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ABSTRACT OF DISSERTATION 

 

 

INVESTIGATION INTO THE COMPETITIVE PARTITIONING OF DISSOCIATED H2 

AND D2 ON ACTIVATED FISCHER-TROPSCH CATALYSTS 

 

 

The Fischer-Tropsch process, discovered in the early to mid-1920s, still has researchers 

disputing the C1 monomer, and the rate-determining step. A tremendous amount of work, over 

the years, has focused on how hydrogen plays a role in the pseudo-polymerization of chain 

initiation and propagation, in an attempt to reveal the mechanism. These investigations 

attempted to elucidate the debated issues through studying the kinetic isotopic effect (KIE) for 

CO hydrogenation by switching the syngas from CO/H2 to CO/D2 during a steady-state period. 

Applying this switching step could result in a deviation in the rate of CO hydrogenation, 

indicating a KIE. However, results for this process were still not fully clear as not all 

observations agreed, which indicated that the KIE could be the result of a combination of how 

hydrogen interacts thermodynamically (adsorption) and kinetically (CO hydrogenation) in FT 

synthesis. That is, hydrogen must be activated through dissociative adsorption before interacting 

in CO hydrogenation. Thus, the primary emphasis of this dissertation is to focus upon how the 

dissociatively adsorbed hydrogen and deuterium atoms are apportioned upon the surface of an 

active Fischer-Tropsch Catalyst, pinpointing whether competitive adsorption is muddling the 

KIE for CO hydrogenation. 

 

Keywords: Fischer-Tropsch synthesis, H-D isotope effect, inverse kinetic isotope effect, cobalt 

catalyst, iron carbide, nickel catalyst, ruthenium catalyst 
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Chapter 1: A General Overview 

1.1 A Historical Overview of the Fischer-Tropsch Process 

1.1.1 The Groundwork (1899-1926) 

 In 1912, an incredibly well respected French chemist named Paul Sabatier (1854-1941), 

as a member of the Paris Academy of Sciences, was nominated and awarded, alongside Victor 

Grignard (1871-1935), the Nobel Prize in Chemistry [1, 2]. Dr. Sabatier won “for his method of 

hydrogenating organic compounds in the presence of finely disintegrated metals whereby the 

progress of organic chemistry has been greatly advanced in recent years [3, 4].”  

 The culmination of the Nobel Prize developed out of Sabatier’s discovery, between 

1899 and 1903, of nickel’s capability to reduce a series of oxygenated materials (e.g. ketones 

and aldehydes) [5-7]. Applying the theory behind this new direction of heterogeneous catalysis 

allowed for a series of novel applications to be investigated, by means of this recently 

discovered hydrogenation process. The beautiful concept behind this experimentation was that a 

previously complicated experimental process (without the catalyst) could now be carried out in 

such a simple manner. The reaction itself consisted of passing an organic reactant as a vapor 

alongside pure H2 through a glass tube holding a finely divided metal catalyst, normally heated 

above 100 ºC (i.e., creating cyclohexane by passing benzene with H2 across a nickel catalyst) 

[8]. Sabatier’s work also led to the first investigation into synthesizing methane by means of 

carbon monoxide and hydrogen [9]. 

 Sabatier’s work in catalytic hydrogenation swiftly achieved notoriety in the scientific 

community, which resulted in several nominations for the Nobel Prize in Chemistry: 1907, 

1909, and 1911. The focus of his research paved [4, 10] a new route in chemistry that revolved 
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around the Sabatier-Senderens reduction [9, 11]. From the birth of catalytic hydrogenation came 

several important processes including the Fischer-Tropsch (FT) process [12]. 

 A more complete historical account of FT can be found in Anderson [13] and Stranges 

[14]. Franz Fischer (1877-1947) received his PhD at Giessen in 1899, while studying under Karl 

Elbs (1858-1933), where his research focused upon electrochemistry applications. 

Subsequently, Fischer ended up working for Emil Fischer (1852-1919) in the field of 

electrochemistry until about 1911. He had planned on continuing this work by focusing his 

research in coal-to-electricity by direct means. However, WWI changed Franz Fischer’s 

direction when Germany’s lack of petroleum, due to absence of petroleum deposits, became 

obvious. Germany needed to conceive a new means for producing natural petroleum-based 

materials, to invent a synthesis process for fuel production from its abundant coal reserves. 

Though this forced a change in focus, Fischer began to examine the BASF process patented by 

Badische Anilin-und Soda-Fabrik, a process by which CO is catalytically reduced to 

hydrocarbon-based materials mainly comprised of alcohols, esters, ketones, and aldehydes. The 

BASF process, again because of WWI, was halted. However, Fischer decided to explore this 

process anyway, alongside Hans Tropsch (1889-1935), investigating this catalytic reaction at 

different pressures, temperatures (not going above CO decomposition, 2CO → C + CO2), and 

different hydrogen/carbon monoxide (syngas) ratios. They began their process by reacting coal 

with steam to create syngas, then by passing the syngas across a catalyst at low pressures and 

temperatures (ranging from 180 to 200 
o
C), synthetically assembled hydrocarbon-based 

materials (synthetic fuels) with more than one carbon.  

During the early 1920s, Fischer and Tropsch focused their work on a high-temperature 

range (above 400 °C), producing mainly oxygenated materials (esters, ketones, fatty acids, etc.), 
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coined as “synthol,” and virtually no hydrocarbons. During the latter half of the 1920s, both the 

physical conditions and the catalyst were changed. Temperatures were dropped to less than 300 

°C, and the primary active catalysts were first iron-cobalt-based and later iron-copper-based. 

This led to the synthesis of mainly hydrocarbon-based materials with virtually no oxygenated 

materials present in the product mixture [15, 16].  

 

1.1.2 1926-1945 

Fischer continued laboratory-scale research until the 1920’s, when the dependence upon 

petroleum-based materials in Germany inflated, creating a continual escalation for the need of 

synthetic fuels and driving expanded research in the FT process. Fischer developed a small 

pilot-scale reaction in 1932, followed by a larger pilot plant in 1934. These plants were plagued 

by several issues, including heat removal, the catalysts’ short lifespan (mainly due to sulfur 

poisoning), and significant loss of active metals. As a result, research shifted to focus on the 

more expensive cobalt-based catalyst and was based at Oberhausen-Holten. During the mid-

1930s, a few years after the Nazi Party gained power, petroleum independence was at the 

forefront of the party’s objectives. Given the importance of the FT process and direct coal 

liquefaction developments for Germany’s energy independence, these processes became a major 

contribution to Adolf Hitler’s Four Year Plan of 1936: “Accordingly, German fuel production 

must now be stepped up with the utmost speed and be brought to final completion within 18 

months. This task must be attacked and carried out with the same determination as the waging 

of a war; for on its solution depends the conduct of the future war and not on the laying in of 

stocks of petroleum [17].” Germany’s desire for energy independence allowed development of 

several large FT plants with annual production rates of 100,000-120,000 metric tons of material. 
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The standard FT catalyst, given its greater activity and lower reaction temperature, was the 

cobalt catalyst (100Co-5ThO2-8MgO-200kieselguhr) developed by Otto Roelen (1897-1993).  

Overall production peaked at the outbreak of WWII in September 1939 at 5.4 million barrels 

per year (740,000 tons of liquids). 

 

 1.1.3 Post-WWII 

 Even though the Nazi Party wanted petroleum independence and did so by vastly 

increasing the amount of production, the Second World War took its toll. Bureaucratic 

confusion, material shortage, and lack of a workforce lowered production in the FT plants. In 

the end, when the German nation fell, production plunged because most of the plants were 

either completely dismantled or leveled by allied bombing. Synthetic fuel production was 

suspended because of the Potsdam (Babelsberg) Conference of July 16, 1945, which prohibited 

any production to occur [18]. Adding insult to injury, a short-lived agreement was made to 

dismantle 4 coal hydrogenation plants in the western zones by the British [19, 20]. 

During the 1950s and 1960s, the Fischer-Tropsch process was not heavily researched, as 

WWII had come to a close and petroleum research as a whole decreased. An exception to this 

trend was that in 1955, SASOL built one of the first main FT plants developed outside of 

Germany in Sasolburg, South Africa [21]. 

During the Arab-Israel War in the early 1970s, an oil embargo was placed on the United 

States and several other allied countries that supported the Nation of Israel [22]. This led to a 

shift in the global financial balance to the oil-producing countries, causing prices for petroleum-

based materials to spike. This led to several economic issues related to the dependency upon 

petroleum, and shifted the focus to alternative measures. The sticker shock of the oil embargo 
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caused the German Document Retrieval Project, led by Richard Wainerdi and Kurt Irgolic with 

Texas A&M University’s Center for Energy and Mineral Resources, to commence in October, 

1975 [22-24]. The staff at the height of the project consisted of 12 full- and part-time members 

retrieving the documents. Interest came not only from universities, but from industries as well, 

i.e., Dow Chemical Company, Diamond-Shamrock Corporation, and Union Carbide. The 

undertaking, initially set as a three-year task, ended prematurely. The fact that the US, Canada, 

Russia, and England retrieved old process documentation 30-40 years later, in hopes to carry on 

Germany’s previous research, is a sound indication that the Germans were well ahead of their 

time. Though most of the documentation remains uncovered, over 310,000 pages were found, 

and 75,000-100,000 pages refer directly to coal gasification. 

The Fischer-Tropsch process is still alive and abundant today with large plants all over 

the world. Locations of current FT plants are displayed in Figure 1.1. The largest plant, put 

 

 

Figure 1.1: A global distribution of plants utilizing the FT process either by means of the CTL 

(coal-to-liquids) or GTL (gas-to-liquids) process measured in BPD (barrels per day) produced. 
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online in 2011, is the Pearl GTL (a partnership between Shell and Qatar), which produces 

140,000 barrels per day of the FT synthetic fuels. SASOL now has multiple FT plants in South 

Africa, and several are coming online in China, as a means to convert coal to FT liquids.  

Provided above is a very brief account of the historical impacts attributed to this process over its 

90 years of being online. Beyond the included references, there exists a vast amount of literature 

revolving around the historical impacts brought on by the FT process [25-29].  

 

1.1.4 The Full Picture 

The FT synthesis is a pseudo-polymerization process and one of the key steps in the 

Gas-to-Liquids (GTL) [30-32], Coal-to-Liquids (CTL) [33-36], and Bio-to-Liquid (BTL) [37-

39] processes, as displayed in Figure 1.2. There are essentially three key steps for the entire  

 

 

Figure 1.2:  A simplified diagram of the CTL, GTL, and BTL processes. 
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process.  The first step of these raw materials-to-liquid fuels (RTL) is the formation and 

cleaning of the syngas. The raw materials go through a process called pyrolysis, or gasification, 

to first generate the syngas. Unlike combustion, gasification is a very endothermic process (ΔH 

≈ 131.0 kJ/mole) so to overcome the thermodynamic limitations, the procedure itself is 

conducted at around 1500 °C. The actual chemistry depends on which process is used. 

Discernibly, these equations, as they are displayed, do not include all of the extraneous 

components, such as 

 

CTL/BTL = C + H2O ⇌ CO + H2 at a 0.7 ratio of CO/H2O 

GTL = CH4 + H2O ⇌ CO + 2 H2 

 

heteroatoms (i.e., sulfur, nitrogen), metals, and CO2. Hence, to obtain the needed clean syngas, 

a cleanup procedure needs to be applied. Again, only a brief overview is given here as there is a 

vast amount of literature involving the specific experimental gasification conditions and 

procedures [40, 41]. 

Depending on the original carbon source, the off-gas from the gasification process could 

contain several components that need to be removed, including metals, sulfur compounds (i.e., 

COS, H2S), CO2, and nitrogen compounds (i.e., HCN, NH3). The primary factors for the syngas 

cleanup are the unwanted sulfur molecules and CO2. Sulfur is most important to eliminate as it 

irreversibly binds to the FT catalyst and thus becomes detrimental to the entire RTL process. 

The CO2 needs to be removed for two main reasons: environmental concerns and the fact that 

its presence will affect the Water-Gas-Shift (WGS) conversions. 

The WGS shift system (if needed) is a hydrogen-upgrading process that is needed to  
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H2O + CO ⇌ H2 + CO2  ΔH = -34 kJ/mole 

 

boost the overall H2/CO ratio, mainly in a CTL/BTL process. The chemical reaction is an 

equilibrium synthesis. Therefore, the more CO2 that is allowed to pass from the gasification 

process and gas cleanup, the more the WGS reaction will be driven back to the reactants, 

suppressing the overall yield. This process, though an important step, is not always needed; e.g., 

when natural gas is used as the carbon source in the GTL process. This is also the case in the 

CTL/BTL process, when iron is used as the active component, since iron performs WGS and FT 

synthesis simultaneously. Again, as there is a tremendous amount of information regarding the 

WGS system and conditions in the literature, the intent here was mainly to give an overview of 

one place it is commonly used [42-44]. 

 Once the syngas has been made, cleaned, and upgraded (if needed), it passes into the FT 

system to create a large range of hydrocarbons, depending on the catalyst utilized in the process. 

The next few sections will go into further detail about the FT process, so this will be omitted 

here. 

 The last component in the RTL process is the fuel upgrading, mostly by means of 

hydrocracking of the waxes down to higher-octane-based materials. The raw synthetic resources 

that are derived from the FT synthesis are very high-cetane-based materials. This is a high-

quality, clean fuel for diesel engines, but in turn, very low-octane. The hydrocracking process 

can turn these high-cetane waxes, which are created from the FT synthesis, to higher-octane 

material, as normally hydrocracking and hydroisomerization go hand-in-hand [45]. 

 This simple overview has highlighted not only the significance of the history of the FT 

process, but also the important role it plays in the overall production of synthetic fuels today.  
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1.2 Fischer-Tropsch Overview 

1.2.1 The Basic Chemistry 

As mentioned previously, the FT synthesis is a pseudo-polymerization process [15, 16], 

where the starting materials are two simple diatomic molecules, hydrogen and carbon 

monoxide.  

 

(2n+2) H2 (g) + CO (g) → CnH2n+2 + n H20 (l)  

 

The span of materials that are synthetically produced from the FT process, however, is quite 

large, with hydrocarbon products typically ranging from methane up to C70 [46, 47]. The 

severity of the conditions (temperature, pressure, space, and velocity), the type of reactor, and 

the catalyst composition can deviate the range of products to solely methane or can produce 

methane as less than 5 mole % of the product, where the bulk of the product is wax. Though FT 

synthesis generally follows a polymerization process, the known reactants are not the building 

block, as the C1 monomer is still unknown [48-51]. Otherwise, the FT process stepwise relates 

closely to the polymerization process:  

 

1.  During chemisorption of the reactants (the syngas), the H2 goes 

through a dissociative adsorption (will be discussed later as this is the 

main portion of the thesis) and CO does dissociate, but this is another 

point of contention between scientists. 

2. An initiation of chain growth starting from the *C1 monomer occurs. 
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3. The carbon chain is then propagated (again, length will depend on 

several factors). 

4. The chain is eventually terminated. 

5. The final product irreversibly desorbs from the metal (disregarding 

secondary reactions). 

 

The scope of the polymerization process for a product range can be described by a 

simple polymerization model developed by Anderson et al. [52] and independently developed 

by Schulz [53] and Flory [54] called an Anderson-Shultz-Flory (ASF) plot. The ideal 

distribution can be expressed by the following equation (equation 1) and is the most 

conventional model used to date:  

(1) 

where Mn/n is the mole fraction of a hydrocarbon with carbon number n and α is defined as the 

chain growth probability. Alpha (α, equation 2) is defined by the rate at which the chain 

propagates (rp) versus the rate at which it terminates (rt).  

                                                   (2) 

The basis for the ASF polymerization model assumes the hydrocarbon chain lengths are 

independent of one another, and, thus, solely depend on rp and rt. Therefore, the distribution of 

FT products can then be theoretically created in a linear fashion by plotting the natural log of 

M
n
 

= (1- α)
2
α

n-

1
n 

α =  
r

p
 

(r
p 

+ r
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the mole fraction as the dependent variable y, and the carbon number as the independent 

variable x, as displayed in Figure 1.3 for a typical cobalt catalyst.  

 

Figure 1.3: An ASF plotted by the natural logarithm of the mole fraction for a cobalt, 

ruthenium, and iron FT product distribution. 

 

 The ASF polymerization model can be a great tool when theoretically ascribing a range 

of hydrocarbons to assess transversely through a series of catalysts portraying certain 

characteristics. More importantly, trends can be displayed in attempting to understand promoter, 

support, and reactor effects on the FT synthesis through the deviation provided by the ASF 

model. Figure 1.4 provides an overall viewpoint for an expected distribution for specific alpha 

values, and creation of this plot is now common practice. 

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70 80

ln
(m

o
le

 F
ra

ct
io

n
) 

Carbon Number 

Fe

Ru

Co



 
12 

 

 

Figure 1.4: A distribution of products based upon α. 

 

Depending on the active metal, most active FT processes are fashioned to be in a range where 

the bulk of the materials produced fall at or above α = 0.8. Considering that the idea behind this 

process is to create longer-chain hydrocarbons, there is essentially no reason to create a very 

low-α catalyst where the bulk of the products are simple natural gas.  

 

1.2.2 Common FT Active Metals 

As mentioned, the four most active metals for the FT synthesis are cobalt, iron, 

ruthenium, and nickel. However, cobalt and iron are the only two viable for practical operating 
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conditions due to nickel’s excessive methane production and the high price/low availability of 

ruthenium [55]. 

Iron has the highest earthly abundance and is therefore the cheapest at around $97 per 

ton. Of the different active metals, iron is the preferred choice for industrial use when coal and 

biomass are the carbon source. During the gasification process, given the high abundance of 

naphthalene-based materials, the CO/H2 ratio effluent is less than one, and typically closer to 

0.7. The low level of H2 in the exhaust of the gasification is sufficient for iron, because unlike 

any of the other FT metals, iron can increase the H2 ratio through in-situ WGS. Iron is also 

different in that iron carbide, not the metal itself, is the active species. In addition, iron carbide 

alone is a very low-α catalyst, and normally an alkali promoter, such as potassium, is added to 

increase the dissociation of CO, allowing the alpha to increase [56-57]. Copper is normally 

added as a promoter as well, to enhance the reducibility of the iron catalyst [58].  

 Cobalt is the other primary active metal for a large-scale RTL process, namely the GTL 

process. Cobalt, unlike iron, does not have the intrinsic capabilities for WGS and cannot handle 

the low H2/CO ratios. The pyrolytic degradation of natural gas (CH4) allows for a 2:1 H2/CO 

ratio, ordinarily required for FT synthesis when cobalt is employed as the active FT component. 

Cobalt is typically supported on materials such as Al2O3, SiO2, and TiO2 [59], where good 

interactions between that active metal and supports exist. This is a fine balancing act, since a 

poor interaction can cause the cobalt particles to sinter, leading to a decrease in surface area, an 

increase in the unwanted product of methane, and a decrease in the overall activity. However, if 

the interaction between the support and the cobalt is suitable and the particles are fine, much 

higher temperatures are required for reduction. Given the importance of the interaction between 

the active cobalt metal and its support in determining the longevity of the synthesis, promoters 
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such as platinum are commonly used to alleviate the high temperatures required for cobalt 

reduction [61]. 

  

1.2.3 Mechanism 

Primary products per carbon number accounting for greater than 95 mole of C% for the 

products synthesized from the FT process are as follows: the terminal alcohol, 1-olefin, paraffin, 

trans-2-olefin, and cis-2-olefin. To give an idea of the considerable arrangement of products, 

Figure 1.5 displays a chromatographic picture of merely the oil phase (excluding gas, aqueous, 

and wax) for the distribution of products for cobalt, iron, and ruthenium FT catalysts.  As noted 

in the flame ionization detector (FID) scan, the relative amounts of each major component vary 

significantly depending on the catalyst used. Compounding the selectivity is the sensitivity to 

the physical properties of the process (e.g., temperature, pressure, H2/CO ratio) and the type of 

reactor (slurry or fixed-bed). Deviations in the product distribution between these conditions 

can complicate the olefin/paraffin (O/P) ratio [61-65] through reinsertion to hydrogenate, 

isomerize or to initiate chain growth [47, 66, 67]. 
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Figure 1.5: FID chromatographs for the products of the oil phase for cobalt (A), iron (B) and 

ruthenium (C) FT catalysts. 

 

Hydrocarbon chain lengths also vary the olefin/paraffin ratio as heavier products accumulate 

due to decreasing vapor pressure, in slurry-based FT systems. As residence time increases 

proportionally so does reinsertion; thus, an inverse relationship arises where the longer the 

hydrocarbon chain, the lower the O/P ratio (as n increases, O/P decreases). This attribute can be 

visually described by Figure 1.5, principally in iron, where the olefin material decreases more 

rapidly in the FID chromatograph.  

Bearing in mind the lengthy products consisting of aliphatic molecules, the FT synthesis 

could be investigated as the building of molecules through a multi-step reaction. However, all 

the intermediates remain bonded to the surface and can only be observed, and if surface specific 
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compounds are noted, they could be considered intermediates, or just onlookers. As mentioned 

prior, several steps need to occur in the synthesis route by the addition of hydrogen, going from 

a CO bond(s) to a C-C bond:  

 

 associative/dissociative adsorption of CO (remains a point of contention) 

 dissociative adsorption of hydrogen (the subject of this thesis) 

 splitting of the CO bonds 

 transfer of 2 H* atoms to O* to form H2O 

 allocation of 2 H* to C* to form (CH2) 

 formation of a new C–C bond (unless methane is formed) 

 desorption of H2O 

 desorption of aliphatic product 

 

This list is a guide, but the specific order for all the given steps still eludes researchers. 

Obviously, for aliphatic materials to be synthesized, CO will need to dissociate. A case in point 

is the following, describing complications of certain steps in the CO adsorption [68]: 

 

1. Does CO molecularly adsorb, or dissociatively adsorb?  

2. If CO does molecularly adsorb, does dissociation require hydrogen assistance?  

 

Adsorption studies of carbon monoxide on metal surfaces are vast given these complications, 

and this is arguably the most studied catalytic reaction [69-83]. 
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Fischer, discerning that the synthetic route involved formation of aliphatic carbon 

hydrogen bonds, and knowing the carbide tendencies of iron, first proposed the carbide 

mechanism as seen in Figure 1.6.  

 

 

Figure 1.6: A proposed synthetic route for FT by means of the carbide mechanism. 

 

Although this mechanism was promoted by Fischer, this was not his first choice; he did not 

favor the carbide mechanism until results displayed hydrocarbons as the primary products for 

FT synthesis [84]. Although this mechanism was set aside for a brief period, recent advances in 

surface science displaying ample surface carbon and no surface oxygen revived the idea that 

hydrocarbon products could be built through the combination of methylene groups [85-89].
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 The carbide mechanism follows the idea that CO dissociatively adsorbs upon the active 

FT metal, covering the surface with carbon and oxygen atoms. The adatoms are sequentially 

hydrogenated, forming water and the methylene monomers. The quasi-equilibrium assumption 

for the dissociation and hydrogenation of CO lies within the first hydrogenation step; the second 

is rate-limiting. [90].         

 Fischer first proposed an oxygenated mechanistic route for the FT synthesis as very little 

aliphatic material was generated; i.e., products were mostly comprised of alcohols. Although the 

carbide mechanism gained ground after being proposed by Fischer, work done by Kummer and 

Emmett [91, 92], noted more in Section 1.3.1, gave rise again to the oxygenated mechanism 

[93]. A detailed example within Figure 1.7 is currently known as the enol mechanism. 

                               

Figure 1.7: The proposed enol mechanism. 



 
19 

 

This mechanism describes CO adsorbing without dissociating upon the FT active metal 

surface. After chemisorption, CO reacts with adsorbed H atoms to create hydroxymethylene 

(M-CHOH). The enol structure grows by a sequence of condensation steps using adjacent 

groups. This mechanism describes a route where the rate-controlling step is the first carbon 

hydrogenation, whereas the other mechanisms are the assumed at a quasi-equilibrium state. 

 

 

Figure 1.8: The CO insertion proposed mechanism. 

 

Another commonly proposed mechanism is CO insertion [94]; displayed above in Figure 1.8. 

Unlike the previously mentioned synthesis route, CO is molecularly adsorbed onto the active 

catalyst and goes through hydrogen-assisted dissociation only after chain incorporation. Again, 

the proposed rate-limiting step is the hydrogenation of CO to the CH2 methylene group. The 
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assumed monomer for this mechanism is simply CO through insertion into metal-carbon bonds. 

Adding vigor to this mechanism, migratory CO insertion is a common step in homogenously 

catalyzed reactions such as hydroformylation [95].  

 

1.3 Isotopic Tracers 

1.3.1 Carbon 

 To elucidate the complete FT mechanism, researchers employed isotopes such as 
2
H, 

18
O, and 

14
C as tracers. As mentioned, some of the earliest ideas about chain growth came from 

the carbide characteristics of the active metal, e.g. iron. This practice was followed as an 

attempt to understand the FT mechanism, until some work done by Kummer et al., while 

working under Dr. Paul Emmett, disputed this route. Their work changed the mechanistic 

ideology of FT by experimentally demonstrating the assumed intermediate was not the metal 

carbide [91, 92].  

 Emmett came across 
14

C during his tenure on the Manhattan Project, and in the late 

1940s started using this carbon radioisotope to probe the FT mechanism. The experimental idea 

was relatively simple and could be used to determine if CO proceeds through a metal carbide 

intermediate before being reduced to methylene groups, where hydrocarbons are built by the 

combination of methylene monomers across the metal. Given the presupposed hypothesis where 

carbide was presumed as the intermediate, creating a radiolabeled carbide surface with 
14

C 

followed by running FT with unlabeled syngas (
12

CO/H2) would reveal the surface participation 

if the FT process [91].  

Four catalysts were screened: three were iron (two pure iron oxide prepared by two 

different methods, and the third Zr/Fe/Al2O3) and the last was a cobalt-thoria-kieselguhr 



 
21 

 

(100:18:100) catalyst. The catalysts were first reduced under H2 at specific temperatures, 

followed by the carburization with the labeled carbon monoxide at 200–270
°
C, and then the 

monitoring of the CO2 (used to determine CO consumption). The FT system was set up in a 

batch mode at atmospheric pressure, allowing the consumption of syngas to occur, and the 

pressure was held constant by raising the mercury in the burette. Methane, hydrogen, and 

carbon monoxide were measured separately. The methane was burned to CO2 and converted to 

barium carbonate to be counted in a scintillation counter. The radioactivity that was evident in 

the product stream (i.e., methane) was found to be less than that of the radioactive gas used in 

the carburization process. Additional work was completed to ensure the results were not 

affected by exchange between the products and the carbide phase. In these sets of experiments, 

using 
14

C as a tracer, the bulk of the aliphatic materials were assembled through an “unknown” 

process, though a small portion could possibly have been assembled through the carbide 

intermediate (Figure 1.9).  

 

Figure 1.9: The percent of 
14

C formed through carbide reduction; 

redrawn from Emmett et al. [91]. 
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This work set forth a vast number of experiments that are still being undertaken today as 

a means of understanding the complicated process of CO adsorption and hydrogenation. The 

fact that there are still competing proposed mechanisms more than 90 years after the 

introduction of the FT process demonstrates how truly complex it is. 

 This work provided information that agreed more with some of the ideas set forth by 

Elvins and Nash, as the C1 monomer is more of a C-H-O (formyl) complex at the surface site 

[96, 97]. Their reasoning for this is the carbide by means of CH2 additions across the metal, 

where C and O dissociating first could not explain the alcohols that were forming from the FT 

reaction. In turn, Emmett and co-workers again used 
14

C as a tracer, not with CO but with 

ethanol. If the complex, as described by Elvins and Nash, revolved around C-H-O, then 

incorporation of simple oxygenated materials such as ethanol would allow for one to trace 

reaction products. The incorporation of ethanol with the syngas allowed for a description of 

products to be observed [92]. Ethanol adsorbed into the chain growth process and affected a 

range of C3 to C10, as noted in Figure 1.10.  

 

Figure 1.10: Results from the adsorption of the ethanol species, redrawn from Emmett et al. 

[92]. 
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Ethanol (the adsorbed compound resulting from ethanol) is incorporated into the FT process as 

a chain initiator. This work by Emmett using isotopic tracers gave a window into the 

occurrences of the FT process. In addition, the consistency of activity provided per carbon 

number revealed that this process is not random between the adsorbed ethanol species and the 

carbon species on the metal surface. Note that this incorporation is an alcohol onto an iron 

catalyst, and alcohol does not incorporate as readily into a cobalt FT system. In turn, olefins 

incorporation also became evident, but is more active with the cobalt-based FT catalyst than 

with iron. As before, the work led to a vast host of other isotopic tracer incorporation 

experiments using carbon-14 and carbon-13, more so than can be described here [51]. 

 

1.3.2 Hydrogen 

Considering the focal point of this thesis, in the interpretation of hydrogen and its stable 

isotope deuterium, the remaining discussions will revolve around this topic. Two main 

experimental designs have utilized hydrogen as a means to probe the FT mechanism. The first 

revolves around the ASF plot, in an attempt to understand the polymerization process, i.e., 

primary versus secondary reactions. Certain reactors, such as laboratory-scale continuously 

stirred tank reactors and plant-sized slurry reactors, are known to accumulate products (Figure 

1.11), causing deviations from the known ASF plot.  The second main experimental design for 

the utilization of hydrogen and its isotope also peers into the mechanism by probing the rate-

limiting step for the kinetic process of CO hydrogenation. 
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Figure 1.11: Comparison of the olefin versus total hydrocarbon production, redrawn from 

Buchang et al. [47]. 

 

1.3.2.1 Primary Product Distribution  

As mentioned, FT products theoretically follow the ASF model described by equation 1. 

A semi-logarithmic plot of the mole fraction as the independent variable versus the carbon 

number will give a linear plot with a negative slope. However, experimental evidence has 

shown several variances from the theoretical model, deviating from a straight line, as displayed  

in Figure 1.12. These types of deviations are normally only seen in a slurry-based reactor 

system, where the products will only leave as a vapor and the heavier liquids need to be 

extracted online. Some H2/D2 exchange work has been performed to specifically describe this 

type of issue for a slurry-based FT system. [98-100]. 
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Figure 1.12: The comparison between a theoretical and experimental ASF plot 

to display experimental deviations from the ASF model. 

 

The primary thermodynamic product for the FT process is methane, though several 

irreversibly formed products throughout the entire distribution (i.e., the n-paraffin, CnH2n+2) can 

be considered additional primary products. In addition to the primary products, secondary 

products exist, such as oxygenated materials, olefins, and some branched hydrocarbons. For 

example, as displayed in Figure 1.12, the line for the entire distribution at C3 and above, C1 and 

C2 products normally deviate where C1 is high and C2 is low. C1, as the main thermodynamic 

product, has been described as forming at different active sites for all the longer C-C bonded 

hydrocarbons [101, 102]. The reason given for the unusual decrease in the C2 is ethylene’s 

ability to reincorporate back into the FT chain growth process. These types of deviations from 

the theoretical ASF model have been attributed to a flurry of theories:  
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 Two chain growth probabilities [103-105] 

 Vapor phase equilibrium (VLE) [100, 106, 107] 

 Olefin reabsorption [107] 

 Chain length desorption issues [108-110] 

 Intensive observables 

 Pressure 

 Temperature 

 SV 

 

Given the variety of proposed theories, a method for uncovering the true reason for this 

deviation includes the use of hydrogen isotopic tracers. Allowing a switch from H2 to D2 during 

the time-on-stream (TOS), for a brief period, has brought some insight into the FT product 

distribution [98-100].  

 

1.3.2.2 Kinetic Isotopic effect 

The present research utilizes the idea of switching between H2 and D2 during the FT 

reaction, while monitoring the rate at which CO is converted to hydrocarbons. This 

experimental design, in an attempt to understand the kinetic isotope effect (KIE, which will be 

defined in the next section) for CO hydrogenation, has been performed several times; though 

most describe an inverse kinetic isotope effect (IKIE), not all have agreed [111-124]. The 

confusion brought upon these experiments by the difference in the KIE is not something that 

this work is attempting to solve. Yet, discovering if a KIE is present in the competitive 
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adsorption could be a means to potentially understand if the thermodynamic process of 

adsorption is affecting the results for the KIE in CO hydrogenation. 

 

1.4 Kinetic Isotopic Effect 

1.4.1 Theoretical Concept 

The KIE can be an invaluable tool to aid in the understanding of specific reaction rates, 

mechanisms, and solvent effects. Specifically, the KIE can be defined as the dependence of the 

reaction rate upon a reacting molecule’s isotopic composition. There are several different 

classifications of KIEs: 

 

1. Primary kinetic isotope effect – This occurs when the isotopic bond (either made or 

broken) is involved with the rate-determining step 

2. Secondary kinetic isotope effect – This occurs when the isotopic bond (either made or 

broken) is not involved with the rate-determining step (this could be more correlated 

to a change in hybridization, i.e., a sp
2
 carbon to a sp

3
 as displayed by the Diels-Alder 

reaction)  

3. Normal Kinetic Isotopic Effect – This occurs when the rate of the lighter isotope is 

faster, e.g. kH > kD. 

4. Inverse Kinetic Isotopic Effect – This occurs when the rate of the heavier isotope is 

faster, e.g. kH < kD. 

 

These rates can be dependent upon the isotopic difference within a phenomenon called zero 

point energy (ZPE). The ZPE is the lowest possible energy a quantum mechanical, physical 
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system may contain. From this, the energy difference between the lowest energy level (where n 

= 0) and the lowest point on its isotopic-specific effective point (based upon the Born-

Oppenheimer approximation, or BOA) can be calculated. Essentially all bonds have a series of 

quantized vibration levels with specific energies (En) given in equation 3, where n is the  

 

    (3) 

 

quantum level, and h is Planck’s constant. These are dependent upon the frequency ν of the 

bond stretch as given in equation 4, where μ is the reduced mass and k is the force constant. 

     (4)  

 

In turn, equation 4 is dependent upon the atomic mass given in equation 5, connected at each 

end (assuming a diatomic molecule like H2 or D2), where m1 and m2 are atomic masses (H, D, or  

 

    (5) 

 

M). Theoretically the ZPE (Figure 1.13) is where n = 0, thus from equation 1, En = 1/2 hν. Even 

at the ground state, molecules such as H2 and D2 will vibrate at a certain frequency, as given by 

the experimental ZPE for H2 = 4161 cm
-1

 and D2 = 2993 cm
-1

[115].  
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Figure 1.13: The location of the ZPE in a potential energy well. 

 

 As displayed by the experimental frequency mentioned, the ZPE energy for deuterium 

would be lower, since this energy can be related directly to the atomic mass, where ν is 

inversely proportional to mass. Adding this concept to Figure 1.13, Figure 1.14 theoretically  

describes the ZPE energy levels for both isotopes. 

 

 
Figure 1.14: A theoretical plot illustrating the potential energies of deuterium versus hydrogen. 
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Although Figure 1.14 provides a theoretical difference between the H and D ZPE energy 

curves, it does not display the full picture. The bond formation for the hydrogen is also needed; 

in this case the formation will be to carbon.   

Figure 1.15 provides a graphical analysis of this potential energy expression and 

portrays the basic isotope effect analysis. Superimposing the ZPEs (Figure 1.14) allow for the 

two isotopically substituted reactants to be displayed on the potential energy surface of the 

reaction. This surface gives the activation energies of the two reactions, which help in finding 

the rate constants. 

 

Figure 1.15: A theoretical plot providing a full picture of the difference in ZPEs between the 

ground state and the transition states for competitive hydrogen/deuterium adsorption. 

 

Lastly, taken from Figure 1.15, the KIE can be used to determine where the ZPEs are 

playing more of a role, either through the formation of the bonds or the breaking. Specifically, 

the KIE is defined by the rates of H (kH) and D (kD) during the process either though the bond 
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breaking or formation, given by equation 6 where kH and kD are the rate constants for H and D, 

respectively. 

          

           (6) 

From this, the given energy barrier between the ground state and the transition state can be 

ascribed to the Arrhenius equation for the activation barrier for each separate isotope (equations 

7 and 8), where A represents the Arrhenius constant, E is the activation energy, R is the ideal 

gas constant, and T is temperature. 

    (7) 

 

    (8) 

 

Next, by substituting equations 7 and 8 into equation 4 and making the simplifying assumption 

that the Arrhenius constant for H and D is equal, i.e., AH = AD, we can start defining the KIE by 

the separate activation barriers for each isotope.  

 

(9) 

 

Equation 9 can then be simplified further by using an essential identity for the exponential 

where e
x
/e

y 
= e

(x-y)
. Thus, equation 9 can be rewritten as 

k
D 
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k
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KIE =  
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k
H
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 (10) 

 

The energy described in equation 8 is the potential energy given by a bond formed by two 

atoms vibrating together. This relationship can be described by the quantum approximation 

called the harmonic oscillator. The energy equation that is used to describe this relationship is 

equation 1, where n must be equal to zero. It is important to remember the energy given in 

equation 8 is the activation energy, and therefore can be described as the difference in ZPE for 

the reactant and the transition state. Lastly, the potential energy given can be separated by 

isotopes for H2 (equation 11) and D2 (equation 12) accordingly, 

 

 (11) 

 (12) 

 

where υ
† is the ZPE transition state frequency and υ

o
 is the ZPE for the ground state frequency. 

Lastly, equations 11 and 12 can then be substituted into equation 8 to give equation 13 a  

 

 (13) 

 

frequency relationship for each isotope where Planck’s constant can be converted to 

Boltzmann’s constant k (not to be confused with the spring constant k or the rate constant in 
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future discussions). This in turn can then finally be simplified down to equation 14, as a way to  

 

 (14) 

 

the describe difference in the expected IKIE and the normal kinetic isotope effect (NKIE) where 

the over all KIE equation can be illustrated. 

Consequently, by disseminating equation 14 down to the frequency components, it can 

be shown that if ∆υ
≠ 

> ∆υ
o
 the entire equation would end with the KIE = e

-x 
< 1. However if ∆υ

≠ 

< ∆υ
o 

then the KIE = e
x
 > 1. Thus, if the frequency difference in the transition state is larger 

than in the ground state, equation 14 would be positive, displaying a normal KIE. However, if 

the opposite is observed, then the exponential will be negative, displaying a value less than one 

as described by the IKIE. Figure 1.16, a basic visual representation of this concept, displays the 

theoretical potential energy well activation energy (Ea) and the transition step. 

 

 

Figure 1.16: Visual representation of the difference between an NKIE (left) and IKIE (right). 
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These transition steps can be locally applied to different steps along the FT mechanistic 

pathway, such as H2/D2 to the adsorbed H
*
/D

*
, or the H

*
/D

* 
to the CH/CD bonding from C*O.  

 Lastly, based upon the Hammond postulate, the transition state will most resemble the 

molecule where the smallest energy difference occurs. Therefore, the position of the transition 

state on the reaction coordinate, thus the KIE, will depend upon the thermodynamic difference 

in energy between the products and reactants. However, given that the focus of this work is with 

the FT process, Figure 1.16 displays an exothermic process where the reactants more resemble 

the transition state. 

 

1.4.2 KIE of Hydrogen Isotopic with an FT System  

Experimentally, the concept behind the H2/D2 switching experiment is to synthetically 

keep all of the components of the FT system as a control, allowing the only variable to be a 

switching between hydrogen and deuterium. An example route is displayed in Figure 1.17.  
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Figure 1.17: A general cartoon describing the experimental KIE switching investigation for CO 

hydrogenation. 

 

The experimental design in Figure 1.17 can be conducted separately for each of the 

active FT metals, as long as the conditions remain the same throughout the switching process. 

For example, if a cobalt catalyst is to be used for the KIE switching; several steps need to be 

taken before switching can occur. Activations and FT schemes for pressure and temperature, 

space velocity (SV), will vary pending on the reactor system, the active metal, and the catalyst 

characteristics (i.e., the supports and promoters used). A platinum-promoted cobalt/alumina 

would be activated by H2 at 350 
º
C and atmospheric pressure. After activation, the catalyst 

needs to be brought up to FT conditions and held for a period of time. Care must be taken when 

switching from activation conditions, especially regarding the temperature of the FT system.  

After the period of activation, the system can be cooled to below the FT-active 

temperature range and switched to syngas, where in a cobalt system the H2/CO ratio would need 
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to be 2. The FT reactor can then be slowly brought up to the desired pressures and temperatures 

for an effective FT range. Care is then taken to monitor the CO hydrogenation rate, by 

examining the methane content and then changing SV accordingly to ensure CO conversion 

remains low. The cobalt system is more active in the first 24 hours and then will drop for a brief 

period of time, after which the cobalt FT rate (the rate at which CO is converted to 

hydrocarbons) becomes consistent. The SV needs to be decreased allowing CO conversion to be 

close to 50%. Considering the exchange possibilities, WGS, and secondary reactions, the rate of 

FT is monitored by CO, not hydrogen. The CO conversion can be calculated by equation 15, 

where COin is the inlet flow, and COout is the flow of CO in the effluent.  

 

(15) 

 

After a period of Time-on-Stream (TOS), say 24 hours, has occurred and the FT system is stable 

(i.e., the CO conversion for H2/CO, the pressures, the temperatures, and SV are all consistent) 

then the switch to deuterium from hydrogen can occur. The switch to deuterium only needs to 

occur for a brief period of time, enough for the desired number of reactor turnovers, allowing 

for a few samples to be taken at these conditions before switching back to hydrogen. This 

ensures that if a change in the FT rate is noted, the only variable is the change between 

hydrogen to deuterium. If the FT rate has dropped, then once the switch back to hydrogen 

occurs, the rate should increase back to the previous results. 
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1.5 Competitive Adsorption 

1.5.1 Hydrogen Adsorption 

Given hydrogen as a single-electron system, one should expect this atom could provide a 

straightforward chemical-reacting adsorbate. Even the overall reaction, essentially the 

adsorption of hydrogen upon a fixed metal surface (M), seems to be straightforward. Yet the 

 

M + 
1
/2 H2 ⇌ MH 

 

amount of surface science literature describing the process for hydrogen adsorption poses 

considerable complexity. As a case in point, data provided solely for three transition metals (Ru 

[125-139], Ni [140-157], Fe [158-167]) display a tremendous amount of effort in attempting to 

understand the progression of H adsorption. Yet, before a discussion of adsorption can take 

place, a few details need to be put into place to distinguish it from the other molecular solids: 

 

1. The small size of the molecule (H–H distance is 0.74 Ǻ) 

2. The spherical shape of the atom  

3. The existence of two stable isotopes with masses differing by a factor of 2 

4. The two spin states of hydrogen; ortho (symmetric) and para (antisymmetric) 

5. The low electron density. 

 

 The adsorption of H2 upon the metal surface can be portrayed visually with Figure 1.18.  
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Figure 1.18: A series of diagrams depicting the possible route for H2(two small circles) as it 

interacts with the metal. 

 

Upon dissociation (chemisorption), the hydrogen atoms can interact independently with the 

metal. Once the hydrogen atom chemically adsorbs, its atomic properties allow for different 

types of interactions with the metal surfaces. Adsorption can be described through a two-state 

process for H2. The first is physisorption, which occurs with a weaker attraction without 

dissociation, and the second is chemisorption (where H2 dissociation occurs). The adsorption 

process is far more complicated than the discussion herein, and can be affected by: 

 

1. the attraction of hydrogen to specific metal surfaces (pure element, alloys); 

2. surface defects; 

3. isotopic effects due to tunneling or diffraction; 

4. molecular directionality as the distance between the molecule and the metal surface 

decreases. 
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These factors will create small changes in the activation energy for the chemisorption process 

on a single-crystal metal plane, which plays a role in determining trapping versus sticking 

phenomena. Future discussion will revolve around the two previously mentioned adsorption 

processes. 

 

1.5.1.1 Physisorption 

 As previously mentioned, this process is weaker in energy and hydrogen dissociation 

does not occur. The driving influence is small interactive forces called van der Waals forces, 

directed by attraction of the H2 molecule as it approaches the metal surface. The prospective 

binding energies are low, ranging from 3.5 kJ/mol to 15 kJ/mol. Therefore, for the sake of 

experimentation, it can be carried out at very low temperatures. This process can be described 

through a general energy level diagram, as previously described for the KIE. Taking into 

account the previously mentioned factors, the adsorption process can be portrayed by Figure 

1.19, where the H2 molecule, in its ground state infinitely far from the metal lattice, approaches 

the metal plane from the z-axis, perpendicular to the surface plane. 
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Figure 1.19: Potential Energy diagram for the physisorption of H2 as it approaches a metal 

surface. 

 

1.5.1.2 Chemisorption 

With chemisorption, a completely different interaction pattern is observed as the 

hydrogen atom moves along the z-axis toward the metal surface. This is because, unlike before, 

the hydrogen molecule dissociates and becomes atomically bound to the metal surface. Again 

this can be displayed by sketching a potential energy diagram (Figure 1:20) to display the  

 

Figure 1.20: Potential Energy diagram for the chemisorbed (pre-dissociated) hydrogen with the 

metal surface. 
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interaction as a whole. The potential energy wells will range between 500 and 600 kJ due to the 

strong interactive forces as the hydrogen atoms are brought close to the surface.  

 Superimposing Figure 1.19 and Figure 1.20 can be used to describe the adsorption 

process as slightly spontaneous or activated (Figure 1.21). Given the attraction of transitional  

 

 

Figure 1.21: Superposition of the physisorptive and the atomic interaction potential energy 

curves yields a crossover point P. 

 

metals toward hydrogen and the subject of this current work, only the spontaneous process of 

adsorption will be considered. This simplistic viewpoint only considers adsorption upon a single 

pure metal crystal [168], yet the real system is far more complicated, as the active metal is not 

in a pure crystalline state, and is placed upon a support. For more information, the reader is 

directed to the helpful paper by Bartholomew, which “emphasizes concepts and fundamentals 
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relating to the kinetics, energetics, and stoichiometries of adsorption of hydrogen on supported 

cobalt, iron and nickel,” [169].  

 

1.5.2 Theoretical Concept in the Dissociation of Hydrogen Isotopes 

 Theoretical evidence through known vibration frequency has provided a possible means 

to understand the concept of adsorption for H2 (D2). Potentially providing a theoretical route to 

calculate the KIE for hydrogen adsorption on an FT metal. Exploring the harmonic oscillator 

equation for the ZPE (equation 1), we set n = 0 and υ is the frequency from equation 2 using the 

reduced mass (equation 3). Considering the reduced mass (i.e., not in real dimensions), solving 

equation 3 for various bonds yields the results (Table 1.1), which reveals M-H ≈ 2, and M-D ≈ 

1. 

 

Table 1.1: Theoretical ratios for the reduced masses  

Bond µ 

D2 0.50 

H2 1.00 

NiD 0.98 

NiH 1.93 

CoD 0.98 

CoH 1.93 

FeD 0.98 

FeH 1.93 

RuD 0.99 

RuH 1.96 

 

Taking this into account for equation 2 reveals the following equations (where M represents 

each metal), which give the frequency for each bond accordingly. 
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D2 = 1/2π 2 k (16) 

H2 = 1/2π k   (17) 

MH = 1/2π k /2 (18) 

MD = 1/2π k   (19) 

 

According to the hypothesis in the previous section, the KIE is dependent upon the 

difference in frequencies (equation 14, Figure 1.16) between the ground state, i.e., H2 or D2, and 

MH or MD. Given the equations 16-17, calculated values reveal that the spring constant k is the 

same for both equations. Knowing this, the set of equations (i.e., 16-17) can then be simplified 

and compared as shown by equation 20. Though calculated values exist for the constant k for  

 

υH =  2 υD  (20) 

  

both H2 and D2, none (of which the author is aware) exist for the metal hydride for M–H. Thus, 

knowing that the spring force constant is the same for both H2 and D2, where kHH = kDD, it 

follows that with M (e.g., Co, Ni, Ru, and Fe) bound to either isotope, the spring constants 

should also be the same, i.e., kMH = kDH. Given this, equations 18 and 19 can then also be 

simplified accordingly as shown in equation 21. Thus in both cases, the reactants (H2, D2) and  

  

 υMH = 2 υMD   (21) 

 



 
44 

 

the products (MH, MD) should have frequencies that will display a commonality. Though 

equations 20 and 21 are the same in ratio, they do not equal one another. The mass of the metal 

is obviously significantly more, and therefore k for the MH/MD bond will be significantly lower 

in energy and thus have a lower frequency. If kHH > kMH and kDD > kMD, then the difference in 

the ratio will also follow suit, where ∆υ
o 

 > ∆υ
†

. Take for example in Table 1.2, frequency values 

are displayed for each of the bonds necessary to calculate the KIE in hydrogen adsorption. 

 

Table 1.2: Frequencies in cm
-1

 for the bonds needed for adsorption  

(asterisks refer to Figure 1.22). 

  

H2 4161 D2 2993 

MH 

*2250 

MD 

*1591 

**1700 **1202 

*800 *566 

**600 **424 

 

The difference between the two frequencies for H2 and D2 match the value given by equation 

21. This distinction can be applied across the board for the transition frequencies. However, the 

difference between the transition frequencies is much less since the k (force constant) values are 

considerably lower. To further this concept, where ∆υ
o
 > ∆υ

†
, if combined with the previous 

discussion in the overall KIE and placed back into equation 14, ∆υ
o
 would display a larger 

difference in the frequencies for the reactants ZPE. Thus, as displayed in Figure 1.16, the 

thermodynamic desorption process would display a NKIE, which agrees with others [117].  

 Lastly, taking the frequencies in Table 1.2 and applying them into equation 12 to 

calculate the expected values for KIE in hydrogen/deuterium adsorption, in agreement with  

 



 
45 

 

 

Figure 1.22: The KIE description for competitive hydrogen/deuterium adsorption in a 

temperature range of 450–550 
o
C, for the higher frequencies*, and lower frequencies** 

provided in Table 1.2. 

 

others [112, 117], obtains values for kD/kH ranging from 0.68 to 0.80 (kH/kD = 1.23-1.48). This 

is seen above in Figure 1.22, which gives values that agree with the previous discussions where 

kH > kD for the competitive hydrogen/deuterium adsorption process. The theoretical competitive 

adsorption displays an overall NKIE; incorporating this idea into the FT synthesis is important 

for theoretical and experimental purposes. 

    

1.5.3 Dissociation of Hydrogen Reasoning   

 Based upon the reaction mechanisms given from section 1.2.3, general reaction 

networks could be generated. This would allow for some reasoning on the order of the reactions 

based upon the evidence given by the reaction mechanism. The first, which is based upon the 

carbide (CH2) insertion mechanism, could go as follows, where M is the active metal: 
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Carbide mechanism proposed: 

1. CO + M ⇌ COM + M ⇌ CM + OM 

2. H2 + 2 M ⇌ 2 HM 

3. H2 + OM ⇌ H2O + M 

4. CM + HM ⇌ CHM + HM ⇌ 
≠
CH2M + HM ⇌ CH3 - ≠ possible monomer for FT 

5. CH3  

a. CH3 + HM → CH4  

b. CH3 + CH2 ⇌ C2H5 * either desorbed or chain growth continues 

 

Reaction network based upon the proposed enol mechanism 

1. H2 +2 M ⇌ 2HM 

2. 2 CO + M2 ⇌ 2 COM + 2 HM ⇌ 2 CMHOH2 

3. 2 CHOH2 ↔ H2O + HCMCMOH 

4. HCMCMOH + 2 HM ⇌ CH3CMOH + M  

5. CH3CMOH 

a. CH3CMOH + 2 HM ⇌ CH2CH2 + H2O 

b.  CH2CMOH + COM + 2 HM ⇌ CMHOH + CH2CMOH ⇌ 

CMOHCMCH2 + H2O 

 

Reaction network based upon the proposed CO insertion mechanism 

1. H2 + 2 M ⇌ 2 HM 

2. 2 CO + 2HM ⇌ 2 CMOH 

3. CMOH + 2 HM ⇌ CMH2OH 
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4. CMH2OH + 2 HM ⇌ CMH3 + H2O 

5. CMH3 + CO ⇌ CMCH3 continued through CO insertion followed by H 

addition 

  

These proposed reaction networks display some common generalities. Specifically, before any 

H atoms can interact with the C from CO, the hydrogen itself must be adsorbed upon the active 

metal. Thus the measurement of the KIE for CO hydrogenation by means of the previously 

proposed route must not only include the rate at which hydrogen affects the CO, but also the 

rate at which hydrogen interacts with the active sites. Based upon the previous experimentation, 

a common understanding from the switching experiment reveals that the FT reaction displays an 

IKIE for the H2/D2 switching experiment. This outcome could be indicative of the actual result 

for CO hydrogenation, or a concentration of surface D atoms on the active sites. 

The calculated results from the previous section disclose a KIE value of more than 1 for 

H2/D2 adsorption. Not all of the calculations for the competitive hydrogen adsorption agreed 

with the one presented; regardless, a value for the KIE was very biased. Based upon the 

calculations, this would seem to indicate that the competitive adsorption of hydrogen isotopes 

could play a role in the KIE of CO hydrogenation. As far as the author is aware, no 

experimental work revolving around this subject has been published. 

The next chapter discusses the reactor and the analytical equipment used for the 

experimentation. Chapters 3–6 discuss specifics regarding each of the FT catalysts, including 

the analysis, results, and conclusions. 
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Chapter 2 : Experimentation 

2.1 Reactor System 

This chapter will focus on the overall experimental work done for all of the catalyst 

analyzed. Given the overall analytical work will remain the same for all the runs applied, a 

general overview of the process leading to the actual run will be appropriate. In addition, the 

reactor system (other than the reactor itself) was reused for all the experimentation so a general 

overview will be discussed in this chapter 2 where specifics of the reduction and TPD process 

will be tailored in each specific chapter depending on the metal analyzed.  

In order to perform this experimentation, a closed reactor system was needed to contain 

a catalyst at atmospheric pressure and high temperature under a reduced environment. The 

catalyst needs to be prepared ex-situ, then placed into the system for analysis. The temperatures 

will need to be precise given the idea behind this study is to understand coverage at very 

specific temperatures. Lastly, given the difficulty in the separation of the products (H2/HD/D2) a 

tremendous amount of analytical work will need to occur to ensure that not only is the 

separation of the gases is possible, but the quantification as well. 

In addition, the overall process for instrumentation for catalytic characterization will be 

added in chapter 2, including XRD, BET, and TPR. Results from the characterization will 

however be placed into the separate chapters.  

 The reactor setup (Figure 2.1) utilized for the competitive adsorption was created as a  
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Figure 2.1: A representative cartoon of the plug flow fixed-bed reactor used for the  

adsorption experiments. 

 

straightforward plug flow system. Five separate Brooks (Hatfield, PA) mass flow controllers 

(MFC) were used to govern the flow for each specific gas. This was done by controlling the rate 

through a percentage of the total flow that is had been calibrated. A specific voltage is applied 

across the MFC based upon the percentage and from this a certain flow is allowed across. 

However since this is based upon the thermal conductance of a specific gas, if another is passed 

across, the flow rate vs. the specific percentage will not be accurate. Therefore, each MFC needs 

to be calibrated for each specific gas used, so that the amount passed across the catalyst bed will 

be precisely known.  

 The bulk of the stainless steel used for the system was ¼” o.d. 316 stainless steel, while 

the reactor itself was 1” o.d. 316 ss. The thermocouple was a 1/32” o.d. thermocouple that was 

given the ability to slide along the z-axis of the reactor inside a fixed 1/8” o.d. thermal well. The 
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reason for the capability was to insure that the temperature gradient along the z-axis of the bed 

inside the reactor was less than ±5 
º
C, and overall temperature was at the required temperature 

for each specific catalyst. The pressure gauge was a low-pressure gauge (0–100 psi) and was 

only set as a means to ensure the bed was run at atmospheric pressure, where the bed pressure 

does not create an issue. The low-pressure regulator could also ensure bed pressure consistency 

as an iron catalyst could coke during the carburization process causing unnecessary high bed 

pressures. 

 The oven was a Lindberg (Riverside, MI) clamshell oven with a 1” bore for a reactor 

capable of 1200 watts of power (~10 A), allowing temperatures to maximize at 1000 
º
C. The 

oven was controlled by an Omega CN3254R ramp/soak controller, and powered by a 25 A 

Omega solid-state relay. The controller allocates power the system applying heat in a very 

systematic fashion allowing no inconsistencies between the different activations for each metal. 

After the furnace a series of Swagelok (Solon, OH) 3-way ¼” ball valves were used as a 

means to divert the flow without interrupting the experiment. During the bulk of the experiment 

the flow was diverted to a fume hood. During the last section of the first three approaches 

(explained later), flow is diverted to the gas collection bag for catalysts. The online injection 

port was set up as a ¼” port connector with an 11 mm septum set inside the ¼” nut. The needle 

is then inserted into the system, directly in line with the flow of gas, allowing sampling during 

the experiment and direct injection onto the column. Lastly, the pump was a ¾ HP Edwards 

(Albany, NY) high-vacuum roughing pump placed to allow the system have a vacuum of up to 

30” of water.   
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2.2 Instrumentation 

2.2.1 Catalyst Surface Analysis 

2.2.1.1 Brunauer-Emmett-Teller (BET) 

 The surface area, pore volume, and average pore radius of each ruthenium catalyst were 

measured using a Micromeritics Tri-Star 3000 gas adsorption analyzer system. Approximately 

0.3–0.4 g of sample was weighed and loaded into a 3/8 o.d. sample tube. Nitrogen was used as 

the adsorption gas and sample analysis was performed at the boiling temperature of liquid 

nitrogen. The sample was evacuated at ambient temperature overnight to approximately 6.7 Pa. 

The physisorption results were quantified using the Barrett-Joyner-Halenda (BJH) desorption 

model, which provides a relationship between the amount of the adsorbate lost and each pore 

emptying step of the desorption process. 

  

2.2.1.2 Temperature Programmed Reduction 

Temperature programmed reduction (TPR) was recorded using a Zeton-Altamira AMI-

200 unit which makes use of a TCD detector. The sample was first ramped to 350 ºC in pure Ar 

to remove residual H2O from the sample, prior to cooling to 50 ºC to begin the TPR. The test 

was performed using 10% H2/Ar mixture referenced to Ar at a flow rate of 30 cm
3
/min (sccm). 

The sample was heated to 800 ºC at a ramp rate of 10 ºC /min. 

 

2.2.1.3 Temperature Programmed Reduction 

Hydrogen chemisorption was conducted using temperature-programmed desorption 

(TPD) with the Zeton-Altamira AMI-200 instrument. The catalyst sample was activated using a 

flow of 10 cm
3
/min of H2 mixed with 20 cm

3
/min of argon at 350 ºC for 10 h and then cooled 
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under flowing H2 to 373 K. The sample was held at 50 ºC under flowing argon to remove and/or 

prevent adsorption of weakly bound species prior to increasing the temperature slowly to 350 

ºC. The TPD spectrum was integrated and the number of moles of desorbed hydrogen 

determined by comparing its area to the areas of calibrated hydrogen pulses. The loop volume 

was first determined by establishing a calibration curve with syringe injections of nitrogen into 

a helium flow. Dispersion calculations were based on the assumption of a 1:1 H: atomic molar 

composition (AMC) stoichiometric ratio and a spherical cluster morphology. 

 

2.2.2 Chromatography 

Each gas sample (0.5 mL) was manually injected into an Agilent (Santa Clara CA) 6890 

cryogenic gas chromatograph with an attached thermal conductivity detector (GC-TCD) 

containing two 90 m Agilent molecular sieve columns fashioned with column connectors to 

create one 180 m column. The temperature program was isothermal at -80 
o
C, with a 4 mL/min 

flow rate. Neon was chosen because of the inability to adequately separate the H2/D2 mixture 

with Ar and N2, and because of the small thermal conductivity difference between H2 and He. 

Five-point calibration curves were made for H2, HD, and D2, using an evenly mixed 

standard bought from Cambridge Isotope Laboratories (Figure 2.2). The standard was manually 
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Figure 2.2: A standard TCD chromatogram of the standard mixture 

 

injected using a 100 μL Hamilton syringe (Franklin, MA) to inject volumes ranging from 5 μL 

to 100 μL. Several injections were made for each concentration to obtain a constant linear curve 

with a correlation coefficient above 0.99 (Figure 2.3 – Figure 2.5). The hydrogen diffusion- 

  

 

Figure 2.3: The calibration curve built from the standard for H2. 
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Figure 2.4: The calibration curve built from the standard for HD. 

 

 

Figure 2.5: The calibration curve built from the standard for D2. 
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from reduction of the specific catalyst to the GC. Since neon was used during the TPD and also 

used as the carrier gas for the GC, there should be no contribution by neon in the TCD signal. 
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Chapter 3 : Cobalt 

Adapted with permission from W. D. Shafer, G. Jacobs, B. H. Davis, Fischer–Tropsch 

Synthesis: Investigation of the Partitioning of Dissociated H2 and D2 on Activated Cobalt 

Catalyst. ACS Catal. 2012, 2, 1452-1456. Copyright 2012 American chemical Society. 

 

3.1. Introduction 

Cobalt is one of the most commonly used active metals for the Fischer-Tropsch (FT) 

synthesis. The main source for FT production using cobalt is through the GTL process as 

conversion of methane through steam reforming leads to a greater than 2/1 ratio of H2/CO  

 

H2O + CH4 → 3H2 + CO 

 

(syngas). This ratio is required for cobalt as a decrease in ratio, lower than about 1.5, can cause 

coking upon the catalyst prematurely decreasing the activity. The FT mechanism occurring on 

the catalyst, as mentioned, is still under scrutiny. While some authors prefer a CH2 insertion 

mechanism [1] and suggest that chain addition is the rate-determining step, others claim a CO 

insertion mechanism and argue that the rate-determining step is where CO insertion occurs [2]. 

Controversy has also arisen from this where some researchers have argued that if CH2 insertion 

was the favored mechanism, then no oxygenated material could be produced. From this 

controversy, Dry et al. [3] argued for a mechanism that involves both CH2 and CO as active 

surface intermediates. Since the rate-determining step remains a point of contention, a number 

of H2/D2 studies have been performed, but, unfortunately, with no clear conclusion [4-8]. 
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Briefly, in switching from H2 to D2, the rate of CO conversion increased, suggesting an overall 

negative kinetic isotope effect. This chapter examines whether preferential partitioning of either 

H or D on the cobalt metal surface occurs such that it may influence data when measuring the 

kinetic isotope effect. Moreover, by examining both unsupported cobalt and alumina or silica 

supported cobalt catalyst, the potential for spillover influencing the results was also examined. 

 

3.2 Experimental 

3.2.1 Catalysis Preparation 

25% Co/Al2O3 catalyst was prepared by a slurry impregnation method using Catalox 

150 (high purity γ-alumina, ~150 m
2
/g) as the support. Al2O3 was calcined for 10 h before 

impregnation and then cooled under an inert gas to room temperature. Co(NO3)2∙6H2O (99.9 % 

purity) was used as the precursor for Co. In this method, which follows a Sasol patent [9], the 

ratio of the volume of solution used to the weight of alumina was 1:1, such that approximately 

2.5 times the pore volume of solution was used to prepare the loading solution. Two 

impregnation steps were used, each to load about 12.5% of Co by weight. Between each step 

the catalyst was dried under vacuum using a rotary evaporator at 100
 º
C and the temperature was 

slowly increased to 95 ºC. After the second impregnation/drying step, the catalyst was calcined 

under airflow at 350 ºC for 4 h. 

The 15%Co/SiO2 catalyst was also prepared using the aqueous slurry-phase 

impregnation method, with cobalt nitrate.  The support was PQ-SiO2 CS-2133, surface area 

about 352 m
2
/g).  The catalyst was calcined in flowing air or flowing 5% nitric oxide [10-13] in 

nitrogen at a rate of 1 L/min for 4 h at 350 
º
C.  The NO-calcined catalyst was used for isotopic 
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studies, since the particle was expected to be smaller and one of the aims of the paper is to 

explore the possibility of reverse spillover from the support. 

 

3.2.2 BET Surface Area and Porosity Measurements 

The surface area, pore volume, and average pore radius of the catalyst calcined at 350
 º
C 

was measured by BET using a Micromeritics Tri-Star 3000 gas adsorption analyzer system. 

Approximately 0.35 g of sample was weighed out and loaded into a 3/8 o.d. sample tube. 

Nitrogen was used as the adsorption gas and sample analysis was performed at the boiling 

temperature of liquid nitrogen. Prior to the measurement, the sample was slowly ramped to 433 

K and evacuated overnight to approximately 6.7 Pa.  

 

3.2.3 Temperature-Programmed Reduction 

 Temperature-programmed reduction (TPR) was recorded using a Zeton-Altamira AMI-

200 unit, which makes use of a TCD detector.  The sample was first ramped to 350 ºC in pure 

Ar to remove any residual H2O from the sample, prior to cooling to 100
 º
C to begin the TPR.  

The test was performed using 10%H2/Ar mixture referenced to Ar at a flow rate of 30 cm
3
/min.  

(sccm). The sample was heated to 1100
 º
C at a ramp rate of 10

 º
C

 
 per min. 

 

3.2.4 Hydrogen Chemisorption by TPD 

The Co/Al2O3 (~0.22 g) was activated in a flow of 10 cm
3
/min of H2 mixed with 20 

cm
3
/min of argon at 270 

º
C for 10 h and then cooled under flowing H2 to 100

 º
C.  The sample 

was held at 100
 º
C under flowing argon to remove and/or prevent adsorption of weakly bound 

species prior to increasing the temperature slowly to 350 
º
C, the temperature at which oxidation 
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of the catalyst occurs.  The TPD spectrum was integrated and the number of moles of desorbed 

hydrogen determined by comparing its area to the areas of calibrated hydrogen pulses. The loop 

volume was determined by establishing a calibration curve with syringe injections of hydrogen 

into a helium flow.  Dispersion calculations were based on the assumption of a 1:1 H:Co 

stoichiometric ratio and a spherical cobalt cluster morphology.  After TPD of hydrogen, the 

sample was reoxidized at 350
 º

C using pulses of oxygen. The percentage of reduction was 

calculated by assuming that the metal reoxidized to Co3O4. 

 

3.2.5 Reduction and Desorption using the H2/D2 Mixture 

30 g of the 25%Co/Al2O3 catalyst, 15 g of CoO, and 15 g of the 15% Co/SiO2 were 

loaded into the plug flow reactor and three separate approaches were set up to run each catalyst. 

 

 (1)  Each cobalt catalyst was reduced under 15 sccm of the 1:1 H2/D2 mixture. 

The bed was heated at 1 ºC /min to 350
 º
C and held for 48 hours. The 

system was cooled to 100
 º
C at 1 

º
C /min., where neon was introduced and 

the fixed bed system was held at this condition for one hour. The reactor 

was heated to 350
 º
C under 15 mL/min. of neon. The hydrogen/deuterium 

remaining on the catalyst desorbed and was collected into a hydrogen 

specific gasbag using neon as the carrier gas.  

(2)  The cobalt catalyst was heated to 350
 º
C and held for 44 h under 15 sccm 

of H2 flow. After 44 hours of flow, an uninterrupted switch occurred to 

allow the 1:1 H2/D2 to flow for four hours at the same temperature.  The 

system was then cooled to 100
 º
C at 1 

º
C /min., where neon was introduced 
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and the fixed bed system was held at this condition for one hour.  The 

reactor was heated to 350
o
C under 15 mL/min of neon. The 

hydrogen/deuterium remaining on the catalyst desorbed and was collected 

into a hydrogen specific gasbag using neon as the carrier gas. 

(3)  The cobalt catalyst was heated to 350 
º
C and held for 44 hours under 15 

sccm of D2 flow. After the 44-hour period the D2 was stopped and the 

H2/D2 mixture was introduced at the same flow rate of 15 sccm. The 

system was then cooled to 100
 º
C at 1 

º
C /min, where neon was introduced 

and the fixed bed system was held at this condition for one hour. The 

reactor was heated to 350
 º

C under 15 mL/min of neon.  The 

hydrogen/deuterium remaining on the catalyst desorbed and was collected 

into the hydrogen-specific gasbag using neon as the carrier gas.  

Each approach was repeated for each catalyst to ensure the repeatability of the 

experiments. 

 

3.3 Results and Discussion  

3.3.1 Surface Area Measurements  

The catalyst was prepared by a slurry impregnation as opposed to incipient wetness 

impregnation [14] to maintain the cluster size about 10 nm while increasing the homogeneity of 

the catalyst particles.  The BET surface area measurements by adsorption of N2 showed that the 

surface area for the 25%Co/Al2O3 catalyst was around 103 m
2
/g. A 25% Co metal loading by wt 

% is equivalent to 34% Co3O4.  If Al2O3 is the only contributor to the surface area, then the 

surface area should be close to 0.66 × 150 = 99 m
2
/g.  The actual surface area measurement is 
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approximately the calculated value, suggesting that pore blocking should not be a significant 

problem. The results from the BJH adsorption tests (Table 3.1) of this catalyst were in 

agreement with the previous report [14]. 

 

Table 3.1: Summary of BET surface area and porosity measurements. 

Catalyst ID BET SA (m
2
/g) Average Single 

Point Pore 

Volume (mL/g) 

Average Pore 

Radius (nm) 

Catalox 150 γ-Al2O3 149 0.493 6.9 

15%Co/PQ-SiO2, calc. in NO 298 1.06 7.1 

15%Co/PQ-SiO2, calc. in air 263 1.04 7.7 

25%Co/Al2O3 103 0.258 5.0 

 

For the SiO2-supported cobalt catalysts, if SiO2 is the sole contribution to surface area, 

then the surface area should close to 0.80 × 352 m
2
/g = 282 m

2
/g. That the surface area of the 

air-calcined catalyst is less than this (Table 3.1) suggests some pore blocking by larger particles. 

As shown in Table 1, this was not observed for the case of the catalyst calcined in nitric oxide, 

where smaller particles – expected to alleviate pore blocking – were obtained. 

 

3.3.2 Reduction/ TPD 

The TPR from Jacobs et al. [15] for the 25% Co/Al2O3 displays a two-step reduction of 

Co3O4 particles (Figure 3.1), a sharp peak at around 600 
º
C (Co3O4 – CoO) and a broader peak 
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Figure 3.1: TPR profile of 25%Co/Al2O3. 

 

ranging from 700
 º
C to 1050 

º
C (CoO – Co

0
). After running two separate TPR experiments, one 

directly after calcination and the other after 10 hours of reduction at 350
 º
C, only a fraction of 

the Co surface species responsible for the broad peak was reduced. The reduction of Co3O4 was 

completed at this temperature; hence, the focus was upon the reduction of the CoO particles to 

Co
0
, as shown for this specific catalyst where, at 350

 º
C, 42% was reduced [15]. Considering 

that 30 g of catalyst were loaded into the reactor, a 48 h period at 350 
º
C for was used to ensure 

a significant (e.g., > 42%) extent of cobalt reduction. The reduction temperature was kept below 

400
o
C to prevent sintering of Co atoms. Based on the calculations given from [15], Table 3.2  

 

Table 3.2: Hydrogen chemisorption by TPD with pulse reoxidation after reduction  

for 10 h at 350 
º
C. 

Catalyst ID H2 evolved 

(mol/gcat) 

Uncorr. 

% Disp. 

Uncorr. 

Diam. (nm) 

O2 uptake 

(mol/gcat) 

% 

Red. 

Corr. 

% 

Disp. 

Corr. 

Diam. 

(nm) 

25%Co/Al2O3 89.2 4.2 24.5 1058 37 11.2 9.2 

15%Co/PQ-

SiO2, calc. in 

NO 

39.8 3.1 33.0 791 56 5.3 19.2 

15%Co/PQ-

SiO2, calc. in air 

38.0 3.0 34.5 1436 85 2.7 38.5 
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summarizes the chemisorption results and shows that a satisfactory active-site density was 

obtained for carrying out the isotopic studies. 

 

 

Figure 3.2: TPR profiles of 15%Co/SiO2 catalysts, including catalysts calcined in (light line) air 

or (bold line) nitric oxide. 
 

Figure 3.2 compares the reduction profiles of the 15% Co/SiO2 catalyst, with the light 

line being that of a standard air-calcined catalyst and the bold corresponding to the catalyst 

calcined in nitric oxide. For standard air-calcined catalysts, weakly interacting SiO2 leads to 

larger cobalt oxide particles than those observed on strongly interacting Al2O3 [15]. In 

agreement with this, the profile of the air-calcined catalyst displays primarily two sharp peaks, 

with the first one corresponding to the reduction of Co3O4 to CoO and the second being larger 

particles of CoO to Co
0
, very much like the reduction of bulk Co3O4 [14,15]. On the other hand, 

the nitric oxide calcination lends itself to producing much smaller particles [10-13], which 
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interact more strongly with the support, such that the profile displays a decrease in the sharp 

low-temperature peak (i.e., larger particles) and a significant increase in peaks corresponding to 

smaller, more strongly interacting particles. The H2 chemisorption/pulse reoxidation results 

confirm that smaller, less reducible, particles are formed after activating the nitric oxide-

calcined catalyst. Since one goal is to examine the possibility of reverse spillover (where the 

hydroxyl groups on the support can affect the activated metal surface coverage), it is of interest 

to use a catalyst with smaller particles in greater interaction with the support. Thus, the catalyst 

calcined in nitric oxide was selected. 

 

3.3.3 Competitive Desorption 

After reduction, the plug flow reactor was cooled to 100
 º
C while under H2/D2 mixture to 

allow for the H/D atoms to be chemisorbed to the cobalt surface before starting the TPD. The 

reactor was then held at 100
 º

C with neon flow to prevent any false outcomes due to the 

retention of physisorbed or weakly bound hydrogen or deuterium. The temperature was then 

increased to desorb the chemisorbed H/D and sweep the evolved H2, D2, and HD into the 

sampling bag. The neon flow was decreased during this time to keep hydrogen isotopes in the 

bag concentrated enough to allow for sampling, especially in the case of the desorbed gas 

obtained from the reduced CoO. CoO serves as a reference, since the cobalt particles are not 

supported. 

The H/D ratios presented in Tables 3-5 were calculated from the amounts determined for 

each injection based on the calibration curves: 

 

 



 
65 

 

H2 = y = 5.02 x – 12.37 

HD = y = 4.88x – 13.85 

D2 = y = 4.55x – 11.65 

 

where y is the peak area and x is the calculated amount in µL. Once the amounts are obtained 

the H/D ratio is calculated. Therefore, if a negative isotopic effect is obtained seen the ratio 

would be less than 1 and vice versa. 

The total amount of neon collected in the bag was 225 mL, based on a flow rate of 5 

mL/min. and time-on-stream of 45 min during desorption. Taking Table 3.3 injection 1 as an 

example,  

 

Table 3.3: The isotope effect for the reduced CoO catalyst. 

 

 

subtracting the amounts above of H2 (4.3 µl), HD (5.9 µL), D2 (3.9 µL) given from each 

calibration curve, from the total injection volume (0.5 mL), and the ratio of H-D/Ne is 3.0 e
-2

 

from the 0.5 mL injection. If the total amount of gas in the bag were 225 mL, then 

 

Netotal = 225ml – (225 * 3.0 e
-2

) = 218.6 mL 

 

Injection Approach 1 Approach 3

1 1.04 0.98

2 1.04 0.99

3 1.02 0.98

4 1.02 0.99

CoO 
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The H2, HD, D2 amounts can be found from their percentages in Table 3 injection 1 from the 

remaining volume in the bag. 

 

H2 = (225 mL - 218.6 mL) * 0.3 = 1.9 mL 

HD = (225 mL - 218.6 mL) * 0.4 = 2.6 mL 

D2 = (225 mL - 218.6 mL) * 0.3 = 1.8 mL 

 

From here, given the following equation based on [15], the H-D uptake can be calculated: 

 

H-D uptake (moles/gcat) = calibration value/(catalyst weight × 24.5 L/mole) 

 

The H2 is 3.1 µmol/gcat, HD is 4.2 µmol/gcat, and D2 2.9 µmol/gcat, and the total H-D adsorbed is 

10.2 µmol/gcat. The H-D uptake value was expected to be low due to the low surface area for 

CoO before reduction. For this reason, CoO was used instead of Co3O4 to help prevent 

sintering, and allowing enough adsorption of H2 and D2 to occur upon the reduced metal.  

 CoO was set as a control for the difference experimental approaches to obtain, if any, 

isotopic preferences on the reduced metal surface. The first approach, a 48-h equimolar 

competitive reduction, leads to no isotopic preference on the metal surface. The bag containing 

the stripped hydrogen/deuterium molecules from the reduced cobalt metal, was then taken from 

the system after the TPD. Several injections were made to ensure the homogeneity of H2, HD, 

and D2 in the bag. As shown in Table 3, approach 1, the standard deviation was low for all the 

injections. This exact approach was repeated three times for the CoO to ensure the results were 

consistent, where all the runs averaged out as shown on Table 3 approach 1. Duplicating this 
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approach confirmed the initial results, where no isotopic preference was noted, and ensured that 

the fixed bed system and analytical setup were sound.   

 The reason for the different experimental approaches was to mimic the studies presented 

earlier [4-8], in an attempt to explain the NKIE seen during CO hydrogenation. The first 

approach mentioned displayed results for a competitive reduction only; however, many of these 

papers did not reduce the catalyst in a competitive manner. Two more approaches were then 

designed to mimic the changeover from H2 to D2 and vice versa. Again the CoO was used as a 

control in an attempt to see preferential partitioning in the metal surface only. Unlike the first 

approach, where the metal is covered with equimolar H and D atoms, the other two approaches 

allow for entropy to play a role. Once the cobalt surface was completely covered with H or D 

atoms by running a 44-hour reduction at 350 
º
C, the four hour competitive reduction occurred. 

The four-hour competitive reduction at 350 
º
C with a 15-sccm flow, allowed for at least 24 

reactor turnovers. If entropy were greater than the partitioning preference on the surface of the 

cobalt metal, then there would be no bias seen on the reduced cobalt surface. CoO again 

displayed no isotopic preference for H or D as displayed in Table 3 approach 3. 

The next step was to include actual supported cobalt FT catalysts, where two common 

supports for cobalt catalysts are SiO2 and Al2O3. The idea was to run all three experimental 

approaches for each of the supported catalysts and if a preference is observed, it would be due 

to the support. Since the CoO displayed no partitioning preference on any of the approaches, the 

difference would be caused by exchange on the surface of the support. The first approach did 

not show any partitioning preferences by any of the catalysts. The second and third approaches, 

however, displayed a small preference. The bias on both of the supported catalysts leaned 

toward the gas used during the 44-h reduction. The second experimental approach was to reduce 
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the supported catalysts under H2 for 44 hours and both catalysts resulted in an h/d ratio greater 

than 1 (Table 3.4 and 5 approach 2). Whereas when the same catalysts were reduced under D2 

for 44 hours H/D is less than 1 (Table 3.4 and 3.5: Approach 3).  

 

Table 3.4: The isotope effect for the reduced 25% Co/Al2O3 catalyst. 

 

 

Table 3.5: The isotope effect for the reduced 15% Co/SiO2 catalyst. 

 

 

3.4 Conclusions 

From the initial 48-h competitive H2/D2 reduction no isotopic preference was observed 

after carrying out TPD on the activated CoO, 25%Co/Al2O3, and the 15% Co/SiO2 catalysts. 

Understanding that no isotopic effect exists upon the cobalt metal, the negative kinetic isotope 

effect found during CO hydrogenation will not be affected by preferential isotopic partitioning 

on the metal surface. However, a slight isotopic preference upon the 25% Co/Al2O3 and 15% 

Co/SiO2 was identified, depending on which gas was used during the 44 hour reduction, H2 or 

Injection Approach 1 Approach 2 Approach 3

1 1.03 1.16 0.93

2 1.04 1.16 0.93

3 1.05 1.13 0.90

4 1.01 1.12 0.87

25%Co/Al2O3

Injection Approach 1 Approach 2 Approach 3

1 0.98 1.05 0.94

2 0.99 1.05 0.96

3 1.00 1.06 0.96

4 1.00 1.05 0.96

15%Co/Si
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D2, prior to the 4 hour treatment in H2/D2. Given the control experiment of Co, and the number 

of reactor turnovers, this slight isotopic preference must be caused by the Al2O3 and SiO2 

supports. This effect, whereby a slight positive isotopic effect was observed when the first 

treatment occurred using H2 and a slight negative effect was similarly observed with D2, could 

be caused by a minor H/D exchange with the hydroxyl groups on the support [16]. Since the 

isotopic preference is small and only seen on the supported cobalt catalysts, it seems that neither 

preferential partitioning of H or D on the surface of cobalt nor reverse spillover from the 

alumina support contributes to measurements of the negative kinetic isotopic effect during CO 

hydrogenation. 
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Chapter 4 : Nickel 

Adapted with permission from W.D. Shafer, G. Jacobs, J.P. Selegue, B.H. Davis, An 

Investigation of the Partitioning of Dissociated H2 and D2 on Activated Nickel 

Catalysts. Catal. Lett. 2013 143:1368-1373. Copyright 2013 Springer International Publishing. 

 

4.1 Introduction 

Heterogeneous supported nickel catalysts are commonly used in several different types 

of chemical processes, including steam reforming of methane or light alcohols to produce 

syngas (e.g., CH4 + H2O → 2CO + 2H2, C2H5OH + 3H2O → 2CO2 + 6H2) [1,2]
 
methanation 

(CO + 3H2 → CH4 +CO2) [3], hydrogenation [4], and water gas shift (H2O + CO → CO2 + H2) 

[5]. Nickel is a relatively inexpensive metal, an attractive feature from the standpoint of 

industry. However, a significant challenge is that nickel catalysts tend to deactivate due to metal 

sintering
6
 and/or high rates of carbon formation [7]. Measures have been undertaken by several 

research groups in attempts to inhibit carbon deposition. This includes the use of smaller nickel 

particles that avoid ensembles required for carbon formation [8,9]. Using dopants such as alkali 

metals to suppress the Boudouard reaction. [10] Metal oxides (e.g., lanathana, magnesia, etc.) 

aimed at mitigating acidity [11] or modifying CO adsorption [12], or applying supports with O-

mobility that can assist in cleaning carbon from the catalyst as it is formed [13]. 

 A key to understanding these issues and possibly in developing more coke-resistant 

catalysts may lie in better understanding of what occurs during the catalytic mechanism at the 

active metal sites. Isotopically labeled hydrogen has been used in a variety of experiments by 

introducing it through CD4, D2, and D2O [14-17] From the data, and assuming hydrogen is 
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related to the rate-determining step, the application of isotopes may shed light on the 

mechanistic pathways. While kinetic isotope effect studies are critically important, none of the 

studies to date have examined the possibility of a contribution from the preferential partitioning 

of hydrogen and deuterium on the surface of nickel metal particles. The nickel metal surface, 

after reduction, could conceivably play a role in the apparent ratios obtained from isotopic 

studies. The current investigation seeks to quantify the effect, if any, of H/D partitioning on the 

surface of nickel. If the impact were low, then it would lend greater credibility to the KIE 

measurements observed in the literature.  

 

4.2 Experimentation 

4.2.1 Catalyst Preparation 

 Nickel nitrate (100 g) were dissolved at room temperature in 600 mL of deionized water. 

Ammonium hydroxide was added to the dark green mixture to create a 3 M solution. The 

system was then heated to a boil and held for approximately two hours; a light green solid 

precipitated from the solution. The cake was then filtered and washed several times with 

deionized water. 

 The 25%Ni/Al2O3 catalyst used is a commercial catalyst, and it was ground and sieved 

to the 45 -100-µm particle size range. 

 

4.2.2 BET Surface Area and Porosity Measurements 

The surface area, pore volume, and average pore radius of each specific nickel catalyst 

was measured. Approximately 0.3–0.4 g of sample was weighed and loaded into a 3/8 o.d. 

sample tube. Nitrogen was used as the adsorption gas and sample analysis was performed at the 
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boiling temperature of liquid nitrogen. The sample was evacuated at ambient temperature 

overnight to approximately 6.7 Pa. The physisorption results were quantified using the Barrett, 

Joyner, Halenda (BJH) desorption model, which provides a relationship between the amount of 

the adsorbate lost and each pore emptying step of the desorption process. 

 

4.2.3 Temperature-Programmed Reduction 

The samples (Figure 4.1) were first ramped to 350 
º
C in pure Ar to drive off any residual 

 

 

Figure 4.1: A TPR profile for the nickel oxide and the 25% Ni/Al2O3 
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H2O from the sample, prior to cooling to 50 
º
C to begin the TPR. The test was performed using 

10%H2/Ar mixture referenced to Ar at a flow rate of 30 cm
3
/min.  (sccm). The sample was 

heated to 800 
º
C at a ramp rate of 10 ºC/min. 

 

4.2.4 Hydrogen Chemisorption by TPD 

Hydrogen chemisorption was conducted using temperature-programmed desorption 

(TPD). The catalyst sample was activated using a flow of 10 cm
3
/min of H2 mixed with 20 

cm
3
/min of argon at 350 

º
C for 10 h and then cooled under flowing H2 to 50 

 º
C. The sample was 

held at 100 
º
C under flowing argon to remove and/or prevent adsorption of weakly bound 

species prior to increasing the temperature slowly to 350 
º
C. The TPD spectrum was integrated 

and the number of moles of desorbed hydrogen determined by comparing its area to the areas of 

calibrated hydrogen pulses. The loop volume was first determined by establishing a calibration 

curve with syringe injections of nitrogen into a helium flow. Dispersion calculations were based 

on the assumption of a 1:1 H:Ni stoichiometric ratio and a spherical nickel cluster morphology. 

 

4.2.5 Reduction and Desorption using the H2/D2 Mixture 

(1)  Each nickel catalyst was reduced under 15 sccm of the 1:1 H2/D2 mixture. 

The bed was heated at 1 
º
C /min to 350 

º
C and held for 48 h. The system 

was then cooled to 100 
º
C at 1 

º
C /min., at which point neon was 

introduced and the fixed bed system held at this condition for one hour. 

The reactor was then heated to 350 
º
C under 15 mL/min of flowing neon. 

The hydrogen/deuterium remaining on the catalyst desorbed and was 

collected in the hydrogen-specific gasbag using neon as the carrier gas.  
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(2)  The nickel catalyst was heated to 350
 º
C and held for 44 h under 15 sccm 

of H2 flow. After 44 h of flow, an uninterrupted switch occurred to allow 

the 1:1 H2/D2 to flow for four hours at the same temperature. The system 

was cooled to 100 
º
C at 1 

º
C /min, and neon was introduced. The fixed bed 

system was held at this condition for one hour and heated to 350 
º
C under 

15 mL/min of neon. The hydrogen/deuterium remaining on the catalyst 

desorbed and was collected in a hydrogen-specific gasbag using neon as 

the carrier gas. 

(3)  The nickel catalyst was heated to 350 
º
C and held for 44 h under 15 sccm 

of D2 flow. After the 44 h period the D2 flow was stopped and the H2/D2 

mixture was introduced at the same flow rate of 15 sccm for 4 h. The 

system was cooled to 100 
º
C at 1 

º
C /min. and neon was introduced and the 

fixed bed system held at this condition for one hour. The reactor was 

heated to 350 
º
C under 15 mL/min of neon. The hydrogen/deuterium 

remaining on the catalyst was desorbed and collected into the hydrogen-

specific gasbag using neon as the carrier gas. 

 

4.3 Results  

4.3.1 Surface Area Measurements  

One of the main reasons for supporting nickel on alumina is that the interaction between 

the metal and support tends to stabilize small nickel particles. This provides a relatively high 

available surface of Ni. The large surface area for the Ni/Al2O3 is due primarily to the alumina 

where the nickel particles are small enough to fit in the alumina pores without causing 
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significant blocking of the pores.  As seen by the BET results (Table 4.1), the activation of 

unsupported NiO results in a catalyst having a relatively low surface area. 

Table 4.1: Summary of BET surface area and porosity measurements. 

Catalyst ID BET SA (m
2
/g) 

Average Single 

Point Pore 

Volume (mL/g) 

Average 

Pore Radius 

(nm) 

Ni(OH)2 17.2 0.096 11.1 

Ni(OH)2 (duplicate) 17.1 0.094 11.0 

Ni/Al2O3 145 0.199 2.6 

 

4.3.2 TPR and Hydrogen Chemisorption / Pulse Reoxidation 

The TPR profiles (Figure 1) show that the decomposition of the hydroxyl groups from 

Ni(OH)2 occurs rapidly in the first small peak at around 200 
º
C. Based upon the literature, 

nickel oxide reduction to the metallic state is observed at temperatures of 523 K to 350 
º
C [18]. 

Richardson et al. also confirmed a reduction temperature for NiO at 350 
º
C using TGA [19]. 

The reduction temperature for nickel in this work was set at 350 
º
C, which should reduce the 

nickel in the oxide, and the Ni/Al2O3, also confirmed by the data from pulse reoxidation 

measurements in Table 4.3. A comparison between Tables 4.2 and 4.3 reveals that, despite the  

 

Table 4.2: Hydrogen chemisorption by TPD with pulse reoxidation after hydrogen reduction  

for 10 h at 350 
o
C. 

Catalyst ID H2 desorbed per gcat (mol/gcat) % Disp.* Diam.* (nm) 

Ni from H2-activated Ni(OH)2 20.4 0.40 255 

* 100% reduction to Ni
0
 was assumed. 
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Table 4.3: Hydrogen chemisorption by TPD with pulse reoxidation over 25%Ni/Al2O3 after 

hydrogen reduction for 10 h at 350 
º
C. 

H2 

desorbed 

per gcat 

Uncorrected 

%Disp: 

Uncorrected 

Diam (nm): 

O2 

uptake: 

% 

Reduction: 

Corrected 

%Disp: 

Corrected 

Diam (nm): 

138* 6.5 15.5 1356** 63.7% 10.2 9.8 

* µmol H2 desorbed/gcat, ** µmol O2 consumed/gcat. 

 

lower Ni content, the 25% Ni/Al2O3 catalyst had an active site density of more than 6 times that 

of the activated NiO catalyst. This is attributed to the much larger size of the Ni
0
 particles of the 

activated NiO catalyst relative to the 25%Ni/Al2O3 catalyst (i.e., ~255 nm assuming complete 

reduction versus 9.8 nm, respectively).  

 

4.3.3 Competitive Desorption 

The activated NiO catalyst was first tested, in order to serve as a basis of comparison 

with the Ni/alumina catalyst – where hydrogen exchange with the support could occur. The H/D 

ratios were calculated from the amounts determined for each injection based on the calibration 

curves as displayed on the previous chapter. H2 is 5.9 µmol/gcat, HD is 9.9 µmol/gcat, D2 7.2 

µmol/gcat, and the total H-D adsorbed is 23.0 µmol/gcat. This value is close to the value 

calculated from the TPD of Ni(OH)2 given in Table 2. 

 The value for µmol/gcat for pure nickel was expected to be low, based on both the low H2 

TPD measurement and the low BET surface area for the Ni(OH)2 catalyst. This simply means 

that the nickel particle sizes are large and a large fraction of the nickel metal is not on the 

surface but rather is situated within the core of the particle and inaccessible to hydrogen. The 
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density of exposed metallic Ni surface sites, though low, was adequate to produce a good signal 

during chromatography.  

In examining the effect of pretreatments with H2 or D2 prior to treatment with the H2/D2 

mixture, activated nickel oxide, unlike the case of cobalt that was previously run,21 does 

display a slight dependency on the conditions. When scheme 2 was employed, where 44 hours 

of H2 was flowed prior to 4 h treatment with the 50%/50% mixture of H2/D2, Ni displayed a 

slight but detectable preference for the hydrogen over deuterium. This effect was also displayed 

in scheme 3, where for 44 h D2 was flowed over the metal prior to 4 h of the 50%/50% H2/D2 

mixture, and deuterium was preferred over hydrogen. In the latter case, where H2/D2 was flowed 

over the metal competitively for 48 hrs., there was no isotopic preference and the ratio was 

essentially unity.  A similar slight isotopic preference with H2 (or D2) pretreatment prior to 

running the 50%/50% H2/D2 mixture was observed in our previous work on cobalt only in the 

case of the alumina-supported cobalt catalyst.
21

 This was suggested to be due to exchange with 

hydroxyl groups on the alumina. One possible explanation is that, unlike cobalt, residual nickel 

hydroxide could still be present following activation. To probe this possibility, TPR was 

conducted on a larger amount of Ni oxide (Figure 6). A small peak was indeed detected above 

the main reduction peaks, verifying that a residual of NiO was present and could be responsible 

for the slight exchange. 

Similarly, when using solely the 50%/50% H2/D2 mixture, no isotopic preference was 

observed for the case of 25%Ni/Al2O3 (Scheme 1 of Table 4.4). However, the slight isotopic 
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Table 4.4: The H/D ratio of Ni
0
 under different schemes. 

Ni 

Injection Scheme 1 Scheme 2 Scheme 3 

1 1.04 1.15 0.89 

2 1.03 1.17 0.91 

3 1.06 1.18 0.84 

4 1.03 1.12 0.85 

Average 1.04 1.15 0.87 

STD 0.02 0.03 0.03 

 

 effect with H2 or D2 treatments prior to running the H2/D2 mixture was exacerbated when 

alumina support was added as a component to the catalyst. This is observed in the slight swings 

in the H/D ratio for schemes 2 and 3, which are slightly greater than the case of activated NiO. 

 

4.4 Conclusions 

 The overall scope of this work was to display the isotopic affect for the nickel metal and 

alumina-supported nickel. There have been several competitive isotopic studies done with Ni 

and Ni/Al2O3. None of these specifically looked into the possibility of isotopic preference 

during adsorption. Given the results of this work, no hydrogen isotopic preference on the 

surface of the metal was observed for either a hydrogen-activated NiO catalyst, or an-alumina 

supported 25%Ni catalyst. Therefore the results of KIE investigations in the literature are likely 

not due to preferential partitioning of either hydrogen or deuterium on the active metallic Ni 

sites. 

 A slight isotopic preference was observed for both the activated NiO and 

25%Ni/alumina catalysts when a H2 (or D2) pretreatment was carried out for 44 h prior to 

flowing the 50%/50% H2/D2 mixture. This was likely due to exchange with hydroxyl groups on 
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either residual NiO (i.e., in the case of activated NiO catalyst) or alumina (in the case of the 

supported Ni catalyst). 
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Chapter 5 : Ruthenium 

Adapted with permission from W.D. Shafer, V.R.R. Pendyala, G. Jacobs, J. Selegue, B.H. 

Davis, in: Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications, eds. 

B.H. Davis and M.L. Occelli, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2015. 

Copyright 2015 American Chemical Society. 

 

5.1 Introduction 

 Renewed focus on supported ruthenium FTS catalysts can be attributed in part to interest 

in biomass conversion [12-14]. Given that ruthenium displays the highest FTS activity, this 

would make way for higher CO/H2 conversions and hydrocarbon productivities. In addition 

some work done with ruthenium in a batch reactor [15] under oxidizing conditions displays the 

ability of a ruthenium catalyst to work under an oxidizing environment. This could also be 

useful for the biomass-to liquids (BTL) process [13, 14]. Another attribute of ruthenium is its 

ability to produce a higher alpha product [11, 12, and 16]. The main drawback of Ru is that it is 

very expensive for commercial use. Nonetheless, Ru is a very good model catalyst for 

mechanistic studies due to its high reducibility. This is in contrast to cobalt, where an unreduced 

fraction of cobalt oxide may be present in the working catalyst, especially if a strong interaction 

between cobalt and the support is present (e.g., cobalt/alumina) [17-25].  

One way to advance a catalyst system is to develop understanding of the catalytic cycle. 

A key factor in determining the mechanism is to understand the rate-determining step (RDS) 

[26-29]. One technique that sheds light on the RDS is by identifying whether a kinetic isotope 

effect occurs once elements in reactants are isotopically substituted (e.g., 
12

C in CO to 
13

C, or 

H2 to D2 [30, 31]). A KIE only occurs in elementary steps that are kinetically relevant (e.g., the 
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RDS). Mechanistic studies to date have suggested that the RDS in FTS is controlled by CO 

hydrogenation. [32, 33] The underlying assumption in these studies is that H* and D* will be 

equally partitioned on the surface. If this assumption is not true, then this facet must be 

considered and accounted for in any KIE investigation involving H2-D2 switching.  

The current work probes the relative H/D coverages on the active ruthenium metal 

surface through a series of competitive adsorption experiments using an equimolar mixture of 

H2 and D2 to determine if any preferential partitioning occurs that may, in turn, affect the 

interpretation of KIE investigations. 

 

5.2 Experimental 

5.2.1  Catalyst preparation 

 The 7.0% Ru/NaY was synthesized as such: NaY zeolite (Sigma-Aldrich, having a 

measured BET surface area of 730 m
2
/g) was used as the support for the ruthenium catalyst. 

The catalyst was prepared by incipient wetness impregnation (IWI), with ruthenium chloride 

(KFK Furuya Metal Co., Ltd. Japan) as the precursor. Two impregnation steps were used, each 

to load 3.5% of Ru by weight. Between each step, the catalyst was dried overnight at 100 
º
C. 

After the  second impregnation/drying step, the catalyst was calcined under airflow at 350 
º
C for 

4 h. The ruthenium zeolite catalyst has a measured BET surface area of 517.7 m
2
/g. 

 The 1.0% Ru/Al2O3 was synthesized as such: Catalox 150 γ-alumina (having a measured 

BET surface area of 150 m
2
/g) was used as the support for the catalyst. The catalyst was also 

prepared by IWI method by using ruthenium nitrosyl nitrate (Alfa Aesar) precursor. Once the 

catalyst was dried overnight at 100 
º
C, it was subsequently calcined at 350 

º
C for 4 h in flowing 

air. The one percent ruthenium catalyst has a measured BET surface area of 140.6 m
2
/g. 
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5.2.2 BET surface area and porosity measurements 

 The surface area, pore volume, and average pore radius of each ruthenium catalyst were 

measured using a Micromeritics Tri-Star 3000 gas adsorption analyzer system. Approximately 

0.3-0.4 g of sample were weighed and loaded into a 3/8 o.d. sample tube. Nitrogen was used as 

the adsorption gas and sample analysis was performed at the boiling temperature of liquid 

nitrogen. The sample was evacuated at ambient temperature overnight to approximately 6.7 Pa. 

The physisorption results were quantified using the Barrett, Joyner, Halenda (BJH) desorption 

model, which provides a relationship between the amount of the adsorbate lost and each pore 

emptying step of the desorption process. 

 

5.2.3 Temperature-Programmed Reduction 

The ruthenium catalysts (Figure 5.1) were first ramped to 350 ºC in pure Ar to remove  
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Figure 5.1: TPR profiles of supported ruthenium catalysts. 7% Ru/NaY (solid line), and 1% 

Ru/Al2O3 (dotted line). 

 

residual H2O from the sample, prior to cooling to 50 ºC to begin the TPR. The test was  

performed using 10% H2/Ar mixture referenced to Ar at a flow rate of 30 cm
3
/min (sccm). The 

sample was heated to 800 ºC at a ramp rate of 10 ºC/min. 

 

5.2.4  Hydrogen Chemisorption by TPD 

Hydrogen chemisorption was conducted using temperature-programmed desorption 

(TPD) with the Zeton-Altamira AMI-200 instrument. The catalyst sample was activated using a 

flow of 10 cm
3
/min of H2 mixed with 20 cm

3
/min of argon at 350 

º
C for 10 h and then cooled 

under flowing H2 to 100 
º
C. The sample was held at 100

 º
C under flowing argon to remove 

and/or prevent adsorption of weakly bound species prior to increasing the temperature slowly to 
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350 
º
C. The TPD spectrum was integrated and the number of moles of desorbed hydrogen 

determined by comparing its area to the areas of calibrated hydrogen pulses. The loop volume 

was determined by establishing a calibration curve with syringe injections of nitrogen into a 

helium flow. Dispersion calculations (Table 5.1) were based on the assumption of a 1:1 H:Ru 

stoichiometric ratio and a spherical ruthenium cluster morphology. 

 

Table 5.1: Hydrogen chemisorption by TPD with pulse reoxidation after hydrogen reduction for 

10 h at 350 
o
C. 

Catalyst H2 desorbed (µmol/gcat) Dispersion* (%) Diameter* (nm) 

1% Ru/Al2O3 22 44 3.5 

7% Ru/NaY 15.8 4.6 33.7 

* 100% reduction to Ru
0
 was assumed. 

 

5.2.5 Reduction and Desorption using the H2/D2  

 Twenty grams of catalyst (i.e., either 1% Ru/Al2O3 catalyst or 7.1% Ru/NaY) were 

loaded into the plug flow reactor. The following three separate experimental approaches were 

used for each catalyst: 

(1)  The ruthenium catalyst was reduced under 15 sccm of the 1:1 H2/D2 

mixture. The bed was heated at 1 
º
C /min to 623 K and held for 48 h. The 

system was then cooled to 100 
º
C at 1 

º
C /min., at which point neon gas 

flow was switched on and the fixed bed system was held at this condition 

for 1 h. The reactor was then heated to 350 
º
C under 5 mL/min of flowing 

neon. The hydrogen/deuterium remaining on the catalyst was desorbed 
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and collected in the hydrogen-specific gasbag using neon as the carrier 

gas.  

(2)  The ruthenium catalysts were heated to 350 
º
C and held for 44 h under 15 

sccm of H2 flow. After 44 h of flow, an uninterrupted switch occurred to 

allow the 1:1 H2/D2 to flow for 4 h at the same temperature. The system 

was cooled to 100 
º
C at 1 

º
C /min and the gas flow was switched to neon. 

The fixed bed system was held at this condition for 1 h. The reactor was 

heated to 350 
º
C under 5 mL/min of neon. The hydrogen/deuterium 

remaining on the catalyst desorbed and was collected in a hydrogen-

specific gasbag using neon as the carrier gas. 

(3)  The ruthenium catalyst was heated to 350 
º
C and held for 44 h under 15 

sccm of D2 flow. After the 44 h period, the D2 was stopped and the H2/D2 

mixture was introduced at the same flow rate of 15 sccm for 4 h. The 

system was then cooled to 100
 º
C at 1 

º
C /min, gas flow was switched to 

neon, and the fixed bed system held at this condition for 1 h. The reactor 

was heated to 350
 º
C under 5 mL/min of neon. The hydrogen/deuterium 

remaining on the catalyst was desorbed and collected into the hydrogen 

specific gasbag using neon as the carrier gas. 

 

5.3 Results and Discussion: 

5.3.1  Surface Area Measurements  

The BET surface area measured by adsorption of nitrogen was found to be 141 m
2
/g for 

the 1% Ru/Al2O3 catalyst. A weight percentage loading of 1% ruthenium is equivalent to 1.3% 
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by weight RuO2. If the Al2O3 is the only contributor to the area, then the area of the Ru/Al2O3 

catalyst should be 0.987 x 150 m
2
/ g = 148 m

2
/g. The actual measure of surface area is 

approximately that of the calculated value, suggesting that pore blocking should not be a 

significant problem. The porosity results from the BJH adsorption tests are given in Table 1. For 

the case of the NaY-supported ruthenium catalysts, if NaY is the sole contributor to the surface 

area, the value should be close to 0.908 × 730 m
2
/g = 662 m

2
/g. Because the surface area of the 

catalyst is lower (518 m
2
/g) than the expected value of 663 m

2
/g, the result suggests that a 

fraction of the RuO2 clusters were large enough to cause some pore blocking of the zeolite. 

    

5.3.2  TPR and Hydrogen Chemisorption / Pulse Reoxidation 

The reducibility of the supported Ru catalysts was investigated by temperature 

programmed reduction (TPR) experiments, and the profiles are represented in Figure 1. Both 

supported Ru catalysts samples display a sharp reduction peak at ~ 105-125 °C, with a shoulder 

on the higher temperature side of the main peak, and these are attributed the reduction of Ru 

species to metallic Ru (i.e., Ru
0
). The activation temperature of the present study is sufficiently 

high to ensure complete reduction of the Ru species to Ru
0
.  

The hydrogen chemisorption method is used to determine the dispersion and indirectly 

the crystallite size of ruthenium on Al2O3 and NaY supports and the results are presented in 

Table 5.1. The NaY supported Ru (7% Ru/NaY) catalyst exhibited lower average dispersion 

and larger average crystallite size than the alumina supported Ru (1% Ru/Al2O3) catalyst. These 

results suggest that a significant fraction of Ru was of sufficient size to remain external to the 

micropores of the catalyst. 
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5.3.3  Competitive Desorption 

The H/D ratios presented in Tables 5.2 and 5.3 were calculated from the amounts  

 

Table 5.2: The isotope effect for the reduced 7% Ru/NaY catalyst. 

Injection Approach 1 Approach 2 

1 

2 

3 

4 

Average 

STD 

0.95 

0.96 

0.94 

0.95 

0.95 

0.01 

0.97 

0.97 

0.97 

0.95 

0.96 

0.01 

 

Table 5.3: The isotope effect for the reduced 1% Ru/Al2O3 catalyst. 

Injection 
Approach 1 

Approach 2 Approach 3 
Fresh Repeat 

1 

2 

3 

4 

Average 

STD 

0.93 

0.93 

0.95 

0.92 

0.93 

0.01 

0.93 

0.91 

0.94 

0.93 

0.93 

0.01 

0.97 

0.97 

0.97 

0.96 

0.97 

0.01 

0.90 

0.94 

0.91 

0.93 

0.92 

0.02 

 

determined for each injection based on the calibration curves, again as noted in Chp3 with 

cobalt. The H2 is 3.3 µmol/gcat, HD is 5.5 µmol/gcat, D2 is 4.0 µmol/gcat, and the total H-D 

adsorbed is 12.8 µmol/gcat. This value is close to the value calculated from the TPD of 7% 

Ru/NaY given in Table 5.1. The amount of adsorbed gas (µmol/gcat) calculated from the 

calibration curve is close to the amount calculated from the hydrogen chemisorption 

experiment. This indicates that relatively the same amount of ruthenium was reduced in both 

methods. To define the isotopic partitioning effect over the supported Ru catalysts, three 

different approaches were followed as mentioned in the experimental section. The reason for the 

different experimental approaches was to mimic the studies presented earlier [33, 35−38] in an 
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attempt to better understand the inverse kinetic isotope effect (IKIE) observed during CO 

hydrogenation. The first approach, a 48 h equal H/D molar competitive reduction, showed a 

small, but measurable, isotopic partitioning preference for D on the ruthenium metal surface of 

the Ru/NaY catalyst. Several injections were made to ensure adequate reproducibility. As 

shown in Table 5.3, for approach 1 the standard deviation was very small for all the injections.  

Two other approaches were designed to parallel the change over from H2 to D2 and vice 

versa. Again, reduced Ru/NaY was used as a control in an attempt to learn if preferential 

partitioning occurred for the metal surface only. Once the ruthenium surface was completely 

covered with H or D atoms following a 44 h reduction at 350
 º
C, the 4 h reduction procedure 

with the equimolar mixture occurred. This 4 h reduction at 350
 º
C with a 15-sccm flow allowed 

for at least 24 reactor turnovers. Similar to the 50%/50% H2/D2 mixture reduction, H2 or D2 pre-

reduced Ru/NaY followed by exposure to the 50%/50% H2/D2 mixture exhibited preferential 

partitioning for D, as shown in Table 2. However, when H2 was used as the reducing gas prior 

to the 50%/50% H2/D2 mixture, the result was closer to unity, whereas when D2 was used as the 

reducing gas prior to the 50%/50% H2/D2 mixture, the result was further from unity. These 

findings suggest that some exchange with hydroxyl groups of the support occurs. 

Similar trends were observed for the case of 1% Ru/Al2O3 (Table 5.3). Our previous 

work with cobalt and nickel catalysts did not display virtually any isotopic partitioning [39, 40], 

but the present study for the supported ruthenium catalysts reveal an isotopic partitioning effect 

in favor of D. To further confirm that the observed effect was correct, this approach was 

repeated two times over the 1% Ru/Al2O3 to ensure the results were consistent and as shown in 

Table 3 the values indicate an IKIE. Duplicating this approach confirmed the initial results, 

demonstrating reproducibility.  
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 Cobalt [39] and nickel [40]
 
catalysts yielded no partitioning isotopic effect, whereas, 

supported ruthenium catalysts resulted in preferential partitioning isotopic effect on the surface 

ruthenium. This preference to a higher D* surface coverage was not contingent upon the 

reduction pretreatment utilized (i.e., H2, H2/D2, or D2) prior to final treatment with the 50%/50% 

H2/D2 mixture. . As can be seen from the data in Tables 3 and 4, all three approaches exhibited a 

greater amount of deuterium on the surface of the active ruthenium metal. The dependence of 

the rate-determining step, termination by hydrogen, centers on the assumption that there are 

equivalent coverages of H and D on the surface. The current results indicate that preferential 

partitioning on the surface should be considered when a KIE study involving H2/D2 switching is 

carried out. 

 

5.4 Conclusions: 

For all three approaches studied, an isotopic preference for D was observed indicating 

that some H/D partitioning occurs for the hydrogen pool. The overall isotope effect is relatively 

minor but should be accounted for in assessing the inverse kinetic isotope effect that is obtained 

and reported during CO hydrogenation. Both Bell and Kellner [35] and Jia et al. [41] have 

reported that a possible higher surface coverage of D could be a cause for the inverse kinetic 

isotopic effect seen during CO hydrogenation. 
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Chapter 6 : Iron 

Adapted with permission from W. D. Shafer, V. R. R. Pendyala, M. K. Gnanamani, G.  Jacobs,  

J. P. Selegue, S. D. Hopps, G, A. Thomas, B. H. Davis, Isotopic Apportioning of 

Hydrogen/Deuterium on the Surface of an Activated Iron Carbide Catalyst. Catal. Lett. 2015, 

145:1683–1690. Copyright 2015 Springer International Publishing. 

 

6.1. Introduction 

The FT reaction [1-4] is at the heart of XTL processes for producing clean fuels from 

biomass, coal, natural gas, and has the potential to provide an alternative route for the utilization 

of CO2. Iron is still one of the main metal catalysts used in the FT process industrially as a 

means of producing clean fuel from coal. One reason for the industrial usage of iron as an FT 

metal is low cost due to the high abundance of iron compared to other active metals. Another 

advantage for the utilization of iron carbide as the active component is its capability of 

converting low H2/CO ratio syngas. This makes the iron a good choice for CTL and BTL 

processes (i.e., from coal and biomass, respectively) as the H2/CO ratios from the gasification 

process are often less than unity.  To compensate for the low syngas ratios, the iron catalyst is 

active toward the water-gas-shift (WGS) reaction, which adjusts the H2/CO to favorable levels 

for carrying out FTS.  

FT synthesis is now over 90 years old and yet the mechanism is still under scrutiny [5-

8]. Numerous isotopic tracer studies have been conducted in attempts to shed light on the 

mechanism [8]. One technique was to label the reactants - CO by means of 
13

C [9-12], 
14

C [13-

15] or 
18

O [16], and then monitor the outcome of the isotope in the products by incorporating it 

into the carburization step or through switching experiments during reaction. Another approach 
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is to switch to D2 [17-20] during a steady state period or to run H2/D2 [21] experiments 

competitively. From these experiments, several different mechanisms have been proposed for 

FT synthesis, with the enol and carbide mechanisms being the two more popular schemes to 

date [8]. Past work has offered some insight regarding the nature of the rate-determining step, 

where FT displayed an inverse kinetic isotopic effect (IKIE) [22-28]. Several papers on the 

mechanism, both theoretical [29-31] and experimental [32-34], have been published as 

mentioned previously, attempting to establish a full picture for the FT mechanism.  

All of the isotopic work with the H2/D2 switching experiments focused on the 

mechanism of CO hydrogenation in an attempt to understand the KIE [28,35,and 36]. The 

present work probes H/D partitioning on the surface of iron carbide, which could potentially 

affect any interpretation of a KIE. Therefore, this work examines whether an isotopic preference 

occurs toward one isotope (H/D) and assesses whether it is sufficiently large to impact the 

interpretation of the IKIE based on the mechanism displayed during CO hydrogenation. Unlike 

cobalt [37] and nickel [38], ruthenium [39] seems to display a very slight preference for D 

resulting in a slightly higher surface coverage of deuterium. A similar result was obtained in the 

current investigation of iron carbide. 

 

6.2. Experimental 

6.2.1  Catalyst Preparation 

The precipitated iron catalyst was prepared using a ferric nitrate solution obtained by 

dissolving iron (III) nitrate monohydrate (1.17M) in deionized water. A controlled flow of the 

iron nitrate mixture was added to the precipitation vessel together with a stream of ammonium 

hydroxide (14.8M) that was added at a rate to maintain a pH of 9.0. The slurry was recovered 
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using a vacuum filter and the solids were washed twice with deionized water. The final filter 

cake was dried for 24 h in an oven at 110 
º
C, followed by calcination at 350 

º
C in flowing air for 

4 h. 

 

6.2.2  Catalyst Characterization 

6.2.2.1 BET Surface Area and Porosity Measurements 
 

 The surface area, pore volume, and average pore radius of the iron oxide catalyst (α–

Fe2O3) was measured using a Micromeritics Tri-Star 3000 gas adsorption analyzer system. 

Approximately 0.3-0.4 g of sample was weighed and loaded into a 3/8 o.d. sample tube. 

Nitrogen served as the adsorption gas, and sample analysis was performed at the boiling 

temperature of liquid nitrogen (-196 
º
C). Before testing, the temperature was gradually ramped 

to 160 
º
C and the sample was evacuated overnight to approximately 6.7 Pa. The physisorption 

results were quantified using the Barrett, Joyner, Halenda (BJH) desorption model, which 

provides a relationship between the amount of the adsorbate lost and each pore emptying step of 

the desorption process (Table 6.1). 

 

Table 6.1: ET surface area, and pore characteristics of the iron catalyst. 

Catalyst 
BET surface area 

(m
2
/g) 

Single point 

pore volume 

(cm
3
/g) 

Average 

pore radius 

(nm) 

α-Fe2O3 43.2 0.2033 9.41 
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6.2.2.2 Temperature Programmed Reduction (TPR) of CO 

Carbon monoxide (Figure 1) temperature-programmed reduction (TPR) was conducted 

with the Zeton-Altamira AMI-200 instrument. The TPR was performed using 10% CO/He 

mixture (referenced to helium) at a flow rate of 30 cm
3
/min. The catalyst samples were heated 

from 50 to 525 
º
C using a heating ramp rate of 10 

º
C /min and held for 1 h. A liquid nitrogen 

trap was used to continuously remove the CO2 produced. 

 

6.2.2.3 XRD Analysis 

Powder X-ray diffractograms (XRD) of Fe2O3 and passivated (i.e., at room temperature 

under flowing 1% O2 in nitrogen) iron carbide catalysts were recorded using a Philips X’Pert 

diffractometer with monochromatic Cu Kα radiation (λ - 1.5418). XRD scans were taken over 

the range of 2θ from 10 to 90
o
. The scanning step was 0.01, the scan speed was 0.0025 s

−1
, and 

the scan time was 4 s. 

 

6.2.3 Reduction and Desorption using the H2/D2 Mixture 

 Forty grams of iron oxide (Fe2O3) were loaded into the plug flow reactor and carburized 

at 400 
º
C for 24 h. After calcination, the following five separate experimental approaches were 

set up to run for each catalyst: 

(1)  The system was allowed to cool to 35
 º
C after which 15 sccm of the 1:1 

hydrogen/deuterium isotopic mixture was introduced. The temperature 

was then ramped to 130
 º
C and held for a period of 48 h. After a period of 

1 h, the effluent was passed into a sampling bag to check for methane. 

Following the 48 h period the system was then cooled to 35
 º
C and held for 
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1 h. Once 35
 º
C was reached, the H2/D2 isotopic mixture was replaced with 

neon for 1 h allowing for 10-15 turnovers. Lastly, the inert gas flow was 

decreased to 5 sccm and the system was heated from 35 
º
C to 130

 º
C and 

held for 15 min and during this time the effluent was sent to a hydrogen 

specific Tedlar bag. 

(2)  The system was allowed to cool to 35
 º

C after which 15 sccm of pure 

hydrogen was introduced. The temperature was then ramped to 130
 º
C and 

held for a period of 48 During this time, pure hydrogen was passed across 

the catalyst bed at 15 sccm for 44 h, followed by 4 h of the 1:1 

hydrogen/deuterium isotopic mixture. After 1 h at 130
 º
C, the effluent was 

passed into a sampling bag to check for methane. Following the 48 h 

period the system was then cooled to 35
 º
C and held for 1 h. Once 35

 º
C 

was reached, the isotopic hydrogen mixture was replaced with neon for 1 

h allowing for 10-15 turnovers. Lastly, the gas flow was decreased to 5 

sccm and the system was heated from 35 
º
C to 130

 º
C and held for 15 

minutes and during this time the effluent was sent to a hydrogen specific 

Tedlar bag. 

(3)  The system was allowed to cool to 35
 º

C after which 15 sccm of pure 

hydrogen was introduced to the catalyst. The temperature was then 

ramped to 130
 º
C and held for a period of 48 h. During this time, pure 

deuterium was passed across the catalyst bed at 15 sccm for 44 h, followed 

by 4 h using the hydrogen/deuterium (1:1) isotopic mixture. After 1 h at 

130
 º
C, the effluent was passed into a bag to check for methane. Following 
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the 48 h time period the system was then cooled to 35 
º
C and held for 1 h. 

Once 35
 º
C was reached, the isotopic hydrogen mixture was replaced with 

neon for 1 h allowing for 10-15 turnovers. Lastly, the gas flow was 

decreased to 5 sccm and the system was heated from 35 
º
C to 130

 º
C and 

held for 15 min and during this time the effluent was sent to a hydrogen 

specific Tedlar bag. 

(4) The system was then allowed to cool to 35
 º
C, and once the temperature 

was reached the 1:1 hydrogen/deuterium isotopic mixture was passed 

across the catalyst at 15 sccm. After 30 min, a 1 mL needle was placed 

inline of the effluent flow and 100 l sample was taken and immediately 

injected on the GC-TCD. The temperature of the catalyst bed was 

gradually increased to 130 
º
C, and during this time the effluent was 

analyzed by GC-TCD seven times. 

(5) The system was then cooled to 130
 º

C, and neon was allowed to flow 

through the system at 15 sccm for 1 h, after which a vacuum of 30 inches 

of water was applied to the fixed-bed system and held for 10 min. The 

vacuum was then shut off and the system was slowly pressurized to 

atmospheric pressure with the H2/D2 isotopic mixture over a period of 1 h. 

Once the system was pressurized, neon was allowed to flow at 5 sccm. 

This was to enable the H2/D2 that remained in the system to be sent to the 

hydrogen specific Tedlar bag. 
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6.3. Results  

6.3.1  Surface Area Measurements  

BET surface area and pore size distribution results of α-Fe2O3 catalyst are shown in 

Table 1. The BET surface area for the α-Fe2O3 catalyst was found to be 43.2 m
2
/g. 

 

Table 6.1. BET measurements for the α-Fe2O3 catalyst 

 Catalyst 

BET  

surface area  

(m
2
/g) 

Single point  

pore volume  

(cm
3
/g) 

Average 

pore radius  

(nm) 

α-Fe2O3 43.2 0.2033 9.41 

 

6.3.2  Temperature Programmed Reduction α-Fe2O3 using Carbon Monoxide (CO-TPR) 

Considering that the aim of this work was to study the surface partitioning of H/D on the 

active carbide, no promoters or supports were used. An appropriate temperature was needed to 

sufficiently carburize the iron oxide. CO-TPR was used to investigate the carburization 

behavior of catalysts in a CO atmosphere. The CO-TPR profile of α-Fe2O3 catalyst is shown in 

Figure 6.1. 
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Figure 6.1: Temperature programmed reduction of CO (CO-TPR) profile of α-Fe2O3 catalyst. 

 

The profile displays two primary reduction/carburization peaks. Furthermore, a very 

weak peak below 250 
º
C is also detected, which could be ascribed to the reduction of hematite 

(α-Fe2O3) to magnetite (Fe3O4) and the first major peak is located in the temperature range of 

250–300 
º
C. These peaks are associated with reduction of Fe2O3 to lower oxides (i.e., Fe3O4 and 

a defect-laden form of this oxide) prior to carburization. The peaks are fully consistent with our 

previous CO-TPR XANES/EXAFS results [40-42]. The second peak is located in the 

temperature range of 350–525 
º
C. This could be ascribed to the carburization of iron magnetite 

to iron carbide [43-45]. Based on the CO-TPR data, the iron oxide was sufficiently carburized 

under the CO pretreatment conditions followed in this work. 
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6.3.3  X-ray Diffraction (XRD) Analysis 

 To confirm the formation of iron carbide (Fe5C2) phase following the carburization of α-

Fe2O3, the X-ray diffraction (XRD) technique was utilized. XRD patterns of as prepared and 

carburized α-Fe2O3 catalyst are shown in Figure 6.2. The iron oxide (α-Fe2O3) catalyst was 

 
 

Figure 6.2: X-ray diffraction patterns of iron oxide and iron carbide. 

 

 carburized under similar conditions as used in TPD experiments (400 
°
C for 24h at ambient 

pressure), with the exception that the samples were further passivated at room temperature by 

using 1%O2/N2 for two hours before being submitted for XRD. The as-prepared catalyst 

displayed the XRD lines characteristic of α-Fe2O3 at 33,
 
37, 41, 49, 62, and 64 ° respectively, 

whereas the carburized catalyst exhibited diffraction lines corresponding to the Hӓgg (Fe5C2) 

iron carbide phase. 
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6.3.4  Analysis  

The H/D ratios presented in Table 6.2 were calculated from the amounts determined for 

 

 

Table 6.2: The isotope effect for the reduced iron catalyst. 

α-Fe2O3     

H/D 

ratio 
Approach 1 

Approach 

2 

Approach 

3 
Approach 4 

Approach 

5 

Injection 1 2 3 
  

(°C) 1   

1 0.95 0.94 0.93 0.96 0.94 35 1.02 1.06 

2 0.96 0.94 0.93 0.97 0.94 55 0.95 1.06 

3 0.95 0.94 0.92 0.97 0.93 65 0.94 1.06 

4 
 

0.93 0.93 0.96 0.93 88 0.93 1.05 

5 
  

0.93 
  

115 0.93 1.06 

6 
  

  
  

125 0.93   

7 
  

  
  

130 0.93   

Average 0.95 0.94 0.93 0.97 0.93   0.95 1.06 

STD 0.01 0.00 0.00 0.00 0.00   0.03 0.00 

 

 

 each injection based on the calibration curves as displayed in Chapter 3. The partitioning 

isotope effect in this study is defined as the total amount of desorbed H2 divided by the total 

amount of desorbed D2. When the H/D ratio is greater than 1, the partitioning isotope effect is 

normal; in contrast, if an inverse isotopic effect is obtained, the ratio would be less than 1. 

The total amount of neon collected in the bag was 225 ml, based on a flow 5 mL/min 

and time on-stream of 45 min during desorption.  Combined with the calibration curves given 

for each specific gas, the amount of each gas was quantified for the entire run from the amount 

injected on the GC. The results from the given calculations will allow the overall H/D ratio to 
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be taken into account followed by the determination of an overall H/D preference for each 

separate approach. 

 

6.3.5 Isotopic Partitioning 

 Prior to each isotopic partitioning experiment, the Fe2O3 was carburized at 400 
º
C, based 

on the results from TPR of carbon monoxide. Before performing any of the approaches, 

additional measures were taken to ensure the existence of the iron carbide phase, and that the 

desorption process does not interfere with the reaction of the iron catalyst. Excessive 

temperatures above 300 
º
C produced significant methane compared to the amount of H2 in the 

bag filled. The aim was to find a temperature where H/D could be found in the Tedlar gasbags 

without producing any methane. From this analysis, 130 
º
C was chosen because of the 

formation of methane was not observed in the effluent during the adsorption process.  

Figure 6.3 displays three different chromatograms, and the figure on the far left  

 

 
Figure 6.3: Displays the dissociative adsorption and recombinative desorption  

of the H2/D2 close to equilibrium. 
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represents the feed sample (no HD is present). The middle one is the feed gas mixture 

(H2:HD:D2 are at a 1:1:1 ratio), which was purchased from Cambridge Isotope Laboratories to 

construct calibration curves; and, the far right image is a chromatogram of the effluent at 35 
º
C 

where H2:HD:D2 are at 1:2:1 ratios. These three chromatograms display the following:  

 

1) HD is present in the effluent and not in the feed demonstrating that the 

H2/D2 mixture is desorbing from the surface in a dissociative manner. 

2) Since the effluent displays H2:HD:D2 ratios of 1:2:1 compared to that of 

the feed, this means that when the hydrogen (or deuterium) is dissociated, 

the H (or D) combines with either deuterium or hydrogen.  

3) Since the HD peak is twice the others, the H2/D2 completely exchanged. 

 

The results indicate that dissociative adsorption is occurring without methane being formed and 

that associative desorption is statistically random.  

 The first three approaches were carried out for elongated activation periods to ensure 

bed saturation before the system was cooled and filled with neon. After the period where only 

neon flowed through the system, the Tedlar bag was then placed online after the reactor to 

capture all the desorbed hydrogen/deuterium. Again, the bag was checked to ensure that no 

methane was present that could interfere with an interpretation of the results. As shown in Table 

2, results for the first three approaches displayed a very slight isotopic preference toward 

deuterium (H/D < 1) . Unlike the results given for cobalt [37] and nickel [38], the slight 

partitioning preference noted seems to be independent of all three separate approaches utilized 
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in the experimentation, as also displayed with ruthenium work [39]. The first approach was 

conducted several times to ensure reproducibility.  

 

6.4. Discussion 

 Several early studies attempted to distinguish the KIE for methane and FT synthesis 

differences with inconclusive results. Jungers et al. [46-47] performed the H2/D2 switching 

experiment over a nickel catalyst, finding that CO hydrogenation occurred more rapidly with 

D2. Others, through separate experimentation, came to the same conclusions [48-49]. However, 

due to the complicated nature of the FT mechanism, others observed no isotopic preference [24-

27], and still others reported a positive KIE [25]; however, many of these studies were directed 

at the hydrogenation of CO to CH4.  

The complications that have arisen from the H2/D2 switching experiments, in an attempt 

to describe the route of CO hydrogenation, not only give unclear results involving the nature of 

the rate-determining step (RDS), but also through exhibiting no KIE, demonstrate that H2 might 

possibly not be involved in the RDS. Given these conflicting results for the kinetic switching 

with CO hydrogenation and given complications of the FT synthesis, doubts as to whether this 

type of experiment could be used to describe the RDS and whether hydrogen plays a role in the 

RDS of CO hydrogenation. 

In an attempt to shed light on this, Wilson [36] listed the likely kinetic steps involved in 

the hydrogenation of CO to CH4. 
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Wilson used an argument from Ozkai, who suggested that the KIE may not solely be affected 

by the rate-determining step but also by the available concentration of the isotopic material [35]. 

Wilson then illustrated that the role hydrogen played in the FT process is not only driven by 

kinetics, but could also be affected by isotopic concentrations (e.g., surface coverage of H or D). 

In short, the KIE displayed during hydrogenation of CO can potentially be explained as a 

combination of thermodynamic effects (for the dissociated H/D on the surface), and the kinetic 

effects (for CO hydrogenation) [23]. To our knowledge, all of the work that has been done 

experimentally has focused solely on the kinetics of CO hydrogenation. Before the hydrogen 

can be incorporated into a C-H(D) bond, H2 (D2) needs to be dissociatively adsorbed onto the 

surface of the active sites. Although most recent studies for the H2/D2 switching studies display 

similar results to those of Jungers et al. [46,47], the difficulties need to be addressed. Thus, 

determining the significance of isotopic partitioning upon the active metal for H2/D2 adsorption 

is necessary, and the main purpose for this work. The results indicate that preferential 

adsorption of D2 is not the reason for the IKIE for FT synthesis with an iron carbide catalyst. 
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6.5. Conclusions 

In the case of iron carbide, and as observed for ruthenium [37], but unlike those of 

cobalt [38], nickel [39], there is a very slight higher coverage of deuterium on the surface of the 

iron carbide. Since the overall isotopic preference of all 5 approaches utilized are close to 1, this 

leads to the conclusion that the differences displayed for the KIE, observed during CO 

hydrogenation, could be only slightly complicated by the adsorption of hydrogen/deuterium, but 

remain primarily due to the kinetics of CO hydrogenation.  
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Chapter 7 : Final Remarks, Observations, and Future Thoughts 

7.1 Concluding Remarks 

Evidence from the experimental results indicates that the thermodynamic step of 

competitive adsorption displayed very little to no KIE for all four metals analyzed. Hence, even 

though hydrogen undergoes several steps in the formation of hydrocarbons from CO, the 

thermodynamics of adsorption have no effect in the overall KIE for CO hydrogenation. Two 

different concluding remarks result from competitive hydrogen adsorption experiments: 

 

1) Since competitive adsorption does not affect CO hydrogenation, KIE work 

utilizing H2/D2 switching experiments can be used to focus solely on the 

KIE for converting CO to aliphatic products. 

2) Theoretical results that display KIE for adsorption have not agreed, as of 

yet, with experimental results for competitive hydrogen adsorption. 

 

7.1.1 First Remark 

As mentioned, the elucidation of equimolar competitive partitioning for 

hydrogen/deuterium display that relatively no KIE is present in the adsorption process. Thus, 

the atomic coverage across the active FT metal would essentially be uniform, allowing 

equivalent molar amounts of H/D atoms to incorporate into the chain growth during CO 

hydrogenation. Provided, if the IKIE is solely from the kinetics of CO hydrogenation, (i.e., 

summing up all the series of small steps between) then 3 observations may exist: 
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1) As a primary KIE, the change in rates of CO conversion observed indicate 

that hydrogen plays a role in the rate-determining step. 

2) The IKIE itself reveals the larger difference in ZPE’s are in the transaction 

states. 

3) In accordance with the Hammond’s postulate, the overall process for CO 

hydrogenation is very exothermic, revealing the transition state to be 

closer in energy to the reactants.  

 

If hydrogen is involved in the RDS, as observed, then based upon the second observation and 

Figure 1.16, where the ratio between the X-H and X-D is √2, as noted in Table 7.1 [1], and X is  

 

Table 7.1: A table of vibration frequencies, adapted from Nakamoto et al. [1] 

 

νH 

 

νD νH/ 2  

H2 4430 D2 3134 3132.48 

CH 3000 CD 2200 2121.32 

MH 

2250 

MD 

1591 1590.99 

2120 1520 1499.07 

2000 1414 1414.21 

1850 1360 1308.15 

1700 1202 1202.08 

 

 

(M,H,D, or C) from the vibrational calculations from equation 12 should indicate an IKIE.  

Considering this, the difference in the frequencies is again a result of the spring force 

constant, due to the chances in mass of the bound atoms. In addition, if A and A’ are bigger than 
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B and B’, where A/A’ = B/B’, then ∆A > ∆B. Hence, the mass is inversely proportional to the 

frequency, and one would expect M-H(D) < C-H(D); therefore ∆M-H(D) < ∆C-H(D). Provided 

this is the case, one could conclude, with the hypothesis from section 1.4.1, that where the KIE 

is dependent upon ZPE, the CO hydrogenation would yield a larger difference in ZPEs in the 

products of C-H (C-D) (as stated in the second observance). Applying the actual terminal 

frequencies for the C-H, C-D, M-H, and M-D to equation 1.14 (section 1.4.1) yields an overall 

KIE for CO hydrogenation ranging from 0.76 – 0.86 kH/kD. This very rudimentary calculation 

then leads to the conclusion, as proposed in the previous mechanistic schemes, that CO 

hydrogenation very well could itself display an IKIE, where the limitations are the differences 

in the C-H and C-D bonds during formation. 

 

7.1.2 Second Remark 

 The proposed theoretical observations given herein both agree [2] and disagree [3] with 

previous calculations. Regardless, the experimental data provided by the current work disagree 

with the attempts to calculate the KIE though vibrational theory [2, 3]. Whereas most of the 

attempts through calculations, including this one, display a defined KIE based upon the 

differences in activation energy through ZPE vibration frequencies of H2 (D2) and M-H (D), 

experimentally no KIE exists for the competitive adsorption of hydrogen and deuterium for 

cobalt and nickel, and a very slight IKIE exists for iron and ruthenium. 

 The purpose of this work was to expound on the adsorption process experimentally, in 

the hopes to further the present knowledge, for the tremendously complicated adsorption 

process. However, this did not occur and in turn a new piece was uncovered; i.e., the difference 

noted between the calculated/experimental values. The unexpected deviation from the 
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theoretical work could simply mean that the vibrational factor (the difference in ZPE for the 

reactants and transition states) is not the only influence. Given these are very simple diatomic 

molecules, adsorbed onto a metal surface, the measurable vibrational frequencies for only the 

pseudo-stable reactant and final states should be easily measured. Yet surface complications of 

hydrogen adsorption can arise from, to name a few [4]: 

 

1) direct repulsion reactions; 

2) lateral mobility (at elevated temperatures); 

3) induced site heterogeneity; 

4)  through-metal indirect interactions; 

5)  coverage-dependence of heat of adsorption.  

 

Regardless, these surface properties mentioned are for hydrogen adsorption alone. Adding 

deuterium only complicates the matter for theoretical calculations, surface entropy, exchange 

rates, readsorption of the HD species, etc. All of these factors could play a role in why the 

attempts to uncover a KIE for competitive hydrogen/deuterium adsorption did not agree with 

the experimental evidence displayed here. 

 

7.2 Future Work 

The current work was specifically meant to reveal the competitive surface coverage of 

hydrogen/deuterium and how this could potentially affect CO hydrogenation; now that we can 

experimentally describe how the effect is noted, future work can be focused upon KIE for CO 

hydrogenation. 
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 The future work mentioned specifically targets the reactor and instrument setup’s ability 

in regard to the isotopic separation on metals. Now that the separation of H2/HD/D2 is possible, 

attempting to uncover an exchange rate for the actual FT process for H2/D2 through solvent 

interference might also be possible [5]. Work has already begun using a cobalt catalyst, as a 

mean to understand the effects brought by the use of solvents such as C30 oil, hexadecane, where 

H2/D2 exchange rates are greatly reduced. These rates are then recovered with a washing of 

pentane, reviving the concept using a supercritical reactor with liquid pentane as a means to 

wash the catalyst and yield a more productive reactor. 

 This exchange rate could also be utilized by looking at the iron as well. Does a certain 

level of coking impede hydrogen-exchange rates? An overall scope could be noted, where say 3 

catalysts (no K, 1.4 K, and 5 K) from a base 100Fe5.1Si catalyst could be carburized at different 

temperatures to see if the level of carburization impedes the exchange rate as H2 and D2 are 

passed across the catalyst. 

 This work could be extended outside of FT metals, where other processes/observances 

that display a hydrogen KIE on the metal could be probed. Metals such as ceria, platinum, and 

zirconia are common metal supports [6] for the WGS process that can affect the KIE. 

Observances such as spillover can be probed for effects, as seen on Rh [7, 8]. 

 Lastly, in light of the separation of the H2/D2 products, we hope to separate of the 

isotopically abundant mixtures of methane (i.e., CH4 – CDH3 – CD2H2, etc.). If this could be 

accomplished, the previous statistical approaches given by the results from the mass spectra 

during online analysis could be overcome. This could be a beneficial direction to turn without 

relying on any statistical operations from online mass spectra fragmentation patterns. 
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7.3 Closing Remarks 

 An extraordinary amount of work and insight has been brought to the FT process over 

the more than 90 years since its discovery. The current work is a small piece of the puzzle, 

performed in an attempt to uncover a mechanism for the process as a whole. Nevertheless, more 

work will be required to fully disclose a mechanistic route for the entire FT process. 
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Appendix 1: List of Abbreviations 

 

1. ASF – Anderson-Shulz-Flory 

2. BPD – Barrels Per Day 

3. BTL – Biomaterials to Liquid’s 

4. CTL – Coal to Liquids 

5. FID – Flame Ionization Detector 

6. FT – Fischer Tropsch 

7. GTL – Gas to Liquids 

8. IKIE – Inverse Isotopic Effect 

9. KIE – Kinetic Isotope Effect 

10. NKIE – Normal Kinetic Isotope Effect 

11. RDS – Rate Determining Step 

12. RTS – Raw materials to Liquids 

13. SV – Space Velocity 

14. TOS – Time On Stream 

15. TPR – Temperature Programmed Reduction 

16. TPD – Temperature Programmed Desorption 

17. TCD – Thermal Conductivity Detector 

18. VLE – Vapor Phase Equilibrium 

19. WGS – Water Gas Shift 

20. XRD – X-Ray Diffraction 

21. ZPE – Zero Point Energy 
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