No. of unknown fluxes: ' num2str(length(intfluxcell))]) 

  disp(['No. of equations: ' num2str(length(equation))])     

  

% Matrix Sensitivity Analysis (Checking matrix singularity) 

....................................................................... 

  RK = rcond(Nn'*Nn) % reciprocal condition number  

  if RK > 5*eps 

      disp('') 

      disp('>>> STOICHIOMETRIC MATRIX IS WELL-

CONDITIONED!...............................') 

  else 

      disp('') 

      disp('>>> STOICHIOMETRIC MATRIX IS ILL-

CONDITIONED................................') 
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  end     

   

% Determinancy checking 

....................................................................... 

  if rank(Nn) < length(intfluxcell) 

     disp(' ') 

     disp('>>> System is underdetermined') 

  else 

      if rank(Nn)== length(intfluxcell) 

     disp(' ') 

     disp('>>> System is determined!') 

  else  

     disp(' ') 

     disp('>>> System is overdetermined') 

      end 

  end 

  

% Implementing the following as given by Klamt et 

al.(2002).............................................................. 

% redundancy checking 

% balanciability checking 

% calculablity checking 

  

 % redundancy analysis 

   if rank(Nn) < length(equation) 

      disp(' ') 

      disp('..... System is redundant and can be inconsistent!') 

       

   % redundant matrix 

     REDmat = Nb-Nn*pinv(Nn)*Nb; 

      

   % degree of redundancy 

     DoRED  = rank(REDmat); 

     disp(' ') 

     disp(['      Degree of Redundancy: ', num2str(DoRED)]); 

      

   % balanceablity analysis 
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     [row, col] = size(REDmat) 

     nonbalancibleflux = {}; 

     counter = 1; 

     for k = 1:col 

         if sum(REDmat(:,k)) == 0 

            nonbalancibleflux(counter,1) = extfluxcell(k); 

            counter = counter + 1; 

         end 

     end 

     if ~isempty(nonbalancibleflux) 

        disp(' ') 

        disp('..... Non-balanceable fluxes detected') 

        nonbalancibleflux 

     end 

  else 

     disp(' ') 

     disp('..... System is not redundant and consistent') 

     REDmat = []; 

     DoRED  = []; 

     nonbalancibleflux = {}; 

  end 

     

% calculablity analysis   

  if rank(Nn) < length(intfluxcell) 

     calculableflux = {}; 

     Kn = null(Nn,'r'); 

     if isempty(Kn) 

        disp(' ') 

        disp('..... No degrees of freedom exist') 

     else   

        disp(' ') 

        disp('..... Degrees of freedom exist') 

        [row, col] = size(Kn); 

        counter = 1; 

        for k = 1:row 

            nulls = find(Kn(k,:)==0); 

            if length(nulls) == length(Kn(k,:)) 

               calculableflux(counter,1) = intfluxcell(k); 
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               counter = counter + 1; 

            end 

        clear nulls 

        end 

        disp(' ') 

        disp(' Calculable fluxes using least-squares i.e. pseudo-

inverse method') 

        disp(' These fluxes can be used as additional constraints') 

        calculableflux 

     end 

  else 

      disp(' ') 

      disp('..... No calculable fluxes detected!') 

      calculableflux = {}; 

  end 

 

% STEP 06: Parametrization:  

....................................................................... 

% augmented matrix 

  [row,col] = size(N); 

  AUGmat = [N,zeros(row,1)]; 

   

% reduced row echelon matrix (Gauss Jordan elimination with partial 

pivoting) 

    RREmat = rref(AUGmat); 

     

% dependent flux identification by Gauss Jordan elimination 

  kk = 1; 

  [row, col] = size(RREmat); 

  for k = 1:row         

      % find leading one 

        a = find(RREmat(k,:) == 1); 

        if length(a) >= 1 

           leadingone = a(1); 

              

         % identifying: dependent or independent 

           if length(find(RREmat(:,leadingone) == 0)) == (row-1) 

              flux_depend(kk,1)  = fluxvector(leadingone); 
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              index_depend(kk,1) = leadingone; 

              kk = kk + 1; 

           end 

        end 

        clear a 

   end 

     

% independent flux identification  

  kk = 1; 

  for k = 1:length(fluxvector) 

      if any(index_depend == k) == 0 

         flux_independ(kk,1) = fluxvector(k); 

         kk = kk + 1; 

      end 

  end 

   

% symbolic solution 

  if length(flux_depend) == length(nfluxsym) 

     if length(find(flux_depend-nfluxsym==0))==length(nfluxsym) 

        disp(' ')  

        disp('..... Dependent fluxes match with unknown intracellular 

fluxes!')  

      

        if length(find(fluxvector-

([nfluxsym;bfluxsym])==0))==length(fluxvector) 

           fluxsolutionsym =inv(Nnsym)*(-Nbsym*bfluxsym); 

        else 

           for k = 1:length(equation) 

               str1 = ['''',char(equation(k)),'=0''']; 

               str2 = ['''',char(nfluxsym(k)),'''']; 

             

               if k == 1 

                  equationstr = str1; 

                  variablestr = str2; 

               else 

                  equationstr = [equationstr,',',str1]; 

                  variablestr = [variablestr,',',str2]; 

               end 
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           end 

   

           eqs = ['solve(',equationstr,',',variablestr,');']; 

           Sflux = eval(eqs);  

           for k = 1:length(nfluxsym) 

               fluxsolutionsym(k,1) = 

eval(['Sflux(',int2str(k),').',char(nfluxsym(k)),';']); 

           end 

        end 

     

        fid = fopen('ResultantFluxEquation.m','w'); 

        for k = 1:length(nfluxsym) 

            dependfluxcell(k,1) = cellstr(char(nfluxsym(k))); 

            str2print           = [char(dependfluxcell(k,1)),' = 

',char(fluxsolutionsym(k)),';']; 

            fluxsolutioncell(k,1) = cellstr(char(fluxsolutionsym(k))); 

            str2print         = [str2print,'\n']; 

            fprintf(fid,str2print); 

        end 

        fclose(fid); 

     else 

      disp(' ');disp(' ');disp(' '); 

      disp('WARNING: Inconsistency between...') 

      disp('dependent fluxes chosen by system 

.............................') 

      for k = 1:length(flux_depend) 

          dependfluxes(k,1) = cellstr(char(flux_depend(k))); 

      end 

      dependfluxes' 

      disp('dependent fluxes chosen by user 

...............................') 

      intfluxcell' 

      disp('Redefine "intfluxcell" & "extfluxcell" and try again!') 

     end 

  else 

      disp(' ');disp(' ');disp(' '); 

      disp('WARNING: Inconsistency between...') 
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      disp('dependent fluxes chosen by system 

.............................') 

      for k = 1:length(flux_depend) 

          dependfluxes(k,1) = cellstr(char(flux_depend(k))); 

      end 

      dependfluxes' 

      disp('dependent fluxes chosen by user 

...............................') 

      intfluxcell' 

      disp('Redefine "intfluxcell" & "extfluxcell" and try again!') 

  end 

  

 

C.3      VSPECTRUMC_OPT FUNCTION TO CALCULATE THE FLUX SPECTRUM 
% Francisco Llaneras 

% Dept. of Systems Engineering and Control  (DISA) 

% Technical University of Valencia (UPV) 

% e-mail: frallaes@doctor.upv.es and kikollan@gmail.com 

% Web Page: http://science.ensilicio.com 

function [Vmin,Vmax,Flag] = 

vspectrumC_OptForIllustration(N,Q,irrev,Vm_mini,Vm_maxi,Options) 

 

% N:        Stoichiometric matrix (N*v=0) 

% Q:        Matrix of measured fluxes (Q*v=vm) 

% irrev:    Vector with indexes of the irreversible fluxes 

% Vm_mini:  Vector with minimum values of the measured fluxes 

% Vm_maxi:  Vector with maximum values of the measured fluxes 

% Options:  Options for linprog 

% 

% Vmin:     'flux spectrum' minimums 

% Vmax:     'flux spectrum' maximums 

% 

 

% Auxiliar 

m=size(N,1);           % number of metabolite 

n=size(N,2);           % number of fluxes 

nvm=size(Vm_mini,1);   %number of measured fluxes 

Vmax=[];Vmin=[];Flag=[]; 
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% for each flux... 

for i=1:1:n 

    ind=zeros(1,n); 

    ind(i)=1; 

  

    % calculate its minimum value with linear programming (minimize v) 

    [min_i,a,flag_min]=linprog(ind,[-N;N;-Q;Q;-

diag(irrev)],[zeros(2*m,1);-

Vm_mini;Vm_maxi;zeros(n,1)],[],[],[],[],[],Options); 

    Vmin=[Vmin;min_i(i)];    

    ind=zeros(1,n); 

    ind(i)=-1; 

  

    % calculate its maximum value with linear programming (minimize -v) 

    [max_i,a,flag_max]=linprog(ind,[-N;N;-Q;Q;-

diag(irrev)],[zeros(2*m,1);-

Vm_mini;Vm_maxi;zeros(n,1)],[],[],[],[],[],Options); 

    Vmax=[Vmax;max_i(i)];   

    Flag=[Flag;flag_min flag_max]; % Information about convergence 

end 

 

C.4      VSPECTRUMCB_OPT FUNCTION TO CALCULATE THE FLUX SPECTRUM 
% Francisco Llaneras 

% Dept. of Systems Engineering and Control  (DISA) 

% Technical University of Valencia (UPV) 

% e-mail: frallaes@doctor.upv.es and kikollan@gmail.com 

% Web Page: http://science.ensilicio.com 

 

function [Vmin,Vmax,Flag] = 

vspectrumCb_Opt(N,irrev,vm_ind,Vm_mini,Vm_maxi,Options) 

% N:        Stoichiometric matrix (N*v=0) 

% irrev:    Vector with indexes of the irreversible fluxes 

% vm_ind:   Vector with indexes of the measured fluxes 

% Vm_mini:  Vector with minimum values of the measured fluxes 

% Vm_maxi:  Vector with maximum values of the measured fluxes 

% Options:  Options for linprog 

% 
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% Vmin:     'flux spectrum' minimums 

% Vmax:     'flux spectrum' maximums 

% Auxiliar 

m=size(N,1);           % number of metabolite 

n=size(N,2);           % number of fluxes 

nvm=size(Vm_mini,1);   %number of measured fluxes 

  

% Compute matrix iQ      Q*v=vm 

Q=zeros(nvm,n); 

for i=1:1:nvm 

    ind_vm=vm_ind(i); 

    Q(i,ind_vm)=1; 

end 

  

% Compute the flux spectrum 

[Vmin,Vmax,Flag] = vspectrumC_Opt(N,Q,irrev,Vm_mini,Vm_maxi,Options); 

 

 

C.5      EXAMPLE STEADY STATE FSA CODE USING LLANERAS FUNCTION VSPECTRUMCB_OPT 
%Stoichiomteric Matrix 

N; 

% All fluxes assumed to be irreversible except 2,5 

% irrev=[ones(1,6)]; 

 irrev = ones(1,size(N,2));  

 irrev(2)=0; 

 irrev(5)=0; 

 

% Index of measured fluxes   

Jm_ind = [16,17,18,19,20,21];  

 

% Example measured fluxes used as measured input with uncertainty 

a=[1.01; 0.05; 0.22; 0.0.05; 0.005; 1.8]; 

 

% assuming +/- 5% uncertainty in measurements 

% improved interval method 

% max and min values per each fluxes 

a_max=a*1.05;  
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a_min=min(0.001,a*0.95); 

[a_min a_max]; % combining absolute and relative tolerances 

Jm_max= [a_max ]'; 

Jm_min= [a_min ]'; 

 

% Computing flux spectrum solution using two Llaneras’ matlab function  

% vspectrumCb_opt 

  

   options=optimset('LargeScale','off', 'Simplex', 'on');  

 

[Jm_mina,Jm_maxa,flaga] = 

vspectrumCb_opt(N,irrev,Jm_ind,Jm_min,Jm_max,options); 

 

%% plotting results: 

figure() 

% Calculate center, up and down. 

Jm=0.5*(Jm_mina+Jm_maxa);  

range_d=Jm-Jm_mina; 

range_u=Jm_maxa-Jm; 

% Plot with errorbar function. 

h1=errorbar([1:size(N,2)],Jm,range_d,range_u,'ok','LineWidth',2) 

xlabel('Reaction (1-21)'); 

ylabel('Flux [mM/hr]'); 

set(gca,'XTick',[1:size(N,2)]) 

set(gca,'XLim',[0.5 21.5]) 

set(gca,'YLim',[0 5]) 

grid 
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APPENDIX D – CHAPTER 5 

D.1      SAMPLE MATLAB CODE ODE  FOR SOLUTION TO GIVEN DATA 
clc 

clear all 

t=120; 

% the initial guess for the parameters 

global CBobs H2obs Ethobs Aceobs Lacobs CB01 CB02 CB03 H201 H202 H203 

Eth01 Eth02 Eth03  Ace01 Ace02 Ace03  Lac01 Lac02 Lac03 

global VeEthobs VeCBobs1 VeCBobs2 VeCBobs3 VeCBobs1b VeCBobs2b 

VeCBobs3b VeAceobs VeLacobs D1 D2 X1 X2 X3 X1b X2b X3b theta; 

  

% the initial conditions 

CBobs=5.84; 

VeCBobs1=0.65; 

VeCBobs2=1.11; 

VeCBobs3=1.95; 

VeCBobs1b=3.40; 

VeCBobs2b=4.38; 

VeCBobs3b=11.68; 

H2obs=0; 

VeH2obs=0; 

Ethobs=0; 

VeEthobs=0; 

Aceobs=0; 

VeAceobs=0; 

Lacobs=0; 

VeLacobs=0; 

  

X1=0.45;              %@0.05/hr 1atm 

X2=0.2625;           %@0.05/hr 7Mpa 

X3=0.15;            %@0.05/hr 17Mpa 

X1b=0.55;               %@0.32/hr 1atm 

X2b=0.4;               %@0.32/hr 7Mpa 

X3b=0.125;            %@0.32/hr 7Mpa 

 

D1=0.05;  

D2=0.32; 
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% theta =0.11;    % unique adjustable parameter 

 

CB01=0.15;  %residual cellobiose @0.05/hr 1atm 

CB02=0.19;  %residual cellobiose @0.05/hr 7Mpa 

CB03=0.042; %residual cellobiose @ 0.05/hr 17Mpa 

  

CB01b=0.017;  %residual cellobiose @0.32/hr 1atm 

CB02b=0.042;  %residual cellobiose @0.32/hr 7Mpa 

CB03b=1.942;  %residual cellobiose @ 0.32/hr 17Mpa 

  

H201=0.7;              %@ 0.05/hr and 0.32/hr 1atm 

H202=50.9;             %@ 0.05/hr and 0.32/hr 7Mpa 

H203=130.4;            %@ 0.05/hr and 0.32/hr 17Mpa 

  

Eth01=1;          %@0.05/hr 1atm 

Eth02=12.8;       %@0.05/hr 7Mpa 

Eth03=17.6;       %@0.05/hr 17Mpa 

  

Eth01b=4.6;          %@0.32/hr 1atm 

Eth02b =16.1;       %@0.32/hr 7Mpa 

Eth03b =10.4;       %@0.32/hr 17Mpa 

  

Ace01=20.2;      %@0.05/hr 1atm 

Ace02=8.5;       %@0.05/hr 7Mpa 

Ace03=7.4;       %@0.05/hr 17Mpa 

  

Ace1b=12.6;      %@0.32/hr 1atm 

Ace2b=10.1;       %@0.32/hr 7Mpa 

Ace3b=7.4;       %@0.32/hr 17Mpa 

  

Lac01=1;          %@0.05/hr 1atm 

Lac02=2;         %@0.05/hr 7Mpa 

Lac03=0.9;       %@0.05/hr 17Mpa 

  

Lac01b=0.9;          %@0.32/hr 1atm 

Lac02b=0.4;         %@0.32/hr 7Mpa 
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Lac03b=0.2;       %@0.32/hr 17Mpa 

  

% ODE solution 

%  [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs1;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;Ve

Lacobs]);   

 [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs2;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;Ve

Lacobs]);   

%  [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs3;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;Ve

Lacobs]);   

%  

%   [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs1b;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;V

eLacobs]);   

%  [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs2b;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;V

eLacobs]);   

%  [T,Res] = ode45('ReUpdatedODEfunc',[0,t], 

[CBobs;VeCBobs3b;H2obs;VeH2obs;Ethobs;VeEthobs;Aceobs;VeAceobs;Lacobs;V

eLacobs]);  % you may solve for each metabolite individually or 

together. NB: Acetate and Ethanol fluxes are compared to predictions 

from model. Only lactate, cellobiose, hydrogen from here are used for 

model inputs. 

 

 

 

D.2      FUNCTION FSADYNAMICFUNC3 
function y = FSAdynamicfunc3(t,x) 

global CBobs H2obs Ethobs Aceobs Lacobs H201 H202 H203  

global CB01 CB02 CB03 CB01b CB02b CB03b Eth01b Eth02b Eth03b 

global Ace01 Ace02 Ace03 Ace01b Ace02b Ace03b      

global Eth01 Eth02 Eth03Lac01 Lac02 Lac03 Lac01b Lac02b Lac03b   

global X1 X2 X3 X1b X2b X3b D1 D2 theta 

y=zeros(size(x)); 

% % All four measurements 

%% transient @ 0.05 dilution rate  for 0.1Mpa 
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% cellobiose @ atm pressure 

% y(1)=((x(2).*X1-D1*x(1)-2*theta*(x(1)-CB01)));         

% y(2)=-(((theta)^2).*(x(1)-CB01))./X1; 

% %Hydrogen @ atm pressure 

% y(3)=((x(4).*X1-D1.*x(3)-2*theta*(x(3)-H201)));         

% y(4)=-(((theta)^2).*(x(3)-H201))./X1; 

%  

% %Ethanol @ atm pressure 

% y(5)=((x(6)*X1-D1*x(5)-2*theta*(x(5)-Eth01))); 

% y(6)=-(((theta)^2)*(x(5)-Eth01))/X1; 

%  

% %Acetate @ atm pressure 

%  y(7)=((x(8)*X1-D1*x(7)-2*theta*(x(7)-Ace01))); 

%  y(8)=-(((theta)^2)*(x(7)-Ace01))/X1; 

%  

% %Lactate @ atm pressure 

%  y(9)=((x(10)*X1-D1*x(9)-2*theta*(x(9)-Lac01)));  

%  y(10)=-(((theta)^2)*(x(9)-Lac01))/X1;    

  

 

%% transient @ 0.32 dilution rate  for 0.1Mpa 

% %cellobiose @ atm pressure 

% y(1)=((x(2).*X1b-D2*x(1)-2*theta*(x(1)-CB01b)));         

% y(2)=-(((theta)^2).*(x(1)-CB01b))./X1b; 

%  

% %Hydrogen @ atm pressure 

% y(3)=((x(4).*X1b-D2.*x(3)-2*theta*(x(3)-H201)));         

% y(4)=-(((theta)^2).*(x(3)-H201))./X1b; 

%  

% %Ethanol @ atm pressure 

% y(5)=((x(6)*X1b-D2*x(5)-2*theta*(x(5)-Eth01b))); 

% y(6)=-(((theta)^2)*(x(5)-Eth01b))/X1b; 

%  

% %Acetate @ atm pressure 

% y(7)=((x(8)*X1b-D2*x(7)-2*theta*(x(7)-Ace01b))); 

%  y(8)=-(((theta)^2)*(x(7)-Ace01b))/X1b; 

%  

% %Lactate @ atm pressure 
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%  y(9)=((x(10)*X1b-D2*x(9)-2*theta*(x(9)-Lac01b)));  

%  y(10)=-(((theta)^2)*(x(9)-Lac01b))/X1b;    

  

 

 %% transient @ 0.05 dilution rate  for 7Mpa 

%cellobiose @ 7Mpa pressure 

y(1)=((x(2).*X2-D1*x(1)-2*theta*(x(1)-CB02)));        % CBin= x(1)) 

y(2)=-(((theta)^2).*(x(1)-CB02))./X2; 

  

%Hydrogen @ 7Mpa pressure 

y(3)=((x(4).*X2-D1.*x(3)-2*theta*(x(3)-H202)));        % CBin= x(1)) 

y(4)=-(((theta)^2).*(x(3)-H202))./X2; 

  

%Ethanol @ 7Mpa pressure 

y(5)=((x(6).*X2-D1*x(5)-2*theta*(x(5)-Eth02))); 

y(6)=-(((theta)^2)*(x(5)-Eth02))/X2; 

  

%Acetate @ 7Mpa pressure 

y(7)=((x(8).*X2-D1*x(7)-2*theta*(x(7)-Ace02))); 

y(8)=-(((theta)^2)*(x(7)-Ace02))/X2; 

%Lactate @ 7Mpa pressure 

 y(9)=((x(10).*X2-D1*x(9)-2*theta*(x(9)-Lac02)));  

 y(10)=-(((theta)^2)*(x(9)-Lac02))/X2;   

%   

   

  

%% transient @ 0.32 dilution rate  for 7Mpa 

% cellobiose @ 7Mpa pressure 

% y(1)=((x(2).*X2b-D2*x(1)-2*theta*(x(1)-CB02b)));         

% y(2)=-(((theta)^2).*(x(1)-CB02b))./X2b; 

  

%Hydrogen @ 7Mpa pressure 

% y(3)=((x(4).*X2b-D2.*x(3)-2*theta*(x(3)-H202)));         

% y(4)=-(((theta)^2).*(x(3)-H202b))./X2b; 

%  

% %Ethanol @ 7Mpa pressure 

% y(5)=((x(6)*X2b-D2*x(5)-2*theta*(x(5)-Eth02b))); 
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% y(6)=-(((theta)^2)*(x(5)-Eth02b))/X2b; 

%  

% %Acetate @ 7Mpa pressure 

% y(7)=((x(8)*X2b-D2*x(7)-2*theta*(x(7)-Ace02b))); 

% y(8)=-(((theta)^2)*(x(7)-Ace02b))/X2b; 

% %  

% %Lactate @ 7Mpa pressure 

%  y(9)=((x(10)*X2b-D2*x(9)-2*theta*(x(9)-Lac02b)));  

%  y(10)=-(((theta)^2)*(x(9)-Lac02b))/X2b;   

  

 

%  %% transient @ 0.05 dilution rate  for 17Mpa 

% %cellobiose @ 17Mpa pressure 

% y(1)=((x(2).*X3-D1*x(1)-2*theta*(x(1)-CB03)));         

% y(2)=-(((theta)^2).*(x(1)-CB03))./X3; 

%  

% %Hydrogen @ 17Mpa pressure 

% y(3)=((x(4).*X3-D1.*x(3)-2*theta*(x(3)-H203)));         

% y(4)=-(((theta)^2).*(x(3)-H203))./X3; 

%  

% %Ethanol @ 17Mpa pressure 

% y(5)=((x(6)*X3-D1*x(5)-2*theta*(x(5)-Eth03))); 

% y(6)=-(((theta)^2)*(x(5)-Eth03))/X3; 

%  

% %Acetate @ 17Mpa pressure 

% y(7)=((x(8)*X3-D1*x(7)-2*theta*(x(7)-Ace03))); 

% y(8)=-(((theta)^2)*(x(7)-Ace03))/X3; 

%  

% %Lactate @ 17Mpa pressure 

%  y(9)=((x(10)*X3-D1*x(9)-2*theta*(x(9)-Lac03))); 

%  y(10)=-(((theta)^2)*(x(9)-Lac03))/X3; 

 

 %% transient @ 0.32 dilution rate for 17Mpa 

% %cellobiose @ 17Mpa pressure 

% y(1)=((x(2).*X3b-D2*x(1)-2*theta*(x(1)-CB03b)));         

% y(2)=-(((theta)^2).*(x(1)-CB03b))./X3b; 

  

%Hydrogen @ 17Mpa pressure 
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% y(3)=((x(4).*X3b-D2.*x(3)-2*theta*(x(3)-H203)));         

% y(4)=-(((theta)^2).*(x(3)-H203))./X3b; 

%  

% %Ethanol @ 17Mpa pressure 

% y(5)=((x(6)*X3b-D2*x(5)-2*theta*(x(5)-Eth03b))); 

% y(6)=-(((theta)^2)*(x(5)-Eth03b))/X3b; 

%  

% %Acetate @ 17Mpa pressure 

% y(7)=((x(8)*X3b-D2*x(7)-2*theta*(x(7)-Ace03b))); 

% y(8)=-(((theta)^2)*(x(7)-Ace03b))/X3b; 

%  

% %Lactate @ 17Mpa pressure 

%  y(9)=((x(10)*X3b-D2*x(9)-2*theta*(x(9)-Lac03b)));  

%  y(10)=-(((theta)^2)*(x(9)-LaclastD03))/X3b;    

 

 

 

D.3       EXAMPLE DYNAMIC STATE FSA CODE USING FUNCTION VSPECTRUMCB_OPT 
%Stoichiomteric Matrix 

N; 

% All fluxes initialized into a vector as irreversible except 2,5 

% irrev=[ones(1,6)]; 

 irrev = ones(1,size(N,2));  

 irrev(2)=0; 

 irrev(5)=0; 

 

% Measured fluxes used as measured input with uncertainty 

 

Jm_ind = [16,17,18,19,20,21]; % index of measured fluxes 

 

 % max and min values per each fluxes 

%% improved interval method 

a=[] % vector of measurements for metabolite 16 obtained over time 

b=[] % vector of measurements for metabolite 17 obtained over time 

c=[] % vector of measurements for metabolite 18 obtained over time 

d=[] % vector of measurements for metabolite 19 obtained over time 

e=[] % vector of measurements for metabolite 20 obtained over time 
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f=[] % vector of measurements for metabolite 21 obtained over time 

 

% assuming +/- 5% uncertainty in measurements 

a_max=max(0.001,a*1.05);  

a_min=a*0.95; 

[a_min a_max]; % combining absolute and relative tolerances 

  

b_max=max(0.001,b*1.05); 

b_min=b*0.95; 

[b_min b_max]; % combining absolute and relative tolerances 

  

Jm_max= [a_max b_max]'; 

Jm_min= [a_min b_min]'; 

 

    

% Initializing resulting flux spectrum  

     Rmin=[]; 

     Rmax=[]; 

      

for i=1:length(a) 

   options=optimset('LargeScale','off','Simplex','on'); 

    [J_mina,J_maxa,flag] = 

vspectrumCb_opt(N,irrev,ind,Jm_min(:,i),Jm_max(:,i),options); 

   if exist('Rmin','var') 

       Rmin=[Rmin J_mina]; 

       Rmax=[Rmax J_maxa]; 

   else 

        Rmin=[]; 

        Rmin=[J_mina]; 

        Rmax=[J_maxa]; 

    

    end  

  

end 

% Computing flux spectrum solution using defined function   

% vspectrumCb_opt 
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   options=optimset('LargeScale','off', 'Simplex', 'on');  

 

[Jm_mina,Jm_maxa,flaga] = 

vspectrumCb_opt(N,irrev,Jm_ind,Jm_min,Jm_max,options); 

 

 

D.4      LLANERAS’ ET AL., 2007 FUNCTION VSPECTRUMCB_OPT 
% Francisco Llaneras 

% Dept. of Systems Engineering and Control  (DISA) 

% Technical University of Valencia (UPV) 

% e-mail: frallaes@doctor.upv.es and kikollan@gmail.com 

function [Vmin,Vmax,Flag] = 

vspectrumCb_Opt(N,irrev,vm_ind,Vm_mini,Vm_maxi,Options) 

%  Calculate the flux spectrum 

% N:        Stoichiometric matrix (N*v=0) 

% irrev:    Vector with indexes of the irreversible fluxes 

% vm_ind:   Vector with indexes of the measured fluxes 

% Vm_mini:  Vector with minimum values of the measured fluxes 

% Vm_maxi:  Vector with maximum values of the measured fluxes 

% Options:  Options for linprog 

% 

% Vmin:     'flux spectrum' minimums 

% Vmax:     'flux spectrum' maximums 

% 

% 

m=size(N,1);           % number of metabolite 

n=size(N,2);           % number of fluxes 

nvm=size(Vm_mini,1);   %number of measured fluxes 

  

% Compute matrix iQ      Q*v=vm 

Q=zeros(nvm,n); 

for i=1:1:nvm 

    ind_vm=vm_ind(i); 

    Q(i,ind_vm)=1; 

end 

  

% Compute the flux spectrum 

[Vmin,Vmax,Flag] = vspectrumC_Opt(N,Q,irrev,Vm_mini,Vm_maxi,Options); 
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D.5      LLANERAS’ ET AL., 2007 FUNCTION VZPECTRUMC_OPT 
% Francisco Llaneras 

% Dept. of Systems Engineering and Control  (DISA) 

% Technical University of Valencia (UPV) 

% e-mail: frallaes@doctor.upv.es and kikollan@gmail.com 

function [Vmin,Vmax,Flag] = 

vspectrumC_Opt(N,Q,irrev,Vm_mini,Vm_maxi,Options) 

% 

% Auxiliar 

m=size(N,1);           % number of metabolite 

n=size(N,2);           % number of fluxes 

nvm=size(Vm_mini,1);   %number of measured fluxes 

Vmax=[];Vmin=[];Flag=[]; 

  

% for each flux... 

for i=1:1:n 

    ind=zeros(1,n); 

    ind(i)=1; 

  

    % calculate its minimum value with linear programming (minimize v) 

    [min_i,a,flag_min]=linprog(ind,[-N;N;-Q;Q;-

diag(irrev)],[zeros(2*m,1);-

Vm_mini;Vm_maxi;zeros(n,1)],[],[],[],[],[],Options); 

    Vmin=[Vmin;min_i(i)];    

    ind=zeros(1,n); 

    ind(i)=-1; 

  

    % calculate its maximum value with linear programming (minimize -v) 

    [max_i,a,flag_max]=linprog(ind,[-N;N;-Q;Q;-

diag(irrev)],[zeros(2*m,1);-

Vm_mini;Vm_maxi;zeros(n,1)],[],[],[],[],[],Options); 

    Vmax=[Vmax;max_i(i)];   

    Flag=[Flag;flag_min flag_max]; % Information about convergence 

end 
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