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ABSTRACT OF DISSERTATION

The Krylov Subspace Methods for the Computation of Matrix Exponentials

The problem of computing the matrix exponential etA arises in many theoretical and

practical problems. Many methods have been developed to accurately and efficiently

compute this matrix function or its product with a vector, i.e., etAv. In the past

few decades, with the increasing need of the computation for large sparse matrices,

iterative methods such as the Krylov subspace methods have proved to be a powerful

class of methods in dealing with many linear algebra problems. The Krylov subspace

methods have been introduced for computing matrix exponentials by Gallopoulos and

Saad, and the corresponding error bounds that aim at explaining the convergence

properties have been extensively studied. Many of those bounds show that the speed

of convergence depends on the norm of the matrix, while some others emphasize the

important role played by the spectral distribution. For example, it is shown in a

recent work by Ye that the speed of convergence is also determined by the condition

number for a symmetric negative definite matrix. Namely the convergence is fast for

a well-conditioned matrix no matter how large the norm is.

In this dissertation, we derive new error bounds for computing etAv for non-

symmetric A, using the spectral information of A. Our result is based on the as-

sumption that A is negative definite, i.e., the field of values of A lies entirely in the

left half of the complex plane, such that the underlying dynamic system is stable. The

new bounds show that the speed of convergence is related to the size and shape of the

rectangle containing the field of values, and they agree with the existing results when



A is symmetric. Furthermore, we also derive a simpler error bound for the special case

when A is skew-Hermitian. This bound explains an observed convergence behavior

where the approximation error initially stagnates for certain number of iterations be-

fore it starts to converge. In deriving our new error bounds, we use sharper estimates

of the decay property of exponentials of Hessenberg matrices, by constructing Faber

polynomial approximating exponential function in the region containing the field of

values. The Jacobi elliptic functions are used to construct the conformal mappings

and generate the Faber polynomials. We also present numerical tests to demonstrate

the behavior of the new error bounds.

KEYWORDS: matrix exponential, Krylov subspace methods, numerical range, Faber

polynomials, Jacobi elliptic functions
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Chapter 1 Background and introduction

The classical problem of solving systems of linear ordinary differential equations

ẋ(t) = Ax(t) (1.1)

arises in many physical and economic problems. Here A is a given fixed n-by-n matrix.

With the initial condition

x(0) = x0,

the solution of (1.1) is

x(t) = etAx0.

The matrix exponential etA is defined by the convergent power series

etA = I + tA+
t2A2

2!
+ · · · .

Thus, the accurate and efficient computation of the matrix exponential etA or its

product with a vector etAv has both theoretical and practical importance.

Many methods have been studied to efficiently compute this matrix function. The

classical work of Nineteen dubious ways to compute the exponential of a matrix by C.

Moler and C. Van Loan provides a thorough survey of the existing methods, see [30]

for more details. For relatively small and dense matrices, the Padé approximation

method with the scaling and squaring techniques is widely used, as in the MATLAB

function expm(A). For large and sparse matrices which have become more and more

common in practice, the Krylov subspace iterative methods are proved to be a pow-

erful class of methods in dealing with many linear algebra computations. Very good

approximations are often obtained within a relatively small number of iterations, and

computable error bounds exist for the approximations.

The Krylov subspace methods for computing the matrix exponentials were intro-

duced by Saad [33] and Gallopoulos and Saad [20]. They are some of the most efficient
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methods for computing eτAv. Since their introduction, many error bounds have been

studied to explain the convergence properties of the Krylov subspace methods. Some

a posteriori and a priori error bounds were first presented by Saad in [33]. More

refined error bounds were later presented in [15, 16, 22, 31]. These bounds show that

the speed of convergence depends on the norm of τA. This is natural since the Krylov

approximation can be treated as a polynomial approximation, but it will limit the

use of the Krylov subspace methods to the problems where the norm of τA is not too

large. Meanwhile, treated as a projection method, the eigenvalue distribution also

plays an important role in the convergence of the Krylov subspace methods. Under

the assumption that A is negative definite guaranteeing the stability of the underly-

ing dynamic system, Ye presented stronger bounds in [42] showing that the speed of

convergence is determined by the condition number. Therefore, for a well conditioned

matrix A, the convergence is fast no matter how large the norm of τA is.

This dissertation focuses on the influence of the eigenvalue distribution on the

convergence of the Krylov subspace methods for computing eτAv for a non-symmetric

A. To generalize the result in [42] to non-symmetric matrices, we make the assumption

that the field of values of A lies entirely in the left half of the complex plane, i.e.,

A is negative definite. To be precise, we consider a rectangle in the left half of

the complex plane containing the field of values of A. We derive error bounds by

considering polynomial approximations of etz on the rectangular domain. Conformal

mappings using the Jacobi elliptic functions are constructed that maps the exterior

of the rectangle onto the exterior of the unit circle, and then the Faber polynomials

are generated to find a sharper bound of exponentials of Hessenberg matrices. Our

new error bounds show that the speed of convergence is related to the shape and the

size of that rectangle, i.e., the eigenvalue distribution. The new bounds also agree

with the bound in [42] when A is symmetric.

A special case of the computation of eτAv for a non-Hermitian A is that when A

is skew-Hermitian. One physical application of this computation is in the solution of

the time-dependent Schrödinger equation

ih
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (1.2)

2



where i is the imaginary unit, h is the Planck constant, Ψ is the wave function of the

quantum system and Ĥ is the Hamiltonian operator. See [34] for more details. In this

case, writing (1.2) in the form of (1.1), we have that A = − i
h
Ĥ is a skew-Hermitian

matrix. Then the eigenvalues of A are purely imaginary. This is a special case of the

discussion above when the rectangle there containing the field of values degenerates

into a line segment on the imaginary axis. For this problem, the solution has a very

different behavior from the symmetric case in the sense that the approximation error

first stagnates for certain number of iterations before it actually starts to converge.

We will present new error bounds for this simpler case showing that the iteration

number at which the actual convergence begins can be calculated before hand. This

behavior is also demonstrated in our numerical tests.

This dissertation is organized as follows. In chapter 2, we discuss some basic

properties, classical methods and existing error bounds for computing matrix expo-

nentials. The field of values, the Faber polynomials, the Jacobi elliptic functions and

the conformal mappings are also discussed, for the preparation of our deductions in

the next two chapters. In chapter 3, we generalize the result in [42] to non-symmetric

A and present the new a posteriori, a priori and numerically optimized error bounds

for the computation of eτAv. We then make the same approach to the case when A is

skew-Hermitian in chapter 4 and present our new a posteriori, a priori and optimized

error bound. Numerical tests are presented at the end of the chapter.

Copyright c© Hao Wang, 2015.
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Chapter 2 Preliminaries and earlier results

In this chapter, we provide some preliminary results needed for the discussion in the

next two chapters. Section 1 gives the formal definition and some basic properties of

matrix exponentials. In Sections 2 and 3, we discuss some existing methods and error

bounds for computing matrix exponentials. Since our work focuses on the role of the

spectral information in the convergence of the Krylov subspace methods, we discuss

the numerical range in Section 4 and the logarithmic norm in Section 5. In Section 6,

we discuss the Faber polynomials, as a polynomial approximation to the exponential

function. Finally, as a preparation for the next chapter, the Jacobi elliptic functions

are discussed in Section 7.

2.1 Basic properties of matrix exponentials

In this section, we discuss some fundamentals of matrix exponentials, starting with

a formal definition.

Definition 2.1. Let A be an n × n real or complex matrix. The exponential of A,

denoted by eA or exp(A), is the n× n matrix given by the power series

eA :=
∞∑
k=0

1

k!
Ak.

In many applications, we are more interested in etA where t is usually a small

positive scalar for time steps. Formally,

etA = I + tA+
t2A2

2!
+ · · · . (2.1)

The next theorem shows that the power series in (2.1) is uniformly convergent,

thus etA is well defined for all t and A.

Theorem 2.2. [4, Theorem 2, p. 170] The matrix series defined in (2.1) exists for

all A for any fixed value of t, and for all t for any fixed A. It converges uniformly in

any finite region of the complex t plane.

4



Proof. Note that

||tnAn||
n!

≤ |t|
n||A||n

n!
.

So the series in (2.1) is dominated by the uniformly convergent series expansion of

e|t| ||A||, and hence is itself uniformly convergent in any finite region of the complex t

plane.

For the convenience of future uses, we list without proof some basic rules of this

matrix function. See [4] for more details.

Proposition 2.3. Let A and B be n × n complex matrices, t and s be arbitrary

complex numbers. Denote the n × n identity matrix by I and the zero matrix by 0.

The matrix exponential satisfies the following properties.

1. e0 = I

2. e(s+t)A = esAetA

3. etAe−tA = I, so etA is never singular.

4. et(A+B) = etAetB if A and B commute, i.e., AB = BA.

5. If B is invertible, then eB
−1AB = B−1eAB.

6. d
dt
etA = AetA

7. det(eA) = etrace(A)

For the classical problem of solving homogeneous systems of ordinary differential

equations

ẋ(t) = Ax(t)

with the initial condition

x(0) = x0,

5



the solution is given by

x(t) = etAx0.

For the non-homogeneous problem

ẋ(t) = Ax(t) + b(t), (2.2)

with the initial condition

x(0) = x0,

we can construct the solution with above properties. Starting with

ẋ(t)− Ax(t) = b(t),

we have

e−tA(ẋ(t)− Ax(t)) = e−tAb(t),

which is

d

dt
(e−tAx(t)) = e−tAb(t).

Integrated over a small time step τ ,∫ t+τ

t

d

ds
(e−sAx(s))ds =

∫ t+τ

t

e−sAb(s)ds,

so

e−τAx(t+ τ)− x(t) =

∫ t+τ

t

e−sAb(s)ds.

The solution is

x(t+ τ) = eτAx(t) +

∫ t+τ

t

e(τ−s)Ab(s)ds.

In a finite difference discretization of (2.2),

x(t+ τ) = eτAx(t) +

∫ τ

0

e(τ−s)Ab(t+ s)ds, (2.3)

where τ is a time step parameter. This involves the calculation of the product of

the matrix exponential with a vector for some small τ . The integral in (2.3) can be

computed using some quadrature rule, which also involves computing eτAv.

6



2.2 Classical methods for computing matrix exponentials

Dozens of methods have been studied for computing the matrix exponential eA. The

classical work [30] by Moler and Van Loan presents a thorough survey. In this chap-

ter, we will briefly discuss some of the classical methods, among which the Padé

approximation method with a proper scaling and squaring technique is one of the

most efficient ways for small dense matrices.

Taylor series method

The Taylor series method is one of the most fundamental series methods for computing

eA. The class of series methods comes from the ideas of approximating the scalar

function ez. These methods intrinsically treat the matrix exponential purely as a

matrix function analogous to the scalar exponential function. Therefore the specific

information of the matrix, such as the order and the eigenvalues, will not play a direct

role in the computation.

The Taylor series method is a straightforward application to the definition

eA =
∞∑
j=1

Aj

j!
= I + A+

A2

2!
+ · · · . (2.4)

Let PK(A) be the partial sum of the series (2.4). Liou [25] presents an error bound

which can serve as a truncation criterion

||PK(A)− eA|| ≤
(
||A||K+1

(K + 1)!

)(
1

1− ||A||
K+2

)
.

This is the most fundamental method for computing the matrix exponential, but

not satisfactory. Extreme examples have been constructed in [30] to show the catas-

trophic cancellation and illustrate its serious shortcoming in accuracy. For example,

let

A =

 −49 24

−64 31

 ,
then the Taylor series method gives

eA ≈

 −22.25880 −1.432766

−61.49931 −3.474280

 .
7



However, the matrix A was initially constructed as

A =

 1 2

3 4

 −1 0

0 −17

 1 2

3 4

−1

,

so

eA =

 1 2

3 4

 e−1 0

0 e−17

 1 2

3 4

−1

≈

 −0.735759 0.551819

−1.471518 1.103638

 .
For some special matrices, however, better results can be achieved. In a recent

study of Xue and Ye, the Taylor series method is shown to be competitive for com-

puting the exponentials of essentially non-negative matrices. A matrix is called es-

sentially non-negative if all of its off-diagonal entries are non-negative. An entrywise

perturbation analysis in [40] shows that if E is a small perturbation to A such that

|E| ≤ ε|A|, then

|eA+E − eA| ≤ κexp(A)eκexpε/(1−ε)
ε

1− ε
|eA|,

wheres κexp(A) is determined by the spectral radius of A. Later in [41], Xue and

Ye implemented the Taylor series method with shifting to achieve this entrywise

relative accuracy. They derived a new criterion to truncate the series and presented

an entrywise error analysis. The analysis shows that when carefully implemented,

the entrywise relative error of the new algorithm based on the Taylor series method

is comparable to the error made in rounding the matrix.

Padé approximation method

In mathematics a Padé approximant is the an approximation of a function by a

rational function of given order, in the sense that the power series of the approximant

agrees with that of the function it is approximating. The (p, q) Padé approximation

to eA is defined by

Rpq(A) = [Dpq(A)]−1Npq(A),

8



where

Npq(A) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

Aj

and

Dpq(A) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−A)j.

The non-singularity of Dpq(A) is guaranteed if p and q are large enough.

The diagonal approximants where p = q are usually preferred over the off-diagonal

approximants. To see this, suppose p < q. Then the amount of flops required to

compute an off-diagonal approximant Rpq(A) is qn3, which is the same amount of

work for computing the diagonal Rqq(A) with a higher order 2q > p + q. So the

diagonal approximants can be expected to be more accurate with the same amount

of work.

Scaling and squaring method

When the norm of A is large, both the round off errors and the computing costs will

make the above two methods less attractive. This difficulty can be controlled by the

following scaling and squaring technique. First note the property

eA =
(
e
A

2k

)2k

.

We can choose the smallest integer k such that ||A||
2k

is smaller than a modest value,

say, 1. Then e
A

2k can be efficiently computed by the Padé approximation method and

eA can be obtained by k repeated squarings. This approach is the one of the most

effective methods we know to compute the exponential of a matrix. The implemen-

tation and error analysis has been fully discussed in many works, such as Ward [39].

In the field of applications, both MATLAB and GNU Octave use Padé approximants

with the scaling and squaring technique. The MATLAB function expm is based on

the algorithm in [21] by Higham. Since the accuracy and the efficiency are affected

by both the norm of A
2k

and the order q of the Padé approximant Rqq(
A
2k

), different

9



choices and the corresponding error analysis have been studied to improve the be-

havior of the algorithm. In [21], Higham identified the most efficient choice for IEEE

double precision arithmetic: m = 13 and || A
2k
|| < 5.4. The scheme of overscaling,

which results in a value of k much larger than necessary, is also studied in another

paper of Higham [2].

2.3 Krylov subspace methods

Existing studies show that the Padé approximation method with the scaling and

squaring technique is effective in computing exponentials of small dense matrices. For

large scale problems, the iterative methods are preferred over the traditional direct

methods. Over the recent decades, the Krylov subspace methods become popular in

dealing with many large scale linear algebra problems, such as solving linear systems

and computing eigenvalues. As this is the method we study, we will discuss the basic

ideas and the algorithms of Krylov subspace methods in this section.

It is first noticed that in many applications we do not really need the full matrix

eA, only its product eAv with some given vector v. For example, the solution to the

homogeneous initial value problem

ẋ(t) = Ax(t), x(0) = x0

is x(t) = etAx0, in the form of the product of a matrix exponential and a vector. Here

A is a large sparse matrix. We also note that in this situation, eA is typically dense

even if A itself is sparse.

The idea of the Krylov subspace methods is to approximately project the expo-

nential of the large matrix onto a small Krylov subspace. After this, the only matrix

exponential operation performed is therefore with a much smaller matrix. Specifi-

cally, we are interested in approximations to the matrix exponential operation eAv of

the form

eAv ≈ pm−1(A)v,

10



where A is a matrix of dimension n, v is a normalized vector, and pm−1 is a polynomial

of degree m− 1. So pm−1(A)v is an element of the Krylov subspace

Km = span{v,Av, · · · , Am−1v}.

For the general non-symmetric case, we can use the usual Arnoldi algorithm or

non-symmetric Lanczos algorithm. Both reduce to the symmetric Lanczos algorithm

when the matrix A becomes symmetric. The following algorithm was presented in

[33].

Algorithm 2.4. (Arnoldi Algorithm)

1. Initialize: Compute v1 := v/||v||2.

2. Iterate: Do j = 1, 2, · · · ,m

a) Compute w := Avj

b) Do i = 1, 2, · · · , j

i. Compute hi,j := (w, vi)

ii. Compute w := w − hi,jvi

c) Compute hj+1,j = ||w||2 and vj+1 = w/hj+1,j.

This Arnoldi algorithm is applied to a non-symmetric A and a random vector

v. Then {v1, v2, · · · , vm} is an orthonormal basis of the Krylov subspace Km and

Vm := [v1, v2, · · · , vm] is an orthogonal matrix of dimensions n×m. Let Hm := [hij]

be the m×m upper Hessenberg matrix, then by our construction in Algorithm 2.4,

we have

AVm = VmHm + hm+1,mvm+1e
T
m.

By the orthogonality of Vm, we have Hm = V T
mAVm, which represents the projection

of A onto the Krylov subspace Km, with respect to the basis Vm. Then the Arnoldi

11



approximation was introduced as

eAv ≈ Vme
Hme1.

The above method was introduced by Saad in [33]. An a priori error bound was

also presented in [33, Theorem 4.5, p. 13] as

||eAv − βVmeHme1||2 ≤ 2β
ρmα e

ρα+α

m!
,

where ρα = ||A − αI||2 with any real scalar α, and β = ||v||2. If A is symmetric

negative definite and ρ = ||A||2, a sharper error bound was given in [33, Corollary

4.6, p. 13] as

||eAv − βVmeHme1||2 ≤ β
ρm

m!2m−1
.

More sophisticated and refined error bounds for approximating the matrix expo-

nential with the Arnoldi method have been studied later. In [22], Hochbruck and Lu-

bich presented several bounds for the error εm := ||eτAv−VmeτHme1|| where ||v|| = 1.

If A is a Hermitian negative semi-definite matrix with its eigenvalues in the interval

[−4ρ, 0], the error bound satisfies

εm ≤ 10e−
m2

5ρτ , if
√

4ρτ ≤ m ≤ 2ρτ,

εm ≤ 10(ρτ)−1
(eρτ
m

)m
, if m ≥ 2ρτ.

If A is skew-Hermitian with its eigenvalue in an interval on the imaginary axis of

length 4ρ, the error satisfies

εm ≤ 12e−
(ρτ)2

m

(eρτ
m

)m
, if m ≥ 2ρτ.

For a non-symmetric A whose field of values contained in the disk |z + ρ| ≤ ρ, the

error satisfies

εm ≤ 12e−ρτ
(eρτ
m

)m
, if m ≥ 2ρτ.

The error bounds above show that the speed of the convergence depends on the

norm of τA. It is natural since the Arnoldi approximation Vme
τHme1 is after all a

12



polynomial approximation and is more accurate when the norm of τHm is not too

large. When dealing with the time stepping discretization as in (2.3), this may limit

the time step parameter τ to be too small. At the same time, as a projection scheme,

we also expect the eigenvalue distribution to affect the speed of the convergence.

In [42], Ye showed that for symmetric matrices, the speed of the convergence is

directly related to the condition number. Specifically, let wm(τ) = Vme
−τTme1 be the

Lanczos approximation to w(τ) = e−τAv, where A is positive definite and ||v|| = 1.

The approximation error is then related to an element of the matrix e−tTm by the a

posteriori bound

||w(τ)− wm(τ)|| ≤ τβm+1 max
0≤t≤τ

|h(t)|,

where h(t) := eTme
−tTme1 and |βm+1| ≤ ||A||. The convergence of the error comes from

the decay property of functions of banded matrices and the decay rate depends on

the condition number κ of Tm by

||w(τ)− wm(τ)|| ≤ τ ||A||(
√
κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

. (2.5)

This bound shows that the convergence rate of the Lanczos method in computing the

matrix exponential is at least the same as that of the conjugate gradient method. A

more general a priori bound is also presented in [42] as follows

||w(τ)− wm(τ)|| ≤ αe(α−τ)λ1||A||ε1(m) + (τ − α)||A||ε2(m), (2.6)

where

ε1(m) = min

{
(αλn/2)m−1

(m− 1)!
,

2eδ

1− q
qm−1

}
, ε2(m) = (

√
κ+ 1)qm−1

0 ,

q =
(

1
q0

+ 4δ
α(λn−λ1)

)−1

, q0 =
√
κ−1√
κ+1

, κ = λn
λ1

and 0 ≤ α ≤ τ . A proper weighted average

of (2.6) will achieve an optimal error bound and best describe the actual behavior

of the Lanczos algorithm. Our main goal in the next chapter is to generalize this

result to non-symmetric matrices. That is, the computation of e−τAv where A is non-

symmetric whose field of values is on the left half of the complex plane and ||v|| = 1.

We will relate the convergence rate to the field of values and show our result agrees

with (2.5) when A degenerates to symmetric.

13



2.4 Numerical range

We start with the formal definition.

Definition 2.5. In linear algebra, the numerical range or the field of values of a

complex n× n matrix A is the set

W (A) =

{
x∗Ax

x∗x
: x ∈ Cn, x 6= 0

}
,

where x∗ denotes the conjugate transpose of the vector x.

Immediately from the definition, the numerical range of a matrix A is the set of

Rayleigh quotient. When A is Hermitian, the numerical range is a line segment which

coincides with the spectral range. For a non-Hermitian A, the numerical range still

contains all the eigenvalues of A. The next theorem provides a characterization of

the numerical range.

Theorem 2.6. [38] (Hausdorff-Toeplitz Theorem) The numerical range is con-

vex and compact.

For the computation of the matrix exponential e−τAv where τ > 0, we are usually

more interested in the case when W (A) lies entirely on the right half of the complex

plane. So,

Proposition 2.7. The numerical range W (A) is a subset of the closed right half

plane if and only if A+ A∗ is positive semidefinite.

Proof. Note that

x∗Ax = x∗
A+ A∗

2
x+ x∗

A− A∗

2
x.

Since A+A∗

2
is Hermitian and A−A∗

2
is skew-Hermitian, the real and imaginary part of

x∗Ax comes from x∗A+A∗

2
x and x∗A−A

∗

2
x, respectively. The real part is non-negative

if and only if the matrix A+ A∗ is positive semidefinite.

The next theorem plays an important role in our work. It is an inequality proved

by Michel Crouzeix, related to polynomial functions of a square matrix, involving the

numerical range of the matrix.
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Theorem 2.8. [10] (Crouzeix Theorem) For a square matrix A and a polynomial

p, the following inequality holds

||p(A)||2 ≤ 11.08 sup
z∈W (A)

|p(z)|.

Note that by the maximum modulus principle, the maximum on the right hand

side of the inequality must be attained on the boundary of W (A). Crouzeix pointed

out that the constant 11.08 is not optimal. For some special matrix A, it can be

improved drastically to 2. Crouzeix also conjectured that

||p(A)||2 ≤ 2 sup
z∈W (A)

|p(z)|

is still generally true, but it is not proved.

2.5 Logarithmic norm

The logarithmic norm of a matrix was introduced in [11] by G. Dahlquist, in order

to derive error bounds in initial value problems. The name logarithmic norm origi-

nates from estimating the logarithm of the norm of solutions of ordinary differential

equations.

In this section we will discuss its original definition for matrices, but note that it

can also be extended to bounded linear operators.

Definition 2.9. Let A be a square matrix and || · || be a matrix norm. The associated

logarithmic norm µ of A is defined as

µ(A) = lim
h→0+

||I + hA|| − 1

h
. (2.7)

Here I is the identity matrix of the same dimension as A, and h is a real positive

number.

Note that the limit in the definition is taken as h → 0+. When h → 0− instead,

the limit equals −µ(−A), which is generally smaller than µ(A). Furthermore, the

logarithmic norm, despite its name, is not a matrix norm, since µ(A) may take

negative values, e.g., when A is negative definite.
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The next proposition sets up a direct link between the logarithmic norm and the

spectral information of a matrix. In this sense, it may also serve as an alternative

definition of the logarithmic norm.

Proposition 2.10. Let A be a square matrix and 〈·〉 be an inner product. If || · || is

the induced matrix norm in (2.7), the associated logarithmic norm µ of A is

µ(A) = sup
x 6=0

Re〈x,Ax〉
〈x, x〉

.

If 〈·〉 is the Euclidean inner product and || · || is the associated 2-norm,

µ(A) = sup
x 6=0

Re

{
x∗Ax

x∗x

}
= λmax

(
A+ A∗

2

)
,

and

−µ(−A) = − sup
x 6=0

Re

{
−x

∗Ax

x∗x

}
= inf

x6=0
Re

{
x∗Ax

x∗x

}
= λmin

(
A+ A∗

2

)
. (2.8)

The next interesting proposition was also introduced in [11, p. 14]. The logarith-

mic norm is used to bound the norm of the matrix exponential. See [35] for more

details of the proof.

Proposition 2.11. Let A ∈ Cn×n and t ≥ 0. The matrix exponential is bounded by

||etA|| ≤ etµ(A).

We will use this proposition in the proof of Theorem 3.1, for an a posteriori error

bound of the computation e−τAv.

2.6 Faber polynomials

In 1903, G. Faber extended the theory of power series to domains more general than

a disk. The polynomials he introduced have been since proved useful in analysis and

known as Faber polynomials. It starts with a fundamental result in analysis.

Riemann’s mapping theorem [27, Theorem 1.2, p. 8] states that every connected

domain in the extended complex plane whose boundary contains more than one point

can be mapped conformally onto a disk with its center at the origin. Now let C̄ =
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C∪{∞} be the extended complex plane and F be a continuum containing more than

one point. A continuum is a non-empty, compact and connected subset of C. If G∞

is the complement or a component of the complement of F containing∞, then G∞ is

a simply connected domain in C̄. Then [27, Theorem 3.14, p. 104] shows that there

exists a function w = Φ(z) which maps G∞ conformally onto the exterior of a circle

of the form |w| > ρ > 0. Furthermore, the conformal mapping Φ also satisfies the

normalization conditions

Φ(∞) =∞, lim
z→∞

Φ(z)

z
= 1. (2.9)

Under those conditions, the function Φ(z) has a Laurent expansion of the form

Φ(z) = z + α0 +
α−1

z
+ · · ·

at infinity. Moreover, given any integer n > 0, the function [Φ(z)]n has a Laurent

expansion of the form

[Φ(z)]n = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0 +

α
(n)
−1

z
+ · · ·

at infinity [27, Corollary, p. 104].

The Faber polynomials are defined as

Φn(z) = zn + α
(n)
n−1z

n−1 + · · ·+ α
(n)
0

consisting of the non-negative powers of z in the expansion above. We call them the

Faber polynomials generated by the continuum F , or simply the Faber polynomials

for F . The following two examples discussed in [27] show Faber polynomials generated

by different subsets of C.

Example 2.12. (Disk)

If F is the closed disk |z − z0| ≤ ρ, then the Riemann mapping is

w = Φ(z) = z − z0,

and then

[Φ(z)]n = (z − z0)n.
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Thus, the Faber polynomials consisting of the non-negative powers will be power

functions

Φn(z) = (z − z0)n,

same as [Φ(z)]n.

Example 2.13. (Line segment)

Let F = [−1, 1] be a line segment of the real axis in C. Then

w = Φ(z) =
1

2

(
z +
√
z2 − 1

)
maps G∞ conformally onto the domain |w| > 1

2
. Note that here we choose the branch

of
√
z2 − 1 such that

lim
z→∞

√
z2 − 1

z
= 1.

It is observed that

1

4Φ(z)
=

1

2

(
z −
√
z2 − 1

)
is finite when z is at infinity, thus the Laurent expansion of 1

4Φ(z)
at infinity contains

no non-negative powers of z. So 1
[4Φ(z)]n

does not have non-negative powers either. As

a consequence, [Φ(z)]n has the same Laurent expansion at infinity as the function

[Φ(z)]n +
1

[4Φ(z)]n
=

[
1

2

(
z +
√
z2 − 1

)]n
+

[
1

2

(
z −
√
z2 − 1

)]n
.

Since the above equation is a polynomial of degree n, the Faber polynomials are

Φn(z) = [Φ(z)]n =
1

2n

[(
z +
√
z2 − 1

)n
+
(
z −
√
z2 − 1

)n]
.

Set z = cos t, then

Φn(cos t) =
1

2n
[(cos t+ i sin t)n + (cos t− i sin t)n] =

1

2n−1
cosnt,

or equivalently

Φn(z) =
1

2n−1
cos(n arccos z).
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So the Faber polynomials associated to the line segment [−1, 1] are actually the

classical Chebyshev polynomials.

The Faber polynomials can be used to approximate analytic functions. Let Ψ be

the inverse of Φ and the circular image CR be the inverse image under w = Φ(z) of

a circle |w| = R > ρ. The (Jordan) region with boundary CR is then denoted by

I(CR). By [27, Theorem 3.17, p. 109], every function f(z) analytic on I(CR0), where

R0 > ρ, can be represented on I(CR0) as the sum of a series of the form

f(z) =
∞∑
n=0

anΦn(z) (2.10)

with the coefficients

an =
1

2πi

∫
|w|=R

f [Ψ(w)]

wn+1
dw =

1

2πi

∫
CR

f(z)Φ′(z)

[Φ(z)]n+1
dz.

The partial sum of the above series

ΠN(z) =
N∑
n=0

anΦn(z) (2.11)

is a polynomial of degree at most N , since each Φn is of degree n. Immediately from

the construction of an, we have

|an| ≤
M(R)

Rn
(n = 0, 1, 2, · · · ), (2.12)

by [27, Corollary, p. 109], where

M(R) := max
z∈CR

|f(z)|.

More quantitative estimates for certain choices of the continuum F are presented

in [17]. Assume that F is a closed Jordan region. By a Jordan region we mean a

region F that is bounded and whose boundary Γ consists of pairwise disjoint closed

Jordan curves. If Γ is rectifiable, there exists at most every point z ∈ Γ a tangent

vector that makes an angle Θ(z) with the positive real axis. We say that Γ has

bounded total rotation V if

V =

∫
Γ

|dΘ(z)| <∞.

We note that V ≥ 2π and the equality holds if F is convex.
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Theorem 2.14. [17, Corollary 2.2] Let F be a Jordan region whose boundary Γ is

of bounded total rotation V .

1. For any N ≥ 1,

||ΦN ||∞ ≤
ρNV

π
.

This bound is best possible in the sense that when D ≡ [−1, 1], equality holds.

2. Let f be an analytic function in the interior of CR for any R > ρ, we have for

any N ≥ 0,

||f − ΠN ||∞ ≤
M(R)V

π

(
ρ
R

)N+1

1− ρ
R

,

where M(r) = max
z∈CR

|f(z)| and V is the total rotation of the boundary of CR.

Here || · ||∞ denotes the uniform norm on CR.

Back to Example 2.12, the Faber polynomials of the disk |z − z0| ≤ ρ are

Φn(z) = (z − z0)n,

and the circular images CR are the circles |z− z0| = R. The Faber expansion reduces

to the Taylor series

∞∑
n=0

an(z − z0)n.

For Example 2.13, the Faber polynomials of the line segment [−1, 1] are

Φn(z) =
1

2n−1
cos(n arccos z),

and the circular images are the ellipses

x2(
r + 1

4r

)2 +
y2(

r − 1
4r

)2 = 1.

2.7 Jacobi elliptic functions

In this section, we have a brief discussion of the Jacobi elliptic functions, which will

be used to construct a conformal mapping in the next section. For a more complete

and strict theory, see [1]. Let us start with the general elliptic functions.
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Elliptic functions

In complex analysis, an elliptic function is a meromorphic function that is periodical

in two directions. A meromorphic function is a function that is holomorphic on an

open set except a set of isolated points.

Definition 2.15. (Elliptic function) An elliptic function is a function f mero-

morphic on C for which exist two non-zero complex numbers w1 and w2 with w1

w2
/∈ R,

such that f(z) = f(z + w1) = f(z + w2) for all z ∈ C.

In this definition, the ratio τ = w1

w2
must not be purely real, because if it is, the

function reduces to a single periodic function if τ is rational, and a constant if τ is

irrational. The periods w1 and w2 are usually labeled such that Im(w1

w2
) > 0. Just

as a periodic function of a real variable is defined by its value on an interval, an

elliptic function is determined by its values on a fundamental parallelogram, which

then repeat in a lattice. Such a lattice is called a cell of an elliptic function.

Elliptic integrals

As indicated by the name, elliptic functions were first introduced as inverse functions

of (incomplete) elliptic integrals. This theory was later improved by Carl Gustav

Jakob Jacobi (1829) and widely used in many practical problems as they do not

require notions of complex analysis to be defined and/or understood. So before the

introduction of the Jacobi elliptic functions, we first state the definition and properties

of elliptic integrals.

Definition 2.16. (Incomplete elliptic integrals) Given a real parameter m with

0 < m < 1, the (incomplete) Jacobi elliptic integral of the first kind is defined as

F (φ,m) =

∫ φ

0

(1−m sin2 θ)−
1
2dθ. (2.13)

The (incomplete) Jacobi elliptic integral of the second kind is defined as

E(φ,m) =

∫ φ

0

(1−m sin2 θ)
1
2dθ.
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Note from the above definition that in general incomplete elliptic integrals are

functions of two independent arguments: a real parameterm ∈ (0, 1) and an argument

φ ∈ C. With φ = π
2
, the incomplete integrals become the complete integrals as defined

below.

Definition 2.17. (Complete elliptic integrals) Given a real parameter m with

0 < m < 1, the complete Jacobi elliptic integrals of the first kind and the second kind

are defined respectively as

K(m) := F (
π

2
,m) =

∫ π
2

0

(1−m sin2 θ)−
1
2dθ,

E(m) := E(
π

2
,m) =

∫ π
2

0

(1−m sin2 θ)
1
2dθ.

By m1 := 1−m we denote the complementary parameter of m. Hence 0 < m1 < 1.

For simplicity, we always use the following shorter version notations.

K := K(m) (2.14)

E := E(m) (2.15)

K ′ := K(m1) = K(1−m) (2.16)

E ′ := E(m1) = E(1−m) (2.17)

It is observed that K, E, K ′ and E ′ are all functions of m ∈ (0, 1). Here are some

basic properties of the elliptic integrals. For more details, see [1], [29] and [24].

Proposition 2.18. 1. Directly from Definition 2.17, both K and K are positive-

valued functions of m. Moreover, K and E are differentiable with respect to the

parameter m ∈ (0, 1), and

dK

dm
=
E −m1K

2mm1

(2.18)

dE

dm
=
E −K

2m
(2.19)

2. By (2.18) and (2.19), K ′ and E ′ are also differentiable functions of m ∈ (0, 1)

and

dK ′

dm
= −E

′ −mK ′

2mm1
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dE ′

dm
= −E

′ −K ′

2m1

3. [1, 17.3.13, p. 591] (Legendre’s relation) For any m ∈ (0, 1),

KE ′ +K ′E −KK ′ = π

2
.

4. [1, 17.3.11-12, p. 591] Infinite series:

K(m) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

mn =
π

2

∞∑
n=0

[
(2n− 1)!!

(2n)!!

]2

mn (2.20)

E(m) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
mn

1− 2n
=
π

2

∞∑
n=0

[
(2n− 1)!!

(2n)!!

]2
mn

1− 2n
(2.21)

5. [1, 17.3.25, p. 591]

lim
m→0

[K ′(E −K)] = 0

6. [1, 17.3.26, p. 591]

lim
m→1

[
K − 1

2
ln

(
16

m1

)]
= 0 (2.22)

7. [1, 17.3.27, p. 591]

lim
m→0

[m−1(K − E)] = lim
m→0

[m−1(E −m1K)] =
π

4

8. [1, 17.4.5, p. 592]

E(u+ 2iK ′) = E(u) + 2i(K ′ − E ′) (2.23)

Jacobi elliptic functions

Now we are well prepared for the introduction of the Jacobi elliptic functions. There

are a total of twelve Jacobi elliptic functions in the family, but we are only going to

discuss the basic three of them.
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Definition 2.19. (Jacobi elliptic functions) If u = F (φ,m) where F (·,m) is

the incomplete elliptic integral of the first kind defined in (2.13), three of the Jacobi

elliptic functions are defined as

sn(u|m) = sinφ (2.24)

cn(u|m) = cosφ (2.25)

dn(u|m) =

√
1−m sin2 φ (2.26)

For a fixed m ∈ (0, 1), sn(u|m), cn(u|m) and dn(u|m) are doubly periodical

meromorphic functions defined on u ∈ C. The following table lists the periods, zeros,

poles and residues of the three Jacobi elliptic functions [29, p. 14].

sn(u) cn(u) dn(u)
Periods 4K, 2iK ′ 4K, 2K + 2iK ′ 2K, 4iK ′

Zeros 0, 2K K, 3K K + iK ′, K + 3iK ′

Poles iK ′, 2K + iK ′ iK ′, 2K + iK ′ iK ′, 3iK ′

Residues
√
m,−

√
m −i

√
m, i
√
m −i, i

Table 2.1: Jacobi elliptic functions: periods, zeros, poles, residues

In addition, we list some fundamental facts about the functions sn(u|m), cn(u|m)

and dn(u|m).

Proposition 2.20. Assume m ∈ (0, 1) and u ∈ C, then we have the following prop-

erties.

1. Directly from Definition 2.19,

sn2(u|m) + cn2(u|m) = 1

m · sn2(u|m) + dn2(u|m) = 1

2. [1, Table 16.2, p. 570] Periods: sn, cn and dn are one-valued, doubly-periodic

functions. For any l, n ∈ Z,

sn(u+ 2lK + 2niK ′|m) = (−1)lsn(u|m)

cn(u+ 2lK + 2niK ′|m) = (−1)l+ncn(u|m)

dn(u+ 2lK + 2niK ′|m) = (−1)ndn(u|m)
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3. [1, Table 16.8, p. 572]

sn(2iK ′ − σ|m) = sn(−σ|m) = −sn(σ|m)

cn(2iK ′ − σ|m) = −cn(−σ|m) = −cn(σ|m)

dn(2iK ′ − σ|m) = −dn(−σ|m) = −dn(σ|m) (2.27)

4. [1, Table 16.16, p. 574] Derivatives:

d

du
sn(u|m) = cn(u|m) · dn(u|m) (2.28)

d

du
cn(u|m) = −sn(u|m) · dn(u|m) (2.29)

d

du
dn(u|m) = −m · sn(u|m) · cn(u|m) (2.30)

5. [1, 16.21, p. 575] Write u = x+ iy where x, y ∈ R. For simplicity, denote

s = sn(x|m), c = cn(x|m), d = dn(x|m),

s1 = sn(y|m1), c1 = cn(y|m1), d1 = dn(y|m1),

then

sn(x+ iy|m) =
s · d1 + ic · d · s1 · c1

c2
1 +ms2 · s2

1

(2.31)

cn(x+ iy|m) =
c · c1 + is · d · s1 · d1

c2
1 +ms2 · s2

1

(2.32)

dn(x+ iy|m) =
d · c1 · d1 + ims · c · s1

c2
1 +ms2 · s2

1

(2.33)

In our future discussion in Chapter 2, we will work on the three Jacobi elliptic

functions sn(u|m), cn(u|m) and dn(u|m) where the parameter m ∈ (0, 1) and u ∈ C

is in the rectangular domain [−K,K] × [0, 2iK ′]. So, it is illustrative to figure out

the range of these three functions in this specific domain. As a matter of fact, in

our future discussion, it suffices to know the signs of the real and imaginary part of

sn(u|m), cn(u|m) and dn(u|m) when Re(u) ∈ [−K,K] and Im(u) ∈ [0, 2K ′]. This

is discussed in [24, pp. 172-176] and we summarize it in the following Table 2.2, 2.3

and 2.4 for future references.

Copyright c© Hao Wang, 2015.
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(K ′, 2iK ′) − − + −
(0, K ′) − + + +

�
���

��Re
Im

(−K, 0) (0, K)

Table 2.2: Sign of values of sn(u)

(K ′, 2iK ′) − + − −
(0, K ′) + + + −

���
���Re

Im
(−K, 0) (0, K)

Table 2.3: Sign of values of cn(u)

(K ′, 2iK ′) − + − −
(0, K ′) + + + −

��
����Re

Im
(−K, 0) (0, K)

Table 2.4: Sign of values of dn(u)
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Chapter 3 Error bounds for computing e−τAv

In this chapter, we will discuss the computation of

w(τ) := e−τAv (3.1)

with the Arnoldi method, where A is a non-symmetric positive semi-definite matrx,

v is a real normalized vector and τ is a positive scalar. The chapter is organized

as follows. In Section 1, the Arnoldi approximation to w(τ) = e−τAv is defined and

an a posteriori error bound is presented, which relates the error to an entry of the

exponential of an upper Hessenberg matrix. To investigate the decay property of that

entry, in Section 2, we discuss the conformal mapping needed for the construction

of the Faber polynomial approximation to the exponential function. Then a new a

priori error bound is presented in Section 3. In Section 4, we further optimize our new

bound numerically to better describe the actual convergence of the Arnoldi method.

Numerical examples are presented in Section 5.

3.1 A posteriori error bound

Let A be an n-by-n real non-symmetric matrix and v be an n-dimensional real nor-

malized vector. We apply the Arnoldi method in Algorithm 2.4 to A and v. The first

k iterations of the Arnoldi process generates a Krylov subspace

Kk+1(A, v) = span{v, Av,A2v, · · · , Akv}

with an orthonormal basis {v1, v2, · · · , vk, vk+1}. Meanwhile, a k-by-k upper Hessen-

berg matrix Hk is generated satisfying

AVk = VkHk + βk+1vk+1e
T
k , (3.2)

where Vk = [v1, v2, · · · , vk] and ek ∈ Rn is the k-th coordinate vector. Then for

w(τ) = e−τAv in the n-dimensional space, we can use VkV
T
k e
−τAv, the orthogonal
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projection of e−τAv on Kk(A, v), as the best approximation of e−τAv from the k-

dimensional subspace Kk(A, v). By the orthogonality of the columns of Vk and (3.2),

V T
k AVk = V T

k VkHk + βk+1V
T
k vk+1e

T
k = Hk,

then we have our approximation

VkV
T
k e
−τAv = VkV

T
k e
−τAVke1 ≈ Vke

−τV Tk AVke1 = V T
k e
−τHke1.

We call

wk(τ) := V T
k e
−τHke1 (3.3)

the Arnoldi approximation to w(τ) in (3.1). The next theorem is the first result of

this chapter. It relates the approximation error of he Arnoldi method to the (k, 1)

entry of the matrix e−tHk . We denote the quantity defined by (2.8) that

ν(A) := −µ(−A) = λmin

(
A+ A∗

2

)
.

Theorem 3.1. (A posteriori error bound) Assume that A ∈ Rn×n with ν(A) =

λmin
(
A+A∗

2

)
> 0, v ∈ Rn with ||v|| = 1. Let Vk be the orthogonal matrix and Hk be

the upper Hessenberg matrix generated by the Arnoldi process satisfying (3.2). Let

wk(τ) = Vke
−τHke1 in (3.3) be the Arnoldi approximation to w(τ) = e−τAv in (3.1).

Then the approximation error satisfies

||w(τ)− wk(τ)|| ≤ τβk+1 max
0≤t≤τ

|h(t)|, (3.4)

where

h(t) := eTk e
−tHke1 (3.5)

is the (k, 1) entry of the matrix e−tHk .

Proof. First, w(t) = e−tAv, so w′(t) = −Ae−tAv = −Aw(t). Since wk(t) = Vke
−tHke1,

we have

w′k(t) = −VkHke
−tHke1
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= −(AVk − βk+1vk+1e
T
k )e−tHke1

= −AVke−tHke1 + βk+1vk+1e
T
k e
−tHke1

= −Awk(t) + βk+1h(t)vk+1,

where h(t) = eTk e
−tHke1. Let Ek(t) := w(t)−wk(t) be the approximation error. Then

E ′k(t) = w′(t)− w′k(t)

= −Aw(t)− (−Awk(t) + βk+1h(t)vk+1)

= −AEk(t)− βk+1h(t)vk+1.

Note that the initial condition

Ek(0) = w(0)− wk(0) = v − Vke1 = 0,

and solve the initial value problem for Ek(t), then we have

Ek(τ) = −βk+1

∫ τ

0

h(t)e(t−τ)Avk+1dt.

Since τ − t > 0, we have

||e(t−τ)A|| = ||e(τ−t)(−A)|| ≤ e(τ−t)µ(−A) = e(t−τ)ν(A). (3.6)

by Proposition 2.11. Then using (3.6), the approximation error satisfies

||Ek(τ)|| ≤ βk+1

∣∣∣∣∣∣∣∣∫ τ

0

h(t)e(t−τ)Avk+1dt

∣∣∣∣∣∣∣∣
≤ βk+1

∫ τ

0

|h(t)| · ||e(t−τ)A|| · |vk+1|dt

≤ βk+1 · max
0≤t≤τ

|h(t)| ·
∫ τ

0

e(t−τ)ν(A)dt

= βk+1 · max
0≤t≤τ

|h(t)| · 1− e−τν(A)

ν(A)

≤ τβk+1 max
0≤t≤τ

|h(t)|.

Note that ν(A) > 0, then the last inequality comes from 1− e−x ≤ x for x > 0.

Our next objective is to bound h(t) in (3.5) with the spectral information of A.

We consider an analytic function f(z) = e−tz, then h(t) = [f(Hk)]k1. In the next

section, we will construct a conformal mapping which maps the exterior of the set

containing the field of values of A conformally to the exterior of the unit circle.
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3.2 Conformal mapping

In this section, it will be our sole interest to construct a proper conformal mapping

which maps the exterior of a rectangle onto the exterior of a unit disk. For our

practical purposes, it suffices to consider the rectangles which lie entirely in the right

half of the extended complex plane and have symmetry with respect to the positive

real axis. Formally speaking, given a rectangle in z̃-plane whose vertices are a±ic and

b± ic where b > a > 0 and c > 0, we map the exterior of this rectangle conformally

onto |u| > 1. Some necessary preparations are needed before the construction.

Recall in Section 2.7 that the complete elliptic integrals K, K ′, E and E ′ are all

real functions of the parameter m ∈ (0, 1) or its complementary parameter m1 =

1−m. First we have the following lemma.

Lemma 3.2. For any 0 < α, β < +∞, there exists a unique m ∈ (0, 1) satisfying

E −m1K

β
=
E ′ −mK ′

α
, (3.7)

where K, K ′, E and E ′ are complete elliptic integrals as in (2.14), (2.15), (2.16) and

(2.17) in Section 2.7.

Proof. Let

f(m) := E −m1K = E(m)− (1−m)K(m)

be a function of m ∈ (0, 1). By the definition of K(m) and E(m) in Definition 2.17,

K(0) = π
2

and E(0) = π
2
, then

lim
m→0

f(m) = 0. (3.8)

Moreover, by (2.22),

lim
m→1

m1

[
K(m)− 1

2
ln

(
16

m1

)]
= 0,

and therefore

lim
m→1

m1K(m) = lim
m→1

m1 ln

(
16

m1

)
= lim

m1→0
m1 ln

(
16

m1

)
= 0.
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Again by the definition of E(m), E(1) = 1. Then

lim
m→1

f(m) = E(1)− lim
m→1

m1K(m) = 1. (3.9)

By (2.18) and (2.19), f(m) is differentiable in (0, 1) and

d

dm
f(m) =

K(m)

2
> 0.

So f is an increasing function of m over (0, 1). Now consider

g(m) :=
f(m)

f(1−m)
=

E(m)− (1−m)K(m)

E(1−m)−mK(1−m)
. (3.10)

By (3.8) and (3.9), g(m) is an increasing function of m over (0, 1) with

lim
m→0

g(m) = 0, lim
m→1

g(m) = +∞.

Then for any 0 < α, β < +∞, there exists a unique m ∈ (0, 1) such that g(m) = β
α

,

i.e., (3.7).

Now in the following three steps, we can construct the conformal mapping from

the exterior of the rectangle [a, b]× [−c, c] to the exterior of the unit circle.

• Step 1:

z = φ1(z̃) = z̃ − a+ b

2
(3.11)

shifts the original rectangle to a new rectangle with vertices ±α ± iβ, where

α = b−a
2

and β = c.

• Step 2: φ2 : z 7→ w is defined through an auxiliary variable σ by
z = α− i

λ
{E(σ|m)−m1σ}

w =
1− dn(σ|m)√
msn(σ|m)

(3.12)

where the parameter m is determined by (3.7), and λ is defined to be the ratio

in (3.7). φ2 maps the exterior of the rectangle [−α, α] × [−β, β] to the upper

half plane {Im(w) > 0}. This mapping was presented in [24]. It also shows that

the domain of σ is in the rectangle [−K,K] × [0, 2iK ′] in the complex plane,

where K and K ′ are complete elliptic integrals of the first kind in (2.14).
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• Step 3:

u = φ3(w) =
i+ w

i− w
(3.13)

maps {Im(w) > 0} onto {|u| > 1}.

Now let

Φ̃ := φ3 ◦ φ2 ◦ φ1 (3.14)

be the composition of the above three conformal mappings defined in (3.11), (3.12)

and (3.13). Then Φ̃ maps the exterior of the rectangle [a, b]× [−c, c] conformally onto

the exterior of the unit circle.

We denote by Cr in the z̃-plane the inverse image of |u| = r > 1 under Φ̃. In our

future discussion, we are particularly interested in the minimum of Re(z̃) in Cr for a

given r > 1. First we prove a lemma about the Jacobi elliptic functions. It is a direct

result of Proposition 2.20 and will be needed later.

Lemma 3.3. For u = x+ iy where −K < x < K and 0 < y < 2K ′,

sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))),

where cn and dn are Jacobi elliptic functions defined in (2.25) and (2.26).

Proof. By (2.32) and (2.33),

Im(cn(u|m)) =
sn(x|m)dn(x|m)sn(y|m1)dn(y|m1)

1− dn2(x|m)sn2(y|m1)

Im(dn(u|m)) =
m · sn(x|m)cn(x|m)sn(y|m1)

1− dn2(y|m)sn2(y|m1)
.

So,

sgn(Im(cn(u|m))) = sgn(Im(dn(u|m))) · sgn(cn(x|m) · dn(x|m) · dn(y|m1)) (3.15)

Write x = F (φ,m). When −K < x < K, we have φ ∈ (−π
2
, π

2
). So,

cn(x|m) = cosφ > 0. (3.16)
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By the definition of dn(u|m), for any x, y ∈ R,

dn(x|m) > 0, dn(y|m1) > 0. (3.17)

Applying (3.16) and (3.17) to (3.15), we conclude that the imaginary part of cn(u|m)

and that of dn(u|m) always share the same sign.

The following lemma shows that the minimum of Re(z̃) in Cr is attained at the

inverse of u = −r.

Lemma 3.4. Let Φ̃ : z̃ 7→ u be the conformal mapping from the exterior of the

rectangle [a, b] × [−c, c] onto the exterior of the unit disk, as defined in (3.14). Let

Ψ̃ : u 7→ z̃ be its inverse mapping and Cr be the image of |u| = r > 1 under Ψ̃. Then

min{Re(z̃) : z̃ ∈ Cr} = Ψ̃(−r).

Proof. By (3.11),

dz̃

dz
= 1. (3.18)

Here and below we will write sn, cn and dn in short of sn(σ|m), cn(σ|m) and dn(σ|m),

respectively. Recall the definition E(σ|m) =
∫ σ

0
dn2(z|m)dz, the identities sn2+cn2 ≡

1 and m · sn2 + dn2 ≡ 1, we have from (3.12) that

dz

dσ
= − i

λ
{dn2 − (1−m)} = − i

λ
{m−m · sn2} = − i

λ
·m · cn2. (3.19)

Note that By (2.28) and (2.30), we have d(dn)
dσ

= −m ·sn · cn and d(sn)
dσ

= cn ·dn. Then

by (3.12),

dw

dσ
=
−(−m · sn · cn) ·

√
m · cn− (1− dn) ·

√
m · cn · dn

m · sn2

=

√
m · cn · (m · sn2 − dn+ dn2)

m · sn2

=

√
m · cn · (1− dn)

1− dn2

=

√
m · cn

1 + dn
(3.20)
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By (3.12), w = iu−1
u+1

and then

dw

du
=

2i

(u+ 1)2
. (3.21)

Combining (3.18), (3.19), (3.20) and (3.21), we have

dz̃

du
=
dz̃

dz
· dz
dσ
· dσ
dw
· dw
du

= − i
λ
·m · cn2 · 1 + dn√

m · cn
· 2i

(u+ 1)2

=
2
√
m · cn(1 + dn)

λ(u+ 1)2
. (3.22)

By (3.13), we have

w2 = −(u− 1)2

(u+ 1)2
.

On the other hand, by (3.12),

w2 =
(1− dn)2

m · sn2
=

(1− dn)2

1− dn2
=

1− dn
1 + dn

.

So,

dn =
1− w2

1 + w2
=

(u+ 1)2 + (u− 1)2

(u+ 1)2 − (u− 1)2
=

1

2

(
u+

1

u

)
(3.23)

and hence

1 + dn =
(u+ 1)2

2u
. (3.24)

Applying (3.24) to (3.22), we have

dz̃

du
=

√
m · cn
λu

. (3.25)

Now let u be on the circle of radius r on the complex u-plane, then we can write

u = reiθ where −π < θ ≤ π, then

du

dθ
= reiθ · i = iu. (3.26)

Treating z̃ ∈ Cr as a function of θ, we have from (3.25) and (3.26) that

dz̃

dθ
=
i
√
m

λ
· cn(σ|m). (3.27)
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So

d(Re(z̃))

dθ
= Re

(
dz̃

dθ

)
= −
√
m

λ
Im(cn(σ|m)).

From (3.23) and u = r cos θ + ir sin θ, we write dn(σ|m) as a function of θ,

dn(σ|m) =
1

2

(
r +

1

r

)
cos θ +

i

2

(
r − 1

r

)
sin θ.

So Im(dn(σ|m)) < 0 when θ ∈ (−π, 0), and Im(dn(σ|m)) > 0 when θ ∈ (0, π].

By Lemma 3.3, the imaginary part of cn(σ|m) always has the same sign as that of

dn(σ|m). Thus, by (3.27), d(Re(z̃))
dθ

> 0 when θ ∈ (−π, 0), and d(Re(z̃))
dθ

< 0 when

θ ∈ (0, π]. The minimum value of Re(z̃) is attained when θ = π, i.e., u = −r.

Next, we find the explicit form for Ψ̃(−r) in Lemma 3.4.

Lemma 3.5. Let Φ̃ : z̃ 7→ u be the conformal mapping from the exterior of the

rectangle [a, b] × [−c, c] onto the exterior of the unit disk, as defined in (3.14). Let

Ψ̃ : u 7→ z̃ be its inverse mapping and Cr be the image of |u| = r > 1 under Ψ̃. Then

for any r > 1,

Ψ̃(−r) = a− 1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt,

where the parameters m and λ are determined by (3.7).

Proof. Before proving the lemma, we first recall in the construction of Φ̃ and its

inverse Ψ̃ in (3.14) that

Φ̃ = φ3 ◦ φ2 ◦ φ1

is the composition of the three conformal mappings defined in (3.11), (3.12) and

(3.13). In addition to this, we further denote the composition of two mappings by

Φ := φ3 ◦ φ2 (3.28)

and its inverse by Ψ. Then obviously

Ψ̃(−r) = φ−1
1 ◦Ψ(−r) (3.29)
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The proof of this lemma consists of two parts. First, we prove that for any r > 1,

Ψ(r) = α +
1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt. (3.30)

By (3.12) and (3.23), Φ: z ←→ σ ←→ u has an explicit form through the auxiliary

parameter σ that 
z(σ) = α− i

λ
{E(σ|m)−m1σ}

dn(σ|m) =
1

2

(
u+

1

u

) (3.31)

In (3.31), let u = r where r > 1. Then

dn(σ|m) =
1

2

(
r +

1

r

)
> 1. (3.32)

By Table 2.4, σ ∈ C is on the line segment connecting 0 and iK ′. Let

t = −i
√
m · sn(z|m), (3.33)

where z is on the line segment connecting 0 and σ. By Table 2.2, 2.3 and 2.4, sn(z|m)

is purely imaginary with positive imaginary part, cn(z|m) and dn(z|m) are both real

and positive. Then

m · sn2(z|m) = −t2,

m · cn2(z|m) = m−m · sn2(z|m) = m+ t2 =⇒
√
m · cn(z|m) =

√
m+ t2,

dn2(z|m) = 1−m · sn2(z|m) = 1 + t2 =⇒ dn(z|m) =
√

1 + t2.

By (3.33) and (2.28),

dt = −i
√
m · cn(z|m) · dn(z|m)dz,

then

dz =
dt

−i
√
m · cn(z|m) · dn(z|m)

=
dt

−i
√
m+ t2

√
1 + t2

.

By (3.32),

m · sn2(σ|m) = 1− dn2(σ|m) = −1

4

(
r − 1

r

)2

,
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then

√
m · sn(σ|m) =

i

2

(
r − 1

r

)
.

By (3.33), t moves along the positive real axis from 0 to 1
2

(
r − 1

r

)
, as z moves along

the positive imaginary axis from 0 to σ. Then

z(σ) = α− i

λ
{E(σ|m)−m1σ}

= α− i

λ

{∫ σ

0

dn2(z|m)dz −m1σ

}
= α− i

λ

∫ σ

0

m · cn2(z|m)dz

= α− i

λ

∫ 1
2(r− 1

r )

0

(m+ t2)
dt

−i
√
m+ t2

√
1 + t2

= α +
1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt.

So,

Ψ(r) = α +
1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt.

Secondly, we want to prove for any r > 1,

Ψ(−r) = −Ψ(r). (3.34)

In (3.31), let the auxiliary parameter σ and σ̃ be such that

Ψ(r)←→ σ ←→ r

Ψ(−r)←→ σ̃ ←→ −r

Then

dn(σ̃|m) =
1

2

(
−r +

1

−r

)
= −1

2

(
r +

1

r

)
= −dn(σ|m).

By (2.27), σ̃ = 2iK ′ − σ. Then by (2.23),

Ψ(−r) = z(σ̃) = z(2iK ′ − σ) = α− i

λ
{E(2iK ′ − σ|m)−m1(2iK ′ − σ)}

= α− i

λ
{2i(K ′ − E ′)− E(σ|m)− 2m1iK

′ +m1σ}
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= α− i

λ
{−2i(E ′ −mK ′)− [E(σ|m)−m1σ]}

= α− i

λ
{−2i · λα− [E(σ|m)−m1σ]}

= α− 2α +
i

λ
{E(σ|m)−m1σ}

= −α +
i

λ
{E(σ|m)−m1σ}

= −z(σ) = −Ψ(r).

Now we have by (3.29) that

Ψ̃(−r) =
a+ b

2
− α− 1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt

= a− 1

λ

∫ 1
2(r− 1

r )

0

√
m+ t2√
1 + t2

dt,

noting that α = b−a
2

.

3.3 A priori error bound

In this section, we derive a new a priori error bound for computing e−τAv with the

Arnoldi algorithm. Throughout this section, for the non-symmetric matrix A ∈ Rn×n,

we write 

a = min
i

{
λi

(
A+ AT

2

)}
= ν(A)

b = max
i

{
λi

(
A+ AT

2

)}
= µ(A)

c = max
i

{∣∣∣∣λi(A− AT2

)∣∣∣∣}
(3.35)

where λi(M), 1 ≤ i ≤ n are the eigenvalues of M . Then as in the proof of Proposition

2.7, we have the following lemma.

Lemma 3.6. The field of values of A is contained in the rectangle [a, b] × [−c, c],

where a, b and c are defined in (3.35).

Proof. Note that

x∗Ax = x∗
A+ A∗

2
x+ x∗

A− A∗

2
x,

38



where A+A∗

2
is Hermitian and A−A∗

2
is skew-Hermitian. Then

Re(x∗Ax) = x∗
A+ A∗

2
x ∈ [a, b]

Im(x∗Ax) = Im

(
x∗
A− A∗

2
x

)
∈ [−c, c].

Let Φ̃ be the conformal mapping from the exterior of the rectangle [a, b]× [−c, c]

to the exterior of unit disk and Ψ be its inverse mapping. The next theorem presents

a bound of eTk e
−tHke1, which is a key part in getting an a priori error bound. We

first prove a simple lemma about numerical range, which will be needed soon.

Lemma 3.7. Let Q ∈ Cn×k be an orthogonal matrix. Then

W (Q∗AQ) ⊆ W (A).

Proof. For any x ∈ Ck×1 with ||x||2 = 1, x∗Q∗AQx ∈ W (Q∗AQ). Let y = Qx ∈ Cn×1,

then ||y||2 = 1, since Q ∈ Cn×k is orthogonal. Therefore, x∗Q∗AQx = y∗Ay ∈

W (A).

The next theorem gives a bound of |h(t)| = |eTk e−tHke1|, which is a key part in

deducing our new a priori error bound. The same idea has been discussed in [6] by

Benzi and Golub, and used in [42] to achieve a new a priori bound for symmetric

matrices. For non-symmetric matrices, the techniques of the conformal mappings and

the Faber polynomials have been carried out in [3] and [32]. Here we will get a sharper

bound by constructing a new conformal mapping which captures more information

about the eigenvalue distribution of A.

Theorem 3.8. Let Φ be the conformal mapping defined in (3.14). Let f(z) = e−tz

and Hk be a k-by-k upper Hessenberg matrix. Let |h(t)| = eTk e
−tHke1 = [f(Hk)]k1 be

the (k, 1) entry of the matrix e−tHk . Then for any r > 1,

|h(t)| ≤ 2QM(r)

(
1
r

)k−1

1− 1
r

, (3.36)
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with the constant Q = 11.08, and

M(r) = max
z∈Cr
|f(z)| (3.37)

where Cr is the inverse image of Φ̃ under |u| = r.

Proof. Let {Φj} be the Faber polynomials generated by Φ̃. Since f is an analytic

function, it can be expanded as a series of Faber polynomials

f(z) =
∞∑
j=0

αjΦj(z).

Let

ΠN(z) =
N∑
j=0

αjΦj(z)

be the partial sums of the above series. By Theorem 2.14,

||f − ΠN ||∞ ≤ 2M(r)
(1
r
)N+1

1− 1
r

,

where M(r) = max
z∈Cr
|f(z)| and the total rotation V = 2π. Let Hk be the upper

Hessenberg matrix generated in the Arnoldi process. Then [p(Hk)]k1 = 0 for all

polynomials p of degree ≤ k − 2. Then for N ≤ k − 2,

|h(t)| = |[f(Hk)]k1| = |[f(Hk)]k1 − [ΠN(Hk)]k1|

≤ ||f(Hk)− ΠN(Hk)||2

≤ Q · sup
z∈W (Hk)

|f(z)− ΠN(z)|,

where W (Hk)is the field of values of Hk and the constant Q = 11.08 by Theorem 2.8.

Since Hk = V T
k AVk for an orthogonal Vk, by Lemma 3.7,

W (Hk) ⊆ W (A) ⊆ F ⊆ Cr,

we have

|h(t)| ≤ Q · ||f − ΠN ||∞.

Therefore,

|h(t)| ≤ 2QM(r)

(
1
r

)k−1

1− 1
r

.
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Now we can present the new a priori error bound for computing e−τAv with the

Arnoldi method.

Theorem 3.9. (A priori error bound) Assume that A ∈ Rn×n with ν(A) =

λmin
(
A+A∗

2

)
> 0, v ∈ Rn with ||v|| = 1. Let wk(τ) = Vke

−τHke1 in (3.3) be the

Arnoldi approximation to w(τ) = e−τAv in (3.1). Then for any 0 < q < 1, the

approximation error satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1

1− q
e−τ z̃, (3.38)

where

z̃ = a− 1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds, (3.39)

the parameters m and λ are determined in (3.7).

Proof. Since f(z) = e−tz with t > 0, |f(z)| has its maximum when z has the smallest

real part. Let q := 1
r

in (3.36). By Lemma 3.4 and Lemma 3.5, M
(

1
q

)
= e−tz̃ where

z̃ = a− 1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds.

Then apply (3.36) to the a posteriori error bound (3.4) in Theorem 3.1.

In observation of Theorem 3.9, the error depends on both the decay term qk−1 and

the exponential term e−τ z̃. Since e−τ z̃ ≤ 1 if z̃ ≥ 0, there is a threshold convergence

rate q when z̃ = 0, i.e., the error converges at the rate q no matter how large ||τA||

is. In the rest of this section, we will discuss this rate in two extreme cases. When

m ≈ 0, the matrix is close to symmetric and its eigenvalues lie close to the real axis.

When m ≈ 1, the eigenvalues lie close to a vertical line segment in the complex plane.

3.3.1. The case when A is close to symmetric (m ≈ 0)

Recall the function g(m) in (3.10). When m ≈ 0,

g(m) =
β

α
=

2c

b− a
≈ 0,
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where the field of values of A is contained in the rectangle [a, b]× [−c, c]. So the field

of values lies close to the real axis and therefore the matrix A is nearly symmetric.

We intend to get a threshold convergence rate at this extreme case and compare it

with the error bounds in [42].

Theorem 3.10. Under the assumptions of Theorem 3.9, and m ≈ 0, the approxima-

tion error satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1
0

1− q0

where

q0 =

√
κ− 1√
κ+ 1

+O(
√
m),

and κ = b
a
.

Proof. We want to find q such that z̃ in (3.39) is 0, by solving

aλ =

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds. (3.40)

By (2.20) and (2.21), E ′ = E(1 −m) and K ′ = K(1 −m) are both functions of m

and have the following expansions at m = 0

E ′ = E(m1) = E(1−m) = 1− 1

4
m lnm+O(m) (3.41)

K ′ = K(m1) = K(1−m) = −1

2
lnm+O(1) (3.42)

Then E ′ −mK ′ can be expanded at m = 0 as

E ′ −mK ′ = 1 +
1

4
m lnm+O(m).

Since α = b−a
2

,

λ =
E ′ −mK ′

α
=

2

b− a

(
1 +

1

4
m lnm

)
+O(m).

Then

aλ =
2a

b− a

(
1 +

1

4
m lnm

)
+O(m)
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=
2

κ− 1

(
1 +

1

4
m lnm

)
+O(m) (3.43)

where κ := b
a
. At the same time,

√
m+ s2

√
1 + s2

=
s√

1 + s2
+O(

√
m),

so ∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds =

∫ 1
2( 1

q
−q)

0

s√
1 + s2

ds+O(
√
m)

=
1

2

(
1

q
+ q

)
− 1 +O(

√
m). (3.44)

Equating the two sides of (3.40) with (3.43) and (3.44), we get

2

κ− 1
=

1

2

(
1

q
+ q

)
− 1 +O(

√
m).

For m sufficiently small, the equation has two real roots and the one smaller than 1

is

q =

√
κ− 1√
κ+ 1

+O(
√
m).

In an earlier paper [42] by Ye, it is shown that for a positive semi-definite matrix

A, the approximation error of the Lanczos method satisfies

||w(τ)− wm(τ)|| ≤ τ ||A||(
√
κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

,

where κ is the condition number of the matrix A. So the convergence is fast even

if the norm of τA is large, and the convergence rate q =
√
κ−1√
κ+1

is directly related to

the condition number κ. Theorem 3.10 shows that our new bound for non-symmetric

matrices agrees to the result in [42].

3.3.2 The case when A is close to skew-symmetric (m ≈ 1)

Similarly, when m ≈ 1,

g(m) =
β

α
=

2c

b− a
→ +∞,
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where the field of values of A is contained in the rectangle [a, b]× [−c, c]. So b−a ≈ 0

and the field of values lies close to a vertical line segment on the right half of the

complex plane. This will provide a good comparison with the error bound of eiτAv

for a symmetric A discussed in the next chapter.

Theorem 3.11. Under the assumptions of Theorem 3.9, and m ≈ 1, the approxima-

tion error satisfies

||w(τ)− wk(τ)|| ≤ 2Qτ ||A|| q
k−1
0

1− q0

where

q0 =
1√

µ2 + 1 + 1
+O(

√
1−m).

and µ = c
a
.

Proof. As in the previous case, z̃ = 0 in (3.39) implies that

aλ =

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds. (3.45)

Since m ≈ 1, the complementary parameter m1 := 1 −m ≈ 0. Now we expand the

equation above at m1 = 0. By (3.41) and (3.42),

E = E(m) = E(1−m1) = 1− 1

4
m1 lnm1 +O(m1)

K = K(m) = K(1−m1) = −1

2
lnm1 +O(1)

Expand E −m1K at m1 = 0, we have

E −m1K =

[
1− 1

4
m1 lnm1 +O(m1)

]
−m1

[
−1

2
lnm1 +O(1)

]
= 1 +

1

4
m1 lnm1 +O(m1)

Since β = c,

λ =
E −m1K

β
=

1

c

(
1 +

1

4
m1 lnm1

)
+O(m1).

Then

aλ =
E −m1K

β
=
a

c

(
1 +

1

4
m1 lnm1

)
+O(m1)

44



=
1

µ

(
1 +

1

4
m1 lnm1

)
+O(m1) (3.46)

where µ := c
a
. At the same time,

√
m+ s2

√
1 + s2

=

√
1 + s2 −m1√

1 + s2
= 1 +O(

√
m1).

So ∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds =
1

2

(
1

q
− q
)

+O(
√
m1). (3.47)

Equating two sides of (3.45) with (3.46) and (3.47),

1

µ
=

1

2

(
1

q
− q
)

+O(
√
m1).

The root smaller than 1 is

q =
1√

µ2 + 1 + 1
+O(

√
m1).

3.4 Optimized error bound

In the previous subsection, we analyzed the threshold convergence rates at two ex-

treme cases. In other words, the actual convergence rate at those two extreme cases

can be as good, if not better, as discussed above. In general, the threshold error rate

needs not to be optimal. Unfortunately, there is no simple formula for the value of q

that optimize the bound. Here we numerically find an optimal bound for convergence

rate by minimizing the overall bound. To find q that minimizes the bound, we define

E(q) :=
qk−1

1− q
e−τ z̃ (3.48)

where z̃ is as in Theorem 3.9. Then for each k, we look for q = q(k) which minimizes

E. Take derivative of E with respect to q,

dE

dq
=

(k − 1)qk−2(1− q)− qk−1(−1)

(1− q)2
e−τ z̃ +

qk−1

1− q
e−τ z̃(−τ)

dz̃

dq
.
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By (3.39), we have

z̃ = a− 1

λ

∫ 1
2( 1

q
−q)

0

√
m+ s2

√
1 + s2

ds.

Differentiating z̃ with respect to q,

dz̃

dq
= −1

λ

√
m+ 1

4

(
1
q
− q
)2

√
1 + 1

4

(
1
q
− q
)2

1

2

(
− 1

q2
− 1

)

=

√
m+ 1

4

(
1
q
− q
)2

λq
.

Then

dE

dq
= e−τ z̃

(k − 1)qk−2(1− q)− qk−1(−1)

(1− q)2
+
qk−1

1− q
(−τ)

√
m+ 1

4

(
1
q
− q
)2

λq


= e−τ z̃

qk−3

(1− q)2

[
(k − 1)q + (2− k)q2 − C(1− q)

√
(1− q2)2 + 4mq2

]
,

where C = τ
2λ

. Setting dE
dq

= 0 and solving for q,

(k − 1)q + (2− k)q2 − C(1− q)
√

(1− q2)2 + 4mq2 = 0. (3.49)

Let

h(q) := (k − 1)q + (2− k)q2 − C(1− q)
√

(1− q2)2 + 4mq2.

Then h(0) = −C < 0 and h(1) = 1 > 0. Thus there exists a q ∈ (0, 1) such that

h(q) = 0. Since the error E → ∞ as q → 0, we can take q to be the smallest real

root of (3.49) in (0, 1) and the error (3.48) will be locally minimized at q.

3.5 Numerical examples

In this section, we present several numerical examples to demonstrate the error

bounds obtained in this chapter. All numerical tests were carried out on a PC with an

Intel Core 2 Duo P8400 in MATLAB (R2013b) with the machine precision ≈ 2e−16.
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We will construct several testing matrices and plot the approximation error against

our new a posterior bound (3.4), a priori bound (3.38). In our a posteriori bound,

we need to compute max
0≤t≤τ

|h(t)| where h(t) = eTk e
−tTke1. It can be approximated

by its maximum at some densely distributed discrete points, i.e., max
0≤t≤τ

|h(t)| ≈

max{|h( i
N
τ)| : 0 ≤ i ≤ N} where N is some large positive integer, say 1000. We also

plot the classical bound by Saad for comparison

||w(τ)− wk(τ)|| ≤ 2

k!
(τ ||A||)k. (3.50)

The first test is on a randomly generated non-symmetric matrix. We want to show

how the norm of τA affect the convergence of the Arnoldi method and the comparison

of our bounds with (3.50) when τ is relatively large.

Example 1. Let A be a 1000× 1000 dense non-symmetric matrix whose elements

are uniformly distrubuted in (0, 1). Then A is scaled such that ||A||2 = 1. Let v be a

1000×1 random vector with ||v||2 = 1. We apply 100 iterations of the Arnoldi method

to A and v, to compute w(τ) = e−τAv, for various values of τ = 2, 5, 10, 20, 50, 100.

In Figure 3.1, we plot against the iteration number k the actual error ||w(τ)−wk(τ)||

in the solid line, the a posteriori error bound (3.4) in the +-line, the a priori error

bound (3.38) in the dashed line and Saad’s classical bound (3.50) in the x-line.

From Figure 3.1 we observe that when τ is small (τ = 2, 5), our new a priori

bound and the classical bound of Saad are comparable. In this case, the convergence

of the Arnoldi method is attributed to the small norm of τA. As τ increases, our

new bound is proved to be much better than Saad’s bound. For τ = 50, our bound

still follows the actual error while Saad’s classical bound increases out of range of the

figure. For all cases in Figure 3.1, our a posteriori error bound follows the actual

error very closely.

In the following example, we will compare our new a priori bound (3.38) with the

error bound obtained by Hochbruck and Lubich [22]. Theorem 5 in [22] states that if

A is a matrix whose field of values is contained in the disk |z− ρ| < ρ in the complex

plane, then the error of Vke
−τHke1 for approximating e−τAv satisfies

||e−τAv − Vke−τHke1|| ≤ 12e−ρτ
(eρτ
k

)k
, (3.51)
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Figure 3.1: Example 1. 1000 × 1000 uniformly random matrix. τ =
2, 5, 10, 20, 50, 100. Error (solid), a posteriori bound (+), a priori bound (dashed),
Saad’s bound (x).

for k ≥ 2ρτ .

Example 2. Given a rectangle [a, b]× [−c, c] in the complex plane where a, b and

c are all positive real numbers. We set up an evenly distributed N × N lattice in

[a, b] × [−c, c]. To be precise, counting from the top left corner, the (l, j)-th node is
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specified by the complex number a + (l−1)(b−a)
N−1

+ i
(
c− 2(j−1)c

N−1

)
, where 1 ≤ l, j ≤ N

and i is the imaginary unit. We want to construct a matrix A which has an eigenvalue

at each nodes of the lattice. Since the lattice is symmetric with respect to the real

axis, for each conjugate pair of eigenvalues, we have a 2× 2 block

B =

 x y

−y x


with eigenvalues x ± iy for real x and y. Then let A be N2 × N2 block diagonal

matrix with diagonal blocks like B. Then the eigenvalues of A fill the lattice in the

rectangle [a, b]× [−c, c]. Also note that by this construction, A is a normal matrix so

the field of values of A is the convex hull of its eigenvalues, i.e., the field of values of

A is also contained in the rectangle [a, b]× [−c, c].

In this numerical test, we want to compare our a priori bound with Hochbruch and

Lubich’s bound (3.51). So we take ρ = 1 and consider the disk |z− 1| < 1 containing

the field of values. We choose the square [1−
√

2
2
, 1 +

√
2

2
]× [−

√
2

2
,
√

2
2

] enclosed in the

circle |z− 1| < 1 and construct a matrix A in the ways described above such that the

eigenvalues of A form a 31×31 lattice in [1−
√

2
2
, 1 +

√
2

2
]× [−

√
2

2
,
√

2
2

]. We use various

values of τ = 10, 20, 30, 40. We apply 120 Arnoldi iterations to compute e−τAv where

v is a random normalized vector. In Figure 3.2, we plot against the iteration number

the actual error ||w(τ)−wk(τ)|| in the solid line, the a posteriori bound (3.4) in the

+-line, the a priori bound (3.38) in the dashed line, Saad’s bound (3.50) in the x-line

and Hochbruch and Lubich’s bound (3.51) in the dash-dotted line.

We observe from Figure 3.2 that when τ is relatively small (τ = 10, 20), our

new a priori bound is comparable to the bound by Hochbruch and Lubich. As

τ increases, our new a priori improves Hochbruch and Lubich’s bound by several

orders of magnitude. For the case when τ = 40, the actual error ||w(τ)−wk(τ)|| first

stagnates for certain iterations before it starts to converge and our a priori bound

captures the same behavior while Hochbruch and Lubich’s bound is pessimistic.

In the previous example, we constructed the matrix A such that the field of values

is contained in a square rectangle. In our discussion in this chapter, we have shown
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Figure 3.2: Example 2. Field of values in |z−1| < 1. τ = 10, 20, 30, 40. Error (solid),
a posteriori bound (+), a priori bound (dashed), Saad’s bound (x), Hochbruck and
Lubich’s bound (dash-dotted).

that the convergence rate depends on the shape of the rectangle, and the shape is

determined by the parameter m in (3.7).

Example 3. In this example, we will manipulate the shape of the rectangle by

taking different m in (3.7) and check how the actual convergence is related to the

spectral information. For a given parameter m ∈ (0, 1), we determine the dimensions

of the rectangle α and β by

α = E ′ −mK ′, β = E −m1K.

Then using the same technique we introduced in Example 2, we can construct a

matrix whose field of values is contained in the rectangle [0, 2α] × [−β, β]. We will

use various parameters m ∈ {0.01, 0.1, 0.9, 0.99}. Note from Section 3.3 that m ≈ 0

means the matrix is close to symmetric, and that m ≈ 1 means the matrix is close
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to a skew-Hermitian matrix with a real spectral shift. We pick τ = 30 to give τA a

moderate norm. In Figure 3.3 we plot the actual error ||w(τ) − wk(τ)|| in the solid

line, the a posteriori bound (3.4) in +-line, the a priori bound (3.38) in the dashed

line and the bound by Saad (3.50) in the x-line.
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Figure 3.3: Example 3. Top two plots: m = 0.01, 0.1 where A is close to symmet-
ric. Bottom two plots: m = 0.9, 0.99 where A is close to shifted skew-symmetric.
Error(solid), a posteriori bound (+), a priori bound (dashed), Saad’s bound (x).

Figure 3.3 shows that the convergence of the error ||w(τ) − wk(τ)|| is related to

m, i.e., the eigenvalue distribution of A. The top two plots show that for a smaller m

when the eigenvalues lie close to the real axis, the convergence is faster. The bottom

plots show that when the eigenvalues of A have a large imaginary part, the error will

not converge in the first few iterations. Compared to the classical bound by Saad,

our new bound describes this behavior in a much better way.

In our final example, we consider the finite-difference discretization of the convec-
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tion diffusion operator

−4u+ ux + uy = λu, (3.52)

where (x, y) ∈ [0, 1]2.

Example 4. Let A be the finite-difference discretization of (3.52) in a 20× 20 grid

in (0, 1)2. Then ||A||2 ≈ 8. Let v be a random vector with ||v||2 = 1 and we compute

the matrix exponential w(τ) = e−τAv. We use various values of τ = 2, 5, 10, 20, 50, 100

and apply 100 Arnoldi iterations to A and v and the results are presented in Figure

3.4 with the actual error ||w(τ) − wk(τ)|| in the solid line, the a posteriori bound

(3.4) in the +-line, the a priori bound (3.38) in the dashed line and Saad’s bound

(3.50) in the x-line.

We observe that for τ = 2, our a priori bound is already a significant improvement

on the classical bound by Saad. For even larger values of τ , Saad’s bound is very

pessimistic due to the large norm of τA, while our a priori bound still follows the

actual error. For the case when τ = 100, i.e. τ ||A||2 ≈ 800, our a priori bound

converges slowly. Again in all the cases, our a posteriori bound remains sharp.

Copyright c© Hao Wang, 2015.
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Figure 3.4: Example 4. τ = 2, 5, 10, 20, 50, 100. Error(solid), a posteriori bound
(+), a priori bound (dashed), Saad’s bound (x).
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Chapter 4 Error bounds for computing eiτAv

In this chapter, we will discuss the error bounds for computing w(τ) = eiτAv with

the Lanczos method, where A is a real symmetric matrix, v is a real normalized

vector, τ is a real scalar and i is the imaginary unit. It can be treated as a special

case of the computation of e−τAv for a non-Hermitian positive semi-definite A. One

application of this is in the time-dependent Schrödinger equation (TDSE) for the

N-electron wavefunction Ψ(r1, · · · , rN) which satisfies

i
∂

∂t
Ψ(r1, · · · , rN ; t) = [H0(r1, · · · , rN) + V (r1, · · · , rN ; t)] Ψ(r1, · · · , rN ; t)

where H0(r1, · · · , rN) is the field-free Hamiltonian containing the kinetic energy of

the N electrons, and V (r1, · · · , rN ; t) represents the interaction of the electrons with

the eletromagnetic field.

We will take the same path as in the previous chapter for the computation of

e−τAv. The approximation error is firstly related to one entry of the exponential

of a tridiagonal matrix, from which we can get an a posteriori error bound. The

decay property of that entry is then fully studied to achieve an a priori error bound.

This bound will be numerically optimized in the consequent section to describe the

behavior of the actual convergence of the Lanczos method. Numerical examples are

presented at the end of the chapter.

4.1 A posteriori error bound

Assume that A is an n-by-n real symmetric matrix, v is an n-dimensional real nor-

malized vector and τ > 0 is a scalar. We consider the computation of

w(τ) := eiτAv. (4.1)

The following Lanczos method is applied to A and v.
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Algorithm 4.1. (Lanczos Algorithm)

1. Initialize:

• v1 ← v

• v0 ← 0

• β1 ← 0

2. Iterate: for j = 1, 2, · · · , k − 1

a) wj ← Avj

b) αj ← wj · vj

c) wj ← wj − αjvj − βjvj−1

d) βj+1 ← ||wj||

e) vj+1 ← wj/βj+1

end for

3. wk = Avk

4. αk = wk · vk

return

After k iterations, the Krylov subspace

Kk+1(A, v) = span{v,Av,A2v, · · · , Akv}

is generated with an orthonormal basis {v1, v2, · · · , vk, vk+1}. Let Vk = [v1, v2, · · · , vk]

be the n-by-k orthogonal matrix whose columns form the orthonormal basis of the

Krylov subspace Kk, then there exists an k-by-k tridiagonal matrix Tk such that

AVk = VkTk + βk+1vk+1e
T
k , (4.2)
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where ek ∈ Rn is the k-th coordinate vector. We can use VkV
T
k e

iτAv as the best

approximation to eiτAv from the Krylov subspace Kk(A, v), since it is the orthogonal

projection of eiτAv on Kk(A, v). Applying the orthogonality of Vk to (4.2), we have

V T
k AVk = V T

k VkTk + βk+1V
T
k vk+1e

T
k = Tk,

then

VkV
T
k e

iτAv = VkV
T
k e

iτAVke1 ≈ Vke
iτV Tk AVke1 = Vke

iτTke1.

We now call

wk(τ) := Vke
iτTke1 (4.3)

the Lanczos approximation to w(τ) in (4.1). The following theorem relates the Lanc-

zos approximation error to the (k, 1) entry of the matrix eitTk and therefore serves as

an a posteriori error bound. It is the first main result of this chapter.

Theorem 4.2. (A posteriori error bound) Assume that A is an n-by-n real

symmetric matrix, v is a n-dimensional real vector with ||v|| = 1. The orthogonal

matrix Vk ∈ Rn×k and tridiagonal matrix Tk ∈ Rk×k are generated in the Lanczos

process satisfying (4.2). Let wk(τ) = Vke
iτTke1 in (4.3) be the Lanczos approximation

to w(τ) = eiτAv in (4.1). Then the approximation error satisfies

||w(τ)− wk(τ)|| ≤ βk+1

∫ τ

0

|h(t)|dt (4.4)

≤ τβk+1 max
0≤t≤τ

|h(t)|,

where

h(t) := eTk e
itTke1 (4.5)

is defined as the (k, 1) entry of the matrix eitTk .

Proof. First, w(t) = eitAv, then w′(t) = iAeitAv = iAw(t). Since wk(t) = Vke
itTke1,

we have

w′k(t) = iVkTke
itTke1
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= i(AVk − βk+1vk+1e
T
k )eitTke1

= iAVke
itTke1 − iβk+1vk+1e

T
k e

itTke1

= iAwk(t)− iβk+1h(t)vk+1,

where h(t) = eTk e
itTke1. Let Ek(t) := w(t)− wk(t) be the approximation error, then

E ′k(t) = w′(t)− w′k(t)

= iAw(t)− (iAwk(t)− iβk+1h(t)vk+1)

= iAEk(t) + iβk+1h(t)vk+1.

Now we solve the ordinary differential equation with the initial condition

Ek(0) = w(0)− wk(0) = v − Vke1 = 0,

then

Ek(τ) = iβk+1

∫ τ

0

h(t)ei(τ−t)Avk+1dt.

Since ||eiA|| = 1 for any real matrix A, we have the a posteriori error bound

||Ek(τ)|| ≤ βk+1

∣∣∣∣∣∣∣∣∫ τ

0

h(t)ei(τ−t)Avk+1dt

∣∣∣∣∣∣∣∣
≤ βk+1

∫ τ

0

|h(t)| · ||ei(τ−t)A|| · ||vk+1||dt

= βk+1

∫ τ

0

|h(t)|dt

≤ τβk+1 max
0≤t≤τ

|h(t)|.

To get an a priori error bound from Theorem 4.2, we need a bound of |h(t)|

in (4.5). It is based on the decay properties of functions of banded matrices. To

be precise, we will consider the analytic function f(z) = etz and B = iTk, then

h(t) = [f(B)]k1. In the next section, we will use the Faber polynomials discussed in

Section 2.6 to approximate the function f(z).
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4.2 A priori error bound

For the real symmetric matrix A, all of its eigenvalues are real. Let a and b be the

smallest and the largest eigenvalues of A, respectively. Then σ(Tk), the spectrum of

Tk, is contained in the interval [a, b] on the real axis, where Tk is obtained in (4.2).

Write B = iTk, then the spectrum σ(B) ⊆ {z = iλ : λ ∈ [a, b]}.

Let the set E := {z = iλ : λ ∈ [a, b]}. We are looking for a conformal mapping

Φ which maps the exterior of E to the exterior of |w| = ρ for some ρ, satisfying the

normalization condition (2.9). This can be done in the following four successive steps.

• Step 1:

z1 = φ1(z) = −iz (4.6)

maps the exterior of E to the exterior of [a, b].

• Step 2:

z2 = φ2(z1) =
2

b− a

(
z1 −

a+ b

2

)
(4.7)

maps the exterior of [a, b] to the exterior of [−1, 1].

• Step 3:

z3 = φ3(z2) = z2 +
√
z2

2 − 1 (4.8)

maps the exterior of [−1, 1] to {|z3| > 1}. Note that we choose the branch of
√
z2 − 1 such that lim

z 7→∞

√
z2−1
z

= 1.

• Step 4:

w = φ4(z3) =
i(b− a)

4
z3 (4.9)

maps {|z3| > 1} to {|w| > b−a
4
}.

Let

Φ := φ4 ◦ φ3 ◦ φ2 ◦ φ1 (4.10)
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be the composition of the above four mappings, where φ1, φ2, φ3 and φ4 are defined

in (4.6), (4.7), (4.8) and (4.9), respectively. Then Φ : z 7→ w will map the exterior of

E to {|w| > b−a
4
} conformally. We further verify that Φ satisfies the normalization

condition (2.9) that

Φ(∞) =∞, lim
z→∞

Φ(z)

z
= 1.

Therefore Φ is eligible for the construction of the Faber polynomials and the loga-

rithmic capacity

ρ =
b− a

4
. (4.11)

The following construction process of the Faber polynomials is similar to that in

Example 2.13. First,

[Φ(z)]k = (iρz3)k = (iρ)k
(
z2 +

√
z2

2 − 1

)k
.

Same as in Example 2.13, since the Laurent expansion at ∞ of(
z2 −

√
z2

2 − 1

)k
contains no non-negative powers of z2,(

z2 +
√
z2

2 − 1

)k
has the same non-negative powers as(

z2 +
√
z2

2 − 1

)k
+

(
z2 −

√
z2

2 − 1

)k
.

Furthermore,

z2 =
2

b− a

(
z1 −

a+ b

2

)
=

2

b− a

(
−iz − a+ b

2

)
,

is a linear function of z, so the non-negative powers of z can only be produced from

those of z2. Then the Faber polynomials in z, i.e., the non-negative powers of the

expansion of [Φ(z)]k are

Φk(z) = (iρ)k

[(
z2 +

√
z2

2 − 1

)k
+

(
z2 −

√
z2

2 − 1

)k]
.

59



Since z2 ∈ [−1, 1], let z2 = cos(θ) where θ ∈ [0, 2π). Then

Φk(z) = (iρ)k
[
(cos(θ) + i sin(θ))k + (cos(θ)− i sin(θ))k

]
= 2(iρ)k cos(kθ).

So the norm of the Faber polynomials

||Φk||∞ = 2ρk, (4.12)

where the logarithmic capacity ρ is already determined in (4.11).

Now we can present the new a priori error bound for computing w(τ) = eiτAv

with the Lanczos method.

Theorem 4.3. (A priori error bound) Assume that A is an n-by-n real symmetric

matrix, v is a n-dimensional real vector with ||v|| = 1. The orthogonal matrix Vk ∈

Rn×k and tridiagonal matrix Tk ∈ Rk×k are generated in the Lanczos process satisfying

(4.2). Let wk(τ) = Vke
iτTke1 in (4.3) be the Lanczos approximation to w(τ) = eiτAv

in (4.1). Then, for any 0 < q < 1, the approximation error satisfies

||w(τ)− wk(τ)|| ≤ 8b

b− a
qk

(1− q)(1− q2)
e
τ(b−a)

4 ( 1
q
−q), (4.13)

where a and b are the smallest and the largest eigenvalues of A, respectively.

Proof. First recall (4.4) and (4.5) in Theorem 4.2 that

||w(τ)− wk(τ)|| ≤ βk+1

∫ τ

0

|h(t)|dt,

where

h(t) = eTk e
itTke1.

Now consider the analytic function f(z) = etz and B = iTk, then h(t) = [f(B)]k1. Let

E = {z = iλ : λ ∈ [a, b]} be the compact set containing the spectrum σ(B) and Φ be

defined as in (4.10). By (2.10) and (2.11), the Faber polynomials {Φj} are generated

and f can be expanded as

f(z) =
∞∑
j=0

αjΦj(z)

60



with the partial sum

ΠN(z) =
N∑
j=0

αjΦj(z).

By (2.12), the coefficients αj satisfies

|αj| ≤
M(R)

Rj
,

where

M(R) = max
z∈CR

|f(z)|

and CR is the inverse image of Φ under |w| = R. Since f(z) = etz is an analytic

function, for any R > ρ, the polynomial approximation error satisfies

|f(z)− ΠN(z)| =

∣∣∣∣∣
∞∑

j=N+1

αjΦj(z)

∣∣∣∣∣
≤

∞∑
j=N+1

|αj| · ||Φj||∞

≤
∞∑

j=N+1

M(R)

Rj
· 2ρj

= 2M(R)
∞∑

j=N+1

( ρ
R

)j
= 2M(R)

(
ρ
R

)N+1

1− ρ
R

.

It is observed that B = iTk is an k × k tridiagonal matrix, so [ΠN(B)]k1 = 0 for

N ≤ k − 2. Then the decay entry

|[f(B)]k1| = |[f(B)]k1 − [ΠN(B)]k1|

≤ ||f(B)− ΠN(B)||2

= max
z∈σ(B)

|f(z)− ΠN(z)|

≤ ||f − ΠN ||∞

≤ 2M(R)

(
ρ
R

)N+1

1− ρ
R
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≤ 2M(R)

(
ρ
R

)k−1

1− ρ
R

.

Let the convergence rate q := ρ
R
< 1 with ρ = b−a

4
in (4.11). So,

|h(t)| = |[f(B)]k1| ≤ 2M(R)
qk−1

1− q
(4.14)

Our next objective is to find the explicit form of z for |w| = R. Let w = Reiθ where

θ ∈ [0, 2π), then

z3 =
w

iρ
=
Reiθ

iρ
=
eiθ

iq
,

z2 =
1

2

(
z3 +

1

z3

)
=

1

2

(
eiθ

iq
+
iq

eiθ

)
= − i

2

[(
1

q
− q
)

cos θ + i

(
1

q
+ q

)
sin θ

]
,

z1 =
b− a

2
z2 +

b+ a

2
=

[
b− a

4

(
1

q
+ q

)
sin θ +

b+ a

2

]
− i
[
b− a

4

(
1

q
− q
)

cos θ

]
,

z = iz1 =
b− a

4

(
1

q
− q
)

cos θ + i

[
b− a

4

(
1

q
+ q

)
sin θ +

b+ a

2

]
.

Moreover, for f(z) = etz where z = u+ iv with u, v ∈ R, we notice that

M(R) = max
z∈CR

|etz| = max
z∈CR

|etu|.

In order to get the maximum of the real part of z, we take θ = 0. Therefore

u =
b− a

4

(
1

q
− q
)

and immediately

M(R) = e
t(b−a)

4 ( 1
q
−q). (4.15)

Applying (4.15) to (4.14), we have

|h(t)| ≤ 2qm−1

1− q
e
t(b−a)

4 ( 1
q
−q). (4.16)

By noting that βm+1 ≤ ||A|| = b and applying (4.16) in the a posteriori error bound

(4.4) in Theorem 4.2, we have the following a priori error bound

||w(τ)− wk(τ)|| ≤ b

∫ τ

0

2qk−1

1− q
e
t(b−a)

4 ( 1
q
−q)dt

=
8b

b− a
qk

(1− q)(1− q2)

(
e
τ(b−a)

4 ( 1
q
−q) − 1

)
≤ 8b

b− a
qk

(1− q)(1− q2)
e
τ(b−a)

4 ( 1
q
−q).
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4.3 Optimized error bound

In observation of the a priori error bound (4.13) in Theorem 4.3, for a fixed τ and A,

the magnitude of the approximation error depends on two contributing factors: the

decay term qk and the exponential term e
τ(b−a)

4 ( 1
q
−q). In this section, we will optimize

the a priori error by treating it as a function of the convergence rate q. Before stating

the result, we first give a lemma which will later serve as a part of the proof.

Lemma 4.4. Given any C > 0 and a polynomial of q

f(q) = Cq4 + (3− k)q3 + q2 + kq − C, (4.17)

there exists a unique real q0 ∈ (0, 1) such that f(q0) = 0. Furthermore, f(q) < 0 in

the interval (0, q0), and f(q) > 0 in the interval (q0, 1).

Proof. Note that

f(0) = −C < 0

f(1) = C + 3− k + 1 + k − C = 4 > 0.

By the continuity and the degree of the polynomial f , the graph of f intersects (0, 1)

either once or three times. Now assume that there are three real roots in (0, 1). Since

all the coefficients of f are real, the fourth root of f is also real. Note again that

f(0) < 0 and lim
q 7→−∞

f(q) = −∞. Then all four roots of f are positive. However, the

product of all roots of f is equal to −C
C

= −1. This contradiction implies that f has

exactly one real root q0 within (0, 1). Again by the fact that f(0) < 0 and f(1) > 0,

the continuity of f implies that f(q) < 0 in (0, q0) and f(q) > 0 in (q0, 1).

Now we can state the main result of this section.

Theorem 4.5. (Optimized error bound) Under the assumptions of Theorem 4.3,

we have

||w(τ)− wk(τ)|| ≤ 8b

b− a
qk0

(1− q0)(1− q2
0)
e
C
(

1
q0
−q0

)
, (4.18)

where q0 = q0(k) is the root of (4.17), with C := τ(b−a)
4

.
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Proof. Considering the a priori error bound (4.13), we let

E(q) =
qk

(1− q)(1− q2)
eC( 1

q
−q), (4.19)

where C = τ(b−a)
4

. Then in each step of the Lanczos process with different k, it

is possible to find q0 = q0(k) which minimizes E(q). Take derivative of E(q) with

respect to q,

dE

dq
=

qk−1

(1− q)3(1 + q)2

[
(3− k)q2 + q + k

]
eC( 1

q
−q) − qk

(1− q)2(1 + q)

C(1 + q2)

q2
eC( 1

q
−q)

= eC( 1
q
−q) qk−2

(1− q)3(1 + q)2

[
Cq4 + (3− k)q3 + q2 + kq − C

]
.

Setting dE
dq

= 0 and solving for q, we have

Cq4 + (3− k)q3 + q2 + kq − C = 0.

By Lemma 4.4, there exists a unique solution q0 of the equation (4.17) and it is where

the overall error E(q) attains its minimum over the interval (0, 1).

In observation of the polynomial in Theorem 4.5, the optimized convergence rate

q0, treated as a function of the iteration number k, will be close to 1 for small values

of k. This implies that the convergence will be slow at the first steps of the Lanczos

iterations, and the actual convergence does not begin until q0 starts to take a fairly

small value. So it is illustrative to figure out approximately at which step of the

Lanczos process does the convergence actually begin. To achieve that, we use an

adjusted version of (4.19) as

Es(q) = qkeC( 1
q
−q). (4.20)

Here Es(q) is constructed to behave the same as E(q) does when q is away from 1,

and simple enough to work on. Since our sole interest here is to find out when E(q)

takes its minimum at a fairly small q, the simpler version Es(q) will serve this purpose

well. Differentiate Es with respect to q,

dEs
dq

= kqk−1eC( 1
q
−q) + qkeC( 1

q
−q)C

(
− 1

q2
− 1

)
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= eC( 1
q
−q)qk−2

[
−Cq2 + kq − C

]
,

and the discriminant of the quadratic −Cq2 + kq − C is ∆ = k2 − 4C2. So only for

large values of k, or to be precise when k >> 2C, the equation −Cq2 + kq − C = 0

has a root q = k−
√
k2−4C2

2C
away from 1. So the actual convergence process does not

begin until approximately at step k = 2C. We mark this observation here and it will

be verified by numerical tests in the next section.

Corollary 4.6. The actual convergence of the Lanczos process for the computation of

w(τ) = eiτAv starts approximately at the iteration number k = 2C, where C = τ(b−a)
4

.

A similar result was presented in an earlier paper [22, Theorem 4]. If A is a skew-

Hermitian matrix with its eigenvalues in an interval on the imaginary axis of length

4ρ, then the error of the Arnoldi approximation of eτAv is bounded by

εk ≤ 12e
−(ρτ)2

k

(eρτ
k

)k
, k ≥ 2ρτ. (4.21)

Now we compare the bounds (4.18) and (4.21). Since C = τ(b−a)
4

= ρτ , the bound

(4.21) is equivalent to

εk ≤ 12e−
C2

k

(
eC

k

)k
, k ≥ 2C.

Let q = C
k

in our new a priori error bound (4.13). With the constraint k ≥ 2C, we

have q ≤ 1
2
. So

||w(τ)− wk(τ)|| ≤
4
(
C
k

)k
(1− 1

2
)(1− 1

2
)2
eC( kC−

C
k )

=
32

3
e−

C2

k

(
eC

k

)k
≤ 12e−

C2

k

(
eC

k

)k
.

So the a priori error bound (4.13) presented in Theorem 4.3 for one particular q = C
k

is

sharper than the bound (4.21). With the optimization in Theorem 4.5, the optimized

error bound (4.18) is expected to be even better than the bound (4.21).
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4.4 Numerical examples

In this section, we present several numerical examples to demonstrate the error

bounds obtained throughout this chapter. All numerical tests were carried out on a

PC with an Intel Core 2 Duo P8400 in MATLAB (R2013b) with the machine precision

≈ 2e− 16.

We will construct diagonal and random matrices in our numerical tests and com-

pare the approximation error ||w(τ)−wk(τ)|| with our new a posteriori error bound

(4.4) and a priori error bound (4.18). In our a posteriori error bound, we need to

compute max
0≤t≤τ

|h(t)| where h(t) = eTk e
itTke1. It can be approximated by its maximum

at some densely distributed discrete points, i.e., max
0≤t≤τ

|h(t)| ≈ max{|h( i
N
τ)| : 0 ≤ i ≤

N} where N is some large positive integer, say 1000. We will also plot the classical

bound by Saad for comparison

||w(τ)− wk(τ)|| ≤ 2

k!
(τ ||A||)k . (4.22)

In the first example, we construct a diagonal matrix A such that the eigenvalues

are evenly distributed in the interval [0, 1]. We want to illustrate the influence of

the spectral gap (difference between the smallest and the largest eigenvalues) on the

convergence of the Lanczos method.

Example 1. Let A be an n × n diagonal matrix whose j-th diagonal entry is

j/n. Let v be a random n × 1 normalized vector. Then ||A|||2 = 1 and the spectral

gap λmax(A) − λmin(A) is approximately 1. We apply k iterations of the Lanczos

method to compute w(τ) = eiτAv. We will test various values of τ and compare the

approximation error ||w(τ) − wk(τ)|| with our new bounds as well as the classical

bound of Saad (4.22). We plot them against the iteration number k with the error in

the solid line, the a posteriori error bound (4.4) in the +-line, the optimized a priori

error bound (4.18) in the dashed line and Saad’s bound (4.22) in the x-line.

In this test, we take the size n = 1000 and the iteration number k = 100. We

present the results for τ = 2, 5, 10, 20, 50, 100 in Figure 4.1. We observe that when

τ is relatively small (τ = 2), the classical bound of Saad and our a priori bound

are comparable. When τ = 10, our bound is already much better than the classical
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Figure 4.1: Example 1. 1000 × 1000 diagonal matrix with ajj = j/1000. τ =
2, 5, 10, 20, 50, 100. Error (solid), a posteriori bound (+), a priori bound (dashed),
Saad’s bound (x).

bound of Saad. For τ > 50, Saad’s bound increase dramatically while our bound

follows the actual error quite closely. Also note that for all cases, our a posteriori

bound follows the actual convergence closely.

In addition, these tests show that the approximation error ||w(τ) − wk(τ)|| first
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stagnates for certain number of iterations before it starts to converge. In the last sec-

tion, we deduce that the convergence will not start until the iteration number k = 2C,

where C = τ(b−a)
4

, and a, b are the smallest and the largest eigenvalues of A, respec-

tively. For τ = 2, 5, 10, 20, 50, 100, the corresponding k should be 1, 2.5, 5, 10, 25

and 50, respectively. They basically match our observations in Figure 4.1, especially

when τ is relatively large and more iterations are needed for the convergence.

The above example shows that for different values of τ , the spectral gap of τA

affects the error of eiτAv dramatically, and the starting time of convergence depends

on this spectral gap. In our next example, we want to keep the same spectral gaps

of τA while altering the eigenvalue distributions of A. Our tests show that our new

a posteriori bound is still very sharp while the a priori bound is less optimistic.

Example 2. The construction of A is similar to that in Example 1. Let A be

an n × n diagonal matrix whose j-th diagonal entry if 1/j. Let v be a random n-

dimensional normalized vector. We want to compute w(τ) = eiτAv by applying k

iterations of the Lanczos method to A and v. We will choose various values of τ and

plot the actual error ||w(τ)−wk(τ)|| in the solid line, the a posteriori bound (4.4) in

the +-line, the optimized a priori bound (4.18) in the dashed line and Saad’s bound

(4.22) in the x-line.

In this test, we take the size n = 1000 and the iteration number k = 100. We also

use the same values of τ = 2, 5, 10, 20, 50, 100 so that we can have the same spectral

gaps as in Example 1. The results are presented in Figure 4.2. The observations of

Figure 4.2 are similar to those of Example 1. This similarity is expected since our new

a priori bound (4.18) depends on the spectral gap and the matrices in two examples

are constructed to have the same spectral gaps. It also shows that τ is small, our a

priori error bound is comparable to the classical bound of Saad. As τ increases, our

bound fits the actual convergence much better.

However, as we can see especially for large τ where more iterations are needed for

the convergence, the actual convergence of the error ||w(τ) − wk(τ)|| is faster than

that in Example 1. The reason is that, compared to the evenly spread eigenvalues in

Example 1, the eigenvalues in this example are clustered at zero. After a few itera-
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Figure 4.2: Example 2. 1000 × 1000 diagonal matrix with ajj = 1/j. τ =
2, 5, 10, 20, 50, 100. Error (solid), a posteriori bound (+), a priori bound (dashed),
Saad’s bound (x).

tions, the length of the spectral gap of the matrix Tk will be significantly smaller than

that of the original matrix A, due to the removal of separate eigenvalues Since both

our a priori bound and its estimate of the beginning step of the actual convergence

are based on the spectral gap of A, they will not match the actual convergence as
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well as with a uniform eigenvalue distribution.

In the two examples above, the testing matrices are constructed to be sparse and

diagonal, while e−τA are readily available. We also want to test our bounds on some

smaller randomly generated dense matrices. In the next example, we generate a

random symmetric matrix and use the MATLAB function expm for e−τA.

Example 3. Let A be a uniformly random 500 × 500 symmetric matrix with

||A||2 = 1 and v be a random normalized vector. We apply 100 iterations for τ ∈

{2, 5, 10, 20, 50, 100} and plot the actual error ||w(τ)−wk(τ)|| in the solid line, the a

posteriori error bound (4.4) in the +-line, the optimized a priori error bound (4.18)

in the dashed line and Saad’s bound (4.22) in the x line in Figure 4.3.

From Figure 4.3, we observe that our a posteriori bound follows the error closely,

for both small and large values of τ . Our new a priori bound, however, overestimates

the actual error for several orders of magnitudes. By our construction of A, ||A||2 = 1

and there is an isolated eigenvalue at 1 while most eigenvalues are clustered near zero.

So the convergence of the actual error behaves similarly as in Example 2. This again

verifies the role of the spectral gaps in the convergence of the Lanczos method for

computing eiτA. Although our new a priori bound is pessimistic for large values of

τ , it still improves significantly over the classical bound by Saad.

Example 4. In our final example, we consider a Laplacian matrix generated by

a random graph. Let there be a graph containing 500 nodes. For each pair of

nodes, there is a 50% chance that they are connected by an edge. The Lapla-

cian matrix A of that graph is generated accordingly. By this construction, the

norm of A is expected to be in hundreds so we take relatively small values of τ ∈

{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. In Figure 4.4, we plot the actual error ||w(τ)−wk(τ)||

in the solid line, the a posteriori error bound (4.4) in the +-line, the optimized a

priori bound (4.18) in the dashed line and the bound of Saad (4.22) in the x-line.

We first observe from Figure 4.4 that our a posteriori bound is very sharp in

bounding the actual error. For small values of τ , our new a priori bound is comparable

to Saad’s classical bound. We observe again that our a priori bound significantly

improves the classical a priori bound, although it is also pessimistic in the case
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Figure 4.3: Example 3. Uniformly random matrix. τ = 2, 5, 10, 20, 50, 100. Error
(solid), a posteriori bound (+), a priori bound (dashed), Saad’s bound (x).

τ = 0.5, which results in a value of a few hundreds for the norm of τA.

In all our numerical tests above, we have also compared the actual error ||w(τ)−

wk(τ)||, our a priori bound (4.18) with Hochbruck and Lubich’s bound (4.21). As

our discussion in the last section illustrates, our new a priori bound is theoretically
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Figure 4.4: Example 4. 500×500 Laplacian matrix. τ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.
Error (solid), a posteriori bound (+), a priori bound (dashed), Saad’s bound (x).

better than Hochbruck and Lubich’s bound, but they should be in almost the same

order of magnitude after a large number of iterations. In all cases, the two bounds

look indistinguishable after some iterations. At the beginning of the iteration, our

bound is slightly better. We present the case in Example 1 with τ = 100. In Figure
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4.5 we plot the error ||w(τ)− wk(τ)|| in the solid line, the a posteriori bound (4.18)

in the +-line, the a priori bound (4.18) in the dashed line, Hochbruch and Libuch’s

bound (4.21) in the dash-dotted line.
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Figure 4.5: Example 1 with τ = 100. Error (solid), a posteriori bound (+), a priori
bound (dashed), Hochbruch and Lubich’s bound (dash-dotted).

We observe from Figure 4.5 that in the first few iterations when the error starts

to converge, our new a priori bound improves the bound by Hochbruch and Lu-

bich by nearly one order of magnitude. After several steps, the two bounds become

comparable.

Copyright c© Hao Wang, 2015.
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Chapter 5 Conclusions

In this dissertation, we have discussed the application of the Krylov subspace methods

in the computation of matrix exponentials. For the computation of e−τAv where A is

a non-symmetric matrix whose eigenvalues are on the right half of the complex plane,

we presented an a posteriori error bound related to the entry of the exponential of a

Hessenberg matrix. We have also investigated the decay properties of the exponentials

of Hessenberg matrices and presented a new a priori error bound, with the help of

Faber polynomials. This bound is numerically optimized and proved sharper than

the exiting a priori bound by Saad [33]. Our new bound shows that the convergence

of the Krylov subspace methods is determined by the distribution of the eigenvalues

and it agrees with the existing bound by Ye [42].

As a special case, we are also interested in the computation where A is skew-

Hermitian, or eiτA where A is symmetric. We presented the new a posteriori and a

priori error bounds. The a priori bound is also optimized showing that the conver-

gence is determined by the spectral gap of the matrix A. Furthermore, our new bound

also shows that the approximation error of the Lanczos method firstly stagnates for

certain number of iterations before it starts to converge. It is then verified in several

numerical examples.

Copyright c© Hao Wang, 2015.
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