Research Report UKTRP-87-28

MODIFICATIONS TO CHEVRON N-LAYER COMPUTER PROGRAM

by

Herbert F. Southgate Chief Research Engineer

> Robert C. Deen Director

David H. Cain Technician

and

Jesse G. Mayes Former Research Engineer

Kentucky Transportation Research Program College of Engineering University of Kentucky Lexington, KY 40506-0043

> in cooperation with Transportation Cabinet Commonwealth of Kentucky

> > and

Federal Highway Administration U. S. Department of Transportation

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, of the Kentucky Transportation the Cabinet, οr οf Federal Highway Administration, or Chevron Research Company, Standard Oil Company of California. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names and tradenames are for identification purposes and are not to be considered as endorsements.

October 1987

REPORTS ISSUED

······

· · · ·

W. .

--

Research Study KHYPR-84-96 Development of a Composite Pavement Design Methodology

REPORT NO.	TITLE	DATE
84-3	"Thickness Design Curves for Portland Cement Concrete Pavements"	Feb 1984
84-11	"Variations of Fatigue due to Unevenly Loaded Axles within Tridem Groups"	Apr 1984
84-12	"Variable Serviceability Concent for Pavement Design Confirmed by AASHO	Apr 1984
85-13	"Effects of Load Distributions and Axle and Tire Configurations on Pavement Fatigue"	May 1985
86-21	"Distribution of Strain Components and Work within Flexible Pavement Structures"	Sep 1986
87-28	"Modification to Chevron N-layer Computer Program"	Oct 1987
87-29	"Pavement Designs Based on Work" (Final Report)	Oct 1987

•

Technical Report Documentation Page

÷

1. Report Na.	2. Government Accession No.	3. Recipient's Catalog No.
KTRP-87-28		
4. Title and Subtitle		3. Report Date
Modifications to Chevron	N-Layer Computer Program	Uctober 1987
		6. Performing Organization Code
	•	
7. Author's)		ið. Performing Urganization Report No.
H E Southgate, R C. Deen.	D.H. Cain, and J.G. Mayes	UKTRP-87-28
9 Performing Oromitation Name and Add		10 West Unit No. (TRAIS)
Kentucky Transportation Res	earch Program	
College of Engineering		11. Contract or Grant No.
University of Kentucky		KYHPR-84-96
Lexington, Kentucky 40506-0	043	13. Tues of Report and Pariad Countral
12 Separating Agency Name and Address		I I Abe of Kebolt due Lettod Covered
Kentucky Transportation Cab	inet	
State Office Building		Interim
Frankfort, Kentucky 40622		14. Seongaring Agency Code
,, ,		· · · · · · · · · · · · · · · · · · ·
16. Abstract		JEN NELHOUOIOgy
	ABSTRACT	
This report documents	changes made to the Chevro	on N-layer computer program to:
2. Calculate str within the pavement st 3. Analyze pavem loaded area to permit written with results i 4. Evaluate pavem areas defined by XY co are permitted to be d constant for any one 1 5. Simulate dyna squares of the maxi appropriate for consta Moduli of asphaltic co	ain energy density (or ructure. ent response at specific comparison of analyses ncorporating superposition ent response to any com bordinates on the surface. lifferent from one loaded oaded area. amic loads as the differ mum and minimum dynami nt vibratory testers such ncrete must be adjusted for	work) at specified locations led radii from one circularly by the program as originally principles. bination of loads on circular . Loads and contact pressures area to another, but must be erence between the root mean ic loads. This analysis is as Road Raters and Dynaflects. or frequency effects.
17. Key Werds	18. Distributio	an Statement
Elastic theory Strain	n Energy Density	
Flexible pavement Stres	s Unlimit	ed with approval of Kentucky:
Modulus of elasticity Strai:	n Work Stress Tra	ansportation Cabinet
Asphalt · Work	Deflection	
Crushed stone Work	Strain	
19. Security Classif, (of this report)	20. Security Cleasif, (of this page	21- No. of Peges 22. Price
Unclassified	Unclassified	81

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

TABLE OF CONTENTS

·····

.

W. 11 - 11.

202

•

•

INTRO	DUCT	ΓΙΟ	Ν.	٠	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	۰	•		٠	5	¢	4	٠	٠	•	•	•	٠		•	1
STRAI	N EN Inte Uses	NER erp s f	GY ret or	Wo	io irk	ns S	tr	f ai	Wc n	ork		itr •	• •	in •	•	•	•	•		•	•	•	•	•		•	•	•	• •	•		•	• •	1 2 3
MODIF	Gene Gene OPTN OPTN OPTN	FIO era I = I = I =	NS 1 C 1 2 3	TO Com	0 me •	RI nt:	GII s ·	NA • •	L • •	СН	IEV	RC)N • •	N-	•LA	YE	R	PF • •	ROG	SRA	AM	• • • •	• • • •	• • • •	• • • •	• • •	• • •	• • •	• • • •	• • •	• • • • •	• • •	• • •	3 3 3 3 3
TYPIC	AL F Whee Axle Simu Exan	PRO el elo ula npl	BLE Loa ad tic es	EMS ads An on	I al of	NVI ys D	ES es yn	TI am	GA ic	TE	ED Def	: 1e	ect		ons	•		• • •		• • •	• • •	• • • •	• • •	• • •		• • •		• • • • •	* * * *	• • • •	• • • •	• • •	• • • •	5 5 5 5 5 5
RECOM	1MEN(DAT	ION	IS	•	•	•	•	÷	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
REFER	RENCE	ES.	٠	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
APPEN	DIX	Α:	C	RI	GI	NAI	L	СН	E۷	RC	N	DC	CL	JME	INT	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	9
APPEN	DIX	B:	k	KEN	ITU	СК	Y	٧E	RS	SIC	N	OF	; (CHE	EVF	ON		I-L	.A)	/EF	२ (CON	1PL	JTE	R	PF	200	GRA	M	•	•	•	٠	43
APPEN	DIX	C:	E	EXA	MP	LE	Ρ	RO	BL	.EN	1S	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	66

INTRODUCTION

The Chevron N-Layer computer program (1) was received in 1968 from the Chevron Research Company, Chevron Oil Corporation. Appendix A contains the background documents as written and distributed by Chevron Research Company. That version permitted analyses of one circular load applied to the surface, and output was requested at specified radii from the center of the loaded area. The program was modified to permit analyses of multiple loads located at coordinates in the X-Y plane, and output for specified locations within the X-Y-Z coordinate system may be requested. Superposition principles were applied to each component of strain and stress to resolve them into a value compatible with the X-Y-Z coordinate system. Appropriate equations are shown in Figure 1. The Kentucky modified Chevron N-layer program is listed in Appendix B. Appendix A also contains the letter from Chevron granting permission to publish the listed program as modified herein.

The original Chevron N-layer program contained a subroutine called COE5 that limited the number of layers to be analyzed to five. Shortly thereafter, another subroutine was written by Chevron called CO15 that expanded the capability to analyze a pavement having 15 layers. Some users noted that slightly different answers for locations near the surface of the pavement were obtained, depending upon whether subroutine COE5 or CO15 was being used. Several years later, these two subroutines were replaced with a subroutine called COFE that resolved the problem, and this subroutine is used in the listing given in Appendix B. The number of layers is still limited to 15.

For those having an original Chevron N-layer program, one additional change will be noted. In Appendix B, Subroutine CALCIN has been split into two sections. The part listed herein as Subroutine CALCIN is the first half of the original subroutine. The output portion of the original subroutine was separated to form Subroutine PRN7.

STRAIN ENERGY

The "work" done by a force when its point of application is displaced is the product of that force (parallel to the direction of movement) and the displacement. When work is done on some systems, the internal geometry is altered in such a way that there is a potential to "give back" work when the force is removed, and the system returns to its original configuration. This stored energy is defined as strain energy. Strain energy per unit volume at a given point in the body is the strain energy density at that point.

Strain energy density is a function of the Young's modulus of elasticity and Poisson's ratio of the material and the nine strain (or stress) components; however, it is independent of the coordinate system. Stress and strain components, referenced to a local cylindrical coordinate system, for each load are calculated by the Chevron program (1). The classical equation for strain energy density derived by Sokolnikoff (2) is as follows:

$$W = (1/2)\lambda V \epsilon_{ii} + G \epsilon_{ij} \epsilon_{ij}$$

= (1/2) $\lambda \gamma^{2}$ + G($\epsilon^{2}_{11} + \epsilon^{2}_{22} + \epsilon^{2}_{33} + 2\epsilon^{2}_{12} + 2\epsilon^{2}_{23} + 2\epsilon^{2}_{13}$), (1)

in which W = strain energy density, or energy of deformation per unit volume;

$$E_{ij} = i$$
, jth component of the strain tensor;
 $G = E/(2(1 + \mu))$, the "modulus of rigidity" or the "shear modulus";
 $E = Young's modulus;$
 $\mu = Poisson's ratio;$
 $\lambda = E\mu/((1 + \mu)(1 - 2\mu));$ and

Strain energy density may be calculated using stress components by the equation

$$W = -\mu \theta^{2}/2E + ((1 + \mu)/2E)(\sigma^{2}_{11} + \sigma^{2}_{22} + \sigma^{2}_{33}) + (4(1 + \mu)/E)(\sigma^{2}_{12} + \sigma^{2}_{23} + \sigma^{2}_{31}),$$
(2)

in which $\theta = \sigma_{11} + \sigma_{22} + \sigma_{33}$ and

 $V = \epsilon_{11} + \epsilon_{22} + \epsilon_{33}$.

 σ_{ij} = i, jth component of the stress tensor.

Equation 2 differs from Sokolnikoff's (2) Equation 26.17 by a factor of "4" in the third term. Shear stress is usually written as $2(1 + \mu)$ Gij/E. Sokolnikoff (2, p 25) states, "The factor 1/2 was inserted in the formulas (7.5) in order that the set of quantities may transform according to the Tensor Laws". It has been verified that the Chevron N-Layer Program comuptes shear stresses in a manner that includes the "4" as shown in Equation 2.

Inspection of Equation 1 shows that the terms E & $(1 + \mu)$ are contained by means of the terms λ and G. Also, it is noted that the strain components are squared. Having calculated strain energy density, "work strain" (3) may be obtained from

$$\mathbf{\epsilon}_{W} = (2 \ W/E)^{0.5} \tag{3}$$

in which \mathbf{e}_{w} = work strain. The associated "work stress" is given by $\mathbf{E}\mathbf{e}_{w}$.

INTERPRETATIONS OF WORK STRAIN

Admittedly, work strain is not a true strain because Poisson's ratio has not been eliminated prior to taking the square root; however, it is of the same order of magnitude as any of the strain components. Calculating the work strain is a minor effort since all terms of the equations are either required input to, or calculated output of, the Chevron N-layer (1, 4) program. Work strain is also the composite, or net effect, of all strain components and thus is an indicator of the total strain behavior. Figure 1 illustrates there is a direct correlation between a strain component and work strain.

USES FOR WORK STRAIN

Some thickness design systems for flexible pavements are based partially upon tensile strain criteria at the bottom of the asphaltic concrete layer. Kentucky's system (5-10) is based in part upon the tangential strain component. The tangential component is generally the largest in magnitude, but the radial component often is nearly as large. Only the tangential component has been utilized because laboratory test data yield one component of tensile strain. The net effect of all components of strain (work strain) can be correlated with any component of strain. Thus, design systems based upon one component of strain may be converted to a design system that utilizes the net effect of all component strains. The load-damage factor relationships presented in this paper are based on work strain. All comments concerning component strains also apply to component stresses.

The concept of work strain has been used as the basis for the development of thickness design systems for pavements consisting of portland cement concrete or pozzolanic base courses under asphaltic concrete (11-13).

MODIFICATIONS TO ORIGINAL CHEVRON N-LAYER PROGRAM

GENERAL COMMENTS

The first data card, or line of input data, contains two variable names -- OPTN and OUTPUT. OPTN determines which type of analyses is to be performed. OUTPUT specifies a hard copy form and/or storage of output in the computer's memory for OPTN = 2 or 3 only. For OPTN = 1, OUTPUT has no meaning. A value of 1 for OUTPUT produces a hardcopy and stores the output in the computer memory. A blank or 0 produces only a hardcopy. A value of 2 stores the output in computer memory only.

OPTN = 1

A value of "1" causes the program to run according to the original Chevron N-Layer program. This version restricts the input data to one circular load and output locations are specified as radial distances from center of the load.

OPTN = 2

A value of "2" permits the entry of as many as 99 loads at locations in the form of X-Y coordinates, and up to 99 desired output locations may be specified as X-Y coordinates and up to 99 depths (Z) for each X-Y coordinate. As many as 15 layers of materials with their respective input data for thickness, modulus, and Poisson's ratio may be investigated in each computer run.

OPTN = 3

Kentucky research has shown that dynamic deflection testing may be simulated utilizing the Chevron N-layer computer program with static loads as input. Two adjustments must be made to make the simulation match measured values. First, the modulus of the asphaltic concrete layers is frequency dependent and must be adjusted to an equivalent value appropriate to the testing frequency. The second adjustment involves the oscillating load. While the actual loading is applied as a sine wave, the sensors measure either velocity waves or accelerations and the electronic circuits integrate, or double integrate, the signals respectively to obtain the deflection readings shown on the meters. Thus, the deflections are equivalent to static deflections. Therefore, the dynamic loading applied as a true sine wave may be considered as a static loading by converting the sine wave to an equivalent square wave by

$$MXSL = MEAN + 0.707 * (MXPL - MEAN)$$
(4)

and

MNSL = MEAN - 0.707 * (MEAN - MNPL),(5)

in which MXSL = maximum static load,

MNSL = minimum static load,

MXPL = maximum dynamic load,

MNPL = minimum dynamic load, and

MEAN = dead load about which the dynamic loading

oscillates.

Correlation testing of in-place pavements has shown that the measured deflection as displayed on the meters is identical to the calculated values for each sensor location by

DEFL = DEFMX - DEFMN

(6)

in which DEFL = deflection displayed on the meter for that sensor,

DEFMX = calculated deflection corresponding to the adjusted

load MXSL, and

DEFMN = calculated deflection corresponding to adjusted load

MNSL.

Thus, for OPTN = 3, the calculated deflections, stresses, and strains are obtained by storing the calculated values for the equivalent maximum square-waved loads, then subtracting the calculated values for the minimum square-waved loads and printing the resulting values. This procedure has been used most successfully for both the Road Rater (14-16) and for limited data obtained with the Dynaflect. It has not been attempted for a falling weight tester.

TYPICAL PROBLEMS INVESTIGATED

WHEEL LOADS

The original Chevron N-layer program permitted behavioral analyses of a pavement due to the application of one load. Such analyses corresponded to the use of OPTN = 1. These analyses did provide a major breakthrough at that time. However, it became evident very quickly that analyses were needed for multiple wheel loads and axles.

AXLELOAD ANALYSES

Actual tire loadings and configurations required modifications to be made to the program. The first modifications involved those found in OPTN = 2. Other modifications were made and reported (3). However, the version contained in Appendix B covers all those options. Except for the original version and the simulation of dynamic loadings, the other options primarily were written to choose which variables were to be output. One exception to the above was an attempt to analyze axleloads for each group of axles on a given vehicle. While this type of analysis is possible, analyses may be made by inputting all groups of axles as separate problems using OPTN = 2 and summing the results manually.

SIMULATION OF DYNAMIC DEFLECTIONS

As stated earlier, OPTN = 3 should be used to simulate dynamic deflection tests. Under this option, the stresses, strains, and deflections are calculated for the equivalent maximum and minimum dynamic loads when expressed as the square wave of the applied sinusoidal loading. These deflections have correlated with the measured values as shown on the meters of either the Road Rater or the Dynaflect testers.

۲

EXAMPLES

The input and output data for an example problem for each method of analyses is presented in Appendix C.

RECOMMENDATIONS

The modified Chevron N-Layer Computer Program is recommended for analyzing pavements using a single wheel load, multiple wheelloads on one axle, or multiple axles (up to a total of 99 wheelload locations), and for simulation of dynamic testers such as the Dynaflect and various models of Road Raters.

REFERENCES

- J. Michelow, "Analysis of Stresses and Displacements in an N-Layered Elastic System under a Load Uniformly Distributed on a Circular Area," Chevron Research Corporation, Richmond, California, 1963; also reproduced in Appendix A.
- 2. I. A. Sokolnikoff, .us Mathematical Theory of Elasticity, McGraw-Hill Book Company, 1956.

3. R. C. Deen, H. F. Southgate, and J. G. Mayes, "The Effect of Truck Design on Pavement Performance," <u>Proceedings</u>, The Association of Asphalt Paving Technologists, Louisville, Kentucky, Volume 49, 1980.

- 4. R. C. Deen, H. F. Southgate, and J. H. Havens, "Structural Analysis of Bituminous Concrete Pavements," Division of Research, Kentucky Department of Highways, Research Report 305, Lexington, Kentucky, May 1971.
- 5. J. H. Havens, R. C. Deen, and H. F. Southgate, "Design Guide for Bituminous Concrete Pavement Structures," University of Kentucky Transportation Research Program, Research Report UKTRP-81-17, Lexington, Kentucky, August 1981.
- 6. H. F. Southgate, R. C. Deen, and J. H. Havens, "Development of Thickness Design System for Bituminous Concrete Pavements," University of Kentucky Transportation Research Program, Research Report UKTRP-81-20, Lexington, Kentucky, November 1981.
- 7. H. F. Southgate and R. C. Deen, "Variable Serviceability Concept for Pavement Design Confirmed by AASHO Road Test Fatigue Data," University of Kentucky Transportation Research Program, Research Report UKTRP-84-12, Lexington, Kentucky, April 1984.
- 8. H. F. Southgate and R. C. Deen, "Effects of Load Distributions and Axle and Tire Configurations on Pavement Fatigue," Second National Conference on Weigh-In-Motion, Atlanta, Georgia, May 20-24, 1985.
- 9. H. F. Southgate, R. C. Deen, J. H. Havens, and W. B. Drake, "Kentucky Research: A Flexible Pavement Design and Management System," <u>Proceedings</u>, Fourth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, August 1977.
- 10. H. F. Southgate and R. C. Deen, "Distribution of Strain Components and Work within Flexible Pavement Structures," University of Kentucky Transportation Research Program, Research Report UKTRP-86-21, Lexington, Kentucky, September 1986.
- 11. G. W. Sharpe, H. F. Southgate, and R. C. Deen, "Development of Pavement Thickness Designs Using Pozzolanic Base Materials," University of Kentucky Transportation Research Program, Research Report UKTRP-83-25, Lexington, Kentucky, October 1983.
- 12. H. F. Southgate, J. H. Havens, R. C. Deen, and D. C. Newberry, Jr., "Development of a Thickness Design System for Portland Cement Concrete Pavements," University of Kentucky Transportation Research Program, Research Report UKTRP-83-5, Lexington, Kentucky, February 1983.
- 13. H. F. Southgate and R. C. Deen, "Thickness Design Curves for Portland Cement Concrete Pavements," University of Kentucky Transportation Research Program, Research Report UKTRP-84-3, Lexington, Kentucky, February 1984.
- 14. G. W. Sharpe, H. F. Southgate, and R. C. Deen, "Pavement Evaluation Using Road Rater Deflections," Record 700, Transportation Research Board, Washington, D. C., 1979.

15. G. W. Sharpe, H. F. Southgate, and R. C. Deen, "Dynamic Pavement Deflections," <u>Transportation Engineering Journal</u>, American Society of Civil Engineers, Vol 107, No. TE2, March 1981.

.....

16. H. F. Southgate, G. W. Sharpe, R. C. Deen, and J. H. Havens, "Structural Capacity of In-Place Asphaltic Concrete Pavements from Dynamic Deflections," <u>Proceedings</u>, Fifth International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, August 1982.

$$\sigma_{x} = \sigma_{R} \cos^{2}\theta - 2\tau_{RT} \cos\theta \sin\theta + \sigma_{T} \sin^{2}\theta$$

$$\tau_{xy} = \sigma_{R} \cos\theta \sin\theta + \sigma_{RT}(\cos^{2}\theta - \sin^{2}\theta) - \sigma_{T} \sin\theta \cos\theta$$

$$\tau_{xz} = \tau_{RZ} \cos\theta - \tau_{TZ} \sin\theta$$

$$\sigma_{y} = \sigma_{R} \sin^{2}\theta + 2\tau_{RT} \sin\theta \cos\theta + \sigma_{T} \cos^{2}\theta$$

$$\tau_{yz} = \tau_{RZ} \sin\theta + \tau_{TZ} \cos\theta$$

$$\sigma_{z} = \sigma_{z}$$

$$\tau_{yx} = \tau_{xz}$$

$$\tau_{zy} = \tau_{yz}$$

APPENDIX A

-

. •

- C.C.

100

ORIGINAL CHEVRON DOCUMENTATION

Chevron Research Company

A Standard Oil Company of California Subsidiary 576 Standard Avenue, Richmond, California Mail Address: P. O. Box 1627, Richmond, CA 94802

Mr. Herbert F. Southgate Chief Research Engineer Kentucky Department of Transportation Division of Research 533 South Limestone Lexington, Kentucky 40508 April 18, 1978

Dear Mr. Southgate:

You requested in your letter of April 4, 1978, our permission to publish modifications to our layered elastic computer program used for pavement design. We are delighted to grant you this permission.

Our current policy is to supply upon request the layered elastic program to universities and public agencies at no charge. With this in mind, you should not feel restricted in the use of the program. We understand you will give appropriate reference and acknowledgement in your publications to Chevron Research Company for providing the original programs. We greatly appreciate the recognition you have given us in the past.

Your proposed modifications to the program sound interesting. Your interim report on a rational overlay design method is particularly timely. I would appreciate a copy of the report, when available, and a copy of the modified elastic layered program.

You and your associates at the Kentucky Department of Transportation have done an excellent job of pioneering the field of rational pavement design. We are delighted that the Chevron program provided some assistance in accomplishing that task. We look forward to your effort on a rational overlay design method.

Sincerely, L. E. Santucci

LES: cic

CALIFORNIA RESEARCH CORPORATION RICHMOND, CALIFORNIA

10/11/

NUMERICAL COMPUTATION OF STRESSES AND STRAINS IN A MULTIPLE-LAYERED ASPHALT PAVEMENT SYSTEM

September 24, 1963

H. Warren and W. L. Dieckmann

The program numerically carries out the solutions given by Mr. J. Michelow in his analysis of multileyered asphalt pavement systems. The present program computes vertical, tangential, radial, and shear stress together with vertical and radial strain at any point in the system for a given load on a circular area of the surface.

At interfaces between two layers, the stresses are computed only for the lower layer. The corresponding radial and tangential stresses for the upper layer are proportional to those given for the lower, with ratios the same as the ratio of the moduli of elasticity of the two layers.

Input

The order and format of the data cards are given in the attached input sheet. Each system to be analyzed is represented by six cards in the data deck. Any number of systems may be processed on the same run by placing sets of cards one after the other.

The stress and strain solutions may be obtained in either absolute terms (e.g., psi and inches) or relative to a unit pressure. In the latter case, the input total load and tire pressure are used only to define the radius of the loaded area. The type of solution desired (absolute or relative) is indicated on the second input card in Column 36 by a 0 (or blank) for absolute or a 1 for relative output.

Output

The input heading supplied by the user is printed out at the top of each page. The results and a list of the parameters are printed out in columns below the heading.

The Organization of the Computation

The final answers are expressed as integrals of the form

$$\int_{0}^{\infty} T(m) dm \qquad (1)$$

For purposes of numerical evaluation (1) is replaced by

$$\sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} T(m) dm \qquad (2)$$

Each of the integrals in (2) is evaluated using four-point Legendre-Gauss quadrature [1]. To maximize the accuracy of

Encl. - Input Sheet Sample Output 12 _1_ these evaluations, the set of x_{\pm} 's are chosen from the zeros of T(m), such that in the interior of any interval $(x_{\pm -1}, x_{\pm})$ there is at most one zero of T(m).

Two criteria determine the value of n - that is, when the integration will stop. One is the size of the integrand; the other is the number of intervals already integrated over. Specifically, the integration is terminated at x_n if either condition a or b is satisfied.

- a. The integrals over (x_{n-2}, x_{n-1}) and (x_{n-1}, x_n) both have magnitude less than 10^{-2} .
- b. n Reaches its maximum assigned value of 46.

Because T(m) is a product of two Bessel functions times a term which decays as K $m^{-p}e^{-2m}$, condition (a) is an approximation to

$$\int_{x_n}^{\infty} T(m) dm \leq 10^{-4} .$$
 (3)

p is an integer greater than one and K is only a function of r and z; where r is the radial coordinate and z is the vertical coordinate of a point in the elastic system. Equation (3) will be satisfied for m greater than one if

$$K e^{-2m}n < 10^{-4}$$

which is equivalent to

$$zm_n > 4 \log 10 - \log K$$
 .

If $M = \max(a, r)$ where a is the load radius, then m_{4C} is approximately equal to 71/M. It follows that when the integration stops, condition (a) will hold if

$$\frac{z}{M} > \frac{4 \log 10 - \log K}{71} .$$
 (4)

Conversely, condition (a) will not be satisfied if z is too small, or either a or r is too large. In concrete terms, if the point under consideration is (i) too near or on the surface of the system, or (ii) too far from the center of the load area, or (iii) if the load area is too large, then the convergence of Equation (2) to (1) is slow, and the computations of the present program are more subject to error.

It should be noted, however, that (ii) and (iii) are problem cause only because (1) is being evaluated numerically. The zeros of T(m) are approximately involvely proportional to a and r; hence increasing them shortens the intervals (x_{1-1}, x_1) .

The remedy for this problem is to take a great number of intervals; but to limit computing time <u>some</u> number u must be set as the maximum number of intervals (40 is used for u in this program).

The main work of the program lies in evaluating T(m). The parameters of T are the coordinates of the point (r,z) and all the physical constants describing the system. As shown in Michelow's report, a large part of the work of the evaluation of T(m) goes into evaluating the functions $A_{i}(m)$, $B_{j}(m)$, $C_{j}(m)$, and $D_{j}(m)$, which do not include the parameter z but depend on r. Hence, these evaluations are made once for each r, and the computation then proceeds to finding the solutions for the different z's. A further saving would be made by groupin all points (r,z) such that $r \leq a$, since in this event M = a, and the same subdivision $\{x_1\}$ applies to all these points (although the cutoff point, x_n , may differ). This refinement has not been incorporated into the present program.

The evaluation of $A_j(m)$, $B_j(m)$, $C_j(m)$, and $D_j(m)$ is carried out by one of two subroutines, depending on the size of m. For large m, A_j and B_j decrease exponentially and may be assumed to be zero, in which case the computation of C_j and D_j can be proceed independently. It can be shown that C_j and also D_j asymptotically approach multiples of m^{-3} or m^{-2} , depending on the parameters of the system. Using asymptotic approximations to these variables should be considered if it is desirable to continue the integration in slowly convergent cases of type (i).

Comparison with Published Results

No known published results exist for the upper one third of the top layer. In other regions the results obtained with this program compare almost identically with those published by Jones [2] and by Mehta [3]. We have gotten good results in the difficult upper region but have experienced slow convergence as the z coordinate (depth below surface) goes to zero. The extreme case, at z = 0, where the theoretical results are known, is considered below.

Error Estimation in Slowly Convergent Cases

Whenever the integration of (1) is terminated by condition b (n = 46), the program writes the comment "SLOW CONVERGENCE" for that printed line of output. In computing the deflections, damping factors other than the exponential make it unlikely that slow convergence of type (1) will produce any error over 5%. Further, the vertical and shear stresses for z = 0 - that is, at the surface - are known from the boundary conditions, namely: vertical stress = $\begin{cases} -1 , r < a \\ -0.5, r = a \\ 0 , r > 0 \end{cases}$ shear stress = 0 for all r

Comparing the computed values with these boundary conditions gives a good idea of the quality of convergence, which may well give results good to 1% even though the "SLOW CONVERGENCE" message is written out.

The results from the analysis of the following two systems which converged slowly illustrate this conclusion:

System 1

System 1 consists of two layers with a load radius of 1.5. The layers have the following characteristics:

Layer	Thickness	Modulus of Elasticity	P's Ratio
l	3.0	1000	0.25
2	ത	2000	0.25

System 2

System 2 consists of four layers with a load radius of 14.82. The layers have the following characteristics:

Layer	Thickness	Modulus of Elasticity	P's Rivio
l	2.0	20,000	C.75
2	3.0	15,000	0.50
3	4.0	12,000	0.50
4	æ	10,000	0.45

On the surface (z = 0), at radial distance (r), vertical stress was computed to be

15 _4_

. . .

r	' System 1	Straites 2
0	-1.000000	-1.000000
0.5	-1,005083	-0.998351
1.0	-0,997157	-1.001935
1.45	-1.056223	-1.000057
1.50	-0.499998	-0.999376
1.55	0.048758	-0.998707
2.00	-0.008926	-0.998332
12.00	-0.003021	-0.986899

The shear stresses were all computed to be less than 10^{-6} .

Thus, we see that the computed values for System 1 are close to the theoretical values of the vertical stress which is -1 for values of r less than 1.5, -0.5 at r equal 1.50, and zero for values of r greater than 1.5. None of the computed shear stresses exceeded 10^{-6} which is close to the theoretical value of zero for all radii.

For System 2, the computed values are very close to the theoretical value of -1. In this system, r does not exceed the load radius.

Survey of the Component Routines of the Program

Main Routine

entre entre ann

Handles input and output (except for writing the final answers) and calls the subroutines, which do all the arithmetic operations.

PART

Calculates the partition $\langle x_1 \rangle$ and the four points in each interval (x_{1-1}, x_1) at which T(m) is to be evaluated for integration.

COEE and COHIGH

Computes $A_1(m)$, $B_1(m)$, $C_1(m)$, and $D_1(m)$. COHIGH works in the range where A_1 and B_1 are effectively zero.

*

BROSER

Computer either $J_0(\pi)$ or $J_1(\pi)$ to within an absolute to prime of less than 10^{-6} . This routine could be used in any program requiring evaluation of zero and first-order Bessel functions.

CALCIN

Completes the evaluation of T(m) and performs the integration of (2). It writes out the final results.

HIGHM

As now compiled, just prints out the message "SLOW CONVERGENCE." There is, however, a FORTRAN deck for an alternate version of HIGHM which would effectively raise the value of u on a point-bypoint basis - that is, continue the integration indefinitely, or until some criterion such as an error bound or time limit was met. This alternate version of HIGHM would be used with the subroutines RANGE2-346 and CDHIGH 338, which are already compiled and fulfill the functions of CALCIN and COHIGH, respectively.

References

- Hildebrand, F. B., "Introduction to Numerical Analysis," McGraw-Hill (1956).
- Jones, A., "Tables of Stresses in Three-Layer Elastic Systems," Highway Research Board, Bulletin 342, 176-214 (1962).
- 3. Mehta, M. R., and Veletsos, A. S., "Stresses and Displacements in Layered Systems," Technical Report, Office of Naval Research, University of Illinois (1959).

:ic

CALIFORNIA RESEARCH CORPORATION RICHMOND, CALIFORNIA

terrer in the second spectrum and

ANALYSIS OF STRESSES AND DISPLACEMENTS IN AN n-LAYERED ELASTIC SYSTEM UNDER A LOAD UNIFORMILY DISTRIBUTED ON A CIRCULAR AREA

September 24, 1963

By

J. Michelow

,

ANALYSIS OF STRESSES AND DISPLACEMENTS IN AN n-LAYERED ELASTIC SYSTEM UNDER A LOAD UNIFORMELY DISTRIBUTED ON A CIRCULAR AREA

Table of Contents

		Page
I.	Introduction .	l
II.	Description	l
	A. Geometry of the System	1
	B. Elastic Characteristics of the System	2
	C. Description of the Load	2
	D. Description of the Boundary Conditions	2
	E. Description of the Problem	3
III.	Basic Equations	3
IV.	Boundary Conditions	5
۷.	Solution of Problem B	7
VI.	Solution of Problem A	11
VII.	Bibliography	14

I. Introduction

Asphalt pavements may be idealized as a semiinfinite solid with three or four layers of substances whose elastic characteristics are different from one layer to the other.

In view of this, a computer program for the IBM 7090 is being prepared at the request of the Asphalt Development Group. This program will give the distribution of stresses and deformations of such an n-layered system when subject to a total uniformily distributed on a circular area on the free surface of the semiinfinite solid. The interfaces between layers are considered to be "rough."

Classical papers in this field were consulted [1;2;3]. None of these papers was considered satisfactory for several reasons; hence, we conducted our own analysis of the problem. This analysis constitutes the content of this report and possesses the following desirable characteristics:

- 1. The system may have any number of layers.
- The clastic coefficients in each layer can assume any value (where the Poisson modulus v is different from one).
- 3. The mathematical analysis is straightforward and selfcontained.
- 4. The constants of integration are given explicitly and can be found by solving a system of two linear equations with two unknowns.
- 5. The results are given in a form convenient for a digital computer to handle.

The major contribution of this paper is that of Items 3, 4, and 5. Mehta and Veletsos² had also considered systems satisfying 1 and 2.

II. Description of the System

A. Geometry of the System

Consider an orthogonal system of coordinates in three dimensional space, where the x and y axes are in a horizontal plane, and the z axis, therefore vertical, is pointing downward.

Consider the semiinfinite solid consisting of all points (x, y, z) where $z \ge 0$. This solid will be divided in n "layers" L_1 , $1 = 1, 2, \ldots$, n by the collection of numbers

 $h_0 = 0 \le h_1 \le h_2 \le \dots \le h_{n-1}$.

(1)

20 -1The layer Li will consist of all points (x, y, z) such that

$$h_{1-1} \le z < h_1$$
, (2)

for i = 1, 2, ..., n-1. The layer L_n will consist of all points (x, y, z) such that

$$h_{n-1} \leq z$$
 (3)

The plane $z = h_1$ (i = 0, 1, 2, ..., n-1) will be called the itn-interface.

B. Elastic Characteristics of the System

The semiinfinite solid will be assumed to be perfectly elastic, homogeneous, etc.

 E_1 will denote the modulus of Young and ν_1 , the modulus of Poisson for layer L_1 .

C. Description of the Load

We will consider a load f(x, y) normal to the Oth-interface given by the following equation.

$$f(x, y) = \begin{cases} 1 & \text{whenever } x^2 + y^2 < a^2 \\ 1/2 & \text{whenever } x^2 + y^2 = a^2 \\ 0 & \text{whenever } x^2 + y^2 > a^2 \end{cases}$$
(4)

Later on we will see why we define f(x, y) to be 1/2, when $x^2 + y^2 = a^2$, and not one.

We will also consider a load f(x, y) normal to the Oth-interface given by the equation

$$f(x, y) = p(m) J_0 [m (x^2 + y^2)^{1/2}], \qquad (5)$$

where p(m) is an arbitrary function of the parameter m, and $J_0(t)$ denotes the Bessel function of the first kind of order zero.

The load described by equation (4) will be called Load A, and the one described by equation (5) will be called Load B.

D. Description of the Boundary Conditions

For each layer L_1 the boundary conditions are the conditions that have to be satisfied at the i^{th} -interface and at the $(1-1)^{tn}$ -interface.

-2-

We will consider the case when the ith-interface is "rough", that is, the components of stress e_{x} and τ_{x} , as well as the components of the displacement u and w are continuous at $z = h_1$ (i = 1, 2, ..., n-1). (See IIIA below.) At the 0th-interface, sometimes called the free surface, that to be equal to the load and τ_{zr} has to be zero. E. <u>Description of the Problem</u> To determine the components of stress and displacement at any point (x, y, z) in a system with a geometry given by Section IIA, with elastic characteristics as the ones given

in Section IIB, with boundary conditions as described in Section IID, when subject to one of the loads defined in Section IIC.

We will consider then two different problems that we will call A and B, depending on which of the loads of Section IIC is acting on the system.

As we will see later on (Section VI), the solution of Problem B leads to the solution of Problem A by means of superposition. In the following sections we will consider it advantageous to adopt a cylindrical system of coordinates: Each point is defined by the coordinates (r, e, z) where

> $r = (x^{2} + y^{2})^{1/2} ,$ $\cos \Theta = x/r, \sin \Theta = y/r, \text{ and}$

(6)

Z = Z.

The reason for this is that the z axis is an axis of symmetry of the geometry of the system as well as of the load.

III. Basic Equations

A. For a cylindrical system of coordinates, the components of stress are:

 $\sigma_z, \sigma_r, \sigma_{\Theta}, \tau_{zr}, \tau_{r\Theta}, \tau_{z\Theta};$

and the components of displacement are:

u, the radial displacement, v, the tangential displacement, and w, the vertical displacement.

Because of the symmetry of the system under consideration

$$\tau_{re} = \tau_{ze} = v = 0$$
. (7)

We have, then, to determine six functions: Four components of stress, σ_z , σ_r , σ_e , τ_{rz} , and four components of displacement, u, w.

B. The four components of stress have to satisfy two sets of equations called the equilibrium conditions and the compatibility conditions, respectively.

The equilibrium conditions are:

$$\frac{\partial \sigma_{\mathbf{r}}}{\partial \mathbf{r}} + \frac{\partial \tau_{\mathbf{r}Z}}{\partial z} + \frac{\sigma_{\mathbf{r}} - \sigma_{\Theta}}{\mathbf{r}} = 0, \text{ and} \qquad (8)$$

$$\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{rz}}{\partial r} + \frac{\tau_{rz}}{r} = 0.$$
 (9)

The compatibility conditions are:

$$\nabla^{2}\sigma_{r} - \frac{2}{r^{2}}(\sigma_{r} - \sigma_{\theta}) + \frac{1}{1 + \nu}\frac{\partial^{2}Q}{\partial r^{2}} = 0, \qquad (10)$$

$$\nabla^2 \sigma_{\Theta} + \frac{2}{r^2} \left(\sigma_r - \sigma_{\Theta} \right) + \frac{1}{1 + \nu} \frac{1}{r} \frac{\partial Q}{\partial r} = 0, \qquad (11)$$

$$\sqrt[2]{z} + \frac{1}{1+v} \frac{\partial^2 Q}{\partial z^2} = 0, \text{ and} \quad (12)$$

$$\nabla^{2} \tau_{rz} - \frac{1}{r^{2}} \tau_{rz} + \frac{1}{1+\nu} \frac{\partial^{2} Q}{\partial r \partial z} = 0.$$
 (13)

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} , \qquad (14)$$

$$Q = \sigma_r + \sigma_{\Theta} + \sigma_z$$
, and (15)

 ν is Poisson's modulus.

C. We can simplify the problem by expressing the four components of stress and the two components of displace-ment in the following way:

$$\sigma_r = \frac{\partial}{\partial z} \left[v \nabla^2 \phi - \frac{\partial^2 \phi}{\partial r^2} \right] , \qquad (16)$$

$$\sigma_{\Theta} = \frac{\partial}{\partial z} \left[v \nabla^2 \phi - \frac{1}{r} \frac{\partial \phi}{\partial r} \right] , \qquad (17)$$

$$\sigma_{z} = \frac{\partial}{\partial z} \left[(2 - \nu) \nabla^{2} \phi - \frac{\partial^{2} \phi}{\partial z^{2}} \right], \qquad (18)$$

$$\tau_{rz} = \frac{\partial}{\partial r} \left[\left(1 - v \right) \nabla^2 \phi - \frac{\partial^2 \phi}{\partial z^2} \right] , \qquad (19)$$

Here

$$u = -\frac{1+v}{E} \frac{\partial^2 \phi}{\partial r \partial z}, \text{ and } \qquad (20)$$

$$w = \frac{1 + \frac{1}{E}}{E} [2(1 - v) \nabla^2 \phi - \frac{\partial^2 \phi}{\partial z^2}]; \quad (21)$$

where $\phi(r, z)$ is a so-called Airy's function.

By expressing σ_r , σ_{Θ} , σ_z , and τ_{rz} in this way, we automatically satisfy equation (8). Moreover, equations (9) through (13) are also satisfied whenever ϕ is a solution of

$$\nabla^4 \phi = 0. \qquad (22)^2$$

The problem has been reduced to finding one function ϕ that satisfies equation (22) and the boundary conditions of the problem under consideration.

D. It is easy to check that equation (22) is satisfied by the function

$$\phi(r, z, m) = J_0(mr)[(A + Bz)e^{mz} + (C + Dz)e^{-mz}],$$
 (23)

where $J_n(t)$ is the Bessel function of the first kind of order n, and m is a parameter. A, B, C, and D are constants of integration; hence they do not depend on r and z, but they may be functions of the parameter m.

IV. Boundary Conditions

A. It follows from the considerations of the previous section that in the layer L_1 , the solution of the problem will be given by the Airy's function:

$$\phi_{1}(r, z, m) = J_{0}(mr)[(A_{1} + B_{1}z)e^{mz} + (C_{1} + D_{1}z)e^{-mz}];$$
(24)

where the constants A_1 , B_1 , C_1 , and D_1 should be determined in such a way that the boundary conditions are satisfied.

The condition of continuity at the interfaces is not difficult to fulfill. [See equation (31).]

B. Equation (24), together with equations (16) through (21), give:

$$\sigma_{z}^{i} = m^{2} J_{0}(mr) \left\{ (1-2\nu_{1}) [B_{1}e^{mz} + D_{1}e^{-mz}] - m[(\Lambda_{1} + B_{1}z)e^{mz} - (C_{1} + D_{1}z)e^{-mz}]_{\mu}^{\mu} \right\}$$

$$\tau_{rz}^{i} = m^{2} J_{1}(mr) \left\{ 2\nu_{1} [B_{1}e^{mz} - D_{1}e^{-mz}] + m[(\Lambda_{1} + B_{1}z)e^{mz}] + (C_{1} + D_{1}z)e^{-mz}]_{\mu}^{1},$$

$$(26)$$

$$u^{1} = \frac{1+1}{E_{1}} mJ_{1}(mr) (B_{1}e^{mz}+D_{1}e^{-mz}+m[(A_{1}+B_{1}z)e^{mz}]$$

$$-(C_{i}+D_{i}z)e^{-mz}], \qquad (27)$$

$$w^{i} = \frac{1+v_{i}}{E_{1}} m J_{0}(mr) \left\{ 2(1-2v_{1}) \left[B_{1}e^{mz} - D_{1}e^{-mz} \right] - m \left[(A_{1}+B_{1}z)e^{mz} \right] \right\}$$

$$+ (C_{1}+D_{1}z)e^{-mz}] \} ,$$

$$(28)$$

$$\sigma_{r}^{i} = m^{2}J_{0}(mr) \left\{ (1+2v_{1})[B_{1}e^{mz}+D_{1}e^{-mz}]+m[(A_{1}+B_{1}z)e^{mz} - (C_{1}+D_{1}z)e^{-mz}] - m^{2}\frac{J_{1}(mr)}{mr} \right\} B_{1}e^{mz}+D_{1}e^{-mz} + m[(A_{1}+B_{1}z)e^{mz}]$$

$$-(C_{1}+D_{1}z)e^{-mz}], \text{ and}$$
(29)
$$\sigma_{e}^{i} = 2v_{1}m^{2}J_{0}(mr)[B_{1}e^{mz} + D_{1}e^{-mz}] + m^{2}\frac{J_{1}(mr)}{mr} \langle B_{1}e^{mz} + D_{1}e^{-mz} + m[(A_{1}+B_{1}z)e^{mz} - (C_{1}+D_{1}z)e^{-mz}] \rangle.$$
(30)

C. Consider the matrix

$$S_{1}(z) = \begin{vmatrix} \sigma_{z}^{1} \\ \tau_{rz} \\ u^{1} \\ w^{1} \end{vmatrix}$$

Continuity conditions at the ith-interface can be expressed by

$$S_{i}(h_{i} - 0) = S_{i+1}(h_{i}),$$
 (31)

i = 1, 2, ..., n-1. Here $S_1(h_1 - 0)$ stands for $\lim_{\varepsilon \to 0} S_1(h-|\varepsilon|)$.

From equation (25) we see that (in any Layer L_i) σ_z^i is proportional to $J_0(mr)$. Therefore, the Airy's function given by equation (24) allows only a load normal to the O^{tA} -interface that is proportional to $J_0(mr)$. This is the case in Problem B.

25

-6-

V. Solution of Problem B

A. To solve Problem B, we need only to determine the constants A₁, B₁, C₁, and D₁ (i = 1, 2, ..., n) that Fulfill the conditions given by equation (31) and that are compatible with Load B. See last paragraph of Section IID.

We have 4n constants to determine; equation (31) gives us 4n-4 equations. The compatibility of the stresses with Load B gives us two more equations. The fact that at infinity the stresses should be zero allows us to conclude that A_n and B_n should be zero; this gives us the last two equations needed.

B. From equations (25) through (28), we see that the matrix $S_1(z)$ can be expressed in the following form:

$$S_{1}(z) = K(v_{1}, E_{1})M(z, v_{1})D(z)$$

 $\begin{bmatrix} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \end{bmatrix}$, (32)

where

$$K(v, E) = \begin{vmatrix} -m^{2}J_{0}(mr) \\ m^{2}J_{1}(mr) \\ \frac{1 + v}{E} mJ_{1}(mr) \\ -\frac{1 + v}{E} mJ_{0}(mr) \end{vmatrix}, (33)$$

$$M(z, v) = \begin{vmatrix} 1 & mz + 2v - 1 & -1 & -mz + 2v - 1 \\ 1 & mz + 2v & 1 & mz - 2v \\ 1 & mz + 1 & -1 & -mz + 1 \\ 1 & mz + 4v - 2 & 1 & mz - 4v + 2 \end{vmatrix}, (34)$$

and

$$D(z) = \begin{bmatrix} me^{mz} \\ e^{mz} \\ me^{-mz} \\ e^{-mz} \end{bmatrix} .$$
(35)

C. Therefore, equation (31) can be written as:

$$K(v_{1}, E_{1})M(h_{1}, v_{1})D(h_{1}) \begin{vmatrix} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \end{vmatrix} = K(v_{1+1}, E_{1+1})M(h_{1}, v_{1+1})D(h_{1}) \begin{vmatrix} A_{1+1} \\ B_{1+1} \\ C_{1+1} \\ D_{1+1} \end{vmatrix}$$

$$26 -7- (36)$$

Hence, we can express A_1 , B_1 , C_1 , and D_1 as functions of $A_{j+1},\ B_{j+1},\ C_{j+1},$ and D_{j+1} by

$$\begin{vmatrix} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \end{vmatrix} = D^{-1} (h_{1}) M^{-1} (h_{1}, v_{1}) K^{-1} (v_{1}, E_{1}) K (v_{1+1}, E_{1+1})$$

$$M(h_{1},v_{1+1})D(h_{1}) \begin{vmatrix} A_{1+1} \\ B_{1+1} \\ C_{1+1} \\ D_{1+1} \end{vmatrix} .$$
(37)

Note that

$$K^{-1}(v_{1}, E_{1})K(v_{1+1}, E_{1+1}) = \begin{vmatrix} 1 \\ 1 \\ L_{1} \\ L_{1} \end{vmatrix}, \quad (38)$$

where

$$T_{1}^{I}(\mathcal{I}) = \frac{E_{1}}{E_{1+1}} \frac{1 + \nu_{1+1}}{1 + \nu_{1}} .$$
(39)

It is easy to check that

$$M^{-1}(z,v_{1}) = \frac{1}{4(v_{1}-1)} \begin{vmatrix} -mz-1 & mz+4v_{1}-2 & (mz+2v_{1}-1)(v_{1}) & -mz-2v_{1} \\ 1 & -1 & -1(v_{1}) & 1(v_{1}) \\ -mz+1 & -mz+4v_{1}-2 & mz-2v_{1}+1(v_{1}) & mz-2v_{1} \\ 1 & 1 & -1(v_{1}) & -1(v_{1}) \end{vmatrix}$$
(40)

Let us define the matrix X_1 by

 $X_{1} = 4M^{-1}(h_{1}, v_{1})K^{-1}(v_{1}, E_{1})K(v_{1+1}, E_{1+1})M(h_{1}, v_{1+1})(v_{1}-1) , (41)$ thus

27

-8-

	(4 ^{,,1} -3)-L ₁	-q(-h ₁ , v ₁ , v ₁ +] +L ₁ q(-h ₁₊₁ , v ₁₊) 1,יי ₁)	(2mh ₁ +4 _{''1} -1)(1-L ₁)	$p(h_1, v_1, v_{1+1})$ - $L_1 p(-h_1, v_{1+1}, v_1)$					
²⁸ 9 X ₁ =	0	L ₁ (4 ¹ +1-3)-1		$\mathcal{T}_{L_{1}-1}^{\mathcal{T}_{L}M}$	(2mh ₁ -4v ₁₊₁ +1)(L ₁ -1)					
	(2mhi-4vi+1)(Li-1)	-p(-h ₁ , ''1, ''1+] +L ₁ p(h ₁ , ''1+], '	1) v1)	(4v ₁ -3)-L ₁	$q(h_{1},v_{1},v_{1+1})$ -L ₁ $q(h_{1},v_{1+1},v_{1})$					
	2(1-L1)	(2mh _i +4v ₁₊₁ -1))(1-L ₁)	0	L ₁ (4v ₁₊₁ -3)-1					
			•							

;

,

.

100

ı

.

. ;

where

$$p(h, \nu, \mu) = m^{2}(2h^{2}) + 4mh(\nu-\mu) + (1-8\nu\mu + 2\mu)$$
 (43)

and

$$q(h, v, \mu) = 2mh(2v-1) - (1+8v\mu-6\mu)$$
. (44)

Finally, we can write equation (37) as

$$\begin{array}{c|c} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \end{array} = \frac{D^{-1}(h_{1}) X_{1} D(h_{1})}{4(v_{1}-1)} & \begin{array}{c} A_{1+1} \\ B_{1+1} \\ C_{1+1} \\ D_{1+1} \end{array} .$$
(45)

We can, therefore, by repeated use of equation (45), express the set of constants A_1 , B_1 , C_1 , and D_1 as functions of C_n and D_n for all i = 1, 2, ..., n-1. We thus obtain

$$\begin{array}{c|c} A_{1} \\ B_{1} \\ C_{1} \\ D_{1} \\ \end{array} = \frac{n-1}{j=1} \begin{array}{c} D^{-1}(h_{j}) X_{j} D(h_{j}) \\ 4(v_{j}-1) \\ \end{array} \begin{array}{c} 0 \\ C_{n} \\ D_{n} \\ \end{array} \right|.$$
(46)

D. From equation (26), using the condition $(\tau_{rz}^1)_{z=0} = 0$, we obtain

$$mA_1 + 2v_1B_1 + mC_1 - 2v_1D_1 = 0.$$
 (47)

From equation (25), imposing the condition that

$$\left(\sigma_{Z}^{1}\right)_{Z=0} = -p(m)J_{0}(mr) \tag{48}$$

we obtain •

$$mA_1 + (2v_1-1)B_1 - mC_1 + (2v_1-1)D_1 = p(m)/m^2 = K(m)$$
. (49)

Therefore, we can write the matrix equation

E. The constants C_n and D_n can be determined by combining equations (50) and (46). We thus obtain

$$\begin{vmatrix} 0 \\ K(m) \end{vmatrix} = \begin{vmatrix} m & 2v_1 & m & -2v_1 \\ m & 2v_1 - 1 & -m & 2v_1 - 1 \end{vmatrix} \frac{n-1}{j=1} \frac{D^{-1}(h_j)X_jD(h_j)}{4(v_j-1)} \begin{vmatrix} 0 \\ 0 \\ C \\ D_n \\ D_n \end{vmatrix}$$

$$29$$

$$(51)$$

This gives a system of two linear equations in two unknowns whose solution is immediate. (We do not expect the determinant of the system to be zero.)

F. In summary, Problem B is solved by equation $\frac{1}{25}$ (25) through (30), where C_n and D_n are determined from equation (51) and A₁, B₁, C₁, and D₁ are given by equation (46), (i = 1, 2, ..., n-1).

VI. Solution of Problem A

A. From equation (51) we see that C_n and D_n are proportional to p(m); therefore, equation (46) tells us that Ai, B₁, C₁, and D₁ are proportional to p(m) for all i = 1, 2, ..., n-1. We can conclude from equations (25) through (30) that σ_z^1 , τ_{rz}^1 , σ_y^1 , σ_r^1 , u^1 , and w^1 are proportional to p(m) for i = 1, 2, ..., n.

Therefore, we can put $K(m) = 1/m^2$ in equation (49) and write the factor p(m) in front of equations (25) through (30).

B. Because equations (16) through (21), as well as equation (22), are linear in ϕ , whenever the Airy's function $\phi(\mathbf{r}, \mathbf{z}, \mathbf{m}_{j})$ solves Problem B, then the function

$$\phi(\mathbf{r}, \mathbf{z}) = \sum_{j=1}^{n} \Delta_{j} \phi(\mathbf{r}, \mathbf{z}, \mathbf{m}_{j})$$
(52)

solves the problem of finding stresses and displacement when the system is subject to a load

$$\sum_{j=1}^{n} \Delta_{j} p(m_{j}) J_{0}(m_{j}r) .$$
(53)

Therefore, the function

$$\phi(\mathbf{r}, z) = \int_0^\infty \phi(\mathbf{r}, z, m) dm , \qquad (54)$$

will solve the problem of finding stresses and displacements when the system is subject to a load.

$$\int_{0}^{\infty} p(m) J_{0}(mr) dm \qquad (55)$$

C. The inversion formula for the Hankel transform of order zero is:

$$\frac{1}{2}[g(r-0)+g(r+0)] = \int_{0}^{\infty} m[\int_{0}^{\infty} rg(r)J_{0}(mr)dr]J_{0}(rm)dm , \quad (56)$$

provided g(r) satisfies a certain set of conditions that we will call Condition C [6, p. 52].

In particular we see that if we chose

$$p(m) = m \int_0^\infty rf(r) J_0(mr) dr , \qquad (57)$$

where f(r) is the function defined by equation (4), then equation (55) gives Load A. This is permissible because the function f(r) satisfies Condition C.

We see now why equation (4) takes that rather peculiar form at r = a. Integrating equation (57) we get

$$p(m) = aJ_1(ma)$$
 (58)

D. In summary, the chain of reasoning is the following:

1. We chose an Airy's function $\phi(r, z, m)$ as the one given by equation (23).

2. We chose a Load B as the one given in equation (5) where p(m) is defined by equation (58).

3. By the last paragraph of Section VIA, we see that the stresses and displacements are given by equations (25) through (30) with a factor $aJ_1(ma)$ in front of each equation.

4. The constants A_1 , B_1 , C_1 , D_1 , (i = 1, 2, ..., n-1) C_n and D_n are given as functions of the parameter m; and $A_n = B_n = 0$, by equations (51) and (46), where K(m) = $1/m^2$.

5. Then we chose an Airy's function given by

 $\phi(\mathbf{r}, z) = \int_0^\infty \phi(\mathbf{r}, z, m) dm$,

where $\phi(r, z, m)$ is the function chosen in Step 1.

6. Sections VIB and VIC tell us that the Airy's function $\phi(\mathbf{r}, \mathbf{z})$ solves Problem A.

7. The stresses and displacements defined by the function $\phi(\mathbf{r}, \mathbf{z})$ are:

$$\overline{\sigma}_{z}^{1} = a \int_{0}^{\infty} J_{1}(ma) \sigma_{z}^{1} dm , \qquad (59)$$

$$\overline{\sigma_r}^1 = a \int_0^\infty J_1(ma) \sigma_r^1 dm , \qquad (60)$$

$$\overline{\sigma}_{\Theta}^{i} = a \int_{0}^{\infty} J_{1}(ma) \sigma_{\Theta}^{i} dm , \qquad (61)$$

$$\bar{\tau}_{rz}^{1} = a \int_{0}^{n} J_{1}(ma) \tau_{rz}^{1} dm ,$$
 (62)

$$\overline{u}^{1} = a \int_{0}^{\infty} \overline{J}_{1}(\pi a) u^{1} d\pi , \qquad (63)$$

arid

³¹-12-

$$\overline{w}^{i} = a \int_{0}^{\infty} J_{1}(ma) w^{i} dm, \quad (i = 1, 2, ..., n) . \quad (54)$$

. 4

 σ_z^1 , σ_r^1 , σ_z^1 , τ_{rz}^1 , u^1 , and w^1 are given by equations (25) through (30). The constants being determined as in Step 4. This finally solves Problem A.

.

•

and the second second second second

32

•
VII. Bibliography

- 1. A. Jones, "Tables of Stresses in Three-Layered Flastic Systems," Highway Research Doard, Bull. 342 (1902).
- M. R. Mehta and A. S. Veletsos, "Stresses and Displacements in Layered Systems," Civil Engineering Studies, Structural Research Series, No. 178. University of Illinois (1959).

- 5. D. M. Burmister, "The General Theory of Stresses and Displacements in Layered Systems," J. Appl. Phys. Vol. 16 (1945).
- 4. S. Timoshenko, "Theory of Elasticity," McGraw-Hill, New York (1934).
- 5. A. E. H. Love, "A Treatise on the Mathematical Theory of Elasticity," Dover, New York (1944).
- 6. I. N. Sneddon, "Fourier Transforms," McGraw-Hill, New York (1951).

:db,ic

-14-

Chevron Research Company

A Standard Oil Company of California Subsidiary 576 Standard Avenue, Richmond, CA 94802

A. L. Grossberg Vice-President

May 9, 1980

Chevron N-Layer Computer Program - Improved Accuracy

Mr. Herbert F. Southgate Chief Research Engineer Kentucky Department of Transfortation 533 South Timestone Levington, KY 40508

Dear Mr. Southgate:

Attached is a report by Mr. L. J. Painter of our staff describing a new subroutine COFE for the Chevron N-Layer Elastic System computer program. This new routine, which completely replaces the two earlier routines, COE5 and CO15, makes accurate calculations of all stress, strain, and deflection parameters for any number of layers, up to the maximum program dimension of 15 layers.

Additionally, the new subroutine will provide computer run time savings of as much as 45%.

If you have previously received a FORTRAN source deck of the program from us, you will be sent a source deck for the new subroutine.

34

Very truly yours,

2 J Gossberg

Encl. - Report, above subject and date

CHEVRON RESEARCH COMPANY RICHMOND, CALIFORNIA

MAY 11, 1980

CHEVRON N-LAYER COMPUTER PROGRAM -IMPROVED ACCURACY

Author - L. J. Painter

Summary

This report describes a new subroutine COFE to replace the two subroutines COE5 and CO15. The new routine eliminates the serious numerical errors in CO15 (used for more than 5 layers) which have hampered the use of the program in research on asphalt pavement systems. The results using the new subroutine are every bit as accurate as those obtained from the older subroutine COE5 used for 5 or fewer layers, which is excellent. A listing of the new subroutine is attached.

To use the new routine, it is only necessary to remove the original routines COE5 and CO15, replacing them by the single new routine COFE. COFE has two entry points, COE5 and CO15, so that no change is necessary in the calling (MAIN) program.

A further benefit of the new routine is that typical execution times will be reduced as much as 45%.

Background

The original version of the Chevron n-layer program as developed in 1963 was limited to 5 or fewer layers. An ingenious method of scaling the calculations was used to avoid overflows (generation of numbers larger than can be handled by the computer). This required, however, separate sections of computer code in subroutine COEE for each possible layer. [Subroutine CØEE computed the coefficient matrices A(I,K), B(I,K), C(I,K), and D(I,K) for the K-th layer at the I-th level of the variable of integration AZ(I).]

In 1967 when the program was expanded to handle up to 15 layers, it was found impractical to continue this programming scheme. Hence, a separate and much simpler subroutine CO15 was written to handle the general n-layer case. Unfortunately, numerical difficulties arose because numbers in excess of $e^{174.67}$ were generated in the calculation of the intermediate product matrices PM, leading to overflow. The power of e as used in parts of the calculations is 2*AZ(I)*H(N); AZ

Encl. - Table I Program Listing

could be as high as π * 23/radius of the loaded area and H(N) is the depth of the lowest interface between layers (in some research problems, as much as 300 inches). With a load radius of about 10 inches, this could give exponents of $2*\pi*23*300/10 = 4335$, far in excess of the (IBM) computer capacity when exponentiated.

Several reviews of the computer algorithm in CO15 were unsuccessful in solving the problem, so a simple check was made on the magnitude of the offending value and if it approached the critical level, further calculation was halted and the remaining A, B, C, and D values were set equal to zero; hopefully they would have been small anyway. This truncation of the series to be integrated gave rise to numerical errors which were at least annoying for pavement structures of moderate maximum depth. But for deep structures, such as in studies of the effect of subsoil elastic properties changing with depth, the errors could be disastrous.

The original 5-layer routine (renamed COE5) was kept to preserve accuracy for systems of 5 or fewer layers, with CO15 being used only for more than 5 layers.

Solution of Problem

The calculation of the product matrices PM has been reorganized so as to include the scaling by $e^{-AZ[H(N)+H(K)]}$ from the very start. This led to a simplification of the exponential multipliers required. After initialization of PM(N,M,J), M = 1,4 and J = 3,4, we obtain:

for M = 1 or 2,

 $PM(K,M,J) = T1*e^{\circ} + T3*e^{-2P*H(K)}$

for M = 3 or 4,

 $PM(K,M,J) = T1*e^{2P*H(K)} + T3*e^{\circ}$.

with T'I = X(K,M,1)*PM(K+1, 1,J) + X(K,M,2)*PM(K+1, 2,J),

T3 = X(K,M,3)*PM(K+1, 3,J)+ X(K,M,4)*PM(K+1, 4,J),

and P = AZ(I).

Detailed study of the course of the calculations has shown that by the time e $^{\rm 2P \, {}^{\star} \rm H \, K}$ becomes unmanageable, Tl has been driven to zero.

Judicious checking of the magnitude of the exponent makes it possible to keep the calculations under control at all times.

- }-

As a result, it is possible to substitute the new routine COFE for the two older routines COE5 and CO15. Use of entry points COE5 and CO15 in COFE obviates the need for modifications to the MAIN (calling) program.

Timing

Computer runs on a 5-layer problem using the new COFE and the old COE5 routines show a 45% reduction in CPU time (1.15 seconds versus 2.08 seconds). No meaningful comparisons can be made with CO15 because that routine was effectively short-circuited as soon as potential overflow occurred.

Verification of Accuracy

A check on the accuracy has been made between a 4-layer solution (known to be accurate) and a 6-layer problem artificially constructed by splitting one layer into three with identical elastic properties.

Basic problem parameters were: 30,000 lb load, 105 psi tire pressure.

Layer, i	Ei	ni	Thickness, In.
1	150,000	0.35	3
2	17,800	0.40	35
3	6,000	0.40	300
4	555,555	0.40	Semi-infinite

The 6-layer problem split layer 3 above into 3 layers of 100-inches thickness each. The calculated values of several stresses and strains are compared in Table I. In general, the new COFE routine agrees with the 4-layer solution to about 5 significant digits, compared to discrepancies by a factor of almost 2 for the old program at the surface.

References

1. Analysis of Stresses and Displacements in an N-Layered Elastic System under a Load Uniformly Distributed on a Circular Area, by J. Michelow, September 24, 1963.

2. Numerical Computation of Stresses and Strains in a Multiple-Layered Asphalt Pavement System, by H. Warren and W. L. Dieckman, September 24, 1963.

-11-

:lar

COMPARISONS OF NEW AND OLD CALCULATIONS IN LAYERED ELASTIC SYSTEMS

R	Z	COE5	COFE	C015
0	0	-105.00	-105.00	-63.29
0	3	-96.72	-96.72	-57.19
0	38	-5.63	-5.63	-5.19
19	0	0.47	0.47	-7.33
19	3	-0.82	-0.82	-8.27
19	38	-3.71	-3.71	-3.73

Vertical Stress Values 6-Layer

Tangential Strain

R	Z	COE5	COFE	C015
0	0	-968.85	-968.83	-491.14
0	3	794.50	794.47	331.02
0	38	408.44	408.44	402.34
19	0	-201.35	-201.35	-252.48
19	3	67.69	67.68	120.22
19	38	314.83	314.84	314.99

Vertical Deflection

R	Z	COE5	COFE	- CO15
000	0 3 38	0.1013 0.1003 0.0425	0.1013 0.1003 0.0425	0.0846 0.0841 0.0424
19 19 19	0 3 38	0.0408 0.0410 0.0335	0.0408 0.0410 0.0335	0.0443 0.0444 0.0335

39

CHEVRON RESEARCH COMPANY PROCESS ENGINEERING DEPARTMENT COMPUTER AND SYSTEMS DIVISION LJP(W)

5-7-80

	COFE STANDARI	FCRTRAN P D CIL COMPAN	ID=361V Y of Califor	10.06.30 NIA	FRIDAY 2	MAY 1980 Socl		PAGE 1
	St C C C C C C	LEROUTINE CO USE FOR AL EPROGRANMED NOTE DOUBLE ******SUBRO	FE(KIN) L PROBLEMS, L MAY 19:00 B ENTRIES FOR UTINE COEE -	UP TO MAX Y L J PAIN CCES & CO N-LATER E	DIMENSION TER - EXCE 15 PREVICU LASTIC SYS	OF 15 LAYE LLENT ACCU SLY USED TEM ******	RS RACY	COF00010 COF00020 COF00030 CCF00040 CDF00050 COF00050
	C(1 2 3 4 5 6 7 8 9 & B C D	Chiton /RhC	DY/RR(99), H(14), D(395,15) TEST(11), PN(14,4,4) N, RCM, CS2, NLINE, K, FA, T1, T6, BJ0,	ZZ(97), AZ(396), ,AJ(396), BZ(100), ,R, L, EXU, CTR, NOUTP, LC, P, T2, T4P, 77.	E(15), A(396,15) RJ1(396), X(15,4,4) Z, ITM, SF, COM, MTEST, UT, EP, T3, TCM, C71,	V(15), ,8(396,15) RJ0(396), ,SC(14), AR, RGZ, CGZ, CGZ, CGZ, CGZ, TIP, T4, WA, S72.	HN(14), (C(395,15)) TITLE(20), FN(4), N3, RSR, CST, PSI, IT:(4, PR, TIN, T5, BJ1, SC1.	CCF00070 CCF00000 CCF00000 CCF00100 CCF00120 CCF00120 CCF00120 CCF00150 CCF00150 CCF00150 CCF00170 CCF00170 CCF00170
• .	E F		SG2, VX4,	27, 7X, VKF4,	- 2219 - PH2, - VKK 8 ,	VK2, RDT,	VKP2, RDS	COF00210 COF00210
	RE E1 E1	AL#4 Q(2,2) HTRY CGE5(K1 HTRY CO15(K1 LC = KIN	00 01)			· .		COF00230 COF00240 CCF00250 CCF00250
-	C5-XX C CC 1 P3	SET UF SEPUTE THE HA 10 S=1.14	P MATRIX X =(Atrices X(K)	DINIINKINK	411×D			CCF00270 CCF002-00 CCF002-90
		==:(K)=(1.0+) ==:(1)=1.0 ==:(1) ==:(1) ==:0=V(K) =::0=V(K) =::0=V(K) =::0=:V(K) =::0=:0=V(K) =:0=:0=V(K)	/(K+1))/(E(K .)	+1)¤(1.0+\)	(K)))			C0700300 C0700310 C0700310 C0700320 C0700320 C0700320 C0700320 C0700320 C0700320
l	C X(X(K,1,1)=VK4-3 K,2,1)=2K4-3	5.0-T1	- ,				CDF00309 CDF00399 CDF00400 CDF00400
	×(K,3,1)=T1/:*(K,4,1)=-2.0*	гн2-V:(4+1.0) T1Мүр				1	CGF00420 CGF00420 CGF00420
	T3 74 T5 T6	=PH2+(VK2-1. =VKK2+1.0-3. =FK2+(VKP2-1 =VKK0+1.0-3.	0) 0%VKP2 .0) 0%VK2	•		·		CONCLAD COTCO450 COTCO450 CCT00470 CCT00470
(2 X() X()	K,1,2)=(T3+T K,2,2)=T1%(Y K,4,2)=T1N*(4-T1*(T5+T6) K24-3.0)-1.0 1.0-242-V274)/?		• • •		ICF03490 ICF03500 ICF03510 ICF03510
. (: 		6_714(75_74)	1/2			1	10200520 102015-0
Ċ	20	,2,~,/=(12-1	4-11-(15-(6)],' t ⁴		·		16760350 16760350

.

40

·· ·· ·-- ·

.

10	T3=FN2¥FN-VKK8+1.0 T4=FN2X(VK2+VKP2) X(K,1.4)=(T3+T4+VKP2-T1*(T3+T4+VK2))/P X(K,3.2)= (-T3+T4-VKP2+T1*(T3-T4+V.(2))/P X(K,1.3)=T1N*(1.0-PH2-VK4) X(K,2.3)=2.0*T1M*P X(K,2.3)=2.0*T1M*P X(K,3.3)=VK4-3.0-T1 X(K,4.3)=0.0 X(K,2.4)=T1N*(FH2+VKP4+1.0) X(K,4.4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T (M-0) 17.111	
10	T4=FN2%(VK2-VKP2) X(K,1,4)=(T3+T4+VKP2-T1*(T3+T4+VK2))/P X(K,3,2)= (-T3+T4-VKP2+T1*(T3-T4+V.(2))/P X(K,1,3)=T1N*(1.0-PH2-VX4) X(K,2,3)=2.0*T1M*P X(K,2,3)=2.0*T1M*P X(K,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1N*(FH2-VXP4+1.0) X(K,4,4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T= (H-0) 17.111	COF(COF(COF(COF(COF(COF(COF(COF(
10	<pre>X(K,1,4)=(T3+T4+VKP2-T1*(T3+T4+VK2))/P X(K,3,2)= (-T3+T4-VKP2+T1*(T3-T4+VK2))/P X(K,1,3)=T1M*(1.0-PH2-VK4) X(K,2,3)=2.0*T1M*P X(K,2,3)=2.0*T1M*P X(K,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1N*(FH2-VKP4+1.0) X(K,4,4)=T1*(FH2-VKP4+1.0) X(K,4,4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(H)=4.0*(V(N)-1.0) T= (H-0) 17 11 11</pre>	
10	<pre>X(K,1,4)=(T3+T4+VKP2-T1*(T3+T4+VK2))/P X(K,3,2)= (-T3+T4-VKP2+T1*(T3-T4+VK2))/P X(K,1,3)=T1M*(1.0-PH2-VK4) X(K,2,3)=2.0*T1M*P X(K,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1M*(FH2-VKP4+1.0) X(K,4,4)=T1*(FH2-VKP4+1.0) X(K,4,4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T= (H-0) 17 11 11</pre>	
10	<pre>X(K, 3, 2)= (-T3+T4-VKP2+T1*(T3-T4+V.(2))/P X(K, 1, 3)=T1M*(1.0-PH2-VK4) X(K, 2, 3)=2.0*T1M*P X(K, 3, 3)=VK4-3.0-T1 X(K, 4, 3)=0.0 X(K, 2, 4)=T1M*(FH2-VKP4+1.0) X(K, 4, 4)=T1M*(FH2-VKP4+1.0) X(K, 4, 4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE COMPUTE THE PRODUCT MATRICES FM CO(H)=4.0*(V(N)-1.0) I= (H-0) 17 11 11</pre>	
10	<pre>X(K,1,3)=T1M*(1.0-PH2-VX4) X(K,2,3)=2.0*T1M*P X(X,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1M*(PH2-VXP4+1.0) X(K,4,4)=T1*(VKP4-3.0)-1.0 K = X CONTINUE CCMFUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T (M-0) 17 11 11</pre>	
10	<pre>X(K,1,3)=T1N*(1.0-PH2-VX4) X(K,2,3)=2.0*T1M*P X(X,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1M*(PH2-VXP4+1.0) X(K,4,4)=T1*(VKP4-3.0)-1.0 K = X CONTINUE CCMFUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) IF (M-0) 17 11 11</pre>	
10	X(K,2,3)=2.0*T1M*P X(K,3,3)=VK4-3.0-T1 X(K,4,3)=0.0 X(K,2,4)=T1M*(FH2-VKF4+1.0) X(K,4,4)=T1*(VKF4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T (M-0) 17 11 11	
10	X(X,5,3)=VK4-3.0-T1 X(X,4,3)=0.0 X(K,2,4)=T1N#(FH2-VXF4+1.0) X(X,4,4)=T1*(VKP4-3.0)-1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T= (H-0) 17 11 11	
10	X(K,4,3)=0.0 X(K,2,4)=T1N#(FH2-VXF4+1.0) X(K,4,4)=T1*(VKF4-3.0)=1.0 K = K CONTINUE CC:FUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)=1.0) T= (H=0) 17 11 11	
10	X(X,2,4)=T1N#(FH2-VXF4+1.0) X(X,4,4)=T1*(VKF4-3.0)=1.0 K = K CONTINUE CC:FUTE THE FREDUCT MATRICES FM SC(N)=4.0%(V(N)=1.0) T= (H=0) 17 11 11	COFC COFC COFC
10	X(K,2,4)=T1N#(FH2-VKF4+1.0) X(K,4,4)=T1#(VKF4-3.0)-1.0 K = K CONTINUE CONTINUE CONFUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)-1.0) T= (M-0) 17 11 11	COFC
10	X((x)2)+)-1100(FN2-(x)2+1.0) X((x,4,4)=71+(VKP4-3.0)-1.0 K = K CONTINUE CONFUTE THE FRODUCT MATRICES FM SC(N)=4.0*(V(N)-1.0) T= (N=0) 12 11 11	COFO
10	K(()4)4)-(1+(VKP4-3.3)-110 K = K CONTINUE CONFUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)-1.0) TE (M=0) 17 11 11	CORD
10	K = K CONTINUE COMPUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)-1.0) TE (M=0) 17 11 11	C 1 1 4 / 1
10	CONTINUE CONFUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)-1.0) TE (M-0) IT (N)-1.0	0070
	CC:PUTE THE FRODUCT MATRICES FM SC(N)=4.0%(V(N)=1.0) TE (M=0) AT 11.11	COFO
	SC(N)=4.0%(V(N)=1.0)	CCFC
	TE (H_0) 17 11 11	C070
	TL (N-C) T3)T11T	COPO
11	00 12 K1=2,8	COTO
	11=113-1/12	C07:0
	SC())=SC()+1)+4.0*(V())-1.0)	0070
12	CENTINUT	0070
13		CORD
~ ~ ~		0010
		0010
		0010
		60.0
	eq erec. anth	6070
	IF (CC-172.) 15,15,16	C070
15	CCNTINUE	C131 0
	Q(1,2)=EXP(-Q3)	CCFC
	C(2,1) IS NOT NEEDED FOR INITIALIZING THE FM MATRIX	0070
16	CCHTINE	C070
	20 LCOP INITIALIZES FM(N,,)	0076
	CO 20 (1=1,4	COFC
	$L_{1}=(1)+1/2$	COFC
	50 20 J=3.4	TCD 0
	$\Sigma_{i}(N,M,J) = X(N,M,J) \neq O(1U,2)$	noza
~~		0010
-5		00.0
	10 LV (VITE)11	COTA
	freetright = Free 1 17 = 17 ± 17	0000
		6000
		Cur 0
	IF (C(+1/2.) 22,22,23	COPO
22	CONTINUE	CCHO
	((2,1)=5)(?(0?)	COEO
	C(1,2)=1./Q(2,1)	COPO.
	CO TO 24	0.000
23	CONTINUE	COFO
	Q(1,2)=0.	COFC
	C(2,1)=1.E20	0070
24	CONTRACT	0000
<u>س</u>	CO (5);=1.4	0000
		COTO
		00.0
		U

.....

•

41

COFE	FERTRAN P ID=361V 10.06.30 FRIDAY 2 MAY 1900	PAGE 3
	PH(K,H,J)=(X(K,H,1) * FM(KK,1,J)	CCF01110
	2 +X(K,H,2) * PM(KK,2,J)) * $Q(LL,1)$	CC701120
	3 + (X(K,M,3) * PU(KK,3,J))	CCF01130
	4 +X(K,M,4) * $Fill(KK,4,J)$) * $q(LL,2)$	COF01140
25	CONTINUE	CCF01150
_ 26	CONTINUE	COF01160
C	SOLVE FOR C(HS) AND D(HS)	CCF01170
		COF01180
-	T3=2.0*V(1)	CC701190
	74 =T3-1.0	CCF01260
	FN(1) = P*(FN(1,1,3) + FN(1,3,3)) + T3*(FN(1,2,3) - FN(1,4,3))	CGF01210
	$F(\{2\}) = P(\{P(\{1,1,3\}) - F(\{1,3,3\})\} + T(\{P(\{1,2,3\}) + F(\{1,4,3\})\})$	CCF01220
	F((3) = F*(F(1,1,4) + F((1,5,4)) + T3)(F((1,2,4) + F((1,4,4)))	COF01230
	F((4) = F(F((1,1,4) - F((1,3,4)) + 14 + (F((1,2,4) + F((1,4,4)))))	CGF01240
	DFAC=3C(1)/((FR(1)*FR(4)-FM(3)*FM(2))*F%P)	CCF01230
	A(LC, RS) = 0.0	CCF012:50
	E(LC, K3) = 0.0	CC7 01270
	C(LC)NS) = -FM(S)RDFAC	CG7012S0
	$D(LC_1NS) = FN(1) \times OFAC$	CCF01290
C	EACKSOLVE FOR THE OTHER A, B, C.D	COF01300
		C0701310
	A(LC,K1)=(FW(K1,1,3)*C(LC,NS)+FW(K1,1,4)*D(LC,NS))/SC(K1)	COF/01310
	B(LC,K1)=(FM(K1,2,3),CELC,N3)+FM(K1,2,4)*D(LC,N3))/SC(K1)	CCF01330
	C(LC,K1) = (Fii(K1,3,3) + C(LC,H3) + Fii(H1,3,4) + O(LC,H3))/SC(Fi1)	CC7013+0
91	5(LC,K1)=(P)(K1,4,3)*C(LC,N3)+FN(K2,4,4)*D(LC,NS))/SC(K1)	COF01330
100	CONTINUE	COF01360
	RETURN	ECF01370
	END	CCF01380
****	슻녻놂븮븮븮슻븮놂슻쭕똜똜똜똜똜똜놂븮븮븮븮븮탒닅놰닅놰닅갼븜븮댢갼놂슻븮 닅놂슻놂놂슻똜놂슻놂슻놂슻슻슻깇깇슻긷깇	*******

-,

-

the second se

.

.....

. .

APPENDIX B

.

_

0000

. •

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

9

100

KENTUCKY VERSION OF CHEVRON N-LAYER COMPUTER PROGRAM

-

FILE: CHEVMODB PGM Al University of Kentucky Computing Center ,LIST,T=6000 C\$JOB MODIFIED CHEVRON N-LAYERED PROGRAM AS OF 3/17/87 MODIFIED BY H. F. SOUTHGATE THIS VERSION USES COEF IN PLACE OF COE5 AND CO15 THIS VERSION HAS 3 OPTIONS ONLY. C191MN 1 DFS(7,99) COMMON/JESSE2/REPB(2),REPS(2),STWB(2),STWS(2) COMMON/JESSE2/REPB(2), REPS(2), STWB(2), STWB(2) COMMON/JESSE3/AJX, AJY COMMON/RDA/NS, IZ, E(15), V(15), HH(15), ZZ(99), N, TITLE(20), LLLL(99) COMMON/RD0/OPTN COMMON/RD1/PSI,WGT, RR(99), IR COMMON/RD2/IB2, IB3, IA, IRA, AJXX(99), AJYY(99) COMMON/RD3/RX(99), RY(99), BPSI(99), BWGT(99), JRUN, KST COMMON/RD4/IEQB, IEQS, JZLB, JZLS, JAI, BINCLD, KAI COMMON/JESSE5/JA INTEGER OPTN OUTPUT COMMON/JESSE5/JA INTEGER OPTN.OUTPUT DIMENSION IE(15) DATA ASTER, PERD/4H****, 4H...,/ COMMON STATEMENTS 'RDA', 'RDO', 'RD1', 'RD2', 'RD3', AND 'RD4' ARE USED IN SUBROUTINES 'READ1', 'READ2', 'READ3', 'READ4', AN 'READ5'. SUBROUTINE' READ5' ALSO REQUIRES COMMON STATEMENTS 'HERB2', 'JESSE2', AND 'JESSE3' FOR ADDITIONAL ARGUMENTS. COMMON STATEMENTS 'DON', 'GARY', 'HERB1', 'HERB2', 'HERB3', 'HERB4', 'HERB5', 'JESSE1', 'JESSE2', 'JESSE3', 'RDA', 'RDO', 'RD1', RD2', RD3', AND 'RD4' CONTAIN ARGUMENTS USED IN 'WRITE' STATEMENTS. AND STATEMENTS COMMON STATEMENT 'COMAIN' CONTAINS ARGUMENTS USED IN MAIN AND SUBROUTINES COES AND CO15. COMMON STATEMENT 'CALCO' CONTAINS ARGUMENTS USED IN SUBROUTINES CALCIN, COES, AND CO15. COMMON STATEMENT 'CALMAN' CONTAINS ARGUMENTS USED IN MAIN AND

Ĉ

SUBROUTINE CALCIN. COMMON STATEMENT 'CALPRN' CONTAINS ARGUMENTS USED IN SUBROUTINES CALCIN AND PRN7. COMMON STATEMENT 'CAPP7M' CONTAINS ARGUMENTS USED IN MAIN AND SUBROUTINES CALCIN, PART, AND PRN7. COMMON STATEMENT 'CAMAPA' CONTAINS ARGUMENTS USED IN MAIN AND SUBROUTINES CALCIN AND PART. SUBROUTINES CALCIN' CALCULATES STRESSES 'CSZ' ETC. AND STRAINS 'CRZ' ETC. AT DEPTH 'IZT' AND DESIRED ANSWER LOCATION 'AJX,AJY' DUE TO INDIVIDUAL LOAD 'BWGT' LOCATED AT IT'S 'RX,RY'. COMMON/RDA/...' CONTAINS INPUT VARIABLES USED IN ALL OPTIONS. 'COMMON/RD1/...' CONTAINS INPUT VARIABLES USED WHEN OPTN = 1. 'COMMON/RD2/...' CONTAINS INPUT VARIABLES USED WHEN OPTN=2-7. 'COMMON/RD3/...' CONTAINS INPUT VARIABLES USED WHEN OPTN=2-7. AJX=X COORDINATE OF POSITION OF DESIRED ANSWERS--INPUT ARGUMENT AJXX AJXX. AJY=Y COORDINATE OF POSITION OF DESIRED ANSWERS--INPUT ARGUMENT AJYY. AR=CALCULATED RADIUS OF LOADED AREA. ASTEN=SQUARE ROOT OF THE QUANTITY STENDN/(1/2 MODULUS) OF THAT LAYER AND CALLED 'WORK STRAIN'. BPSI = APPLIED PRESSURE UNDER LOAD 'BWGT' WHEN OPTN = 2. BWGT(JA)= GIVES THE OPTION OF DIFFERENT TIRE LOADS WITHIN THE LOAD GROUP FOR OPTN = 2. CRZZ(IZT)=SUPERPOSITIONED STRAIN(ZZ) AT DEPTH IZT ETC. FOR OTHER COMPONENTS CSZZ(IZT)=SUPERPOSITIONED STRESS(ZZ) AT DEPTH IZT ETC. FOR OTHER COMPONENTS ETC. FOR OTHER COMPONENTS E(I)=YOUNG'S MODULUS OF ELASTICITY FOR ITH LAYER. HH(I)=THICKNESS OF ITH LAYER IA= NO. OF POSITIONS FOR WHICH THE SUPERPOSITIONED STRESSES AND IA= NO. OF POSITIONS FOR WHICH THE SUPERPOSITIONED STRESSES AND STRAINS ARE DESIRED. IR=NUMBER OF HORIZONTAL RADII FOR WHICH ANALYSES ARE DESIRED. IRA= NUMBER OF LOADS (BWGT) WITHIN LOAD GROUP FOR OPTN = 2 & 3. 'RX' AND 'RY' = 'X' & 'Y' COORDINATES OF INDIVIDUAL LOADS WITHIN A IRA= NUMBER OF LOADS (BWGT) WITHIN LOAD GROUP FOR OPTN = 2 & 3. 'RX' AND 'RY' = 'X' & 'Y' COORDINATES OF INDIVIDUAL LOADS WITHIN A LOAD GROUP AND USED WHEN OPTN>1. IZ=NUMBER OF VERTICAL POINTS FOR WHICH ANALYSES ARE DESIRED IZI=COUNTER USED TO DETERMINE THE LAYER NO. AT THE INTERFACE BETWEEN LAYERS. IZT=COUNTER USED TO DETERMINE I'TH LAYER. JA = COUNTER OF POINTS FOR WHICH ANSWERS ARE DESIRED, 1 TO IA. MAXSTR= MAXIMUM TENSILE STRAIN N = NUMBER OF LAYERS ABOVE THE BOTTOM LAYER -- SUBGRADE. NS=NUMBER OF LAYERS OPTN= CODE NUMBER TO TELL CHEVRON WHICH TYPE OF ANALYSES IS WANTED OPTN=1 IS ORIGINAL CHEVRON N-LAYER PROGRAM WITHOUT MODIFICATIONS OPTN=2 IS OUTPUT USING SUPER-POSITIONING PRINCIPLES. OPTN=3 IS ANALYSES OF SIMULATED DYNAMIC LOADING (ROAD RATER, ETC.) OUTPUT = 0 ; OUTPUT IS TO BE PRINTED ONLY. OUTPUT = 1 ; OUTPUT IS PRINTED AND ALSO SENT TO DEVICE 8 (SPECIFIED BY JCL, IE. TAPE, OS DISK, OR TERMINAL) OUTPUT = 2 ; OUTPUT IS SENT TO DEVICE 8 ONLY PSI= APPLIED UNIT PRESSURE UNDER THE LOAD. R=HORIZONTAL RADIUS FROM CENTER OF APPLIED LOAD RR(I)=RADIAL DISTANCE FOR ITH RADIUS. RR(I)=RADIAL DISTANCE FOR ITH RADIUS.

00000000

С Ĉ Ĉ

C C C C

С Č Ĉ č

FILE: CHEVMODB PGM

Al University of Kentucky Computing Center

FILE: CHEVMODB PGM A1 University of Kentucky Computing Center STENDN= THE STRAIN ENERGY DENSITY CAUSED BY ALL THE LOADS WITHIN THE "LOAD GROUP" AND AT THE PARTICULAR DEPTH "Z". THETA=ANGLE IN R-V PLANE MEASURED FROM R AXIS; POSITIVE IS CLOCKWISE FROM R AXIS. TR(I)= CALCULATED RADIUS FROM CENTER OF LOAD TO DESIRED ANSWER PT. V(I)=POISSON'S RATIO FOR 2TH LAYER. WGT=APPLIED LOAD, POUNDS WKSTRS = 'WORK STRAIN' MULTIPLIED BY MODULUS OF LAYER AND CALLED 'WORK STRESS'. WASTRS = WORK STRAIN MULTIPLIED BY MUDULUS OF LAYER AND CALLED 'WORK STRESS' Z=VERTICAL DEPTH FROM SURFACE AT WHICH ANALYSIS IS DESIRED. TYPICAL POINTS ARE SURFACE, INTERFACES OF LAYERS, AND DOWN INTO SUBGRADE. ZZ(I)=VERTICAL DEPTHS AT WHICH ANALYSES ARE DESIRED. ** COMPUTE ZEROS OF J1(X) AND J0(X). SET UP GAUSS CONSTANTS ** C ** COMPUTE BZ(1)=0.0 BZ(2)=1.0 BZ(3)=2.4048 BZ(4)=3.8317 BZ(5)=5.5201 BZ(6)=7.0156 D0 1395 I=7,100 BZ(I)=0. 1395 CONTINUE TIN-46 ITN=46 ITN4=184 ITN4=184K = ITN+1D0 2 I=7,K,2T = I/2TD = 4.0*T - 1.0BZ(I) = 3.1415927*(T - 0.25+0.050661/TD-0.053041/TD**3 + 0.262051/TD**5)D0 3 I=8,ITN,2T = (I-2)/22 1 UU 3 1=8,ITN,2 T = (I-2)/2 TD = 4.0*T + 1.0 3 BZ(I) = 3.1415927*(T + 0.25-0.151982/TD 1 + 0.015399/TD**3-0.245270/TD**5) K* END ROUTINE SETTING GAUSS CONSTANTS. **** READ IN THE VALUE FOR OPTION AND THE NUMBER OF LOAD GROUPS. READ(11,315) OPTN,OUTPUT .5 FORMAT(2I5) KAI=1 С *** Č 315 KAI=1 JA=1 NPAGE=1 CONTINUE IF(OPTN.EQ.1) CALL READ1(IEND) IF(OPTN.GE.2) CALL READ2(IEND) IF(IEND.EQ.1) GO TO 9999 10 MSÈNS IF(OPTN.EQ.1) GO TO 2001 SUBROUTINES INIT1 & INIT2 INITIALIZE COMPUTATIONAL VARIBLES TO 0. С CALL INIT1 12 CONTINUE 2007 CALL INIT2 2008 CONTINUE

sin and

46

. - -

FILE: CHEVMODB PGM Al University of Kentucky Computing Center CALCULATE RADIUS AND ANGLE FROM X-AXIS AJX=AJXX(JA) AJY=AJYY(JA) С IR=IRA CALCULATE RADIAL DISTANCE FROM LOCATION OF DESIRED ANSWER TO EACH LOAD IN THE LOAD GROUP. DO 2003 I=1,IR С C UU 2003 I=1,IR RR(I)=SQRT((RX(I)-AJX)**2 +(RY(I)-AJY)**2) IF(RR(I).EQ.0.) GO TO 625 COSTH=(RX(I)-AJX)/RR(I) GO TO 626 625 COSTH=0. 626 THETA(I)=ARCOS(COSTH) 2003 CONTINUE TR(JA)=RR(1) TR(JA)=RR(1) *** END CALCULATION OF RADIUS AND ANGLE FROM X-AXIS. 2001 CONTINUE С **** DO 372 I=1,NS E [] =E [] IH [] = IE [] -IE [] /1000*1000+1000 IM [] = IE [] /1000000 IT [] = IE [] /1000-IM [] *1000+1000 CONTINUE 372 CONTÍNUE IF(0PTN.GE.2) GO TO 374 IF(OPIN.GE.2) GU IU 374 NPAGE = 1 IF(OPTN.EQ.1) CALL PRN1 SUBROUTINE PRN1 PRINTS TITLE AND COLUMN HEADINGS FOR OPTN=1, I.E. THE ORIGINAL CHEVRON N-LAYER PROGRAM. CONTROL OF OUTPUT OCCURS IN SUBROUTINES CALCIN AND PRN7. SUBROUTINE PRN2 PRINTS HEADINGS AND PROBLEM INPUT DATA OPTN=2. ** ADJUST LAYER DEPTHS ** 374 H(1)=HH(1) 0000 С 374 H(1) = HH(1)IRT=0 IF(N.LE.1) GO TO 100 DO 25 I=2,N H(I)=H(I-1)+HH(I) START ON A NEW R ** 25 ** С IRT=IRT+1 100 ÎF(OPTN.ĜE.2) GO TO 50 IF(OPTN.EQ.1) WRITE(6,128) IF(OPTN.EQ.1) WKIIE(0,120) 128 FORMAT(/) *** IF IRT-IR>1., THE CONTROL OF THE PROGRAM WILL TAKE ONE OF TWO MAJOR ROUTES. IF OPTN = 1, THE PROGRAM IS ROUTED TO READ A NEW PROBLEM. IF OPTN >= 2, THE STRESSES AND STRAINS OBTAINED IN THE SUBROUTINE "SUPER" (THE ACCUMULATED VALUES BY SUPER-POSITION PRINCIPLES) ARE PRINTED. IF (IRT-IR) 105,105,1010 50 IF(IRT.GT.IRA) GO TO 1010 105 R=RR(TRT) 00000 IF (IRT.GT.IRA) GO TO 1010 R=RR(IRT) IF (OPTN.GE.2) WGT=BWGT(IRT) IF (OPTN.GE.2) PSI=BPSI(IRT) AR = SQRT (WGT/(3.14159*PSI)) DO 31 I =1,IZ DO 31 J=1,N TZ = H(J) - ZZ(I)

- -

FILE: CHEVMODB PGM Al University of Kentucky Computing Center ATZ = ABS(TZ) ** NEXT STATEMENT IS CHECKING TO SEE IF "ZZ" IS AT AN INTERFACE. *** IF(ATZ - .0001) 32,32,31 32 ZZ(I) = -H(J) 31 CONTINUE **** С *** NLINE IS A COUNTER FOR PRINTOUT CONTROL. **** NLINE=NLINE+1 ** CALCULATE THE PARTITION ** С С ** CALCULATE THE COEFFICIENTS ** DO 125 I=1,ITN4 P=AZ(I) 107 CONTINUE С 107 CONTINUE CALL COFE(I) 109 IF (R) 115,115,110 110 PR = P*R ***SUBROUTINE "BESSEL" CALCULATES THE "BESSEL FUNCTIONS". *** CALL BESSEL (0,PR,Y) RJ0(I) = Y CALL BESSEL (1,PR,Y) RJ1(I) = Y 115 PA=P*AR CALL BESSEL (1 PA Y) С CALL BESSEL (1, PA, Y) AJ(I)=' 125 CONTÍNUE 195 IZT=0 IZI=0 ** START ON A NEW Z ** 200 IZT=IZT+1 С ĪZI=ĪZI+1 IZI=IZI+1 *** IF IZT-IZ IS GREATER THAN 0., THE LAST "Z" HAS BEEN INVESTIGATED AND THE PROGRAM INCREMENTS TO THE NEXT DESIRED "RADIUS". **** IF(IZT-IZ) 205,205,100 205 Z=ABS (ZZ(IZT)) IF(OPTN.GE.2) GO TO 207 IF (NLINE - 54) 207,206,206 206 NPAGE = NPAGE + 1 NLINE = 8 SUBROUTINE PRN3 PRINTS TITLE FOR PROBLEMS ON SUCCEEDING PAGES OF SAME PROBLEM. CALL PRN3 CALL PRN6 207 CONTINUE С Č c 207 CONTINUE ** FIND THE LAYER CONTAINING Z ** TZZ = 0.0 DO 210 J1=1,N С J=NS-J1 TZ = Z-H(J) IF(TZ+.001) 210,215,215 210 CONTINUE 3 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

.

####SUBROUTINE "CALCIN" CALCULATES THE DEFLECTIONS AND THE NINE COMPONENTS OF STRESS AND STRAIN. IF OPTN = 1. THE OUTPUT STATEMENTS AND CONTROL REMAIN IN "CALCIN". FOR OPTN = 2. THE CONTROL OF THE OUTPUT IS RETURNED TO "MAIN". ##### LLLL(IZI) = TEMPORARY STORAGE LOCATION. LLLL(IZI)=L CALL CALCIN IF(OPTN.EQ.1) CALL PRN7 ZZZ(IZI) = ZZ(IZT) IF (TZZ-.5) 36.36.35 35 ZZ(IZT) = -ZZ(IZT) ZZZ(IZI)=-ZZ(IZT) IZT = IZT-1 36 CONTINUE IF(OPTN.EQ.1) GO RDS=RDS*' PC* С CCCC RDS=RDS*1.0E-06 RDT=RDT*1.0E-06 RDZ=RDZ*1.0E-06 SST=SST*1.0E-06 COM=COM IF(OPTN.LT.3) GO TO 37 IF(IRT.EQ.1.OR.IRT.EQ.3) GO TO 37 40 RDS=-RDS RDT=-RDT RDZ=-RDZ SST=-SST COM=-COM CSR=-CSR CTR=-CTR CSZ=-CSZ CST=-CST CST=-CST 37 CSOM(IZI)=CSOM(IZI)+COM C *** THE PROGRAM NOW CALLS SUBROUTINE "SUPER" TO RESOLVE AND ACCUMU-LATE THE STRESS COMPONENTS BY SUPERPOSITION PRINCIPLES. CALL SUPER(CSR,CTR,CST,CSZ,THETA(IRT),CSXX(IZI),CSXY(IZI), 1 CSXZ(IZI),CSYY(IZI),CSYZ(IZI),CSZZ(IZI)) C *** THE PROGRAM NOW CALLS SUBROUTINE "SUPER" TO RESOLVE AND ACCUMU-LATE THE STRAIN COMPONENTS BY SUPERPOSITION PRINCIPLES. CALL SUPER(RDS,SST,RDT,RDZ,THETA(IRT),CRXX(IZI),CRXY(IZI), 1 CRXZ(IZI),CRYY(IZI),CRYZ(IZI),CRZZ(IZI)) C NOW INVESTIGATE THE NEXT SPECIFIED DEPTH 'ZZ(I)'. GO TO 200 1010 CONTINUE IZI=IZI-1 С C C Ĉ С IZI=IZI-1 IF OPTN = 1, ANALYSIS IS BY ORIGINAL CHEVRON N-LAYER PROGRAM. PROCEED TO READ DATA FOR NEXT PROBLEM. IF(OPTN.EQ.1) GO TO 10 ART PRINTOUT OF SUPERPOSITIONED STRESSES, STRAINS, AND DEFLECTIONS c С STARÌ 599 CONTINUE IF(JA.EQ.1.AND.NPAGE.EQ.1.AND.OUTPUT.LT.2} CALL PRN2 JLINE=8+2*IZI IF(JA.EQ.1) MLINE=8+NS+IRA MLINE=MLINE+JLINE

FILE: CHEVMODB PGM

FILE: CHEVMODB PGM Al University of Kentucky Computing Center IF(MLINE.LE.61) GO TO 598 597 NPAGE=NPAGE+1 MLINE=8+NS+IRA CALL PRN2 SUBROUTINES PRN4 & PRN5 PRINT COLUMN HEADINGS ONLY AND DIFFER ACCORDING TO FORMAT OF OUTPUT DATA. С č 598 CONTINUE C SUBROUTINE 'STRNEN' USES THE LAYER MODULI AND POISSON'S RATIOS C TOGETHER WITH THE COMPONENT STRAINS RESOLVED THROUGH SUPERPOSI-C TION PRINCIPLES IN SUBROUTINE 'SUPER' TO CALCULATE STRAIN C ENERGY DENSITY (ARGUMENT STENDN), 'WORK STRAIN' (ARGUMENT C ASTEN), AND 'WORK STRESS' (ARGUMENT WKSTRS). IF(OUTPUT.EQ.0) GO TO 600 C *** WRITE STATEMENTS USING "UNIT=7" ARE STORING THE OUTPUT IN COMPUTER C *** MEMORY. WRITE STATEMENTS USING "UNIT=6" ARE WRITING THE OUTPUT C *** TO A PRINTER TO OBTAIN A HARD COPY C *** MEMORY. WRITE STATEMENTS USING "UNIT=6" ARE WRITING C *** TO A PRINTER TO OBTAIN A HARD COPY. WRITE(8,7772) 7772 FORMAT(' 0') WRITE[8,7774) (I.E(I).V(I).HH(I).I=1.N) 7774 FORMAT(' 1'.I3.F8.0.F5.3.F6.2) WRITE[8,7773] NS.E(NS).V(NS) 7773 FORMAT(' 1'.I3.F8.0.F5.3.'999.99') WRITE[8,7775] (I.RX(I).RY(I).BWGT(I).BPSI(I).I=1.IRA) 7775 FORMAT(' 2'.I3.2F6.2.F8.2.F6.2) WRITE[8,7776] 7776 FORMAT(' 2'. 0') 600 CALL STRNEN IF(OUTPUT.LT.2) CALL PRN4 DD 601 J=1.IZI IF (OUTPUT.LT.2) CALL PRN4 D0 601 J=1,IZI IF (OUTPUT.LT.2) WRITE(6,586) AJX,AJY,ZZZ(J),CSXX(J), CSXY(J),CSXZ(J),CSYZ(J),CSZZ(J),CSOM(J) 586 FORMAT(1X,F6.2,2X,F6.2,2X,F6.2,E14.6,E15.6,F5.1,E15.6,F5.1,2E15.6) IF (OUTPUT.EQ.0) G0 T0 601 WRITE(8,7770) AJX,AJY,ZZZ(J),CSYX(J), CSXY(J),CSXZ(J),CSYZ(J),CSYZ(J),CSZZ(J),CSOM(J) C7770 FORMAT('3',3F6.2,F6.2,E12.6) 7770 FORMAT('3',F6.2,F6.2,F6.2,E14.6,E15.6,F5.1,E15.6,F5.1,2E15.6) WRITE(8,7771) AJX,AJY,ZZZ(J),CRXX(J), CCXY(J),CRXZ(J),CRXZ(J),CRXZ(J),CRZZ(J),STENDN(J) C7771 FORMAT('4',3F6.2,F6.2,F6.2,E14.6,E15.6,F5.1,E15.6,F5.1,3E15.6) 601 CONTINUE 601 CONTINUE IF (DUTPUT.EQ.2) GO TO 610 CALL PRN5 DO 602 J=1,IZI WRITE(6,587) AJX,AJY,ZZZ(J),CRXX(J), 1 CRXY(J),CRXZ(J),CRYY(J),CRYZ(J),CRZZ(J),STENDN(J),ASTEN(J) 587 FORMAT(1X,F6.2,2X,F6.2,2X,F6.2,E14.6,E15.6,F5.1,E15.6,F5.1,3E15.6) 602 CONTINUE 610 JA=JA+1 TE(TA) FE TA) CO TO 10 IF(JA.LE.IA) GO TO 12 C **** NOW THE PROGRAM CHECKS TO SEE IF THERE IS ANOTHER PROBLEM. *** NPAGE=1 GO TO 10

50

. .

```
FILE: CHEVMODB PGM
                                                                       A1 University of Kentucky Computing Center
   9999 CONTINUE
                  STOP
                  ĔŃĎ
С
č
                  SUBROUTINES ARE ASSEMBLED IN ALPHABETICAL ORDER.
                 SUBROUTINE BESSEL(NI XI,Y)
******SUBROUTINE BESSEL - N-LAYER ELASTIC SYSTEM ******
c
             REAL*8 PZ(6)/1.0D0.-1.125D-4.2.8710938D-7.-2.3449658D-9,
A3.9806841D-11.-1.1536133D-12/, QZ(6)/-5.0D-3.4.6875D-6,
B-2.3255859D-8.2.8307087D-10.-6.3912096D-12.2.3124704D-12/,
CP1(6)/1.0D0.1.875D-4.-3.6914063D-7.2.7713232D-9.
D-4.5114421D-11.1.2750463D-12/, Q1(6)/1.5D-2.-6.5625D-6.
E 2.8423828D-8.-3.2662024D-10.7.1431166D-12.-2.5327056D-13/,
F PI/3.1415927/,D(20)
С
        9 N = NI

X = XI

IF (X-7.0) 10,10,160

10 X2=X/2.0

FAC=-X2*X2

IF (N) 11,11,14

11 C=1.0

Y=C

D0 12 I=1 24
                 DO 13 I=1,34
T=I
         1=1
C=FAC*C/(T*T)
TEST=ABS (C) - 10.0**(-8)
IF (TEST) 17,17,12
12 Y=Y+C
13 CONTINUE
14 C=Y=Y+C
         14 C = X2
                  Y=C
                  DO 16 I=1,34
T=I
     T=I

C=FAC*C/(T*(T+1.0))

TEST=ABS (C) - 10.0**(-8)

IF (TEST) 17.17.15

15 Y=Y+C

16 CONTINUE

17 RETURN

160 IF (N) 161.161.164

161 D0 162 I=1.6

D(I) = PZ(I)

D(I+10) = QZ(I)

162 CONTINUE

GO TO 163
     162 CONTINUE

GO TO 163

164 DO 165 I=1,6

D(I) = P1(I)

D(I+10) = Q1(I)

165 CONTINUE

163 CONTINUE

T1 = 25.0/X

T2=T1*T1
```

-

Al University of Kentucky Computing Center P = D(6)*T2+D(5) D0 170 I=1,4 J = 5-I $\tilde{P} = \tilde{P} \times \tilde{T} 2 + D(J)$ 170 CONTINUE Q = D(16)*T2+D(15) D0 171 I=1,4 J = 5-I a = a + 12 + D(J+10)171 CONTINUE 171 CONTINUE Q = Q*T1 T4 =DSQRT (X*PI) T6 = SIN (X) T7 = COS (X) IF (N) 180,180,185 180 T5 = ({P-Q}*T6 + (P+Q)*T7)/T4 G0 T0 99 185 T5 = ((P+Q)*T6 - (P-Q)*T7)/T4 99 Y = T5 RETURN END END SUBROUTINE CALCIN ******SUBROUTINE CALCIN - N-LAYER ELASTIC SYSTEM ****** c COMMON/CALCO/A(396,15),B(396,15),C(396,15),D(396,15) COMMON/CALMAN/RJ1(396),RJ0(396),AJ(396),TZZ,L,Z COMMON/CALPRN/CSZ,CST,CSR,CTR,COM,RDS,RDT,RDZ,SST,JT COMMON/CAMAPA/AZ(396),AR,ITN,ITN4,NTEST,TEST(99) COMMON/CAPP7M/BZ(100),NLINE,R COMMON/RDA/NS,IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLL(99) COMMON/RD1/PSI,WGT,RR(99),IR REAL*8 W(4)/0.34785485,2*0.65214515,0.34785485/ REAL MARY,MAN,JUNIOR,MAXSTR VL=2.0*V(L) EL=(1.0+V(L))/E(L) VL1=1.0-VL CSZ=0.0 CST=0.0 CST=0.0 2 CSR=0.0 ČTR=0.0 COM=0.0 NTS1 = NTEST + 1ITS = 1 JT = 0 ARP = AR*PSI 10 DO 40 I=1,ITN INITIALIZE THE SUB-INTEGRALS С RSZ=0.0 RST=0.0 RSR=0.0 RTR=0.0 ROM=0.0 COMPUTE THE SUB-INTEGRALS $K = 4 \times (I-1)$ DO 30 J=1,4 С

FILE: CHEVMODB PGM

		J1 = K + J
		P=AZ(J1)
		EP=EXP (P#Z)
] = B (]] , L] #E P T2=D (] 1 L) / E D
		12=D(J1;L)/CP T1D-T1+T2
~		T1M=T1-T2
		T1=(A(J1,L)+B(J1,L)*Z)*EP
		T2 = (C(J1, L) + D(J1, L) * Z) / EP
		T2P=P*(T1+T2)
		T2M=P*(T1-T2)
		WA=AJ(J1)*W(J)
	15	RJ1=RJ1(J1)*P
	10	BJ0=RJ0(J1)*P
		RSZ=RSZ+WA*P*BJ0*(VL1*T1P-T2M)
		ROM=ROM+WA×EL×BJO×(2.0×VL1×T1M-T2P)
		RTR=RTR+WA*P*BJ1*(VL*T1M+T2P)
		RSR=RSR+WAX(FXBJ0X((1,0+VL)XT1P+T2M)-BJ1X(T1P+T2M)/R)
		GO TO 30
С		SPECIAL ROUTINE FOR R = ZERO
-	20	PP=P*P
		RSZ=RSZ+WA*PP*(VL1*T1P-T2M)
		ROM=ROM+WAXELXPX(2.0XVL1XT1M→T2P)
		KSI=KSI+WA#PP#((VL+U.5)#I1P+U.5#I2M) RCR=RCT
	30	CONTINUE
	•••	SF = (AZ(K+4) - AZ(K+1))/1.7222726
		CSZ=CSZ+RSZ*SF
		CST=CST+RST*SF
		CTP_CTP_PTP#CF
		RSZ = 2.0*RSZ*AR*SF
		TESTH = ABS (RSZ) + 10.0 * * (-4)
	• •	IF (ITS-NTS1) 31,32,32
	31	
		ES (1 5) = ES H TTC = TTC+1
		GO TO 40
	32	CONTINUE
		TEST(NTS1) = TESTH
		DO 33 J = 1,NTEST
	25	IF ([ES]H-[ES](J]) 35,36,36
	35	TESTH = TEST(J)
	36	CONTINUE
	•••	TEST(J) = TEST(J+1)
	33	CONTINUE
	40	IF (IESIH) 50,50,40
	40	JT = 1
	50	ČŚZ=CŚZ*ARP
		CST=CST#ARP
		•

. .

1949

FILE: CHEVMODB PGM A1 University of Kentucky Computing Center

....

•

FILE:	CHEVMODB	PGM	A 1	University	y of Kentucky Computing Center
71 72 99 C	CTR=CTR* CCR=CSR* COM=COM* IF (TZZ- Z=Z CONTINUE RDZ=(100 RDS=(100 RDS=(100 CONTINUE RETURN END	ARP ARP 2.5) 72,72 00000./E(L 00000./E(L 00000./E(L 00000./E(L	,71))*(())*(())*()	CSZ-V(L)*(C CST-V(L)*(C CSR-V(L)*(C I.0+V(L)*C	CSR+CST)) CSZ+CSR)) CSZ+CST)) CTR
C****	********* THIS SUB	********* Routine C	**** OPIE(********** D TO PROGRA	**************************************
Č****	******	*****	****	*****	*****
C C C C C C C C C C C C C C C C C C C	SUBROUTI COMMON/C COMMON/C COMMON/C COMMON/C COMMON/C SUBROUTI COMMON / 16, 15), D(22, AR, NS, 3, T5, T6, T 4HH(15), S REAL*4 Q LC=KIN D0 10 K= T1=E(K)* T1M=T1-1 PH2=PH*(K)* VK2=2.0* VK2=2.0* VK4=2.0*	NE COFE(K ALCO/A(39 DMAIN/H(1 DA/NS,IZ, SPSCOM/ E 396,15),A 2M,WA,ZF, IGMA3(15) (2,2) 1,N (1.0+V(K+ 0) .0 V(K) *V(K+1) VK2 *VKP2	IN) 65).55 (15).95 (15).95 (1,5)),B{396,15) },V(15),HH(4,4),SC(14) Sİ) ,V(15),H(15 6),BZ(100), F,CSZ,I,ITN SZ2,SG1,SG2 5),MATYP(15 (E(K+1)*(1.),C(396,15},D(396,15) (15),ZZ(99),N,TITLE{20},LLLL(99)),PM(14,4,4),FM(4) 5),AZ(396),A(396,15),B(396,15),C(39 ,X(15,4,4),SC(14),FM(4),PM(14,4,4), N4,LC,PA,P,EP,T1P,T1,T2,T3,T4 2,PH,PH2,VK2,VKP2,VK4,VKP4,VKK8, 5),ANSDPT(15) .0+V(K)))
С	VKK8=8.0 X(K,1,1) X(K,2,1) X(K,3,1)	¥V(K)¥V(K =VK4-3.0- =0.0 =T1M≭(PH2	+1) T1 -VK4	+1.0)	
с	X(K,4,1) T3=PH2*(=-2.0*T1M VK2-1.0)	*P	,	
с	T5=PH2*(T6=VKK8+ X(K,1,2)	VKP2-1.0) 1.0-3.0*V =(T3+T4-T	K2 1*(T!	5+T6))/P	

54

....

. . .

.

. . .

.

17.44 C

```
FILE: CHEVMODB PGM
                                                           A1 University of Kentucky Computing Center
               X(K,2,2)=T1*(VKP4-3.0)-1.0
X(K,4,2)=T1M*(1.0-PH2-VKP4)
С
              X(K,3,4) = (T3-T4-T1*(T5-T6))/P
С
              T3=PH2*PH-VKK8+1.0
T4=PH2*(VK2-VKP2)
С
               X(K,1,4) = (T3+T4+VKP2-T1*(T3+T4+VK2))/P
X(K,3,2) = (-T3+T4-VKP2+T1*(T3-T4+VK2))/P
С
              X(K,1,3)=T1M*(1.0-PH2-VK4)
X(K,2,3)=2.0*T1M*P
X(K,3,3)=VK4-3.0-T1
X(K,4,3)=0.0
С
               X(K,2,4)=T1M*(PH2-VKP4+1.0)
X(K,4,4)=T1*(VKP4-3.0)-1.0
K = K
С
       K = K
10 CONTINUE
COMPUTE THE PRODUCT MATRICES PM
SC(N) = 4.0*(V(N) - 1.0)
IF (N-2) 13,11,11
11 D0 12 K1=2,N
M=NS-K1
SC(M)=SC(M+1)*4.0*(V(M)-1.0)
12 CONTINUE
13 CONTINUE
С
С
       Q(1,1)=1.

Q(2,2)=1.

Q(1,2)=0.

QQ = P*2.*H(N)

IF (QQ-172.) 15,15,16

15 CONTINUE

Q(1,2)=EXP(-QQ)

Q(2,1) IS NOT NEEDED FOR INITIALIZING THE PM MATRIX

16 CONTINUE

20 LOOP INITIALIZES PM(N,,)

D0 20 M=1.4

LL=(M+1)/2
С
С
       LL=(M+1)/2
DO 20 J=3,4
PM(N,M,J)= X(N,M,J) *
20 CONTINUE
                                                                               Q(LL,2)
               DO 26 K1=2,N
               K=NS-K1
       K=NS-K1

KK=K+1

QQ = P*2.*H(K)

IF (QQ-172.) 22,22,23

22 CONTINUE

Q(2,1)=EXP(QQ)

Q(1,2)=1./Q(2,1)

GO TO 24

23 CONTINUE

Q(1,2)=0
               Q(1,2)=0.
                                                            ,
```

.

```
FILE: CHEVMODB PGM
                                                                                                  Al University of Kentucky Computing Center
             Q(2,1)=1.E20
24 CONTINUE
D0 25 M=1,4
                         LL=(M+1)/2
D0 25 J=3 4
                         PM(K,M,J)=( X(K,M,1) * PM(KK,1,J)
+X(K,M,2) * PM(KK,2,J) ) * Q(LL,1)
+( X(K,M,3) * PM(KK,3,J)
+X(K,M,4) * PM(KK,4,J) ) * Q(LL,2)
                     2
3
          3 +(X(K,M,3) * PM(KK,3,J)
4 +X(K,M,4) * PM(KK,3,J)
25 CONTINUE
26 CONTINUE
26 CONTINUE
27 SOLVE FOR C(NS) AND D(NS)
T3=2.0*V(1)
T4 = T3-1.0
FM(1) = P*(PM(1,1,3)+PM(1,3,3)) + T3*(PM(1,2,3)+PM(1,4,3))
FM(2) = P*(PM(1,1,4)+PM(1,3,4)) + T3*(PM(1,2,4)+PM(1,4,4))
FM(3) = P*(PM(1,1,4)+PM(1,3,4)) + T3*(PM(1,2,4)+PM(1,4,4))
FM(4) = P*(PM(1,1,4)+PM(1,3,4)) + T4*(PM(1,2,4)+PM(1,4,4))
DFAC=SC(1)/((FM(1)*FM(4)-FM(3)*FM(2))*P*P)
A(LC,NS) = 0.0
B(LC,NS) = 0.0
C(LC,NS) = -FM(3)*DFAC
D(LC,NS) = FM(1)*DFAC
BACKSOLVE FOR THE OTHER A,B,C,D
D0 91 K1=1,N
A(LC,K1) = (PM(K1,1,3)*C(LC,NS)+PM(K1,2,4)*D(LC,NS))/SC(K1)
B(LC,K1) = (PM(K1,3,3)*C(LC,NS)+PM(K1,3,4)*D(LC,NS))/SC(K1)
C(LC,K1) = (PM(K1,3,3)*C(LC,NS)+PM(K1,3,4)*D(LC,NS))/SC(K1)
91 D(LC,K1) = (PM(K1,4,3)*C(LC,NS)+PM(K1,4,4)*D(LC,NS))/SC(K1)
100 CONTINUE
RETURN
END
С
 С
         100
                          END
Č
C
                    SUBROUTINE INIT1
COMMON/HERB4/RRCOM(99),TR(99)
COMMON/JESSE1/RSTB(7,99),RSTS(7,99),RLB(7,99),RLS(7,99),DFB(7,99),
1 DFS(7,99)
COMMON/JESSE2/REPB(2),REPS(2),STWB(2),STWS(2)
COMMON/RD2/IB2,IB3,IA,IRA,AJXX(99),AJYY(99)
INITIALIZE THE ACCUMULATING VARIABLES FOR STRAIN ENERGY DENSITY
CALCULATIONS. ********
D0 414 I=1,7
D0 414 J=1,99
DFB(I,J)=0.
RSTB(I,J)=0.
RSTB(I,J)=0.
RSTS(I,J)=0.
RLB(I,J)=0.
RLS(I,J)=0.
ALS(I,J)=0.
RLS(I,J)=0.
 C**
 Č
         414 CONTINUÉ
                          RETURN
```


FILE: CHEVMODB PGM A1 University of Kentucky Computing Center SF = SZ2 - SZ1PP = SZ2 + SZ1 SG1=SF*G1 SG2 = SF * G2AZ(K)=PP-SG1 AZ(K+1)=PP-SG2 AZ(K+2)=PP+SG2 $\begin{array}{r} AZ(K+3) = PP+SG1 \\ K = K + 4 \end{array}$ 28 CONTINUE 40 GETURN END SUBROUTINE PRN1 COMMON/CALMAN/RJ1(396), RJ0(396), AJ(396), TZZ, L, Z COMMON/CAMAPA/AZ(396) AR ITN ITN4, NTEST.TEST(99) COMMON/CAPP7M/BZ(100), NLINE, R COMMON/RD1/PSI, WGT, RR(99), IR DATA ASTER/4H****/ C **** IF OPTN= 1, THIS NEXT SECTION PRINTS TITLE AND HEADINGS. **** C *** THESE HEADINGS AND VALUES CORRESPOND TO THE ORIGINAL N-LAYER PROGR NLINE = 17+NS CALL PRN3 WRITE(6, 351) WGT, PSI, AR, (I IM(I), IT(I), IH(I), V(I), HH(I), I=1, N) 351 FORMAT(1H0, 40X, 26HTHE PROBLEM PARAMETERS ARE/ 1 H0, 20X, 15HTIRE PRESSURE..., 5X, FI0.2, 5H DSI/ 3 H10, 20X, 15HTIRE PRESSURE..., 7X, FI0.2, 5H DSI/ 3 H10, 20X, 15HTIRE PRESSURE..., 7X, FI0.2, 5H IN./ 1H / 4 (1H & 20X, 5HLAYER, I3, 14H HAS MODULUS, 3I4, 5 I&H POISSONS RATIO, F5.3, 17H AND THICKNESS, F6.2, 7 H IN, T48, 1H, T52, 1H,]) WRITE(6, 354) NS, IM(NS), IT(NS), IH(NS), V(NS) 354 FORMAT (1H , 20X, 5HLAYER, I3, 14H HAS MODULUS, 3I4, 1 I&H POISSONS RATIO, F5.3, 24H AND IS SEMI-INFINITE., 2T48, 1H, T52, 1H,] WRITE(6, 352) 352 FORMAT(1H0, 4X, SHLOCATION, 2X, 1H*, 14X, 15HS-T-R-E-S-S-E-S, 14X, 12H*DEF 1LECTION*, 21X, 13HS-T-R-A-I-N-S, 21X, 6H*ANGLE/15X, 1H*, 1SX, 3HPSI, 21X, 21H*, 2X, 6HINCHES, 2X, 1H*, 20X, 16HMICROINCHES/INCH, 19X, 1H*, 1X, 3HPSI, 21X, 21H*, 2X, 6HINCHES, 2X, 1H*, 2X, 6HRADIAL, 2X, 8HVERTICAL, 4, 3X, 10HTANGENTIAL, 2X, 6HRADIAL, 5X, SHSHEAR, 2X, 1H*, 1X, 8HVERTICAL, 4, 3X, 10HTANGENTIAL, 2X, 6HRADIAL, 5X, 8HSHEAR, 1X, 2X, 5HYERTICAL, 4, 3X, 10HTANGENTIAL, 2X, 6HRADIAL, 2X, 8HSHEAR IN, 2X, 51JHMAX, PRIN, IN, 1X, 1H*, 1X, 4HWITH/ 615X, 1H*, 43X, 4H*, 10X, 1H*, 1X, 4HWITH/ 615X, 1H*, 43X, 4H*, 1X, 1H*, 1X, 4HWITH/ 615X, 1H*, 43X, 1H*, 10X, 1H*, 1X, 4HWITH/ 615X, 1H*, 43X, 1H*, 10X, 1H*, 3X, 10HTICRO RAD., 1X, 40 RETURN END 511HMAX_PRIN.IN.1X,1H*,1X,4HWITH/ 615X,1H*,43X,1H*,10X,1H*,32X,10HMICRO RAD.,1X, 719HTENSILE DIR.*R AXIS/1H) RETURN ËND END SUBROUTINE PRN2 COMMON/CAPP7M/BZ(100),NLINE,R COMMON/GARY/IM(15),IT(15),IH(15) COMMON/HERB2/ COMMON/RDA/NS,IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLLL(99) COMMON/RD2/IB2,IB3,IA,IRA,AJXX(99),AJYY(99)

58

. . .

Al University of Kentucky Computing Center FILE: CHEVMODB PGM COMMON/RD3/RX(99), RY(99), BPSI(99), BWGT(99), JRUN, KST DATA ASTER/4H****/ С ***************** NLINE = 13+NS CALL PRN3 WRITE(6,370) 370 FORMAT(',120('*')) WRITE(6,371) 371 FORMAT(',41('*'),'THE ANSWERS BELOW ARE BY SUPERPOSITION', & 41('*') WRITE(6,370) WRITE(6,361) (I,IM(I),IT(I),IH(I),V(I),HH(I),I=1,N) 361 FORMAT(1H0, 40X, 26HTHE PROBLEM PARAMETERS ARE/ 4 (1H, 20X, 5HLAYER, I3, 14H HAS MODULUS,3I4, 6 18H POISSONS RATIO, F5.3, 17H AND THICKNESS, F6.2, 7 4H IN, T48,1H, T52,1H,) WRITE(6,354) NS,IM(NS),IT(NS),IH(NS),V(NS) 354 FORMAT (1H, 20X, 5HLAYER, I3, 14H HAS MODULUS,3I4, 1 18H POISSONS RATIO, F5.3, 24H AND IS SEMI-INFINITE., 2T48,1H,,T52,1H,) NLINE = 13+NS 2T48,1H,,T52,1H,) WRITE(6, 580) 580 FORMAT('0', 39X, 'COORDINATES OF THE LOAD POINTS AND LOAD VALUES A &RE') 373 CONTINUE D0 603 I=1, IRA WRITE(6,582) I,RX(I),I,RY(I),I,BWGT(I),BPSI(I) 582 FORMAT(31X,'X(',I2,')=',F6.2,'Y(',I2,')=',F6.2,'P(',I2,')=', & F8.2,'TIRE PRESSURE=',F6.2,'PSI') 603 CONTINUE THE PRESSURE HEADINGS FOR OPTN = 2, THETE 374 CONTINUE RETURN END SUBROUTINE PRN3 COMMON/DON/ NPAGE COMMON/RDA/NS, IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLLL(99) DATA ASTER/4H****/ WRITE(6, 350) (ASTER,I=1,5),(TITLE(I),I=1,20),(ASTER,I=1,5),NPAGE 350 FORMAT (1H1, 5A4,1X,20A4,1X,5A4,6H PAGE,I3) RETURN END END SUBROUTINE PRN4 WRITE(6,552) 552 FORMAT(1X,/2X,'COORDINATES DEPTH',29X,'S-T-R-E-S-S-E-S',/ 1,'X',7X,'Y',7X,'Z',8X,'XX',13X,'XY',8X,'XZ',8X,'YY',8X'YZ',8X, 2'ZZ',10X,'DEFLECTION') RETURN ./.4X END SUBROUTINE PRN5 WRITE(6,553) 553 FORMAT(1X,/,2X,'COORDINATES DEPTH',30X,'S-T-R-A-I-N-S', &29X,'STRAIN ENERGY',5X,'WORK',/,4X,'X',7X,'Y',7X,'Z',8X,'XX',13X, &'XY',8X,'XZ',8X,'YY',8X,'YZ',8X,'ZZ',11X,'DENSITY',8X,'STRAIN') RETURN

FILE: CHEVMODB PGM Al University of Kentucky Computing Center END SUBROUTINE PRN6 WRITE(6,352) 352 FORMAT(1H0,4X,8HLOCATION,2X,1H*,14X,15HS-T-R-E-S-S-E-S,14X,12H*DEF 1LECTION*,21X,13HS-T-R-A-I-N-S,21X,6H*ANGLE/15X,1H*,19X,3HPSI,21X, 21H*,2X,6HINCHES,2X,1H*,20X,16HMICROINCHES/INCH,19X,1H*,1X,3HDEG/ 315X,1H*,43X,1H*,10X,1H*,55X,1H*/5X,1HR,6X,1HZ,2X,1H*,2X,8HVERTICAL 4,3X,10HTANGENTIAL,2X,6HRADIAL,5X,5HSHEAR,2X,1H*,1X,8HVERTICAL, 41X,1H*, 52X,8HVERTICAL,3X,10HTANGENTIAL,2X,6HRADIAL,2X,8HSHEAR IN,2X, 511HMAX,PRIN.IN,1X,1H*,1X,4HWITH/ 615X,1H*,43X,1H*,10X,1H*,32X,10HMICRO RAD.,1X, 719HTENSILE DIR.*R AXIS/1H) RETURN SUBROUTINE PRN6 RETURN END SUBROUTINE PRN7 SUBROUTINE PRN7 THIS SUBROUTINE IS USED TO PRINT OUTPUT WHEN OPTN=1 ONLY. IT IS ACTUALLY THE LAST HALF OF SUBROUTINE CALCIN IN THE ORIGINAL. CHEVRON N-LAYER PROGRAM. COMMON/CALMAN/RJ1(396),RJ0(396),AJ(396),TZZ,L,Z COMMON/CALPRN/CSZ,CST,CSR,CTR,COM,RDS,RDT,RDZ,SST,JT CALCULATE MAXIMUM PRINCIPAL STRAIN IN TENSILE DIRECTION AND ITS ANGLE OR ANGLES WITH SPATIAL AXES T,R, AND V. IN PRINTOUT: A NUMERICAL ANGLE IS DIRECTION OF THIS STRAIN WITH R-AXIS IN THE R-V PLANE AND MINUS IS COUNTERCLOCKWISE. IN PRINTOUT: A COMBINATION DIRECTION DEFINES THE PLANE OR PLANES IN WHICH THIS STRAIN IS CONSTANT. BSC = ABS(CTR) - 0.0009 IF(BSC.GT.0.0) GO TO 500 WHEN SHEAR STRESS IS ZERO,T,R,& V ARE PRINCIPAL AXES. TMPMX1 = (1000000./E(L))*(CSR-V(L)*(CSZ+CST)) TMPMX2 = (1000000./E(L))*(CST-V(L)*(CSZ+CST)) TMPMX3 = (1000000./E(L))*(CST-V(L)*(CSR+CSZ)) MARY = (CST-CSR) THOMP = ABS(MARY) - 0.0009 SUTTON = (CSR-CSZ) CCCC 000000 С MART = (03+03R) THOMP = ABS(MARY) - 0.0009 SUTTON = (CSR-CSZ) JUNIOR = ABS(SUTTON) - 0.0009 SAM = (CST-CSZ) SAMPAT = ABS(SAM) - 0.0009 IF((JUNIOR.LT.0.0).AND.(THOMP.LT.0.0)) GO TO 530 GO TO 531 530 MAXSTR = TMPMX1 GO TO 501 531 CONTINUE S31 CUNTINUE IF (JUNIOR.LT.0.0).AND.(MARY.LE.-0.0009)) GO TO 534 GO TO 535 534 MAXSTR = TMPMX1 GO TO 503 535 CONTINUE 535 CONTINUE 546 COMPACT LT 0.0) AND (MARY GE 0.0009)) GO TO 523 GOTO 533 GOTO 533

532 MAXSTR = TMPMX2 GO TO 505 **533 CONTINUE** ĬĔ((ŤHOMP.LT.0.0).AND.(SUTTON.GE.0.0009)) GO TO 536 GO TO 537 GO 536 MAXSTR = TMPMX3 GO TO 507 537 CONTINUE IF((MARY.GE.0.0009).AND.(SAM.GE.0.0009)) GO TO 538 GO TO 539 538 MAXSTR = JMPMX3 GO TO 509 539 CONTINUE IF ([MARY.LE.-0.0009].AND.(SUTTON.GE.0.0009)) GO TO 5400 GO TO 5401 5400 MAXSTR = TMPMX1 GO TO 511 5401 CONTINUE MAXSTR = TMPMX2 G0 T0 513 501 WRITE(6,502) R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 502 FORMAT(1H,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F10.4,1X,F7.2, 21X,7H* TRV } G0 T0 557 503 WRITE(6,504)R,Z.CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 504 FORMAT(1H,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X.6H* RV] G0 T0 557 MAXSTR = TMPMX2 GO TO 557 505 WRITE(6,506)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 506 FORMAT(1H, 1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X,6H*_TV } 11H#,F10.0,1H#,F10.2,1A,F20.2,2A,F20.2, G0 T0 557 509 WRITE(6,510)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 510 FORMAT(1H, 1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F10.4,1X,F7.2, 21X,7H* T DIR) G0 T0 557 511 WRITE(6,512)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 512 FORMAT(1H, 1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X,7H* R DIR) G0 T0 557 557 GO TO G0 10 557 513 WRITE(6,514)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR 514 FORMAT(1H,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X,7H* V DIR} G0 T0 557

Al University of Kentucky Computing Center

and the structure of the second se

FILE: CHEVMODB PGM

FILE: CHEVMODB PGM Al University of Kentucky Computing Center WHEN SHEAR STRESS IS NOT ZERO, PRINCIPAL STRAIN MAY BE AN ANGLE IN R-V PLANE OR IN T-DIRECTION OR MAY BE IN A COMBINATION (OF THESE) PLANE. TEMP = 0.5*(SQRT((CSR-CSZ)*(CSR-CSZ)+4.*CTR*CTR)) CSITEN = 0.5*(CSZ+CSR) + TEMP CS2TEN = CSITEN - 2.*TEMP CS3TEN = CST GEORGE = CSITEN-CS3TEN TUT = ABS(GEORGE) - 0.0009 IF(GEORGE.LE.-0.0009) GO TO 554 MAN = 1000. С č 500 TEMP IF(GEORGE.LE.-0.0009) GO TO 554 MAN = 1000. COFF = CSR-CSZ IF(COFF.LE.-0.0009) MAN = 0. SAM = ABS(COFF) -0.0009 IF(SAM.GT.0.) GO TO 520 WHEN STRESSES IN R AND V DIRECTIONS ARE EQUAL, THETA IS PLUS OR MINUS 45.0 DEGREES WITH R-AXIS. IF(CTR.GE.0.0009) THETA = 45. IF(CTR.GE.0.0009) THETA = 45. GO TO 540 IN PRINTOUT:THETA CAN VARY FROM PLUS OR MINUS ZERO TO NINETY DEGREES (WITH R- AXIS). THETA = 0.5*ARSIN(CTR/TEMP) THETA = (180./3.1415927)*THETA IF ((MAN.EQ.0.0) AND.(CTR.GE.0.0009)) THETA = -(90.-ABS(THETA)) CSI = CSITEN IF((CS3TEN-CS2TEN).GE.0.0009) GO TO 545 C C С 520 540 CS1 540 CS1 = CS1EN IF ((CS3TEN-CS2TEN).GE.0.0009) GO TO 545 CS2 = CS2TEN GO TO 550 545 CS2 = CS3TEN CS3 = CS2TEN S50 MYSTP = (1000000 /F(L))*(CS1-V(L)*(CS2)) 545 CS2 = CS3TEN CS3 = CS2TEN 550 MAXSTR = (1000000./E(L))*(CS1-V(L)*(CS2+CS3)) IF(TUT.LT.0.0) GO TO 551 WHEN MAXIMUM STRESS IN R-V PLANE IS GREATER THAN TANGENTIAL STRESS, MAXIMUM TENSILE STRAIN IS UNIDIRECTIONAL IN R-V PLANE. WRITE(6,553)R.Z.CSZ.CST.CSR.CTR.COM.RDZ.RDT.RDS.SST.MAXSTR.THETA 553 FORMAT(1H ,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X,1H*,2X,F5.1) GO TO 557 WHEN TANGENTIAL STRESS EQUALS MAXIMUM TENSILE STRESS IN R-V PLANE,MAXIMUM TENSILE STRAIN IS IN PLANE DEFINED BY T-AXIS AND ANGLE IN R-V PLANE 551 WRITE(6,552)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR.THETA 552 FORMAT(1H ,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F10.4,1X,F10.4,1X,F10.4, 11H*,F10.6,1H*,F10.2,1X,F10.2,1X,F10.2,1X,F10.2,1X,F7.2, 21X,3H* T,F5.1) GO TO 557 IF TANGENTIAL STRESS IS MAJOR PRINCIPAL TENSILE STRESS,MAXIMUM TENSILE STRAIN IS IN TANGENTIAL DIRECTION, ONLY. 554 CS1 = CS3TEN CS3 = CS2TEN С C C

FILE: CHEVMODB PGM A1 University of Kentucky Computing Center MAXSTR = (1000000./E(L))*(CS1-V(L)*(CS2+CS3))
WRITE(6,555)R,Z,CSZ,CST,CSR,CTR,COM,RDZ,RDT,RDS,SST,MAXSTR
555 FORMAT(1H ,1X,F6.2,1X,F6.2,1H*,F10.4,1X,F1 IF (OPTN.EQ.2) GO TO 99 IF (JT) 99,99,60 60 WRITE(6,316) 316 FORMAT(1H+,131X,1HS) 99 RETURN END SUBROUTINE READ1(IEND) COMMON/CAMAPA/AZ(396),AR,ITN,ITN4,NTEST,TEST(99) SUBROUTINE READI IS USED ONLY WHEN OPTN = 1. COMMON/RDA/NS,IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLLL(99) COMMON/RD1/PSI,WGT,RR(99),IR С IEND=0 IEND=0 READ(11,310,END=9999) (TITLE(I),I=1,20) 310 FORMAT (20A4) READ(11,314)NS,IZ,IR,PSI,WGT 314 FORMAT(3I5,2F10,3) AR=SQRT(WGT/(3.14159*PSI)) READ(11,302)(E(I),V(I),I=1,NS) 302 FORMAT(5(F7.0,F6.5)) READ(11,313)(RR(I),I=1,IR) 313 FORMAT(10F6.3) N=NS-1 READ(11,313)(HH(I),I=1,N) READ(11,313)(ZZ(I),I=1,IZ) GO TO 9998 9999 IEND=1 N=NS-19998 CONTINUE RETURN END END SUBROUTINE READ2(IEND) SUBROUTINE READ2 IS USED ONLY WHEN OPTN = 2 COMMON/RDA/NS,IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLLL(99) COMMON/RD2/IB2,IB3,IA,IRA,AJXX(99),AJYY(99) COMMON/RD3/RX(99),RY(99),BPSI(99),BWGT(99),JRUN,KST COMMON/JESSE5/JA TEND-0 С IEND=0 IEND=0
READ(11,310,END=9999) (TITLE(I),I=1,20)
310 FORMAT (20A4)
READ(11,311)NS,IZ,IA,IRA
311 FORMAT(4I5)
READ(11,302)(E(I),V(I),I=1,NS)
302 FORMAT(5(F7.0,F6.5))
NNS-1 N=NS-1READ(11,313)(HH(I),I=1,N) 313 FORMAT(10F6.3) READ(11,313)(ZZ(I),I=1,IZ) ****READ IN THE LOCATIONS OF THE DESIRED ANSWER POINTS AS X,Y COORDI-С č NATES READ(11,317)(AJXX(I),AJYY(I),I=1,IA)

...

FILE: CHEVMODB PGM A1 University of Kentucky Computing Center 317 FORMAT(16F5.2) #*** READ IN THE X,Y COORDINATE LOCATIONS AND RESPECTIVE LOADS. WHEN OPTN=2, READ MAGNITUDE OF LOAD FOR EACH LOAD LOCATION. WHEN OPTN=3, ANALYSES SUBTRACTS CALCULATED ANSWERS FOR MINIMUM LOADS FROM ANSWERS FOR MAXIMUM LOADS. WHEN OPTN=3, LOADS MUST BE READ IN AS THE MAXIMUM, THEN MINIMUM FOR FIRST LOADED AREA FOLLOWED BY THE MAXIMUM THEN MINIMUM FOR Ç С CCCC FOR FIRST LOADED AREA FOLLOWED BY THE MAXIMUM OTHER LOADED AREA. BWGT(1)=MAXIMUM LOAD ON LOADED AREA(1). BWGT(2)=MINIMUM LOAD ON LOADED AREA(1). BWGT(3)=MAXIMUM LOAD ON LOADED AREA(2). BWGT(4)=MINIMUM LOAD ON LOADED AREA(2). IF(JA.GT.1) GO TO 2008 403 READ(11,316)(RX(I),RY(I),BPSI(I),BWGT(I),I=1,IRA) 316 FORMAT(4(2F5.2,F4.1,F6.1)) 2008 CONTINUE Č Č C 2008 CONTINUE GO TO 9998 9999 IEND=1 9998 CONTINUE RETURN SUBROUTINE STRNEN SUBROUTINE STRNEN COMMON/HERB1/WORK(99),STENDN(99),ASTEN(99),WKSTRS(99),ZZZ(99) COMMON/HERB3/ IZI,CSXX(99),CSXY(99),CSXZ(99),CSYY(99),CSYZ(99), 1 CSZZ(99),CSOM(99),CCOM(99) COMMON/HERB5/CRXX(99),CRYY(99),CRZZ(99),CRYY(99),CRXZ(99),CRYZ(99) COMMON/RDA/NS,IZ,E(15),V(15),HH(15),ZZ(99),N,TITLE(20),LLLL(99) COMMON/RD2/IB2,IB3,IA,IRA,AJXX(99),AJYY(99) 1 DO 602 IZT=1, IZI ** START THE CALCULATION OF THE STRAIN ENERGY DENSITY. ***** L=LLLL(IZT) С ALAMB=É(L) *V(L) / ((1.+V(L)) *(1.-2.*V(L))) AMU=[L]/(2.*(1.+V(L)) PHI=CRXX(IZT)+CRYY(IZT)+CRZZ(IZT) STENDN(IZT)=(0.5*ALAMB*PHI**2 +AMU*((CRXX(IZT))**2 +(CRYY(IZT))**2 1+(CRZZ(IZT))**2 +2.*(CRXY(IZT))**2 +2.*(CRYZ(IZT))**2 +2.*(CRXZ(IZ 2T))**2)) ASTEN(IZT)=SQRT(STENDN(IZT)*2./E(L)) 609 CONTINUE 602 CONTINUE RETURN END SUBROUTINE SUPER(RR,RT,TT,ZZ,THETA,XXT,XYT,XZT,YYT,YZT,ZZT) CO=COS(THETA) SI=SIN(THETA) SICO=SÌ*CO COSQ=CO*CO SISQ=SI#SI RZ=0 TZ=0 XX=COSQ*RR -2*SICO*RT+SISQ*TT XY=SICO*RR+(COSQ-SISQ)*RT-SICO*TT XZ=CO*RZ-SI*TZ YY=SISQ*RR+2*SICO*RT+COSQ*TT YZ=SI*RZ+CO*TZ

FILE: CHEVMODB PGM

1.00

1947 A. 1

:

Al University of Kentucky Computing Center

-

ZZ=ZZ XXT=XXT+XX XYT=XYT+XY XZT=XZT+XZ YYT=YYT+YY YZT=YZT+YZ ZZT=ZZT+ZZ CONTINUE RETURN END

.

-

APPENDIX C

the second se

-

ŝ

EXAMPLE PROBLEMS

...

FILE: CHOPTN1 SCALE A1 University of Kentucky Computing Center 1...+...1...+..2..+...3...+...4...+...5...+...6...+...7...+...8OPTN = 1 (OLD CHEVRON) 3 3 1 265 4500 550000 400 11350 400 3000 450 65 7 16 0 7 23 OPTN = 1 (OLD CHEVRON) 200000 400 12000 450 65 1825 0 1825 1...+...1...+...2..+...3...+...4...+...5...+...6...+...7...+...8

•

,

ģ

								HE PROBLEM PARAMETERS ARE											
				TOTAL	LOAD.		45	00.00	LBS										
				TIRE P	RESSUR	Έ		26.50	PSI										
				LOAD R	ADIUS.			7.35	IN.										
				LAYER LAYER LAYER	1 HA 2 HA 3 HA	S MODUL S MODUL S MODUL	.US .US .US	0,550 0,011 0,003	,000 ,850 ,000	P01 P01 P01	ISSONS ISSONS ISSONS	RATIO RATIO RATIO RATIO	0.400 0.400 0.450	and And And	THICKNESS THICKNESS IS SEMI-IN	7.00 16.00 NFINITE.	IN, IN,		
	LOCA	TION	*		S-T	-R-E-S- PSI	S-E-S			*[*	DEFLECT INCHE	ION¥ S¥			S-1 Micr	[-R-A-I- Roinches	N~S /INCH		*ANGLE * DEG
	R	z	* * *	VERTICAL	TANG	ENTIAL	RADIA	NL.	SHEAR	*	VERTIC	AL *	VERTICA	L	TANGENTIAL	RADIAL	SHEAR IN MICRO RAD	MAX PRIN.IN TENSILE DIR	* WITH *RAXIS
, 68	6.50 6.50 6.50 6.50 6.50 6.50	0.0 7.00 7.00 23.00 23.00	*)*)*)*	-26.8080 -2.5858 -2.5858 -0.7782 -0.7782	-85. 65. -0 1. -0.	2049 8185 2686 4931 0820	-79.14 56.42 -0.47 1.42 -0.09	67 206 11 297 075	-0.00 -0.80 -0.80 -0.10 -0.10	00* 12* 13* 09* 09*	0.016 0.016 0.016 0.014 0.014	684* 585* 585* 046*	70.7 -93.6 -193.2 -164.3 -232.4	9 0 4 3 5	-77.86 80.52 80.52 104.01 104.01	-62.4 56.6 56.5 96.5 96.5	4 -0.0 0 -4.0 0 -189.2 2 -23.1 2 -97.5	70.79 * 80.52 * 38.41 * 34 104.01 * 51 103.59 *	V DIR T DIR -18.6 T DIR T -8.3

******	****	***	**** OPTN	= 1	(OLD CH	EVRON }						***	******	******	PAGE	1
					т	HE PROBLE	M PARAI	METERS A	RE							
			TOTAL	LOAD		4500.00	LBS									
			TIRE	PRESSURE		26.50	PSI									
			LOAD	RADIUS		7.35	IN.									
			LAYER Layer	1 HAS 2 HAS	MODULUS	0.200 0,012	,000 ,000	POISSON POISSON	S RATIO S RATIO	0.400 AI 0.450 AI	ND THICKNESS ND IS SEMI-IN	18.25 IN, FINITE.				
LOCA	TION	*		S-T-	R-E-S-S- PSI	E-S		*DEFLE ≭ INC	CTION* HES *		S-T Micr	-R-A-I-N-S OINCHES/INC	H		*ANG * DE	LE G
R	Z	*	VERTICAL	TANGE	ENTIAL R	ADIAL	SHEAR	* VERT *	ICAL *	VERTICAL	TANGENTIAL	RADIAL SH Mic	EAR IN Ro Rad.	MAX.PRIN.I TENSILE DI	N X WI R.XR A	TH XI
6,50 6,50 6,50	0.0 18.2 18.2	* 5* 5*	-26.8080 -1.2497 -1.2497	-31.5 11.4 -0.2	199 -3 819 1 201 -	1.3013 0.5039 0.2768	0.000 -0.230 -0.230	00* 0.0 03* 0.0 03* 0.0	05000* 04354* 04354*	-8.40 -50.22 -85.51	-41.38 38.90 38.90	-39.85 32.05 32.05	0.00 -3.22 -55.67) -8.40 * 2 38.90 * 38.90 *	V DIR T DIR T DIR	
FILE: CHOPTN2 SCALE A1 University of Kentucky Computing Center 1...+...1...+...2...+...3...+...4...+...5...+...6...+...7...+...8OPTN $_{3}^{2} = 2$ $_{3}^{2} = 2$ $_{480000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{30000 \ 400}^{2} = 2$ $_{2000 \ 2927 \ 2000 \ 3150}^{2} = 2$ $_{2000 \ 2927 \ 2000 \ 3150}^{2} = 2$ $_{2000 \ 2927 \ 2000 \ 3150}^{2} = 2$ $_{480000 \ 400}^{2} = 2$ $_{480$

27

-

÷.,

- 505

.

м 1.2

****** ******* ******* ******	(******** (******** (********* (********	***** OP ******* ******** ******	TN = 2 ****** ****** *****	****** ******* ******	********* *****THE ******	****** ANSWER	******** By Super *******	****** ?POSITI ******	************ 0N************ *********	***** *************** **************	************** *********** *********		
		LAY Lay Lay	ER 1 ER 2 ER 3	HAS MO HAS MO HAS MO	THE DULUS DULUS DULUS	PROBLEM 0,480, 0,030, 0,004,	PARAM 000 000 500	ETERS POISS POISS POISS	ARE ONS RATIO ONS RATIO ONS RATIO) 0.400) 0.400) 0.450	AND THICKN AND THICKN AND IS SEM	IESS 8.00 IN, IESS 16.00 IN, II-INFINITE.	
				X(1)= X(2)= X(3)= X(4)=	COORI 20.00 20.00 20.00 20.00 20.00	DINATES ((1)= 2 (2)= 3 (3)= 9 (4)=10	OF THE 0.00 P 3.50 P 4.30 P 7.80 P	LOAD (1) = (2) = (3) = (4) =	POINTS 4 4500.00 4500.00 4500.00 4500.00	ND LOA TIRE P TIRE P TIRE P TIRE P	D VALUES ARE RESSURE= 80.0 RESSURE= 80.0 RESSURE= 80.0 RESSURE= 80.0	0 PSI 00 PSI 00 PSI 00 PSI	
COORDI X 20.00 20.00 20.00 70 20.00 20.00	INATES Y 29.27 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -24.00 24.00	X -0.120 0.833 0.417 0.585 -0.208	X 267E 03 339E 02 582E 00 323E 01 028E 00) -0.290 0.362 0.362 0.329 0.329	(Y 459E-03 830E 01 834E 01 623E 00 625E 00	S-T-R- XZ 0.0 0.0 0.0 0.0 0.0	E-S-S -0.9 0.5 -0.1 0.4 -0.3	-E-S YY 33130E 02 80410E 02 16322E 01 60769E 01 88416E 00	YZ 2 0.0 2 0.0 1 0.0 1 0.0 0 0.0	ZZ -0.407353E 0 -0.766529E 0 -0.766527E 0 -0.162761E 0 -0.162760E 0	DEFLECTION 0 294233E-01 0 292195E-01 0 292195E-01 0 262580E-01 0 262580E-01	
COORD X 20.00 20.00 20.00 20.00 20.00	INATES Y 29.27 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -24.00 24.00	X -0.138 0.131 0.131 0.155 0.155	X 849E-03 632E-03 633E-03 373E-03 373E-03	-0.171 0.211 0.338 0.307 0.212	(Y 903E-08 651E-04 648E-03 648E-04 2425E-03	S-T-R XZ 0.0 0.0 0.0 0.0 0.0	-A-I- -0,6 0.5 0.5 0.9 0.9	N-S YY 02336E-04 78617E-04 78616E-04 72479E-04 72482E-04	YZ 0.0 0.0 0.0 0.0 0.0	ZZ 0.931176E-0 -0.133782E-0 -0.245567E-0 -0.193732E-0 -0.302044E-0	STRAIN ENERGY DENSITY 0.926312E-02 0.783021E-02 0.339243E-02 0.0.856702E-03 0.350797E-03	Y WORK STRAIN 0.196460E-03 0.180626E-03 0.475565E-03 0.238984E-03 0.394854E-03
COORD: X 20.00 20.00 20.00 20.00 20.00	INATES Y 31.50 31.50 31.50 31.50 31.50	DEPTH Z 0.0 -8.00 8.00 -24.00 24.00	X -0.149 0.871 0.425 0.580 -0.213	X 705E 03 106E 02 102E 00 480E 01 086E 00) 0.135 0.281 0.281 0.320 0.320	(Y 765E-03 239E 01 244E 01 587E 00 591E 00	S-T-R- XZ 0.0 0.0 0.0 0.0 0.0	E-S-S -0.1 0.6 -0.8 0.4 -0.4	-E-S YY 31929E 03 72242E 02 17795E 00 47658E 01 05447E 00	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ -0.793907E 0 -0.803096E 0 -0.803090E 0 -0.162247E 0 -0.162246E 0	DEFLECTION 0 298439E-01 1 0.293667E-01 1 0.293668E-01 0 264120E-01 0 264120E-01	
COORD: X 20.00 20.00 20.00 20.00 20.00	INATES Y 31.50 31.50 31.50 31.50 31.50	DEPTH Z 0.0 -8.00 8.00 -24.00 24.00	X -0.135 0.132 0.132 0.135 0.155	X 786E-03 153E-03 153E-03 438E-03 438E-03	0.775 0.164 0.262 0.295 0.206	(Y 684E-09 056E-04 494E-03 214E-04 603E-03	S-T-R XZ 0.0 0.0 0.0 0.0 0.0	-A-I- -0.8 0.7 0.7 0.9 0.9	N-S YY 39382E-04 41508E-04 41507E-04 34549E-04 34553E-04	YZ 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0	ZZ 0.692972E-0 -0.145343E-0 -0.262460E-0 -0.191167E-0 -0.298693E-0	STRAIN ENERGY DENSITY 0 129500E-01 3 0.892420E-02 3 0.252816E-02 3 0.834587E-03 0 339272E-03	WORK STRAIN 0.232290E-03 0.192832E-03 0.410541E-03 0.235879E-03 0.388314E-03

۰.

**************************************	= 2	(TANDEM)	·		**********
*****	******	*****	******	******	************
*****	******	********THE A	NSWERS BELOW ARE	BY SUPERPOSITION******	*************
******	******	*****	*****	*******	***************

		THE	PROBLEM PARA	AMETERS ARE		
LAYER	1	HAS MODULUS	0,480,000	POISSONS RATIO 0.400	AND THICKNESS	8.00 IN,
LAYER	2	HAS MODULUS	0.030.000	POISSONS RATIO 0.400	AND THICKNESS	6.00 IN.
LAYER	3	HAS MODULUS	0.024.500	POISSONS RATIO 0.400	AND THICKNESS	16.00 IN.
LAYER	4	HAS MODULUS	0,004,500	POISSONS RATIO 0.450	AND IS SEMI-IN	FINITE.

COORDINATES OF THE LOAD POINTS AND LOAD VALUES ARE

ij

1

÷.

X (1)=	20.00	Y(1) = 20.00	Ρ(1)=	4500.00	TIRE	PRESSURE =	80.00	PSI
X	2)=	20.00	Υİ	2) = 33.50	PÍ	2)=	4500.00	TIRE	PRESSURE=	80.00	PSI
XÌ	3)=	20.00	ΥÌ	3) = 94.30	ΡÌ	3) =	4500.00	TIRE	PRESSURE =	80.00	PSI
XÌ	4)=	20.00	ΥÌ	4) = 107.80	PÌ	4)=	4500.00	TIRE	PRESSURE =	80.00	PSI
X	5 Ĵ≃	70.00	ΥÌ	5 = 20.00	ΡÌ	5 Ĵ <i>≖</i>	4500.00	TIRE	PRESSURE=	80.00	PSI
XÌ	6)=	70.00	ΥÌ	6i = 33.50	ΡÌ	6)=	4500.00	TIRE	PRESSURE=	80.00	PSI
XÌ	7 j =	70.00	ΥÌ	7) × 94.30	ΡÌ	7∫≃	4500.00	TIRE	PRESSURE=	80.00	PSI
XÌ	8 j =	70.00	YÌ	8)=107.80	ΡÌ	8 j =	4500.00	TIRE	PRESSURE =	80.00	PSI
	•		•	•	-	•					

COORDIN	IATES	DEPTH S-T-R-E-S-S-E-S												
Х	Ý	·Z	XX	XY	XZ	ŶŶ	ΥZ	ZZ	DEFLECTION					
20.00	29.27	0.0	-0.115413E 03	0.265308E 01	0.0	-0.955747E 02	0.0	-0.404865E 02	0.444388E-01					
20.00	29.27	-8.00	0.771379E 02	0.139842E 01	0.0	0.567631E 02	0.0	-0.798010E 01	0.442516E-01					
20.00	29.27	8.00	0.109602E 00	0.290853E 01	0.0	-0.171584E 01	0.0	-0.798006E 01	0.442517E-01					
20.00	29.27	-14.00	0.178759E 01	0.112623E 01	0.0	0.765196E 00	0.0	-0.489560E 01	0.429506E-01					
20.00	29.27	14.00	0.914400E 00	0.116384E 01	0.0	-0.263284E-01	0.0	-0.489560E 01	0_429507E-01					
20.00	29.27	-30.00	0.396793E 01	-0.288301E 00	0.0	0.355357E 01	0.0	-0.171936E 01	0.400697E-01					
20.00	29.27	30.00	-0.279942E 00	0.364713E-01	0.0	-0.567113E 00	0.0	-0.171935E 01	0.400696E-01					
COORDIN	IATES	DEPTH			S-T-R	-A-I-N-S	_		STRAIN ENERGY	WORK				
COORDIN		DEPTH	xx	XY	S-T-R XZ	-A-I-N-S YY	ΥZ	ZZ	STRAIN ENERGY DENSITY	WORK STRAIN				
COORDIN X 20.00	IATES Y 29.27	DEPTH Z 0.0	XX -0.127059E-03	XY 0.773787E-05	S-T-R XZ 0.0	-A-I-N-S YY -0.691978E-04	ΥΖ 0.0	ZZ 0.914759E-04	STRAIN ENERGY DENSITY 0.880766E-02	WORK STRAIN 0.191569E-03				
COORDIN X 20.00 20.00	IATES Y 29.27 29.27	DEPTH Z 0.0 -8.00	XX -0.127059E-03 0.120910E-03	XY 0.773787E-05 0.128553E-04	S-T-R XZ 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04	YZ 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02	WORK STRAIN 0.191569E-03 0.170010E-03				
COORDIN X 20.00 20.00 20.00	IATES Y 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00	XX -0.127059E-03 0.120910E-03 0.146671E-03	XY 0.773787E-05 0.128553E-04 0.276160E-03	S-T-R XZ 0.0 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04 0.340055E-04	YZ 0.0 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03 -0.244584E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02 0.260558E-02	WORK STRAIN 0.191569E-03 0.170010E-03 0.416780E-03				
COORDIN X 20.00 20.00 20.00 20.00	IATES 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -14.00	XX -0.127059E-03 0.120910E-03 0.146671E-03 0.128120E-03	XY 0.773787E-05 0.128553E-04 0.276160E-03 0.114689E-03	S-T-R XZ 0.0 0.0 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04 0.340055E-04 0.534845E-04	YZ 0.0 0.0 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03 -0.244584E-03 -0.197224E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02 0.260558E-02 0.910364E-03	WORK STRAIN 0.191569E-03 0.170010E-03 0.416780E-03 0.246355E-03				
COORDIN X 20.00 20.00 20.00 20.00 20.00	IATES 29.27 29.27 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -14.00 14.00	XX -0.127059E-03 0.120910E-03 0.146671E-03 0.128120E-03 0.134164E-03	XY 0.773787E-05 0.128553E-04 0.276160E-03 0.114689E-03 0.142584E-03	S-T-R XZ 0.0 0.0 0.0 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04 0.340055E-04 0.534845E-04 0.474404E-04	YZ 0.0 0.0 0.0 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03 -0.244584E-03 -0.197224E-03 -0.214319E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02 0.260558E-02 0.910364E-03 0.953614E-03	WORK STRAIN 0.191569E-03 0.170010E-03 0.416780E-03 0.246355E-03 0.279009E-03				
COORDIN X 20.00 20.00 20.00 20.00 20.00 20.00 20.00	IATES 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -14.00 14.00 -30.00	XX -0.127059E-03 0.120910E-03 0.146671E-03 0.128120E-03 0.134164E-03 0.139432E-03	XY 0.773787E-05 0.128553E-04 0.276160E-03 0.114689E-03 0.142584E-03 -0.103897E-04	S-T-R XZ 0.0 0.0 0.0 0.0 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04 0.340055E-04 0.534845E-04 0.474404E-04 0.100911E-03	YZ 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03 -0.244584E-03 -0.197224E-03 -0.214319E-03 -0.192978E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02 0.260558E-02 0.910364E-03 0.953614E-03 0.626213E-03	WORK STRAIN 0.191569E-03 0.170010E-03 0.416780E-03 0.246355E-03 0.279009E-03 0.226096E-03				
COORDIN X 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	IATES Y 29.27 29.27 29.27 29.27 29.27 29.27 29.27 29.27	DEPTH Z 0.0 -8.00 8.00 -14.00 14.00 -30.00 30.00	XX -0.127059E-03 0.120910E-03 0.146671E-03 0.128120E-03 0.134164E-03 0.139432E-03 0.208286E-03	XY 0.773787E-05 0.128553E-04 0.276160E-03 0.114689E-03 0.142584E-03 0.142584E-03 -0.103897E-04 0.460626E-04	S-T-R XZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-A-I-N-S YY -0.691978E-04 0.597664E-04 0.340055E-04 0.534845E-04 0.474404E-04 0.100911E-03 0.320559E-04	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.914759E-04 -0.128209E-03 -0.244584E-03 -0.197224E-03 -0.214319E-03 -0.192978E-03 -0.297374E-03	STRAIN ENERGY DENSITY 0.880766E-02 0.693684E-02 0.260558E-02 0.910364E-03 0.953614E-03 0.626213E-03 0.235431E-03	WORK STRAIN 0.191569E-03 0.170010E-03 0.416780E-03 0.246355E-03 0.279009E-03 0.226096E-03 0.323474E-03				

71

**************************************	***************************************
***************************************	***************************************
**************************************	DW ARE BY SUPERPOSITION***********************************
***************************************	***************************************

		THE	PROBLEM PARA	METERS ARE					
LAYER	1	HAS MODULUS	0,480,000	POISSONS RAT	TIO 0.400	AND	THICKNESS	8.00	IN,
LAYER	2	HAS MODULUS	0,030,000	POISSONS RAT	TIO 0.400	AND	THICKNESS	6.00	IN
LAYER	3	HAS MODULUS	0,024,500	POISSONS RAT	TIO 0.400	AND	THICKNESS	16.00	IN
LAYER	4	HAS MODULUS	0,004,500	POISSONS RAT	TIO 0.450	AND	IS SEMI-IN	FINITE.	•

COORDINATES OF THE LOAD POINTS AND LOAD VALUES ARE X(1)= 20.00 Y(1)= 20.00 P(1)= 4500.00 TIRE PRESSURE= 80.00 PSI X(2)= 20.00 Y(2)= 33.50 P(2)= 4500.00 TIRE PRESSURE= 80.00 PSI

PSI
PSI

COORDIN	IATES	DEPTH		S	-T-R-	E-S-S-E-S				
X	Y .	Z	XX	XY	XZ	ŶŶ	ΥZ	22	DEFLECTION	
20.00	31.50	0.0	-0.144916E 03	0.269884E 01	0.0	-0.134258E 03	0.0	-0.791189E 02	0.449040E-01	
20.00	31.50	~8.00	0.809289E 02	0.564432E 00	0.0	0.659088E 02	0.0	-0.833767E 01	0.444442E-01	
20.00	31.50	8.00	0.128675E 00	0.209859E 01	0.0	-0.137333E 01	0.0	-0.833762E 01	0.444443E-01	
20.00	31.50	-14.00	0.179167E 01	0.896993E 00	0.0	0 749988E 00	0 0	-0.480360E 01	0.431289E-01	
20.00	31 50	14 00	0 930068F 00	0 935206F 00	Õ Õ	-0 285906F-01	ÕÕ	-0 480360F 01	0 431289F-01	
20.00	31 50	-30.00	0 397600F 01	-0 295529F 00	0.0	0 350451F 01	0 0	-0 172382F 01	0 402765F-01	
20 00	31 50	30 00	-0 279808F 00	0.352985F-01	0.0	-0 581564F 00	0.0	-0 172382F 01	0 402765E-01	
20.00	51.50	30.00	0.2730002 00	0.5525052 01	0.0	0.3013042 00	0.0	0.1725022 01	0.4027032 01	
COORDIN	IATES	DEPTH			S-T-R	-A-I-N-S			STRAIN ENERGY	WORK
v										
	Ŷ	Z	XX	XY	XZ	ŶŶ	ΥZ	77	DENSITY	STRAIN
20.00	Y 31.50	Z 0.0	XX -0.124094E+03	XY 0.787175E-05	XZ 0.0	YY ~0.930082E-04	YZ 0.0	ZZ 0.678135E-04	DENSITY 0.125737E-01	STRAIN 0.228889E-03
20.00 20.00	Y 31.50 31.50	Z 0.0 -8.00	XX -0.124094E-03 0.121502E-03	XY 0.787175E-05 0.806519E-05	XZ 0.0	YY -0.930082E-04 0.759412E-04	YZ 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03	DENSITY 0.125737E-01 0.803076E-02	STRAIN 0.228889E-03 0 182925E-03
20.00 20.00 20.00	Y 31.50 31.50 31.50	Z 0.0 -8.00 8.00	XX -0.124094E-03 0.121502E-03 0.147787E-03	XY 0.787175E-05 0.806519E-05 0.200641E-03	XZ 0.0 0.0	YY -0.930082E-04 0.759412E-04 0.496563E-04	YZ 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03 -0.261324E-03	DENSITY 0.125737E-01 0.803076E-02 0.194220E-02	STRAIN 0.228889E-03 0.182925E-03 0.359833E-03
20.00 20.00 20.00 20.00	Y 31.50 31.50 31.50 31.50	Z 0.0 -8.00 8.00	XX -0.124094E+03 0.121502E+03 0.147787E-03 0.127510E-03	XY 0.787175E-05 0.806519E-05 0.200641E-03 0.934462E-04	XZ 0.0 0.0 0.0	YY -0.930082E-04 0.759412E-04 0.496563E-04	YZ 0.0 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03 -0.261324E-03 -0.194009E-03	DENSITY 0.125737E-01 0.803076E-02 0.194220E-02 0.797797E-03	STRAIN 0.228889E-03 0.182925E-03 0.359833E-03 0.230622E-03
x 20.00 20.00 20.00 20.00	Y 31.50 31.50 31.50 31.50 31.50	Z 0.0 -8.00 8.00 -14.00	XX -0.124094E-03 0.121502E-03 0.147787E-03 0.127510E-03 0.122678E-03	XY 0.787175E-05 0.806519E-05 0.200641E-03 0.934462E-04 0.116608E-03	XZ 0.0 0.0 0.0 0.0	YY -0.930082E-04 0.759412E-04 0.496563E-04 0.514195E-04	YZ 0.0 0.0 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03 -0.261324E-03 -0.194009E-03	DENSITY 0.125737E-01 0.803076E-02 0.194220E-02 0.797797E-03	STRAIN 0.228889E-03 0.182925E-03 0.359833E-03 0.230622E-03 0.258527E-02
A 20.00 20.00 20.00 20.00 20.00 20.00	Y 31.50 31.50 31.50 31.50 31.50	Z 0.0 -8.00 8.00 -14.00 14.00	XX -0.124094E-03 0.121502E-03 0.147787E-03 0.127510E-03 0.133678E-03	XY 0.787175E-05 0.806519E-05 0.200641E-03 0.934462E-04 0.116608E-03	XZ 0.0 0.0 0.0 0.0	YY -0.930082E-04 0.759412E-04 0.496563E-04 0.514195E-04 0.452510E-04	YZ 0.0 0.0 0.0 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03 -0.261324E-03 -0.194009E-03 -0.210783E-03	DENSITY 0.125737E-01 0.803076E-02 0.194220E-02 0.797797E-03 0.818746E-03	STRAIN 0.228889E-03 0.182925E-03 0.359833E-03 0.230622E-03 0.258527E-03
20.00 20.00 20.00 20.00 20.00 20.00	Y 31.50 31.50 31.50 31.50 31.50 31.50	Z 0.0 -8.00 8.00 -14.00 14.00 -30.00	XX -0.124094E-03 0.121502E-03 0.147787E-03 0.127510E-03 0.133678E-03 0.140789E-03	XY 0.787175E-05 0.806519E-05 0.200641E-03 0.934462E-04 0.116608E-03 -0.107952E-04	XZ 0.0 0.0 0.0 0.0 0.0 0.0	YY -0.930082E-04 0.759412E-04 0.496563E-04 0.514195E-04 0.452510E-04 0.986949E-04	YZ 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.678135E-04 -0.139735E-03 -0.261324E-03 -0.194009E-03 -0.210783E-03 -0.192491E-03	DENSITY 0.125737E-01 0.803076E-02 0.194220E-02 0.797797E-03 0.818746E-03 0.623567E-03	STRAIN 0.228889E-03 0.182925E-03 0.359833E-03 0.230622E-03 0.258527E-03 0.225618E-03

.

.

٠

.

	LAYER 1 HAS MOD Layer 2 has mod Layer 3 has mod	THE PROBLEM PARAMETERS ARE DULUS 1,200,000 POISSONS RATIO DULUS 0,011,850 POISSONS RATIO DULUS 0,003,000 POISSONS RATIO	0.400 AND THICKNESS 7.00 IN, 0.400 AND THICKNESS 16.00 IN, 0.450 AND IS SEMI-INFINITE.								
•	X (1) = X (2) = X (3) = X (4) =	COORDINATES OF THE LOAD POINTS AN $10.00 Y \{ 1\} = 10.00 P \{ 1\} = 941.00 T \\ 10.00 Y \{ 2\} = 10.00 P \{ 2\} = 729.00 T \\ 20.50 Y \{ 3\} = 10.00 P \{ 3\} = 941.00 T \\ 20.50 Y \{ 4\} = 10.00 P \{ 4\} = 729.00 T \\ 20.00 T \{ 4\} = 10.00 P \{ 4\} = 10.0$	ID LOAD VALUES ARE IIRE PRESSURE= 33.50 PSI IIRE PRESSURE= 26.50 PSI IIRE PRESSURE= 33.50 PSI IIRE PRESSURE= 26.50 PSI								
COORDINATES X Y 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00	DEPTH Z XX 0.0 -0.729191E 01 -7.00 0.800193E 01 7.00 -0.347374E-01 -23.00 0.874503E-01 23.00 -0.112061E-01	S-T-R-E-S-S-E-S XY XZ YY 0.857135E-05 0.0 -0.903232E 01 -0.502803E-01 0.0 0.981052E 01 -0.502837E-01 0.0 -0.168786E-01 -0.491461E-02 0.0 0.899600E-01 -0.491464E-02 0.0 -0.105927E-01 -0.105927E-01 -0.105927E-01	YZZZDEFLECTION0.0-0.143685E-010.139009E-020.0-0.172346E000.0-0.172338E000.0-0.558273E-010.122256E-020.0-0.558273E-010.122256E-020.0-0.558273E-010.122256E-02								
COORDINATES X Y 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00 15.25 10.00	DEPTH Z XX 0.0 -0.306105E-05 -7.00 0.345556E-05 7.00 0.345561E-05 -23.00 0.622759E-05 23.00 0.622758E-05	S-T-R-A-I-N-S XY XZ YY 0.196691E-10 0.0 -0.509151E-05 -0.117320E-06 0.0 0.556557E-05 -0.118814E-04 0.0 0.556554E-05 -0.116126E-05 0.0 0.652411E-05 -0.475081E-05 0.0 0.652411E-05	YZZZSTRAIN ENERGY DENSITYWORK STRAIN0.00.542944E-050.341155E-040.754050E-050.0-0.608110E-050.416619E-040.833286E-050.0-0.128009E-040.219093E-050.192296E-040.0-0.106997E-040.875837E-060.121581E-040.0-0.153393E-040.405424E-060.164403E-04								
COORDINATES X Y 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00	DEPTH Z XX 0.0 -0.509708E 01 -7.00 0.484048E 01 7.00 -0.164985E-01 -23.00 0.846033E-01 23.00 -0.841232E-02	S-T-R-E-S-S-E-S XY XZ YY -0.381470E-05 0.0 -0.380148E 01 0.333700E-01 0.0 0.335420E 01 0.333738E-01 0.0 -0.311753E-01 0.703996E-02 0.0 0.764930E-01 0.703999E-02 0.0 -0.103947E-01 0.103947E-01 0.103947E-01 0.103947E-01	YZZZDEFLECTION0.00.294432E-010.124039E-020.0-0.974073E-010.124101E-020.0-0.974097E-010.124101E-020.0-0.499151E-010.111606E-020.0-0.499151E-010.111607E-02								
COORDINATES X Y 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00 15.25 22.00	DEPTH Z XX 0.0 -0.299022E-05 -7.00 0.294814E-05 7.00 0.294813E-05 -23.00 0.624235E-05 23.00 0.624234E-05	S-T-R-A-I-N-S XY XZ YY -0.363798E-11 0.0 -0.147869E-05 0.778673E-07 0.0 0.121414E-05 0.788578E-05 0.0 0.121419E-05 0.166345E-05 0.0 0.528419E-05 0.680529E-05 0.0 0.528418E-05	YZZZSTRAIN ENERGY DENSITYWORK STRAIN0.00.299072E-050.104753E-040.417838E-050.0-0.281273E-050.931361E-050.393988E-050.0-0.661098E-050.805096E-060.116568E-040.0-0.965010E-050.730426E-060.111031E-040.0-0.138172E-040.386941E-060.160612E-04								

ι,

•

e

Í

2	*********** ************ ************	***** ***** *****	**** OF ******* *******	PTN	3 ***** *****	(RO) **** ****	AD RA ***** ****T	TER) **** HE AI	KXXXX NSWEF	KARARA S BEL	XXXXXX OW Af	**** RE B	***** Y SUP	**** ERPO	**** SITI((****)N***	**** ****	****	k*** k***	***** *****	**** ****** ******* ******	***: ***: ***:	****** ******** *******	***** **** ****
-				(ER 1 (ER 2 (ER 3	HAS HAS HAS	MOD MOD MOD	TH OULUS OULUS OULUS	E PR(1 0 0	DBLEN 200 011 003	1 PARA 000 850 000	METER POIS POIS POIS	RS A Sson Sson Sson	RE IS RAT IS RAT IS RAT	IO 0. IO 0. IO 0.	. 400 . 400 . 450	AN AN AN	D TH D TH D TH D IS		ESS ESS I – I N	7.00 16.00 FINITI	D IN. D IN, E.			
					X { X { X {	1)= 2)= 3)= 4)=	COO 10.00 10.00 20.50 20.50	RDIN Y Y Y Y	ATES 1)= 1 2)= 1 3)= 1 4)= 1	OF TH 10.00 10.00 10.00 10.00	IE LOA P(1 P(2 P(3 P(4	AD P = = =	OINTS 941.0 729.0 941.0 729.0	AND 0 TII 0 TII 0 TII 0 TII	LOAD RE PR RE PR RE PR RE PR	VAL RESSU RESSU RESSU RESSU	UES RE = RE= RE= RE=	ARE 33.5(26.5(33.5(26.5(D PS D PS D PS D PS					
75	COORDINATE X 15.25 34 15.25 34 15.25 34 15.25 34 15.25 34 15.25 34	S Y .00 .00 .00 .00 .00	DEPTH Z 0.0 -7.00 7.00 23.00 23.00	-0.27 0.24 -0.75 0.58 -0.73	XX 4444E 6831E 5604E 8683E 6357E	01 01 -02 -01 -02	-0.1 0.3 0.3 0.1 0.1	XY 4305 6804 6809 1449 1449	1E-05 4E-01 5E-01 5E-01 6E-01	S-T-F XZ 5 0.0 1 0.0 1 0.0 1 0.0	R-E-S -0 0 -0 0 -0 0 -0 0 -0 0 -0	-S-E Y 117 854 234 368 127	-S Y 191E 230E 949E- 380E- 485E-	01 (0 00 (0 01 (0 01 (0	YZ 0.0 0.0 0.0 0.0 0.0	-0.4 -0.4 -0.3 -0.3	ZZ 4007 8371 8373 6703 6703	9E-0 8E-0 3E-0 2E-0 2E-0		DEFLE D.1082 D.1082 D.1082 D.1082 D.1009	ECTION 245 E -02 290E-02 918E-02 918E-02			
	COORDINATE X 15.25 34 15.25 34 15.25 34 15.25 34 15.25 34	S Y .00 .00 .00 .00	DEPTH Z 0.0 -7.00 7.00 23.00 23.00	-0.18 0.17 0.17 0.49 0.49	XX 8173E 8831E 8828E 8323E 6321E	-05 -05 -05 -05 -05	-0.1 0.8 0.8 0.2 0.1	XY 87583 58761 69753 70533 10679	3E - 11 1E - 07 8E - 05 7E - 05 9E - 04	S-T- XZ 0.0 0.0 0.0 0.0	-R-A-]) -0) -0) -0) 0	[-N- Y .471 .947 .947 .236 .236	S 120E- 886E- 739E- 050E- 049E-	07 (07 (07 (05 (05 (YZ 0.0 0.0 0.0 0.0 0.0	0.1 -0.1 -0.3 -0.6	ZZ 2687 1478 0340 3279 2175	8E-09 2E-09 1E-09 0E-09 9E-09		STRAI DEN 0.258 0.2200 0.708 0.367 0.3892	N ENERG SITY 183E-05 064E-05 045E-06 043E-06 284E-06	Y	WORK STRA1 0.20743 0.19151 0.10931 0.78771 0.16109	N 8E-05 3E-05 7E-04 5E-05 7E-04
	COORDINATE X 15.25 46 15.25 46 15.25 46 15.25 46 15.25 46 15.25 46	S Y .00 .00 .00 .00 .00	DEPTH Z 0.0 -7.00 7.00 -23.00 23.00	-0.14 0.13 -0.39 0.38 -0.60	XX 8220E 2406E 5171E 3940E 0359E	01 01 -02 -01 -02	-0.2 0.2 0.2 0.1 0.1	XY 1457 8543 8547 1059 1059	7E-05 3E-01 2E-01 2E-01 2E-01	S-T-F XZ 0.0 0.0 0.0 0.0 0.0	R-E-S -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	-S-E Y 107 187 172 101 129	-S 921E 398E- 118E- 315E- 118E-	00 (0 01 (0 01 (0 01 (0 01 (0	YZ 0.0 0.0 0.0 0.0 0.0	0.3 -0.2 -0.2 -0.2 -0.2	ZZ 0046 5796 5794 5484 5484	6E-0 1E-0 8E-0 1E-0 2E-0		DEFL D.9239 D.9243 D.9243 D.9243 D.8813 D.8813	ECTION 956E-03 301E-03 301E-03 836E-03 841E-03	I		
	COORDINATE X 15.25 46 15.25 46 15.25 46 15.25 46 15.25 46 15.25 46	S Y .00 .00 .00 .00	DEPTH Z 0.0 -7.00 7.00 -23.00 23.00	-0.12 0.11 0.11 0.37 0.37	XX 0921 E 1822E 1822E 5823E 5816E	-05 -05 -05 -05	-0.4 0.6 0.6 0.2 0.1	XY 8316 6600 7453 6131 0690	9E-11 7E-07 1E-05 3E-05 5E-04	S-T- XZ 0.0 5 0.0 5 0.0 5 0.0	R-A-1	[-N- Y .394 .448 .448 .419 .419	S 115E- 365E- 372E- 206E- 237E-	06 (06 (06 (06 (06 (YZ 0.0 0.0 0.0 0.0 0.0	0.5 -0.4 -0.1 ~0.3 -0.5	ZZ 5507 5659 4623 7885 6574	9E-00 8E-00 9E-05 5E-05 1E-05	6 (6 (5 (5 (5 (5 (STRAII DEN 0.883 0.754 0.405 0.180 0.294	N ENERG SITY 215E-06 187E-06 628E-06 342E-06 554E-06	Y	WORK STRAI 0.12132 0.11211 0.82740 0.55170 0.14013	N 7E-05 5E-05 8E-05 2E-05 2E-04

F

.

0

2

			LAY LAY LAY LAY	ER 1 ER 2 ER 3 ER 4	HAS MOD HAS MOD HAS MOD HAS MOD	THE DULUS DULUS DULUS DULUS	PROBLEM 2,000, 0,111, 0,027, 0,007,	PARAM 000 850 500 500	ETERS POISSO POISSO POISSO POISSO POISSO	ARE NS RATIO NS RATIO NS RATIO NS RATIO	0.400 0.400 0.450 0.450	AND THIC AND THIC AND THIC AND IS S	KNESS KNESS KNESS EMI-IN	7.00 IN, 6.00 IN, 16.00 IN, FINITE.	
					X(1)= X(2)= X(3)= X(4)=	COORD 10.00 Y 10.00 Y 20.50 Y 20.50 Y	INATES { 1) = 1 { 2) = 1 { 3) = 1 { 4) = 1 }	OF THE 0.00 P 0.00 P 0.00 P 0.00 P	LOAD (1)= (2)= (3)= (4)=	POINTS A 941.00 729.00 941.00 729.00	ND LOA TIRE P TIRE P TIRE P TIRE P	D VALUES AR RESSURE= 33 RESSURE= 26 RESSURE= 33 RESSURE= 26	E .50 PS .50 PS .50 PS .50 PS	I I I	
7(COORDIN X 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	ATES Y 10.00 10.00 10.00 10.00 10.00 10.00 10.00	DEPTH Z 0.0 -7.00 7.00 -13.00 13.00 -29.00 29.00	XX -0.5320 0.5365 0.7716 0.4138 0.1620 0.8218 -0.5895	60E 01 91E 01 38E-01 47E 00 13E-01 06E-01 89E-02	X -0.126 -0.231 -0.231 -0.395 -0.395 -0.407 -0.407	Y 658E-04 150E 00 152E 00 753E-01 755E-01 468E-02 473E-02	S-T-R- XZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E-S-S- -0.69 0.69 0.16 0.45 0.25 0.83 -0.54	E-S YY 4563E 01 7501E 01 7153E 00 1414E 00 1494E-01 8363E-01 4437E-02	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ -0.143704E -0.354200E -0.354199E -0.149176E -0.149176E -0.475746E -0.475744E	-01 00 00 00 -01 -01	DEFLECTION 0.545423E-03 0.545572E-03 0.521777E-03 0.521778E-03 0.521778E-03 0.449110E-03 0.449111E-03	
	COORDIN X 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	ATES Y 10.00 10.00 10.00 10.00 10.00 10.00 10.00	DEPTH Z 0.0 -7.00 7.00 -13.00 13.00 -29.00 29.00	XX -0.1268 0.1358 0.1358 0.2619 0.2619 0.2395 0.2395	30E-05 79E-05 80E-05 15E-05 15E-05 01E-05 00E-05	X -0.179 -0.323 -0.578 -0.990 -0.417 -0.429 -0.157	Y 174E-10 609E-06 652E-05 709E-06 341E-05 692E-06 556E-05	S-T-R XZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-A-I-N -0.24 0.24 0.24 0.30 0.30 0.24 0.24	-S YY 8516E-05 8517E-05 8936E-05 8938E-05 8231E-05 8230E-05	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.244606E -0.264528E -0.404044E -0.442808E -0.610073E -0.444663E -0.566283E	-05 -05 -05 -05 -05 -05 -05 -05	STRAIN ENERGY DENSITY 0.117115E-04 0.129307E-04 0.365080E-05 0.164795E-05 0.845387E-06 0.311740E-06 0.133725E-06	WORK STRAIN 0.342220E-05 0.359592E-05 0.807962E-05 0.542837E-05 0.784109E-05 0.476151E-05 0.597160E-05
	COORDIN X 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	ATES Y 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00	DEPTH Z 0.0 -7.00 7.00 -13.00 13.00 -29.00 29.00	XX -0.3567 0.2901 0.8522 0.2974 0.1886 0.8216 -0.2749	42E 01 04E 01 98E-01 49E 00 18E-01 49E-01 21E-02	X 0.476 0.116 0.380 0.380 0.617 0.617	Y 837E-05 350E 00 353E 00 129E-01 129E-01 017E-02 026E-02	S-T-R- XZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E-S-S- -0.24 0.17 0.19 0.22 0.24 0.76 -0.43	E-S YY 9925E 01 1735E 01 0307E-01 8191E 00 2144E-02 4221E-01 1548E-02	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.294378E -0.122363E -0.122362E -0.936099E -0.936099E -0.422792E -0.422791E	-01 00 -01 -01 -01 -01 -01	DEFLECTION 0.474326E-03 0.475160E-03 0.462658E-03 0.462656E-03 0.462656E-03 0.403834E-03 0.403835E-03	
	COORDIN X 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	ATES Y 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00	DEPTH Z 0.0 -7.00 7.00 -13.00 13.00 -29.00 29.00	XX -0.1289 0.1131 0.1131 0.2178 0.2178 0.2429 0.2429	75E-05 52E-05 53E-05 06E-05 05E-05 12E-05 11E-05	X 0.437 0.162 0.291 0.951 0.400 0.650 0.238	Y 694E-11 892E-06 273E-05 595E-06 863E-05 680E-06 583E-05	S-T-R XZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-A-I-N -0.54 0.30 0.30 0.13 0.13 0.21 0.21	-S YY 2027E-06 2938E-06 2937E-06 1118E-05 1119E-05 2631E-05 2631E-05 2630E-05	YZ 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ZZ 0.122805E -0.984859E -0.146683E -0.271673E -0.375225E -0.413249E -0.521334E	-05 -06 -05 -05 -05 -05 -05	STRAIN ENERGY DENSITY 0.299593E-05 0.199958E-05 0.818654E-06 0.502510E-06 0.276432E-06 0.131723E-06	WORK STRAIN 0.173088E-05 0.141406E-05 0.382602E-05 0.346909E-05 0.604534E-05 0.448376E-05 0.592673E-05

Ŷ

•

.

THE PROBLEM PARAMETERS ARE LAYER 1 HAS MODULUS 2,000,000 POISSONS RATIO 0.400 AND THICKNESS 7.00 IN, LAYER 2 HAS MODULUS 0,111,850 POISSONS RATIO 0.400 AND THICKNESS 6.00 IN, LAYER 3 HAS MODULUS 0,027,500 POISSONS RATIO 0.450 AND THICKNESS 16.00 IN, LAYER 4 HAS MODULUS 0,007,500 POISSONS RATIO 0.450 AND IS SEMI-INFINITE.	•				
COORDINATES OF THE LOAD POINTS AND LOAD VALUES ARE X(1)=10.00 Y(1)=10.00 P(1)= 941.00 TIRE PRESSURE= 33.50 PSI X(2)=10.00 Y(2)=10.00 P(2)= 729.00 TIRE PRESSURE= 26.50 PSI X(3)=20.50 Y(3)=10.00 P(3)= 941.00 TIRE PRESSURE= 33.50 PSI X(4)=20.50 Y(4)=10.00 P(4)= 729.00 TIRE PRESSURE= 26.50 PSI					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
COORDINATES DEPTH S-T-R-A-I-N-S STRAIN ENERGY WORK 15.25 34.00 0.0 -0.777434E-06 -0.193268E-11 0.0 0.432951E-07 0.0 0.479155E-06 0.689930E-06 0.830620E-06 15.25 34.00 -7.00 0.631893E-06 0.123003E-06 0.0 -0.141516E-06 0.0 -0.337601E-06 0.435879E-06 0.660211E-06 15.25 34.00 -7.00 0.631890E-06 0.219954E-05 0.0 -0.141514E-06 0.0 -0.13765E-06 0.414046E-06 0.272096E-05 15.25 34.00 -13.00 0.142545E-05 0.0 0.113539E-06 0.0 -0.170137E-05 0.447046E-06 0.208919E-05 15.25 34.00 -29.00 0.199509E-05 0.112956E-05 0.0 0.108306E-05 0.0 -0.282785E-05 0.151571E-06 0.332014E-05 15.25 34.00 29.00 0.199509E-05 0.414172E-05 0.0 0.108306E-05 0.0 -0.365279E-05 0.140405E-06 0.332014E-05 15.25 34.00 </td <td></td>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
COORDINATES DEPTH S-T-R-A-I-N-S STRAIN ENERGY WORK X Y Z XX XY XZ YY YZ ZZ DENSITY STRAIN 15.25 46.00 -0.4487508E-06 -0.454747E-12 0.0 0.185025E-06 0.0 0.208670E-06 0.237888E-06 0.487738E-06 15.25 46.00 -7.00 0.372824E-06 0.748729E-07 0.0 -0.205725E-06 0.0 -0.116147E-06 0.150867E-06 0.388416E-06 15.25 46.00 7.00 0.372823E-06 0.133885E-05 0.0 -0.267568E-06 0.0 -0.196295E-06 0.152060E-06 0.164894E-05 15.25 46.00 13.00 0.929942E-06 0.834210E-06 0.0 -0.267568E-06 0.0 -0.771970E-06 0.105888E-06 0.137601E-05 15.25 46.00 13.00 0.929942E-05 0.133958E-05 0.0 -0.267573E-06 0.0 -0.771970E-06 0.249256E-06 0.425767E-05 15.25 46.00 -29.00 0.155436E-05 <td></td>					

•

J.

*************** **********************	***** OPTN = 3 (RC ************************************	AD RATER) ************************************	**************************************
	LAYER 1 HAS MOD Layer 2 has mod Layer 3 has mod Layer 4 has mod	THE PROBLEM PARAMETERS ARE OULUS 2,000,000 POISSONS RATIO OULUS 0,111,850 POISSONS RATIO OULUS 0,027,500 POISSONS RATIO OULUS 0,007,500 POISSONS RATIO	0 0.400 AND THICKNESS 7.00 IN, 0 0.400 AND THICKNESS 6.00 IN, 0 0.450 AND THICKNESS 16.00 IN, 0 0.450 AND IS SEMI-INFINITE.
	X(1)= X(2)= X(3)= X(4)=	COORDINATES OF THE LOAD POINTS A 10.00 Y 1)= 10.00 P 1)= 941.00 10.00 Y 2]= 10.00 P 2]= 729.00 20.50 Y 3]= 10.00 P 3]= 941.00 20.50 Y 4]= 10.00 P 4]= 729.00	AND LOAD VALUES ARE TIRE PRESSURE= 33.50 PSI TIRE PRESSURE= 26.50 PSI TIRE PRESSURE= 33.50 PSI TIRE PRESSURE= 26.50 PSI
$\begin{array}{c} \text{COORDINATES} \\ \text{X} & \text{Y} \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \\ 15.25 & 34.00 \end{array}$	DEPTH Z XX 0.0 -0.183914E 01 -7.00 0.133920E 01 7.00 0.460747E-01 -13.00 0.165103E 00 13.00 0.131762E-01 -29.00 0.592006E-01 29.00 -0.305570E-02	S-T-R-E-S-S-E-S XY XZ YY -0.143051E-05 0.0 -0.666670E 00 0.878593E-01 0.0 0.234329E 00 0.878636E-01 0.0 -0.157149E-01 0.435366E-01 0.0 -0.117048E-01 0.435367E-01 0.0 -0.117048E-01 0.0 -0.117048E-01 0.107113E-01 0.0 0.419036E-01	YZ ZZ DEFLECTION 0 0.0 -0.440081E-01 0.411368E-03 0 0.0 -0.457913E-01 0.411876E-03 1 0.0 -0.457909E-01 0.411876E-03 1 0.0 -0.461258E-01 0.406593E-03 1 0.0 -0.322688E-01 0.371024E-03 2 0.0 -0.322689E-01 0.371025E-03
COORDINATES X Y 15.25 34.00 15.25 34.00 15.25 34.00 15.25 34.00 15.25 34.00 15.25 34.00 15.25 34.00 15.25 34.00	DEPTH Z XX 0.0 -0.777434E-06 -7.00 0.631893E-06 7.00 0.631890E-06 -13.00 0.142546E-05 13.00 0.142545E-05 -29.00 0.199509E-05 29.00 0.199509E-05	S-T-R-A-I-N-S XY XZ YY -0.193268E-11 0.0 0.432951E-07 0.123003E-06 0.0 -0.141516E-06 0.219954E-05 0.0 -0.1415139E-06 0.108987E-05 0.0 0.113539E-06 0.459114E-05 0.0 0.113540E-06 0.112956E-05 0.0 0.108306E-05 0.414172E-05 0.0 0.108306E-05	YZ ZZ STRAIN ENERGY DENSITY WORK STRAIN 7 0.0 0.479155E-06 0.689930E-06 0.830620E-08 6 0.0 -0.337601E-06 0.435879E-06 0.660211E-06 6 0.0 -0.517965E-06 0.414046E-06 0.272096E-05 6 0.0 -0.121844E-05 0.244096E-06 0.272096E-05 6 0.0 -0.170137E-05 0.447731E-06 0.570633E-05 5 0.0 -0.365279E-05 0.140405E-06 0.611892E-05
COORDINATES X Y 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00	DEPTH Z XX 0.0 -0.964500E 00 -7.00 0.678181E 00 7.00 0.251206E-01 -13.00 0.828268E-02 -29.00 0.394136E-01 29.00 -0.296496E-02	S-T-R-E-S-S-E-S XY XZ YY -0.357628E-06 0.0 -0.373195E-02 0.534807E-01 0.0 -0.148317E 0.534824E-01 0.0 -0.211011E-01 0.33237E-01 0.0 -0.209437E-02 0.333240E-01 0.0 -0.156445E-01 0.108064E-01 0.0 -0.944743E-02	YZ ZZ DEFLECTION 2 0.0 0.300480E-01 0.351245E-03 0 0.0 -0.203486E-01 0.351570E-03 1 0.0 -0.203479E-01 0.351570E-03 2 0.0 -0.239948E-01 0.349317E-03 1 0.0 -0.239948E-01 0.349316E-03 1 0.0 -0.230474E-01 0.328922E-03 2 0.0 -0.230474E-01 0.328924E-03
COORDINATES X Y 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00 15.25 46.00	DEPTH Z XX 0.0 -0.487508E-06 -7.00 0.372824E-06 7.00 0.372823E-06 -13.00 0.929942E-06 13.00 0.929942E-06 13.00 0.155436E-05 29.00 0.155435E-05	S-T-R-A-I-N-S XY XZ YY -0.454747E-12 0.0 0.185025E-06 0.748729E-07 0.0 -0.205725E-06 0.133885E-05 0.0 -0.205724E-06 0.834210E-06 0.0 -0.267568E-06 0.351418E-05 0.0 0.301078E-06 0.417845E-05 0.0 0.301085E-06	YZ ZZ STRAIN ENERGY DENSITY WORK 6 0.0 0.208670E-06 0.237888E-06 0.487738E-06 6 0.0 -0.116147E-06 0.150867E-06 0.388416E-06 6 0.0 -0.196295E-06 0.152060E-06 0.164894E-05 6 0.0 -0.541690E-06 0.105888E-06 0.137601E-05 6 0.0 -0.771970E-06 0.249256E-06 0.425767E-05 6 0.0 -0.173903E-05 0.76558E-07 0.237649E-05 6 0.0 -0.232824E-05 0.113411E-06 0.549936E-05

ĺ

.

•

. . .