Research Report KTC-93-28

IMPACTS OF THE EXTENDED-WEIGHT COAL HAUL ROAD SYSTEM (INTERIM REPORT)

by

Joseph D. Crabtree Research Engineer

Jerry G. Pigman Research Engineer

John A. Deacon Professor

and

Kenneth R. Agent Research Engineer

Kentucky Transportation Center College of Engineering University of Kentucky Lexington, Kentucky

in cooperation with

Kentucky Transportation Cabinet Commonwealth of Kentucky

and

Federal Highway Administration U.S. Department of Transportation

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

October 1993

Technical Report Documentation Page

 $(r_1,\ldots,r_{n+1},\ldots,\ldots,r_{n+1},\ldots,r_{n+$

1. Report No.		2. Government Accessio	n No.	3. Recipient's Catalog N	lo.	
KTC-93-36	8			·		
4. Title and Subtitle				5. Report Date		
Importe of the Estended Misisht Cool Lloyd Dood Custom			m	October 1993		
Impacts of the Extended-Weight Coal Haul Road System (Interim Report)			111			
				6. Performing Organization Code		
			······································	8. Performing Organizet	Ion Report No.	
7. Author(s)	ree, J.G. Pigman, J.A. De	acon K.P. Acont		KTC-93-38	· · · · · · · · · · · · · · · · · · ·	
	iee, J.G. Fiyman, J.A. Di	acon, n.n. Ayeni		28		
9. Performing Or	rganization Name and Address			10. Work Unit No. (TRAIS)		
Kentucky	Transportation Center					
•	f Engineering			11. Contract or Grant No.		
•	of Kentucky			KYHPR-93-18	51	
	, KY 40506-0043			13. Type of Report and	Dariad Covered	
				Interim Repor		
• •	Agency Name and Address					
•	Transportation Cabinet					
State Office Building			14. Sponsoring Agency Code			
Frankfort	, KY 40622					
16. Abstract The Extended year. Trucks hau	Weight Coal Haul Road System, creating coal on this system are authorized	ated by Kentucky's Legislature d to exceed nonnal weight limi	in 1986, consists of all roads ts through the payment of an	annual decal fee. A researc	h study was initiated in	
thus far and prese Analyses in thi officials, coal com Preliminary co competitiveness a Overall accident ra weight system; 3) sales is allocated approximately \$9 are subsidizing the The following p in the extended we	alyze the impacts of the extended-wei onts preliminary findings, recommenda is report are based on: historical data pany representatives, and coal truckin nclusions include: 1) The extended-wei nd economic viability of Kentucky's co ates are no higher on the extended-wei The coal-decal fee structure results in to the counties, although less than ter million annually to pavement overlay of e movement of Kentucky coal by undo preliminary recommendations were de- sight system; 2) The selection of routes	tions, and a discussion of futu on coal production and transp g representatives; newspaper eight system has apparently bu al industry and to eliminate the eight system than on other con a net annual loss in Road Fur percent of the extended weig costs and increase other highw erwriting the increased costs o veloped: 1) Route geometry ar	re work. ortation; data from coal decal articles; vehicle classification een somewhat successful in a perceived need for coal hau parable routes, but the fatal a d revenue of approximately \$ ht system is county-maintaine ay costs to an (as yet) undet f maintaining and improving t ad cross section should be cor	applications; interviews of leg data; a pavement cost analy ccomplishing its primary obje lers to violate the law in order accident rate is significantly hi 2 million; 4) Forty percent of t ad; 5) The heavier weights of primed extent; 6) Road user he infrastructure. Isidered when deciding which	islators, transportation sis; and accident data. ctives: to enhance the r to be competitive; 2) gher on the extended- the revenue from decal i coal-decal trucks add rs throughout the state	
	s should be considered to more accur	roblem for heavy trucks approa	aching signalized intersections	; 4) A revision to the allocation	untermeasures should	
Road Fund dollars 17. Key Words	implemented to alleviate the braking p s should be considered to more accur	roblem for heavy trucks approa ately reflect the composition of	aching signalized intersections	; 4) A revision to the allocation	untermeasures should	
Road Fund dollars 17. Key Words Coal	implemented to alleviate the braking p s should be considered to more accur Pavement Reve	roblem for heavy trucks approa ately reflect the composition of	aching signalized intersections i the extended-weight system 18. Distribution Statemen	; 4) A revision to the allocation	untermeasures should	
Road Fund dollars 17. Key Words Coal Trucks	implemented to alleviate the braking p s should be considered to more accur	roblem for heavy trucks approa ately reflect the composition of	aching signalized intersections i the extended-weight system 18. Distribution Statemen Unlimited, with	; 4) A revision to the allocation and approval of the	untermeasures should	
Road Fund dollars 17. Key Words Coal Trucks Weight	implemented to alleviate the braking p s should be considered to more accur Pavement Reve Safety	roblem for heavy trucks approa ately reflect the composition of	aching signalized intersections i the extended-weight system 18. Distribution Statemen Unlimited, with	; 4) A revision to the allocation	untermeasures should	
Road Fund dollars 17. Key Words Coal Trucks Weight Highways	implemented to alleviate the braking p s should be considered to more accur Pavement Reve Safety Economics	roblem for heavy trucks approa ately reflect the composition of	aching signalized intersections the extended-weight system 18. Distribution Statemen Unlimited, with Kentucky Trans	; 4) A revision to the allocation and approval of the	untermeasures should	
Road Fund dollars 17. Key Words Coal Trucks Weight Highways 19. Security Class	implemented to alleviate the braking p s should be considered to more accur Pavement Reve Safety Economics Cost	roblem for heavy trucks approa ately reflect the composition of NUC	aching signalized intersections the extended-weight system 18. Distribution Statemen Unlimited, with Kentucky Trans nis page)	; 4) A revision to the allocation approval of the sportation Cabinet.	untermeasures should on of Energy Recovery	

(89)

,

.

ninnan maningin N			METRIC	CONVE	RSION FA	CTORS			
APPROXIMATE CONVERSIONS TO METRIC UNITS			APPROXIMATE CONVERSIONS FROM METRIC UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find S	Symbol
LENGTH			LENGTH						
in.	inches	25.40000	millimetres	mm	m m	millimetres	0.03937	inches	in.
ft	feet	0.30480	metres	m	m	metres	3.28084	feet	ft
yd	yards	0.91440	metres	m	m	metres	1.09361	yard s	yd
mi 🚬	miles	1.60934	kilometres	km	km	kilometres	0.62137	miles	nıi
		AREA					AREA		
in. ²	square inches	645.16000	millimetres squared	mm²	mm ²	millimetres squared	0.00155	square inches	in.²
ft²	square feet	0.09290	metres squared	m²	m²	metres squared	10.76392	square feet	ft²
yd²	square yards	0.83613	metres squared	m²	m²	metres squared	1.19599	square yards	yď
ac	асгев	0.40469	hectares	ha	ha	hectares	2.47103	acres	ac
mi²	square miles	2.58999	kilometres squared	km²	km²	kilometres squared	0.38610	square miles	mi"
		FORCE					FORCE		
kip	pound-force	4.44822	kilonewton	kN	kN	kilonewton	0.22481	pound-force	kip
		VOLUME	x		VOLUME				
fl oz	fluid ounces	29.57353	millilitres	ml	ml	millilitres	0.03381	fluid ounces	fl oz
gal.	gallons	3.78541	litres	1	1	lltres	0.26417	gallons	gal.
ft3	cubic feet	0.02832	metres cubed	m,	m,	metres cubed	35.31448	cubic feet	ft*
yd³	cubic yards	0.76455	metres cubed	m3	m,	metres cubed	1.30795	cubic yards	yď
		PRESSURE					PRESSURE		
psi	pound-force per square inch	6.89476	kilopascal	kPa	kPa	kilopascal	0.14504	pound-force per square inch	psi
		MASS					MASS		
oz	ounces	28 .34952	grams	g		grams	0.03527	ounces	oz
Б	pounds	0.45359	kilograms	kg	kg	kilograms	2.20462	pounds	IЬ
Т	short tons (2000 lb)	0.90718	megagrams	Mg	Mg	megagrams	1.10231	short tons (2000 lb)	T
	TE	MPERATURE (exac	:t)		TEMPERATURE (exact)				
°F	Fabrenheit temperature	(°F-32)/1.8	Celsius temperature	ĉ	°C	Celsius temperature	(1.8C) + 32	Fahrenheit temperature	°F

`.

TABLE OF CONTENTS

Executive Summary iii
Acknowledgements xi
Introduction
The Coal Industry in Kentucky 5
History of Coal Transportation
Economics of Coal Transportation 14
Perceptions
The Population of Coal Trucks
Revenue and Cost Analysis
Accident Analysis
Pavement Condition Analysis 48
Conclusions
Preliminary Recommendations
Future Work
References
Appendix A: Issues Surrounding the Trucking of Kentucky Coal in the 1990's
Appendix B: Sampling of Newspaper Articles Related to Extended Weight Coal Haul Road System
Appendix C: Details of Revenue and Cost Analysis for Extended Weight Coal Haul Road System

EXECUTIVE SUMMARY

INTRODUCTION

The Extended-Weight Coal Haul Road System was created (effective April 1, 1987) by the Kentucky State Legislature during the 1986 General Assembly. This system was defined to include those highways which had carried over 50,000 tons of coal during the previous year. Trucks hauling coal on the extended-weight system were authorized to exceed normal weight limits through the payment of an annual decal fee. The weight limits and the corresponding decal fees were established as follows:

<u>Vehicle Type</u>	<u>Weight Limit</u>	<u>Decal Fee</u>
Single-unit, 3-axle	90,000 lbs	\$160
Single-unit, 4-axle	100,000 lbs	\$260
Tractor-semitrailer,		
5 or more axles	120,000 lbs	\$360

A research study was initiated in July of 1992 to analyze the impacts of the Extended-Weight Coal Haul Road System. This interim report, prepared after one year of a three-year study, describes the analyses performed thus far, presents preliminary findings and recommendations, and briefly outlines the work to be accomplished during the remainder of the study.

STUDY METHODOLOGY

Information forming the basis for this interim report was extracted from a wide variety of sources. Historical data regarding the production and transportation of coal were summarized from the annual report published by the Kentucky Department of Mines and Minerals and from the Kentucky Transportation Cabinet's annual report entitled "Kentucky's Official Coal Haul Highway System." A listing of all extended-weight decals issued for license year 1992-93 was obtained, entered into a database, and analyzed. Interviews were conducted of a small sample of legislators, transportation officials, coal company representatives, and coal trucking representatives. Computerized files of newspapers were searched for those articles related to coal transportation and the extended-weight system. Vehicle classification data from coal-haul roads were analyzed to determine if changes were occurring in the truck fleet. A pavement cost analysis was extracted from an earlier study to estimate additional pavement overlay costs resulting from the extended-weight trucks. Accident data for the extended-weight system were analyzed and compared to data for other comparable roads. Pavement rideability data for the extendedweight roads (and for all state-maintained roads) were analyzed for selected years before and after the extended-weight legislation.

STUDY FINDINGS

The Coal Industry in Kentucky

Kentucky has long been a national leader in coal production and is currently second to Wyoming in the number of tons produced. Most of the coal mined in Kentucky (approximately three-fourths) comes from the eastern coal field. The primary customers of Kentucky coal are electric utilities, which purchase over threefourths of the coal produced. ÷

Kentucky's coal production has increased fairly steadily for over 100 years and has increased by approximately 40% in the last 20 years. Total coal production in Kentucky continues to increase each year, despite sharp declines (since 1985) in the number of licensed mines and the number of persons employed in coal mining. It is reasonable to expect a continued gradual increase or a leveling out of coal production. There is no reason to expect any rapid escalation of coal production in the foreseeable future.

The coal industry is a significant part of the state's economy and a major contributor to the state's budget. Kentucky collects approximately \$190 million each year in coal severance tax. The coal industry, as a whole, generates about \$550 million in annual revenue to the state's General Fund, thus accounting for approximately 13% of the total General Fund revenue.

Legislative Objectives

In establishing the extended-weight system, the primary legislative objective was apparently to reduce the cost of coal transportation, thereby maintaining the competitiveness of Kentucky coal and enhancing the economic viability of one of the state's leading industries. Another primary objective was to eliminate the perceived need for coal haulers to violate the law in order to be competitive. Although estimates of the magnitude of actual cost reductions have not been made, the willingness of coal transporters to purchase decals is evidence that cost reductions, of a magnitude at least equivalent to the decal fees, have been realized by the industry.

A secondary legislative objective may have been to develop a unique coal-haul road system which, by virtue of limited mileage and additional dedicated revenue, could be adequately maintained and improved so as to safely and efficiently accommodate both coal trucks and the other vehicles with which they must share the road. Added monies are being allocated for maintaining the extended-weight system, and ride quality is somewhat better than that of other "comparable" pavements. Certain elements of the system (such as bridges) are being upgraded as funding allows. Nevertheless, a conscious, systematic effort to improve the extended-weight system to a higher-than-normal standard and to maintain it that way has apparently not been made. Given the relatively high mileage of the system, the coal-decal revenues are insufficient to effect noticeable improvements.

The extended-weight legislation did not establish a coherent, interconnected system so much as a collection of roads with a common characteristic (more than

50,000 tons of coal hauled). As a result, there is no guarantee of coherence, with proper interconnections between routes, adequate access to origins/destinations, channelization onto preferred routes, and adequate bridges and roadway geometrics. For example, there is significant concern among some coal haulers, legislators, and state transportation officials over the lack of coordination between the extendedweight system and posted weight limits on bridges, sometimes resulting in extendedweight roads which cannot be traveled at extended weights without violating posted weight limits on bridges.

Trends in Coal Transportation

For over 50 years, highways have continued to garner an ever increasing share of the ton-miles of coal transported. Since the 1970's, highways have been the dominant mode for coal transportation in Kentucky. Tonnage transported by truck has more than doubled in the last twenty years, while tonnage transported by rail has declined steadily. Although adjustments will continue to be made in response to factors as potentially diverse as new markets and changing environmental requirements, the highway share of coal transportation can be expected to increase gradually or remain steady in the foreseeable future.

The total mileage of highways used to haul coal in Kentucky has declined since the mid-1980s, as has the mileage eligible for the extended-weight system. This has occurred while the total ton-miles for coal transported by highway has increased.

The extended-weight system is comprised primarily of state-maintained routes. Less than one-tenth of the system is county-maintained.

The Railroad Industry

Rail and highway are competitive alternatives for certain segments of the coal-transportation market. Because the extended-weight system has reduced the real costs of highway transport, some diversion of coal movement from rail to highway has probably occurred. Because available statistics are fairly gross and because the shift from rail to highway has been underway for many years, the diversion is difficult or impossible to accurately quantify. However, the annual tonnage of coal hauled by rail in 1988-90 was about 15% lower than in the pre-legislation years of 1984-87.

Economics of Coal Transportation

Transportation costs make up a sizeable portion of the total price which customers pay for coal, sometimes amounting to more than one-third of the total price. For coal transported by truck in Kentucky, the transportation costs generally represent 7 to 15 percent of the total price. Typical haul rates for coal range from 7 to 12 cents per ton-mile and are influenced greatly by the size of truck used.

Perceptions

Legislators, coal company representatives, trucking company representatives, and County Judge/Executives believe that the extended-weight legislation has made legal that which was already practiced before the legislation. These groups (with individual exceptions) are generally satisfied with the extended-weight system and feel that it has been successful in accomplishing its objectives. Transportation agency representatives feel that the conditions of pavements have improved in the eastern coal field but have deteriorated in the west.

Newspaper accounts have reflected the general perception of coal trucks as a "necessary evil". Significant concern was expressed over the impacts of coal trucks on safety and on the quality of life in communities affected by coal truck traffic.

The Coal Truck Fleet

The extent to which the coal-decal system has fundamentally transformed the coal-truck fleet rather than simply legalizing the operation of preexisting large trucks that had been operating illegally has not been quantified. Nevertheless, there has been a dramatic increase in the role of six-axle trucks in coal transportation since 1988, and larger trucks now dominate coal movement over Kentucky's highways. Approximately two-thirds of the trucks for which extended-weight decals are purchased register in the 120,000-pound category. It appears likely that fewer persons are gainfully employed in coal trucking now than a decade ago.

From 1987 to 1992, the number of extended-weight decals purchased declined by approximately 15 percent. Since the quantity of coal being transported by truck has not declined, the reduction in the number of decals must reflect either the shift toward larger (and fewer) trucks or a decision by some trucking companies to stop buying decals.

Coal haulers in Kentucky are predominantly small-scale operators. Nearly one-fourth of all decals are purchased by single-truck operators. Over half are purchased by operators that have five or fewer trucks.

The purchasing of extended-weight decals is heavily concentrated in eastern Kentucky. Although decals were purchased in 52 of Kentucky's 120 counties, five counties (all in eastern Kentucky) accounted for over one-half of the income from decal fees.

Road User Revenue

Because heavier payloads mean fewer truck registrations, the coal-decal fee structure results in a net loss of revenue to the Road Fund, estimated at almost \$2 million annually.

Forty percent of the revenue from decal sales is allocated to the counties for their upkeep of the county-road portion of the extended-weight system. Although relative expenditures on county-maintained and state-maintained portions of the extended-weight system are unknown, county-maintained roads comprise only about eight percent of the extended-weight system.

Highway Costs

The heavier weights of coal-decal trucks add approximately \$9 million annually to pavement overlay costs.

Larger and heavier trucks increase, to an (as yet) undetermined extent, other highway costs including:

- construction and reconstruction of pavements, shoulders, bridges, and culverts;
- rehabilitation of pavements, shoulders, and bridges;
- routine maintenance of pavements and shoulders; and
- others.

Road users throughout the state are subsidizing the extended-weight system (and thus the movement of Kentucky coal) by underwriting the increased costs of maintaining and improving the infrastructure.

Highway Safety

The accident pattern of heavy trucks is distinctly different from that of passenger cars. Heavy-truck accidents are generally more severe and, in multiple vehicle crashes involving both a heavy truck and a car, the car is more likely to sustain greater damage.

For rural two-lane roads (which make up approximately three-fourths of the extended-weight system), the overall accident rate is no higher on the extended-weight roads than on non-extended-weight roads. However, the overall fatality rate is significantly higher on extended-weight roads than on non-extended-weight roads.

For truck accidents on rural two-lane roads, the extended-weight system demonstrates the following characteristics (compared to non-extended-weight roads in the same counties): a significantly higher percentage of fatal accidents; a significantly higher percentage of head-on accidents; a significantly higher percentage of opposite-direction sideswipe accidents; and a higher percentage of accidents involving slippery surface, unsafe speed, oversize load, water pooling, alcohol, or defective brakes.

The frequency of accidents involving coal trucks is directly related to the extent of their travel. Reducing the vehicle miles of coal-truck travel is one certain means for proportionately reducing their accident frequency. To the extent that the extended-weight system has reduced the number of coal trucks on the road, then it has reduced the frequency of coal-truck accidents (unless the heavier trucks have a greater propensity for accident involvement).

The match between truck size and weight on the one hand and road cross section, geometry, and traffic control on the other certainly influences highway safety. The extended-weight legislation recognizes these interrelationships and provides limited mechanisms for the exclusion of highway segments from the extended-weight system on the basis of increased safety risk. The effectiveness of any procedures that may be in place to assure that potentially hazardous highway segments are excluded from the extended-weight system has not been evaluated. Difficulty is experienced in safely stopping heavily laden coal trucks approaching signalized intersections (particularly on downgrade approaches and in more rural areas with faster approach speeds). Although wide variance in the braking capabilities of passenger cars and heavy trucks exacerbates the signal-timing task, the heavy-truck braking problem at these locations can be ameliorated through a combination of such traffic control strategies as all-red intervals, advanced signal systems, and restrictive speed zoning.

Pavement Condition

Between 1985 and 1990, the average rideability index (RI) of roads across the state rose by about three percent, while the average RI of extended-weight roads rose by twice that amount. The average RI for extended-weight roads in 1990 was slightly higher than the average for all roads.

For extended-weight roads, there was substantial difference between the eastern and western coal fields. Average rideability is much lower in the east than in the west. However, eastern roads showed a marked improvement from 1985 to 1990, while western roads were virtually unchanged.

CONCLUSIONS

The extended-weight legislation has, to an extent, been successful in accomplishing its primary objectives: to enhance the competitiveness and economic viability of the Kentucky coal industry and to eliminate the perceived need for coal haulers to violate the law in order to be competitive. Another possible success of the legislation is reflected in the reports (supported by rideability data) of improved road conditions in eastern Kentucky. The legislation may have focused attention (and expenditures) on the maintenance of coal-haul roads. In contrast, western Kentucky roads are reported to be experiencing increased pavement damage due to the heavy loads, but rideability data do not support that perception.

The extended-weight system does not exhibit a higher accident rate than other, comparable roads. However, accidents on the extended-weight system are more likely to cause fatalities. Heavily laden coal trucks experience difficulty stopping at signalized intersections, particularly where approaches are on downgrades and/or approach speeds are high.

The extended-weight system has negative implications on direct state revenue and highway expenditures. The coal-decal fee structure results in a net loss of revenue to the Road Fund estimated at almost \$2 million annually, and the extendedweight trucks add approximately \$9 million annually to pavement overlay costs. Other highway costs are increased as well, but the extent has yet to be determined. Thus, the extended-weight system represents a subsidy of the movement of Kentucky coal by the road users throughout the state.

PRELIMINARY RECOMMENDATIONS

Although specific recommendations will be developed during the remainder of this study, the following general recommendations can be offered based on preliminary findings:

- 1. The methodology for defining which routes are included in the extendedweight system should be revisited to include some consideration for route geometry, cross section, bridge weight limits, and other pertinent route characteristics.
- 2. The definition of the extended-weight system should include provisions to add sections of road to the system to prevent trucks from having to use non-extended-weight routes for portions of their trips.
- 3. Countermeasures for the heavy truck braking problem at signalized intersections should be evaluated and implemented expeditiously.
- 4. Consideration should be given to revising the allocation of dollars from the Energy Recovery Road Fund to more accurately reflect the composition of the extended-weight system mileage.

FUTURE WORK

The remainder of this study will focus on the following areas:

- 1. The magnitude of cost savings realized by the Kentucky coal industry as a result of the extended-weight legislation, and the effect of those cost savings on the competitiveness and economic viability of the industry.
- 2. Ride quality and pavement condition data for coal-haul roads in eastern and western Kentucky.
- 3. Accident rates and characteristics specifically for coal trucks, as well as potential causes for the higher fatal accident rate on the extended-weight system.
- 4. The effectiveness of existing procedures for excluding segments of roadway from the extended-weight system on the basis of increased safety risk.
- 5. The difficulty experienced by heavy coal trucks in stopping for signalized intersections.
- 6. Updating and expansion of the analysis of road user revenue and

highway costs.

್ಷ ಕನ್ನಡದಿಂದ ಸಂಕರ್ಷ

7. Other impacts of the extended-weight system that have not yet been assessed.

8. Development of recommendations for mitigating negative impacts of the extended-weight system.

ACKNOWLEDGEMENTS

.

1.141.41.14

. . . .

This report was prepared in consultation with and under the guidance of the following members of the Study Advisory Committee:

Charles Briggs	Chairman KYDOH, Division of Maintenance				
John Bowlin	KYDOH, District 12 Eng. Branch Manager - Operations				
Jim Burchett	KYDOH, Division of Specialized Programs, Pavement				
	Management Branch				
Paul Hibbs	KYDOH, District 2 Eng. Branch Manager - Operations				
Sandra Pullen	KY Transportation Cabinet, Office of the Secretary				
Rolands Rizenbergs	KYDOH, Division of Specialized Programs, Pavement				
	Management Branch				
Gary Sharpe	KYDOH, Division of Design				
David Vance	KYDOH, District 2 Maintenance Engineer				
Leon Walden	formerly of Federal Highway Administration				
Jim Wood	KYDOH, Division of Maintenance, Bridge Section				

Others whose contributions to this study are also gratefully acknowledged include the following:

Dr. Curtis E. Harvey	Professor of Economics, University of Kentucky
Marjorie S. Irby	Research Investigator, Kentucky Transportation Center
Herbert F. Southgate	Research Engineer (retired) Kentucky Transportation Center

And the second sec . . e

INTRODUCTION

BACKGROUND

In 1986, legislation was passed by the Kentucky General Assembly to create the Extended-Weight Coal Haul Road System. That legislation is Kentucky Revised Statute (KRS) 177.9771. It had an effective date of April 1, 1987, and it accomplished the following:

- 1. Established the Extended-Weight Coal Haul Road System, which "shall consist of public highways over which quantities of coal in excess of 50,000 tons were transported by motor vehicle during the period from January 1, 1985, through December 31, 1985 and shall be updated annually thereafter" (quoted from KRS 177.9771).
- 2. Established that any vehicle having a registered gross weight of 80,000 pounds, when transporting coal on a highway included in the extended-weight system, may, by entering into a cooperative agreement or paying the corresponding decal fee, operate at the following weights.

Vehicle Type	<u>Weight Limit</u>	<u>Decal Fee</u>
Single-unit, 3-axle	90,000 lbs	\$160
Single-unit, 4-axle	100,000 lbs	\$260
Tractor-semitrailer,		
5 or more axles	120,000 lbs	\$360

A tolerance of five percent is specified for each of the weight limits. The decal fees are paid annually.

In addition to the three categories of trucks presented above, there is an incremental category which allows any motor carrier transporting coal to carry in excess of 80,000 pounds by paying a decal fee of \$10 for every 1,000 pounds above 80,000. However, trucks registering in this category are limited to 12,000 pounds for the steering axle and 20,000 pounds each for other axles.

In order to purchase a decal and operate in any of the above categories, a truck must be registered in the 80,000-pound category at the standard registration fee of \$1,260.

3. Established a special account within the road fund called the Energy Recovery Road Fund. All revenue generated from the decal fees is credited to that special account.

Forty percent of the Energy Recovery Road funds are distributed to the counties for construction, maintenance, and repair of the county-maintained portion of the extended-weight system. This distribution is based on the miles of county-maintained extended-weight roads in each county and the tons of coal transported over county-maintained extended-weight roads in each county. The remaining sixty percent of the Energy Recovery Road funds are to be used by the Department of Highways for construction, maintenance, and repair of the state-maintained portion of the extended-weight system.

The total tons of coal transported over any public highway is determined from the official coal road system transportation report required by KRS 177.977. This report is published annually by the Division of Planning of the Department of Highways. Based upon this report, the Secretary of Transportation is required to certify, on or before November 1 of each year, those highways that are to be included in the extended-weight system.

The legislation allows, under certain circumstances, for roads or road segments that meet the criteria for the extended-weight system to be excluded from the system or posted at lower weight limits. Specifically, a fiscal court or governing body of a city (first through fourth class) or urban county government may recommend to the Secretary of Transportation that a certain road or road segment be excluded from the extended-weight system due to "inherent and definite hazards or special conditions." In such cases, the Secretary of Transportation must meet with the court or governing body and consider their concerns before adding to or deleting from the extended-In addition, the Department of Highways (or County weight system. Judge/Executives for county highways) may prescribe lower weight limits or speed limits when it determines that a highway may be damaged or destroyed by trucks exceeding those limits. The Department may reduce weight limits for bridges when it determines that those bridges would be damaged or destroyed to the point of catastrophic failure by trucks exceeding those limits. The Department (or County Judge/Executive) may regulate or prohibit trucking during certain periods of certain days if, due to heavy traffic, this is necessary to provide for the public safety and convenience.

Early in 1992, as part of a study entitled "Review of Highway Cost Allocation Methodologies" (1), the Kentucky Transportation Center was asked to conduct a limited study of the cost and revenue implications of the extended-weight system. That study focused on the revenue implications (resulting from decal fees and reduced number of trucks) as well as the pavement overlay costs. That study provided valuable insight into the impacts of the extended-weight system, but was very limited in scope.

The work plan for the current study was approved in October of 1993.

OBJECTIVES

The stated objectives of this study are:

1. To identify and qualitatively describe the impacts of the Extended-

Weight Coal Haul Road System.

2. To assess and quantify, where possible, the impacts associated with the extended-weight system, with emphasis on economic benefits/costs and environmental impacts.

 $(i_{ij}) \in \mathcal{F}^{(i_{ij})} \cap \mathcal{F}^{(i_{ij})} \cap$

- 3. To determine the legislative expectations in establishing the extendedweight system and compare actual impacts to expectations.
- 4. To develop recommendations for mitigating negative impacts of the extended-weight system.

SCOPE

This interim report has been prepared approximately one year into a threeyear study. The intent during the first year of the study has been to take a "broadbrush" look at the impacts of the extended-weight legislation. The focus has been on identifying and describing the impacts, rather than on detailed analysis. In some areas, where data were readily available, quantitative analyses have been performed. In other areas, the impacts have only been described qualitatively. The remainder of the study will focus on more detailed analyses of those impacts that have been identified.

SIGNIFICANCE

The haulage of coal over Kentucky's public highways has, for many years, generated substantial controversy and public debate. Troubled by government's apparent inability to enforce trucking regulations, many of Kentucky's ordinary citizens consider coal trucks to be giant behemoths which destroy their roadways, threaten their safety, and disrupt their communities. Others, believing that efficient coal transportation is critical to maintaining the competitiveness and economic viability of Kentucky's coal, press for larger legal payloads. The result has been a classic clash between differing perspectives.

The extended-weight system represents a significant, public sector attempt to support one of the state's largest industries. The potential economic and social impacts of enhancing the competitiveness of Kentucky coal are considerable. At the same time, the potential cost to Kentucky's citizens, primarily due to increased pavement damage, is certainly substantial. To date, little has been known about the relative magnitudes of these impacts.

The current study was undertaken primarily to identify and objectively evaluate the major impacts of the extended-weight legislation. Its audience is expected to include 1) those wishing to know more about Kentucky's coal transportation system and the extended-weight legislation, 2) those wishing to evaluate the impacts and the effectiveness of the legislation, 3) those wishing to consider modifications to the legislation, and 4) those wishing to better manage the extended-weight system. The ultimate measure of the study's success will be the effectiveness of actions it may support or precipitate to mitigate adverse effects of coal transportation in Kentucky and to enhance the state's coal industry.

و میں اور ا

THE COAL INDUSTRY IN KENTUCKY

Most of the information presented in this section was obtained from the "Kentucky Coal Facts--1991-92 Pocket Guide" prepared by the Governor's Office for-Coal and Energy Policy and by the Kentucky Coal Association (2). It is suggested that the reader refer to this guide for additional information about the coal industry in Kentucky.

Kentucky has been a leading producer of U.S. coal for the last 45 years and is now second only to Wyoming in the number of tons mined. According to figures developed by the U.S. Department of Energy and the Energy Information Administration, Kentucky produced 173.3 million tons of coal in 1990 from its two coal fields. (The eastern field produced three-fourths of this total.) This is a substantial increase from the 152.3 million tons produced in 1985.

In spite of declines in the number of licensed coal mines in Kentucky (from over 2,500 in 1985 to less than 1,800 in 1990) and the number of persons directly employed in coal mining (36,814 in 1985 to 30,498 in 1990), productivity gains have resulted in an increase in tons mined. The average number of tons/miner/hour in Kentucky has increased from 2.23 in 1985 to 2.83 in 1990.

Coal mining in Kentucky paid over \$1.1 billion in direct wages in 1990. The gross value of coal mined and processed in fiscal year 1990-91 was \$4.34 billion, at an average value of \$25.19 per ton. The severance tax paid in that fiscal year was over \$190 million, of which nearly \$23 million was returned to coal-producing and coal-impact counties and \$167 million went to Kentucky's General Fund. The total contribution of the coal industry to the state's General Fund in that year was estimated to be \$550 million (\$323 million from the coal industry and its employees; \$227 million from other jobs induced by the coal industry). This equates to about 13% of the total General Fund revenue.

Most of Kentucky's coal (over three-fourths) is sold to electric utilities. Another 10 percent is used for industrial use, and nearly 10 percent is exported to other countries.

HISTORY OF COAL TRANSPORTATION

HIGHWAY VERSUS OTHER MODES

The Kentucky Department of Mines and Minerals publishes an annual report (3) which gives information on coal production by type of mine and by mode of transportation from the mine. These reports are available dating back to the 1890's. A breakdown of truck versus rail tonnage has been reported every year since 1930, and a breakdown of underground versus surface mines has been reported since 1948. It is interesting to note that water transportation was not listed as a separate mode until 1987. In the 1982-1986 reports, truck and water tonnage were combined. In the 1964-1969 reports, "river mine production is included with rail mine production." The reports do not specify how water transportation was accounted for between 1970 and 1981.

Information from the Mines and Minerals Annual Report was entered into a spreadsheet, allowing graphs to be generated to show the trends in coal production and transportation. Those graphs are presented in Figures 1-3.

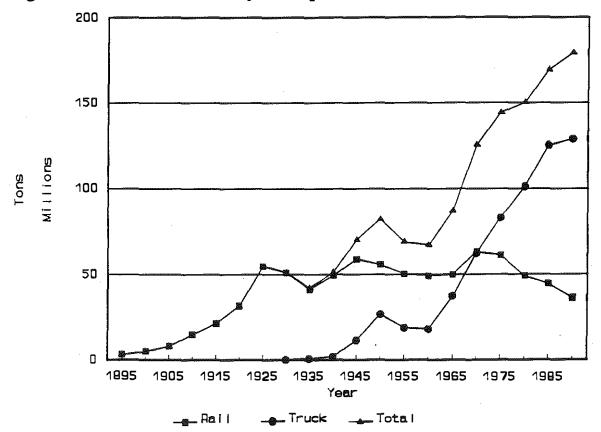


Figure 1 shows annual coal production in Kentucky dating back to 1895. Beginning in 1930, the production is broken down by transportation mode. Only rail and truck transportation are shown, since water transportation was not listed as a separate mode until 1987. It can be seen that rail was the dominant mode for coal transportation until the 1960s, when truck transportation increased dramatically. Rail and truck tonnages were approximately equal in 1970, but truck tonnages have continued to increase since then, while rail tonnages have dropped off. In 1990, approximately 70% of coal mined in Kentucky was carried from the mine by truck.

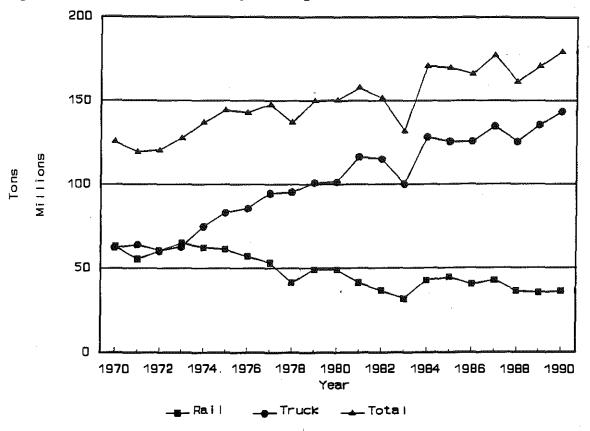
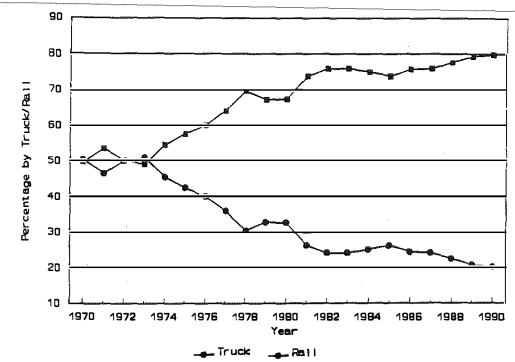



Figure 2. Coal Production by Transportation Mode (1970-1990)

Figure 2 also shows coal production by transportation mode, concentrating on 1970 through 1990. For 1987-1990, the tonnage transported by water has been included with the truck tonnage, for consistency with the previous five years. It can be seen from this graph that the tonnage transported by rail has declined gradually and steadily, while the tonnage transported by truck has increased. Year-to-year fluctuations in total coal production appear to affect truck tonnage much more than rail tonnage. It appears that rail tonnages remain fairly constant from year to year, as truck tonnages fluctuate with the total production.

Figure 2 allows an examination of the impacts of the extended-weight legislation on the modal split of coal transportation. The legislation was passed in 1986 and went into effect in April of 1987, so it is worthwhile to look for any sudden shifts or changes in trends occurring around 1987. For the years 1984-87, coal tonnages hauled by rail remained relatively constant, with an average of 42,537,000 tons per year. For 1988-90, the rail tonnage again was fairly constant, but at a lower level of 35,820,000 tons per year. This represents a 16% drop in tonnage of coal hauled by rail.

To assist in further evaluating the modal split, Figure 3 was prepared, which

107

Figure 3. Percentage of Coal Hauled by Truck and by Rail (1970-1990)

shows the percentages of coal hauled by truck and by rail for 1970 through 1990. Again, for consistency, water tonnages have been included with truck tonnages. For 1982-87, the percent hauled by each mode was fairly constant. Since 1987, the percentage by truck has been increasing each year. This could reflect an impact of the extended-weight legislation, or it could simply reflect the continuation of the longterm trend.

Figure 4 shows coal production in Kentucky by type of mine (underground or surface), dating back to 1950. It can be seen that, except for a period in the 1970's (1971 through 1978), the majority of coal mined in Kentucky has been from underground mines.

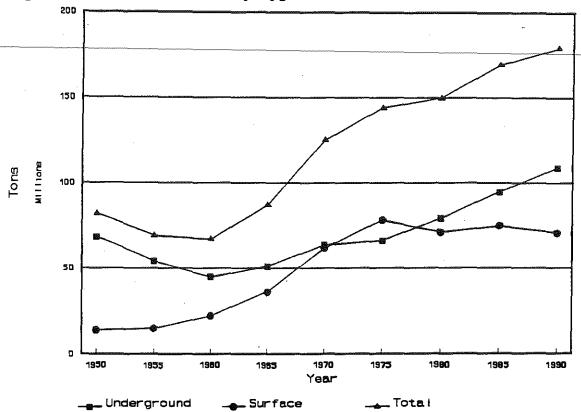


Figure 4. Coal Production by Type of Mine (1950-1990)

THE COAL HAUL ROAD SYSTEM

The Division of Planning of the Kentucky Department of Highways has been publishing an annual report entitled "Kentucky's Official Coal Haul Highway System" (4) since 1979. That report is published to comply with the requirements of the Local Government Economic Assistance Act (KRS 42.455) and the Extended-Weight Coal Haul Road System Law (KRS 179.9771). Information in the report is collected from coal shippers, who submit details of their truck shipments to the Division of Planning.

Counties where coal is reported shipped from mines during the calendar year are designated as <u>producing</u> counties, while counties where coal was transported by truck but none was mined are designated as <u>impact</u> counties.

In the 1980 Coal Haul Highway System Report (1979 data), 44 counties were listed as producing counties, while 41 were listed as impact counties. The remaining 35 counties in Kentucky were neither producing nor impact counties.

In the 1992 Coal Haul Highway System Report (1991 data), the number of producing counties had shrunk to 39, while the number of impact counties had grown to 55. Only 26 counties were neither producing nor impact counties.

Table 1 shows the number of producing and impact counties by year from 1979 to 1991. As can be seen, the number of producing counties peaked at 47 in 1984, and the number of impact counties peaked at 56 in 1990. The total of producing and

impact counties peaked at 96 in 1986 through 1988.

Additional information the coal-haul highway on system is shown in Figures 5-Figure 5 shows how the 8. number of miles of coal-haul highways has varied for the period from 1979 to 1991. (Any route on which coal was transported is considered a coal-haul highway.) It can be seen that the highway mileage used for coal hauling increased through the early 80's, peaked in the mid-80's, and has declined since then to approximately equal the 1979 value (5,644 miles in 1979, 5,732 in 1991). System mileage in producing counties has declined by about 500 miles (as the number of producing counties has while declined) system

Table 1.

• Number of Producing and Impact Counties by Year (1979-1991)

YEAR	PRODUCING	IMPACT	OTHER
91	39	55	26
90	38	56	26
89	39	54	27
88	44	52	24
87	44	52	24
86	44	52	24
85	45	47	28
84	47	45	28
83	43	48	29
82	43	49	28
81	45	44	31
80	43	36	41
79	44	41	35

mileage in impact counties has increased by approximately 600 miles (corresponding to the increase in the number of impact counties).

Figure 6 shows the number of miles of highway eligible for the extended-weight system, based on tons of coal transported over the highway. The Division of Planning began including this information in the annual Coal Haul Highway System report in 1986 (1985 data). As indicated in Figure 6, the total miles eligible for the extendedweight system has declined by approximately 650 miles since 1985 (from 3,814 to 3,161). This is due to a decrease in the extended-weight system mileage in producing counties, for the mileage in impact counties is almost unchanged from its 1985 value. Referring again to Table 1, we see that, since 1985, the number of producing counties has decreased by 8 and the number of impact counties has increased by 10.

Figure 7 shows the ton-miles of coal transported within the state for producing counties, impact counties, and all counties. It can be seen that the majority (approximately 90%) of the ton-miles in the state occur in the producing counties. Since 1979, the total ton-miles in the state has more than doubled, peaking in 1990 at 2.6 billion.

Figure 8 shows the number of tons of coal shipped by highway from mines in producing counties. Approximately 80% of the coal shipped comes from eastern counties. Since 1979, the tonnage shipped has nearly doubled, peaking in 1990 at 140 million tons.

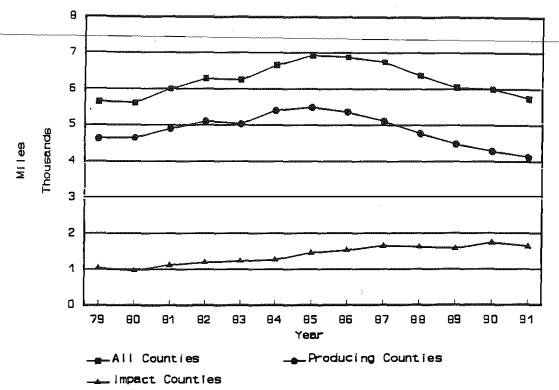
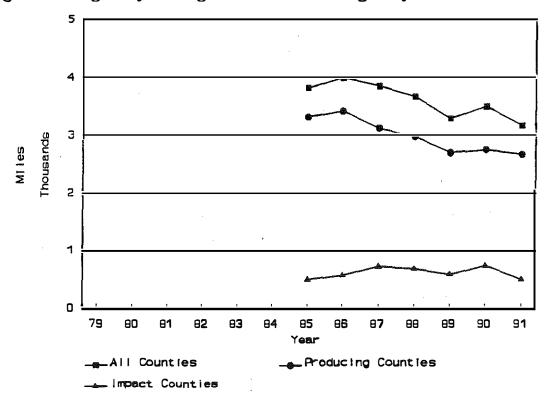



Figure 6. Highway Mileage of Extended-Weight System

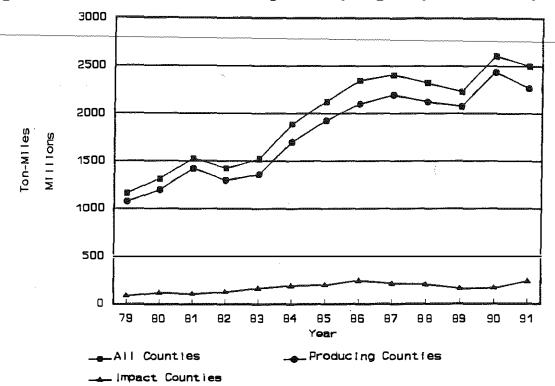
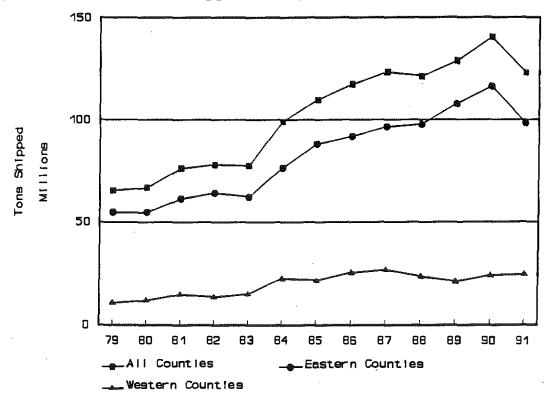
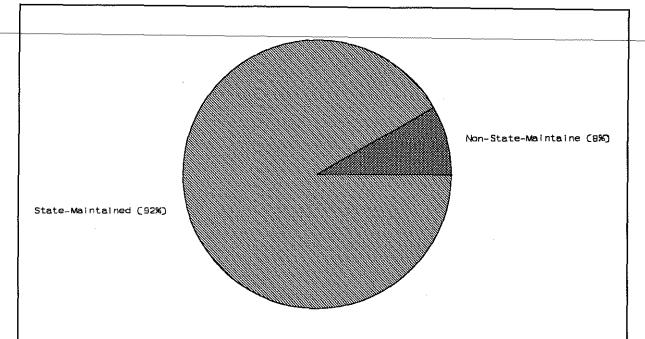




Figure 7. Ton-miles of Coal Transported by Highway in Kentucky

.

Figure 9. Breakdown of Extended-Weight System -- 1991 Data. State-maintained versus Non-state-maintained.

Figure 9 shows that 91.7% of the eligible mileage for the extended-weight system is state-maintained. This is a slight increase from 1985, when 90.4% was state-maintained.

SUMMARY

Since the 1970's, highways have been the dominant mode for coal transportation in Kentucky. Tonnage transported by truck has more than doubled in the last twenty years, while tonnage transported by rail has declined steadily.

Possible effects of the extended-weight legislation on the modal split for coal transportation are difficult to quantify, particularly in light of the long-term shift from rail to truck. However, the annual tonnage of coal hauled by rail in 1988-90 was about 15% lower than in the pre-legislation years of 1984-87.

The total mileage of highways used to haul coal in Kentucky has declined since the mid-1980s, as has the mileage eligible for the extended-weight system. This has occurred while the total ton-miles for coal transported by highway has more than doubled.

The extended-weight system is comprised primarily of state-maintained routes. Less than one-tenth of the system is county-maintained.

ECONOMICS OF COAL TRANSPORTATION

To provide an economic perspective on coal transportation in Kentucky, Dr. Curtis E. Harvey, of the University of Kentucky's College of Business and Economics, was asked to prepare a paper on the subject of coal transportation and, in particular, heavy coal trucks. Dr. Harvey, a Professor of Economics, was selected because of his extensive background in studies related to the coal industry and coal transportation in Kentucky. His paper, entitled "Issues Surrounding the Trucking of Kentucky Coal in the 1990's", is included as Appendix A of this report.

To gain further perspective on the costs of coal transportation, telephone interviews were conducted with representatives of three coal <u>mining</u> and/or trucking companies, one utility company, and two coal associations. Information from these different sources showed excellent agreement and is summarized here.

Kentucky coal is delivered to its customers by truck, rail or barge, or a combination of these modes. In some cases, where multiple modes are used involving several loading and off-loading processes, transportation costs can amount to more than a third of the total price customers pay. Approximately 80% of Kentucky's coal is shipped by truck for at least part of its journey.

Many variables determine the price of coal shipped by truck. The first factor is the price of coal at the mine (FOB mine). This reflects the current market price for coal and, therefore, varies accordingly. Other factors are the length of the haul and the weight allowed on the route, because this determines the size of the load carried and the overall truck mileage. If a paying load, or "haulback" (such as sand or gravel), is available for the truck's return trip, the price charged for hauling the coal may be less. Geography is also a factor. In eastern Kentucky, with its mountainous terrain, it is often impractical to use tractor-trailer trucks to haul from mines accessed by steep, winding roads. In such cases, smaller, single-unit trucks must be used.

Trucking companies usually operate under a contract with a mine or mines. Their transportation charges depend on what they can negotiate with the mining company and must be sufficient to cover their costs, which include labor, fuel, maintenance, truck capital, truck registration, other truck costs, workmen's compensation, etc. Truck owners also must pay for items like extended-weight decals (which cost from \$160 to \$360) and liability insurance premiums (ranging from \$2,000 to \$6,000 per year).

The following figures are current rates charged or paid by the persons interviewed. They are not reported as standard rates for the coal-haul industry, but are presented as reflective of rates currently encountered in Kentucky.

Coal hauled locally (less than 20 miles) by tractor-trailer is hauled for \$1.50 to \$2.50 per ton. For longer distances, such as from Pike County to the Ohio River, charges run \$2.00 higher, or approximately \$4.50 per ton. Drivers working for a trucking company which hauls with tractor-trailers on the extended-weight system were reported to receive 20% of the hauling charge.

In eastern Kentucky, haul rates were reported to range from 7 or 8 cents per ton-mile for larger trucks to 11 or 12 cents per ton-mile for smaller trucks. In western Kentucky, where most trucks are tractor-trailers, the cost is generally 7 to 8 cents per ton-mile. For a 20-mile haul, this would translate to an average of \$1.50 per ton for tractor-trailers and \$2.30 per ton for smaller trucks.

Depending on all the factors mentioned, the price for transporting coal by truck in Kentucky was reported to range from 7% to 15% of the total coal price paid by the consumer. This percentage is for the initial trucking only, which, in many cases, is just the first leg of a multi-modal journey.

Most of Kentucky's coal is sold to utility companies, both in Kentucky and out of state. In past years, coal prices ranged from the high \$20s to the low \$30s per ton. Now, however, it is selling in the lower \$20s and is regarded as a buyer's market. Utilities, which have traditionally bought coal under long-term contracts, are now relying more on spot markets. Utilities are also attempting to determine where they stand with regard to environmental regulations.

While coal prices fluctuate, transportation costs generally remain fairly constant. Most of those interviewed felt that transportation costs have been forced as low as they can go. Trucking companies and drivers stated that they are hauling for lower rates now than a few years ago, while the costs they incur continue to rise. They also stated that the amount paid for transporting coal determines the dollars available for driver wages, driver training, truck maintenance, new trucks, etc.. This could potentially affect safety, driver courtesy, truck noise, air pollution, and other important factors.

One industry representative suggested that utilities should consider more than just price when contracting for coal. It was suggested that if major buyers, such as utilities, contracted only with coal haulers, suppliers, and mines which maintain a reputation for not "cutting corners" with regard to safety and responsibility to the community, many problems associated with the coal-haul industry would solve themselves. However, this would require paying a higher price for the coal.

PERCEPTIONS

INTERVIEWS

In an attempt to identify issues, concerns, and perceptions related to the extended-weight system, a series of interviews was conducted. Four categories of individuals were targeted for the interviews. The four categories were:

- 1. Legislators--to determine the intent of the original legislation and to assess whether the intent had been accomplished. Six Legislators were interviewed.
- 2. Public officials--to determine their assessment of the effects of the extended-weight legislation upon the transportation infrastructure. Eight officials were interviewed; five with Department of Highways District Offices, one with Motor Vehicle Enforcement, and two County Judge/Executives.
- 3. Representatives of coal producers--to determine their assessment of the effects of the extended-weight legislation on their costs, profitability, transportation arrangements, and overall operation. Eight coal company representatives were interviewed.
- 4. Representatives of coal trucking companies--to determine their assessment of the effects of the extended-weight legislation on their costs, truck fleet, profitability, and overall operation. Nine trucking company representatives were interviewed.

The intent of these interviews was to gather preliminary data on existing perceptions of the extended-weight system. No attempt was made to ensure random samples or to provide sufficient sample sizes for statistical analysis. However, it was felt that these interviews would be helpful in identifying issues, impacts, and concerns that may otherwise have been overlooked. That was a primary reason for using oral interviews; they would provide the best forum for the interviewees to offer unsolicited comments.

Legislators:

The six Legislators were asked to give their perceptions of the following:

- The purpose of the extended-weight legislation and whether that purpose had been achieved.
- Impacts of the legislation on:
 - State government revenues
 - Volume of coal truck traffic

- Pavement deterioration
- Coal truck accident rate
- Profitability for mining companies, trucking companies, company drivers, independent drivers, and railroads
- Overall opinion of the legislation when it was passed.
- Overall opinion of the legislation now.
- What, if anything, should be changed about the legislation?

In general, the legislators responded that they felt the major purpose of the extended-weight legislation was to help coal producers and truckers be profitable. Another primary purpose was to legalize existing activity, i.e., to eliminate the need for coal haulers to violate the law in order to be competitive. The legislation was designed to allow coal companies and coal haulers to operate legally, while also allowing a measure of control as to which routes could be used. Counties would be able to keep some roads off the system, and coal trucks would be using the roads where the least damage would occur. Five of the six legislators felt that the extended-weight legislation had achieved its purpose (the other was unsure).

The legislators generally thought that revenues to state government had increased. Most felt that the volume of coal truck traffic had not been affected significantly by the extended-weight legislation. The legislators generally had expected pavement deterioration to be accelerated, but were unsure whether this had actually occurred. Regarding the coal truck accident rate, most responses indicated that it had decreased or that the effect was unknown.

With regard to profitability, the legislators generally thought it had increased for trucking companies and had either increased or stayed the same for coal mining companies. Responses were mixed as to the effect on truck drivers and the railroad industry.

Three of the legislators were pleased with the legislation when it was passed (two were not, one had a mixed opinion). Four stated that they were pleased with the legislation now.

When asked what should be changed about the legislation, responses ranged from "nothing" to "repeal it". Other recommendations included clarifying who is responsible for maintaining extended-weight system roads and allowing extendedweight trucks to travel on Interstates.

Public Officials:

This category included five Department of Highways' District Office personnel, one representative of the Division of Motor Vehicle Enforcement, and two County Judge/Executives. These individuals were asked to give their perceptions regarding the effect of the extended-weight system on the following:

- Number of coal trucks.
- Size and types of coal trucks.

- Use of non-extended-weight routes by extended-weight trucks.
- Pavement deterioration.
- Truck speeds.
- Safety.
- Dust, noise, etc.
- Required paperwork.

While there was disagreement regarding changes in numbers of coal trucks (this was apparently location-dependent), most of these public officials agreed that the size of coal trucks was now larger, with an increase in semitrailers. All reported that extended-weight trucks (carrying extended-weight loads) were using nonextended-weight routes.

Opinions on pavement condition were mixed, showing a sharp distinction between eastern and western Kentucky. Officials in eastern Kentucky indicated less pavement deterioration, while western Kentucky officials indicated an increase in deterioration. This was true for both extended-weight and non-extended-weight routes.

Most of the public officials felt that truck speeds had increased on the extended-weight routes and that those routes were less safe than before. Opinions on dust, noise, and required paperwork were mixed. Most felt that there had been an increase in public complaints related to coal trucks.

In addition to responding to the questions, the public officials offered comments, which are summarized in the following:

- Changes in loads and number of trips are market-driven and are not a result of the extended-weight legislation.
- The condition of pavements has improved in the eastern coal field because of the money spent for paving and other repairs.
- Pavements in the western coal field are failing because they were not constructed to support the loads to which they are now subjected.
- A safety problem is created by heavily-loaded trucks approaching signalized intersections. These trucks are often unable to stop when the signal changes, and, as a result, they run the red light.

The following recommendations were offered:

- More vehicle safety checks and more loadometer stations are needed in the eastern coal field. Truck braking systems should be inspected more frequently.
- In the west, extended weights should be allowed only for semitrailers (or only for six-axle semitrailers), not for single-unit trucks.
- The five percent weight tolerance should be eliminated.
- Enforcement of weight limits needs to be increased/improved.
- Better planning is needed in determining which routes will be on the extended-weight system.

More tax money should be used for repair of extended-weight roads.
 We should either eliminate the extended-weight legislation or raise the weight limits for everybody.

Comments on the legislation itself ranged from, "It was a good move," to, "It was the biggest hoax ever perpetrated on the people of Kentucky."

Coal Company Representatives:

The eight coal company representatives were asked to give their perceptions on the following:

- Changes in the truck fleet.
- Benefits or adverse effects of the extended-weight legislation.
- Required paperwork.
- Effects of the legislation on transportation costs.

Most of the coal companies hire independent operators to haul their coal, although several companies own their own trucks (some do both). There were mixed opinions on whether the total number of trucks had increased or decreased, but there was agreement that the number of single-unit trucks had decreased while the number of semitrailers (especially five-axle) had increased.

The majority of the coal company representatives felt that the extended-weight legislation had improved their profitability and efficiency and reduced the number of truck trips. They indicated an increase in paperwork and reporting requirements.

Comments offered by the coal company representatives included the following:

- Very overloaded coal trucks are in the minority.
- Most coal truck drivers are very safety-conscious and some have been known to "kill themselves" to avoid hitting other vehicles.
- The commercial driver law has improved safety in the eastern coal field.
- Changes in the coal market may far overshadow any effects of the extended-weight legislation.
- Utilities are taking advantage of the "buyer's market" by purchasing on the spot market rather than signing long-term contracts.
- The extended-weight legislation legitimized practices that were already going on before the legislation.
- Fiscal courts can make it difficult for some companies to get roads placed on the extended-weight system.

In addition, the following recommendations were offered:

- Safety inspection stations are needed in the eastern coal field.
- Pavements for extended-weight roads should be designed and constructed to carry the heavy loads.

- Roads should be allowed to be placed on the system without requiring 50,000 tons to be hauled over the road in the prior year. Also, roads should be added to the system on a more timely basis.
- Utility companies should contract with the trucker directly, rather than with the coal company.
- Tax and license fees for truckers should be eliminated.
- Action should be taken to lower workmen's compensation fees.
- Tax money needs to be returned for repair of extended-weight roads. The money appears to be going elsewhere.

Coal Trucking Company Representatives:

The nine representatives of coal trucking companies were asked to give their perceptions of the effects of the extended-weight system on the following:

- The trucking company's overall operation.
- Vehicle enforcement activity.
- Number of trips.
- Driver employment.
- Typical haul distances.
- Types of trucks used.
- Upgrades to power units or trailers.
- Operating costs.
- Paperwork requirements.

Most of the trucking company representatives responded that their operations had been affected by the extended-weight legislation. Most said that they had made changes to their truck fleet as a result of the legislation, with a trend toward larger trucks. Most of the representatives indicated that the number of trucks in their fleet had either increased or remained the same. The majority indicated that they were using larger trailers, and they were fairly evenly split on whether they had upgraded their existing power units.

Nearly all of the trucking company representatives indicated that their total operating costs had increased since before the legislation. The costs mentioned most often as having increased were registration/taxes and workmen's compensation.

Specific comments offered by the trucking company representatives included the following:

- Workmen's compensation costs have "sky-rocketed" and have put most single truckers out of business. Others have survived only by joining forces with other truckers to get group rates. Rates in Kentucky are twice as high as in Indiana. These rates are "killing the coal industry."
- The extended-weight legislation did not change the truckers' hauling practices, but it did change them from being "outlaws" to being legal.
- Most of the changes in coal truck trips have been market-driven rather

than a result of the extended-weight legislation.

- Truckers are at the mercy of coal operators.
- The extended-weight legislation is a good law if it is complied with.
- Some truckers have purchased six-axle semitrailers rather than five-axle in order to gain additional braking capacity, thus achieving enhanced safety.
- Some truckers reported limiting their drivers to 118,000 pounds gross weight in order to ensure safety for the driver and for other vehicles.
- Before the extended-weight legislation, trucks would automatically be illegal on some roads, because the empty weight exceeded 30,000 pounds.
- Some truckers in the eastern coal field commented that, due to operating costs, it was difficult for them to break even for loads of 120,000 pounds. One commented that he had to haul 135,000 pounds to make any profit. In the western field, several commented that they could break even at 110,000 to 115,000 pounds and make a little profit for 120,000 pound loads.
- Kentucky has the most progressive weight laws in the eastern United States. The law permits more axles, which is better for the pavements.

The following recommendations were offered:

- Weight laws should be enforced.
- More tax money should be sent back to repair the roads on the extended-weight system.
- Repairs to the extended-weight roads should be scheduled for coolweather periods to improve the quality of the repairs.
- It should be easier and faster to get a road placed on the extendedweight system.
- Action needs to be taken to reduce workmen's compensation costs.

NEWSPAPERS

The public looks to newspapers for information on current events and for commentary on local issues and concerns. Newspapers can both reflect and influence public perceptions and sentiment. Therefore, it was deemed useful for this study to include a review of newspaper accounts dealing with coal trucks, coal-haul roads, and the extended-weight system.

Two newspapers were selected for inclusion in the review; The Lexington Herald-Leader and the (Louisville) Courier-Journal. In an attempt to gauge public perceptions during the debate and passage of the extended-weight legislation, searches were conducted to identify newspaper articles appearing during the period from January 1986 to March 1988. These searches were conducted by Herald-Leader and Courier-Journal staff, who then provided copies of applicable articles. Of the articles received from the Herald-Leader, only one was specifically related to the extended-weight legislation. Four articles were identified from the Courier-Journal focusing on the extended-weight legislation. A sampling of these articles is included in Appendix B.

Two of the articles served primarily to describe the legislation and to explain the changes from the previous (1984) legislation. The other three described concerns of various groups about the effects of the legislation.

Legislators, counties, and communities expressed concern about the safety of school buses and other highway users, pavement damage, and quality of life for residents. One article described attempts by three counties and one community to get coal trucks rerouted. It is interesting to note that, in at least one case, the concerns being voiced by a community about coal trucks on a certain road had little to do with the extended-weight legislation, but had resulted from a decision by a utility company to switch from rail to truck.

The coal industry and enforcement agencies expressed concern about gaps in the system, major coal-haul routes being left off the system, and reduced weight limits for bridges.

Additional searches were conducted to identify articles related to coal transportation that have appeared over the last 3-5 years. The searches included the period of April 1988 through June 1993 for the Courier-Journal and January 1990 through June 1993 for the Herald-Leader, and identified a total of 72 articles. Of these, 41 were reports of accidents involving coal trucks, 14 dealt primarily with coal truck safety issues, five were related to economic issues of coal transportation, four were primarily about coal truck routing, three described public relations efforts by coal truck drivers, three dealt with a dispute over cars yielding right-of-way to coal trucks, and two discussed legislation related to coal trucks.

These newspaper accounts revealed two types of public perception of coal trucks. When individuals who depended on the coal industry for their livelihood were interviewed, then coal haulers were generally viewed as legitimate users of the road, following as many safety measures as a strained economic situation will allow. However, when persons outside the coal business were interviewed, coal trucks were generally perceived as a menace to the public, with negative impacts on road conditions, safety, and quality of life.

Safety was mentioned as a concern in nearly every article, and the extendedweight issue was used as a forum to express concerns about issues not strictly related to the extended-weight system, such as tarps on trucks, and bridge load limits in general. The ability of heavily-loaded trucks to stop for traffic signals was also a concern. Although safety was universally acknowledged as an important issue, the general perception was that little was being done (or could be done) to improve the situation. Positive steps in the area of safety, such as gravel being placed on a dirt road or warning lights installed in advance of an upcoming traffic signal, were reported in only a few articles. Rerouting of coal trucks for safety reasons was mentioned in several articles and had been performed in some cases. Ironically, one accident involving four fatalities occurred when a truck was on a new route due to rerouting. Citations and fines for safety and weight violations were perceived to be ineffective deterrents, due to insufficient quantity and dollar amounts.

Of the 41 reports of accidents involving coal trucks, only a few reported that

ъ

the coal truck appeared to be at fault. In fact, most such articles reported that the accident appeared to be caused by the other motorist, who (1) lost control of his/her vehicle, (2) pulled out directly in the path of an oncoming coal truck, or (3) ran into the back of a slow-moving coal truck. However, whether at-fault or not, the coal truck's involvement was always included in the headline for the article.

Right-of-way concerns on narrow roads were identified as an issue in several articles. In general, these articles focused on the right-of-way dispute and gave little mention to the condition of the road. Although potential damage to bridges was often mentioned, damage to pavements did not appear to be a major concern. Only one article centered on the upgrading (graveling and adding culverts) of a road which had been deemed unsafe.

Both newspapers ran articles on efforts being made by coal truck drivers to improve their public image. These articles discussed safety issues from the truckers' perspectives.

SUMMARY

In establishing the extended-weight system, the primary legislative objective was apparently to reduce the cost of coal transportation, thereby enhancing the competitiveness and profitability of the coal industry. Another primary objective was to eliminate the perceived need for coal haulers to violate the law in order to be competitive. A secondary objective was to gain some control over which routes could be used for coal hauling. Most legislators and coal industry representatives felt that the legislation had been successful in achieving its purpose.

There was consensus that the size of coal trucks has increased, with an increase in semitrailers. There was also general agreement that non-extended-weight routes were being used by trucks carrying extended-weight loads.

Pavement conditions in eastern Kentucky were viewed as improved, which was attributed to increased expenditures for paving and repairs. Pavements in western Kentucky were described as deteriorating, due to inability of the pavements to support the extended-weight trucks.

A safety concern exists regarding the ability of heavily-loaded trucks to stop at signalized intersections.

In newspaper articles, coal trucks are often portrayed as a menace to the public, with negative impacts on road conditions, safety, and quality of life. Several articles described attempts by communities to prevent coal trucks from using certain routes due to concerns over these issues.

In most newspaper articles describing accidents involving coal trucks, the accident appeared to be the fault of the "other driver," rather than the coal truck.

THE POPULATION OF COAL TRUCKS

TRENDS IN TYPES OF COAL TRUCKS

With passage of legislation establishing the Extended-Weight Coal Haul Road System, significantly increased load limits became permissible for both single-unit and combination trucks. In order to carry the heaviest loads (120,000-pound gross weight), trucks had to be registered in the 80,000-pound category, had to be tractorsemitrailer combinations with five or more axles, and had to have an extended-weight decal. Since establishment of the system in 1987, there have been changes in the types of trucks being used, either related to the economics of hauling increased loads or for other reasons not yet identified.

A sample of data from coal-haul roads in eastern Kentucky was analyzed to determine the trends in types of trucks being used to haul coal. Twenty-two sites were identified where vehicle classification data and manual counts of coal trucks had been collected in 1988 and 1992. The total number of trucks classified at these sites was 19,100 in 1988 and 21,200 in 1992, with the manual counts indicating about 15 percent coal trucks each year. Table 2 presents a summary of the classification data for all trucks. The data indicate a major shift in the proportions of single-unit trucks (both three-axle and four-axle) and six-axle tractor-semitrailer combinations. In 1992, the proportion of all trucks that were single-unit had decreased by about 20 percent from its 1988 value. This decrease was apparent in both three-axle and four-The proportion of all trucks that were six-axle tractor-semitrailer axle trucks. combinations more than doubled from 1988 to 1992, increasing by nearly 150 percent. It can probably be assumed that the extended-weight legislation was the primary justification for changes in the mix of trucks being used to haul coal. Combination six-axle trucks are more capable of hauling heavier loads without exceeding axle capacity ratings than are five-axle trucks. Observations in the coal-hauling regions and analysis of classification data clearly indicate that the six-axle truck has become the preferred truck for hauling coal.

Truck	Percentage of Total Truck Traffic			
Category	1988	1992	Difference	% Change
3-Axle Straight	16.18	13.02	-3.16	-20
4-Axle Straight	4.07	3.35	-0.72	-18
5-Axle Semi	39.50	36.77	-2.73	-7
6-Axle Semi	2.66	6.53	3.87	+145
Other Trucks	37.59	40.33	2.74	+7
Total	100.00	100.00		ra 243

Table 2.Summary of Vehicle Classification Data From a Sample of
Coal-Haul Roads in 1988 and 1992

THE POPULATION OF DECAL COAL TRUCKS AND FEES GENERATED

Extended-weight decals are purchased through the Department of Vehicle Regulation's Division of Vehicle Licensing. During the first calendar vear (1987) after establishment of the Extended-Weight Coal Haul Road System, 4,154 decals were issued. This number of decals increased to 4.181 in 1988 and then decreased during each of the next four years through 1992, when 3,505 decals were issued. A summary of the numbers of decals issued for the calendar years of 1987 through 1992 is presented in Table 3.

A more detailed analysis of extended-weight decals and fees was conducted for the 1992-93 license year,

YEAR	NUMBER OF DECALS
1987	4,154
1988	4,181
1989	4,078
1990	4,031
1991	3,648
1992	3,505

Table 3.Summary of Decals Issuedfrom 1987-1992

which includes the period from May 1, 1992 through April 30, 1993. Copies of all decal applications approved during that license year were obtained from the Division of Vehicle Licensing. Selected information was extracted from the decal applications and was summarized.

Summary of Decais Issued
and Fees Paid By State
(1992-93 License Year)

Summary of Decale Issued

Table 4

STATE	DECALS ISSUED	FEES PAID (DOLLARS)
Florida	1	360
Kentucky	2,890	774,929
Michigan	1	360
Ohio	32	9,330
Tennessee	35	5,237
Virginia	91	21,813
West Virginia	365	112,855
Indiana	45	8,567
Not Listed	11	2,760
TOTAL	3,471	936,211

Of the 3,471 decals issued in license year 1992-93, 2,890 were issued to the Kentucky-based trucks and remaining 581 were issued outside of Kentucky. Of the decals issued outside of Kentucky, 63 percent were issued to trucks based in West Virginia and 16 percent were issued to Virginia-based Decals were also issued to trucks. trucks in Florida, Michigan, Ohio, Tennessee, and Indiana. A summary of the decals issued by state is presented in Table 4.

The total amount of extended-weight decal fees generated during the 1992-93 truck license year was \$936,211. Approximately 83 percent of the total income was collected from owners of trucks registered in Kentucky. Table 4 contains a breakdown of decal fees paid by state of registration.

The three basic weight categories for extended-weight decals are 90,000 pounds, 100,000 pounds, and 120,000 pounds; with fees of \$160, \$260, and \$360, respectively. For all cases, the truck must be registered in the 80,000category at the standard pound registration fee of \$1,260 before an extended-weight decal can be purchased. There is also an incremental weight category for decals, which requires a fee of \$10 for every 1,000 pounds above. 80.000 pounds. For this incremental category. there is an additional restriction of 12,000 pounds for the steering axle and 20,000 pounds each for all other axles. For the 1992-93 license year, 65 percent of the decals were issued to trucks in the 120,000-pound category, and 31 percent were issued for the 90,000-pound category. Very few decals (4 percent) were issued in the 100,000-pound or incremental

Table 5.	Summary of Decals Issued
	and Fees Paid By Weight
	Category (1992-93 License
	Year)

WEIGHT CATEGORY (POUNDS)	DECALS ISSUED	FEES PAID (DOLLARS)
81,000 - 89,000	6	190
90,000	1,065	156,024
91,000 - 99,000	20	2,400
100,000	121	25,370
101,000 - 119,000	0	0
120,000	2,259	752,197
TOTAL	3,471	936,211

categories. A summary of decals issued and fees paid by weight category during the 1992-93 license year is presented in Table 5.

Within Kentucky, during the 1992-93 license year, decals were issued to truck owners in 52 counties. Counties with the most decals issued were Pike (654), Perry (367), Letcher (273), Floyd (172), and Johnson (118). These five counties represented 55 percent of all the decals issued. The distribution of decals issued by county in Kentucky is shown in Table 6. Table 6 also shows the total decal fees collected in each county. The five counties issuing the most decals account for 50 percent of the total income from decal sales in Kentucky.

As part of the legislation establishing the Extended-Weight Coal Haul Road System, 60 percent of the revenue from the sale of decals was designated for the maintenance and repair of state-maintained extended-weight roads. The remaining 40 percent is to be used by counties for the repair and maintenance of countymaintained extended-weight roads. One-half of the 40 percent is distributed to counties based on the mileage of county-maintained extended-weight roads in each county. The other half of the 40 percent is distributed based on the tons of coal transported over county-maintained extended-weight roads in each county. Table 7 shows the distribution of funds by county (for those funds collected during fiscal year 1991-92).

Another analysis was performed to determine the number of decals issued to individual companies or operators. The objective was to determine if the population of extended-weight trucks was generally representative of large company fleets or smaller operators with only a small number of trucks. It was determined that

County	Decals Issued	Fees Paid (Dollars)	County	Decals Issued	Fees Paid (Dollars)
Bell	32	7,557	Lewis	4	540
Boyd	24	8,370	Logan	1	120
Breathitt	78	21,850	Lyon	3	480
Butler	10	2,999	McCreary	1	360
Caldwell	4	640	McLean	8	2,310
Campbell	4	1,200	Madison	3	780
Carter	32	10,980	Magoffin	124	38,727
Christian	3	270	Marshall	9	3,240
Clay	63	20,240	Martin	55	18,490
Daviess	36	10,930	Menifee	1	360
Edmonson	7	2,520	Morgan	_26	7,570
Elliott	16	4,643	Muhlenburg	128	39,720
Estill	24	7,040	NIcholas	1	360
Fleming	6	2,160	Ohio	10	3,600
Floyd	172	49,810	Owsley	4	1,440
Gallatin	2	480	Pendleton	1	90
Greenup	3	1.080	Perry	367	89,789
Harlan	42	7,636	Pike	654	140,904
Henderson	4	730	Powell	17	5,520
Hopkins	9 8	29.040	Pulaski	57	14,070
Jefferson	3	780	Rowan	6	1,960
Johnson	118	40,590	Todd	2	520
Knott	18	3,150	Union	88	29,664
Knox	6	2,010	Warren	7	2,520
Laurel	28	8,650	Webster	57	17,823
Lawrence	69	22,530	Whitley	5	1,500
Lee	9	2,880	Wolfe	36	10,640
Leslie	31	4,067			
Letcher	273	67,000	Total	2,890	774,929

Table 6.Decals Issued and Fees Paid by County (1992-93 License Year)

approximately 62 percent of the total decals purchased in the 1992-93 license year were purchased by companies or operators who purchased five or fewer decals. There were 841 operators who purchased only one decal each, accounting for 24 percent of the total decals issued. On the opposite end of the scale, there were nine companies

County	Funds Allocated (Dollars)	County	Funds Allocated (Dollars)
Bell	17,144	Leslie	15,242
Boyd	2,880	Letcher	21,850
Breathitt	11,320	McCreary	3,192
Butler	2,303	Magoffin	2,793
Carter	753	Martin	12,924
Christian	2,730	Mason	1,757
Clay	8,351	Morgan	1,472
Clinton	2,756	Muhlenburg	4,381
Daviess	3,449	Ohio	3,802
Floyd	32,541	Owsley	1,121
Greenup	1,889	Perry	31,296
Harlan	7,902	Pike	93,124
Henderson	5,245	Pulaski	9,269
Hopkins	15,391	Union	904
Jackson	592	Wayne	8,611
Jefferson	764	Webster	13,696
Johnson	800	Whitley	9,168
Knott	22,129	Wolfe	1,286
Knox	9,278		
Lawrence	4,319	Total	388,421

Table 7.Distribution Of Energy Recovery Road Funds By County (for
Funds Collected during FY 1991-92)

which purchased 25 or more decals; representing 10 percent of the total decals issued. The largest number of decals purchased by a single company was 62. A summary of the number of decals purchased per company is presented in Table 8.

SUMMARY

There has been a dramatic increase in the role of six-axle trucks in coal transportation since 1988, and larger trucks now dominate coal movement over Kentucky's highways.

From 1987 to 1992, the number of extended-weight decals purchased declined by approximately 15 percent. Since the quantity of coal being transported by truck has not declined, the reduction in the number of decals must reflect either the shift toward larger (and fewer) trucks or a decision by some trucking companies to stop buying decals.

NUMBER DECALS ISSUED	NUMBER OF COMPANIES/ OPERATORS	TOTAL NUMBER OF DECALS
1 - 5	1 320	2138
6 - 10	84	622
1 1 - 2 5	22	347
> 25	9	364

Decal sales amount to just under \$1 million annually, of which about \$600,000 is allocated for use on state-maintained extended-weight routes. Approximately two-thirds of all decals are issued to trucks in the 120,000-pound category.

Coal haulers in Kentucky are predominantly small-scale operators. Nearly onefourth of all decals are purchased by single-truck operators. Over half are purchased by operators that have five or fewer trucks.

The purchasing of extended-weight decals is heavily concentrated in eastern Kentucky. Although decals were purchased in 52 of Kentucky's 120 counties, five counties (all in eastern Kentucky) accounted for one-half of the income from decals sold in Kentucky.

REVENUE AND COST ANALYSIS

The following section of this report is excerpted from the Kentucky Transportation Center's Research Report KTC-92-6, "Review of Highway Cost Allocation Methodologies" (1). This preliminary analysis was conducted as a part of a comprehensive cost allocation study (at the request of the Study Advisory Committee for that study). The base year for the analysis was 1990.

METHODOLOGY

A conventional cost allocation analysis, comparing the revenue generated by highway operations with the cost responsibilities occasioned by them, was not an especially attractive approach to analyzing economic effects of the extended-weight system. Available data were not expected to be sufficiently detailed to permit an accurate analysis, and resources were insufficient to permit extended study. More importantly, the general thesis that underlies state cost allocation efforts--namely, that roads and streets should be financed principally by their users--was suspect. If the extended-weight system was originally implemented to promote the economic welfare of the Commonwealth generally, then the general taxpayer could be expected to share a portion of the increased highway costs occasioned by heavier coal trucks. Since the coal decal fees are relatively small and insufficient to cover the highway cost increment, this may well have been the intent of the Legislature when it established the extended-weight system in 1986.

Even though a comprehensive cost allocation study was inappropriate, the revenue and cost implications of the extended-weight system remained of considerable interest. Certainly, additional revenue is being generated as a result of the coal-decal fees, and additional highway costs are being incurred to accommodate the heavier loadings. Quantifying and documenting these revenue and cost increments became the focus of this investigation.

Revenue implications of the extended-weight system are both direct and indirect. The coal decal fee is a direct implication, adequately documented and easy to comprehend. The indirect implications are more subtle. Larger payloads mean fewer trucks¹, and fewer trucks mean reduced registration fees and perhaps reduced fuel taxes. Because the effect of truck weight on fuel efficiency and, hence, on fuel taxes is not well documented, only two revenue sources, coal decal fees and truck registration fees, are evaluated herein.

It is well recognized that the costs of providing the highway infrastructure are influenced by the sizes and weights of the trucks that use them. Almost all cost elements are affected: larger vehicles generally require flatter slopes, wider cross sections, thicker pavements, stronger bridges, more frequent and extensive maintenance, etc. Generally, however, most investigators of large-truck impacts focus on the costs of constructing, maintaining, and replacing bridges, pavements, and

¹Larger trucks would also generally mean fewer drivers, an unfortunate economic consequence in a depressed economy.

shoulders (5,6,7). Other cost effects of heavy trucks are more difficult to quantify.

The analysis reported herein focused on pavement overlay or restoration costs. Pavement overlay costs are substantial in Kentucky, and excellent data are available to quantify implications of the extended-weight system. Detailed examination of other pavement cost elements (construction, reconstruction, rehabilitation, and recurring maintenance) as well as bridge and shoulder cost elements is left to future investigations.

Geographically, the study was limited to the 75 extended-weight-system counties: 38 are classified as coal-producing counties and 37, as coal-impact counties. Only state-maintained highways, classified as either on the extended-weight system or on a base system, were considered. The base system included all highways of comparable functional classification as those included within the extended-weight system. It provided a frame of reference to which the extended-weight system could be compared. Analyses were disaggregated to the level of functional highway classification. System mileages for extended-weight and base systems are summarized in Table 9.

The base year for this analysis was 1990. However, to reduce the effects of minor year-by-year fluctuations and thus increase accuracy, 1989-1991 vehicle classification and weight data were used. In addition, average resurfacing frequency was based on experience during the period, 1988-1990, and average resurfacing costs, 1988-1991.

DATA REQUIREMENTS

Table 9.System Mileages (State-Maintained
Components)

Location	Extended-Weight System	Base System
Coal-Producing Counties	2,455	9,307
Coal-Impact Counties	718	7,577
All Counties	3,173	16,884

The analysis required development of detailed information describing:

- System mileage,
- Average traffic volumes,
- Typical composition of the traffic stream,
- Average pavement damage factors (ESALs) by vehicle type,
- Average annual resurfacing mileage,
- Average unit costs of resurfacing, and
- Average rideability indices.

Basic data sources included files of the Divisions of Maintenance and Planning and the Pavement Management Branch. The detailed analysis is documented in Appendix C.

EXTENT AND COST OF RESURFACING PROGRAM

Approximately 1,470 miles of roadway on the extended-weight and base systems are resurfaced annually (Table 10) at a total cost of approximately \$45.2 million (Table 11). The unit cost of the 1-inch resurfacing layer, including cost of surface preparation such as leveling and milling, averages approximately \$31,000 per mile.

Location	Extended- Weight System	Base System	Total
Coal-Producing Counties	370	485	855
Coal-Impact Counties	86	529	615
All Counties	456	1,014	1,470

Table 10. Average Annual Resurfacing Mileage

Table 11. Equivalent Average Annual Resurfacing Costs (Millions)

Location	Extended- Weight System	Base System	Total
Coal-Producing Counties	\$15.0	\$12.0	\$27.0
Coal-Impact Counties	\$4.2	\$14.0	\$18.2
All Counties	\$19.2	\$26.0	\$45.2

When comparing the extended-weight system with the base system, a considerably larger percentage of the extended-weight system is resurfaced each year (14.4 percent vs. 6.0 percent) at a substantially greater unit cost (\$42,100 per mile vs. \$25,700 per mile) (Tables 12 and 13, respectively). To better comprehend the net result of these differences, approximately \$13.6 million would be saved annually if resurfacing of the extended-weight system had been programmed to the same norms (annual percentage of mileage resurfaced and average unit resurfacing costs) as the base system (Table 14).

Importantly, the \$13.6 million increment can not be attributed solely to the heavier weights of the coal-decal trucks. Coal haulage would be concentrated on the extended-weight system even if increased truck weights were not permitted, and any such concentration of heavy trucks would intensify the rate of pavement wear and, hence, the costs of pavement restoration. Moreover, extended-weight highways carry

Location	Extended-Weight System	Base System
Coal-Producing Counties	15.0	5.2
Coal-Impact Counties	12.0	7.0
All Counties	14.4	6.0

Table 12. Percent of Mileage Resurfaced Annually

Table 13. Average Resurfacing Costs (Dollars per Mile)

Location	Extended-Weight System	Base System
Coal-Producing Counties	40,600	24,700
Coal-Impact Counties	48,500	26,600
All Counties	42,100	25,700

Table 14. Annual Resurfacing Cost Increment Beyond Base System Norms

Location	Expenditure Increment (Millions)
Coal-Producing Counties	\$11.44
Coal-Impact Counties	\$2.14
All Counties	\$13.58

almost twice the traffic volume of base highways (Table 15), and their pavements are maintained to a slightly superior condition on average (Table 16). To accurately assess the incremental effect of the extended-weight system requires substantially more detailed analysis.

Table 15. Average Annual Daily Traffic

Location	Extended-Weight System	Base System
Coal-Producing Counties	4,350	2,187
Coal-Impact Counties	7,297	3,291
All Counties	5,017	2,682

Table 16. Average Rideability Index

Location	Extended-Weight System	Base System
Coal-Producing Counties	2.66	2.53
Coal-Impact Counties	3.19	2.75
All Counties	2.78	2.63

INCREMENTAL RESURFACING COSTS

As summarized above, pavement resurfacing costs for both the extended-weight system and the base system are known with reasonable accuracy. In order to determine the incremental resurfacing costs due solely to the extended-weight/coaldecal system, estimates are also required of "normal" resurfacing costs, costs that would have been incurred if coal-truck weight limits had been held to pre-extendedweight system levels. The difference, then, is the impact directly attributable to extended-weight limits.

The approach taken herein required two key assumptions. The first is that resurfacing costs are directly related to traffic wear as measured by equivalent-singleaxle-loads (ESALs). This assumption seems reasonable although some have argued 1) that environmental factors also contribute to pavement wear and affect the frequency and cost of resurfacing and 2) that ESALs, originally developed as a measure of traffic damage for designing new pavements, may not accurately reflect traffic effects on pavement resurfacing frequency and cost.

The second key assumption is that 1) the volume of coal transported by highway and 2) the routes used for coal transport are unaffected by the extendedweight/coal-decal system. To the extent that effective competition exists between truck and train, the increase in trucking productivity resulting from increased payloads would ultimately increase both the volume of coal moving by highway and the cost of maintaining pavement surface condition to acceptable levels. To assume that coal tonnages on the highway system remain constant effectively understates the impact of the extended-weight system. Nevertheless, accurate techniques for estimating coal tonnages that may have been diverted from the railroads were unavailable. Because of the way the extended-weight system is designated, that is, by coal haulage exceeding 50,000 tons per year, any initial effect of the extendedweight designation on the routes used for coal transport is likely to have been small. Because the extended-weight system is redesignated annually, it is not likely to affect the shipper's choice of route unless the extended-weight system eventually evolves into a "super" system of roadways designated and provided specifically for efficient coal transport.

The following summarizes the procedure used to determine incremental resurfacing costs:

- Determine the annual resurfacing cost for the extended-weight and base systems in the 75 extended-weight counties (Table C26);
- Determine the respective annual ESAL-miles for all traffic loads (Tables C21 and C22);
- Determine the resurfacing cost per ESAL-mile (Table C28);
- Determine the annual ESAL-miles due solely to coal-decal trucks (Table C29);
- Determine the percentage reduction in ESAL-miles by substituting trucks of conventional loading for coal-decal trucks (Table C30);
- Determine the hypothetical annual ESAL-miles due solely to lighter trucks that would substitute for coal-decal trucks (Table C31); and
- Determine the hypothetical resurfacing cost increment associated with the extended-weight/coal-decal system (Table C32).

As outlined above, the overall process for determining the resurfacing cost increment is generally straightforward given the detailed information that was accumulated for the statewide highway cost allocation study. The first of two exceptions involves determining the travel patterns of coal-decal trucks. Manually collected vehicle classification data record the total number of coal trucks (based on body style) and permit summary tabulations such as those of Tables C5 and C6 which show the percentage of coal trucks within the truck population as a function of roadway classification, extended-weight or base system, and coal-producing or coalimpact counties. Although these percentages would represent reasonable upper bounds, it is unfortunate that no traffic database identifies the particular subset of coal trucks displaying the special coal decals associated with the extended-weight system.

As a result, it was necessary to rely primarily on a smaller data set, that containing weight data, to identify coal-decal trucks. Any truck was considered to be

a coal-decal truck if its weight exceeded normal legal maximums (59,400 pounds for three-axle straight trucks, 77,000 pounds for four-axle straight trucks, and 80,000 pounds for five- and six-axle single-trailer trucks). This assumption resulted in two kinds of unavoidable error: conventional trucks carrying overloads were considered to have been decaled, and decaled trucks traveling empty or with partial loads were considered to be conventional trucks. The resulting percentages of decaled trucks (Tables C7 and C8) very likely understate their presence in the typical traffic stream. Because the size of the data base prevented reliable estimates for each of the functional classes, the only possible class distinction was between rural and urban facilities.

In addition to the difficulty of identifying coal-decal trucks, information was required on typical payloads both of coal-decal trucks and conventional coal trucks. Typical payloads were assumed to be the difference between legal maximum loading and empty (tare) weights. To determine empty weights of coal-decal trucks, a rather involved procedure was followed. Focussing on the routes most likely to be heavily populated by coal-decal trucks, extended-weight-system routes in coal-producing counties, typical axle spacings were determined for the more heavily laden trucks. Still concentrating on extended-weight-system routes in coal-producing counties, gross weight distributions were then obtained for the entire population of trucks within these axle-spacing ranges (Figures 10-13). Gross weight distributions for five- and six-axle trucks were bimodally shaped with the smaller mode representing typical empty weight and the larger mode representing typical loaded weight (Figures 12-13). Using an average empty weight of 40,000 pounds, the estimated payload for these trucks is 86,000 pounds.

Weight data for four-axle straight trucks were limited in extent. The gross weight distribution showed a peak at around 70,000 pounds, much lower than expected, with no observable peak in the range of "empty" weights. When empty, these trucks are apparently operated with the lift axle raised, making them appear to be three-axle trucks. The gross-weight distribution for three-axle trucks showed a broad peak in the "empty" weight range with local maxima at 29,000 and 35,000 pounds. It was assumed that the smaller maximum, 29,000 pounds, represented the average empty weight for the three-axle truck and that the larger maximum, 35,000 pounds, was representative of the empty, four-axle truck. For conventional coal trucks, empty weights were assumed to be 4,000 to 5,000 pounds lighter than for coal-decal trucks. The assumed truck weights for empty and loaded trucks with and without the coal-decal are presented in Table 17.

Results of the payload analysis are summarized in Table C30. Coal-decal trucks can carry much heavier payloads than conventional trucks, up to 41,000 pounds more for combination vehicles. ESAL computations, assuming fully loaded trucks, show that the increased payload is gained at the expense of greater pavement wear (Table C30). A fully-loaded combination truck with decal results in about 6.5 times more wear than a comparable fully-loaded conventional truck (Table C30). This effect is somewhat offset by the fact that a considerably larger number of conventional truck operations is necessary to move a given volume of coal than the number of decaled trucks with conventional coal trucks ranges from about 42 to

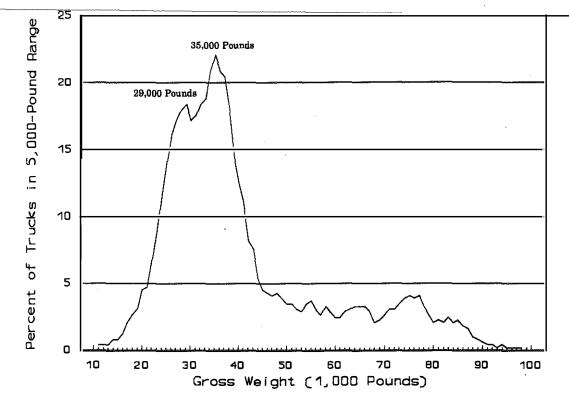
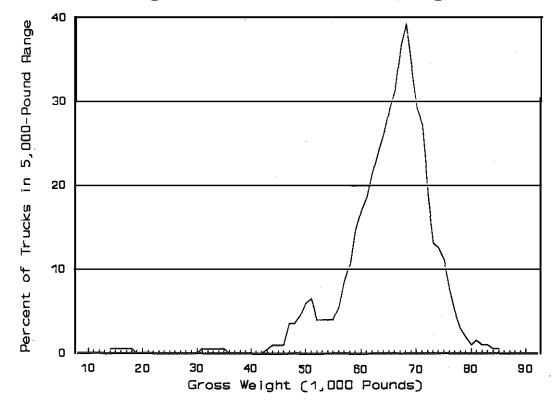



Figure 10. Gross Weight Distribution of Three-Axle Single-Unit Trucks

÷

and and a second second

Figure 11. Gross Weight Distribution of Four-Axle, Single-Unit Trucks

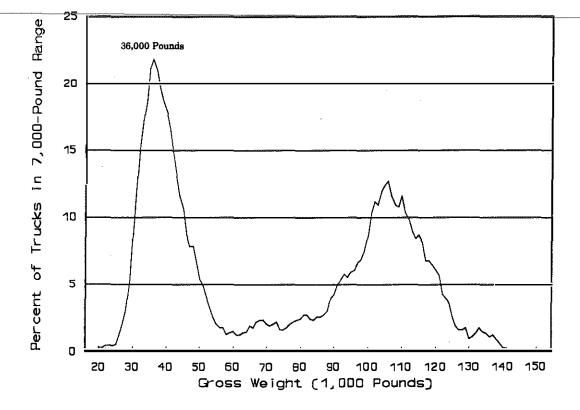


Figure 12. Gross Weight Distribution of Five-Axle, Semitrailer Trucks

and a second second

Figure 13. Gross Weight Distribution of Six-Axle, Semitrailer Trucks

Table 17. Assumed Truck Weights

-1. FC

	Gross Weight (Pounds)			
	Normal (Without Decal)		With Decal	
Coal-Truck Type	Empty	Loaded ^a	Empty	Loaded ^b
3-Axle, Single-Unit	25,000	59,400	29,000	94,500
4-Axle, Single-Unit	31,000	77,000	35,000	105,000
Single-Trailer Trucks of 5 or More Axles	35,000	80,000	40,000	126,000

^aIncluding 10-percent allowance for axle overload.

^bIncluding 5-percent allowance for gross weight overload.

about 71 percent (Table C30).

Based on these considerations, the extended-weight/coal-decal system adds approximately \$9.08 million annually to the cost of resurfacing pavements in the 75 extended-weight counties (Table 18). Interestingly, a full one-third of the added expense is for accommodating overweight trucks, whether decaled or not, on the base system.

Table 18.Annual Resurfacing Cost Increment Attributed to Coal-DecalSystem

	Expenditure Increment (Millions)			
Location	Extended-Weight System	Base System	Total	
Coal-Producing Counties	\$5.42	\$2.03	\$7.45	
Coal-Impact Counties	\$0.60	\$1.03	\$1.63	
All Counties	\$6.01	\$3.07	\$9.08	

INCREMENTAL REVENUE

Of the total of 3,877 decaled coal trucks, approximately two-thirds were fiveand six-axle combinations. Most of the remainder of the decals were issued to threeaxle straight trucks (Table 19). Assuming the empty miles traveled by each truck equal the loaded miles, it is projected that average annual mileage are 26,000 miles, 60,000 miles, and 87,000 miles for three-axle, four-axle, and five- or six-axle coal trucks, respectively, assuming all operations are within the 75-county area.

Truck Type	Number of Coal Trucks with Decals	Decal Fees	Added Registration Fees (80,000- Pound Registration)	Lost Registration Fees (Fewer Trucks)	Total
3-Axle, Single Unit	1,217	\$195,000	\$871,000	(\$599,000)	\$467,000
4-Axle, Single Unit	193	\$50,000	\$26,000	(\$113,000)	(\$37,000)
Single- Trailer Combination	2,467	\$888,000		(\$2,832,000)	(\$1,944,000)
Total	3,877	\$680,000*	\$897,000	(\$3,544,000)	(\$1,967,000)

Table 19. Annual Revenue Increment Generated by Coal-Decal System

*Remaining 40 percent distributed to counties

Revenue from decal fees totaled approximately \$1.1 million. Because 40 percent of these fees is distributed to local government, only about \$680,000 is available for upkeep of the state-maintained highway system. Coal-decal trucks must also be registered at a gross weight of 80,000 pounds. Approximately \$897,000 in added revenue was generated by this requirement, overwhelmingly from three-axle trucks.

Offsetting these sums are fees lost due to fewer truck registrations. To transport a given volume of coal requires a smaller fleet of heavier trucks than that of lighter trucks. Without the increased payload of decaled trucks, approximately 3,400 more coal trucks would theoretically be needed (Table C33). Because use of these trucks is not required under provisions of the extended-weight system, approximately \$3.5 million in registration fees are lost annually. The net revenue effect of the extended-weight/coal-decal system is estimated to be a loss of almost \$2 million in decal and registration fees (Table 19) that would otherwise be available for state-maintained highways.

PAVEMENT MAINTENANCE AND REHABILITATION COSTS

In Kentucky, pavement resurfacing and rehabilitation on the extended-weight system is addressed by two state-funded programs. The pavement resurfacing program (211 Account) is administered by the Division of Maintenance and essentially involves a thin overlay repair strategy. Usually, the thickness of this overlay varies from 1 to 1.5 inches, depending on the type of bituminous surface mix used. For pavements having more severe distress and for situations where estimates of ESALs indicate inadequate pavement structure, thick overlays are required in order to extend the fatigue life of the pavement structure. Those projects involving thick overlays are administered through the Primary and Parkway rehabilitation program (212 Account). In addition to thick overlays, these projects also address other conditions for the roadway such as guardrail, drainage structures, etc. In summary, the resurfacing program typically addresses only the repair of the pavement where the parkway and primary rehabilitation program not only rehabilitates the pavement but also addresses the overall roadway section.

These two divergent approaches result in a considerable variation in cost per mile. The thin overlay costs are approximately \$100,000 per mile for a four-lane roadway while the cost for the thicker overlay is approximately five times larger (ranging from approximately \$350,000 to \$730,000 per mile, with an average of \$500,000 per mile). The cost per mile for the thin overlay rehabilitation concept probably is representative of average or perhaps below average rehabilitation costs whereas the expanded scope of the primary and parkway rehabilitation program results in much higher costs. Although a significant portion of the primary and parkway rehabilitation program costs has been spent on extended-weight system highways, determinations have not been made of the amount attributed specifically to the extended-weight/coal-decal system.

In addition to resurfacing and rehabilitation, pavements require annual maintenance, such as crack and joint filling, patching, chip sealing, and pothole repair. Preliminary indications suggest that pavement surface maintenance expenditures are greater in coal-producing regions than in other parts of the state. For example, maintenance costs in the four highway Districts producing most of Kentucky's coal (Districts 2, 10, 11, and 12) average almost \$300 per mile more each year than in non-coal-producing regions (Table 20). However, whether more annual maintenance is required on extended-weight highways than on base-system highways has not yet been documented. Presumably, though, if maintenance programs are sensitive to the added pavement wear caused by heavier trucks, extended-weight pavements might prove more costly to maintain. On the other hand, their more frequent resurfacing might moderate maintenance demands.

Location	Rural Secondary (RS) System	Maintenance Project (MP) System	Total
Coal Producing Districts	\$901	\$1,035	\$976
Other Highway Districts	\$565	\$723	\$652

Table 20. Average Annual Surface Maintenance Costs (Dollars per Mile)

SUMMARY

The purpose of this special study was to examine the cost and revenue implications of Kentucky's extended-weight/coal-decal system. Although the

examination could be only partially completed within the framework of the available resources and time constraints, the following interim findings are significant:

- The extended-weight system, an extensive conduit for Kentucky coal, includes over 11 percent of the state-maintained mileage and carries over 19 percent of the vehicle miles of travel.
- Because heavier payloads mean fewer truck registrations, the coal-decal fee structure results in a net loss of revenue to the Road Fund, estimated at almost \$2 million annually.
- The heavier weights of coal-decal trucks add approximate \$9 million annually to pavement overlay costs.
- Larger and heavier trucks increase, to a yet undetermined extent, other highway costs including:
 - Construction and reconstruction of pavements, shoulders, bridges, and culverts;
 - Rehabilitation of pavements, shoulders, and bridges;
 - Routine maintenance of pavements and shoulders; and
 - Others.

ACCIDENT ANALYSIS

According to the 1992 Coal Haul Highway System Report (4), there were 39 coal producing counties and 55 coal impact counties in Kentucky in 1991. Within these 94 counties, 3,450 miles of roads were designated as being on the Extended-Weight Coal Haul Road System. For the analysis of accident data, all rural, two-lane, state-maintained highways within the 94 coal producing and coal impact counties were identified and classified as extended-weight or non-extended-weight. Accident rates and characteristics were then determined for each category. Accident rates were also determined for all rural, two-lane, state-maintained highways in Kentucky (all 120 counties). The process of determining accident rates and characteristics involved simultaneous use of three data files: the extended-weight system file, the Statewide Mileage File, and the accident data file. The accident data file included all accidents for the 1990-92 time period.

For the 94 coal producing and coal impact counties, segment lengths for rural, two-lane, state-maintained highways totalled 2,121 miles for extended-weight routes and 11,556 miles for non-extended-weight routes. The non-extended-weight routes were designated as the "base system" for this analysis. The total statewide mileage of rural,two-lane, state-maintained highways was 23,822 miles during the 1990-92 time period.

Α basi comparison 0 accident rates is presented in Table 21. The results indicate that the overall accident rate for extendedthe weight system is basically the same 88 the statewide rate. The rate for the

i c	Table 21.	Accident Rates for Rural Two-Lane Roads	
of			

Road	System	Accident Rate per 100 Million Vehicle-Miles			
System	Mileage	All Accidents	Injury Accidents	Fatal Accidents	
Extended- Weight	2,121	222	88	3.5	
Base	11,556	241	90	2. 9	
Statewide	23,822	226	84	3.0	

base system is 7 to 9 percent higher than the extended-weight system rate and the statewide rate. Injury accident rates are similar for the three categories of highways, with the rates for the extended-weight and base systems slightly higher than the statewide rate. The greatest difference between the categories of highways occurs when comparing fatal accident rates. The extended-weight system shows a rate of 3.5 fatal accidents per 100 million vehicle-miles of travel, compared to rates of 2.9 for the base system and 3.0 statewide.

The analysis of accident characteristics focused on comparison of truck versus non-truck accidents on the extended-weight and base systems. The systems were again limited to rural, two-lane, state-maintained highways, and the 1990-92 time period was again used for the analysis. During the three-year time period considered, there were 4,649 truck accidents on the extended-weight system and 13,392 on the base system. The results of this analysis are summarized in Tables 22-24.

Table 22 presents general accident characteristics for truck and non-truck accidents on the extended-weight and base systems. It is immediately apparent that a significantly higher percentage of truck accidents result in fatalities on the extended-weight system as compared to the base system (2.1 percent versus 1.2 percent). As expected, non-truck accidents have a lower percentage of fatal accidents on both systems. Truck accidents do not show a higher percentage of injury accidents than non-truck accidents, and there does not appear to be a significant difference between the extended-weight system and the base system with regard to percentage of injury accidents.

Table 23 presents directional analysis information for truck and non-truck accidents on the extended-weight and base systems. For truck accidents, the extended-weight system shows an overrepresentation of head-on collisions and opposite-direction sideswipe collisions. Comparing truck accidents to non-truck accidents, there is an overrepresentation of fixed object accidents (both systems), head-on collisions (extended-weight system only), same-direction sideswipe (both systems), opposite-direction sideswipe (both systems), parked vehicle (both systems), and vehicle overturned (both systems).

Table 24 contains a summary of data on contributing factors for truck and nontruck accidents on the extended-weight and base systems. For truck accidents, the extended-weight system shows higher percentages (compared to the base system) for the categories of slippery surface, unsafe speed, and oversize load. Water pooling, alcohol involvement, and defective brakes were also overrepresented on the extendedweight system. Comparing truck accidents to non-truck accidents on both systems, a higher percentage of truck accidents involved obstructed view, construction, improper passing, defective brakes, tire failure, and improper or oversize load.

TRUCK NON-TRUCI ACCIDENTS ACCIDENTS				
Accident Characteristics	Extended- Weight	Base System	Extended- Weight	Base System
Number of Accidents	4,649	13,392	40,368	167,587
Percent Fatal Accidents	2.1	1.2	0.8	0.6
Percent Injury Accidents	29.4	25.1	29.2	27.4
Severity Index	2.38	2.10	2.16	2.10
Road Surface				
Percent Wet Pavement	25.1	20.6	27.5	26.2
Percent Snow/Ice	1.8	2.5	2.7	3.1
Weather				
Percent Rain	19.3	15.6	21.5	20.1
Percent Snow/Ice	1.7	2.2	2.0	2.4
Light Condition				ļ
Percent Darkness	16.4	18.2	23.9	24.8
Percent by Time of Day	WW			
Midnight - 6 am	6.2	7.7	6.4	7.7
6 am - noon	37.1	35.9	24.2	24.5
noon - 6 pm	44.5	42.9	47.0	45.6
6 pm - midnight	12.2	13.6	22.4	22.2
Percent by Day of Week				
Weekday	89.1	85.6	74.6	74.8
Weekend	10.9	14.4	25.4	25.2
Percent by Month		;	;	
January - March	24.8	23.0	23.9	23.3
April - June	23.9	25.5	25.8	25.4
July - September	25.1	25.8	23.0	24.0
October - December	26.2	25.7	27.2	27.3

Characteristics of Truck and Non-Truck Accidents on Rural Table 22. **Two-Lane Roads**

Severity Index = (9.5(K+A) + 3.5(B+C) + PDO)/Twhere

K = number of fatal accidents

A = number of incapacitating injury accidents

B = number of non-incapacitating injury accidents C = number of "possible" injury accidents

T = total number of accidents

	Percentage of Accidents for Each Directional Analysis Category			
Directional Analysis Category	TRUCK ACCIDENTS		NON-TRUCK ACCIDENTS	
	Extended- Weight	Base System	Extended- Weight	Base System
Intersection	28.4	31.9	35 .3	38.2
angle	9.5	10.5	15.8	17.1
rear end	9.9	10.0	12.1	12.5
left turn	0.7	0.7	1.4	1.6
fixed object	1.2	1.9	0.9	1.3
same-dir. sideswipe	3.5	4.1	2.5	2.5
other	3.6	4.8	2.6	3.2
Non-Intersection	71.6	68.1	64.7	61.8
rear end	17.3	16.6	21.0	17.9
head on	1.8	0.7	0.9	0.7
same dir. sideswipe	9.0	13.1	5.8	5.0
opp. dir. sideswipe	11.7	6.4	4.7	4.1
driveway-related	2.7	2.3	4. 4	3.8
parked vehicle	3.1	3.6	1.8	2.1
fixed object	5.9	6.6	8.5	10.8
non-fixed object	1.0	0.8	0.8	0.7
ran off road	4.9	4.0	6.8	6.8
overturned	2.8	2.4	1.0	1.1
other	11.6	11.6	9.0	9.0

Table 23. Directional Analysis for Truck and Non-Truck Accidents on Rural Two-Lane Roads

-

		Percentage of Accidents for Each Contributing Factor				
	Contributing Factors	TRUCK ACCIDENTS		NON-TRUCK ACCIDENTS		
		ExtWeight	Base System	ExtWeight	Base System	
Ę	Animals	1.5	1.7	3.4	3.5	
E I N V	Glare	0.6	0.6	0.6	0.7	
I R	Obstructed View	3.2	3.5	2.5	2. 9	
N	Roadway Debris	0.6	0.9	0.7	0 .6	
R O N E N T A	Poor Traffic Control	0.2	0.1	0.2	0.2	
T	Defective Shoulder	0.4	0.6	0.1	0.2	
Ĺ	Holes/Bumps	0.3	0.1	0.2	0.1	
	Construction	0.7	1.2	0.2	0.5	
	Poor Vehicle Parking	0.3	0.4	0.2	0.2	
	Fixed Objects	0.3	0.2	0.1	0.1	
	Slippery Surface	10.0	7.7	11.7	11.3	
	Water Pooling	1.1	0.7	1.7	1.3	
HU	Unsafe Speed	4.8	3.6	5.1	4.8	
M	Ignore Right of Way	10.0	9.2	10. 9	10 .2	
A N	Following Too Close	3.2	3.1	4.0	4.2	
	Improper Passing	1.3	1.1	0.7	0.7	
	Ignore Traffic Cont.	1.3	1.5	1.7	2.0	
	Turning Improperly	1.5	2.2	1.3	1.3	
	Alcohol Involvement	1.9	1.5	3.1	3.4	
	Drug Involvement	0.1	0.1	0.2	0.2	
	Sick	0.1	0.1	0.1	0.1	
	Fell Asleep	0.7	1.0	0.7	0. 9	
	Lost Consciousness	0.1	0.1	0.2	0.2	
	Driver Inattention	19.3	18.6	1 9.1	18.6	
	Distraction	1.0	1.2	1.2	1. 3	
	Physical Disability	0.1	0.1	0.1	0.1	
¥ I	Defective Brakes	2.9	2.5	1.7	1.5	
Ē	Defective Headlights	0.1	0.0	0.1	0.0	
I Ç	Other Lighting Def.	0.7	0.5	0.3	0.3	
C U L R	Steering Failure	0.5	0.4	0.4	0.3	
R	Tire Failure	1.4	1. 6	1.0	1.0	
	Defective Tow Hitch	0.5	0.4	0.1	0.1	
	Improper Load	1.4	1.1	0.2	0.1	
	Oversized Load	1.2	0.7	0.1	0.1	

Table 24.Contributing Factors for Truck and Non-Truck Accidents on
Rural Two-Lane Roads

an en

...

PAVEMENT CONDITION ANALYSIS

In an attempt to measure changes in pavement conditions resulting from the extended-weight legislation, an analysis was performed of pavement rideability data for 1985 and 1990. Rideability indices are calculated from roughness data collected by the Pavement Management Branch, Division of Specialized Programs, Kentucky Department of Highways. Roughness measurements are collected with six sedans equipped with Mays Ride Meters and on-board microprocessors. Tests are conducted at 50 mph (when conditions allow) and in accordance with ASTM E 1082. The roughness results are converted to a rideability index (RI), with an RI scale ranging from zero to five. An RI value of zero means the pavement is too rough to be traveled at a reasonable speed without high risk to the driver. An RI value of five means the pavement is perfectly smooth. The RI scale can be viewed as follows (8):

<u>Rideability Index</u>	<u>Rideability Assessment</u>
4.0 to 5.0	Very Good Rideability
3.0 to 3.9	Good Rideability
2.0 to 2.9	Fair Rideability
1.0 to 1.9	Poor Rideability
0.0 to 0.9	Very Poor Rideability

For the analysis, copies of the statewide Rideability Index File for 1985 and 1990 were used. All segments for which data had been collected in both years were included in the analysis. The first summary included all such segments in the state. The second summary included only segments on the extended-weight system. The third summary further divided the extended-weight segments based on whether they were located in an eastern coal-producing county, western coal-producing county, or coal-impact county.

The results of the analysis are presented in Table 25. Nearly 15,000 miles of road segments were sampled in both 1985 and 1990. For these segments, the average rideability index rose from 2.81 in 1985 to 2.89 in 1990, representing approximately a three percent increase. Looking just at the extended-weight system, the average RI rose from 2.74 to 2.91, which is about a six percent increase. It is interesting to note that in 1985 the average RI was lower on the extended-weight system than on all routes, but in 1990 the extended-weight system had actually risen to be slightly above the statewide average.

Comparing results for the extended-weight routes in different parts of the state, we see that the average RI has increased substantially for eastern producing counties and impact counties but has remained virtually unchanged for the western producing counties. In both years, impact counties had the highest average RI, followed by western producing counties, with eastern producing counties having the lowest average RI.

Road System	System Mileage for which RI Data Collected	1985 Avg. RI	1990 Avg. RI
All Roads	14,767	2.81	2.89
Extended-Weight Roads	2,310	2.74	2.91
Ext-Wt Roads, Eastern Producing Counties	1,545	2.57	2.75
Ext-Wt Roads, Western Producing Counties	215	3.06	3.05
Ext-Wt Roads, Impact Counties	550	3.11	3.28

Table 25.Rideability Data for State-Maintained Roads in 1985 and 1990

and the second s

,

a contrar

a sector contraction and the

CONCLUSIONS

Although this is an interim report and the findings presented are preliminary in nature, some conclusions can be drawn from the available information. The more significant of these preliminary conclusions are summarized in the following:

Legislative Intent and Results

- 1. The extended-weight legislation has apparently been somewhat successful in accomplishing its primary objectives: to enhance the competitiveness and economic viability of the Kentucky coal industry and to eliminate the perceived need for coal haulers to violate the law in order to be competitive. The willingness of coal transporters to purchase decals provides some evidence that cost reductions (at least equivalent in magnitude to the decal fees) have been realized by the industry. The effect (if any) of these cost savings on the competitiveness and economic viability of the industry has yet to be evaluated.
- 2. Another possible success of the legislation is reflected in the reports (supported by rideability data) of improved road conditions in eastern Kentucky. Although the funds generated from decal sales are obviously insufficient in amount to realize noticeable improvements, the legislation may have focused attention (and expenditures) on the maintenance of coal-haul roads. Unfortunately, while the condition of eastern Kentucky roads have improved, roads in western Kentucky are reported to be experiencing increased pavement damage due to heavy loads. However, a summary of rideability data for extended-weight roads in western Kentucky showed no significant change from 1985 to 1990.

<u>Safety</u>

- 1. In the area of safety, there is no indication of higher overall accident rates on the extended-weight system versus comparable, non-extended-weight routes. The fatal accident rate, however, is significantly higher on the extended-weight system and bears further investigation.
- 2. To the extent that the extended-weight system has reduced the number of coal trucks on the road, then it has reduced the frequency of coaltruck accidents (unless the heavier trucks have a greater propensity for accident involvement). Rates of truck accidents (and, more specifically, coal-truck accidents) per vehicle-mile of travel have yet to be determined.
- 3. Highway safety is certainly influenced by the interaction of vehicle characteristics (size, weight, etc.) and roadway characteristics (cross

section, geometry, traffic control, traffic volumes, etc.). The extendedweight legislation recognizes these interrelationships and provides limited mechanisms for the exclusion of highway segments from the extended-weight system on the basis of increased safety risk. The effectiveness of these mechanisms has yet to be evaluated.

4. Difficulty is experienced in stopping heavily laden coal trucks approaching signalized intersections (particularly on downgrades and where approach speeds are high). The extent of this problem and the effectiveness of possible countermeasures has yet to be evaluated.

Road User Revenue

- 1. Because heavier payloads mean fewer truck registrations, the coal-decal fee structure results in a net loss of revenue to the Road Fund, estimated at almost \$2 million annually.
- 2. Forty percent of the revenue from decal sales is allocated to the counties for their upkeep of the county-road portion of the extended-weight system. Although relative expenditures on county-maintained and state-maintained portions of the extended-weight system are unknown, county-maintained roads comprise only about eight percent of the extended-weight system.

Highway Costs

- 1. The heavier weights of coal-decal trucks add approximately \$9 million annually to pavement overlay costs.
- 2. Larger and heavier trucks increase, to an (as yet) undetermined extent, other highway costs including:
 - Construction and reconstruction of pavements, shoulders, bridges, and culverts;
 - Rehabilitation of pavements, shoulders, and bridges;
 - Routine maintenance of pavements and shoulders; and
 - Others.
- 3. Road users throughout the state are subsidizing the extended-weight system (and thus the movement of Kentucky coal) by underwriting the increased costs of maintaining and improving the infrastructure.

PRELIMINARY RECOMMENDATIONS

Because this is an interim report describing preliminary findings, it would be premature to offer specific recommendations at this point. However, there are certain areas where preliminary findings suggest some action may be appropriate. These are described, using general terms, in the following:

- 1. The methodology for defining which routes are included in the extendedweight system should be revisited to include some consideration for route geometry and cross section.
- 2. The definition of the extended-weight system should include provisions to add a sections of road to the system to prevent trucks from having to use non-extended-weight routes for portions of their trips.
- 3. Countermeasures for the heavy truck braking problem at signalized intersections should be evaluated and implemented expeditiously.
- 4. Consideration should be given to revising the allocation of dollars from the Energy Recovery Road Fund to more accurately reflect the composition of the extended-weight system mileage.

FUTURE WORK

The following have been identified as areas where further research is needed. Unless otherwise indicated, these areas will be addressed (to the extent possible) within the remaining time of this study.

- 1. The magnitude of cost savings realized by the Kentucky coal industry as a result of the extended-weight legislation will be investigated. An attempt will be made to assess the effect of these cost savings on the competitiveness and economic viability of the industry.
- 2. Ride quality data for coal-haul roads in eastern and western Kentucky will be further evaluated to more fully assess the impact of the legislation on pavement conditions. The evaluation will include additional years of data to account for possible year-to-year fluctuations, thus enhancing the reliability of the conclusions.
- 3. Accident rates for trucks (and, more specifically, for coal trucks) will be developed. A more detailed analysis of accident characteristics will be conducted for accidents involving coal trucks. The higher fatal accident rate on the extended-weight system will be investigated.
- 4. The effectiveness of existing procedures for excluding segments of roadway from the extended-weight system on the basis of increased safety risk will be assessed.
- 5. The problem of heavy coal trucks experiencing difficulty in stopping for signalized intersections will be investigated. The magnitude of the problem will be determined, and countermeasures will be evaluated.
- 6. The analysis of impacts of the extended-weight system on road user revenue and highway costs will be updated and expanded. Additional costs not considered in the original analysis will be incorporated.
- 7. Other impacts of the extended-weight system that have not yet been assessed will be evaluated.
- 8. Recommendations will be developed for mitigating negative impacts of the extended-weight system and for enhancing the ongoing management of the system.

REFERENCES

- 1. Deacon, J.A.; Pigman, J.G.; and Stamatiadis, N., "Review of Highway Cost-Allocation Methodologies," Research Report KTC-92-6, Kentucky Transportation Center, University of Kentucky, Lexington, June 1992.
- 2. Governor's Office for Coal and Energy Policy and Kentucky Coal Association, "Kentucky Coal Facts--1991-92 Pocket Guide," Frankfort, Kentucky.
- 3. Kentucky Department of Mines and Minerals, "Annual Report," Lexington, Kentucky.
- 4. Kentucky Transportation Cabinet, Department of Highways, Division of Planning, "Kentucky's Official Coal Haul Highway System," Frankfort, Kentucky.
- 5. Secretary of Transportation, "Heavy Vehicle Cost Responsibility Study," U.S. Department of Transportation, Washington, D.C., November 1988.
- 6. Transportation Research Board, "New Trucks for Greater Productivity and Less Road Wear--An Evaluation of the Turner Proposal," <u>Special Report 227</u>, Transportation Research Board, Washington, D.C., 1990.
- 7. Transportation Research Board, "Truck Weight Limits--Issues and Opinions," Special Report 225, Transportation Research Board, Washington, D.C., 1990.
- 8. Allen, D.L., "Review and Analysis of Pavement Management Practices in Kentucky," Research Report KTC-90-4, Kentucky Transportation Center, University of Kentucky, Lexington, March 1990.

APPENDIX A

(a) a set of the second s second sec second sec

ISSUES SURROUNDING THE TRUCKING OF KENTUCKY COAL IN THE 1990'S

by Curt Harvey Prof. of Economics University of Kentucky

August 1993

The Coal Industry in the 1990's

In the early 1990's, the world balance in energy demand and supply has remained largely unchanged. Demand for electric power, and for the direct use of petroleum and natural gas has displayed remarkable stability, and available supplies seem abundant. Aging nuclear power plants, on the other hand, particularly in the U.S. and in the turbulent eastern half of Europe will soon force new decisions on the uses of fossil fuels. Whether coal will emerge as the fuel of choice, as the energy source that will replace abandoned nuclear power plants is highly uncertain. The world is generously endowed with petroleum reserves, and so long as these continue to flow amply from OPEC, from Russia, Kazakhstan, China, Mexico, Canada, and from elsewhere, there is little prospect for a new coal boom borne out of oil shortages and/or rising oil prices.

Historically, the welfare of the coal industry has closely paralleled the fortunes of the oil industry. The price of coal moves in the same direction as the price of petroleum, albeit at a lower level and with a time lag. This 'price-tracking' occurs because when the price of crude oil rises, coal becomes an increasingly attractive substitute. Expanding market demand tends to raise its price, abatements tend to reduce it.

A vivid illustration of the parallels between the petroleum and coal industries is provided by the coal-boom years of 1974-1975, and 1980 - 1981. Following the unexpected Arab actions of late 1974, and again in 1980, the price of coal, in particular the spot market price, rose to heretofore unimagined levels. The explanation is simple: embargo restrictions sharply reduced available oil supplies and prices of imported oil rose fivefold. Uncertainties concerning the future availability of adequate oil imports, coupled with sharply higher prices, generated a strong upward shift in the demand for its most suitable substitute: coal. As expected, the price of coal rose dramatically.

A similar situation developed in 1979 and 1980 following the political upheavals in Iran. Since then, however, the major oil-importing nations have reduced their reliance on Middle Eastern oil, have effectively implemented conservation measures, have built up strategic oil reserves, and have expanded the use of alternative energy resources. The consequence of these actions is that future interruptions in world oil supplies, so long as they are confined to modest proportions, are unlikely to have serious impacts on the economies of the developed world. The recent conflagration in Kuwait and the restrictions imposed on Iraq are a good example of this situation.

Most experts support the view that, in the long run, real petroleum prices will remain stable or continue to decline modestly under intense supply pressures. These pressures arise from an insatiable need for convertible currency on the part of many oil-producing nations--Iraq, Iran, Nigeria, Kuwait. These countries find it difficult to ignore the rewards yielded by circumventing OPEC production quotas and prices. The potential profits are an irresistible lure. And coal, which is very vulnerable to falling oil prices, is systematically squeezed out of many electric utility markets except in markets located very close to the coal mining states. Moreover, oil is clean, versatile, easy to handle, and has a higher energy content per unit of weight. When compared with those of coal, petroleum's virtues are many.

In short, in the United States and in most of the developed West it is the electric power producing industry that is the principle user of coal. The economic health of the coal industry hinges on the growth in electric power demand and on the extent to which this demand is satisfied by coal-fired generating capacity. In a capital-short world, the high investment costs for new coal plants often are a powerful deterrent to their construction. Consequently, electric utilities often opt for the less-capital-intensive oil-fired facilities when deciding on new power plants. This trend will probably continue well into the next century.

The Demand for Coal and for its Transport in the 1990's

The preceding section highlighted briefly the traditional coal-oil linkage and the current relationship between the two industries. The section also attempted to look into the future, which is, at best, a hazardous game of chance. The review is important, however, because it has a direct bearing on the gravity of the issues that surround the transport of coal in Kentucky.

For several decades and continuing today, the transport of coal to markets is at times an activity given to controversy. The rail transport, trucking, and even the barging of coal to certain destinations can be highly competitive. In a shrinking market, competition intensifies as carriers seek to secure the largest possible share of the business. Offers to transport coal at lower prices abound and so long as coal can be transported in ever larger trucks with impunity, truck and load sizes will expand. That is the character of coal transport in numerous regions of the state today.

One of the more important questions that needs to be raised is to what extent we can expect the heavyweight coal truck problem to remain unchanged, decline, or escalate. Given the earlier review it would seem that the propensity to use coal to meet future energy demand depends on new post-year-2000 power plants that can remove more than 95 percent of the sulfur dioxide and at least 90 percent of the nitrogen oxide they produce. The recent Clean Air Act amendments represent a technological challenge to the industry. In the future, more stringent sulfur dioxide standards will be applied, but, more importantly, sulfur dioxide emissions are going to be capped permanently. Testing and evaluating the next generation of fluidized bed combustors--the pressurized systems--is under way but up scaled commercial uses are unlikely to be implemented in this century. Consequently, for the remainder of the decade we should not expect an expansion of the demand for coal based on new coal-fired capacity. Similarly, we should also not expect an intensified coal hauling problem. It is more probable that, short of new enforcement procedures and a revised permitting system, heavyweight coal trucks will continue to damage the roads over which they travel and continue to create a hazard for others. The problems will not escalate because the demand for coal will not increase. The range of trucking is limited after all, and trucks cannot compete with the railroads beyond a certain distance. Also, their travel on Interstate highways is circumscribed by Federal weight limits. Smaller trucks can, of course, move coal over longer distances, but the

per-ton costs are high.

In summary, the existing heavyweight trucking problem is likely to continue unless new administrative regulations are implemented to cap load limits below their present levels. In the future, an intensified road problem due to an increased demand for coal and for its transport is unlikely to develop. Whether or not road destruction and safety hazards can in fact be reduced depends on the political and administrative willingness of decision-makers to revise existing practices.

The State of Coal Mining in Kentucky

In the 1990's, the Coal Industry and all its supporting businesses no longer represent a sizable portion of the state's economy. The table below shows the relative decline of coal as a major force in the State's economic activities.

Table 1Employment in Kentucky Coal Mining

<u>Year</u>	Number Employed _(thousands)	Percent of Total
1991	28.3	1.9
1986	35.7	2.8
1981	45.0	3.8
1976	41.7	3.8
1972	26.4	2.7

Source: Kentucky Cabinet for Human Resources, Bureau for Manpower Services, Research and Statistics Branch

Table 1 shows the dramatic decline in employment between 1976 and 1991, and the attendant decline in the percent share in total non-manufacturing employment. In 1991, only 28,300 persons worked in coal mining, which is but 1.9 percent of the non-manufacturing labor force. The drop in coal mining employment in Kentucky was particularly severe in 1991, the onset of the recession. It dropped by 13 percent during that year.

Coupled with the decline in employment is a constancy in production and value as shown in Table 2.

Kentucky Coal Production (bitumino (thousands of short tons)			
Year	Quantity	Value (millions of \$)	
1991	158,980	4,046.0	
1986	153,933	3,994.5	
1981	157,560	4,608.6	
1976	140,000	2,665.0	
1971	119,389	774.7	
	<u>(tho</u> <u>Year</u> 1991 1986 1981 1976	Year Quantity 1991 158,980 1986 153,933 1981 157,560 1976 140,000	

Source: U.S. Dept. of Interior, Bureau of Mines, Minerals Industry Surveys.

Table 9

Fewer miners were able to produce equal or greater amounts of coal because productivity increased. Each miner was able to produce more with the equipment in use or with the new equipment. Prices per ton of coal declined, however, so that total value created changed only modestly.

Of the many sectors that make up the Kentucky economy and generate its aggregate income, only coal mining declined in value. Table 3 shows the steady decline in personal income earned in coal mining over the past ten years.

Table 3 Personal Income in Mining (in millions of \$)

1991	1,516.0
1986	1,821.0
1981	2,182.0

Source: U.S. Department of Commerce, Bureau of Economic Analysis, State Personal Income, Kentucky Economic Information System, September 1992.

Finally, it may be useful to briefly review Severance Tax Collections for coal. Table 4 shows that for the past ten years, taxes collected declined substantially.

Table 4 Coal Tax Collections (in millions of \$)

1991	184.103
1986	193.881
1981	209.708

Between 1981 and 1991, these tax revenues declined by more than 12 percent. In summary, the coal industry today is a far smaller industry in the state than it once was. Based on employment, it ranks in size with the apparel and other textile products industry and the industrial machinery production industry. It is inevitable that its influence has declined.

The Trucking of Coal in Eastern Kentucky

Historically, while trucks are important in the movement of coal from mine to consumer, they are most important in the move from mine to rail or mine to waterway. In Appalachia, typically 20 percent of the coal moved to consumers directly has been by truck; in Eastern Kentucky, the percentage was only 12 percent¹. The statistics, unfortunately, are somewhat dated, but more current ones do not appear to be available. When heavy coal trucks use public roads for haulage, they impose considerable maintenance costs on the public. They are large and intimidating and, because the terrain in Eastern Kentucky is extreme and subject to the effects of seasonal temperature variations, maintenance problems with deteriorating roads emerge. One such problem, often ignored, is the isolation of many rural regions. Another is the cost burden of repairs which is carried by Kentucky taxpayers who live elsewhere and have nothing to do with the coal industry. Because so many coal consumers are located outside of Kentucky-in New England, the midand south-Atlantic regions--their consumption of Kentucky coal is indirectly subsidized by all those whose tax dollars support road maintenance and repair.

In the mid to late 1980s, the average distance of truck shipments of coal declined by nearly one half. The striking decline is explained in part by the closure of distant, inefficient mines and competition from more efficient, closer mines. The trend is continuing in the present, very weak market for coal, except for a few power plants located at or near the coal producing regions.

Externality Costs In The Market Place

Under most conditions, markets can solve quite efficiently the problem of resource allocation. Prices, which fluctuate in accordance with the levels of demand for and the supply of goods represent signals to buyers and sellers and allow them to adjust their behavior. In an ideal situation, the system functions as described. In the world around us, however, relationships are much more complex and the market system sometimes fails. From the standpoint of resource management, which is at the heart of most regulation of the coal industry, the market fails often.

Two major sources of market failure can be distinguished. Both are the result of the fact that everyone's economic activities directly or indirectly affect the well-

¹ Wilbur Smith and Associates, <u>The Coal Transportation Role of the Appalachian</u> <u>Development Highway System</u>, 1982, p9

being of others. Many of these effects are termed externalities--or spillover effects-and they are ubiquitous.

First, many resources are not governed by a well-defined and enforceable set of property rights. These resources are not owned privately and therefore are not sold in the market. Because the absence of prices precludes their sale, no market signals exist to govern their use. Roads are not sold; their use is open to all (except, of course, in the case of a few remaining toll roads).

Second, the public-good nature of many environmental resources, including roads, requires some form of non-private, i.e. public, intervention in the market. The intervenor is usually a government agency or a quasi-public institution, and its role is to ascertain that appropriate quantities of the resources are used and preserved by society. Roads, which are used by all, are such a public-good resource.

Because external (or spillover) costs are often ignored by the market, the true cost of production and consumption of a commodity can be understated. The competitive price system is based on the premise of full-cost pricing, that is, on the premise that the total cost of producing a commodity (e.g., electric power generated by coal) is borne by the person using it. If the user bears only part of the cost, the private cost, resources are not put to their socially optimal use. Someone other than the user bears a portion of the cost. This is exactly the situation with public roads damaged by overweight coal trucks. Someone other than the ultimate user of the coal is bearing a portion of the cost of bringing a kilowatt-hour to market. These others include the users of the damaged roads and the general taxpayers who subsidize the maintenance, repair, and construction of these roads.

The use of roads over which coal is hauled is distributed without charge because it would be infeasible to collect revenues from those who use them. And even if some revenues are collected from trucks whose loads exceed a given limit--the 'extended weight decal'--these amounts are rarely adequate to defray road maintenance expenses. Ultimately, the use of general public funds becomes inevitable.

Whenever a good or service has a "publicness" about it, as roads do, its full marginal cost cannot be captured easily or completely. Consequently, the use of these roads remains below the social optimum. In an effort to approach the socially optimal quantity of public goods or services produced, a public authority is often set up. Its purpose is to maintain an appropriate quantity of undamaged usable roads. It attempts to meet its goals through regulation and the enforcement of road standards.

Shifting the 'Spillover' Costs

For at least 25 years, evidence collected by state authorities shows that weight limitations on Eastern Kentucky roads are regularly exceeded by coal trucks. Tolerated by several state enforcing bureaus, and practically ignored by County Judicial authorities, overweight coal trucks represent a safety and health hazard to all persons obliged to travel the affected roads. Heavyweight coal trucks, which often exceed the load-bearing capacities of the travelled roads, create a cost which is not paid by the truck owners, by the coal consumer (i.e. electric power utility and their customers), or by the coal mining companies. Instead, the costs--termed 'externality costs' in the literature because they arise 'external' to the transacted production-distribution-consumption axis--are shifted to those who travel the roads. In effect, the final consumer of coal transported by truck (or by any other type of carrier) fails to pay the entire cost of consuming that which he (or she) buys. If he happens to be a typical city resident who uses coal-generated electricity, he fails to pay the complete cost of producing and distributing a kilowatt-hour of electricity. Instead, he pays somewhat less, and, as a consequence, consumes more than he would if he were required to pay full cost.

Actually, the consumer cannot be faulted--he pays what is asked of him. He is the captive of a natural monopoly sanctioned by society for time-honored reasons. It would be clearly unwise to allow two electric utilities to compete for the same business, although prices would probably be lower. One cannot fault the public utility either for paying less for the delivered coal than it should if the externality costs were properly distributed and imputed. One can also not fault the truck owner for driving his (or her) truck with heavy loads. The truck driver is typically a small entrepreneur attempting to maximize profits by loading as much onto the truck as capacity will permit.

The coal mine operator also cannot be held responsible because, once the coal leaves the mining site, the mine operator has no further jurisdiction or interest in the nature of the distribution or consumption cycle.

The clear responsibility for safeguarding the road system--its construction, maintenance, rehabilitation, and expansion--lies with the public authorities charged with these tasks. The marketplace cannot accommodate every possible externality cost created by producers and even consumers. The marketplace functions, but not always perfectly. When there is a divergence between the private and social cost of producing a commodity or service, a clear case can be made for public intervention. There is no one else; unless, of course, the industry itself decides to 'internalize' the externality costs--that is, to distribute them according to their appropriate source within the industry. But this is unlikely to occur. The industry itself is far too fragmented, its interests far too diverse to be able to properly absorb and allocate the externality costs. Therefore, by default, it becomes the responsibility of a public agency to protect the interests of those to whom the externality cost is shifted--the travelers of the affected roads.

Redistributing the Road Degradation Burden

The road degradation generated by heavyweight coal trucks can be viewed as a tax on mining area residents because it is a burden the residents cannot escape unless mining activity is removed from the region. For obvious economic, sociological, and political reasons, this is not a feasible alternative. Until the late 1960s, the residents largely accepted the burden, which materially lowered their real income and well-being. Moreover the burden (or tax) is regressive when related to income, because most coal-consuming regions have higher income levels than the coalproducing regions.

People in Appalachia accepted damaged roads because there was no alternative, and poor roads became part of their expectations. Their cars would require earlier and more frequent repairs, as would school buses, ambulances, fire trucks, etc.. It took longer to travel from point A to point B, and, because trucks regularly violated the law with impunity, respect for the law began to erode.

After the late 1960's, new safety and environmental legislation at state and federal levels was adopted, designed to forestall the emergence of externalities. The intent was to internalize these so that the private costs would correspond more closely with the social costs of mining coal. In the case of road usage by coal trucks, the intent was to enforce weight limits diligently, levy fines where appropriate, and use the funds to rehabilitate or strengthen the road surfaces. It was hoped that coal trucks would abide by load limits and avoid the time/costs of being weighed, cited, and when appropriated, fined by the judicial authorities. However, insurmountable political, legal, and administrative obstacles rendered the intent void. Today, the problem of road degradation continues, as does the redistributed burden away from coal consumers and onto the private road users.

Strategies to Regulate Road Use

There exist many different forms of regulation and control in the coal industry. To review them all would be an immense task. It is however, useful to examine several strategies that are available to regulatory bodies for intervening in the market on behalf of road users.

First, charges could be levied on the users of roads which would vary in accordance with the marginal damage created by each use. Although many would consider this the best and fairest strategy, from an administrative and political standpoint it would be infeasible to implement.

A second strategy represents a piecemeal approach to road preservation. Maximum weight limits per truck axle could be set that correspond to the ability of the road to bear the burden. So long as the predetermined flow of trucks remains constant, road integrity could be preserved. If however, more coal trucks use the haul roads, their integrity will deteriorate despite the statutory limits. The piece-meal approach can be and is used selectively, but it is not a comprehensive or optimal solution.

The third and often widely used strategy, although not necessarily the best, is government regulation and containment of the effects on roads. State authorities issue licenses and permits to those whose activities affect the environment, i.e. affect public roads. But users of these roads often select their own transport mix--that is, a mix of small, medium, or heavy, trucks with different numbers of axles. The problem is that what may be optimum for one transport firm in a particular mining region may be less than optimum for another. What is appropriate from a cost and effect standpoint in region A may not be appropriate for region B. Consequently, final product prices may once again fail to reflect the true social resource cost of transporting coal. All three strategies identified require some enforcement. If voluntary compliance could be elicited, this would be ideal and far less expensive. It would obviate the need to use court procedures to adjudicate conflicts and violations. it would also reduce court-induced time delays and the use of technicalities to override substance.

enne ger

Relying on voluntary compliance with road standards generates another benefit. It eliminates "perverse incentive" behavior. For example, a violator of weight limits can devise that it is less expensive in the long run to fight a licensing or decal requirement in the courts than to comply with it. The violator may conclude that it is to his (or her) advantage to transport coal without a decal and to fight a citation or desist order in the courts rather than to comply. By the time a verdict is rendered, the transporter may have no further use for the roads, and even after paying legal costs and a possible fine, the profit from transporting heavy loads is sufficient to have made the venture financially successful. Voluntary compliance would have been preferable in such a case.

Finally, it ought to be recognized that regulations--and particularly their enforcement--are subject to political whim. Bargaining strengths and political influence frequently dictate outcome. More often than not, controversies are resolved in favor of the regulated and, over time, regulatory zeal and effectiveness diminish. Over the long term, regulatory effects are typically less certain, particularly when contrasted with the more enduring nature of charges imposed on road damage.

The Acceptable-Standards Approach to Road Integrity

The ideal method of preventing road degradation during coal transport would be to implement an optimal tax rate on degradation which would make it 'profitable' for truck operators not to damage the roads they use transporting coal.

Unfortunately, information required to implement such a tax is practically unavailable. Public authorities in Kentucky, however, attempt to attain the same objective not through taxation, but through the sale of extended weight decals. Unfortunately, the revenues thus collected are woefully inadequate to restore road integrity or encourage transporters to carry smaller loads. The decal cost is so minimal as to have little influence, if any, on load sizes.

There is, however, another way--through the use of an acceptable-standards approach which promotes economic satisficing (in essence making the best of a bad situation) rather than optimizing². For each mining region, however circumscribed, a standard would be established in terms of an 'acceptable' amount of road degradation. This standard could be established by querying users of the roads, or by putting before the voters in the region the question of how much road damage they would be willing to tolerate.

If they are willing to tolerate substantial road degradation, the decal fee would

² W.J. Baumol, "Taxation and Control of Externalities," American Economic Review, June 1972.

be set at a low level. In contrast, if they are intent on experiencing zero road degradation, the decal fee would be set at a high level. Modest amounts of acceptable road damage would engender a fee in between.

If an acceptable standard of road degradation and the costs of repair can be defined, and there is no reason why this cannot be done, then specifying a workable tax, incentives, or decal-fee policy becomes the primary question. The extendedweight decal for trucking coal is an existing policy tool that is, in fact, quite close to a tax on road degradation. The decal fees, however, need to be higher than the costs of road repair if the authorities wish to induce truckers to pay for the road damage they create. In Kentucky, they are not.

If the externality costs created by heavyweight coal trucks are a function of road usage, which they probably are, the level of the decal fees should be structured accordingly. The fees need not necessarily be a uniform charge, but could rise with the intensity of road use. In short, the more a heavyweight coal truck uses and degrades a given road section, the higher the decal fee ought to be. A uniform decal fee, as presently in use, encourages rather than discourages intensive road usage, and thereby road damage.

Tailoring the decal fee system to achieve a road standard may also reduce the administrative costs of some of the regulatory controls such as axle weight inspections. Some of each region's resources presently devoted to direct road and truck inspections and control probably could be shifted elsewhere. In fact, when the aim is to achieve an acceptable standard of road reclamation, direct controls on trucks may be redundant. If the decal fee on road degradation is set high enough, truckers would choose to alter their trucking process--lighter loads, smaller trucks. A small number of inspections of the roads should be sufficient to determine whether the state of road conditions meets the acceptable standards.

It is probable that during the initial period of implementing a decal fee system some truckers will reject the purchase of an expensive decal and haul coal without it. In such a situation, it may be necessary for the authorities to strictly enforce the extended-weight decal requirement. They may have to monitor such purchases diligently and carry out occasional road inspections. It may also be necessary to couple this with a bonding requirement, very much like the performance bonds that are required in surface mining. If a trucker rejects the purchase of an extendedweight decal, he (or she) may be required to deposit a performance bond.

Finally, communities and regions should be free to change the acceptable standard for road degradation at a future time. When heightened concern over road degradation by heavyweight trucks is evident to citizens and policymakers, one would expect tighter standards to emerge. A change in standards need not imply an expansion of control over the industry. An upward adjustment in the decal fee should be sufficient to ensure that the rate of degradation is adjusted and road integrity is preserved. ,

APPENDIX B

. -

SAMPLING OF NEWSPAPER ARTICLES RELATED TO EXTENDED WEIGHT COAL HAUL ROAD SYSTEM

(Articles Reproduced by Permission of the Louisville Courier-Journal and the Associated Press)

The Courier-Journal April 2,]986

Overweight fee for coal trucks is increased by legislature

By LIVINGSTON TAYLOR Sheet Writer

FRANKFORT, Ky. — State approval of overweight coal hauling would become easier next year under the Kentucky legislature's latest plan to deal with the persistent problem.

The House and Senate yesterday passed and sent to Gov. Martha Layne Collins an amended version of House Bill 978 which would direct, rather than authorize, the Depariment of Highways to approve applications from coal interests for cooperative agreements to maintain coal-haul roads carrying overweight loads.

The bill would permit truckers to haui loads up to 120,000 pounds, compared to the usual 80,000-pound maximum, by paying an additional fee of up to \$360 a year.

The bill will take effect on nexts April 1. unless vetoed by Collins. A veto seems unlikely because the Transportation Cabinet did not oppose the bill.

Under existing law, passed in 1984, coal truckers can run at weights up to 120,000 pounds by either paying a \$50 fee and getting state approval of a cooperative road-maintenance agreement or by paying a 5-cent or 10-cent-a-ton tax based on hauling distance.

The revenue goes to a restricted fund for maintenance of coal-baul roads.

However, the 1984 law has not worked as intended. Since it went into effect July 13, 1984, only \$394,000 has been collected.

Of 2,129 applications, the state Transportation Cabinet bas approved less than half, 1,034, accordtag to cabinet figures.

Cabinet engineers found that many bridges on proposed coal-haui routes were "not of sufficient strength or durability" to allow use by overweight trucks, Sandra Pulles, a staff adviser to the transportsthes secretary, said in an interview yesterday.

"We couldn't approve the plans because our approving the plans said, 'Yes, we think it's perfectly all rights for you all to run at those weights over those bridges,'' she weights. "When we didn't approve the plans, we didn't collect any money and they (the truckers) continued to operate overweight without our approval and without paying," Ms. Publes said.

Under HB 978, the Department of Highways retains the power to set lower weight limits on bridges "when in its judgment any bridge ... may by rename of its design or deterioration be damaged or destroyed to the point of catamu.ophic failure."

"It changes the positions of the cabinet because now the legislature has said it's OK for them to run over everything that is not to danger of actual collapse," Ms. Pullen suid.

"The fact that ... the bridge deck is going to get rough and so forth is not to be a concern of the Transportation Cabinet," she said.

Of the cabinet's position on the bill, she said. "We believe it to be better than the existing law and in that respect we are for it."

HB 978 also provides that:

✓ Overweight trucks could run on any road over which more than 50,000 tons of coal is transported per year, except federal interstate highways.

✓ Yearly fees for overweight

trucks would be \$160 for a singleunit truck having one steering axle and two axles in tandem and gross weight up to 90,000 pounds; \$250 for a single-untt truck having one steering axle and three axles in tridem arrangement and gross weight up to 100,000 pounds; \$360 for tractorsemitrailer combinations with five or more axles and gross weight up to 120,000 pounds.

All limits are subject to a five per cent tolerance, meaning legal londs could reach 126,000 pounds.

✓ Heavy coal trucks would be exempt from the above fee as well as the normal \$840-a-year regerration fee if the truck while full is ariven only on roads covered by cooperative agreements calling for the operators to contribute to roadmaintenance costs.

✓ Sixty percent of the reveaue would be used on state-maintained coal-haul roads and 40 per cent would be divided among coal counties in proportion to miles of coalhaul roads and tonnage transported.

✓ A county facal court or governing body of a first- through fourthclass city could ask the state transportation secretary to delate roads from the overweight system because of "inherent and definite basards or special conditions."

✓ Violators of weight limits could be fined up to \$500 on a sliding scale ranging from three ceats per pound for the first 3,000 pounds over the limit to nine ceats a pound when the excess exceeds 5,000 pounds.

31

Drafting a law which could win support from elected (sidges in coalfield counties and also protect roads from under damage has been a inegatanding problem.

The version of BB 978 passed yesterday came out of the Senate Transportation Committee.

The chairman, Sen. Woody May, D-West Liberty, said the committee was trying "to seek some solution where district judges could enforce the law and still allow trucks to have coal on certain roads in Eastern Kestucky."

Asked if he's conceined about damage to roads and bridges caused by the bill, May said, "Not particularty because they (coal truckers) are already hauling the same amount of (over) weight.

May said the bill may lead to lighter loads because it will encourage truckers to stay within the new limits and because of the silding scale of fines.

The House sponsor of HB 978, Rep. Clayton Little. D-Hartley, predicted district judges would be more inclined to enforce weight limits under the new system.

"It sets up a system where a judge can be equitable in his fining," Little said.

NOTE: This news article also included photographs of Rep. Clayton Little and Sen. Woody May. However, these photographs could not be reproduced with proper quality for this appendix.

Danville, three counties protest higher weight limits for trucks

Associated Press

HARRODSBURG, Ky. — Remintions from three Central Kentschy counties and Danville that object to heavy coal trucks passing through their areas will be reviewed by the Transportation Cabinet next week at a public hearing on a new truckweight law.

Under the law passed last year, truck owners who pay a \$360 emmai fee can exceed the 80,000-penned limit and operate five-true brucks weighing up to 120,000 pounds or six-axie trucks weighing up to 140,000 pounds.

"We should just do away with them, really, but we can't do that," Mercer Cousty Attorney Doug Greenburg said.

Mercer. Boyle and Jessamine counties, as well as Danville in Boyle County, have asked the state to reroute the trucks, and Transportation spokeswichten Mary Mulloy said the matter will be reviewed at the Jan. 22 hearing in Frankfort.

The traffic has been especially heavy on U.S. 68 in Jessamine and Mercer counties since Lexingtonbased Kentucky Utilities Co. switched from trains to trucks in early 1985 to save money in transporting coel to its E. W. Brown power plant at Dix Dam.

Greenbury said county officials would like the state to throw out the new law or limit the provision that allows coul trucks to exceed the 80,000-pound limit with payment of the annual fee.

His county's resolution notes damage along U.S. 68, U.S. 127, KY 33 and KY 342, and to the nuisance that county officials say property owners in the areas must endure.

The truck traffic is a "general detraction from the quality of the eres," said Ed Music, Danville's city manager.

The city asked last May that KY 33 through Danville be exempted from the new wright law. In December, city officials passed a resolution against any coal-truck traffic on KY 33 and KY 24.

Jessemine County officials also passed a resolution in December to restrict coal-truck travel on U.S. 27 and U.S. 58. and Boyle County officials passed their resolution in the same month perisining to KY 33 and KY 52.

U.S. CS in Mercer County is a two-

lane highway not constructed to stand up to heavy coal-truck traffic, Greenburg said.

"You can see where the edges of the road are crumbling away," he said. "The guardrails have been knocked down and bent over, and there are a lot of indications of other damage along U.S. 68." The dangers do not end with the physical condition of the roads, area residents said.

1. 22222 2222 22

Jean Long, who lives along U.S. 68 in Mercer County, said she and her husband "are just very careful getting in and out of the driveway. "If they come around the corner

"If they come around the corner on us, we've had it," Long said.

Coal-truck weight law is criticized by all sides

By AL CROSS Staff Writer FRANKFORT, Ky. — The third time hasn't been the charm for Kentucky lawmakers, regulators, citizens and coal haulers who want to do something about one of the state's most chronic problems --- overweight coal trucks.

All four sides were represented yesterday at a bearing on regulations implementing the latest law on coal hauling, the third in three regular sessions of the General Assembly. As usual, none of the four was happy.

One legislator said the 1986 session capit-

ulated to the coal inwhen it dustry raised the legal maximum weight for coal trucks on major coal-haul roads from 84,000 pounds to 126,000 pounds. One of his colleagues

said the law isn't being implemented liberally enough.

Spokesmen for the industry said the state Transportation Cabinet has interpreted the statute so narrowly that many major coalhaul roads won't get higher weight limits.

Cabinet officials said during interviews that the law doesn't allow them to change the list of roads before summer at the earliest, and that the new scheme poses huge enforcement and safety problems - particularly on bridges and other short sections of major coal-haul routes that will still have lower weight limits.

The problem goes beyond the coalfields; several citizens from Mercer and Boyle counties in Central Kentucky complained about coal-truck traffic in their area.

Here's a look at each of the problems:

List of roads - The new law, which takes effect April 1, allows truckers who pay extra fees to haul heavier loads on highways used to carry more than 50,000 tons of coal in 1985.

That would seem to include all the state's major coal-haul roules and many of the minor ones, but the proposed regulation does DOL

That's because the state depends on coal companies to tell it how much coal is hauled-where, and many companies flied inaccurate reports or no reports at all, because the reporting law has no penalties. said Bill Caylor, vice president and attorney for the Kentucky Coal Association.

That has left sections of some major coalhaul routes — the Bert T. Combs Mountain Parkway, for example — "off the list of roads getting heavier weights.

The list includes 3,812 miles of roads in See COAL-HAULING

Back page, col 3, this section

Coal-hauling law is criticized

Continued from Page One

67 counties. The coal industry wants the opportunity to amend its reports, so that roads can be added, but state Transportation officials say the law doesn't allow them to do that, especially because the reports have already been used to distribute severance-tax money to tocal governments.

The officials say they are trying to assemble the 1986 reports as fast as they can so the list of roads can be changed as early as next summer. The law requires the list to be updated no later than Nov. 1 of each year, using figures from the previous year.

But the law's sponsor, Rep. Clayton Little, D-Virgle, said it was passed with the intention that every coal-haul road get a heavier weight limit. Caylor submitted about 175 miles of roads that he said should be added to the list, including at least one that would serve a mine that hasn't opened yet

Enforcement - There are three kinds of gaps in the system of heavy-weight roads: the sections missing because of bad reporting; interstate highways, which federal law bars from the system; and bridges, which have been the major obstacle to coal interests' efforts for higher weight limits.

Taken together, the gaps will pose major enforcement problems for the Department of Vehicle Regulation, officials of the Transportation Cabinet said before the hearing.

Sandra Pullen, assistant-to-Trans-portation Secretary C. Leslie Dawson, and Mike Noyes, an attorney for the cabinet, said they expect many truckers to shoot the gaps and hope to avoid detection. One of the best examples, they

said, is the 1.4-mile section of Interstate 64 at Winchester that connects the Bert T. Combs Mountain Parkway and KY 627, a major coal route leading north.

The weight limits vary with the type of truck; 90.000 pounds for a single-unit truck with two load-bearing axles, 100,000 for a single-unit truck with three load-bearing axles and 120,000 for tractor-trailer combinations with five or more axies.

All limits are subject to a 5 percent tolerance, so the effective legal maximum is 126,000 pounds, or 63 tons.

The officials said it will be difficult to keep trucks off the less-sturdy bridges, because state law appears to require that a vehicle-enforcement officer actually see an overweight truck cross a bridge before issuing a citation.

Safety - About 600 of the 3,000 bridges on the heavy-weight system will have weight limits lower than these on the roads that cross them. under a section of the law allowing the Cabinet to set lower limits for bridges that "may ... be damaged a or destroyed to the point of cata-strophic failure" by heavy vehicles.

Transportation officials said they use national standards to determine which bridges can carry beavier weights.

Little said, however, that the bridges are already bearing weights double the legal limits and that the officials "are building hypothetical situations" in considering the risk of bridge collupses

However, Pullen said at the hearing that the weight limits are as low as one ton. She told the audience, "There is a glitch in the system."

Local problems - The law allows counties and fourth-class and larger cities to ask the Transportation secretary to remove roads in their jurisdictions from me neavyweight system.

The fiscal courts of Boyle, Jessamine and Mercer counties and the Danville City Commission have asked Dawson to remove U.S. 68, U.S. 127 and KY 33, which truckers use to deliver coal to a Kentucky Utilities Co. steam plant at Dig Dam

Several people from the area came to the hearing to urge Dawson to grant the local officials' request. They said coal trucks pose big traffic bazards now and would become even more dangerous if the weight limit were increased - especially en U.S. 68, which winds around bills bordering the Kentucky River.

State Rep. Tom Jones, D-Lawrenceburg, who represents. Mercer County, said the legislature "capitulated to the coal industry" by passing the law.

David Burnett, who works for a Williamsburg coal company, apolo-gized for the "inconveniences" caused by the coal traffic and said such problems could be alleviated if the state used more coal-tax money to build better roads.

APPENDIX C

· "你们的你们的你们们的。" 网络小师 计分析 计

- 19 - 1

. •

(1) 数 したいたいです。

DETAILS OF REVENUE AND COST ANALYSIS FOR EXTENDED WEIGHT COAL HAUL ROAD SYSTEM

TABLE C1. MILEAGE OF EXTENDED-WEIGHT SYSTEM (ROADWAY MILES)

TABLE C2.	MILEAGE	OF	BASE	SYSTEM	MILES)

FUNCTIONAL CLASS	STATE-MAINTAINED Highways	NON-STATE-MAINTAINED HIGHWAYS	TOTAL
	COAL-PF	ODUCING COUNTIES	
2	539.()	539.0
2 6 7 8 9	163.4		163.4
7	936.3		936.3
8	480.4 102.1		480.4 102.1
12	27.6		27.6
14	25.4		25.4
16	80.6		80.6
17	5.8	3	5.8
Inclassified	94.4	264.3 264.3	358.7
Subtotal	2,455.0	264.3	2,719.3
	COAL	IMPACT COUNTIES	
2	112.2	2	112.2
2 6 7 8	227.9		227.9
7	145.		145.7
8	1.8		1.8
9 12	11.0		11.0 22.7
14	22.		22.7
16	41.9		41.9
17			•
Inclassified	63.	1 2.8	65.9
Subtotal	718.3	2 2.8	721.0
*	ALL EXTENDED-	JEIGHT SYSTEM COUNTIES	
	651.3		651.2
2 6 7 8	391.3	3	391.3
7	1,082.0	0	1,082.0 482.2
	482.		
9	113.		113.1
12	50.	_	50.3
14	117.		117.3
16 17	122.	-	122.5
Jnclassified	5.0 157.	5 267.1	5.8 424.6
Total	3,173.		424.0 3,440.3

FUNCTIONAL CLASS	HIGHWAYS	NON-STATE-MAINTAINED Highways	TOTAL
		RODUCING COUNTIES	
2	662.		662.5
6	379.	1	379.1
. 7	2,476.	.2	
8	3,439.	.5 2.3	3,441.8
9	1,015.	4 1.6	1,017.0
12	41.		41.5
14	95.		95.8
16	179.		194.4
17	83.	7 37.4	121.1
Unclassified	934.	7	934.7
Subtotal	9,307.	4 56.7	9,364.1
	COAI	INDAOT CONTICO	
2	252		252.0
6 7	479.		479.4
7	1,780		1,780.8
8	2,631		2,631.6
9	795		796.6
12	51.		51.9
14	269		272.3
16	397		413.0
17	105.		161.8
Unclassified	813	.1	813.1
Subtotal	7,576	.6 75.9	7,652.5
		WEIGHT SYSTEM COUNTIES	
2	914		914.5
2 6 7	858		858.5
7	4,257		4,257.0
8	6,071		6,073.4
9	1,810		1,813.6
12	. 93.		93.4
14	365		368.1
16	577		607.4
17	189		282.9
Unclassified	1,747		1,747.8
Total	16,884	.0 132.6	17,016.6

TABLE C3. AVERAGE ANNUAL DAILY TRAFFIC ON EXTENDED-WEIGHT SYSTEM (VEHICLES PER DAY)

÷

- 24

FUNCTIONAL CLASS	STATE-MAINTAINED HIGHWAYS	NON-STATE-MAINTAINED HIGHWAYS	TOTAL
	COAL-PR	ODUCING COUNTIES	
2	7,464		7,464
6 7 8	4,460		4,460
7	2,638		2,638
8	1,675 4,154		1,675
12	16,539		4,154 16,539
14	23,180		23,180
16	9,208		9,208
17	4,568		4,568
Unclassified	4,389 4,350	N/A	N/A
Average	4,350	N/A	N/A
	COAL -	IMPACT COUNTIES	
2	7,862		7,862
6	4,303		4,303
6 7 8	3,206		3,206
	428		428
9 12	713		713
14	22,049 13,037		22,049 13,037
16	16,072		16,072
17			
Unclassified	8,397		N/A
Average	7,297	N/A	N/A
	ALL EXTENDED-	EIGHT SYSTEM COUNTIES	;
2	7,533		7,533
6	4,369		4,369
6 7	2,714		2,714
8	1,670)	1,670
9	3,819		3,819
12	19,020		19,026
14 16	15,233		15,233
10	11,556 4,568		11,556 4,568
Unclassi fied	5,995	S N/A	4,388 N/A
Average	5,017	N/A	N/A
	•		========================

TABLE C4. AVERAGE ANNUAL DAILY TRAFFIC ON BASE SYSTEM (VEHICLES PER DAY)

.

高

FUNCTIONAL CLASS	STATE-MAINTAINED HIGHWAYS	NON-STATE-MAINTAINED HIGHWAYS	TOTAL
	COAL-PR	ODUCING COUNTIES	····
2	6,825		6,825
6 7	3,975		3,975
	1,894		1,894
8	678 729		678
12	10,846		728
14	15,531		15,486
16	6.236	8,215	6,385
17	2,592	3,112	2,753
Unclassified	3,526 2,187		3,526
Average	2,187	4,328	2,200
	COAL-	IMPACT COUNTIES	
2	6,450		6,450
2 6 7	3,436		3,436
7 8	1,642	•	1,642
9	557		557
12	14,350		429
14	17,186		14,350 17,268
16	9,429		9,467
17	4,239	4, 199	4,225
Unclassified	9,045 3,291		9,045
Average	3,291	6,095	3,319
	ALL EXTENDED-W	EIGHT SYSTEM COUNTIES	
2	6,722	····	6,722
2 6 7	3,674		3,674
	1,789		1,789
8 9	626 598		626 597
12	12,793		12,793
14	16,755		16,804
16	8,435	9,348	8,478
17	3,510	3,766	3 594
Unclassified	6,094	· · · ·	3,594
Average	2,682	5,340	2,671

.

TABLE C5. PERCENTAGE OF TRUCKS WITH COAL ON EXTENDED-WEIGHT SYSTEM

FUNCTIONAL CLASS	STATE-MAINTAINED HIGHWAYS	NON-STATE-MAINTAINED HIGHWAYS
	COAL-PRODUCING C	COUNTIES
2	16.3	
2 6 7	17.6	
7	25.7	
8	36.4	
9 12	N/ 5.0	
14	8.5	
16	1.0	
17	N/	
Inclassified	N/	A N/A
	COAL-IMPACT COU	INTIES
2	.0	9
6 7	.8	
7	3.6	
8 9	N/	
12	N/ -0	
14	.0	
16	N/	Ā
17		
Inclassified	N/	A N/A
ALL E	XTENDED-WEIGHT SYS	TEM COUNTIES
2	11.4	
6	12.0	
7	23.2	
8 9	36.4	-
12	N/ 2.5	
14	4.6	
16	1.0	
17	N/	
Unclassified	N/	'A N/A

.

TABLE C6. PERCENTAGE OF TRUCKS WITH COAL ON BASE SYSTEM

.

.

FUNCTIONAL CLASS		NON-STATE-MAINTAINED Highways
	COAL-PRODUCING C	OUNTIES
2	19.7	
6	8.8	
6 7	19.0	
8	25.1	10 N/A
9	N/	
12	N/	
14	.0	
16	.0	
17 Unclassified	N/	
Unclassified	N/	'A
	COAL-IMPACT CO	DUNTIES
2	.0	
6 7	.7	
7 8	2.1	
8	N/	
12	N/ -0	
14	.0	
16	.0	
17	 N/	
Unclassified	N/	
ALL E	XTENDED-WEIGHT SYS	STEM COUNTIES
2	10.5	55
6 7	7.0	
	16.2	
8	25.1	
9	N/	
12	.0.	-
14	.0	
16 17	.0	
Unclassified	N/ N/	
	N/	

\$

TABLE C7. PERCENTAGE OF TRUCKS WITH COAL DECAL ON EXTENDED-WEIGHT SYSTEM

.

FUNCTIONAL CLASS	PERCENT OF SU-3A WITH DECAL (59,400 LBS +)	PERCENT OF SU-4A WITH DECAL (77,000 LBS +)	PERCENT OF C-5A + WITH DECAL (80,000 LBS +)
	COAL-PRO	OUCING COUNTIES	
2 6 7 8 9 12 14 16 17 Inclassified Average	11.76 11.76 11.76 11.76 11.76 2.35 2.35 2.35 2.35	11.89 11.89 11.89 11.89 11.89 2.56 2.56 2.56 2.56 2.56	22.77 22.77 22.77 22.77 22.77 3.25 3.25 3.25 3.25 3.25
	COAL ~ I	MPACT COUNTIES	
2 6 7 8 9 12 14 16 17 Inclassified Average	3.25 3.25 3.25 3.25 1.99 1.99 1.99 1.99	3.51 3.51 3.51 3.51 3.51 .82 .82 .82 .82	6.71 6.71 6.71 6.71 6.71 2.04 2.04 2.04 2.04

.

8 ²

TABLE C8. PERCENTAGE OF TRUCKS WITH COAL DECAL ON BASE SYSTEM

FUNCTIONAL CLASS	PERCENT OF SU-3A WITH DECAL (59,400 LBS +)	PERCENT OF SU-4A WITH DECAL (77,000 LBS +)	PERCENT WITH (80,000	
	COAL-PRO	DUCING COUNTIES		
2 6 7 8 9 12 14 16 17 Inclassified Average	4.33 4.33 4.33 4.33 4.33 1.49 1.49 1.49 1.49	.00 .00 .00 .00 15.38 15.38 15.38 15.38		11.48 11.48 11.48 11.48 18.88 18.88 18.88 18.88
	COAL - J	MPACT COUNTIES		
2 6 7 8 9 12 14 16 17 Inclassified Average	1.99 1.99 1.99 1.99 2.50 2.50 2.50 2.50 2.50	2.56 2.56 2.56 2.56 3.45 3.45 3.45 3.45 3.45		6.09 6.09 6.09 6.09 6.09 3.85 3.85 3.85 3.85 3.85

TABLE C9. VEHICLE-TYPE PERCENTAGES ON EXTENDED-WEIGHT SYSTEM

	MOTOR-	CARS	BUSES	S	INGLE-UN	IT TRUCKS	;	SINGLE-	TRAILER 1	RUCKS	MULTI-	TRAILER T	RUCKS	TOTAL
FUNCTIONAL CLASS	CYCLES	CARS	BUSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE	4 OR MORE AXLES	4 OR LESS AXLES	5-AXLE	6 OR MORE AXLES	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	TUTAL
						COAL -	PRODUCI	NG COUNT	IES					
2	.17	54.06	.20	31.61	2.72	2.04	.78	.33	4.57	2.86	.64	.02	. 00	100.0
6	.28	56.99	.12	32.64	1.90		.34			3.56	.03		.00	100.0
7	.21	55.01	.27	33.20			.93	.27		1.56	.17		.00	100.0
8	.40	47.14	.38	37.22			3.64	.59		1.73	.03		.00	100.0
9														
12	.09	71.96	.29	20.23	1.23		.67	.35		1.84	.06		.00	100.
14	.42	63.76	.18	25.71	2.32		.37	.51		.57	.10		.01	100.
16 17 nclassified	1.09	75.83	.35	17.66	1.33	1.35	.24	.69	1.09	.17	.00	.00	.20	100.0
				•••••		COA	L-IMPAC	T COUNTI	ES				••••	
2	.21	63.72	.16	25.73	2.45	1.10	.21	.80	3.72	1.54	.25	.10	.01	100.0
6	.44	57.05	.21	30.68	1.89		1.23	.63		2.03	.04		.00	100.0
7 8	. 10	59.56	.29	32.26	2.72	.69	.24	.32	3.42	.38	.02		.00	100.0
9														
12	.33	59.46	.21	30.41	4.12	.71	.08	.86	3.46	.08	.26	.02	.00	100.
14	.17	76.96	.96	16.13	1.22		.36			1.04	.06		.04	100.
16	• • •	10.70	.,,,					.,,		1.04	.00			
17														-
nclassified														

TABLE C10. VEHICLE-TYPE PERCENTAGES ON BASE SYSTEM

FUNCTIONAL	MOTOR-	CARS	BUSES	S	INGLE-UN	IT TRUCKS		SINGLE-	TRAILER	TRUCKS	MULTI-	TRAILER	TRUCKS	TOTAL
CLASS	CYCLES	LAKS	DUSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE	4 OR MORE AXLES	4 OR LESS AXLES	5-AXLE	6 OR MORE AXLES	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	TUTAL
						COAL-	PRODUCI	NG COUNT	IES					
2 6 7 8 9 12 14 16 17 Unclassified	.19 .38 .59 .30 .73 .26	54.94 59.40 56.89 50.13 67.56 72.05	.20 .18 .31 .36 .31 23.06	34.63 32.25 39.74	1.61 2.69 2.27 1.83	1.13 1.73 1.48	.35 .84 .82 1.49 .26 .43	.35 .15 .54 .08 .88	.91 3.30 2.79 3.72	.76 .84 1.32 2.19	. 10 .01 .02 .03 .15 .04	.00 .01 .01	.00 .01 .00	100.00 100.00 100.00 100.00 .00 100.00 100.00 100.00 .00
						COA	L-IMPAC	COUNTI	ES			•••••		
2 6 7 8 9	.51 .47 .28	68.61 59.10 69.29	.27 .39 .34	19.21 33.76 24.72		1.93	.69 .26 .15	1.47 .19 .28	.70	.62	.23 .00 .08	.00	.03 .00 .00	100.00 100.00 100.00 .00 .00
12 14 16 17 Unclassified	.37 .17 .21	81.74 71.90 77.90	.10 .37 1.04		1.71	.83	.27 .11 .08	.26 .29 .04	.84	.15	.03 .05 .00	.00	.01 .01 .00	100.00 100.00 100.00 .00 .00

FUNCTIONAL	MOTOP-	CARS	BUSES		S	INGLE-UN	IT TRUCK	S		SIN	GLE-TRAI		(S	MULTI-	TRAILER 1	RUCKS	тота
CLASS	CYCLES	CARS	BUSES	2-AXLE 4-TIRE		3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	
								COAL-PRO	DUCING C	OUNTIES							
2 6 7 8 9	.17 .28 .21 .40	54.06 56.99 55.01 47.14	.20 .12 .27 .38	32.64 33.20	2.72 1.90 2.17 2.09	1.80 1.76 2.34 2.07	.23 .31	.69 .30 .82 3.21	.04	.27	1.48	2.21 2. 75 1.20 1.34	1.69 1.25 1.16 1.40	.64 .03 .17 .03	.01	.00 .00 .00 .00	100. 100. 100. 100.
12 14 16 17 Jnclassified	.09 .42 1.09	71.96 63.76 75.83	.29 .18 .35	25.71	1.23 2.32 1.33	.89 1.14 1.32	.03	.65 .36 .23	.01		4.72	.55	.14 .18 .04	.06 .10 .00	.00	.00 .01 .20	100. 100. 100.
								COAL-I	MPACT CO	UNTIES							
2 6 7 8 9	.21 .44 .10	63.72 57.05 59.56	.16 .21 .29	30.68	2.45 1.89 2.72	1.06 2.66 .67	.09	1.19	.04	.80 .63 .32	2.85	1.89	.35 .34 .25	.25 .04 .02		.01 .00 .00	100. 100. 100.
9 12 14 16 17	.33 .17	59.46 76.96	.21 .96		4.12 1.22	.70 1.21	.01 .02	.08 .36					.07 .04	.26 .06		.00 .04	100. 100.
Unclassified	 I														•		
						A	LL EXTEN	DED-WEIG	HT SYSTE	M COUNTI	ES (ESTI	MATED)					
2 6 7 8 9 12 14 16 17 Unclassified	.18 .37 .19 .40 .26 .22 .25 .69 .53	55.80 57.02 55.73 47.15 53.42 65.42 72.61 72.21 70.52 62.18	. 19 .17 .27 .38 .24 .25 .70 .46 .27 .32	31.52 33.05 37.21 33.59 25.55 19.29 20.33 21.20	2.67 1.89 2.26 2.09 2.22 2.74 1.58 1.97 1.63 2.25	2.27 2.07 2.07 1.98 .79 1.18	.15 .27 .28 .26 .02 .03 .03	.60 .81 .73 3.20 1.24 .35 .36 .23 .42 .62	.43 .17 .01 .01 .00	.59 .36 .62 .81	2.26 2.81 3.42 2.80 2.80 2.86 2.11 1.55 2.69	2.26 1.07 1.34 1.86 .89 .86 .35	1.45 .73 1.02 1.40 1.36 .10 .08 .05 .12 .49	.57 .04 .15 .03 .22 .16 .07 .08 .05 .14	.00 .01 .00 .01 .02 .02 .01	.00 .00 .00 .00 .00 .03 .11 .07 .02	100. 100. 100. 100. 100. 100. 100. 100.

TABLE C11. VEHICLE-TYPE PERCENTAGES INCLUDING DECAL COAL TRUCKS ON EXTENDED-WEIGHT SYSTEM

FUNCTIONAL	MOTOR-	CARS	BUSES		S	INGLE-UN	IT TRUCK	s		SIN	GLE-TRAI	LER TRUCK	s	MULTI-	TRAILER T	RUCKS	tote
CLASS	CYCLES	LARS	BUSES	2-AXLE 4-TIRE		3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	TOTA
			· · · · · · ·					COAL-PRO	DUCING C	OUNTIES							
2	. 19	54.94	.20		2.60	1.01	.05	.35			5.80	2.49	1.07	.10		.00	100.
6	.38	59.40	.18		1.61	1.08	.05						.19	.01		.00	100.
7	.59	56.89	.31		2.69								.48	.02		.01	100.
8 9	.30	50.13	.36	39.74	2.27	1.42	.06	1.49	.00	.08	2.47	1.17	.47	.03	.01	.00	100.
12																	1
14	.73	67.56	.31	21.28	1.83	.93	.01	.22	.04	.88	3.02	1.78	1.12	. 15	.11	.04	100.
16	.26	72.05	23.06										.28	.04		.00	
17																	
nclassified																	
				•••••				COAL - I	MPACT CO	UNTIES						•••••	
2	.51	68.61	.27	19.21	2.17	1.36	.03	.67	.02	1.47	4.04	1.04	.33	.23	.01		100.
6	.47	59.10	.39		2.58	1.89			.01				.08	.00		.00	
7	.28	69.29	.34	24.72	2.46	.93						.25	.09	.08		.00	100.
8																	
9							_										
12	.37	81.74	.10		1.04								.04	.03			100.
14	.17	71.90	.37		1.71	.81							.04	.05		.01	100.
16 17	.21	77.90	1.04	17.76	1.39	1.25	.03	.08	.00	.04	.07	.22	.01	.00	.00	.00	100.
nclassified										-							
	•••••					A	LL EXTEN	DED-WEIG	HT SYSTE	M COUNTI	ES (ESTI	MATED)					
2	.27	58.55	.22	27.70	2.49	1.11	.04	.44	.00	.65	5.33	2.11	.88	.13	.08	.01	100
6	.43	59.24	.29										.13	.00		.00	• ,•
7	.47	61.65	.32										.33	.04		.01	100.
8	.35	56.13	.35				.05						.35	.06		.00	100.
9	.38	58.60	.28		2.33				.00				.43	.06		.00	100.
12	.42	77.24	4.46		1.17								.29	.05		.01	100.
14 16	.31	70.85 76.55	.36 6.11	23.02	1.74 1.29								.30 .07	.07 .01		.02	10Q. 10Q.
16 17	.22 .33	74.77	4.16		1.38								.07	.01		.00 .01	100.
nclassified	.36	67.94	1.55										.25	.05		.01	100.

TABLE C12. VEHICLE-TYPE PERCENTAGES INCLUDING DECAL COAL TRUCKS ON BASE SYSTEM

TABLE C13. UNIT ESALS ON EXTENDED-WEIGHT SYSTEM (ESALS PER VEHICLE)

FUNCTIONAL	MOTOR-	CARS	BUSES		S	INGLE-UN	IT TRUCK	S		SIN	GLE-TRAI	LER TRUCK	S	MULTI-	TRAILER T	RUCKS
CLASS	CYCLES	LAKS	BOSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES
								COAL -PRO	DUCING C	OUNTIES						
2 6 7 8 9 12 14 16 17 nclassified	.000 .000 .000 .000 .000 .000 .000 .00	.003 .003 .003 .003 .003 .003 .003 .003	.927 .927 .927 .927 .927 .414 .414 .414 .414	.006 .006 .006 .006 .006 .006 .006 .006	.474 .474 .474 .474 .424 .424 .424 .424	.791 .791 .791 .669 .669 .669	13.928 13.928 13.928 13.928 6.625 6.625 6.625	2.347 2.347 2.347	9.335 9.335 9.335 9.335 9.335 4.861 4.861 4.861 4.861	11.278 11.278 11.278	.501 .501 .501 .627 .627	.429 .429 .429 .429 .439 .439 .439	8.596 8.596 8.596 8.596 5.007 5.007 5.007 5.007	1.297 1.297 1.297 1.297 1.297 1.361 1.361 1.361 1.361	8.616 8.616 8.616	3.57 3.57 3.57 3.57 1.16 1.16 1.16
								COAL-II	MPACT CO	UNTIES						
2 6 7 8 9 12 14 16 17	.000 .000 .000 .000 .000 .000 .000	.003 .003 .003 .003 .003 .003 .003 .003	.437 .437 .437 .437 .437 .365 .365 .365	.006 .006 .006 .006 .006 .006 .006	.492 .492 .492 .492 .492 .249 .249 .249	.649 .649 .649 .649 .689 .689	12.109 12.109 12.109 12.109 12.109 12.109 6.194 6.194 6.194	2.358 2.358 2.358 2.358 2.358 2.193 2.193	11.832 11.832 11.832 11.832 11.832 9.466 9.466 9.466	.830 .830 .830 .830 .830 .491 .491 .491	.547 .547 .547 .547 .547 .547 .497 .497 .497	.485 .485 .485 .485 .407 .407	5.798 5.798 5.798 5.798 5.798 5.798 3.376 3.376 3.376	1.007 1.007 1.007 1.007 1.007 1.007 .947 .947 .947	2.121 2.121 2.121 2.121 1.467 1.467	8.7 8.7 8.7 8.7 8.7 5 .5

TABLE C14. UNIT ESALS ON BASE SYSTEM (ESALS PER VEHICLE)

FUNCTIONAL	MOTOR-	CARS	BUSES		s	INGLE-UN	IT TRUCK	S		SIN	GLE-TRAI	LER TRUCK	S	MULTI-	TRAILER	RUCKS
CLASS	CYCLES	LAKS	BUSES	2-AXLE 4-TIRE		3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR More Axles
								COAL - PRO	DUCING C	OUNTIES						
2 6 7 8 9 12 14 16 17 Unclassified	.000 .000 .000 .000 .000 .000 .000 .00	.003 .003 .003 .003 .003 .003 .003 .003	2.340 2.340 2.340 2.340 1.345 1.345 1.345 1.345	006. 006. 006. 006. 006. 006. 006.	6.302 6.302 6.302 6.302 .404 .404 .404	1.049 1.049 1.049 1.049 .650 .650	12.217 12.217	1.845 1.845 1.845 1.845 1.845 1.845 1.740 1.740 1.740 1.740	16.392 16.392 16.392 16.392 16.288 16.288 16.288	.888 .888 .888 .888 .588 .588 .588	.616 .616 .533 .533 .533	.375 .375 .375 .375 .578 .578 .578	12.040 12.040 12.040 12.040 12.040 9.749 9.749 9.749 9.749 9.749	12.574 12.574 12.574 12.574 12.574 12.574 2.122 2.122 2.122 2.122 2.122	22.142 22.142 22.142 .180 .180 .180	6.104 6.104 6.104 6.104 1.596 1.596 1.596 1.596
								COAL-I	MPACT CO	UNTIES						
2 6 7 8 9 12 14 16 17 Unclassified	.000 .000 .000 .000 .000 .000 .000 .00	.003 .003 .003 .003 .003 .003 .003 .003	.728 .728 .728 .728 .728 1.096 1.096 1.096	006. 006. 006. 006. 006. 006.	.268 .268 .268 .268 .431 .431 .431	.809 .809 .809 .982 .982 .982 .982		2.339 2.339 2.339 2.339 2.279 2.279 2.279 2.279	7.728 7.728 7.728 7.728 9.966 9.966	.619 .619 .619 .619 .651 .651 .651	.640 .640 .640 .640 .640 .626 .626 .626	.640 .640 .640 .446 .446 .446	2.912 2.912 2.912 2.912 3.015 3.015 3.015 3.015	1.265 1.265 1.265 1.265 1.265 .706 .706 .706	1.140 1.140 1.140 .233 .233 .233	1.330 1.330 1.330 1.330 1.330 1.771 1.771 1.771 1.771

TABLE C15. VEHICLE MILES ON EXTENDED-WEIGHT SYSTEM (1000s)

					SINC	SLE-UNIT	TRUCKS			SIN	GLE-TRAI	LER TRUCK	(S	MULTI-	TRAILER T	RUCKS	
FUNCTIONAL CLASS	MOTOR- CYCLES	CARS	BUSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	TOTAL
								COAL-PRO	DUCING C	DUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified	2,496 745 1,893 1,175 410 150 903 2,953 52 575	793,833 151,593 495,935 138,452 82,511 119,895 137,021 205,416 6,819 91,763	2,937 319 2,434 1,116 375 483 387 948 26 387	464, 171 86, 822 299, 310 109, 317 52, 119 33, 706 55, 251 47, 839 2, 050 42, 834	39,941 5,054 19,563 6,138 3,437 2,049 4,986 3,603 157 2,973	26,433 4,671 21,081 6,090 3,084 1,481 2,455 3,571 108 2,445	3,523 623 2,810 812 411 36 59 86 3 247	797 7,387 9,420 1,940 1,088 775 633 40 1,353	262 29 20 17 1 153	4,846 612 2,434 1,733 550 583 1,096 1,869 50 642	3,924 24,717 10,048 4,322 3,804 10,146 2,857 260 4,154	32,434 7,313 10,862 3,924 2,902 2,966 1,185 446 80 2,159	24,843 3,313 10,490 4,120 2,130 227 381 111 11 1,266	9,398 80 1,533 88 337 100 215 0 5 223	90 0 15 17 0 0 11	0 0 0 0 21 542 7 45	1,468,430 265,999 901,535 293,705 164,805 166,614 214,902 270,890 9,670 151,227
Subtotal		2,223,239	9,415	1,193,419	87,902	71,419	8,608		4,219 MPACT COL			64,272	46,891	11,978	454	615	3,897,777
2 6 7 8 9 12 14 16 17	676 1,575 170 1 7 603 743 614	205,161 204,195 101,548 169 1,721 108,626 336,551 167,658	515 752 494 1 6 384 4,198 1,438	82,844 109,811 55,002 83 846 55,555 70,538 57,93 57,97	7,888 6,765 4,638 7 67 7,527 5,335 6,563	3,427 9,523 1,138 4 1,271 5,272 2,337	115 320 38 0 1 26 107 47	395 2 15 145 1,561	24 155 14 0 1 1 13 4	2,576 2,255 546 17 1,571 4,198 2,237	10, 184 5, 440 9 91 6, 192		1,136 1,220 435 1 9 132 168 136	805 143 34 0 3 475 262 393	0 0 1 37 131	32 0 0 0 175 49	321,972 357,923 170,497 281 2,863 182,687 437,307 245,797
Unclassified Subtotal	483 4,874	122,516 1,248,145	708 8,496	52,298 484,173	4,796 43,585	2,434 25,448	72 727		24 236	1,381 14,781	5,306 47,171	1,850 19,843	410 3,646	244 2,360		19 276	193,396 1,912,722
							ALL		-WEIGHT								
2 6 7 8 9 12 14 16 17 Unclassified Total	3,172 2,320 2,064 1,176 417 753 1,646 3,567 52 1,058 16,225	998,994 355,788 597,482 138,621 84,232 228,521 473,573 373,074 6,819 214,279 3,471,383	3,452 1,071 2,929 1,117 382 867 4,585 2,386 26 1,095 17,909	547,014 196,633 354,312 109,400 52,965 89,261 125,789 105,036 2,050 95,132 1,677,592	47,830 11,819 24,201 6,145 3,504 9,576 10,321 10,166 157 7,769 131,487	29,860 14,194 22,219 6,094 3,126 2,752 7,727 5,908 108 4,879 96,867	3,638 942 2,848 812 412 61 166 1333 319 9,335	5,045 7,782 9,421 1,956 1,233 2,336 1,170 40 2,148	1,386 262 1,011 1,271 262 30 33 21 1 177 4,455	7,422 2,867 2,980 1,734 566 2,154 5,294 4,106 50 2,022 29,196	14,108 30,157 10,057 4,413 9,996 13,745 8,034 260	11,466 3,928 2,937 3,109 5,640 1,794 80 4,009	25,979 4,533 10,925 4,120 2,139 548 247 11 1,675 50,538	10,203 223 1,567 88 340 575 477 393 5 466 14,337	27 90 16 53 131 61	32 0 0 0 196 591 7 65 891	1,790,403 623,922 1,072,032 293,986 157,668 349,301 652,208 516,687 9,670 344,623 5,810,500

TABLE C16. VEHICLE MILES ON BASE SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		SIN	GLE-UNIT	TRUCKS			SIN	GLE-TRAI	LER TRUCK	S	MULTI-	TRAILER 1	RUCKS	TOTAL
CLASS	CYCLES	LARS	BUSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	TOTAL
							(COAL - PROD	DUCING C	OUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	3,136 2,090 10,100 2,554 986 813 3,935 1,063 392 4,912 29,981	906,713 326,716 973,855 426,693 149,519 114,629 364,219 294,701 55,276 723,715 4,336,090	1,671 94,321 9,253 48,960	507,489 190,474 552,063 338,256 92,787 17,530 114,721 245 8,449 318,200 2,140,215	8,855 46,048 19,322 6,194 2,292 9,866 3,927 1,105 23,979	5,946 28,332 12,052 3,490 2,055 4,992 6,447 991 15,374	757 269 1,282 545 158 31 76 98 15 545 3,776	5,776 4,620 14,037 12,682 2,364 480 1,186 1,488 231 8,188 51,053	0 0 0 87 216 271 42 213 828	825 9,244 681 757 789 4,744 327 380 4,170	4,431 50,005 21,021 8,102 2,632 16,268 763 1,269 30,472	3,700 12,729 9,946 3,426 2,279 9,577 4,081 1,098	17,734 1,054 8,136 4,016 1,495 1,143 6,015 1,127 551 7,227 48,499	1,650 55 342 255 108 156 809 164 75 702 4,316	44 461	0 0 171 0 7 33 216 0 16 100 54	
_								COAL-IN	IPACT CO	UNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	3,026 2,826 2,988 2,247 524 1,006 2,878 2,873 407 8,993 27,768	407,043 355,330 739,523 351,328 81,946 222,201 1,217,305 1,065,695 125,745 1,917,280 6,483,397		113,967 202,977 263,833 138,552 32,317 37,296 399,053 242,962 29,897 593,876 2,054,730	15,512 26,255 12,858 2,999 2,827 28,951 19,016 2,248 50,780	11,373 9,937 7,464 1,741 3,684 13,701 17,073 1,853 33,991	164 231 202 152 35 94 351 438 48 772 2,486	3,989 1,523 1,560 1,912 446 709 1,798 1,057 241 6,782 20,016	105 40 41 50 12 25 64 38 9 9 197 581	11,319	3,952 11,827 10,350 2,414 1,856 13,674 921 846	2,706 3,350 781 941 2,442 3,025 386 11,586	1,955 483 942 888 207 112 645 158 49 2,635 8,076	1,365 0 854 553 129 82 847 0 433 1,745 5,617		178 0 54 12 27 169 0 11 224 675	593,271 601,235 1,067,287 535,017 124,791 271,839 1,693,053 1,368,030 162,924 2,684,389 9,101,836
			. . .				ALL	EXTENDED	-WEIGHT	SYSTEM C	OUNTIES						
2 6 7 8 9 12 14 16 17 Unclassified Total		1,313,757 682,046 1,713,379 778,021 231,465 336,884 1,581,524 1,360,396 181,021 2,640,994 10,819,486	4,848 1,125 19,469 7,936 108,548 10,073 60,190	621,456 393,451 815,896 476,808 125,104 513,774 243,208 38,346 912,076 4,194,945	24,367 72,303 32,180 9,193 5,119 38,817 22,942 3,353 74,758	38,270 19,515 5,230 5,739 18,693 23,520 2,844 49,366	922 500 1,484 697 193 126 427 535 63 1,316 6,262	6,143 15,597 14,594 2,810 1,188 2,984 2,545 472 14,970	105 40 41 50 12 112 280 308 51 410 1,409	1,967 12,232 4,141 1,563 1,495 9,654 874 701 15,489	61,832 31,372 10,516 4,488 29,942 1,684 2,115	7,201 15,435 13,295 4,207 3,220 12,019 7,106 1,485 27,318	19,688 1,538 9,078 4,904 1,702 1,255 6,661 1,285 600 9,863 56,575	3,015 55 1,196 808 237 238 1,655 164 119 2,447 9,933	0 171 103 85 90 593 0 44 506	178 0 171 54 19 60 385 0 27 324 1,218	1, 151, 261 2, 779, 109 1, 386, 191 394, 974 436, 129 2, 232, 157 1, 777, 052 242, 111

1.3

TABLE C17. AXLE MILES ON EXTENDED-WEIGHT SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		SINC	LE-UNIT	TRUCKS			SING	GLE-TRAILE	R TRUCKS		MULTI-	TRAILER T	RUCKS	TOTAL
CLASS	CYCLES	CARG	00323	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR More Axles	TOTAL
							(COAL-PRO	OUCING C	DUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	4,993 1,490 3,786 2,350 820 300 1,805 5,905 103 1,149 22,702	1,587,667 303,186 991,869 276,905 165,022 239,791 274,043 410,832 13,639 183,525 4,446,477	5,874 638 4,868 2,232 751 966 774 1,896 53 773 18,826	928,341 173,644 598,619 218,634 104,238 67,412 110,502 95,678 4,100 85,668 2,386,838	6,873 4,099 9,971 7,206 315 5,945	14,013 63,243 18,271 9,251 4,442 7,366 10,713 324 7,335	10,568 1,868 8,429 2,435 1,233 107 177 258 8 740 25,823	40,368 3,187 29,550 37,679 7,761 4,351 3,099 2,534 161 5,410 134,100	5,447 430 3,988 5,085 1,047 114 81 67 4 613 16,876	2,447 9,737 6,931 2,198 2,333 4,384 7,477 200	19,619 123,585 50,242 21,610 19,021 50,732 14,284 1,299 20,769	65,170 23,545 17,413 17,796 7,111 2,673 483	18,855 56,071 21,912 11,600 1,247 1,950 572 60 6,814	46,990 399 7,663 441 1,684 500 1,075 0 26 1,113 59,889	1,762 160 541 0 93 100 0 2 65 2,722	0 0 0 150 3,792 47 318 4,308	3, 399, 18 593, 92 2,006, 24 678, 93 351, 59 362, 57 473, 22 563, 88 20, 82 335, 76 8, 785, 38
								COAL-IN	IPACT CO	UNTIES			•••••			·	
2 6 7 8 9 12 14 16 17	1,352 3,150 341 1 1,206 1,487 1,229	410,322 408,390 203,096 338 3,442 217,251 673,102 335,316	1,030 1,503 989 1 13 767 8,396 2,876	165,687 219,621 110,004 166 1,692 111,110 141,075 114,394	13,529 9,275 13 135	10,280 28,569 3,415 12 126 3,814 15,815 7,010	345 960 115 0 4 77 321 142	2,610 16,992 1,579 6 62 580 6,246 2,145	95 618 57 0 2 5 52 18	67 6,284 16,793	55,868 50,921 27,199 45 30,960 17,992 25,884	40,670 3,626 21 211 859 26,731	6,059 6,642 2,225 5 48 663 939 712	4,025 716 170 1 15 2,375 1,312 1,966	1,932 0 1 6 219 787 369	225 0 0 1 1 1,224 344	713,66 801,30 364,27 61 6,29 391,22 922,94 522,56
Unclassified Subtotal	967	245,032 2,496,289	1,416 16,991	104,596 968,347	9,592 87,171	7,303 76,344	216 2,181	3,183 33,402	97 944			11,098 119,061	2,170 19,455	1,218 11,799	348 3,661	135 1,930	419,42 4,142,30
							ALL I	EXTENDED	WEIGHT	SYSTEM CO	DUNTIES						
2 6 7 8 9 12 14 16 17 Unclassified Total	4,639 4,127 2,351 835 1,506 3,292 7,134 103 2,116	1,997,988 711,576 1,194,965 277,243 168,464 457,042 947,145 746,148 13,639 428,557 6,942,766	2,142 5,857 2,233 763 1,734 9,170 4,772 53 2,189	1,094,029 393,266 708,624 218,800 105,930 178,522 251,578 210,072 4,100 190,264 3,355,185	23,637 48,402 12,290 7,008 19,152 20,642 20,331 315 15,538	42,582 66,658 18,283 9,377 8,255 23,181 17,724 324 14,638	10,914 2,827 8,543 2,435 1,237 184 498 400 8 957 28,004		1,048 4,045 5,085 1,050 119 133 84 4 710	11,919 6,938 2,265 8,617 21,177 16,424 200 8,090	70,539 150,784 50,287 22,063 49,982 68,724 40,168 1,299 47,300	68,796 23,565 17,624 18,655 33,842 10,764	25,497 58,295 21,917 11,648 1,910 2,889 1,284 60 8,984	51,014 1,115 7,834 442 1,698 2,875 2,386 1,966 2,331 71,687	160 541 1 99 319 787	0 0 1 1,375 4,137 47 47 453	4, 112, 85 1, 395, 22 2, 370, 51 679, 55 357, 88 753, 80 1, 396, 16 1, 086, 45 20, 82 755, 18 12, 927, 68

TABLE C18. AXLE MILES ON BASE SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		SIN	GLE-UNIT	TRUCKS			SINC	SLE-TRAILE	R TRUCKS		MULTI-1	TRAILER T	RUCKS	TOTAL
CLASS	CYCLES	CARS	BOSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	
							(COAL-PRO	DUCING C	DUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	6,271 4,180 20,199 5,107 1,972 1,626 7,871 2,127 784 9,824 59,963	1,813,427 653,432 1,947,711 853,386 299,038 229,365 728,438 589,401 110,553 1,447,429 8,672,180	1,980 10,613 6,128 1,418 38,395 3,342 188,641 18,506 97,920	1,014,978 380,949 1,104,125 676,512 185,575 35,059 229,443 491 16,898 636,400 4,280,431	17,711 92,096 38,643 12,388 4,584 19,731 7,853 2,209 47,958	17,839 84,997 36,156 10,469 6,166 14,976 19,341 2,972 46,123	807 3,847 1,636 474 93 227 293 45 1,634	56,148 50,730 9,456 1,919 4,744 5,953 925 32,751	0 0 0 349 862 1,082 168 851 3,312	3,300 36,975 2,724 3,026 3,154 18,976 1,309 1,520 16,681	22,153 250,025 105,107 40,509 13,161 81,342 3,816 6,343	76,371 59,674 20,556 13,674 57,464 24,487 6,591 94,389		8,252 275 1,712 1,277 540 780 4,043 818 376 3,509 21,582	9,902 0 1,027 511 486 542 3,558 0 261 2,767 19,055	1, 198 0 47 230 1, \$09 0 111 702	3,729,62 1,859,12 593,93 355,39 1,209,09 852,22 171,29
								COAL-II	MPACT CO								
2 6 7 8 9 12 14 16 17 Unclassified Subtotal		814,086 710,659 1,479,046 702,656 163,892 444,403 2,434,610 2,131,391 251,489 3,834,560 12,966,793	28,455 1,640 22,459	227,935 405,954 527,667 277,103 64,633 74,593 798,105 485,924 59,793 1,187,753 4,109,459	31,024 52,511 25,717 5,998 5,654 57,902 38,031 4,497 101,559	34,119 29,812 22,391 5,223 11,052 41,103 51,219 5,560 101,974	492 693 605 455 106 283 1,054 1,313 143 2,315 7,459	6,093 6,240 7,646 1,783 2,835 7,192 4,227 965 27,130	47 101 257 151 34 788	4,569 11,954 13,839 3,228 2,827 19,639 2,189 1,282		21,004 16,237 20,097 4,688 5,646 14,651 18,152		6,823 0 4,269 2,764 645 408 4,233 0 217 8,724 28,083	356 0 107 25 0 0 0 268 756	1,246 0 375 87 190 1,185 76 1,566 4,725	1,247,04 2,205,78 1,137,85 265,40 560,42 3,469,92 2,772,31 333,32
							ALL I	EXTENDED	-WEIGHT	SYSTEM CO	DUNTIES			• • • • • • • • • • •			
2 6 7 8 9 12 14 16 17 Unclassified Total		1,364,091 3,426,757 1,556,042 462,930 673,768 3,163,048 2,720,792 362,042	6,670 17,871 9,695 2,250 38,938 15,871 217,096 20,146 120,379		48,735 144,607 64,360 18,386 10,238 77,634 45,884 6,706 149,517	51,957 114,809 58,546 15,691 17,218 56,079 70,560 8,532 148,097	2,765 1,500 4,452 2,091 580 377 1,280 1,606 188 3,949 18,787	24,574 62,388 58,376 11,240 4,753 11,937 10,180 1,890 59,881	164 201 47 1,119 1,233 203 1,639	7,870 48,929 16,563 6,254 5,981 38,616 3,498 2,802 61,958	41,915 309,160 156,858 52,579 22,439 149,712 8,419 10,573	92,608 79,771 25,244 19,319 72,115 42,639 8,909 163,907	8,466 47,498 26,225 9,072 6,900 35,908 7,529 3,300 52,860	15,074 275 5,981 4,041 1,185 1,188 8,276 818 593 12,233 49,665	10,258 0 1,027 618 511 542 3,558 0 261 3,035 19,811	1,246 375 135 420 2,695 2,268 8,523	2,396,15 5,935,41 2,996,97 859,33 915,82 4,679,02 3,624,54 504,62

,

TABLE C19. PASSENGER-CAR-EQUIVALENT MILES ON EXTENDED-WEIGHT SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		SIN	GLE-UNIT	TRUCKS			SING	LE-TRAILE	R TRUCKS		MULTI-	TRAILER T	RUCK	S 	TOTAL
CLASS	CYCLES	Unite		2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 oi Mori Axli	E	
							(COAL-PROC	UCING C	DUNTIES								
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	1,248 372 947 587 205 75 451 1,476 26 287 5,675	793,833 151,593 495,935 138,452 82,511 119,895 137,021 205,416 6,819 91,763 2,223,239	4,405 479 3,651 1,674 563 725 580 1,422 40 580 14,119	464,171 86,822 299,310 109,317 52,119 33,706 55,251 47,839 2,050 42,834 1,193,419	9,501 36,779 11,540 6,461 3,853 9,373 6,773 296 5,589		10,357 1,830 8,260 2,386 1,208 105 174 253 8 726 25,306	34,312 2,709 25,117 32,027 6,597 3,698 2,634 2,634 2,154 137 4,599 113,985	4,630 366 3,389 4,322 890 97 69 57 4 521 14,345	2,080 8,276 5,892 1,868 1,983 3,726	15,459 97,385 39,591 17,028 14,989 39,977 11,256 1,024 16,366	43,229 15,618 11,551 11,805 4,717 1,773 320	98,379 13,120 41,540 16,314 8,435 901 1,507 439 45 5,012 185,690	33,833 287 5,517 1,212 360 774 0 19 801 43,120	106 361 0 62 67 0 0 1 43	•	0 0 0 86 167 27 181 462	1,948,909 327,565 1,131,674 395,943 199,777 196,611 263,560 297,879 11,302 187,265 4,960,486
	*							COAL-II	IPACT CO	UNTIES							• • • •	
2 6 7 8 9 12 14 16 17	338 787 85 0 4 301 372 307	205,161 204,195 101,548 169 1,721 108,626 336,551 167,658	773 1,127 742 1 9 575 6,297 2,157	82,844 109,811 55,002 83 846 55,555 70,538 57,197		27,998 3,346 12 123 3,738	338 940 112 0 4 76 315 139	2,218 14,443 1,342 53 493 5,309 1,823	81 525 49 0 2 4 4 44 15	6 57 5,342	44,024 40,126 21,433 357 24,397 14,178 20,397	26,978 2,406 14 140 570 17,732	4,500 4,831 1,722 4 36 522 664 538	2,898 515 123 1 1 1,710 945 1,416	0 0 4 146 525	- ,	129 0 0 0 700 197	396,663 452,661 198,483 343 3,493 216,205 493,971 284,270
Unclassified Subtotal	242 2,437	122,516 1,248,145	1,062 12,744	52,298 484,173			212 2,138		8 2 802		20,906 185,852	7,362 78,977	1,623 14,440	877 8,495		1,	77 103	231,064 2,277,153
							ALL	EXTENDED	WEIGHT	SYSTEM CO	DUNTIES						[
2 6 7 8 9 12 14 16 17 Unclassified Total		998,994 355,788 597,482 138,621 84,232 228,521 473,573 373,074 6,819 214,279 3,471,383	5,178 1,606 4,393 1,675 573 1,300 6,877 3,579 40 1,642 26,863	547,014 196,633 354,312 109,400 52,965 89,261 125,789 105,036 2,050 95,132 1,677,592	22,219 45,498 11,553 6,588 18,003 19,403 19,111 296 14,606	41,730 65,325 17,918 9,189 8,090 22,718 17,369 317 14,345	10,696 2,771 8,372 2,387 1,212 181 488 392 8 937 27,444	17,152 26,460 32,032 6,650 4,191 7,943 3,977 137 7,304	891 3,438 4,322 892 101 113 72 4 603	10,131 5,897 1,925 7,324 18,000 13,960 170 6,876	55,585 118,818 39,626 17,386 39,385 54,155 31,652 1,024 37,272	45,635 15,632 11,691 12,375 22,449 7,140	17,951 43,261 16,317 8,470 1,423 2,172 977 45 6,634	36,730 803 5,640 318 1,223 2,070 1,718 1,416 19 1,678 51,615	106 361 0 66 213 525 246 1 275	2,	129 0 0 786 364 27 259 565	2,345,572 780,226 1,330,157 396,287 203,270 412,816 757,531 582,150 11,302 418,329 7,237,639

TABLE C20. PASSENGER-CAR-EQUIVALENT MILES ON BASE SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		SIN	GLE-UNIT	TRUCKS			SINC	LE-TRAILE	R TRUCKS		MULTI-	TRAILER T	RUCKS	TOTAL
CLASS	CYCLES	UARS	BUSES	2-AXLE 4-TIRE	2-AXLE 6-TIRE	3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	
							(COAL-PRO	DUCING C	OUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	1,568 1,045 5,050 1,277 493 407 1,968 532 196 2,456 14,991	55,276 723,715	2,507 141,481 13,879 73,440	507,489 190,474 552,063 338,256 92,787 17,530 114,721 245 8,449 318,200 2,140,215	16,648 86,570 36,325 11,645 4,309 18,547 7,382 2,077 45,080	17,482 83,297 35,433 10,259 6,043 14,677 18,954 2,913 45,201	2,227 791 3,770 1,604 464 91 222 287 44 1,601 11,102	15,709 47,726 43,120 8,038 1,631 4,033 5,060 786	0 0 296 733 920 143 723	2,805 31,429 2,315 2,572 2,681 16,130 1,113 1,292	17,457 197,020 82,825 31,921 10,371 64,097 3,007 4,999 120,060	50,660 39,584 13,636 9,070 38,118 16,243	4,176 32,218 15,904 5,920 4,526 23,821 4,465 2,182 28,620	5,941 198 1,233 919 389 562 2,911 589 271 2,526 15,539		13 80	0 1,029,191 27 329,059 51 201,488 53 669,938 0 494,977 53 97,116 01 1,468,497
								COAL-II	MPACT CO	UNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	1,513 1,413 1,494 1,124 262 503 1,439 1,439 1,436 204 4,496 13,884	407,043 355,330 739,523 351,328 81,946 222,201 1,217,305 1,065,695 125,745 1,917,280 6,483,397	2,403 3,517 5,443 2,675 624 408 9,396 21,341 1,230 16,845 63,882	113,967 202,977 263,833 138,552 32,317 37,296 399,053 242,962 29,897 593,876 2,054,730	29,162 49,360 24,174 5,638 5,315 54,428 35,749 4,227 95,466	33,436 29,216 21,943 5,118 10,831 40,281 50,195 5,449 99,934	482 679 593 446 104 278 1,033 1,287 140 2,269 7,310	13,562 5,179 5,304 6,499 1,516 2,409 6,114 3,593 820 23,060 68,055	136 139 171 40 86 218 128 29 670	3,884 10,161 11,763 2,744 2,403 16,694 1,861 1,089	94,391 15,572 46,598 40,780 9,512 7,312 53,876 3,628 3,333 129,761 404,762	13,933 10,771 13,331 3,109 3,745 9,718 12,041 1,538		4,912 0 3,074 1,990 464 294 3,047 0 156 6,281 20,220	0 0 71 17 0 0 0 179	2' 1(6) 8	50 144,281 19 293,633
					 .		ALL	EXTENDED	-WEIGHT	SYSTEM CO	DUNTIES						
2 6 7 8 9 12 14 16 17 Unclassified Total		1,313,757 682,046 1,713,379 778,021 231,465 336,884 1,581,524 1,360,396 181,021 2,640,994 10,819,486	15,110 90,285	393,451 815,896 476,808 125,104 54,826 513,774 243,208 38,346 912,076	45,810 135,930 60,498 17,283 9,624 72,976 43,131 6,304 140,546	112,513 57,375 15,377 16,874 54,958 69,148 8,361 145,135	2,709 1,470 4,363 2,049 568 369 1,255 1,574 184 3,870 18,412	20,888	136 139 171 40 382 951 1,048 172 1,393	41,590 14,078 5,316 5,084 32,824 2,973 2,382 52,664	33,029 243,618 123,604 41,433 17,682 117,973 6,635 8,331	61,430 52,915 16,745 12,815 47,836 28,284 5,910 108,725	6,090 35,950 19,422 6,741 4,970 26,376 5,090 2,377 39,056	10,854 198 4,306 2,910 853 855 5,959 589 427 8,808 35,759	0 685 412 341 2,372 0 174 2,023	68 22 1,54 1,54	14 1,647,769 77 473,340 40 495,121 40 2,485,774 0 1,935,519 17 271,211

TABLE C21. EQUIVALENT-SINGLE-AXLE-LOAD MILES ON EXTENDED-WEIGHT SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		S	INGLE-UN	IT TRUCKS	3		SIN	GLE-TRAI	LER TRUC	(S	MULTI-	TRAILER T	RUCKS	TOTAL
CLASS	CYCLES	LAKS	BUSES	2-AXLE 4-TIRE		3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	IDIAL
							(COAL - PROL	OUCING CO	DUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	0 0 0 0 0 0 0 0 0 0 0 0	2,381 455 1,488 415 248 360 411 616 20 275 6,670	2,722 296 2,256 1,035 348 200 160 393 11 318 7,739	2,785 521 1,796 656 313 202 332 287 12 257 7,161	18,932 2,396 9,273 2,910 1,629 2,114 1,528 67 1,390 41,107	3,695 16,675 4,817 2,439 990 1,643 2,389 72 1,901	8,670 39,131 11,305 5,724 236 391 569 17	23,686 1,870 17,338 22,108 4,554 2,319 1,652 1,652 1,351 8,152 78,115	12,713 1,004 9,306 11,866 2,444 139 99 81 5 1,419 39,076	54,651 6,900 27,452 19,543 6,198 267 502 856 23 5,423 121,815	1,966 12,383 5,034 2,165 2,385 6,362 1,791 163 2,161	3,137 4,660 1,683 1,245 1,302 520 196 35 928	90,170 35,412 18,309 1,139 1,906 555 57	12,189 104 1,988 114 437 136 292 0 7 289 15,556	229 777 0 133 38 0 0 1 90	0 0 0 25 633 8 53 719	4\$5,99(59,72 234,69(116,89(46,18(10,58(16,40(11,24) 31,86(984,17)
		•••••					•••••	COAL-II	PACT CO	JNTIES					• • • • • • • • • • • • •		
2 6 7 8 9 12 14 16 17	0 0 0 0 0 0 0 0	615 613 305 1 5 326 1,010 503	225 328 216 0 3 140 1,532 525	497 659 330 0 5 333 423 343	3,881 3,328 2,282 3 33 1,874 1,328 1,634	2,224 6,180 739 3 27 876 3,632 1,610	463 2 17 160 663	1,538 10,017 931 4 36 318 3,424 1,176	281 1,828 170 1 7 11 122 42	2,138 1,872 453 1 14 771 2,061 1,098	5,571 2,976 50 3,077 1,788		6,589 7,074 2,521 5 52 445 566 459	811 144 34 0 3 450 248 372	0 0 2 54 192	282 0 0 1 1 101 28	29,51 44,77 11,71 27 8,89 18,90 11,29
Unclassified Subtotal	0 0	368 3,744	270 3,240	314 2,905	1,776 16,140	1,617 16,909	755	1,838 19,282	281 2,743	866 9,275			2,242 19,953	238 2,301		31 444	14,36 139,75
							ALL I	XTENDED	WEIGHT	SYSTEM C	OUNTIES						
2 6 7 8 9 12 14 16 17 Unclassified Total	0 0 0 0 0 0 0 0 0 0 0	2,997 1,067 1,792 416 253 686 1,421 1,119 20 643 10,414	2,948 624 2,473 1,035 351 340 1,692 917 11 588 10,979	3,282 1,180 2,126 656 318 536 755 630 12 571 10,066	5,724 11,555 2,913 1,662 2,743 3,442 3,162 67 3,166	9,875 17,414 4,820 2,466 1,866 5,275 3,999 72 3,519	12,544 39,594 11,307 5,741 396 1,054 863 17	25,224 11,887 18,269 22,112 4,590 2,637 5,076 2,527 86 4,989 97 396	12,994 2,832 9,476 11,867 2,451 150 221 123 5 1,701 41,819	56,789 8,771 27,905 19,545 6,212 1,038 2,563 1,954 23 6,289 131 000	7,537 15,359 5,039 2,215 5,463 8,150 4,364 163 4,968	6,425 4,953 1,685 1,262 1,360 2,334 744 35 1,777	35,417 18,361 1,584 2,472 1,014 57	13,000 248 2,022 115 440 586 541 372 7 527 17,857	229 777 0 135 92 192 90 1	282 0 0 1 126 662 8 84	485,50 104,49 246,40 116,92 46,45 19,47 35,31 22,54 58 46,22 1,123,93

TABLE C22. EQUIVALENT-SINGLE-AXLE-LOAD MILES ON BASE SYSTEM (1000s)

FUNCTIONAL	MOTOR-	CARS	BUSES		S	INGLE-UN	IT TRUCKS	5		SIN	GLE-TRAI	LER TRUCK	s	MULTI-	RAILER T	RUCKS	TOTAL
CLASS	CYCLES		BOJEJ	2-AXLE 4-TIRE		3-AXLE W/O DECAL	3-AXLE WITH DECAL	4-AXLE W/O DECAL	4-AXLE WITH DECAL	4-AXLE W/O DECAL	5-AXLE W/O DECAL	6-AXLE W/O DECAL	ALL WITH DECAL	5 OR LESS AXLES	6-AXLE	7 OR MORE AXLES	IUIAL
							(COAL-PRO	DUCING C	DUNTIES							
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	0 0 0 0 0 0 0 0 0 0 0 0 0 0	166 2,171	7,724 2,317 12,418 7,170 1,660 25,820 2,248 126,861 12,445 70,578 269,240	1,143 3,312 2,030 557 105 688 1 51 1,909	290,195 121,765	6,238 29,720 12,642 3,661 1,336 3,245 4,190 644 15,031	3,309 15,766 6,707 1,942 380 922 1,191 183 6,694	10,657 8,524 25,898 23,399 4,362 835 2,064 2,590 402 15,039 93,770	0 0 0 1,420 3,511 4,406 684 3,466 13,487		2,729 30,803 12,949 4,991 1,403 8,671 407 676	1,388 4,773 3,730 1,285 1,317 5,536 2,359 635 6,518	18,000	20,752 692 4,305 3,211 1,359 331 1,716 347 160 6,381 39,253	0 3,790 1,885 1,795 16 107 0 8 7,498	0 0 1,045 0 41 52 344 0 25 342 1,850	671,709 96,555 531,111 245,725 79,805 45,893 95,564 156,007 22,120 374,791 2,319,280
								COAL- IN	IPACT COL	JNTIES							•-•-
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	0 0 0 0 0 0 0 0 0 0 0 0 0	1,221 1,066 2,219 1,054 246 667 3,652 3,197 377 5,752 19,450	1,166 1,707 2,642 1,298 303 298 6,866 15,593 899 11,020 41,791	1,218 1,583 831 194 224 2,394 1,458 179 3,563		6,539 9,201 8,039 6,038 1,408 3,618 13,454 16,766 1,820 30,349 97,232	1,338 1,169 878 205 1,028 3,824 4,766 517 6,605	9,330 3,563 3,649 4,471 1,043 1,615 4,098 2,408 550 15,747 46,473	376 86 1,679	5,398 707 1,850 2,142 500 460 3,196 356 209 7,106 21,924	2,529 7,569 6,624 1,545 1,162 8,560 576 530 20,964	2,240 1,732 2,144 500 420 1,089 1,349 172 6,760	5,692 1,407 2,744 2,587 603 338 1,946 476 149 7,722 23,665	1,726 0 1,080 699 163 58 598 0 31 1,962 6,317	20 5 0 0 0 51	237 0 71 17 48 300 0 19 343 1,035	\$6,562 29,444 41,630 32,692 7,625 11,405 63,095 \$5,518 6,506 136,786 441,263
							ALL	XTENDED	WEIGHT	SYSTEM C	OUNTIES			.			
2 6 7 8 9 12 14 16 17 Unclassified Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	543 7,923	8,890 4,024 15,059 8,469 1,962 26,118 9,113 142,455 13,344 81,597 311,031	2,361 4,895 2,861 751 329 3,083 1,459 230 5,472	2,144 16,464 9,782 1,415 150,977	15,438 37,760 18,680 5,069 4,954 16,699 20,956 2,464 45,381	4,647 16,935 7,585 2,147 1,408 4,747 5,957 700	12,087 29,547 27,870 5,405 2,450 6,162 4,998 952 30,786		1,440 10,058 2,746 1,171 924 5,986 549 432 10,477	5,259 38,372 19,573 6,536 2,565 17,231 983 1,206 39,470	3,628 6,505 5,873 1,785 1,737 6,625 3,708 807 13,279	219,206 14,103 100,700 50,941 18,603 11,481 60,589 11,468 5,520 91,194 583,805	22,478 692 5,385 3,910 1,522 389 2,314 347 190 8,344 45,570	0 3,790 1,905 1,799 16 107 0 8 7,549	237 0 1,045 71 58 101 644 0 45 685 2,884	728,271 125,998 572,740 278,418 87,431 57,298 211,525 28,620 511,577 2,760,543

TABLE C23. AVERAGE ANNUAL RESURFACING MILEAGE (ROADWAY MILES) (1988-1990 DATA)

FUNCTIONAL CLASS	EXTENDED-WEIGHT SYSTEM		TOTAL
=================	COAL-PRODUC	COUNTIES	==========
2	92.53	42.47	135.00
67	28.10	19.37	47.47
8	147.60 63.10	96.77 145.10	244.31 208.20
9	13.33	82.27	95.60
12	5.57	5.27	10.8
14	6.17	.97	7.1
16 17	8.50 .00	11.57	20.0
Unclassified	4.70	7.40 74.30	7.4 79.0
Subtotal	369.60	485.49	855.0
	COAL-IMPA	CT COUNTIES	
2	26.43	35.03	61.40
2 6 7	15.70	27.70	43.4
8	12.13 .00	113_83 147.87	125.9 147.8
9	.00	55.90	55.9
12	3.60	3.03	6.6
14	15.27	23.40	38.6
16 17	3.73	19.50	23.2
Unclassified	9.47	8.53 93.93	8.5 103.4
Subtotal	86.33	528.72	615.0
	ALL EXTENDED-WEIGH		
2	118.96	77.50	196.4
6 7	43.80	47.07	90.8
<i>(</i> 8	159.73 63.10	210.60 292.97	370.3
9	13.33	138.17	356.0 151.5
12	9.17	8.30	17.4
14	21.44	24.37	45.8
16	12.23	31.07	43.3
17 Unclassified	.00	15.93	15.9
Total	14.17 455.93	168.23 1014.21	182.4 1470.1
; U L d { =================================	4)).9) ==================================		47U.

TABLE C24. AVERAGE PERCENTAGE OF MILEAGE RESURFACED ANNUALLY

FUNCTIONAL CLASS	EXTENDED-WEIGHT System	BASE SYSTEM	TOTAL
	COAL-PRODUC	CING COUNTIES	
2	17.17	6.41	11.24
6 7	17.20	5.11	8.75
8	15.76 13.13	3.91 4.22	7.16
9	13.06	8.10	8.55
12	20.18	12.70	15.69
14	24.29	1.02	5.93
16 17	10.55 .00	6.44 8.84	7.71
Unclassified	4.98	7.95	7.68
Subtotal	15.05	5.22	7.27
	COAL - IMPA	CT COUNTIES	
2	23.56	13.90	16.88
6	6.89	5.78	6.14
7 8	8.33 .00	6.39 5.62	6.54 5.62
9	.00	7.03	6.93
12	15_86	5.84	8.89
14	16.62	8.67	10.69
16 17	8.90	4.91 8.10	5.29
Unclassified	15.01	11.55	11.80
Subtotal	12.02	6.98	7.41
	ALL EXTENDED-WEIGH	IT SYSTEM COUNTIES	
2	18.27	8.47	12.55
6 7	11.19 14.76	5.48	7.27
8 .	14.76	4.95 4.83	6.94 5.43
9	11.79	7.63	7.88
12	18.23	8.89	12.16
14	18.28	6.68	9.50
16 17	9.98 .00	5.38 8.43	6.19 8.18
Unclassified	9.00	9.63	9.57
Total	14.37	6.01	7.33

FUNCTIONAL CLASS	EXTENDED-WEIGHT System	BASE SYSTEM	TOTAL
	·	CING COUNTIES	===========
2	5,430,337	1,920,374	7,350,
6 7	934,842	562,828	1,497,
8	4,511,298	2,104,235 3,095,234	6,615,
9	2,069,680 463,170	1,775,759	5,164, 2,238,
12	412,877	266,787	679
14	457,352	49,105	506,
16	416,300	313,429	729,
17	. 0	58,625	58,
Unclassified	303,774	1,831,658	2,135, 26,977,
Subtotal	14,999,630	11,978,035	26,977,
	COAL-IMP	ACT COUNTIES	
2	1,332,709	1,446,129	2,778,
6 7	633,501	916,803	1,550,
	282,438	2,691,922	2,974,
8	0	3,000,985	3,000,
9	0	926,626	926,
12 14	63,849 913,451	220,576 1,011,808	284
16	135,392	471,895	1,925, 607,
17	346,661	248,916	248,
Unclassified	825,528	3,123,117	3,948,
Subtotal	4,186,867	14,058,778	18,245,
ALL EXTER	NDED-WEIGHT SYSTEM CO	DUNTIES	
2	6,763,047	3,366,504	10,129,
6	1,568,343	1,479,631	3,047
7	4,793,736	4,796,157	9,589,
8	2,069,680	6,096,219	8,165,
9	463,170	2,702,385	3,165,
12	476,725	487,363	964,
14	1,370,803	1,060,913	2,431,
16 17	551,692	785,324	1,337,
Unclassified	0 1,129,303	307,541 4,954,775	307, 6,084,
Total	19,186,497	26,036,813	45,223,

TABLE C26. EQUIVALENT AVERAGE ANNUAL RESURFACING COSTS (DOLLARS) ADJUSTED TO 1990 EXPENDITURE LEVEL (MILEAGE FROM TABLE C23 AND UNIT COSTS FROM TABLE C25)

FUNCTIONAL CLASS	EXTENDED-WEIGHT System	BASE SYSTEM
	AL-PRODUCING COUNTI	
2 6 7	77,308 43,824	59,56 38,27
8	40,262 43,207	28,64 28,10
9 12	45,771	28,43
14 16	97,644 64,516	66,68 35,68
17 Unclassified	85,140	10,43 32,47
C	OAL-IMPACT COUNTIES	
2 6 7	66,423 53,153	54,38 43,59
7 8	30,672	31,15
9 12		26,73 21,83
14	23,363 78,800 47,815	95,89 56,95
16 17	47,815	31,87 38,44
Unclassified		43,79
ALL EXTE	NDED-WEIGHT SYSTEM	COUNTIES
2 6 7	76,517 46,858	57,12 41,96
7 8	39,579 43,207	29,85
9 12	45,771 23,363	25,52 95,89
14	85,272 59,373	57,32 32,76
17 Unclassified		27,82
	85,140	39,34

TABLE C25. AVERAGE UNIT COSTS (DOLLARS/MILE) OF

RESURFACING (1988-1991 MP SYSTEM DATA)

FUNCTIONAL CLASS	EQUIVALENT HY EXTENDED-WEIGHT SYSTEM EXPENDITURES (DOLLARS)	MILEAGE RESURFACED ANNUALLY	FACING ON EXTENDED UNIT COSTS (DOLLARS/MILE)	HYPOTHESIZED EXPENDITURES (DOLLARS)	EXPENDITURE INCREMENT (DOLLARS)
			ING COUNTIES	· · · · · · · · · · · · · · · · · · ·	- .
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	5,430,337 934,842 4,511,298 2,069,680 463,170 412,877 457,352 416,300 0 303,774 14,999,630	34.6 8.3 36.6 20.3 8.3 3.5 .3 5.2 .5 7.5 128.1	45,217 29,057 21,745 21,332 21,585 0 50,624 27,090 7,922 24,652 27,755	1,562,388 242,591 795,653 432,316 178,555 0 13,115 140,581 4,062 184,988 3,554,249	3,867,950 692,251 3,715,645 1,637,364 284,615 412,877 444,237 275,719 -4,062 118,786 11,445,381
		COAL - IMPA	CT COUNTIES		
2 6 7 8 9 12 14 16 17	1,332,709 633,501 282,438 0 63,849 913,451 135,392	15.6 13.2 9.3 .1 .8 1.3 8.0 2.1	41,283 33,098 23,649 20,295 16,577 72,797 43,240 24,200	643,872 435,816 220,245 2,053 12,820 96,475 344,517 49,742	688,838 197,685 62,192 -2,053 -12,820 -32,627 568,934 85,650
Unclassified Subtotal	825,528 4,186,867	7.3 50.1	33,249 40,862	242,367 2,047,907	583,161 2,138,960
	Al	L EXTENDED-WEIGH	T SYSTEM COUNTIES		
2 6 7 8 9 12 14 16 17 Unclassified Total	6,763,047 1,568,343 4,793,736 2,069,680 463,170 476,725 1,370,803 551,692 0 1,129,303 19,186,497	55.2 21.5 53.5 23.3 8.6 4.5 7.8 6.6 5 15.2 190.6	39,978 31,622 18,979 18,667 22,172 21,583 45,664 28,863 8,310 28,190 29,390	2,206,259 678,407 1,015,898 434,369 191,375 96,475 357,632 190,323 4,062 427,355 5,602,156	4,556,787 889,936 3,777,837 1,635,312 271,795 380,250 1,013,170 361,369 -4,062 701,947 13,584,341

TABLE C27. ANNUAL RESURFACING EXPENDITURE INCREMENT FOR EXTENDED-WEIGHT SYSTEM BEYOND BASE-SYSTEM NORMS

.

TABLE C28. AVERAGE ANNUAL RESURFACING COSTS PER ESAL-MILE (CENTS PER ESAL-MILE)

FUNCTIONAL	EXTENDED-WEIGHT	BASE	TOTAL
CLASS	System	SYSTEM	
	COAL-PRODU		
2	1.191	.286	.652
6	1.565	.583	.958
7	1.922	.396	.864
8	1.770	1.260	1.424
9	1.003	2.225	1.777
12	3.901	.581	1.203
14	2.787	.051	.452
16	3.702	.201	.436
17	.000	.265	.258
Average	1.524	.516	.525 .817
	COAL - I MP/	ACT COUNTIES	
2	4.516	2.557	3.228
6	1.415	3.114	2.089
7	2.412	6.466	5.576
8	.000	9.179	9.172
9	.000	12.152	11.733
12	.718	1.934	1.401
14	4.831	1.604	2.348
16	1.198	.850	.909
17		3.826	3.826
Unclassified	5.749	2.283	2.612
Average	2.996	3.186	3.140
	ALL EXTENDED-WEIGH	IT SYSTEM COUNTIES	
2	1.393	.462	835
6	1.501	1.174	
7	1.945	.837	
8	1.770	2.190	
9	.997	3.091	
12	2.448	.851	
14	3.882	.669	
16	2.447	.371	
17	.000	1.074	
Unclassified	2.443	.969	
Average	1.707	.943	

	==================================		=======
FUNCTIONAL CLASS	EXTENDED-WEIGHT SYSTEM	BASE System	TOTAL
		CING COUNTIES	
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	275,330 38,153 138,608 58,583 26,477 1,514 2,396 1,206 80 15,624 557,970	222,827 16,005 113,721 55,060 19,942 12,943 63,078 16,589 6,238 93,631 620,034	498, 157 54, 158 252, 329 113, 643 46, 419 14, 457 65, 474 17, 795 6, 318 109, 255 1, 178, 003
	COAL - IMP/	ACT COUNTIES	
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	8,263 12,776 3,153 7 617 1,351 795 3,278 30,317	7,453 3,055 4,231 3,854 899 1,618 6,410 5,618 752 16,006 49,895	15,716 15,831 7,384 3,861 975 2,235 7,762 6,413 752 19,284 80,213
	ALL EXTENDED-WEIG	HT SYSTEM COUNTIES	
2 6 7 8 9 12 14 16 17 Unclassified Total	283,593 50,929 141,761 58,591 26,553 2,130 3,748 2,000 80 18,902 588,287	230,280 19,060 117,952 58,914 20,841 14,561 69,488 22,207 6,990 109,637 669,929	513,873 69,989 259,713 117,504 47,394 16,692 73,236 24,207 7,070 128,539 1,258,216

TABLE C29. ANNUAL ESAL-MILES OF COAL DECAL TRUCKS (1000s)

COAL TRUCK TYPE	DECAL	EMPTY WEIGHT (POUNDS)	MAXIMUM Load (Pounds)	PAYLOAD (POUNDS)	ESALS PER TRUCK	REDUCTION IN ESAL-MILES BY ELIMINATION OF DECALS (PERCENT)
3-Axle Single-Unit	With Decal Without Decal	29,000 25,000*	94,500 59,400	65,500 34,400	26.4 5.4	61.1
4-Axle Single-Unit	With Decal Without Decal	35,000 31,000*	105,000 77,000	70,000 46,000	13.9 5.3	42.0
5- and 6-Axle Single-Trailer	With Decal Without Decal	40,000 35,000*	126,000 80,000	86,000 45,000	9.1 1.4	70.6

TABLE C30. HYPOTHETICAL PERCENT REDUCTION IN ESAL-MILES WITHOUT COAL DECAL SYSTEM

*Assumed

4

-

TABLE C31.	HYPOTHETICAL	ANNUAL	ESAL-MILES O	OF COAL	TRUCKS
	WITHOUT COAL	DECAL	SYSTEM (1000s	;)	

FUNCTIONAL	EXTENDED-WEIGHT	BASE	TOTAL
CLASS	System	SYSTEM	
	COAL - PRODU	CING COUNTIES	
2	89,274	66,404	155,678
6	12,333	5,022	17,354
7	47,152	34,941	82,092
8	21,700	16,829	38,529
9	9,031	6,049	15,079
12	507	4,248	4,755
14	770	19,639	20,409
16	432	6,252	6,684
17	27	2,048	2,074
Unclassified	5,324	29,160	34,484
Subtotal	186,549	190,590	377,139
	COAL - I MP	ACT COUNTIES	·····
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	2,643 4,649 1,020 3 26 200 496 274 1,116 10,426	2,514 1,115 1,446 1,328 310 646 2,433 2,214 295 5,817 18,118	5,157 5,764 2,466 1,330 336 846 2,929 2,488 295 6,933 28,544
	ALL EXTENDED-WEIG	HT SYSTEM COUNTIE	S
2	91,917	68,918	160,834
6	16,982	6,136	23,118
7	48,172	36,387	84,559
8	21,702	18,157	39,859
9	9,057	6,358	15,415
12	707	4,894	5,601
14	1,266	22,072	23,338
16	706	8,467	9,172
17	27	2,343	2,369
Unclassified	6,441	34,977	41,417
Total	196,975	208,708	405,683
==================			=========

COAL	HETICAL ANNUAL RESUR DECAL SYSTEM (DOLLAR	S)	NT DUE TO
FUNCTIONAL CLASS	EXTENDED-WEIGHT SYSTEM	BASE SYSTEM	TDTAL
	COAL - PRODUC	ING COUNTIES	
2 6 7 8 9 12 14 16 17	2,215,695 404,182 1,757,971 653,013 174,960 39,261 45,321 28,643 0	447,204 64,023 312,124 481,573 309,141 50,546 22,321 20,767 11,107 315,080	2,662,899 468,205 2,070,094 1,134,587 484,101 89,806 67,642 49,410 11,107 413,280
Unclassified Subtotal	98,201 5,417,247	2,033,885	7,451,132
	COAL - IMPA	CT COUNTIES	
2 6 7 8 9 12 14 16 17 Unclassified Subtotal	253,798 114,977 51,452 0 2,992 41,347 6,243 	126,278 60,425 180,055 231,835 71,585 18,801 63,780 28,932 17,480 232,633 1,031,803	380,076 175,402 231,507 231,835 71,585 21,793 105,127 35,175 17,480 356,910 1,626,890
•••••	ALL EXTENDED-WEIGH	IT SYSTEM COUNTIES	
2 6 7 8 9 12 14 16 17 Unclassified Total	2,469,493 519,159 1,809,423 653,013 174,960 42,253 86,669 34,886 0 222,478 6,012,334	573,482 124,448 492,179 713,408 380,725 69,347 86,100 49,699 28,587 547,713 3,065,688	3,042,975 643,607 2,301,601 1,366,422 555,686 111,599 172,769 84,585 28,587 770,191 9,078,023
================	=======================================	===============================	

.

TABLE C33. ANNUAL REVENUE GENERATED BY COAL DECAL SYSTEM (DOLLARS)

TRUCK TYPE	NUMBER WITH DECALS	DECAL		DDED FEES 80,000-PC REGISTRA	DUND	FE	FEES DUE T WER TRUCK ISTRATIONS	-	TOTAL
	DECALS	UNIT	TOTAL	UNIT	TOTAL	NUMBER	UNIT	TOTAL	
3-Axle, Single-Unit	1,217	160	194,720	716	871,372	1,100	544	-598,538	467,554
4-Axle, Single-Unit	193	260	50 , 180	135	26,055	101	1,125	-113,283	-37,048
Single-Trailer Combination	2,467	360	888,120	0	0	2,248	1,260	-2,832,116	-1,943,996
Total	3,877		679,812**		897,427			-3,543,936	-1,966,697

*Assumes registration fees of \$544, \$1,125, and \$1,260 for 3-axle single-unit trucks, 4-axle single-unit trucks, and single-trailer combinations, respectively, without the coal decal system **Remaining 40 percent distributed to counties

TABLE C34. AVERAGE RIDEABILITY INDEX

FUNCTIONAL CLASS	EXTENDED-WEIGHT System		TOTAL
		CING COUNTIES	
2	3.15	3.12	3.1
6	2.91	3.12	3.0
7 8	2.75 2.07	2.75 2.36	2.7
9	2.30	2.30	2.2
12	2.89	2.85	2.8
14	3.25	3.04	3.0
16	2.78	2.83	2.8
17 Unclassified	2.41 1.71	2.52 2.06	2.5
Average	2.66	2.00	2.5
		ACT COUNTIES	
2 6	3. 19 3. 20	3.37 3.14	3.3
7	3.15	2.95	3. 2.9
8	2.44	2.63	2.0
9	2.99	2.41	2.4
12	3.70	3.16	3.3
14	2.98	2.95	2.9
16 17	3.14	2.83 2.74	2.8
Unclassified	3.49	2.74	2.5
Average	3.19	2.75	2.1
	ALL EXTENDED-WEIG	HT SYSTEM COUNTIES	s
2	3.16	3.19	3.1
67	3.08	3.13	3.
7	2.80	2.83	2.8
8	2.07	2.48	2.4
9 12	2.37	2.34	2.3
14	3.26 3.04	3.02 2.97	3.1
16	2.90	2.97	2.2
17	2.41	2.64	2.0
Unclassified	2.42	2.26	2.2
Average	2.78	2.63	2.0