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ABSTRACT OF THESIS 

 

 

 

A COMPARATIVE STUDY OF EASTERN AND WESTERN NORTH AMERICAN POPULATIONS 
OF HIPPODAMIA CONVERGENS (COLEOPTERA: COCCINELLIDAE)  

Hippodamia convergens is a widely distributed insect predator in the United States and 
parts of Canada and Mexico. Several insectaries collect overwintering adults from aggregation 
sites in the Rocky Mountains during their winter dormancy. Collected beetles are then sold 
throughout the United States for augmentative biological control. This practice could have 
negative impacts on local populations of Hippodamia convergens in the Eastern United States. 
Intra-specific variation among H. convergens populations was examined for two characteristics 
of adults: photoperiodic induction of diapause and the presence of three known male-killing 
endosymbiont bacteria; Wolbachia, Spiroplasma, and Rickettsia. Four populations of H. 
convergens were examined; two populations were collected in Kentucky and Illinois, and two 
populations were purchased from biocontrol companies in Arizona and California.  No 
differences were observed among populations in their responses to diapause inducing 
photoperiods. Also, no evidence was found to indicate that the three endosymbiotic bacteria 
exist within the four H. convergens populations. The results from these experiments indicate 
that there are no differences in response to diapause inducing photoperiods, meaning that it is 
not likely to affect timing of diapause induction.   The lack of endosymbionts would indicate that 
there are no reproductive barriers to intra-population matings. 

 

KEYWORDS: Hippodamia convergens, Coccinellidae, Biological control, Endosymbionts, 
Intra-specific variation 
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Section 1 

Introduction 

A. Population Genetics 

 Species adapt to their native geographic range, often over millions of years of 

evolution. These ranges are limited by factors that include geographic barriers, natural 

predators, and food supply (Diehl & Bush, 1984). Geological events such as plate 

tectonics or glaciation can create conditions in which populations diverge, and become 

isolated from each other. When these events lead to reproductive isolation, they allow 

for genetic divergence to occur (Hoskin et al., 2005).Genetic divergence is a process 

that, over time, allows for reproductively isolated populations to accumulate different 

mutations or adaptations and can lead to a complete inability to breed between the 

populations if they are reintroduced to each other.  

Reintroduction of previously separated populations is a more common occurrence 

now due to both conservation efforts and accidental introduction from increased 

transportation from human movement. One notable example of this is the Monarch 

butterfly, Danaus plexippus (Lepidoptera: Nymphalidae). Monarch butterflies have two 

populations on either side of the Rocky Mountains (Brower et al., 1995). In the 1980s 

and 1990s experiments were conducted that involved moving adults across this 

geographic barrier, for example from Nebraska to Oregon, for the purpose of increasing 

population numbers. Brower et al. (1995) and Aardema et al. (2011) discuss the issues 

that may arise due to these population introductions. They discuss several problems 
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that can arise due to the susceptibility of each population to insect pathogens and the 

loss of data that could help understand the Monarch’s more basic biological features, 

such as timing of migration patterns. Altizer et al. (2000) studied the impact that the 

protozoan parasite Ophryocystis elektroscirrha had on populations of Monarchs with 

different migratory patterns.  Their study showed that the levels of infection among 

Southern Florida (>70%), Western USA (~30%), and Eastern USA populations (<10%) 

varied. If individuals from one population, such as the Southern Florida population, were 

to be transferred to another region, they could increase the presence of the parasitic 

protozoan and potentially increase mortality of Monarch populations.  

Reintroduction of populations is not always purposeful. The movement of products 

across the country allows some species of insects to travel on plants and other goods 

(Austin et al., 2011; Maki & Galatowitsch, 2004). Some of these species become pests in 

the newly introduced area. To control these pests, a purposeful introduction of a natural 

enemy can be made. These introductions are termed importation biological control.  

B. Biological Control 

Pedigo (2009) broadly defines biological control as “the employment of any 

biological agent for control of a pest.” Pedigo’s definition covers the basic idea of 

biological control, which is the use of herbivores, predators, parasitoids, and pathogens 

from both native and exotic locations to suppress a pest species. Such pest species can 

be an introduced species, originating from a different part of the world, or it can be a 

native species that is experiencing an outbreak and causing higher than usual damage.  
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There are three main types of biological control that can be utilized to reduce a pest 

population’s numbers: importation, conservation, and augmentative (Huffaker & 

Messenger, 1976). 

Classical (importation) biological control was the first form of biological control used 

in North America in 1889 (Caltagirone, 1989; DeBach & Rosen, 1991). This type of 

biological control is used when the pest is exotic to the area it is causing problems in. 

Attempts at controlling the pest are made with predators and parasitoids found in the 

pest’s native range. Conservation biological control is the use of native, local enemies to 

control a pest problem. The environment is made more suitable by increasing the 

attractiveness or density of the food sources in the area, increasing shelter availability, 

or creating breeding or oviposition sites.  

The type of biological control most pertinent to my research is augmentative 

biological control, which was first used by Doutt and Hagen (1949) with green lacewings. 

Similar to importation, augmentative biological control involves the release of control 

agents that are selected due to their ability to control the specified pest (Collier & Van 

Steenwyk, 2004). It differs in that the control agent can be a native species, or from an 

area that the pest is not from. The released control agent is also not expected to 

establish in the released area, and will only provide control for the season. Several 

companies in North America rear and sell pathogens, predators, and parasitoids to be 

used for augmentative biological control (White and Johnson, 

http://www2.ca.uky.edu/entomology/entfacts/ef125.asp). Augmentative biological 
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control also tends to be limited to a few specific areas when it is used, such as 

greenhouses (van Lenteren, 1988; van Lenteren et al., 1997).   

There are two types of augmentative biological control that can be performed. 

Inundative control involves releasing large numbers of the control agent. This is meant 

to overwhelm the pest population and provide fast reduction of the pest population 

numbers. Generally, with natural enemies used for inundative control, only one life 

stage is attacking the pest. Inoculative control involves releasing a smaller number of 

the control agent at critical times to help prevent the pest population from ever 

reaching high enough numbers to cause damage. These control agents usually have 

both adult and larval stages that feed on the pest. An example of this type of biological 

control agent would be Encarsia formosa, a parasitoid used to control whiteflies in 

greenhouses (Birkett et al., 2003; Liu et al., 2014; Speyer, 1927; Vet et al., 1980; Woets, 

1800).  

Several studies have examined the quality of purchased augmentative biological 

control agents (Bjornson, 2008; O'Neil et al., 1998). Bjornson (2008) found that of the 22 

shipments of Hippodamia convergens (Coleoptera: Coccinellidae) received, 13 contained 

microsporidia (Nosema hippodamiae, N. tracheophila, and N. coccinellae), and all 22 had 

adult H. convergens that were parasitized by a Braconid parasitoid (Dinocampus 

coccinellae). These results suggest that the screening practices, if any, of collected 

beetles are inefficient at detecting parasitoids and other infections or fungi that may be 

present in individual beetles, and could result in the spread of parasitoids and 

pathogens of biological control agents or other insects.  
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C. Hippodamia convergens 

Hippodamia convergens, commonly called the convergent lady beetle, is native to 

the United States of America, parts of Canada, and was also introduced to parts of South 

America for biological control (Gordon, 1985; Hagen, 1962). In California, overwintering 

adults aggregate in the crevices of mountains until spring, and emerge from their 

overwintering locations to return back to the valleys and farms to feed and mate. Adults 

release a pheromone when they head to their overwintering locations (Wheeler & 

Cardé, 2013). This pheromone is composed of three main compounds: 2-Isobutyl-3-

methoxypyrazine, 2-sec-butyl-3-methoxypyrazine, and 2-isopropyl-3-methoxypyrazine. 

Together, these compounds make up the aggregation pheromone that is used to attract 

other individual beetles to a single location so that they may overwinter together in a 

large mass. Aggregation sites have been shown to be reused over several years when 

the current generation detects trace amounts of the pheromone left behind by previous 

generations (Wheeler & Cardé, 2014).  In many areas of the United States east of the 

Rocky Mountains, beetles have also been found to aggregate on hills and mountains. 

Douglass (1930), Stewart et al. (1967), and Yanes et al. (1982) reported the presence of 

H. convergens in the mountains of New Mexico, Arkansas, and Oklahoma. Both Sherman 

(1938) and Thomas (1932) noted that H. convergens are found in the mountains of the 

Carolinas during winter months, and Throne (1935) found adults in hills in Michigan. 

Denemark and Losey (2010) found aggregations of Coccinellidae along the Finger Lakes 

Region of New York. Farther north, Turnock and Wise (2004) found evidence of 

overwintering beetles in the leaf litter surrounding Lake Manitoba, in Canada. Lee 
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(1980) also found that H. convergens adults would form brief 2-3 week aggregations 

along the shores of lakes in the northern mid-west of the United States. This could 

indicate that the overwintering location of H. convergens in other parts of the continent 

when mountains are not available is in leaf litter and along shore lines. 

Dormancy in H. convergens adults during the winter months is defined as a type of 

hibernation by Hagen (1962). Hibernation is a type of reproductive dormancy and occurs 

during the cold months, during which the beetles live off accumulations of fat-bodies 

that they have built up. It is possible that during summer months, when temperatures 

are undesirable, the beetles enter a form of dormancy known as estivation (Michaud & 

Qureshi, 2006).  After diapause ends in early spring, beetles emerge and mate (Hagen, 

1962; Michaud & Qureshi, 2005). Females will oviposit on a variety of plant life, and 

eggs take between two and four days to hatch, depending on temperature (dos Santos 

et al., 2013). The larvae and adults are aphidophagous, and have been shown to eat a 

wide variety of aphid species that are native, introduced, and invasive to the U.S. 

(Hodek & Honek, 1996; Rutledge et al., 2004).  

Hippodamia convergens plays a large role as an inundative biological control agent, 

and has been in use since around 1910 (Carnes, 1912). Currently, several insectaries 

based in the Western U.S.A. collect aggregating adults from the mountains in winter and 

sell them throughout the USA and Canada for use in greenhouses, small personal 

gardens, and larger crop fields (White and Johnson 

http://www2.ca.uky.edu/entomology/entfacts/ef125.asp). They also are purchased for 

release at weddings and other events. The collected individuals are kept at low 
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temperatures until they are shipped to buyers. In 2012, there were 62 commercial 

sellers of biological control agents. Of these, 28 (45%) sell H. convergens as a control 

agent (White and Johnson, http://www2.ca.uky.edu/entomology/entfacts/ef125.asp) 

The spread of pathogens and parasitoids, such as the Braconid endoparasitoid,  

Dinocampus coccinellae, are some of the risks that are encountered in augmentative 

biological control programs using H. convergens. However, there may be other risks that 

are overlooked.  The geographic barriers that separate populations can lead to local 

populations adapting to local conditions of their environment. When reintroducing 

these populations to each other, unforeseen problems may occur. One of the largest 

barriers that exist in the U.S. is the Rocky Mountain range, which spans from Canada to 

the Mexican border. This range separates populations of many insects between the 

western and eastern portions of the country. However, due to biological control 

practices shipping large numbers of H. convergens from the west side of the mountain 

range to the eastern region of the U.S., potentially differentiated populations are being 

moved across this geographic barrier.  

Movement of populations across geographic barriers may be problematic due to 

differences in each population’s physiology and environmental adaptations. A recent 

study by Sethuraman et al. (2015) showed high levels of inter-population genetic 

diversity in eleven populations of H. convergens. This means that genetic differences are 

observed among populations. The populations used in their study came from several 

locations across the U.S.A. including Arizona, California, and Kentucky, and Illinois. This 

genetic diversity could indicate that there may also be some phenotypic differences 
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among the populations. These may be expressed as differences in diapause induction 

conditions, bacterial symbiont relationships, the ability to develop on certain prey items 

only found in one part of the continent, or the response to the chemical blend of 

overwintering pheromones. My research examines two of these factors to determine if 

intraspecific variation in phenotypically important traits does exist. 

D. Objectives 

The objectives of my research were to determine if intraspecific variation exists 

among populations of H. convergens that are separated by the geographic barrier of the 

Rocky Mountains. Two specific character traits were examined.  

1. The photoperiodic induction of diapause. 

2. The presence of selected endosymbionts among populations. 
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Section 2 

Photoperiodic induction of diapause  

 

Introduction 

Dormancy is a state of reduced or ceased development or reproduction. Many 

insects enter a state of dormancy prior to when environmental conditions become 

unfavorable for long periods of time (Hagen, 1962; Nechols et al., 1999). During this 

time the insects stop reproducing and reduce activity. Some insects can continue to 

mate, but the females do not oviposit. Hippodamia convergens has been shown to enter 

dormancy at two different times during its life cycle. During the summer, when the 

temperatures get too hot for the beetles and when prey numbers decrease, H. 

convergens in Kansas have been shown to enter a state of dormancy called estivation to 

prevent starvation (Michaud & Qureshi, 2005; 2006). When this happens, beetles 

aggregate on flowers from which they consume plant fluids such as sap. They stay in a 

state of reproductive diapause until temperatures drop to more tolerable levels and 

prey numbers increase again (Michaud & Qureshi, 2005).   

The second state of dormancy is called diapause, observed during the winter 

months. During this time, H. convergens adults will leave the fields that they are feeding 

and reproducing in (Hagen, 1962). The adults will fly to aggregation sites, which can be 

hundreds of miles away, and form groups that can contain thousands of individual 

beetles. During this state of diapause, the beetles will not mate and no oviposition 
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occurs. When temperatures increase and day lengths increases, the beetles leave the 

aggregation sites, undergo long-distance flight behaviors, and then search for food.  

Photoperiod plays an important role in some insect species’ ability to enter and 

exit diapause at the appropriate times (Paolucci et al., 2013; Tauber & Tauber, 1972; 

1973), although other factors such as longitude, altitude, and genetic plasticity are also 

important (Tauber & Tauber, 1982). Photoperiods are a regularly occurring 

environmental factor, and as day lengths shorten, temperature decreases, food 

availability is reduced, or a combination of these factors occurs, some insect species 

respond by preparing for and entering diapause (Nechols et al., 1999). As the day 

lengths increase, the insects will emerge and resume activity if photoperiod is an 

indicator of diapause termination. Moving populations to an area that they are not 

adapted to could alter the response to photoperiods. 

This set of experiments was designed to examine the effect of photoperiods on 

H. convergens populations from different latitudes, specifically to determine if 

differences exist between populations found farther south compared to populations 

found farther north. That is, I hypothesized that populations from different latitudes 

would have different photoperiods that induced diapause. The basis of this set of 

experiments is that populations from different latitudes may show variation in the 

photoperiod that induces diapause. These experiments examined differences in 

diapause induction between the northern populations, represented by Illinois and 

Kentucky H. convergens, and southern populations of H. convergens, represented by 

California and Arizona populations. Any differences that may exist among populations 
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would be useful in finding areas that H. convergens can be sent to and from for 

biological control purposes. These areas may fall within certain latitudes and have 

similar seasonal patterns, which H. convergens being moved around will be able to 

easily adapt to.  

Materials and Methods 

 The methods for this experiment were based on those outlined by Obrycki et al. 

(1983) and Tauber and Tauber (1973) in previous studies of predatory lacewings and 

lady beetles Hippodamia convergens adults were purchased from two companies in the 

Western United States. Rincon-Vitova is based in southern California, which is assumed 

to be the approximate latitude where their populations are collected. The latitude for 

their collection locations is estimated to be at 34.2°N. This population was referred to as 

the California population. Arbico Organics is based in Tucson, Arizona, and it is 

estimated that their adult beetles are collected from the surrounding mountains at 

latitude of 32.2°N. This population was referred to as the Arizona population. Additional 

populations of adult H. convergens were collected from Lexington, Kentucky at latitude 

37.1°N, which was called the Kentucky population,  and the Richardson Wildlife 

Foundation near Amboy, Illinois at latitude 39.7°N, referred to as the Illinois population. 

Within each population, adults were separated into mating pairs and kept in 100 mm 

diameter petri dishes at 22°C at a 15:9 light-dark cycle. The pairs were given a wet 

cotton ball for moisture and fed ad libitum pea aphids, Acyrthosiphon pisum, daily.  A 

total of 20 females, 5 per population, served as sources for the eggs used throughout 

the experiment.  Eggs collected from each mating pair were systematically assigned to 

http://en.wikipedia.org/wiki/Acyrthosiphon_pisum
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three photoperiods; 15:9, 13:11, and 11:13 at 22°C. These photoperiods were adapted 

from Obrycki et al. (1983), using information gathered from weathspark.com (Diebel & 

Norda, 2014). Weatherspark.com (Diebel & Norda, 2014) provided the longest and 

shortest day length at each collection location for the year. None of the collection 

locations has a day length longer than 15 hours, thus the 15:9 L:D cycle simulated 

conditions during the summer reproductive period.  All populations experience the 

13:11 and 11:13 L:D cycles in their natural environments at two points during the year. 

It was hypothesized that the shortest photoperiods should induce diapause in all 

populations. The photoperiods were maintained in Percival biological cabinets 

controlled by the Intellus Control Systems. 

The F1 eggs hatched. Individual larvae were separated and placed in Fisher 

Brand Shell Type 1 glass vials (21x70 mm, 4 Dram) with one individual larva per vial. 

Between 20 and 53 larvae from each population were reared at each of the three 

photoperiods (15:9, 13:11, and 11:13) at 22° C. Larvae were fed ad libitum pea aphids. 

Each day, the larvae were examined for molting or death. Data were recorded for 

developmental times, sex ratio, and survival for each population at each photoperiod.   

Following pupation and emergence, adults were paired within their designated 

photoperiod into non-sibling mating pairs and allowed to mate. These pairs were 

observed under their assigned photoperiod for diapause behavior. Obrycki et al. (1983) 

determined that adult female Adalia bipunctata (Coleoptera: Coccinellidae) maintained 

at 22°C that oviposited within 14 days of emergence were not in diapause. However, 

due to differences among species of predatory lady beetles and variation in pre-
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oviposition period, a period of 31 days was used in this experiment as the division 

between diapausing and non-diapausing females. This was an arbitrary number that was 

selected at the end of the experiment and based off of the oviposition data that was 

collected. Females were determined to be in diapause if a female failed to oviposit 

within the first 31 days following eclosion. A 90 day period was selected as the end point 

for the experiment. The 90 days began on the day that the individual beetles eclosed. 

This was an arbitrary time frame that was selected because it allowed enough time for 

the females to be mated and to oviposit in response to the photoperiodic conditions. At 

the end of the 90 day period, to determine if the ovaries of a female beetle contained 

eggs, females were dissected. This was done by killing each female in 95% ethanol, and 

then placing her in a plastic petri dish with water. To remove the reproductive system of 

the beetle, each beetle was held at the end of the abdomen and on the thorax. The last 

few segments were then pulled on, which resulted in the end of the beetle pulling apart 

from the rest of the thorax and taking the reproductive system with it. The ovaries were 

then examined using a Jenco USA GL7-290 microscope at 40x magnification. Ovaries 

that had fertile eggs in them showed large, yellow, oval shaped masses inside. Female 

beetles that were in a state of reproductive diapause had small, translucent grey 

spheres inside of the ovaries instead of the larger, yellow ovals. These are eggs that 

have not developed. They show that the female is capable of producing eggs, but that 

the female is not putting resources into the eggs to allow them to continue to develop.  

Unmated females oviposit egg masses that have not been fertilized, although the eggs 

are not viable. This occurs when the female has been well fed. 
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 The percentage of females that entered diapause and the number of days until 

first oviposition were collected. The duration of diapause was calculated for each 

individual female beetle that did not oviposit within 30 days in the experiment. This was 

determined by calculating the day that each female eclosed to either the first day that 

they oviposited, which signals an end of diapause, the date that the female beetle died, 

or the end of the experiment at the predetermined 90 day mark. Data from each 

individual was gathered and compared with the other individuals from the same 

population, as well as among the three populations. Sex ratios were examined using Chi-

squared analysis. Chi-squared analysis was also used to examine the number of 

diapausing vs. nondiapausing females in the northern (Illinois and Kentucky) versus 

southern (California and Arizona) populations. A Kaplan-Meier survival analysis was also 

performed using the SPSS program to examine the northern vs. southern populations 

for differences in time spent in diapause. A Two-way ANOVA was used to determine the 

variation in the developmental times from egg to adult among the populations at the 

three photoperiods. This was done using JMP 10. The Two-way ANOVA was run with a 

type III SS, and the population (4 factor levels) and photoperiods (3 factor levels) as 

factors. This gives the user a large array of calculations derived from the data. Included 

in these results are the ANOVA results, as well as the Effect Tests results.  

Results 

Developmental Time 

The average number of days for all individuals to develop from the four 

populations from oviposition to adult was 26.2 days in the 11:13 photoperiod, 23.6 days 
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in the 13:11 photoperiod, and 25.2 days in the 15:9 photoperiod (Figure 1 and Table 1). 

The average development time among the four populations reared at the three 

photoperiods were biologically similar, in that they all fell within a range that has been 

observed in previous studies. However, development times among the four populations 

were statistically different, which was determined by running a two way ANOVA in 

which the population effect (F2, 348 = 74.22, p<0.001, degrees of freedom.=2) the 

photoperiod effect (F3, 348 = 3.826, P<0.001) and the population x photoperiod 

interaction (F6, 348 = 2.13, P = 0.0498) were all significant.  Average development time for 

all four populations across the three photoperiods ranged from 22.6 to 27.5 days.  

Sex Ratio 

In total, 360 individual beetles were used in this experiment. Of those, 180 were 

male and 180 were female. For the entire experiment, there was a 0.50 female to male 

sex ratio. Chi squared analysis of sex ratios showed no significant differences among 

treatments when all 12 treatments were considered separately (χ2= 18.27, p-value = 

0.075, df = 11).. A χ2 was then performed comparing the total number of males and 

females in each of the three photoperiods. The 11:13 photoperiod had a ratio of 0.50 

females to males ( χ2 = 0.009, P = 0.93), the 13:11 photoperiod had a ratio of 0.50 ( χ2 = 

0.009, P = 0.93), and the 15:9 photoperiod had a ratio of 0.51 ( χ2 = 0.03, P = 0.86). None 

of the photoperiods deviated from the 0.50 female to male sex ratio. Last, each 

population was run through a Chi Square test on its own (Table 2). The California (χ2= 

3.56, P = 0.059), Illinois (χ2= 1.14, P = 0.286), and Kentucky (χ2= 3.45, P = 0.063) all failed 

to reject the null hypothesis. The Arizona population, however, rejected the null 
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hypothesis (χ2= 5.081, P = 0.024). The Arizona population deviated towards a male 

biased population. The Illinois population also showed a slight bias towards males, while 

the California and Kentucky populations showed slight biases towards females.  

Pre-imaginal Mortality 

Most of the mortality that occurred in all of the populations was observed 

before the pupal stage, with only 4 deaths occurred as pupa. For the other 45 deaths, 8 

occurred at the 1st instar, 11 at the 2nd instar, 7 at the 3rd instar, and 19 at the 4th instar 

(Table 3). 

Diapause Induction 

For the Arizona (N=15, total number of individual females), California (N=4), and 

Kentucky (N=11) populations, 100% of the beetles that were reared in the 11:13 were 

determined to be in diapause by failure to oviposit within 31 days (Figure 1). This was 

also observed in the 13:11 photoperiod (Arizona N= 11, California N= 7, Kentucky N=7). 

In the 15:9 photoperiod, 80% of the Kentucky (N=5) and California (N=5) populations 

were in diapause, while 67% of the Arizona (N=15) population was in diapause. These 

three populations followed a similar pattern in that the two shortest photoperiods have 

100% of the females in diapause. The fourth population, Illinois, followed a slightly 

different pattern. In the 11:13 photoperiod, only 80% of the females were in diapause. 

That number decreased slightly to 78% in the 13:11 photoperiod, and was reduced 

further to 33% in the 15:9 photoperiods. The Illinois population followed a pattern that 

had a constant decrease in proportion of females in diapause as the amount of light that 

they were exposed to increased.  
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A Chi squared analysis was run to compare the populations of the photoperiod 

experiment. Populations were grouped together into northern (Illinois and Kentucky) vs. 

southern (Arizona and California) populations, because numbers were too low to allow 

individual analysis. The χ2 for the Southern (Arizona and California) populations across 

photoperiods was 12.41 with P =  0.002 and 2 degrees of freedom, while the χ2 for the 

Northern (Illinois and Kentucky) populations was 8.01 with P = 0.018 and 2 degrees of 

freedom. This indicates that both of the groups were statistically significant, with p-

values below .05, and rejected the null hypothesis. This means that the percentage of 

beetles in diapause varied as a function of photoperiod. Rejecting the null hypothesis in 

this case indicates that there was a difference in the percentage of females in diapause 

across the photoperiods. 

To determine if there was a difference in the percentage of females in diapause 

between the northern and southern regions, a Fishers Exact test was run. This test was 

only run on the females in the 15:9 photoperiod. The Fishers Exact test determined that 

the northern and southern populations do not vary in their photoperiodic induction of 

diapause (Fishers Exact test = 0.46, p > 0.05). 

The survival analysis was performed to determine if there was any difference in 

diapause induction between northern and southern populations (Table 4, Figure 3). For 

each photoperiod, the 95% confidence interval for the Northern and Southern 

populations coincided (Table 4). This indicates that no significant difference was found 

between the northern and southern populations.  
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Duration of Diapause 

 Females in the experiment were found to be in diapause based on the number of 

days it took them to oviposit, failure to oviposit within 90 days, or their death before 

oviposition. The duration of diapause in each of the four populations within each of the 

three photoperiods was examined using the mean, median, and range in the number of 

days for beetles that were determined to be in diapause (Table 4). The mean of each 

population within each photoperiod gives the average number of days that the females 

of the population were determined to be in diapause. This number ranged from 43.1 

days to 80.9 days. With three of the populations, the California, Arizona, and Kentucky 

populations, the mean number of days for the duration of diapause decreased as the 

day length increased. With the fourth populations, the Illinois population, the mean 

decreased from the 11:13 photoperiod (60.6 days) to the 13:11 photoperiod (49.4 days), 

but then increased again at the 15:9 photoperiod (72.0 days). This result is likely due to 

the low number of individuals within each photoperiod who were determined to be in 

diapause. 

 The median of each population within each photoperiod also varied. This value 

indicated the center of the dataset of each population within each photoperiod. The 

medians ranged from 38.5 days to 90 days among populations and photoperiods. Three 

of the calculated medians were 90 days, which is the highest number of days that a 

beetle could be in diapause in this experiment. One of these 90 day median values was 

observed in the Arizona populations in the 11:13 photoperiod, the second 90 day 

median was for the Kentucky population in the 11:13 photoperiod, and the last 90 day 
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median was for the Illinois population in the 15:9 photoperiod. There was only a slightly 

noticeable pattern between the medians of diapause and the photoperiods. The 

shortest photoperiod, 11:13, had the highest values for median duration of diapause, 

while the longest photoperiod, 15:9, had some of the shortest with the exception of the 

Illinois population.  

 The range in the number of days in diapause for each population in each 

photoperiod was the last calculation done for this data. The range is the difference 

between the largest and smallest values in the dataset. These values fell between 40 

days and 79 days.   This indicated that the spread of the datasets was broad, and that 

there was a wide variation in responses, as none of the calculated ranges were 90 days, 

which would be the largest range that could be achieved in this study.  

Discussion 

 For this experiment, populations were grouped into northern and southern 

populations, instead of eastern and western. This was done due to the use of latitude 

determining the photoperiod each population would see in their local environments.  

The hypothesis for this experiment was that beetles from more southern locations 

would react differently to the photoperiods compared to beetles from the northern 

locations. It was also predicted that as the day length the beetles were exposed to 

increased, the number of beetles in diapause would decrease. However, this second 

prediction was not consistently observed (See Figure 2). With the California, Arizona, 

and Kentucky populations, the number of beetles in diapause remained the same at the 

11:13 and 13:11 photoperiods. These populations only showed a decrease in the 
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number of females in diapause between the 13:11 and 15:9 photoperiods. Only the 

Illinois population showed the pattern that was predicted, with a decrease in the 

number of females in diapause seen as day lengths got longer.   

 The average development times of the populations were similar to those 

observed in other studies. Observations reported by Hagen (1962), who recorded 

development times between 11 and 29 days at an unknown temperature, depending on 

the origin of the H. convergens population, were somewhat similar to those seen in this 

study. This is also noted in other studies which looked at the development time of H. 

convergens at or close to 22°C.  Obrycki and Tauber (1982) observed a 24.9±1.6 days 

development time for a population of H. convergens from Ithaca, NY that were 

laboratory reared at a 16:8 L:D cycle under 21.1°C.  Miller (1992) observed development 

times of two populations of H. convergens, one from Corvallis, Oregon and the other 

from Tucson, Arizona, to be 28.8±0.2 days and 29.9±0.5 days, respectively, when reared 

under a 16:8 L:D and 21°C. Also, Michels and Behle (1991) observed a development 

period of 29 days for H. convergens collected from Bushland, Texas and reared at 20°C. 

The percentage of developing larvae and pupae that died during the experiment 

was relatively low when compared to other studies of H. convergens (Obrycki et al., 

2001),  with the exception of the Kentucky population in the 15:9 photoperiod (Table 2). 

This population had 50% of the population die before reaching the adult stage. The 

deaths were observed from the 1st instar through pupation, one individual died while 

attempting to eclose. In total, 1 larva died in 1st instar, 2 in 2nd, 3 in 3rd, 6 in 4th, 2 as 

pupae, and 1 during eclosion.  There was noticeably higher mortality at the later instars, 
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which also require more food. It is possible they were not fed enough, although other 

larvae being run through the experiment at the same time and in the same 

developmental stage were able to develop with no issues.   

 Several explanations are possible to explain the high number of females in 

diapause, which did not support the initial predictions made before the experiment 

began. It is possible that the overall results seen in this photoperiod inducing diapause 

experiment were due to an experimental design flaw. H. convergens enter diapause and 

aggregate, which leads to a production of an aggregation pheromone. This pheromone 

attracts other beetles and allows for the creation of a large aggregation mass. The 

design of the experiment placed all of the experimental beetles in one of three Percival 

biological cabinets together, creating a lack of independence. If one beetle were to 

enter diapause, the pheromones could be circulated throughout the cabinet, possibly 

leading to other beetles entering diapause. This may have happened despite the beetles 

being kept in dishes containing lids, as the dishes were not air tight. However, this 

experimental design is commonplace and has been used previously to study lady beetle 

responses to photoperiods (Obrycki & Tauber, 1982). This would lead to the conclusion 

that having multiple beetles together in a single cabinet is unlikely to have affected the 

results of the study in a significant way. 

 Another explanation is that the low numbers of females that were mated were 

not sufficient to accurately represent the population responses. Many females were not 

mated due to an uneven number of males and females at the time of eclosion, or due to 

a high rate of mortality. Also, at the beginning of the experiment, sibling mating was 
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avoided. However, a month into the experiment, crossing among siblings started to 

utilize as many females as were available.  Since females were mated within a week of 

eclosion, any remaining females went unmated. There was also an issue having males 

and females from different parental pairs ready to be mated at the same time. This 

meant that several females for both the Arizona and California populations in all three 

photoperiods went unmated. In the future, one might consider moving males among 

the females once mating has been observed. 

 Another explanation that may explain the results could be related to the life 

stage of H. convergens that is sensitive to short day lengths. During the set up of the 

experiment, it was assumed that the early stages of the life cycle, the egg to the pupae, 

are sensitive to short day lengths. As such, all adult beetles that acted as a parental 

generation for the experimental beetles were kept in the longest photoperiod (15:9) 

while reproducing. If, instead of the early life stages, it is the adults that are sensitive to 

the day length, the experiment was set up in a way that might explain the unexpected 

results that were observed. This is based on the assumption that H. convergens females 

maintained at L:D 15:9 would produce a high percentage of offspring that would enter 

diapause.  This explanation would mean that adults are primed towards the 

photoperiod that they are residing and reproducing in. 

 The data from this experiment had one interesting result that will be addressed 

in the endosymbiont experiment (Section 3). The Chi squared analysis for the California 

population showed a deviation from the standard 50/50 sex ratio. This population 

seemed to favor males more heavily than females. However when a Chi squared 
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analysis was done on all of the populations in all of the photoperiods, the result was not 

statistically significant and failed to reject the null hypothesis. Since the larger Chi 

squared analysis failed to reject the null hypothesis while the California population Chi 

squared alone did reject the null hypothesis, it can be assumed that the Arizona, 

Kentucky, and Illinois populations have a slight female bias that is not statistically 

significant. This could be an indication that another organism is acting on this 

populations, affecting the sex ratio. A skewed sex ratio can be a sign of a bacterial 

endosymbiont within the population, skewing the population in favor of symbiont 

transmission. 
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Table 2.1: Development time (days ± standard error) for four populations of H. 
convergens from oviposition to adult eclosion at three L:D photoperiods (15:9, 13:11, 
11:13)  at 22°C. Individuals were fed ad libitum pea aphids daily. 

 15:9 13:11 11:13 
Arizona 25.8±1.4 (N=48) 23.9±1.7 (N=30) 26.7±2.4 (N=40) 

California 25.6±1.1 (N=27) 25.3±1.3 (N=23) 27.5±2.5 (N=22) 
Illinois 23.9±1.0 (N=27) 22.6±1.3 (N=24) 25.6±1.3 (N=20) 

Kentucky 25.3±1.5 (N=30) 22.6±1.1 (N=33) 24.9±1.4 (N=31) 
Total 25.2±0.21 (N=132) 23.6±0.16 (N=110) 25.2±0.14 (N=113) 
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Table 2.2: Sex ratios (number of females/total number of adults) of four populations of 

H. convergens reared at 22°C. Individuals were fed ad libitum pea aphids daily. 

Population N Sex ratio (F:M) χ2 P 

Arizona 123 0.39 5.081 0.024 

California 72 0.61 3.56 0.059 

Illinois 71 0.43 1.14 0.286 

Kentucky 94 0.59 3.45 0.063 

 

 

 

 

 

 

 

 

 

 



26 
 

Table 2.3: The number of dead individuals and percentage of pre-imaginal mortality of 

H. convergens for each of the four populations at three L:D photoperiods (15:9, 13:11, 

11:13) in 22°C in the three photoperiods.  

 
Treatments 

15:9 13:11 11:13 

Arizona 5/48 (10.4%) 5/30 (16.7%) 5/41 (12.2%) 

California 2/27 (7.4%) 2/23 (8.7%) 5/22 (22.7%) 

Illinois 3/27 (11.1%) 1/24 (4.2%) 0/20 (0%) 

Kentucky 15/30 (50%) 2/33 (6.1%) 4/31 (12.9%) 
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Table 2.4: Survival Analysis of Southern Vs. Northern populations across three Light: 

Dark Photoperiods (11:13, 13:11, 15:9) 

N vs. S Photoperiod 
Mean days in diapause 

Estimate Std. Error 95% Confidence Interval 
Lower Bound Upper Bound 

South 11:13 84.294 3.796 76.855 91.734 
 13:11 61.422 7.398 46.922 75.923 
 15:9 41.300 7.555 26.492 56.108 
 Overall 63.131 4.453 54.403 71.859 

North 11:13 66.495 6.343 54.063 78.927 
 13:11 51.645 6.948 38.027 65.263 
 15:9 41.615 9.114 23.753 59.478 
 Overall 54.136 4.547 45.223 63.049 

Overall Overall 58.922 3.221 52.609 65.234 
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Table 2.5: The duration of diapause in days for the females of four populations of 

Hippodamia convergens while maintained in three photoperiods (15:9, 13:11, 11:13). 

The average, median, and range (Highest value – lowest value) of the photoperiods are 

given.  

 15:9 13:11 11:13 

Arizona Mean: 43.1 
Median: 38.5 

Range: 77 (90 = highest, 
13 = lowest) 

N = 10 

Mean: 56.5 
Median: 60 

Range: 79 (90 = highest, 
11 = lowest) 

N = 11 

Mean: 80.9 
Median: 90 

Range: 48 (90 = highest, 
42 = lowest) 

N = 15 
California Mean: 57.8 

Median: 50 
Range: 49 (90 = highest, 

41 = lowest) 
N = 4 

Mean: 62.7 
Median: 62 

Range: 54 (90 = highest, 
36 = lowest) 

N = 7 

Mean: 64.0 
Median: 69.5 

Range: 63 (90 = highest, 
36 = lowest) 

N = 4 
Illinois Mean: 72.0 

Median: 90 
Range: 54 (90 = highest, 

36 = lowest) 
N = 3 

Mean: 49.4 
Median: 52 

Range: 67 (90 = highest, 
23 = lowest) 

N = 7 

Mean: 60.6 
Median: 61 

Range: 63 (90 = highest, 
27 = lowest) 

N = 4 
Kentucky Mean: 50.3 

Median: 40.5 
Range: 60 (90 = highest, 

30 = lowest) 
N = 4 

Mean: 61.6 
Median: 60 

Range: 48 (90 = highest, 
42 = lowest) 

N = 7 

Mean: 74.6 
Median: 90 

Range: 40 (90 = highest, 
50 = lowest) 

N = 11 
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Figure 2.1: Development time (days ± standard error) for four populations of H. 

convergens from oviposition to adult eclosion at three photoperiods (15:9, 13:11, 11:13) 

at 22°C. Individuals were fed ad libitum pea aphids daily. 
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Figure 2.2: The percentage of female H. convergens that were found to be in diapause, 

indicated by a lack of oviposition after 31 days, or dissection of the females at the end of 

the 90 day experiment. The four populations were maintained in three photoperiods 

(15:9, 13:11, 11:13) at 22°C and fed ad libitum pea aphids daily.  1.A (Arizona), 1.B 

(California), 1.C (Illinois), 1.D (Kentucky) 
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Figure 2.3: Survival Analysis of Southern (A) and Northern (B) populations with each 

photoeperiod measured in the proportion in diapause through time measured in days. 
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Section 3 

Presence of three genera of endosymbiont bacteria 

Introduction 

Endosymbionts are maternally inherited bacteria that commonly occur in insects 

(Nakamura et al., 2005). They are passed from mother to offspring via vertical 

transmission and have a shared fate with their insect host. In the event that the host 

dies, so will the endosymbiont, so many endosymbionts aid their host in some way. In 

many cases, multiple endosymbionts have been reported in a single insect population 

(Brady & White, 2013; Groenenboom & Hogeweg, 2002). Endosymbionts are capable of 

filling a variety of roles within insects. In some cases, endosymbionts aid in the 

breakdown of food, as is seen with termites (Ohkuma, 2003), while in other instances, 

endosymbionts can encase parasitoid eggs and protect the host as part of the immune 

system (Brady & White, 2013; Martinez et al., 2014; Oliver et al., 2014; Xie et al., 2014). 

Both of these instances show a mutualistic relationship between the insect host and the 

endosymbiont. However, it is not always obvious when an endosymbiont is aiding its 

host.  

There are also endosymbionts that are capable of distorting an insect 

population’s sex ratio. The reproductive manipulations promote vertical transmission of 

the symbionts, which are passed maternally in the cytoplasm (Werren et al., 1994). 

There are four major types of reproductive manipulations; male killing, feminization, 

parthenogenesis, cytoplasmic incompatibility. These endosymbionts will stop their host 

from mating with individuals who lack the symbiont, or will kill off any hosts that can’t 
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carry the endosymbionts. Cytoplasmic incompatibility, a situation in which the eggs and 

sperm cannot form viable offspring when a female that lacks an endosymbiont mates 

with a male who is infected with an endosymbiont, is a common occurrence. However, 

for Coccinellidae, male killing is the most common form of reproductive manipulation 

that is observed. 

The formation of relationships with some endosymbionts could be detrimental 

to a biological control agent like H. convergens. Male-killing endosymbionts can lead to 

a more female biased population, although it has been shown that in some species the 

percentage of the total population infected by a male-killing symbiont is generally low 

(Jiggins et al., 2001). A female biased population may not necessarily be problematic, 

and, in fact, could benefit a biological control agent like H. convergens by creating more 

mating opportunities for each male in the population. On the other hand, presence of 

cytoplasmic incompatibity could be particularly problematic in an augmentative 

biological control agent, because relocations could bring differentially infected 

populations in contact with one another, and induce incompatibilities.   

There are four genera of endosymbionts that have been described to act as male 

killers in species of predatory Coccinellidae: Wolbachia, Rickettsia, Spiroplasma, and 

several Flavobacteria species (Johnstone & Hurst, 1996; Weinert et al., 2007). Several 

investigators have tested Coccinellidae species for these four male-killing 

endosymbionts. Majerus and Majerus (2010) identified Rickettsia with an infection rate 

of 31.6% in the Japanese species Propylea japonica, and Majerus et al. (1999) identified 

that a Spiroplasma caused female biased populations of Harmonia axyridis that had 
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been observed by Matsuka et al. (1975), whom noted a 10% infection rate. Hurst et al. 

(1999a; 1996; 1997) found evidence of Flavobacteria in Adonia variegate and 

Coleomagilla maculata, and  Wolbachia (Hurst et al., 1999b), Spiroplasma, and 

Rickettsia (Hurst et al., 1999c) in Adalia bipunctata. Werren et al. (1994) also found 

Rickettsia in A. bipunctata. Recently, Elnagdy et al. (2014) found related strains of 

Flavobacterium in Coccinula crotchi and Coccinula sinensis. 

Coccinellids that contain male-killing endosymbionts tend to show several 

uniform characteristics. These include ovipositing tightly clustered egg masses, 

cannibalism, and a preference for aphids as a food source (Majerus & Majerus, 2012). 

These characteristics are not a result of a relationship with an endosymbiont, but do 

make it easier for the beetles to form relationships with endosymbionts. Tightly 

clustered egg masses and cannibalism of siblings provide easier and quicker meals for 

newly hatched female 1st instars. Female Coccinellids that contains a male killing 

endosymbiont will oviposit their egg clusters, which are close to a 1:1 sex ratio. 

However, the male eggs will not develop and these “dead” eggs give the newly hatched 

female larvae a large first meal that does not need to be searched for. After this, the 

female first instars are larger and more capable of survival than other individuals who 

do not have a male killing endosymbiont and did not get their first “dead brother” meal.  

Although it has been hypothesized that Hippodamia convergens could have male 

killing endosymbionts based on their egg laying strategy, willingness to consume siblings 

in both the field and in captivity, and their primary food choice of aphids (Majerus & 

Majerus, 2012), few H. convergens adults have been examined for endosymbionts and 
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no symbionts have been identified. Weeks et al. (2003) tested 3 individual H. 

convergens, along with 29 other Coleopteran species, from California for both 

Wolbachia and a different symbiont, Cardinium (referred to as CLO in the study), but 

found no evidence of either. Aside from Weeks et al. (2003), no other records are 

available discussing the screening of H. convergens for endosymbionts. The present 

study aimed to change that by looking for Wolbachia, Spiroplasma, and Rickettsia in H. 

convergens beetles from populations from California, Arizona, Kentucky, and Illinois. 

 

Materials and Methods 

Four populations of H. convergens were examined for the presence of selected 

endosymbionts to determine if variation in infection frequency exists among 

populations which could potentially influence mating success. Twenty females each 

from the Arizona, California, and Illinois populations and thirteen adults from the 

Kentucky population were examined for endosymbionts.  Each individual adult was 

surface sterilized by placing adults in a 5% bleach solution for one minute, followed by a 

dip in a 95% ethanol solution for one minute. The ethanol rinse was repeated two more 

times, for a total of three washes. Finally, the beetles were placed in deionized water for 

one minute.  

The wings, head, and thorax of each beetle were removed, leaving only the 

abdomen. The abdomens underwent DNA extraction using the Qiagen DNEasy kit 

following the manufacturer's instructions. The abdomens were used because many 

endosymbionts that manipulate host reproduction are localized in the host’s 
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reproductive organs (Werren et al., 2008). Following DNA extraction, each sample was 

run through a PCR process using diagnostic primers that detect a desired symbiont 

(Table 5).  

The reaction mixes for each endosymbiont varied, but all reactions totaled 10 μL. For 

Wolbachia, the reaction mix contained: 2.0 μl of DNA template, 3.5 μl of double distilled 

H2O, 1 μl of 10X buffer, 0.8 μl of dNTPs, 0.6 μl of 25 mM MgCl2, 1 μl of 5.0 pmole/μl of 

both the forward and reverse primers, and 0.1 μl of 5 U/ μl NEB Taq. The reaction mix 

for Rickettsia was similar to the mix for Wolbachia, however there were some 

differences. The Rickettsia mix used 1.1 μl more of double distilled H2O (4.6 μL), 0.1 μl 

less 25 mM MgCl2 (0.5 μL ), and 0.5 μl less of 5.0 pmole/μl of both the forward and 

reverse primers (0.5 μL). The Spiroplasma reaction mix differed from the other two. It 

contained 2.0 μL of DNA template, 3.32 μL of double distilled H2O, 1 μL of 10X buffer, 1 

μL of dNTPs, 1 μL of 25 mM MgCl2, 0.8 μL of 5.0 pmole μL of both the forward and 

reverse primers, and 0.08 ml of 5 U/ μL NEB Taq. A positive control was again loaded 

with each PCR to confirm that the PCR worked properly. 

PCR reactions were mixed in a Thermo Scientific 1300 Series A2 biological safety 

cabinet. PCR were run in a BioRad C1000 Thermal Cycler using a predetermined 

program for time and temperature (Table 5). Afterwards, the reactions were loaded 

onto an agarose gel (1 g agarose to 100 mL of 1 TAE Buffer) stained with GelRed, and 

run at 85 volts for 45 minutes in a gel rig using a VWR Power Source. Gels were then 

placed in a UVP High Performance UV Transilluminator to view the gel bands.  
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In the event that positive bands appeared and indicated a potential presence of 

a symbiont, a gel extraction was performed and the extracted material was sent to 

Beckman-Coulter (Danvers, MA) for Sanger sequencing. To do this, individual beetles 

that appeared to have a positive gel band for a selected endosymbiont were rerun in a 

PCR with double the reagents (20μl total volume per reaction instead of 10 μl). Once the 

gel had undergone gel electrophoresis, bands were removed by using a heated blade to 

cut out small sections of the gel with the desired DNA and placing them in a 1.5 mL 

centrifuge tube. The tube with the gel contents in it was then weighed. The GenCatch kit 

by Epoch Gel Extraction Kit was used at this point, following the manufacturer’s 

instructions, to elute the DNA. This final product was stored at -20° C until sequencing. 

Resulting sequences were examined and manually edited in Geneious V6.0.6 

(AgMatters, Auckland, NZ). Microbe identity was determined by comparing sequences 

to the NCBI database using the Megablast algorithm. 

Results 

 PCR results showed 9 possible gel bands for Wolbachia, Rickettsia, and 

Spiroplasma in the Arizona, California, and Illinois populations. The Kentucky population 

did not show any bands that would signify symbiont presence. The individual beetles 

that had the clearest bands were selected and rerun in the larger PCR described above, 

and gel extracted for sequencing. In total, 8 samples were sent for sequencing with 

Beckham-Coulter. For Wolbachia, two Arizona beetles and one Illinois beetle were 

sequenced. These sequence results were very low quality when examined in Geneious 

v6.0.6, had no usable information, and could not be blasted. For Spiroplasma, two 



38 
 

California beetles were sequenced. These sequences were identical to one another. 

After manually trimming the sequences and comparing them to the NCBI database, it 

was determined that the PCR had amplified DNA from the bacteria Staphylococcus 

sciuri. This bacteria has been identified in several insects and is known to cause health 

issues in humans (Washington et al., 2015). For Rickettsia, three beetles from Arizona 

were sequenced. These sequence results, when compared to the NCBI database, 

showed a high percentage (80%) match to Dendroctonus ponderosae, the mountain 

pine beetle. This leads to the conclusion that the primers amplified a piece of beetle 

DNA, presumably from H. convergens itself.  

Discussion 

 This study did not support the hypothesis that the male-killing endosymbionts 

Wolbachia, Spiroplasma, or Rickettsia exist within the four populations of H. 

convergens. Given that these beetles show all of the characteristics noted in other 

Coccinellids that are infected with endosymbionts, it was predicted that an 

endosymbiont infection would exist. Endosymbionts have been found in many other 

Coccinellids in recent studies, although few have examined H. convergens for them.  

 The most obvious reason for this study not observing any endosymbiont 

infections is that these endosymbionts may not exist within H. convergens. The 

endosymbionts tested for were all known to be reproductive manipulators, which H. 

convergens may not have relationships with. However, this study is too preliminary to 

make this assertion with any certitude.  
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Reproductive manipulating endosymbionts can occur at a low rate, around 10%, 

in many recorded insect species (Jiggins et al., 2001). However, the infection rate of an 

endosymbiont varies from species to species and depends on the host and host 

population. It is possible that these endosymbionts could occur at that rate or lower in 

H. convergens and were missed during the study. To evaluate experimental power, a 

geometric distribution was calculated using the Probability Mass Function (PMF) 

(Stewart, 2009) and the sample size of the study, 73. The probability mass function gives 

the probability that a discrete random variable equals another variable. Using this 

equation, it was determined that the actual endosymbiont frequency based on the 73 

beetles that were used in the study, was unlikely to be above .04, or 4% infection rate. 

This can be interpreted as saying that if any of the endosymbionts that were tested for 

do exist within H. convergens, their infection rate would be at or below 4% of the total 

population. The sample sizes in this experiment were larger than previous studies that 

have been done (Weeks et al., 2003) but still relatively low at only 13 or 20 individual 

females per population and only 73 total females. However, the present study's sample 

size could still have missed very low frequency infection rates.   

It is also a possibility that the beetles have other strains of symbionts that would 

not have been picked up by the primers that were used for this experiment. The primers 

were designed for certain bacterial genera, and would not be effective at detecting 

unexpected bacteria genera, nor would they necessarily detect even the targeted 

strains, if mutations had occurred in the target DNA to prevent the primers from 

binding. In the absence of good binding sites, the primers may have been replicating a 
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large amount of “junk” DNA that was diluting the results of the PCR process. Future 

attempts at characterizing symbionts in H. convergens should include next-generation 

sequencing with non-specific primers, to detect a broader diversity of bacteria.   

 Very few investigators have attempted to screen H. convergens for 

endosymbiont presence and of those who have the sample sizes have been small. The 

information in the present study may cause others to use a larger sample and check for 

a broader array of endosymbionts within H. convergens populations.  
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Table 3: The forward and reverse primers used to detect three selected endosymbionts 

Wolbachia, Spiroplasma, and Rickettsia in four populations of H. convergens. All primers 

were adapted from White et al. (2015). 

 

Target 
Symbiont 

Target 
Gene 

Primer 
Name Primer Sequences 5’ to 3’ Thermocycling 

Condition 

Spiroplasma 16S 16SA1F 
TKSsSpr 

AGAGTTTGATCMTGGCTCAGTA
GCCGTGGCTTTCTGGTAA 

94°C for 180 
seconds followed 
by 35 repeated 

cycles of 94°C for 
30 seconds, 55°C 
for 30 seconds,  

and 72°C for 360 
seconds 

Rickettsia 16S 16SA1F 
Rick16SR 

AGAGTTTGATCMTGGCTCAGCA
TCCATCAGCGATAAATCTTTC 

95°C for 120 
seconds followed 
by 35 repeating 

cycles of 92°C for 
30 seconds, 60°C 
for 30 seconds, 

72°C for 30 
seconds, and 
72°C for 360 

seconds 

Wolbachia wsp wsp_F1 
wsp_R1 

GTCCAATARSTGATGARGAAAC
CYGCACCAAYAGYRCTRTAAA 

94°C for 120 
seconds followed 
by 36 repeating 

cycles of 94°C for 
30 seconds, 59°C 
for 45 seconds, 

72°C for 70 
seconds, and 
70°C for 600 

seconds 
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Section 4 

Conclusion 

 The goal of this study was to determine if there were any drawbacks to shipping 

adult Hippodamia convergens across the country for biological control. The two specific 

objectives were to determine if intraspecific variation existed in the photoperiod that 

induces diapause in  four populations including two that are commercially sold (Arizona 

and California), and two that were field collected (Illinois and Kentucky) , and to 

determine if there were differences in the populations’ infections by three male killing 

endosymbionts. While results from the experiments were not as hypothesized, the 

information gathered from them is still useful and insightful.  

It was hypothesized that there would be a difference in photoperiod triggering 

diapause between northern and southern populations of H. convergens. The results 

were not what were hypothesized. It was observed that populations do not react 

differently to different photoperiods based on the results of the Chi squared and 

Survival Analysis. . However, it was observed that diapause starts and ends 

spontaneously, and that beetles that are constantly exposed to a photoperiod and a 

constant temperature during their entire life can enter and exit diapause without any 

change in the environment.  

It could be hypothesized that these beetles have a genetic link to the 

photoperiod that they use to enter and exit diapause. However, this was not something 

that was tested for, as this study focused on correlations with genetic variation that was 

observed by Sethuraman et al. (2015). If this is true, then cross breeding beetles from 
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different populations may cause problems for the seasonal development of the 

offspring. Offspring may favor one parent’s photoperiod inducing diapause over 

another, or they may favor a photoperiod between the two, or a completely nonrelated 

photoperiod. Individuals that are the result of a cross breed between a naturally 

occurring population and a population that is introduced for biological control could be 

less adapted to the environment that they are residing in, and may die off while 

attempting to overwinter. This could lead to a decline in the populations where H. 

convergens adults are being released for biological control purposes.  

 The endosymbiont study did not reveal any information that may lead to 

restrictions in human movement of H. convergens based on variation in the presence of 

endosymbionts. . However, the Probability Mass Function calculation showed that the 

sample sizes that were used in the experiment were too small to accurately state 

whether or not the endosymbionts exist within the population. With more beetles being 

tested per population, the results may have been different. 

 Hippodamia convergens has been utilized as a biological control agent for over 

one hundred years. Several studies have measured its effectiveness as a biological 

control agent. Randolph et al. (2002) examined the effectiveness of H. convergens for 

controlling the Russian wheat aphid. Their study found that there was no measureable 

economic benefit to releasing H. convergens for biological control purposes, as the 

plants increased their biomass at the same rate both with and without natural enemies.  

Another study, by Flint and Dreistadt (2005), found that H. convergens reduced 

aphid populations in rose cultivars, but the number of individual beetles required per 
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bud for an uncaged rose was 100 beetles. It should also be noted that Flint and 

Dreistadt claim that the number of beetles required to control aphids effectively is 

around 2300 beetles per m2. That number is vastly greater than the recommended 

number of beetles, 11-12 per m2 that the sellers suggest. This study shows that H. 

convergens is capable of reducing aphid numbers in an outdoor environment, but only 

with a number of beetles that is far greater than insectaries suggest.  

Hagler and Naranjo (2004) performed a study in Arizona that observed the 

movement of H. convergens released for biological control purposes on cantaloupe and 

cotton. The released beetles were marked with rabbit or chicken immunoglobulin 

before being released into their respective crop. After 15 days,  fewer than 1% of the 

released beetles were recaptured for ELISA gut analysis. The other 99+% dispersed from 

the release site quickly.  

Studies like this suggest that H. convergens is capable of acting as a reliable 

augmentative biological control agent when the number of beetles released is large 

compared to the area that is to be controlled. However, it has been noted that beetles 

purchased from some biological control companies are not ready to act as biological 

control agents upon arrival. Many companies ship the beetles while they are still in 

diapause and the beetles arrive to the buyers still in this state. If the beetles are not 

given time to exit the diapause state, upon release they will find a place to aggregate, 

possibly away from the intended area of control. This further increases risks like those 

examined in this study.  
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Although H. convergens is not a reliable biological control agent in some 

environments such as open fields, it is still sold widely in the United States for field 

releases.   While those who purchase this insect for biological control   are hoping to do 

good by not using insecticides thus there is an assumed benefit for the environment and 

use a natural method for controlling their pests, they may in fact be furthering a decline 

in H. convergens’ ability to act as a biocontrol agent.  

 This study did shed some light on the overall hypothesis that differences exist 

between population’s physiology and environmental adaptations, but it did not answer 

the questions completely. Translocation of the beetles across the country for 

augmentative biological control can cause disruptions in their photoperiodic responses, 

as imported beetles won’t be adapted to the local environments they are released in. 

This can result in population decline both in the origin population due to a loss of 

beetles from being shipped across the country, and in the naturally occurring 

populations due to a loss of individuals from cross breeding, if the photoperiodic 

response is a genetically heritable trait. The relationship that these beetles have with 

endosymbionts is still unknown. It is possible that they don’t contain any endosymbionts 

or that their relationship with endosymbionts is infrequent. This study provides the 

basis for others to determine if the practice of shipping H. convergens across the 

country should continue or if there should be restrictions put in place to limit or halt this 

augmentative biological control practice.  
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