Research Report
KTC-95-24
Personal Computer (PC) Program for Analysis of Embankments with Tensile Elements
by
MIKHAIL E. SLEPAK
Research Engineerand
TOMMY C. HOPKINS
Head of Geotechnology
Kentucky Transportation Center
College of Engineering
University of Kentucky
in cooperation with
Transportation Cabinet
Commonwealth of Kentucky
and
Federal Highway Administration
U.S. Department of Transportation
The contents of this report reflect the views of the authors, who are responsible for thefacts and accuracy of the data presented herein. The contents do not necessarily reflectthe official views or policies of the University of Kentucky, the KentuckyTransportation Cabinet, nor the Federal Highway Administration. This report doesnot constitute a standard, specification, or regulation.

Fred N. Mudge
Secretary of Transportation

Paul E. Patton Governor

March 19, 1996
Mr. Paul E. Toussaint
Division Administrator
Federal Highway Administration
330 West Broadway, Frankfort, Kentucky 40602-0536

Abstract

SUBJECT: Implementation Statement: Research Study KTC-95-24, "Personal Computer (PC) Program for Analysis of Embankments with Tensile Elements"

Dear Mr. Toussaint:

The purpose of this research study was to develop a comprehensive PC-based slope stability computer program. This program, which is called UKSLOPE, can be used to design and analyze reinforced and unreinforced earth structures. The UKSLOPE stability computer program contains two, original theoretical slope stability, mathematical models. Complete derivations of the new, or modified, model equations and full discussions of the models, including assumptions, are contained in a research report written by Slepak and Hopkins (KTC-93-29, "Computer Program for Analysis of Embankments with Tensile Elements") and in an earlier research report by Hopkins in 1986 (UKTRP-86-2, "A Generalized Slope Stability Computer Program: User's Guide for HOPK-I"). The original models were programmed for the "main frame" computer. However, engineering personnel of the Cabinet requested that a PCversion be developed.

The Design portion of UKSLOPE generally follows guidelines developed by the Tensar ${ }^{\circledR}$ Corporation. However, some modifications and improvements to the original methods have been made. The "Stability Analysis" portion of UKSLOPE was developed using many algorithms contained in the older mainframe version. However, some new algorithms were developed for the new version. Main features of the computer program are as follows:

- UKSLOPE is a very user-friendly, menu-driven, computer program. Its Graphical User Interface offers a convenient way to enter data and to analyze the results.
- The program can be used for both design and analysis of earth structures.
- Both reinforced and unreinforced earth structures can be analyzed by the program.
- A variety of limiting equilibrium methods can be used for stability analysis. These approaches, which can analyze both circular and noncircular failure surfaces, include methods that are newly developed and statically consistent, and the traditional method developed by Bishop (1954).
- Four options are offered to simulate pore pressures in an unstable soil mass. These options cover most practical cases.

Many example problems were considered in the research study. These examples were analyzed by both UKSLOPE and other computer programs. The results of the analyses show that UKSLOPE yields reasonable answers and can be used in practical applications.

Evaluation copies, or "Beta copies," of the UKSLOPE computer program have been transmitted to geotechnical engineers of the Kentucky Transportaion Cabinet, Georgia DOT, Alabama DOT, as well as the main engineering office of FHWA, Washington, D.C. Users in those agencies have volunteered to evaluate the stability program and provide comments to the authors. We anticipate that the evaluation period will last several months. Geotechnical engineers of the Kentucky Transportation Cabinet are using the computer program on a trial basis.

Technical Report Documentation Page
Reproduction of completed page authorized

METRIC (SI*) CONVERSION FACTORS

[^0]
EXECUTIVE SUMMARY

The purpose of this research study was to develop a comprehensive, PC-based, slope stability computer program. This program, called UKSLOPE, can be used to design and analyze reinforced and unreinforced earth structures.

The computer program contains two parts. The first portion, or the "design module," can be used to design reinforcement elements of earth slopes. In this portion of the computer program, the number, lengths, and vertical spacings of geotextiles, geogrids, or tensile elements can be determined. This portion of UKSLOPE generally follows guidelines developed by the Tensar ${ }^{\circledR}$ Corporation. However, some modifications and improvements to the original methods have been made.

The second portion, or the " stability analysis module," of UKSLOPE contains several limiting equilibrium methods. Many portions and algorithms that were used in the original, main-frame version (Hopkins, 1986 and Slepak and Hopkins, 1993) have been included in UKSLOPE. Main features of UKSLOPE are as follows:

- UKSLOPE is a very user-friendly, menu-driven, computer program. Its Graphical User Interface offers a convenient way to enter data and to analyze the results.
- The computer program can be used for both design and analysis of earth structures.
- Both reinforced and unreinforced earth structures can be analyzed by the computer program.
- A variety of limiting equilibrium methods are included for stability analysis. These methods include newly developed, statically consistent methods (Slepak and Hopkins, 1993 and 1995; Hopkins, 1986) which analyze both circular and noncircular failure surfaces, and the traditional method developed by Bishop (1954).
- Four options are offered to simulate pore pressures in an unstable soil mass. These options cover most practical cases.

Many example problems were considered in the research study. These examples were analyzed by both UKSLOPE and other computer programs. The results of the analyses show that UKSLOPE yields reasonable answers and could be used in practical applications.

TABLE OF CONTENTS

1. UKSLOPE COMPUTER PROGRAM. MAIN FEATURES

1.1. Summary of examples
1.2. Homogeneous slope
1.3. Partially submerged multilayered slope
1.4. Zoned earth dam on incompressible foundation
1.5. Sloping core dam
1.6. Multilayered slope
1.7. Embankment on soft ground
1.8. Embankment on a clay foundation
1.9. Side-hill highway embankment slope
1.10. Long-term stability of a cut in soft clay
1.11. Highway (sliding wedge) embankment failure
1.12. Hollow fill slope
1.13. Earth dam with steady-state seepage
1.14. Mill creek dam, downstrem slope
1.15. Mill creek dam, upstream slope
1.16. Embankment on a soft clay foundation
1.17. Load test of a large-scale geotextile-reinforced retaining wall
1.18. Wrigth and Duncan's (1991) example
1.19. Hadj-Hamoe et al (1990) example
1.20. 45-degrees reinforced slope

REFERENCES
APPENDIX 1. UKSLOPE USER'S MANUAL
APPENDIX 2. INPUT DATA FILES FOR THE EXAMPLES

1. UKSLOPE COMPUTER PROGRAM. MAIN FEATURES.

UKSLOPE is a comprehensive PC-based slope stability computer program that can be used to design and analyze reinforced and unreinforced earth structures. The computer program contains two stability modules. In the first portion of the computer program, the "Design module" can be used to design reinforcement elements of earth slopes. This computer module is used to determine the number, lengths, and vertical spacings of geotextiles, geogrids, or tensile elements. This portion of UKSLOPE generally follows guidelines developed by the Tensar® Corporation (Tensar Technical Note, 1986a; Tensar Technical Note, 1986b). However, some modifications and improvements to the original methods have been made.

The second portion, or the "Stability Analysis module," of UKSLOPE contains several limiting equilibrium methods. Many routines and algorithms that were used in the original, main-frame version (Hopkins, 1986 and Slepak and Hopkins, 1993 and 1995) have been included in UKSLOPE. Detail description of the theoretical fundamentals of the program can be found in Slepak and Hopkins (1993). However, main features of the program are briefly outlined below. These are as follows:

- UKSLOPE is a very user-friendly, menu-driven, computer program. Its "Graphical User Interface" offers a convenient way to enter data and to analyze the results.
- The program can be used for both design and analysis of earth structures.
- Both reinforced and unreinforced earth structures can be analyzed by the program.
- A variety of limiting equilibrium methods are used for stability analysis. These approaches include newly developed, statically consistent methods (Slepak and Hopkins, 1993 and 1995; Hopkins, 1986) that can be used to analyze both circular and noncircular shear surfaces, and the traditional method developed by Bishop (1954).
- Four options are offered to simulate pore pressures in an unstable soil mass. These options cover most practical cases.

The user's manual, which contains general information, installation instructions, and operating instructions, is presented in APPENDIX 1 and the computer program.

1.1 SUMMARY OF EXAMPLES.

In the following sections, different examples are analyzed. These examples were obtained from many different sources and were selected to illustrate the many conditions that UKSLOPE can handle. However, all the examples were analyzed earlier by Hopkins (1986) and Slepak and Hopkins (1993). Some examples show only critical shear surfaces located earlier in Hopkins (1986). The other examples are used to perform circular search analysis. In the latter case, contour lines of safety factors (a feature of UKSLOPE) are also shown on the cross-sections. In all cases, factors of safety of critical shear surfaces are compared to factors of safety obtained from the slope stability computer program, called REAME, that was developed by Huang (1994). Factors of safety for all the examples are summarized in Table 1.1. Factors of safety computed by the two different programs are very nearly identical. For convenience, data entry files for all the examples are given in Appendix 2.

1.2. HOMOGENEOUS SLOPE (Example 1 in Hopkins, 1986).

The cross-section of this example is shown in Figure 1.1.In this example, the shear surface is circular and the pore pressures are assumed equal to zero.

Figure 1.1. Cross-section in example 1

Table 1.1. Summary of factors of safety for the example problems.

Example Number	UKSLOPE			REAME		$\begin{gathered} \text { Parameters of Critical } \\ \text { Circles } \\ \text { Coordinates of Centers } \end{gathered}$		
	Bishop	Hopkins	Mod.	Bishop S	Spencer	X	Y	Radius
Example 1	2.185	2.183	2.185	2.185	2.184	160.00	194.00	175.000
Example 2	1.554	1.573	1.565	1.558	1.576	536.00	600.00	500.000
Example 3	-	1.623	1.630	-	1.656	Noncirc	ar failure	rface
Example 5	-	1.356	1.361	-	1.411	Noncircu	ar failure	rface
Example 6	1.328	1.323	1.327	1.328	1.307	75.00	50.00	50.000
Example 7	1.307	1.317	1.319	1.307	1.310	180.00	240.00	164.118
Example 7b	1.210	1.215	1.217	1.210	1.205	170.00	225.00	149.931
Example 8	1.220	1.254	1.264	1.219	1.190	349.00	204.00	153.999
Example 9	1.785	1.803	1.805	1.786	1.789	110.00	1050.00	120.000
Example 10	1.373	1.376	1.378	1.372	1.379	134.00	175.00	112.313
Example 12	-	0.976	0.984	-	1.053	Noncircular failure surface		
Example 13	1.589	1.593	1.593	1.589	1.593	1400.00	2050.00	1753.000
Example 14	1.363	1.365	1.368	1.362	1.363	137.00	530.00	30.000
Example 15	1.788	1.808	1.815	1.788	1.808	810.00	705.00	152.393
Example 15 (wedge)	-	1.919	1.942	-	2.094	Noncircular failure surface		
Example 16	1.032	1.044	1.042	1.030	1.044	400.00	700.00	142.928
Example 17	1.549	1.558	1.905	1.529	-	117.80	70.00	35.000
Example 17 (w/crack)	0.914	0.827	0.914	0.898	0.897	117.80	70.00	35.000
Billiard and Wu	0.987	-	0.986	0.986	0.986	297.00	106.00	217.767
Wright and Duncan	1.357	-	1.363	1.353	1.346	210.00	1400.00	23.990
Hadj-Hamoe (noncircul.)	-	-	1.322	-	-	Noncircular failure surface		
Hadj-Hamoe (circular)	1.271	-	1.318	1.309	1.309	235.00	40.00	70.000
slope	1.421	-	1.417	1.423	1.417	3.80	76.00	75.990

1.3. PARTIALLY SUBMERGED MULTILAYERED SLOPE (Example 2 in Hopkins, 1986)

Figure 1.2. Cross-section in example 2

This example illustrates the method of handling a multilayered slope that is partially submerged, as shown in Figure 1.2. The example is from Whitman and Bailey (1967). The shear surface is circular. The ground-water level in the example is assumed to be approximated by a piezometric level. To satisfy equilibrium requirements, the hydrostatic thrust of the water resting against the slope must be used in the problem. The thrust, however, is computed by the program and need not be entered.

1.4. ZONED EARTH DAM ON INCOMPRESSIBLE FOUNDATION (Example 3 in Hopkins, 1986)

This example illustrates the method of handling a zoned earth dam located on an incompressible foundation, as shown in Figure 1.3. The example is after Janbu (1969). The earth dam consists of a rock fill, filter, and clay core. The assumed shear surface is non-circular and passes through the core, filter, and rock fill. A

Figure 1.3. Cross-section in example 3
tension crack having a theoretical depth of 3.6 meters is assumed to exist in the upper portion of the potential failure mass; the crack is assumed to be filled with water. Consequently, the water in the crack exerts a hydrostatic force against the potential failure mass. This force, however, is computed by the program and need not be entered.

The objective of the analysis is to estimate the short-term or end-of-construction stability of the dam using an effective stress analysis. In this particular problem, the pore pressure is a dependent variable controlled by the magnitude of the stresses tending to instability. In problems of this type, it is oftentimes convenient to use a pore-pressure ratio, rather than the actual pore pressure. Since the rock fill will drain instantaneously, pore pressures in this material during construction are zero and ru will be equal to zero. However, pore pressures will develop in the clay core and filter during construction because those materials have low permeabilities.

1.5. SLOPING CORE DAM (Example 5 in Hopkins, 1986)

In a sloping core dam, the failure surface may be non-circular, as illustrated in Figure 1.4. In this example, the dam consists of an outer shell composed of cohesionless high-strength material and a sloping core composed of cohesive clay. Pore pressures are assumed equal to zero.

The shear surface in this problem is assumed to be tangent along the back slope of the core

Figure 1.4. Cross-section in example 5 and to emerge in the lower portion of the shell material as illustrated.

1.6. MULTILAYERED SLOPE (Example 6 in Hopkins, 1986)

Figure 1.5. Cross-section in example 6

This example considers a multilayered slope selected from Peck, Hansen, and Thornburn's (1974) book. Only one circular shear surface was used. A cross section is shown in Figure 1.5.

1.7. EMBANKMENT ON SOFT GROUND (Example 7 in Hopkins, 1986)

This example illustrates the use of
different pore pressure options. The example was selected from the ICES LEASE-I User's Manual (1969) and is a typical problem in the design of embankments on soft clay. A cross section is given in Figure 1.6. An effective stress analysis (Example 7) and a total stress analysis (Example 7b) were performed. Critical failure surfaces are shown in Figures 1.6 and 1.7 respectively.

Figure 1.6. Cross-section in example 7. Effective stress analysis

Figure 1.7. Cross-section in example 7. Total stress analysis.

1.8. EMBANKMENT ON A CLAY FOUNDATION (Example 8 in Hopkins, 1986)

A cross section of this example is shown in Figure 1.8. The example was analyzed by Wright (1974).

Figure 1.8. Cross-section in example 8

1.9. SIDE-HILL HIGHWAY EMBANKMENT SLOPE (Example 9 in Hopkins, 1986)

Figure 1.9. Cross-section in example 9

The cross-section for this example is shown in Figure 1.9.
1.10. LONG-TERM STABILITY OF A CUT IN SOFT CLAY (Example 10 in Hopkins, 1986)

This example was selected from the STABL User's Guide (1975). The cross-section and the results of circular search analysis are shown in Figure 1.10.

Figure 1.10. Cross-section in example 10

1.11. HIGHWAY (SLIDING WEDGE) EMBANKMENT FATLURE (Example 12 in Hopkins, 1986)

The highway slope failure in Figure 1.11 is a typical example of many highway failures encountered in mountainous terrain. The failure mass is frequently a sliding wedge. Slope inclinometers were installed to locate the shear zone of the slide and to track movements of the sliding mass. As shown by inclinometer data, the major portion of the failure zone was located in the shallow foundation soils. Considerable movement of the sliding mass occurred during the monitoring period.

Figure 1.11. Cross-section in example 12 Consequently, a plane of weakness existed in the embankment and foundation. The water table or phreatic surface was determined from ground-water levels in the slope inclinometer casing.
1.12. HOLLOW FILL SLOPE (Example 13 in Hopkins, 1986)

The hollow fill shown in Figure 1.12 was selected to test the pseudo-statical earthquake routine. This problem involves a circular failure surface and a homogeneous coal disposal fill.

Figure 1.12. Cross-section in example 13
1.13. EARTH DAM WITH STEADY-STATE SEEPAGE (Example 14 in Hopkins, 1986)

A cross section of this example is shown in Figure 1.13. The example appears in Lambe and Whitman's 1969 book.

1.14 MILL CREEK DAM,

 DOWNSTREAM SLOPE (Example 15 in Hopkins, 1986)A cross section of the downstream slope of Mill Creek dam is shown in Figure 1.14. Originally, the dam was intended to

Figure 1.13. Cross-section in example 14 have a core constructed of clay and shells (located upstream and downstream of the core) constructed of durable rock. Unfortunately,

Figure 1.14. Cross-section in example 15. no transitional filters were constructed between the clay core and rock shell contacts. H o we ver, nondurable shales, which had weathered over the period of time dam had been in service, were used to construct the rock shells. Essentially, the dam behaved as a 'homogeneous' structure, although not by design. Piezometers were installed to locate the phreatic surface. The downstream slope was analyzed using
both circular and noncircular wedge type shear surfaces. The results are shown in Figures 1.14 and 1.15 respectively.
1.15. MILL CREEK DAM, UPSTREAM SLOPE (Example 16 in Hopkins, 1986)

The upstream slope of the Mill Creek Dam described in the previous section was analyzed to study the affect of rapid

Figure 1.15. Cross-section in example 15; wedge type failure surface

Figure 1.16. Cross-section in example 16
drawdown on stability. Lowering of the pool might occur in the event of an emergency situation or when repairs of the dam are required. The phreatic surface in the rapid drawdown analyses was assumed to follow along the face of the upstream slope. Permeability tests on the shell materials (essentially weathered clay shales) Yielded values of $1.3 \times 10-8$ centimeters per second. Therefore, little drainage would occur during a short draw downperiod. Results of rapid-drawdown analyses are shown in Figure 1.16.
1.16. EMBANKMENT ON A SOFT CLAY FOUNDATION (Example 17 in Hopkins, 1986)

Figure 1.17. Cross-section in example 17

This example is a hypothetical embankment on a soft clay foundation, as shown in Figure 1.17. Unlike the previous examples, large differences exist among the factors of safety computed by different methods (see Table 1.1). For example, Bishop's method yielded a factor of safety of 1.549 whereas the Modified Perturbation Method yielded a value of 1.905 . The Modified Spencer
Method (by REAME) did not converge.
This example was also analyzed assuming a tension crack in the embankment (Figure 1.18). Two observations can be made from the analysis. First, the factors of safety (see Table 1.1) for the embankment with tension crack are much lower than the ones previously determined. Secondly, the factors of safety for different methods are all near 0.9. Therefore, the analysis with a tension

Figure 1.18. Cross-section in example 17 (with tension crack)
crack is more reliable for this example, and it shows that the embankment could fail.

1.17 LOAD TEST OF A LARGE-SCALE GEOTEXTILE-REINFORCED RETAINING WALL. Billiard and Wu (1991) example.

Billiard and Wu (1991) performed a controlled load test to investigate the performance of a geotextile-reinforced retaining wall until a failure state was reached. The test wall

Figure 1.19. Cross-section in Billiard and Wu example
geometry is illustrated in Figure 1.19. This test wall was erected in the laboratory using a typical sequential construction technique. The test wall was loaded by applying incremental vertical surcharge loads on the top surface until excessive deformation of the facing had occurred. To provide insight into the behavior of the retaining wall under load, the wall was instrumented to measure the strain of the geotextile and deflections of the top surface and vertical face. The wall was constructed using a low weight spun bonded nonwoven polypropylene geotextile with a wide width tensile strength of $420 \mathrm{lbs} / \mathrm{ft}$ at 60% elongation. The soil was a gravelly sand (cohesionless) having a ϕ angle of 39°. Placement unit weight of the sand was estimated to be approximately 95 pcf. The test wall at failure (surcharge load $\mathrm{q}=$

2,660 psf) was analyzed by different methods. The results are shown in Figure 1.20 and Table 1.1. The factors of safety are near 1.0 which is an indication of failure.

Figure 1.20. Cross-section and critical circle at failure in Billiard and Wu example

1.18 WRIGHT AND DUNCAN'S (1991) EXAMPLE.

This example consists of a $10-\mathrm{ft}$. high cohesionless fill resting on a $10-\mathrm{ft}$. layer of saturated ($\phi=0$) clay, as shown in Figure 1.21. Much stronger soils are assumed to exist below the clay. The fill has an angle of internal friction (ϕ) of 35 degrees and a total unit weight of 105 pcf . The clay has a uniform undrained shear strength of 200 psf. One layer of reinforcement is placed at the base of the fill on the surface of the clay. The reinforcement carries a constant force of $3,000 \mathrm{lbs} / \mathrm{ft}$. This example is the

Figure 1.21. Cross-section in Wright and Duncan's example
Wright and Duncan's (1991) example 2. Circular search analyses were performed with this example using different methods.

1.19 HADJ-HAMOE et al (1990) EXAMPLE.

This example deals with the stability analysis of a hurricane protection levee constructed in Louisiana. The test section is 350 ft long, 10 ft high, 10 ft wide at the crown, and 136 ft wide at the base, including the two stabilizing berms. The levee is constructed with a central core of hauled semicompacted clay fill placed on a working pad of hauled sand fill. The stabilizing berms are constructed of hauled uncompacted clay fill placed from the sand pad. The reinforcement consists of two layers of high-density polyethylene Tensar SR 2 geogrids. This example was analyzed using both circular and noncircular (wedge type) shear surfaces. The results are shown in Figures1.22 and 1.23.

Figure 1.22. Cros-section in Hadj-Hamoe example; circular search analysis

Figure 1.23. Cross-section in Hadj-Hamoe example; noncircular failure surface

1.2. A 45-DEGREE REINFORCED SLOPE.

This 45-degree reinforced slope shown in Figure 1.24 was designed using the "Design portion" of UKSLOPE assuming the factor of safety of 1.3. Then it was analyzed using different limiting equilibrium methods. The results are shown in Figure 1.24.

Figure 1.24. A 45-degree reinforced slope

REFERENCES

Bailey, W.A.; and Christian, J.T.(1969); A Problem-Oriented Language for Slope Stability Analysis =-User's Manual, Soil Mechanics Publication No. , Department of Civil Engineering, Massachusetts Institute of Technology, April 1969.

Billiard, J.W.; and Wu, J.T.H. (1991); Load Test of a Large- Scale GeotextileReinforced Retaining Wall, Geosynthetics '91 Conference, Proceedings, Vol. 2, p. 537-548.

Hadj-Hamoe, T.; Bakeer, R.M; and Gwyn, W.W. (1990); Field Performance of a Geogrid-Reinforced Embankment, Transportation Research Record 1277, p. 8089.

Hopkins, T.C. (1986); A Generalized Slope Stability Computer Program; User's Guide for HOPK-I, Research Report, University of Kentucky Transportation Center.

Huang, Y. H. ; (March 1994); User's Manual on REAME and REAME3D, Two-and Three-Dimensional Analysis on Stability of Slopes, Civil Engineering Software Center, College of Engineering, University of Kentucky.

Janbu,N. (1969); An Advanced Method of Slope Stability Analysis-- Recent Advances in Soil Mechanics: Stability of Earth Slopes, a 5-day short course presented by Engineering/Physical SciencesExtension, University Extension, University of California, Los Angeles, California, March 1969.

Lambe, T.W.; and Whitman, R.V. (1969); Soil Mechanics, John Wiley and Sons, Inc., New York.

Peck, R.B.; Hanson, W.E.; and Thornburn, T.H. (1974); Foundation Engineering, 2nd Edition, John Wiley, New York.

Slepak, M.E.; and Hopkins, T.C. (1993); Computer Program for Stability Analysis of Embankments with Tensile Elements. Research Report KTC-93-29, University of Kentucky Transportation Center.

Slepak, M.E. and Hopkins, T.C., (1995): Geosynthetics '95, Modified Perturbation Method in Stability Anallysis of Reinforced Earth Structures, Conference Proceedings, Nashville, Tennessee USA.

Siegel, R.A. (1975); STABL User Manual, Report JHRP-75-9, Purdue University, June 1975.

Tensar Technical Note (1986a), Guidelines for the Design of Tensar Geogrid Reinforced Retaining Walls.

Tensar Technical Note (1986b), Slope Reinforcement with Tensar Geogrids. Design and Construction Guideline.

Whitman, R.V.; and Bailey, W.A. (1967), Use of Computers for Slope Stability Analysis, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol 93, No SM4.

Wright, S.G. (1974), A Study of Slope Stability and the Undrained Shear Strength of Clay Shales, Proceedings, Conference on Analysis and Design in Geotechnical Engineering, Vol II, Austin, Texas, ASCE, June 9-12, 1974.

Wright, S.G.; and Duncan, J.MN. (1991); Limit Equilibrium Stability Analyses for Reinforced Slopes, Transportation Research Record 1330, p.40-46.

APPENDIX 1. UKSLOPE USER'S MANUAL.

Welcome to UKSLOPE, Version 1.4, a powerful computer program for design and stability analysis of reinforced and unreinforced earth structures.

A.1.1. GENERAL INFORMATION.

This software is designed to run under MS DOS on an IBM PC, 386 processor or higher. It is a VERY user-friendly menu-driven program that has a lot of features for graphical input and output. We hope you will enjoy using this software. However, if you experience problems using this software or you are not sure how to use certain features, please do not hesitate to contact the developers, Tommy C. Hopkins, P.E., and Mikhail E. Slepak, Ph.D.,P.E. We will be happy to answer all your questions.

Our address:	Kentucky Transportation Center 176 Civil Engineering/Transportation Center University of Kentucky Lexington, KY 40506-0281 $(606) 257-4513$
Phone:	$(606) 257-1815$
FAX:	MSLEPAK@UKLANS.UKY.EDU

A.1.2. INSTALLATION.

To install the software:

1. Create a new subdirectory for UKSLOPE files and make it current.
2. Insert the distribution disk in $\mathrm{A}:$ drive and type $\mathrm{a}: \backslash$ install.

A.1.3. RUNNING THE PROGRAM.

To run the program:

1. From DOS. Make the subdirectory containing UKSLOPE files current and type: reinforc.
2. From MS Windows. From Program Manager select file, run, and then type the complete path of the executable file (... \reinforc.exe).

A.1.4. PREPARING INPUT DATA.

You will see the first screen displaying general information about the program. Press any key and Main Menu will be displayed.

A.1.4. 1. MAIN MENU.

The Main Menu consists of three items: "STABILITY ANALYSIS", "TENSILE ELEMENTS DESIGN", and "HELP". To navigate between the items use arrow keys; to make a selection press "Enter" or type the first character. The text line displayed to the right of the highlighted item gives a brief explanation of the item.

Select "STABILITY ANALYSIS" to compute a factor of safety for reinforced or unreinforced earth structure. Stability analysis can be performed for the most general case involving complex geometry, external loads, pore water pressures, etc. However, if you are analyzing a case with relatively simple geometry you may reduce the number of input data significantly. See Stability Analysis section for more details.

Select "TENSILE ELEMENTS DESIGN" for preliminary determination of reinforcement layout. Only relatively simple reinforced slopes and retaining walls can be considered using this option. You will find the complete set of limitations under the Design Menu section. If your case can not be treated as "simple", you may design your earth structure by iteratively using "STABILITY ANALYSIS." You could also use "STABILITY ANALYSIS" to check your preliminary slope design. After you have completed "TENSILE ELEMENTS DESIGN", the program will automatically pass all the design features to "STABILITY ANALYSIS". Hence, you could compute the actual factor of safety for the preliminary designed reinforced slope without having to input any extra data. See the Stability Analysis section for more details.

A.1.4.1.1. STABILITY ANALYSIS.

"STABILITY ANALYSIS" option is used to compute a factor of safety for reinforced or unreinforced earth structure. You could analyze both right and left-oriented slopes. In both cases the coordinate system is selected in such a way that X-coordinate is increasing from left to right, Y-coordinate is increasing from bottom to top. Right-oriented slopes are assumed to slide from left to right; left-oriented slopes are
assumed to slide from left to right.
Stability analysis can be performed for the most general case involving complex geometry, external loads, pore water pressures, etc. However, if you are analyzing a case with relatively simple geometry you may reduce the number of input data significantly. After you have selected "STABILITY ANALYSIS" from Main Menu a pop up window will ask you if you would like to initialize variables for Stability Analysis using simplified slope geometry. Type 'y' for "yes" or press any other key for "no". Selecting "yes" will lead you to Simplified Slope Geometry Data Entry Screen. Selecting "no" will prompt you for an input data file name. Type in a file name or press F1 to select it from a list of Stability Analysis files in the current directory. You could display up to 1,000 file names. All Stability Analysis files have extensions ".sta". You do not have to type in that extension, the program will automatically append this extension to the file name you entered. You could leave the file name blank. In this case no files will be read. Press ENTER to display Stability Analysis Menu.

A.1.4.1.1.1. SIMPLIFIED SLOPE GEOMETRY DATA ENTRY SCREEN.

Notice that if during the current session you ran slope "TENSILE ELEMENTS DESIGN", all the data in this screen will be automatically initialized. Hence, you could compute the actual factor of safety for the preliminary designed reinforced slope without having to input any extra data. Slope orientation is always initialized to "RIGHT" by default. You could change any of the data by simply typing it in. At any time you could press ESC to go back to Main Menu. Press F2 after you fill in all data boxes. If you input invalid data, you will be prompted about an error. Correct the error and press F2 again. That will lead you to Stability Analysis Menu.

A.1.4.1.1.2. STABILITY ANALYSIS MENU.

When you work with Stability Analysis your final destination will always be Stability Analysis Menu. If you chose Simplified Slope Geometry then Stability Analysis variables are initialized using data from Simplified Slope Geometry Data Entry Screen. If you did not choose Simplified Slope Geometry, then Stability Analysis variables are initialized with the file data or with blanks if a file name was not specified.

Stability Analysis Menu consists of the following items: "PROBLEM CONTROL", "GROUND LINE", "C PHI GAMA", "BOUNDARY LINES", "WATER", "LINE OF THRUST", "VERTICAL LOADS", "END FORCES", "SEISMIC ANALYSIS", "FAILURE SURFACE(S)", "TENSION CRACK", "REINFORCEMENT", "=EXECUTE", "X-Y

VIEW", and "OUTPUT FILE VIEW".

To navigate between the items use arrow keys; to make a selection press "Enter" or type the first character. The text line displayed to the right of the highlighted item gives a brief explanation of the item. Press ESC at any time to return to Main Menu.

A vertical bar located to the left of the menu window shows the current status of an item. Originally the bar is blue. When you select an item a portion of the bar changes its color to green, thus letting you know which data you have or have not edited. Selecting an item in Stability Analysis Menu will open a Data Entry Screen. From this screen you could preview the current cross-section (F4), get help (F1), and execute slope stability program (F2). If you pressed F2, you will be prompted for an output file name. Enter a file name or press ESC for none. If you have entered valid data, the program will execute. Otherwise, it will prompt you about an error. Correct the error and run the program again or press ESC to exit.

A.1.4.1.1.2.1. PROBLEM CONTROL.

Selecting PROBLEM CONTROL will display Problem Control Data Entry Screen.
Problem identification. Type in any text identifying the problem.
Reinforcement. Select "yes" if the problem involves reinforcement or "no" otherwise.

Method. Select any of the following limiting equilibrium methods.
Bishop's method can be used for circular analysis in both reinforced and unreinforced cases. Although this method is not statically consistent, it was proven to yield reasonable answers in cases involving circular failure surfaces.
Hopkins' method, proposed by one of the developers of this software, (Tommy C. Hopkins) can be used for circular and noncircular analysis in unreinforced cases only. This method is essentially a modification of the Janbu's method. However, to overcome convergence problems usually arising while using Janbu's method, this method makes use of a special numerical technic to compute derivatives of interslice forces at each iteration. Strictly speaking, this method is not statically consistent. However, it yields reasonable factors of safety in a variety of practical problems.
Modified Perturbation method proposed by one of the developers of this software (Mikhail E. Slepak) is a statically consistent
method. It can be used in reinforced and unreinforced analysis involving both circular and noncircular failure surfaces. It is free of convergence problems and yields reasonable factors of safety in a variety of practical problems.

Thrust line can be computed or specified by input.
Failure surface can be circular or noncircular.
Pullout resistances can be calculated assuming either free or fixed reinforcement end. Reinforcement end is considered fixed if it is attached to facing elements, and free otherwise.

Unit weight of water. Units of all input-output data in the stability analysis program are those implied by the numerical value used for the unit weight of water. For example, 0.0624 kip/(cubic ft) implies English system; $9.8 \mathrm{kN} /($ cubic m$)$ implies metric system. Default value is 0.0624 .

Number of slices - any even integer between 2 and 598, default value is 76 .

A.1.4.1.1.2.2. GROUND LINE.

Selecting GROUND LINE will open Ground Line Data Entry Screen. Enter X- and Y- coordinates of the Ground Line. The program will automatically assign a number of points on the Ground Line based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored. If the Y-coordinate of the first point is greater or equal than the Y-coordinate of the last point, then the program will treat the slope as right-oriented. Otherwise, it will treat the slope as left-oriented.

A.1.4.1.1.2.3. C PHI GAMA.

Selecting "C PHI GAMA" will open Soil Layers Properties Data Entry Screen. Each row in this screen represents a soil layer. Enter Cohesion, Friction angle, unit weight, and pore pressure factor for each layer. The program will automatically assign a number of layers based on the number of rows with nonblank cohesions. A row with blank cohesion and all the consecutive rows will be ignored.

Depending on the value of PORE PRESSURE FACTOR (RU) in the fourth column of
the data entry screen, different options can be invoked:

1. $\mathrm{RU}<1$.

Pore pressures in a given soil layer are defined using the pore-pressure ratio (RU).
2. $\mathrm{RU}=1.5$.

Pore pressures in a given layer are defined by a piezometric line.
3. $\mathrm{RU}=2.5$.

Pore pressures are defined by an infinitely sloping groundwater level.
In this case $R U=2.5$ is selected for layer 1 ; for all other layers $R U=0$ should be specified.
4. $\mathrm{RU}=3.5$.

Pore pressures are defined by assuming the ground water level within a slope is a piezometric line. In this case $R U=3.5$ is selected for layer 1 ; for all other layers $R U=0$ should be specified.

Options 1 and 2 can be intermixed.
To specify water layer use $c=0, \mathrm{phi}=0$, gamma $=0, \mathrm{Ru}>2$.

A.1.4.1.1.2.4. BOUNDARY LINES.

Selecting BOUNDARY LINES will open Boundary Lines Submenu. This submenu has as many items as the number of layers specified in Soil Layers Properties Data Entry Screen. Selecting an item will open a Boundary Line Data Entry Screen for the specified layer. Enter X- and Y- coordinates of the Boundary Layer Line. The program will automatically assign a number of points on the Boundary Layer Line based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored. Notice that X-coordinates of the first and the last points on a Boundary Layer Line should coincide with X-coordinates of the first and the last points on the Ground Line.

A.1.4.1.1.2.5. WATER.

Selecting WATER will open Water Table Data Entry Screen or Piezometric Lines Submenu (depending on the Pore pressure factors specified in Soil Layers Properties Data Entry Screen). This submenu has as many items as the number of layers with Pore Pressure factors specified as 1.5 . Selecting an item will open a Piezometric Line Data Entry Screen for the specified layer. Enter X- and Y-coordinates of the Water

Table or Piezometric Line. The program will automatically assign a number of points on the line based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored. Notice that X-coordinates of the first and the last points on the Water Table or Piezometric Line should coincide with X-coordinates of the first and the last points on the Ground Line.

A.1.4.1.1.2.6. LINE OF THRUST.

If Thrust Line parameter in Problem Control Screen was specified "compute," then selecting LINE OF THRUST will open Thrust Line Data Entry Screen. Enter thrust line ratio between 0 and 1 .

If Thrust Line parameter in Problem Control Screen was specified "by input," then selecting LINE OF THRUST will open Thrust Line Coordinates Data Entry Screen. Enter X- and Y- coordinates of the Thrust Line. The program will automatically assign a number of points on Thrust Line based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored. Notice that X-coordinates of the first and the last points on Thrust Line should coincide with X-coordinates of the first and the last points on the Ground Line.

A.1.4.1.1.2.7. VERTICAL LOADS.

Selecting VERTICAL LOADS will open Vertical Loads Data Entry Screen. Enter X-coordinates and magnitudes of external vertical distributed loads diagram. Concentrated forces are not considered in this computer program. The program will automatically assign a number of points on the diagram based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored.

A.1.4.1.1.2.8. END FORCES.

Selecting END FORCES will open End Boundary Forces Data Entry Screen. Enter magnitudes of horizontal and vertical forces acting on the left and right boundaries.

A.1.4.1.1.2.9. SEISMIC ANALYSIS.

[^1]
A.1.4.1.1.2.10. FAILURE SURFACE(S).

If circular failure surface was specified in Problem Control Data Entry Screen, then selecting FAILURE SURFACE(S) will open Circular Search Analysis Data Entry Screen. Enter coordinates of search grid, increments, coordinates of starting point, radius for a given circle, and minimum height of slices.

Depending on the value of RADIUS FOR A GIVEN CIRCLE (RGC), page 2 of the data entry screen, two options can be invoked:

1. $\mathrm{RGC}=0$.

Circular search analysis is performed. If you specified nonzero MINIMUM HEIGHT OF SLICES (MHS), then all circles with maximum height of slices less than MHS will be ignored.
2. $\mathrm{RGC}>0$.

Only one circle is analyzed. Its radius $=$ RGC, its center is at upper left corner of search grid. In this case, lower right corner coordinates of greed search should coincide with upper left corner coordinates; increments, coordinates of starting point, and minimum height of slices are ignored.

If noncircular failure surface was specified in Problem Control Data Entry Screen, then selecting FAILURE SURFACE(S) will open Failure Surface Coordinates Data Entry Screen. Enter X- and Y- coordinates of the Failure Surface. The program will automatically assign a number of points on the Failure Surface based on the number of rows with nonblank X-coordinates. A row with blank X-coordinate and all the consecutive rows will be ignored.

A.1.4.1.1.2.11. TENSION CRACK.

Selecting TENSION CRACK will open Tension Crack Data Entry Screen. Enter Tension Crack Depth and Portion of Tension Crack Depth Filled With Water.

A.1.4.1.1.2.12. REINFORCEMENT.

Selecting REINFORCEMENT will open Reinforcement Data Entry Screen. Each row in this screen represents a reinforcement layer. Enter Lengths, X-coordinates of end points, Elevations, Interaction Coefficients, and Reinforcement Allowable Tensile Strength. The program will automatically assign a number of reinforcement layers based on the number of rows with nonblank Lengths. A row with blank Length and all
the consecutive rows will be ignored.

A.1.4.1.1.2.13. "=EXECUTE".

Selecting "=EXECUTE" will execute Slope Stability program. You will be prompted for an output file name. Enter a file name or press ESC for none. If you have entered valid data the program will execute. Otherwise, it will prompt you about an error. Correct the error and run the program again or press ESC to exit.

A.1.4.1.1.2.14. 'X-Y VIEW'.

Selecting "X-Y VIEW" will allow you to display and print out the cross-section, contour lines, and the critical failure surface.

A.1.4.1.1.2.15. OUTPUT FILE VIEW.

Selecting OUTPUT FILE VIEW will display output file on the screen.

A.1.4.1.2. TENSILE ELEMENTS DESIGN MENU.

Selecting TENSILE ELEMENTS DESIGN from Main Menu will open Design Menu. This menu consists of the following items: "SLOPE DESIGN", "WALL DESIGN", "UNITS", "HELP", "SLOPE FILE VIEW", and "WALL FILE VIEW". To navigate between the items use arrow keys; to make a selection press "Enter" or type the first character. The text line displayed to the right of the highlighted item gives a brief explanation of the item.

With some modifications, reinforced slope and retaining wall design methods follow guidelines developed by Tensar Corporation. These methods are limited to slopes and walls with simple geometry consisting of cohesionless soils only. If your case can not be treated as "simple," you may design your earth structure by iteratively using "STABILITY ANALYSIS."

A.1.4.1.2.1. SLOPE DESIGN.

Select this option to design reinforced slope. The program will prompt you for an input
data file name. Type in a file name or press F1 to select it from a list of Slope files in the current directory. You could display up to 1,000 file names. All Slope files have extensions ".slo". You do not have to type in that extension, the program will automatically append this extension to the file name you entered. You could leave the file name blank. In this case no files will be read. Press ENTER to display Slope Data Entry Screen. For more information you may want to press F1 and/or F4. Press F2 to execute the Slope Design Program. If you have entered valid data, the program will execute. Otherwise, it will prompt you about an error. Correct the error and run the program again or press ESC to exit. After the program has executed you will be prompted for an output file name. Enter a file name or press ESC for none. The slope design method used in this program presumes the following requirements are satisfied:

1. The soil is reinforced with horizontal layers of geosynthetics.
2. The $\mathrm{c}=0$ (cohesionless soils) only analysis is appropriate.
3. The soil has uniform strength properties throughout the entire slope.
4. The slope face is planar and the top of the slope is horizontal.
5. Positive drainage is provided to assure that pore water pressure in the slope is zero.
6. No seismic forces are acting.
7. The slope foundation is competent.
8. Surcharge loads, if any, act uniformly on the top of the slope.

If any of these requirements are not satisfied you may design the slope by iteratively using "STABILITY ANALYSIS."

You could also use "STABILITY ANALYSIS" to check your preliminary slope design. After you have completed Slope Design the program will automatically pass all the design features to "STABILITY ANALYSIS". All you have to do is select STABILITY ANALYSIS, SIMPLIFIED GEOMETRY. Variable initialization will be automatically done for you by the program. Hence, you could compute the actual factor of safety for the preliminary designed reinforced slope without having to input any extra data.

A.1.4.1.2.2. WALL DESIGN.

Select this option to design reinforced retaining walls. The program will prompt you for an input data file name. Type in a file name or press F1 to select it from a list of Slope files in the current directory. You could display up to 1,000 file names. All Wall files have extensions ".wal". You do not have to type in that extension, the program will automatically append this extension to the file name you entered. You could leave the file name blank. In this case no files will be read. Press ENTER to display Wall Data Entry Screen. For more information you may want to press F1 and/or F4. Press F2 to execute the Wall Design Program. If you have entered valid data, the program will execute. Otherwise, it will prompt you about an error. Correct the error and run the program again or press ESC to exit. After the program has executed, you will be prompted for an output file name. Enter a file name or press ESC for none. The wall design method used in this program presumes the following requirements are satisfied:

1. The soil is reinforced with horizontal layers of geosynthetics.
2. Both the reinforced and retained fills are constructed with cohesionless soils and a $c=0$ only analysis is appropriate.
3. A maximum wall friction angle of 34 degrees is used for design.
4. Uniform soil properties exist within each distinct zone (wall fill, retained back fill, and foundation).
5. The wall face is at a vertical to 10 degrees batter angle.
6. Positive drainage is provided to assure that pore water pressure within and on the reinforced wall is zero.
7. No seismic forces are acting upon the structure.
8. Surcharge loads, if any, act uniformly on the top of the wall.

If any of these requirements are not satisfied, you may design the wall by iteratively using "STABILITY ANALYSIS."

A.1.4.1.2.3. "UNITS."

Use this option to select ENGLISH or METRIC system of units.

A.1.4.1.2.4. "SLOPE FILE VIEW."

Selecting this option will display output file for slope design.

A.1.4.1.2.5. "WALL FILE VIEW."

Selecting this option will display output file for wall design.

APPENDIX 2. INPUT DATA FILES FOR THE EXAMPLES.

A.2.1. Example 1

```
051695EXAMPLE 1: HOMOGENEOUS SLOPE
NO
MODIFIED PERTURBATION
COMPUTE
CIRCULAR
FULL
N/A
            .0624 76 20 0
                .000 90.000
            20.000 90.000
            40.000 90.000
            220.000 30.000
            240.000 30.000
9999999999
            .000 30.000 . }130\mathrm{ .000
9999999999
            .000 10.000
    240.000 10.000
9999999999
            .333
9999999999
                .000 .000 . .000 .000
            .000 .000
    160.000 194.000 160.000 194.000 5.000 5.000
5.000
    220.000 30.000 175.000 .000
        .000 .000
```

 A.2.2. EXAMPLE 2.
 112095WHITMAN AND BAILEY EXAMPLE
NO
MODIFIED PERTURBATION
COMPUTE
CIRCULAR
FULL
N/A
$.0624 \quad 76 \quad 15 \quad 10$
.000300 .000
$200.000 \quad 300.000$
$400.000 \quad 200.000$
$500.000 \quad 150.000$
$2000.000 \quad 150.000$
9999999999

```
. 000
1.500
1.000

9999999999
.000
200.000 400.000 500.000 600.000 2000.000 9999999999 .000 400.000 500.000 600.000 2000.000 9999999999 .000 2000.000 9999999999 .000 300.000 500.000 2000.000 9999999999 .333 9999999999 .000 .000 536.000 5.000
136.000 .000
.000 20.000 33.000 300.000 300.000 200.000 150.000 100.000 100.000 200.000 200.000 150.000 100.000 100.000
50.000 50.000 250.000 200.000 150.000 150.000 .000 .000 .000 .000 600.000 536.000 600.000 500.000 .000
.062
. 126
3.500 .000 .130 .000
A.2.3. EXAMPLE 3
```

051695EXAMPLE 3: (AFTER JANBU)

1.0000	76	20

$17.000 \quad 50.500$
$19.500 \quad 50.500$
$20.500 \quad 50.500$
$21.000 \quad 50.500$

```
\begin{tabular}{rrrr}
90.000 & 10.000 & & \\
110.000 & 10.000 & & \\
9999999999 & & .000 \\
.000 & 45.000 & 2.100 & .150 \\
.000 & 38.620 & 2.100 & .350 \\
2.000 & 30.920 & 2.100 & .000 \\
.000 & 40.400 & 2.100 & \\
999999999 & & & \\
17.000 & 50.500 & & \\
19.500 & 50.500 & & \\
20.500 & 50.500 & & \\
58.200 & 10.000 & & \\
110.000 & 10.000 & & \\
999999999 & 50.500 & & \\
17.000 & 50.500 & & \\
19.500 & 50.500 & & \\
50.400 & 10.000 & & \\
110.000 & 10.000 & & \\
999999999 & & & \\
17.000 & 50.500 & & \\
20.000 & 10.000 & & \\
110.000 & 10.000 & & \\
999999999 & 5.000 & & \\
17.000 & 5.000 & & \\
110.000 & 5.000 & & \\
99999999 & & & \\
9999999993 & & & \\
.000 & .000 & & \\
\hline .000 & .000 & & \\
19.500 & 46.900 & & \\
28.000 & 35.200 & & \\
41.000 & 22.400 & & \\
52.500 & 16.400 & & \\
66.000 & 12.600 & & \\
78.600 & 10.000 & & \\
999999999 & 10.000 & & \\
3.600 & 1.000 & & \\
\hline
\end{tabular}

\section*{A.2.4. EXAMPLE 5}

112095SLOPING CORE DAM - AFTER WRIGHT - EX. 5 NO
MODIFIED PERTURBATION COMPUTE
NONCIRCULAR
FULL

N/A
\[
\begin{array}{rr}
.0624 & 76 \\
.000 & 150 \\
40.000 & 180.000 \\
388.750 & 25.000 \\
500.000 & 25.000
\end{array}
\]
\[
9999999999
\]
\[
.000
\]
\[
1.000
\]
\[
1.000 \quad 11.000
\]
\[
1.000
\]
\[
11.000
\]
\[
174.200
\]
\[
24.820
\]
\[
174.200
\]
\[
174.200
\]
\[
273.750
\]
\[
25.000
\]
\[
500.000
\]
\[
25.000
\]
\[
9999999999
\]
\[
.000
\]
\[
174.200
\]
\[
223.750
\]
\[
24.820 \quad 174.200
\]
\[
25.000
\]
\[
500.000
\]
\[
999999999
\]
\[
.000 \quad 25.000
\]
\[
500.000
\]
\[
9999999999
\]
\[
.333
\]
\[
9999999999
\]
\[
.000
\]
\[
.000
\]
\[
.000
\] .000
\(40.000 \quad 180.000\)
\(158.130 \quad 54.100\)
\[
191.500 \quad 51.500
\]
\[
201.000
\]
\[
45.000
\]
\[
222.500
\]
\[
37.500
\]
\[
234.500
\]
\[
34.500
\]
\[
249.000
\]
\[
32.000
\]
\[
266.000
\]
\[
306.500
\]
\[
388.750
\]
\[
9999999999
\]
\[
.000
\]000

10卦
\begin{tabular}{ll}
.133 & .000 \\
.133 & .000 \\
.133 & .000
\end{tabular}
\(.133 \quad .000\)
```

```
            *
```

```
```

```
            *
```

```

\section*{CIRCULAR}

\section*{FULL}

N/A
\[
\begin{array}{rc}
.0624 & 76 \\
.000 & 30.000 \\
50.000 & 30.000 \\
88.500 & 15.000 \\
100.000 & 10.000 \\
150.000 & 10.000
\end{array}
\]
\[
10
\]
\[
9999999999
\]
\[
.000 \quad 35.000
\]
.120 .000 .200 .400
9999999999 .000
15.000
62.500
15.000
100.000
10.000
150.000
10.000

9999999999 \(.000 \quad 5.000\)
150.000 5.000

9999999999 .000
150.000 .000 .000
9999999999 . 333
9999999999 .000 .000 75.000
.000
.000 .000 .000 .000 .000 50.000 75.000 50.000 .000
.000

\section*{A.2.6. EXAMPLE 7}

051595ICES LEASE EXAMPLE (EFFECTIVE STRESS ANALYSIS)
NO
BISHOP'S
COMPUTE
CIRCULAR
FULL
N/A
\(.0624 \quad 7620\)
0 \(.000 \quad 120.000\)
\(110.000 \quad 120.000\)
\(134.000 \quad 108.000\)
\(145.000 \quad 108.000\)
\begin{tabular}{|c|c|c|c|}
\hline 146.000 & 106.000 & & \\
\hline 186.000 & 106.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 30.000 & . 110 & 1.500 \\
\hline . 000 & 30.000 & . 127 & 1.500 \\
\hline . 000 & 30.000 & . 101 & . 650 \\
\hline . 000 & 30.000 & . 101 & . 620 \\
\hline . 000 & 30.000 & . 101 & . 800 \\
\hline . 000 & 30.000 & . 101 & . 800 \\
\hline . 000 & 30.000 & . 101 & . 850 \\
\hline . 250 & . 000 & . 101 & . 700 \\
\hline . 000 & 30.000 & . 101 & . 700 \\
\hline . 000 & 30.000 & . 101 & . 000 \\
\hline 9999999999 & & & \\
\hline . 000 & 106.000 & & \\
\hline 186.000 & 106.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 96.000 & & \\
\hline 145.000 & 96.000 & & \\
\hline 186.000 & 93.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 91.000 & & \\
\hline 120.000 & 91.000 & & \\
\hline 120.000 & 96.000 & & \\
\hline 145.000 & 96.000 & & \\
\hline 186.000 & 93.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 91.000 & & \\
\hline 120.000 & 91.000 & & \\
\hline 186.000 & 88.000 & & \\
\hline 258.000 & 92.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 75.000 & & \\
\hline 120.000 & 75.000 & & \\
\hline 120.000 & 91.000 & & \\
\hline 186.000 & 88.000 & & \\
\hline 258.000 & 92.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline 000 & 75.000 & & \\
\hline
\end{tabular}
```

 120.000 75.000
 186.000 75.000
 186.000 88.000
 258.000 92.000
 258.000 97.500
 310.000 97.500
 9999999999 75.000
120.000 75.000
186.000 75.000
258.000 75.000
258.000 97.500
310.000 97.500
9999999999
.000 70.000
120.000 70.000
120.000 75.000
186.000 75.000
258.000 75.000
258.000 97.500
310.000 97.500
9999999999
.000 70.000
120.000 70.000
186.000 70.000
258.000 70.000
258.000 97.500
310.000 97.500
9999999999
.000 70.000
310.000 70.000
9999999999
.000 104.000
190.000 104.000
258.000 96.000
310.000 96.000
9999999999 1000 104.000
190.000 104.000
258.000 96.000
310.000 96.000
9999999999
. }33
9999999999

.000	.000
.000	.000
110.000	290.000
4.000	
186.000	88.000
.000	.000

```
\begin{tabular}{|c|c|c|c|}
\hline & & A.2.7. & EXAMPLE 7b \\
\hline \multirow[t]{2}{*}{051595ICES
NO} & \multirow[t]{2}{*}{LEASE EXAMPLE} & (TOTAL & STRESS ANALYSIS) \\
\hline & & & \\
\hline BISHOP'S & & & \\
\hline COMPUTE & & & \\
\hline CIRCULAR & & & \\
\hline FULL & & & \\
\hline N/A & & & \\
\hline . 0624 & 76200 & 0 & \\
\hline . 000 & 120.000 & & \\
\hline 110.000 & 120.000 & & \\
\hline 134.000 & 108.000 & & \\
\hline 145.000 & 108.000 & & \\
\hline 146.000 & 106.000 & & \\
\hline 186.000 & 106.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 30.000 & . 110 & 1.500 \\
\hline . 000 & 30.000 & . 127 & 1.500 \\
\hline . 500 & . 000 & . 101 & . 000 \\
\hline . 360 & . 000 & . 101 & . 000 \\
\hline . 300 & . 000 & . 101 & . 000 \\
\hline . 280 & . 000 & . 101 & . 000 \\
\hline . 200 & . 000 & . 101 & . 000 \\
\hline . 650 & . 000 & . 101 & . 000 \\
\hline . 450 & . 000 & . 101 & . 000 \\
\hline . 250 & . 000 & . 101 & . 000 \\
\hline 9999999999 & & & \\
\hline . 000 & 106.000 & & \\
\hline 186.000 & 106.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 96.000 & & \\
\hline 145.000 & 96.000 & & \\
\hline 186.000 & 93.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 91.000 & & \\
\hline 120.000 & 91.000 & & \\
\hline 120.000 & 96.000 & & \\
\hline 145.000 & 96.000 & & \\
\hline 186.000 & 93.000 & & \\
\hline 258.000 & 97.500 & & \\
\hline 310.000 & 97.500 & & \\
\hline 9999999999 & & & \\
\hline
\end{tabular}
```

 .000 91.000
 120.000 91.000
 186.000 88.000
 258.000 92.000
 258.000 97.500
 310.000 97.500
 9999999999
.000 75.000
120.000 75.000
120.000 91.000
186.000 88.000
258.000 92.000
258.000 97.500
310.000 97.500
9999999999
.000 75.000
120.000 75.000
186.000 75.000
186.000 88.000
258.000 92.000
258.000 97.500
310.000 97.500
9999999999 75.000
120.000 75.000
186.000 75.000
258.000 75.000
258.000 97.500
310.000 97.500
9999999999 % 70.000
120.000 70.000
120.000 75.000
186.000 75.000
258.000 75.000
258.000 97.500
310.000 97.500

```

```

 .000 70.000
 120.000 70.000
 186.000 70.000
 258.000 70.000
 258.000 97.500
 310.000 97.500
 9999999999
.000
310.000
70.000
9999999999
.000 104.000
190.000 104.000
258.000 96.000

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Slepak and Hopkins} \\
\hline 310.000 & \multicolumn{3}{|l|}{96.000} & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 000 & \multicolumn{3}{|l|}{104.000} & & \\
\hline 190.000 & \multicolumn{3}{|l|}{104.000} & & \\
\hline 258.000 & \multicolumn{3}{|l|}{96.000} & & \\
\hline 310.000 & \multicolumn{3}{|l|}{96.000} & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline \multicolumn{6}{|l|}{. 333} \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 000 & . 000 & . 000 & . 000 & & \\
\hline . 000 & . 000 & & & & \\
\hline 110.000 & 290.000 & 210.000 & 190.000 & 5.000 & 5.000 \\
\hline \multicolumn{6}{|l|}{4.000} \\
\hline \multirow[t]{2}{*}{186.000
.000} & 88.000 & . 000 & 5.000 & & \\
\hline & . 000 & & & & \\
\hline \multicolumn{6}{|c|}{A.2.8. EXAMPLE 8} \\
\hline \multicolumn{6}{|l|}{51595WRIGHT EX.SL. 1 P-197; EXAMPLE 8.} \\
\hline \multicolumn{6}{|l|}{NO} \\
\hline \multicolumn{6}{|l|}{MODIFIED PERTURBATION} \\
\hline \multicolumn{6}{|l|}{COMPUTE} \\
\hline \multicolumn{6}{|l|}{CIRCULAR} \\
\hline \multicolumn{6}{|l|}{FULL} \\
\hline \multicolumn{6}{|l|}{N/A} \\
\hline . 0624 & 7620 & 0 & & & \\
\hline . 000 & 100.000 & & & & \\
\hline 200.000 & 200.000 & & & & \\
\hline 250.000 & 200.000 & & & & \\
\hline 450.000 & 100.000 & & & & \\
\hline 500.000 & 100.000 & & & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 000 & 40.000 & . 140 & . 000 & & \\
\hline 2.500 & . 000 & . 125 & . 000 & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 000 & 100.000 & & & & \\
\hline & 100.000 & & & & \\
\hline \multicolumn{6}{|l|}{\[
9999999999
\]} \\
\hline . 000 & 50.000 & & & & \\
\hline 500.000 & 50.000 & & & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 333 & & & & & \\
\hline \multicolumn{6}{|l|}{9999999999} \\
\hline . 000 & . 000 & . 000 & . 000 & & \\
\hline . 000 & . 000 & & & & \\
\hline 349.000 & 204.000 & 349.000 & 204.000 & 5.000 & 5.000 \\
\hline \multicolumn{6}{|l|}{5.000} \\
\hline . 000 & . 000 & 153.999 & . 000 & & \\
\hline . 000 & . 000 & & & & \\
\hline
\end{tabular}

\section*{A.2.8. EXAMPLE 8}

51595WRIGHT EX.SL. 1 P-197; EXAMPLE 8.
NO
MODIFIED PERTURBATION
COMPUTE
CIRCULAR
L
\(.0624 \quad 7620\)
\(200.000 \quad 200.000\)
\(250.000 \quad 200.000\)
\(450.000 \quad 100.000\)
500.000100 .000

9999999999

999999999
500.000

9
999
.000
.000
\(\begin{array}{llll}.000 & .000 & 153.999 & .000 \\ .000 & .000 & \end{array}\)

\section*{A.2.9. EXAMPLE 9}
```

112095SIDE-HILL HIGHWAY EMBANKMENT SLOPE (AFTER HARDIN)
NO
BISHOP'S
COMPUTE
CIRCULAR
FULL
N/A
$.0624 \quad 76 \quad 15$10
.000 985.000
11.000 983.000
30.000 996.000
71.000 996.000
136.500 949.000
147.000 948.000
150.000 947.000
157.000 942.000
187.500 942.000
195.500 947.000
9999999999 (0)
.000 . .000
.200 34.00
3.500
.000 38.000
.100 31.000
9999999999
.000 985.000
11.000 983.000
30.000 996.000
71.000 996.000
136.500 949.000
147.000 948.000
150.000 947.000
157.000 942.000
163.000 938.500
174.500 935.500
183.500 938.500
187.500 942.000
195.500 947.000
9999999999
.000 985.000
11.000 983.000
20.000 978.000
29.500 977.000
40.000 975.000
50.000 973.500
60.000 972.500
75.000 967.500
91.000 965.000

```
```

 101.000 961.000
 111.000 957.000
 126.000 952.000
 136.500 949.000
 147.000 948.000
 150.000 947.000
 157.000 942.000
 163.000 938.500
 174.500 935.500
 183.500 938.500
 187.500 942.000
 195.500 947.000
 9999999999 (0)
.000 974.000
75.000 967.500
91.000 965.000
101.000 961.000
111.000 957.000
126.000 952.000
136.500 949.000
147.000 948.000
150.000 947.000
157.000 942.000
163.000 938.500
174.500 935.500
183.500 938.500
187.500 942.000
195.500 947.000
9999999999 880.000
195.500 880.000
9999999999 (0)
67.500 960.000
103.000 955.000
124.000 951.000
146.000 945.500
157.000 942.000
187.500 942.000
195.500 942.000
9999999999
. }33
9999999999
$\left.\begin{array}{cccccc} & .000 & .000 & .000 & .000 & \\ & .000 & .000 & & & \\ 5.000 & .000 & 1050.000 & 110.000 & 1050.000 & 5.000\end{array}\right) 5.000$

```
A.2.10. EXAMPLE 10
112095LONG TERM STABILITY-CUT (FROM STABL USERS GUIDE)
```NO
```

MODIFIED PERTURBATION
COMPUTE

```NONCIRCULARFULL
N/A
\(.0624 \quad 76 \quad 15 \quad 10\)\(.000 \quad 110.000\)
```

67.000 ..... 103.000
104.000 ..... 88.000
142.000 ..... 73.000
167.000 63.000
183.000 ..... 67.000

```\(205.000 \quad 68.000\)
```

9999999999

```
.000 . 500
\(.500 \quad 14.00\) .500
9999999999
\(.000 \quad 99.000\)
\(104.000 \quad 88.000\)\(142.000 \quad 73.000\)\(167.000 \quad 63.000\)\(183.000 \quad 67.000\)
```

205.000 ..... 68.000
9999999999

```\(.000 \quad 93.000\)
```

65.000 ..... 87.000
83.000 85.000
101.000 82.000
122.000 ..... 78.000
142.000 ..... 73.000
167.000 ..... 63.000
183.000 ..... 67.000
205.000 ..... 68.000
9999999999

```\(.000 \quad 76.000\)
```

44.000 ..... 58.000
72.000 ..... 56.000
92.000 ..... 64.000
111.000 65.000

```56.000
```

154.000 26.000

```\(176.000 \quad 24.000\)\(205.000 \quad 15.000\)
```

9999999999

```\(.000 \quad 93.000\)
```

```
 65.000 87.000
 83.000 85.000
 101.000 82.000
 127.000 78.000
 142.000 73.000
 167.000 63.000
 183.000 67.000
 205.000 68.000
9999999999
 . }33
9999999999
 .000 . 000
 .000 .000
 65.000 103.000
 69.230 96.960
 75.890 89.240
 82.740 82.260
 90.620 76.100
 99.120 70.840
 108.150 66.550
 117.600 63.270
 127.250 61.040
 137.280 59.890
 147.280 59.840
 157.230 60.880
 167.000 63.000
9999999999
 .000 .000
A.2.11. EXAMPLE 12
112095FRANKFORT PROBLEM: EXAMPLE 12.
NO
MODIFIED PERTURBATION
COMPUTE
NONCIRCULAR
FULL
N/A
\begin{tabular}{rl}
.0624 & 76 \\
.000 & 638.000 \\
75.000 & 636.500 \\
93.000 & 636.000 \\
100.000 & 634.000 \\
110.000 & 630.000 \\
136.000 & 621.000 \\
155.000 & 606.000 \\
180.000 & 592.500 \\
190.000 & 587.500 \\
200.000 & 581.000
\end{tabular}
```

```
 202.000 580.000
 210.000 573.500
 224.000 560.000
 258.000 560.000
9999999999
 .000 23.800
 591.000
 94.000 590.000
 240.000 540.000
 258.000 540.000
9999999999
 .000 621.000
 74.500 612.500
 94.000 610.000
 100.000 607.000
 110.000 603.000
 136.000 591.000
 179.000 571.000
 200.000 562.000
 202.000 561.000
 210.500 557.500
 214.000 556.000
 225.000 551.000
 258.000 544.000
9999999999
 . }33
9999999999
 .000
 .000
 . }00
 .000
 59.500 636.800
 74.500 612.500
 94.000 593.000
 100.000 589.500
 110.000 585.500
 136.000 576.800
 155.500 570.500
 180.000 562.000
 190.000 558.500
 200.000 554.500
 212.500 550.500
 214.000 550.000
 225.500 557.500
 229.000 560.000
9999999999
 .000 . 000
 .125 3.500
9999999999
 .000
```

            A.2.12. EXAMPLE 13
    ```
NO
HOPKINS'
COMPUTE
CIRCULAR
FULL
N/A
\(.0624 \quad 76 \quad 20\)
 .000 653.000
 62.000 642.000
 376.000 640.000
 516.000 589.000
 536.000 589.000
 676.000 539.000
 696.000 539.000
 836.000 489.000
 856.000 489.000
 996.000 439.000
 1016.000 439.000
 1154.000 389.000
 1221.000 386.000
 1576.000 245.000
 1800.000 245.000
9999999999 (0)
 .409 30.300
 .000 32.000
9999999999
 .000 653.000
 62.000 642.000
 236.000 588.000
 446.000 491.000
 646.000 394.000
 676.000 389.000
 1154.000 389.000
 1221.000 386.000
 1576.000 245.000
 1800.000 245.000
9999999999 653.000
 62.000 642.000
 236.000 588.000
 446.000 491.000
 646.000 394.000
 676.000 389.000
 963.000 326.000
 1172.000 310.000
 1296.000 293.000
 1396.000 271.000
 1576.000 227.000
 1800.000 227.000
9999999999
 . }33
```

| .000 | .000 | .000 | .000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .100 | .500 |  |  | 40.000 | 40.000 |
| .000 | 2050.000 | 1400.000 | 2050.000 |  |  |
| .000 | 400.000 | 1753.000 | .000 |  |  |
| .000 | .000 |  |  |  |  |

```
A.2.13. EXAMPLE 14
```

112095EX. 1A;LAMBE/WHIT.,P. 359 F.S. $=1.31$ (BISHOP-75SLICES NO
MODIFIED PERTURBATION COMPUTE CIRCULAR
FULL
N/A
$.0624 \quad 76 \quad 15 \quad 10$
.000 520.000
112.000 520.000
142.500 500.000
200.000 500.000
9999999999
.090 32.000
999
.000 495.000
200.000 495.000
9999999999
.000 515.000
107.500 514.000
112.500 512.700
115.000 511.750
117.500 510.750
120.000 510.000
122.000 509.000
123.750 508.000
125.750 507.000
127.000 505.750
128.500 504.500
130.000 503.250
131.250 501.250
132.750 500.500
133.000 500.000
200.000 500.000
9999999999
. }33
9999999999
.000 . 000
.000 .000
.000
.000

```
\begin{tabular}{rrrrrrr}
137.000 & 530.000 & 137.000 & 530.000 & .000 & .000 \\
.000 & .000 & .000 & 30.000 & .000 & & \\
& .000 & .000 & & & &
\end{tabular}

\section*{A.2.14. EXAMPLE 15}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 112095MILL } \\
& \text { NO }
\end{aligned}
\] & EK & CULAR & \\
\hline BISHOP'S & & & \\
\hline COMPUTE & & & \\
\hline CIRCULAR & & & \\
\hline FULL & & & \\
\hline N/A & & & \\
\hline . 0624 & 7615 & 10 & \\
\hline . 000 & 610.500 & & \\
\hline 648.000 & 610.500 & & \\
\hline 658.500 & 615.500 & & \\
\hline 668.000 & 620.500 & & \\
\hline 683.000 & 621.000 & & \\
\hline 700.000 & 619.500 & & \\
\hline 722.000 & 616.000 & & \\
\hline 800.000 & 578.000 & & \\
\hline 950.000 & 559.000 & & \\
\hline 1100.000 & 559.000 & & \\
\hline 9999999999 & & & \\
\hline . 000 & . 000 & . 062 & 3.500 \\
\hline . 573 & 28.000 & . 135 & . 000 \\
\hline . 271 & 30.600 & . 135 & . 000 \\
\hline . 305 & 25.900 & . 132 & . 000 \\
\hline . 000 & 33.800 & . 131 & . 000 \\
\hline 9999999999 & & & \\
\hline . 000 & 558.000 & & \\
\hline 544.000 & 558.000 & & \\
\hline 648.000 & 610.500 & & \\
\hline 658.500 & 615.500 & & \\
\hline 668.000 & 620.500 & & \\
\hline 683.000 & 621.000 & & \\
\hline 700.000 & 619.500 & & \\
\hline 722.000 & 616.000 & & \\
\hline 800.000 & 578.000 & & \\
\hline 950.000 & 559.000 & & \\
\hline 1100.000 & 559.000 & & \\
\hline 9999999999 & & & \\
\hline . 000 & 558.000 & & \\
\hline 544.000 & 558.000 & & \\
\hline 648.000 & 610.500 & & \\
\hline 658.500 & 615.500 & & \\
\hline
\end{tabular}
```

    668.000 620.500
    683.000 621.000
    700.000 619.500
    722.000 616.000
    800.000 578.000
    835.000 560.000
    950.000 559.000
    1100.000 559.000
    9999999999
.000 558.000
544.000 558.000
612.000 558.000
690.000 610.000
710.000 610.000
751.000 558.000
790.000 560.000
835.000 560.000
950.000 559.000
1100.000 559.000
9999999999 558.000
544.000 558.000
612.000 558.000
615.000 558.000
623.000 555.000
640.000 554.000
651.000 559.000
687.000 559.000
690.000 547.000
694.000 547.000
694.000 544.000
706.000 544.000
710.000 547.000
712.000 559.000
751.000 558.000
790.000 560.000
835.000 560.000
950.000 559.000
1100.000 559.000
9999999999 548.000
548.000 548.000
690.000 547.000
694.000 547.000
694.000 544.000
706.000 544.000
710.000 547.000
950.000 547.000
1100.000 547.000
9999999999
.000 610.500

```
```

        648.000 610.500
        652.000 606.000
        656.000 602.000
        664.000 598.000
        680.000 593.000
        700.000 589.000
        807.000 577.000
        843.000 572.000
        871.000 569.000
        950.000 559.000
        1100.000 559.000
    9999999999
. }33
9999999999
.000 . .000
.000 . .000
810.000
.000
$.000 \quad .000$
A.2.15. EXAMPLE 15 (WEDGE)
112095MILL CREEK DAM-WEDGE ANALYSIS
NO
MODIFIED PERTURBATION
COMPUTE
NONCIRCULAR
FULL
N/A

| .0624 | 76 | 15 |
| ---: | :--- | ---: |
| .000 | 610.500 | 10 |
| 648.000 | 610.500 |  |
| 658.500 | 615.500 |  |
| 668.000 | 620.500 |  |
| 683.000 | 621.000 |  |
| 700.000 | 619.500 |  |
| 722.000 | 616.000 |  |
| 800.000 | 578.000 |  |
| 950.000 | 559.000 |  |
| 100.000 | 559.000 |  |

9999999999

| .000 | .000 | .062 | 3.500 |
| ---: | ---: | ---: | ---: |
| .573 | 28.000 | .135 | .000 |
| .271 | 30.600 | .135 | .000 |
| .305 | 25.900 | .132 | .000 |
| .000 | 33.800 | .131 | .000 |

```
\begin{tabular}{rr}
9999999999 & \\
\hline .000 & 558.000 \\
644.000 & 558.000 \\
658.000 & 610.500 \\
668.000 & 615.500 \\
683.000 & 620.500 \\
700.000 & 619.000 \\
722.000 & 616.000 \\
800.000 & 578.000 \\
950.000 & 559.000 \\
1100.000 & 559.000 \\
9999999999 & \\
.000 & 558.000 \\
544.000 & 558.000 \\
648.000 & 610.500 \\
658.500 & 615.500 \\
668.000 & 620.500 \\
683.000 & 621.000 \\
700.000 & 619.500 \\
722.000 & 616.000 \\
800.000 & 578.000 \\
835.000 & 560.000 \\
950.000 & 559.000 \\
1100.000 & 559.000 \\
9999999999 & \\
\hline .000 & 558.000 \\
544.000 & 558.000 \\
612.000 & 558.000 \\
690.000 & 610.000 \\
710.000 & 610.000 \\
751.000 & 558.000 \\
790.000 & 560.000 \\
835.000 & 560.000 \\
950.000 & 559.000 \\
1100.000 & 559.000 \\
9999999999 & \\
\hline .000 & 558.000 \\
544.000 & 558.000 \\
612.000 & 558.000 \\
615.000 & 558.000 \\
623.000 & 555.000 \\
640.000 & 554.000 \\
651.000 & 559.000 \\
687.000 & 559.000 \\
690.000 & 547.000 \\
694.000 & 547.000 \\
694.000 & 544.000 \\
706.000 & 544.000 \\
710.000 & 547.000 \\
712.000 & 559.000 \\
\hline
\end{tabular}
```

        751.000 558.000
        790.000 560.000
        835.000 560.000
        950.000 559.000
    1100.000 559.000
    9999999999
.000 548.000
548.000 548.000
690.000 547.000
694.000 547.000
694.000 544.000
706.000 544.000
710.000 547.000
950.000 547.000
1100.000 547.000
9999999999
.000 610.500
648.000 610.500
652.000 606.000
656.000 602.000
664.000 598.000
680.000 593.000
700.000 589.000
807.000 577.000
843.000 572.000
871.000 569.000
950.000 559.000
1100.000 559.000
9999999999
. }33
9999999999
.000 . .000
.000 .000
700.000 619.500
751.000 558.000
860.000 558.000
874.000 568.000
9999999999
.000 . 000

```
A.2.16. EXAMPLE 16
112095MILL CREEK DAM- UPSTREAM SLOPE
```NOMODIFIED PERTURBATION
```

COMPUTE
CIRCULAR
FULL

N/A

9999999999
$.000 \quad 559.000$
$150.000 \quad 578.000$
$228.000 \quad 616.000$
$250.000 \quad 619.500$
$267.000 \quad 621.000$
$282.000 \quad 620.500$
$302.000 \quad 610.500$
$382.230 \quad 570.000$
$406.000 \quad 558.000$
$980.000 \quad 558.000$
9999999999
$115.000 \quad 560.000$
$150.000 \quad 578.000$
$228.000 \quad 616.000$
$250.000 \quad 619.500$
$267.000 \quad 621.000$
$282.000 \quad 620.500$
$302.000 \quad 610.500$
$382.230 \quad 570.000$
$406.000 \quad 558.000$
$980.000 \quad 558.000$
9999999999
$115.000 \quad 560.000$
$199.000 \quad 558.000$
$240.000 \quad 610.000$
$260.000 \quad 610.000$
$338.000 \quad 558.000$
$406.000 \quad 558.000$
$980.000 \quad 558.000$
9999999999

. 000	559.000				
115.000	560.000				
119.000	558.000				
238.000	558.000				
240.000	547.000				
244.000	547.000				
244.000	544.000				
256.000	544.000				
256.000	547.000				
260.000	547.000				
263.000	559.000				
299.000	559.000				
310.000	554.000				
327.000	555.000				
335.000	558.000				
338.000	558.000				
406.000	558.000				
980.000	558.000				
9999999999					
. 000	547.000				
240.000	547.000				
244.000	547.000				
244.000	544.000				
256.000	544.000				
256.000	547.000				
260.000	547.000				
406.000	548.000				
980.000	548.000				
9999999999					
. 000	559.000				
150.000	578.000				
251.000	589.000				
272.000	594.000				
286.000	598.000				
292.000	601.000				
298.000	606.000				
302.000	610.500				
382.230	570.000				
980.000	570.000				
9999999999					
. 333					
9999999999					
. 000	. 000	. 000	. 000		
. 000	. 000				
360.000	780.000	420.000	700.000	20.000	20.000
5.000					
332.000	580.000	. 000	. 000		
. 000	. 000				

A.2.17. EXAMPLE

112095CHIRAPUNTA/DUNCAN: FIG. 34

NO
BISHOP'S COMPUTE CIRCULAR FULL
N/A
$.0624 \quad 76 \quad 1510$
$.000 \quad 68.100$
$80.000 \quad 68.100$
$100.000 \quad 68.100$
135.640
50.000
500.000

9999999999
2.000
15.000
.000
.000
.000
.000
.000 .000 .000 .000
50.000
500.000
50.000

9999999999
$.000 \quad 45.000$
500.000
45.000

9999999999 .000
40.000
500.000

9999999999 $.000 \quad 35.000$
500.000

9999999999
.000
35.000
500.000
30.000

9999999999 .000
25.000
500.000

9999999999 .000
20.000
500.000
20.000

9999999999
$.000 \quad 15.000$
$500.000 \quad 15.000$

```
9999999999
    .000 10.000
    500.000 10.000
9999999999
. }33
9999999999
            .000 .000 . 000 .000
            .000 .000
    117.800
4.000
            . }00
            .000
                .000
                    35.000 .000
```


A.2.18. EXAMPLE 17 (WITH TENSION CRACK)

.0624	76	15	10

$2.000 \quad 15.000$
.250 .000 .095 . 000

```
112095CHIRAPUNTA/DUNCAN: FIG. 34, TENSION CRACK
```

112095CHIRAPUNTA/DUNCAN: FIG. 34, TENSION CRACK
NO
NO
BISHOP'S
BISHOP'S
COMPUTE
COMPUTE
CIRCULAR
CIRCULAR
FULL
FULL
N/A
N/A
.000 68.100
.000 68.100
80.000 68.100
80.000 68.100
100.000 68.100
100.000 68.100
135.640 50.000
135.640 50.000
500.000 50.000
500.000 50.000
99999999999
99999999999
.300 .000 . .095 .000
.300 .000 . .095 .000
.350 .000 .095 .000
.350 .000 .095 .000
.400 .000 . .095 .000
.400 .000 . .095 .000
.450 .000 . 095 .000
.450 .000 . 095 .000
.500 .000 . .095 .000
.500 .000 . .095 .000
. 550 . 000 . 095 .000
. 550 . 000 . 095 .000
.600 . 000 . .095 . 000
.600 . 000 . .095 . 000
9999999999
9999999999
.000 50.000
.000 50.000
500.000 50.000
500.000 50.000
9999999999
9999999999
.000 45.000
.000 45.000
500.000 45.000
500.000 45.000
9999999999
9999999999
.000 40.000
.000 40.000
500.000 40.000

```
    500.000 40.000
```

```
9999999999
    .000 35.000
    500.000 35.000
9999999999
    .000 30.000
    500.000 30.000
9999999999
    .000
    500.000
9999999999
        .000
        20.000
    500.000 20.000
9999999999
        .000 15.000
    500.000 15.000
9999999999
        .000 10.000
    500.000 10.000
9999999999
    . }33
9999999999
    .000 . .000
    117.800
        70.000
        117.800 70.000
        5.000
        5.000
4.000
        .000 . 000
    18.100 .000
```


A.2.19. BILLIARD AND WU EXAMPLE

WU EXAMPLE (GEOS.'91,P.537-548)
YES
BISHOP'S
COMPUTE
CIRCULAR
FIXED REINFORCEMENT END
.062476
$80.000 \quad 5.200$
$106.800 \quad 5.200$
$106.800-.100$
$110.000-.100$
9999999999
.00039 .000 .095 . 000
9999999999
$80.000-.100$
110.000 -. 100

9999999999					
.333					
100.000	2.660				
106.800	2.660				
9999999999	.000	.000	.000		
.000	.000				
.000	.000				
107.000	206.000	307.000	6.000		
5.000					
106.800	-.050	.000	.200		
.000	.000				
6.800	106.800	5.190	.900	.900	.420
4.800	106.800	4.000	.900	.900	.420
1.500	106.800	3.830	.900	.900	.420
4.300	106.800	2.900	.900	.900	.420
1.500	106.800	2.730	.900	.900	.420
3.800	106.800	1.800	.900	.900	.4220
1.500	106.800	1.630	.900	.900	.420
3.400	106.800	.850	.900	.900	.420
1.500	106.800	.700	.900	.900	.420
3.000	106.800	.000	.900	.900	.420

A.2.20. WRIGHT AND DUNCAN EXAMPLE

112095 WRIGHT AND DUNCAN, TRR 1330, EXAMPLE 2, SECOND ITER YES
BISHOP'S
COMPUTE
CIRCULAR
FULL
FREE REINFORCEMENT END
$.0624 \quad 76 \quad 15 \quad 10$
$150.000 \quad 10.000$
$200.000 \quad 10.000$
220.000 .000
250.000 .000

9999999999 .000
35.000
.105 .000 .200
9999999999
150.000
250.000
.000
999999999
$150.000-10.000$
250.000-10.000

9999999999

.333					
9999999999	.000	.000	.000		
.000	.000				
200.000	30.000	220.000	10.000	1.000	1.000
5.000		.000	5.000		
200.000	10.000	.000			
.000	220.000	.000	.900	.900	3.000

A.2.21. HADJ-HAMOE EXAMPLE (CIRCULAR)

07 495HADJ-HAMOE EXAMPLE,TRR,1277,1990,80-89,CIRCULAR YES
BISHOP'S
COMPUTE CIRCULAR
FULL
FREE REINFORCEMENT END
$.0624 \quad 76 \quad 15 \quad 5$
100.000 .000
132.000 .000
$138.000 \quad 2.000$
$167.000 \quad 3.000$
$195.000 \quad 10.000$
$205.000 \quad 10.000$
$233.000 \quad 3.000$
$259.000 \quad 3.000$
268.000 .000
350.000 .000

9999999999

.200	.000	.100	.000
.400	.000	.105	.000
.000	30.000	.120	.000
.150	.000	.074	.000
.150	.000	.095	.000
.200	.000	.098	.000
.275	.000	.098	.000
.400	.000	.098	.000

9999999999
100.000 .000
155.000 .000
$167.000 \quad 3.000$
$195.000 \quad 10.000$
$205.000 \quad 10.000$

233.000	3.000				
245.000	. 000				
350.000	. 000				
9999999999					
100.000	. 000				
168.000	. 000				
181.600	3.000				
214.400	3.000				
234.000	. 000				
350.000	. 000				
9999999999					
100.000	. 000				
350.000	. 000				
9999999999					
100.000	-15.000				
350.000	-15.000				
9999999999					
100.000	-20.000				
350.000	-20.000				
9999999999					
100.000	-30.000				
350.000	-30.000				
9999999999					
100.000	-40.000				
350.000	-40.000				
9999999999					
100.000	-55.000				
350.000	-55.000				
9999999999					
. 333					
9999999999					
. 000	. 000	. 000	. 000		
. 000	. 000				
195.000	210.000	350.000	10.000	10.000	10.000
5.000					
195.000	10.000	. 000	1.000		
. 000	. 000				
32.800	214.400	3.000	1.000	1.000	2.350
49.200	224.200	1.500	1.000	1.000	2.350
9999999999					

A.2.22. HADJ-HAMOE EXAMPLE (NONCIRCULAR)

```
COMPUTE
NONCIRCULAR
FULL
FREE REINFORCEMENT END 
    100.000 . .000
    132.000 .000
    138.000 2.000
    167.000 3.000
    195.000 10.000
    205.000 10.000
    233.000 3.000
    259.000 3.000
    268.000 . 000
    350.000 . 000
9999999999
        .200 .000
        . }400.0
        .000 30.000
        .150 .000
        .150 .000
        .000
        .000
        .000
    100.000 . 000
    155.000 .000
    167.000
    195.000
    10.000
    205.000 10.000
    233.000 3.000
    245.000 .000
    350.000 . .000
9999999999
    100.000 . 000
    168.000 . 000
    181.600
    214.400
    234.000
    3.000
    350.000
        .000
        .000
9999999999
    100.000 .000
    350.000 .000
9999999999
    100.000 -15.000
    350.000 -15.000
9999999999
    100.000 -20.000
    350.000 -20.000
9999999999
    100.000 -30.000
```

```
    350.000 -30.000
9999999999
    100.000 -40.000
    350.000 -40.000
9999999999
    100.000 -55.000
    350.000 -55.000
9999999999
    . }33
9999999999
            .000 .000 .000 .000
            .000 .000
    187.000 7.990
    212.000 -20.000
    260.000 -20.000
    280.000 . 000
9999999999
        .000 .000
        32.800 214.400
        49.200 224.200
        3.000 1.000
        1.500 1.000
        1.000
        2.350
        1.000
        2.350
9999999999
```

A.2.23. 45-DEGREES REINFORCED SLOPE
1289545.0 degrees slope
YES
BISHOP'S
COMPUTE
CIRCULAR
FULI
FIXED REINFORCEMENT END
$62.4000 \quad 76 \quad 15 \quad 10$
$-152.000 \quad 38.000$
$-38.000 \quad 38.000$
$.000 \quad .000$
76.000 .000
9999999999
$.000 \quad 32.000 \quad 125.000$. 000
9999999999
-152.000
.000
76.000
.000
9999999999
. 333
$-152.000 \quad 240.000$
$-38.000 \quad 240.000$
9999999999

.000	.000	.000	.000		
-.000	.000				
-19.000	114.000	57.000	38.000	7.600	7.600
9.500					
-19.000	19.000	.000	.000		
29.000	.000	.667	.900	.900	1000.000
29.039	-2.000	2.000	.900	.900	1000.000
29.039	-3.333	3.333	.900	.900	1000.000
29.039	-4.667	4.667	.900	.900	1000.000
29.039	-6.000	6.000	.900	.900	1000.000
29.039	-7.333	7.333	.900	.900	1000.000
29.039	-8.667	8.667	.900	.900	1000.000
29.039	-10.000	10.000	.900	.900	1000.000
29.039	-11.333	11.333	.900	.900	1000.000
29.039	-12.667	12.667	.900	.900	1000.000
26.348	-14.000	14.000	.900	.900	1000.000
26.348	-16.667	16.667	.900	.900	1000.000
26.348	-19.333	19.333	.900	.900	1000.000
26.348	-22.000	22.000	.900	.900	1000.000
26.348	-24.667	24.667	.900	.900	1000.000
23.656	-28.667	28.667	.900	.900	1000.000
23.656	-34.000	34.000	.900	.900	1000.000

Abstract

 e

[^0]: - St is the symbol for the International System of Measurements

[^1]: Selecting SEISMIC ANALYSIS will open Earthquake Forces Data Entry Screen. Enter Seismic coefficient and seismic ratio.

