#### Research Report KTC 96 - 10

#### EVALUATION OF SUPERIOR PERFORMING PORTLAND CEMENT CONCRETE PAVEMENTS IN KENTUCKY

by

Jerry G. Rose Professor of Civil Engineering

Bobby W. Meade Senior Transportation Research Investigator

and

David Q. Hunsucker Transportation Research Engineer

Kentucky Transportation Center College of Engineering University of Kentucky

in cooperation with Kentucky Transportation Cabinet

and

Federal Highway Administration US Department of Transportation

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Cabinet, nor the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusions of manufacturer names or trade names are for identification purposes and are not to be considered as endorsements. May 10, 1996

Mr. Paul E. Toussaint Division Administrator Federal Highway Administration 330 West Broadway Frankfort, Kentucky 40602-0536

#### SUBJECT: Implementation Statement KYHPR 94-156, "Evaluation of Superior Performing Portland Cement Concrete Pavements in Kentucky," NCP Code 4C1C

Dear Mr. Toussaint:

The vast majority of Portland cement concrete (PCC) pavements constructed in Kentucky during the past forty years have been confined to the Interstate and Parkway Systems. Initially, 78 percent of the 1,215-km (755-mi) Interstate System and 50 percent of the 1,040-km (646-mi) Parkway System was PCC pavement. Performance of PCC pavements, designed using 1960s and 1970s criteria, has varied considerably. However, substantial lengths of the original PCC pavements are still performing satisfactorily. Research Report KTC 96-10 entitled "Evaluation of Superior Performing Portland Cement Concrete Pavements in Kentucky," describes inventories and analyses undertaken during the course of this research study to determine if there are common factors which have contributed to the superior performance of certain sections of Kentucky's PCC pavements. An extensive inventory of Kentucky's interstate, parkway, and other primary routes was performed to determine locations of PCC sections over fifteen years old that had demonstrated excellent performance. Selection of PCC pavement sections for evaluation was based on longevity and traffic accumulations. Both on-site and laboratory evaluations were performed.

The primary distresses of these PCC pavements were transverse joint deterioration and joint faulting. Intermediate span transverse cracking, with occasional faulting, was observed to be the predominant type of PCC cracking. Common factors which would contribute positively to the outstanding performance of these PCC pavements were the concrete's high compressive strengths and high moduli of elasticity. Other factors determined during the evaluations would contribute negatively to any pavement's performance. These factors include very low California Bearing Ratios (CBR's) in both the dense-graded aggregate base and subgrade layers underlying the concrete pavement, relatively high amounts of minus  $75\mu$ m (No. 200) sieve material in the dense-graded aggregate base, and high moisture contents and fairly low unconfined compressive strengths of the soil subgrade layer.

May 10, 1996 Mr. Paul Toussaint Page 2

One task, Task F, was not performed by researchers due to time and budget constraints. The Study Advisory Committee (SAC) for this study recommended the study be extended to complete the task of evaluating adjacent PCC sections that had exhibited poor performance. Information from this task would have enhanced final conclusions and recommendations. Additionally, the SAC recommended that the researchers use the extension to:

- Incorporate data from the Kentucky Department of Highways' Pavement Management Group, including distress surveys, soil and design data,
- Backcast ESAL's from ADT and %TRUCK data -- this information is needed to effectively analyze pavement performance. The design CBR, pavement thickness design and design traffic should be used to determine when the pavements selected for study should have failed,
- For design purposes, drainage should be quantified in terms of the AASHTO drainage coefficient,
- Evaluate the workmanship of the pavement sections by the falling weight deflectometer (FWD) by determining the load transfer capabilities of selected pavement joints within the pavement sections studied.

The Kentucky Department of Highways concurs with the recommendations of the SAC and supports the efforts of the researchers to fully complete this study. However, current PCC pavement designs, including thicker PCC slabs, drainable bases, shorter joint spacings, skewed joints and improved jointfiller materials have contributed to improved joint quality and minimized intermediate span transverse cracking and faulting. Also, improved construction and inspection methods and adherence to presently accepted mix design and production parameters, including screening of potentially reactive aggregates, acceptance of pozzolanic materials and tighter standards on mix variations, have provided a more consistent product. It is conceivable that if present design, construction, and inspection processes had been in use in the 1960s and 1970s, an even higher percentage of the original PCC pavements would be performing satisfactorily with only minimum lengths requiring overlays or reconstruction. It is logical to expect that the improved design, construction and inspection methods of today will provide a consistent 30-year, or longer, pavement life with the only maintenance activities involving joint resealing and diamond grinding to restore surface smoothness and ride quality.

Sincerely,

J. M. Yowell, P.E. State Highway Engineer ຼະກ ເ

| ¥                                                                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 1. Report No.<br>KTC 96-10                                                                                                                                                                                                                                                                                        | 2. Government Accessio                                                                                       | n No.                                                                                                   | 3. Recipient's Catalog N                                                                                 | ło.                                                                                    |  |  |  |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                             |                                                                                                              | ,                                                                                                       | 5. Report Date<br>May 1996                                                                               |                                                                                        |  |  |  |
| Evaluation of Superior Performing                                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| Cement Concrete Pavements in K                                                                                                                                                                                                                                                                                    | 6. Performing Organization Code                                                                              |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| 7. Author(s)<br>Jerry G. Rose, Bobby W. Meade, a                                                                                                                                                                                                                                                                  | icker,                                                                                                       | 8. Performing Organization Report No.<br>KTC 96-10                                                      |                                                                                                          |                                                                                        |  |  |  |
| 9. Performing Organization Name and Address<br>Kentucky Transportation Center<br>176 CE/KTC Building                                                                                                                                                                                                              |                                                                                                              |                                                                                                         | 10. Work Unit No. (TRA                                                                                   | IS)                                                                                    |  |  |  |
| College of Engineering<br>University of Kentucky                                                                                                                                                                                                                                                                  | 11. Contract or Grant N                                                                                      | o.                                                                                                      |                                                                                                          |                                                                                        |  |  |  |
| Lexington, KY 40506-0281                                                                                                                                                                                                                                                                                          | 13. Type of Report and Period Covered<br>Final                                                               |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| 12. Sponsoring Agency Name and Address<br>Kentucky Transportation Cabinet                                                                                                                                                                                                                                         |                                                                                                              |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| State Office Building                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                                         | 14. Sponsoring Agency                                                                                    | Cada                                                                                   |  |  |  |
| Frankfort, KY 40622                                                                                                                                                                                                                                                                                               | 6                                                                                                            |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| 15. Supplementary Notes<br>Prepared in cooperation with the U.S. Dep                                                                                                                                                                                                                                              | artment of Transportatio                                                                                     | n, Federal Highway Adn                                                                                  | ninistration                                                                                             |                                                                                        |  |  |  |
| 16. Abstract                                                                                                                                                                                                                                                                                                      |                                                                                                              | , <u></u>                                                                                               |                                                                                                          |                                                                                        |  |  |  |
| This research report describes a program<br>performances of selected sections of Port<br>survey of Kentucky's interstate, parkway and<br>old that had performed satisfactorily with mini-<br>heavy traffic were selected for detailed e<br>conducted including core drilling and material<br>physical properties. | land cement concrete (l<br>other primary routes to de<br>nal maintenance. Twel-<br>valuations. Initial desig | PCC) pavements in Ken<br>termine locations of PCC<br>ve of the best performing<br>ns were documented ai | tucky. The program inv<br>C pavement sections gra<br>p PCC pavements with land<br>a series of in-situ pa | olved an extensive<br>eater than 15 years<br>ong service life and<br>wement tests were |  |  |  |
| 17. Key Words                                                                                                                                                                                                                                                                                                     |                                                                                                              | 18. Distribution Statemen                                                                               | *                                                                                                        |                                                                                        |  |  |  |
| -                                                                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                                                         |                                                                                                          | (                                                                                      |  |  |  |
| Portland Cement Concrete Pavement, Perl<br>Maintenance, Compressive Strength, Modu                                                                                                                                                                                                                                | Unlimited with appro<br>Kentucky Transporta                                                                  |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                            | Security Classif. (of this report) 20. Security Classif. (of this page)                                      |                                                                                                         |                                                                                                          |                                                                                        |  |  |  |

## TABLE OF CONTENTS

(1,2,2)

5

## PAGE

| LIST OF TABLES                           | ii        |
|------------------------------------------|-----------|
| LIST OF FIGURES                          | ii        |
| EXECUTIVE SUMMARY                        | iii       |
| INTRODUCTION                             | 1         |
| PROCEDURE                                | 1         |
| PCC Cores                                | 5         |
| Base Samples                             | 5         |
| Disturbed Soil Subgrade Samples          | 6         |
| Undistrubed Soil Subgrade Soil Samples   | 6         |
| DATA PRESENTATION AND FINDINGS           | 6         |
| Inventory                                | 6         |
| Early Designs                            | 7         |
| Later Designs and Actions                | 7         |
| Recent Designs                           | 8         |
| Pavement and Laboratory Tests            | 9         |
| PCC Pavement Cores                       | 9         |
| Base Samples                             | 10        |
| Disturbed Soil Subgrade Samples          | 10        |
| Undisturbed Soil Subgrade Samples        | 10        |
| SUMMARY, CONCLUSIONS AND RECOMMENDATIONS | 11        |
| BBLIOGRAPHY                              | 13        |
| APPENDIX A                               | <b>22</b> |
| APPENDIX B                               | 34        |
| APPENDIX C                               | 44        |
| APPENDIX D                               | 57        |

## LIST OF TABLES

 $\mathbb{R}^{n+1}$ 

. ......

• •

| Table I.   | PCC Pavement Sections Selected for Study                   | 14 |
|------------|------------------------------------------------------------|----|
| Table II.  | Kentucky Interstate Highway System,                        |    |
|            | Initial and Present Pavement Types                         | 15 |
| Table III. | Kentucky's Parkway Highway System,                         |    |
|            | Initial and Present Pavement Types                         | 16 |
| Table IV.  | Average Age (Years) of PCC Pavements at                    |    |
|            | the Time of An Asphalt Overlay                             | 17 |
| Table V.   | Average Age (Years) of Original PCC Pavements              |    |
|            | Still in Service                                           | 18 |
| Table VI.  | General Comparison of the Design Details for PCC Pavements |    |
|            | Used in the 1960s and 1970s and Those in Common Use Today  | 19 |
| Table VII. | Pavement and Laboratory Test Results                       | 20 |
|            |                                                            |    |

## LIST OF FIGURES

| Figure 1. | Locations of PCC pavement sections selected for study                                                                      | 3 |
|-----------|----------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2. | Core samples were obtained from the PCC pavements                                                                          | 4 |
| Figure 3. | In-situ California Bearing Ratio tests were performed on the surface of the dense graded aggregate base and the underlying |   |
|           | soil subgrade                                                                                                              | 4 |
| Figure 4. | Undisturbed soil samples were obtained for laboratory testing                                                              | 5 |

#### **EXECUTIVE SUMMARY**

Ļ

This research report describes a program of study directed at determining common factors which have contributed to the superior performances of selected sections of Portland cement concrete (PCC) pavements in Kentucky. This involved an extensive inventory of Kentucky's interstate, parkway, and other primary routes to determine locations of PCC pavement sections greater than 15 years old that had performed satisfactorily with minimal maintenance. Twelve of the best performing PCC pavements with long service and heavy traffic were selected for detailed evaluations. A series of in-situ pavement tests were conducted followed by core drilling and sampling pavement material. Laboratory tests were conducted on the pavement samples to ascertain basic physical properties. No evaluations were made of PCC pavements exhibiting poor performance.

The vast majority of the PCC pavements constructed in Kentucky during the past forty years is confined to the Interstate and Parkway systems. Initially, 78 percent of the 1,215-km (755-mi) Interstate system and 50 percent of the 1,040-km (646-mi) Parkway system was PCC pavement. These values have been significantly reduced in recent years as substantial mileage of PCC pavement has been overlain with asphaltic concrete. Nevertheless, 890 km (553 mi) of PCC existed in early 1994 on Kentucky's combined Interstate and Parkway systems, and only 93 km (58 mi) of the 890 km (553 mi) was reconstructed PCC pavement. Historically, PCC pavements have been selected infrequently for non-Interstate and non-Parkway routes in Kentucky. Although the performance of PCC pavements on Kentucky's Interstate and Parkway systems has varied considerably, substantial mileage of the original PCC pavements, designed from criteria in effect during the 1960s and 1970s, is performing satisfactorily. The primary source of PCC pavement distress observed was transverse joint deterioration and faulting. Intermediate span transverse cracking with occasional faulting was the only significant type of PCC cracking observed.

Based on the testing program, the only common factors which would contribute in a positive manner to the superior performance of the 12 PCC pavements were the high compressive strengths and moduli of elasticity of the PCC slabs. The values greatly exceed design criteria. The other common factors determined from the testing program would be expected to contribute in a negative manner; these being very low in-situ CBR values and high percentages of minus  $75\mu m$  (No. 200 sieve) material in the dense graded aggregate (DGA) bases; and, high moisture contents, low in-situ CBR values and low unconfined compressive strengths of the underlying subgrades.

PCC pavement designs in common use today -- thicker PCC slabs, drainable bases, shorter joint spacings, skewed joints and improved joint-filler materials -- will contribute to improved joint quality and minimized intermediate span transverse cracking and faulting. Also, adherence to presently accepted mix design and production parameters including improved screening of potentially reactive aggregates, acceptance of pozzolanic materials and tighter standards on mix variations will provide a more consistent product. It is conceivable that if designs presently in use had been specified during the 1960s and 1970s, an even higher percentage of the original PCC pavements would be serving satisfactorily. It is logical to anticipate that the improved designs in common use today will provide a consistent 30-year or longer pavement life, with the only maintenance consisting of joint resealing and diamond grinding to restore surface smoothness and ride quality.

#### INTRODUCTION

¥

The primary uses for Portland cement concrete (PCC) on high-type, heavy-duty pavements in Kentucky during the past forty years have been for the Interstate and Parkway systems. Approximately three-fourths of the Interstate system and one-half of the Parkway system were initially constructed with PCC wearing surfaces. These percentages have been significantly reduced in recent years as numerous PCC pavement sections developed distress or served their useful life and were subsequently overlain with a structural layer of asphaltic concrete (AC). It has been common practice during the past ten years to break and seat the PCC prior to overlaying with AC. A few of the PCC sections have been rubblized or removed prior to paving with AC. Only a small percentage of the PCC pavements have been replaced with PCC.

The uses of PCC on other Primary (mainly U.S.) routes have been infrequent and comprise a relatively small percentage of the high-traffic primary routes. The sections are generally fairly short in length and located in the vicinity of the larger urban areas, either approaches to or within the urban area. As these develop distress, or serve their useful life, the typical practice is to overlay with AC. The vast majority of the other primary routes has been initially AC and continues to be constructed with AC.

Few PCC pavement sections are presently being constructed in Kentucky. The contributing factors are quite complex. The early deterioration, particularly joints, of several PCC sections on the Interstate system and to a lesser extent on the Parkway system, influenced designers in the choice of pavement systems. However, several 15- to 30-year old, or older, PCC pavement sections still remain in service on major highways in Kentucky and have performed satisfactorily with minimal maintenance.

The objective of this study was to determine if there were identifiable factors common to these PCC pavements which had contributed to their superior performance on high-traffic primary routes in Kentucky. The findings should be useful for optimizing design practices when specifying PCC pavements.

#### PROCEDURE

The PCC pavement portions of the Interstate, Parkway, and other significant Primary routes were inventoried during 1993. Pertinent observations of physical conditions and performances were recorded. Photographs depicting typical conditions were taken. Twelve test projects comprising the combination of the best performing, longest service and heaviest traffic PCC pavements were selected from the inventory for detailed evaluations. The projects included three Interstate sections, ranging from 25 to 33 years old, six Parkway sections, ranging from 22 to 31 years old, and three other Primary (U.S.) Route sections, ranging from 12 to 34 years old. A listing of the projects is contained in Table I and the locations are depicted in Figure 1.

Two sites were selected on each of the 12 test projects for coring, in-situ testing and sampling. The sites were chosen in areas where the pavement was in essentially perfect condition with no cracks, spalls or other types of distress. Due respect was given to select sites with adequate sight distance to ensure an increased margin of safety for the test crews.

Three tests were typically conducted at each site, or six for each project. The tests were at mid-span, 305 m (1000 ft) apart in the outside wheel path of the outside traveled lane, approximately 1070 mm (42 in.) from the outside shoulder. Therefore, one lane closure and flagging protection sufficed for all three tests at a site. The other site was chosen in the opposite direction of travel and required another lane closure sequence.

The same sequence of coring, in-situ testing and sampling was followed at each test location. The sequence was:

- Take 150-mm (6-in.) diameter core of PCC (ASTM C42) and measure thickness;
- Conduct in-situ CBR test (ASTM D4429) on base through core hole;
- Remove base material, place in sealed container for subsequent laboratory tests, and measure thickness of base;
- Conduct in-situ CBR test (ASTM D4429) on subgrade through core hole;
- Collect sample from the top 50 mm (2 in.) of the subgrade and place in sealed container for subsequent laboratory tests;
- Take Shelby tube sample of the subgrade for subsequent laboratory tests; and
- Fill holes with base material and PCC.

}

ļ

Care was taken during the coring process to minimize contamination of the base with water from the core barrel. The truck used as a test platform for the CBR tests weighed 9,525 kg (21,000 lb) and was supported on blocks. A 50-mm (2-in.) diameter piston was forced at a constant rate into the subject material while measuring the load and corresponding penetration. Views of typical pavement testing and sampling are shown in Figures 2 through 4. PCC Pavements Sections Selected for Study

- 1 164 in Fayette County
- 2 175 in Laurel County
- 3 164 in Shelby County
- 4 BG Parkway in Nelson County
- 5 WKY Parkway in Hopkins County



2

Figure 1. Locations of PCC sections selected for evaluation.



Figure 2. Core samples were obtained from the PCC pavements.



**Figure 3.** In-situ California Bearing Ratio tests were performed on the surface of the dense graded aggregate base and the underlying soil subgrade.



**Figure 4.** Undisturbed soil subgrade samples were obtained for laboratory testing.

Laboratory tests were conducted on the PCC cores, base samples, subgrade samples directly below the base, and subgrade tube samples. The specific tests and sequences were:

## **PCC Cores**

- Core ends faced and capped with sulfur mortar (ASTM C617);
- Compressive strength tests conducted on four cores (ASTM C39); and,
- Static modulus of elasticity tests conducted on another two cores (ASTM C489);

#### **Base Samples**

- Moisture content tests conducted (ASTM D2216);
- Minus 75  $\mu$ m (No. 200 sieve) material tests conducted (ASTM D1140); and,
- Plasticity indices tests conducted (ASTM D4318);

#### **Disturbed Soil Subgrade Samples**

Moisture content tests conducted (ASTM D2216);

#### Undisturbed Soil Subgrade Samples

- Moisture content tests conducted (ASTM D2216);
- Wet densities of the undisturbed samples determined;
- Unconfined compressive strength tests conducted (ASTM D2166);
- Particle size analysis tests conducted (ASTM D422);
- Specific gravity tests conducted (ASTM D854);
- Plasticity indices tests conducted (ASTM D4318); and,
- Classification of soils performed (ASTM D2487).

#### DATA PRESENTATION AND FINDINGS

#### Inventory

The 1993 inventory of Kentucky's Interstate, Parkway, and other Primary routes indicated that the vast majority of the PCC pavements constructed during the past 40 years is confined to the Interstate and Parkway systems.

As noted in Table II, 78% of the 1,215 km (755-mi) Interstate system was originally PCC. Table III indicates that 50% of the 1,040 km (646-mi) Parkway system was originally PCC. These values have been significantly reduced in recent years as substantial mileage of PCC pavement has been overlain with asphaltic concrete (AC). Nevertheless, 890 km (553 mi) of PCC existed as of January 1994 on Kentucky's combined Interstate and Parkway systems, and only 93 km (58 mi) of this was reconstructed PCC pavement.

Appendix A contains information for pavement types by mileposts for each section of each Interstate highway in Kentucky. The left date indicates original construction and dates to the right of the slash marks indicate overlays or major rehabilitation activities. Appendix B contains similar data for the Parkway system.

PCC pavements have been selected infrequently for non-Interstate and non-Parkway routes in recent years. Most of the PCC pavements on these other Primary routes are fairly short in length and located either on approaches to or within urban areas.

#### Early Designs

The typical Interstate thickness design for the majority of the routes was 250 mm (10 in.) of PCC on 150-mm (6-in.) dense graded aggregate (DGA) base. The first few designs in the early 1960's had only 125 mm (5 in.) DGA base. Joint spacing was 15 m (50 ft) for limestone aggregate. The few sections containing gravel aggregate typically had 7.5-m (25-ft) joint spacing. Welded wire fabric was placed at the mid-depth of the slab. Joints were sawed at 90° to the direction of travel. Joints were sealed with hot-poured asphalt. Dowel bars were used for load transfer at the joints. Continuously reinforced concrete pavement was placed on a total of 13 km (8 mi) of I-71 and I-275; however, performance of the continuously reinforced concrete sections was considered to be inferior.

The typical Parkway thickness design was 225-mm (9-in.) PCC on 100-mm (4-in.) DGA base. Jointing and fabric details were the same as the Interstate designs.

Thickness designs for other Primary (US) routes were typically 200-mm (8-in.) PCC on 100mm (4-in.) DGA base. Jointing and fabric details were the same as the designs for the Interstates and Parkways.

#### Later Designs and Actions

After 1976, joint spacings were reduced for new construction. A variable spacing was common, typically 3.7, 4.0, 5.2, 5.5 m (12, 13, 17, 18 ft), averaging about 4.6 m (15 ft). Welded wire fabric was not used. A 90° or a skewed joint pattern was used. Joint sealants were either hot-poured asphalt, neoprene or silicone.

Since 1982, several PCC pavements have been rehabilitated with edge drains. Normally joints were re-sawed and widened and sealed with silicone. Some sections had slabs or portions of slabs replaced during the edge drain installation and the re-jointing operation. Many of these pavements are approaching 30 years of service.

Substantial mileage of PCC pavements has been overlain with AC. Prior to 1982, the AC was placed directly on the PCC pavement. Reflective cracking at the joints was common in

a few years. Since 1982, breaking and seating of the PCC pavement prior to overlay with AC has been the common practice.

The original 1,215-km (755-mi) Interstate system had 78% (953 km (592 mi)) of the mileage in PCC pavement. By January 1994, about 40% of that mileage had been overlain with AC, leaving 547 km (340 mi) with a PCC wearing surface.

The original 1,040-km (646-mi) Parkway system had 50% (523 km (325 mi)) of the mileage in PCC pavement. By January 1994, about 33% of that mileage had been overlain with AC, leaving 346 km (215 mi) with a PCC wearing surface.

Since 1991, approximately 32 km (20 mi) of PCC pavement has been diamond ground on I-65, I-75, I-275 and I-471. Ride quality has been substantially improved as a result of diamond grinding.

By January 1994, the average age of the PCC pavements on Kentucky's Interstate and Parkway systems at the time of an AC overlay had been 21 years. The weighted average for the Interstate system was 19.6 years and the Parkway system was 24.6 years. Table IV contains the average age of overlays for Interstates and Parkways that had overlays as of January 1994. With exception of I-71, most of the Interstate and Parkway PCC pavements served the 20-year design life before being overlaid.

The average age of the PCC pavements initially on Kentucky's Interstate and Parkway systems that were still in service as of January 1994 and had not required an overlay had been 24.0 years. The weighted average for the Interstate system was 22.2 years, which included sections of I-24, I-265, I-275, and I-471 constructed rather recently, and the Parkway system was 26.4 years. Table V contains the average age for the original Interstate and Parkway PCC pavements still in service as of January 1994. All had served the 20-year design life.

#### **Recent Designs**

Present design practices for PCC pavements have changed substantially from those used during the massive interstate/parkway construction phase of the 1960s and 1970s. Typical thickness design is 280 mm (11 in.) PCC, although the thickness can range from 255 mm (10 in.) for lightly traveled routes to 325 mm (13 in.) for heavy coal-haul routes.

Base thicknesses are typically 200 mm (8 in.), consisting of a 100-mm (4-in.) treated drainage layer over a 100-mm (4-in.) DGA base which has a lower percentage of minus 75

 $\mu m$  (No. 200 sieve) fines than previously used. Longitudinal drains are installed along the shoulder.

Distances between joints are random (variable), averaging about 4.5 m (15 ft) with a range of 3.5 m (12 ft) to 5.5 m (18 ft). Joints are typically skewed.

Welded wire fabric is not used. The PCC is non-reinforced. Dowel bars are still used for load transfer at the joints.

Neoprene is the typical choice for joint sealing for new construction and silicone is normally selected for joint repair.

Table VI shows the general comparison of the design details used during the 1960s and 1970s and those in the current use. The only common design parameter is the use of dowel bars at the joints for load transfer. All other basic design parameters have changed.

#### **Pavement and Laboratory Tests**

Table VII contains average values for each project for the pavement and laboratory tests. Appendix C contains more detailed information in summary form for each project including ranges of values. Individual test results on each sample are given in Appendix D.

#### PCC Pavement Cores

Thicknesses are very close to original designs. Average for the Interstate projects is 254 mm (10.0 in.); Parkway projects, 231 mm (9.1 in.); and the three U.S. route projects, 211 mm (8.3 in.). The range in values is small for the individual Interstate and Parkway projects.

Compressive strengths vary considerably ranging from 39.6 to 57.2 MPa (5,740 to 8,300 psi), while averaging 46.0 MPa (6,680 psi). These values greatly exceed the accepted design value of 24.1 MPa (3,500 psi).

Static modulus of elasticity values likewise vary considerably ranging from 25.7 to 35.0 GPa (3.73 to 5.08 million psi), while averaging 30.8 GPa (4.47 million psi). The average is commensurate with the average compressive strength value. An estimate of the modulus of elasticity (E) value may be obtained using the following accepted relationship:

$$E = 4.73 \sqrt{f'_{cyl}}$$
 (or  $E = 57,000 \sqrt{f'_{cyl}}$ )

where E is in GPa (or psi) and  $f'_{cyl}$  is the compressive strength in MPa (or psi) determined through standard tests. Inserting the average compressive strength value obtained from tests on the PCC cores of 46.0 MPa (6,680 psi) yields an estimated E value of 32.1 GPa (4.66 x 10<sup>6</sup> psi), close to the measured average of 30.8 GPa (4.47 x 10<sup>6</sup> psi).

#### Base Samples

The base material directly under the concrete is limestone dense graded aggregate on 11 of the projects, the only exception being a sandstone base on the US 119 (Pike County) project. Thicknesses are very close to original designs; averaging 150 mm (5.9 in.) for the Interstate projects, 100 mm (4.0 in.) for the Parkway projects and 94 mm (3.7 in.) for the three U.S. route projects.

In-situ CBR values ranges from 8 to 20 (excluding the sandstone base project) with an average of 13. These values are significantly lower than those assumed in structural design calculations.

Average moisture contents range from 4.7 to 9.3%, averaging 6.4%. These are typical for obtaining maximum compacted densities.

The minus 75  $\mu$ m (No. 200 sieve) values range from 9.2 to 17.0%, averaging 12.2%. Current specifications limit this value to a maximum of 10%, with acceptable values between 2 and 10%. At the time these pavements were constructed, the specification was 12 to 15 %.

Disturbed Soil Subgrade Samples

The in-situ CBR values range from 2 to 9, (excluding the sandstone project) with an average of 4.0. This is the value most often assumed for design purposes at that time, but now would require subgrade modification prior to construction.

Moisture contents range from 13.8 to 26.3%, (excluding the sandstone project) with an average of 19.7%. The values are reasonably high and indicate subgrades in weakened conditions.

Undisturbed Soil Subgrade Samples

The unconfined compressive strengths of samples extracted from Shelby Tubes range from 92 to 280 kPa (13.4 to 40.6 psi) averaging 184 kPa (26.7 psi).

Moisture contents range from 13.3 to 28.0% (excluding the sandstone project) with an average of 19.0%. These are essentially the same as those obtained from samples directly below the base.

Wet densities vary considerably reflecting the influence of soil type, prevailing moisture content, and relative compaction.

The subgrade soils generally classify as clay with low plasticity (CL). On four projects, the soil type varies considerably at the different test sites. The sandstone project is an exception.

#### SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The objective of this research study was to determine common factors contributing to the superior performance of selected sections of PCC pavements in Kentucky. An extensive inventory of the highway system was conducted followed by selection of 12 projects for subsequent in-situ pavement and laboratory testing.

Performance of PCC pavements on Kentucky's Interstate and Parkway systems and other Primary routes has varied considerably; however, the majority has performed beyond their design lives. The primary source of PCC pavement distress observed was transverse joint deterioration and faulting. This combination generally results in substandard ride quality. The overall concrete quality is quite satisfactory, except in the vicinity of the distressed joints. Aggregate popouts and small alligator (or crazing) cracks were evident on several sections, but neither appears detrimental.

Intermediate span cracking was the only significant type of cracking observed. These were generally at mid-span or occasionally at third points. Faulting of intermediate span cracks was observed on a portion of the sections.

The basic design parameters, excepting pavement thickness, for the 12 projects selected for detailed evaluations were essentially the same -- dowel bars for joint load transfer, hot-poured asphalt joint filler, welded wire fabric reinforcement, 90° jointing pattern, 15-m (50-ft) joint spacing and DGA limestone base with high fines content.

PCC slab and DGA base thicknesses were common for the particular route classifications, i.e., 250-mm (10-in.) PCC/150-mm (6-in.) base for Interstates, 225-mm (9-in.) PCC/100-mm (4-in.) base for Parkways and 200-mm (8-in.) PCC/100-mm (4-in.) base for other Primary

routes. Measurements of the extracted PCC cores and base thicknesses confirmed conformance to original design specifications.

The PCC compressive strengths and moduli of elasticity greatly exceeded design parameters for all projects. Obviously, this commonality would contribute in a positive manner to the superior performance of the pavements.

The moisture contents of the DGA bases were typical and therefore have no particular influence. However, the in-situ CBR values were very low and the minus 75  $\mu$ m (No. 200 sieve) material values were very high; which would be expected to impact negatively to the superior performance of the pavements.

Subgrade moisture contents were quite high, in-situ CBR values low and unconfined compressive strengths low; which would contribute in a negative manner to the performance of the pavements. Present pavement designs would require subgrade modification prior to pavement construction for most of the sections evaluated.

Substantial mileage of the original PCC Interstate and Parkway designs is still performing satisfactorily. However, it is conceivable that if the design presently in use had been specified during the 1960s and 1970s, an even higher percentage of the original PCC pavements would be serving satisfactorily with minimum mileage requiring overlays or reconstruction except for geometric improvements. The designs in use today -- which presumably are superior to the designs for the 1960s and 1970s--have thicker PCC slabs, drainable bases, shorter joint spacings, skewed joints, and improved joint-filler materials. Also, certain mix design and production parameters have changed, such as improved screening of potentially reactive aggregates, acceptance of pozzolans and tighter standards on mix variations. It is logical to anticipate that the improved designs in common use today will provide a consistent 30-year or longer pavement life, with the only maintenance consisting of joint resealing and diamond grinding to restore surface smoothness and ride quality.

#### BIBLIOGRAPHY

1994 Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, U. S. A.

AASHTO Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington, D. C., 1993.

Deen, Robert C.; Havens, James H.; and Azevedo, W. Vernon; "Cracking in Concrete Pavements," Research Report 529, Kentucky Department of Highways, October 1979.

Havens, James H.; Deen, Robert C.; Rahal, Assaf S.; and Azevedo, W. Vernon; "Cracking in Continuously Reinforced Concrete Pavements," Research Report 480, Kentucky Department of Highways, October 1977.

Havens, James H.; and Sharpe, Gary S.; "Water Under Pavements," Research Report UKTRP-83-13, Kentucky Department of Highways, July 1983.

"Pavement Conditions of State Primary, Sate Secondary, and Supplemental Roads," Pavement Management Branch, Kentucky Department of Highways, April 1993.

Sharpe, Gary W.; Anderson, Mark; Deen, Robert C.; and Southgate, Herbert F.; "Nondestructive Evaluation of Rigid Pavements Using Road Rater Deflections," Research Report UKTRP-84-26, Kentucky Department of Highways, September 1984.

Sharpe, Gary W.; Anderson, Mark; Deen, Robert C.; and Southgate, Herbert F.; "Nondestructive Evaluation of Rigid Pavements Using Road Rater Deflections," Research Report UKTRP-86-7, Kentucky Department of Highways, April 1986.

Southgate, Herbert F.; Havens, James H.; Deen, Robert C.; and Newberry, Donald C.; "Development of a Thickness Design System for Portland Cement Concrete Pavements," Kentucky Department of Highways, February 1983.

Southgate, Herbert F.; and Deen, Robert C.; "Thickness Design Procedure for Portland Cement Concrete Pavements," Research Report UKTRP-84-6, Kentucky Department of Highways, March 1984.

Southgate, Herbert F.; Sharpe, Gary W.; Hopwood, Theodore; Havens, James H.; Anderson, Mark; Hunsucker, David Q.; and Deen, Robert C.; "Jefferson Freeway Investigation (Westbound Lanes)", Kentucky Department of Highways, January 1986.

|                     | <u> </u>          | <u> </u>    | <u> </u>         |
|---------------------|-------------------|-------------|------------------|
| Route               | County            | Milepost    | Date Constructed |
| Interstate 64       | Fayette           | 82.32-89.48 | 1963/87*         |
| Interstate 75       | Laurel            | 40.70-46.95 | 1969/84***       |
| Interstate 64       | Shelby            | 38.18-43.33 | 1961/84*         |
| Bluegrass Parkway   | Nelson            | 24.24-32.60 | 1965/84***       |
| Western KY Parkway  | Hopkins           | 25.64-35.50 | 1963             |
| Pennyrile Parkway   | Hopkins/Christian | 22.48-29.91 | 1968/93***       |
| Pennyrile Parkway   | Hopkins           | 45.00-53.11 | 1968             |
| Green River Parkway | Ohio              | 32.64-42.27 | 1972/87**        |
| Audubon Parkway     | Daviess           | 15.88-23.46 | . 1970/87**      |
| US 127              | Owen              | 16.96-24.69 | 1973             |
| US 27               | Pulaski           | 10.48-15.46 | 1960             |
| US 119              | Pike              | 24.81-29.75 | 1982             |

## TABLE I. PCC Pavement Sections Selected for Study

\* Edge Drains

\*\* Edge Drains and Joint Seals

\*\*\* Edge Drains, PCC Repairs, and Joint Seals

| KENTUCKY INTERSTATES - PAVEMENT TYPE (km [mi]) |                     |                |                                                        |              |              |            |              |  |  |
|------------------------------------------------|---------------------|----------------|--------------------------------------------------------|--------------|--------------|------------|--------------|--|--|
|                                                | Initially Presently |                |                                                        |              |              |            | -            |  |  |
| Interstate                                     | AC/DGA              | FDAC           | PCC                                                    | AC/DGA       | AC/PCC       | FDAC       | PCC**        |  |  |
| I-24                                           | 71 [44]             | 0              | 77 [48]                                                | 71 [44]      | 0            | 0          | 77 [48]      |  |  |
| l-64                                           | 109 [68]            | 0              | 182 [113]                                              | 109 [68]     | 58 [36]      | 0          | 124 [77]     |  |  |
| I-65                                           | 32 [20]             | 3 [2]          | 183 [114]                                              | 32 [20]      | 58 [36]      | 3 [2]      | 126 [78]     |  |  |
| <u>I-71</u>                                    | 0                   | 0              | 126 [78]                                               | 0            | 126 [78]     | 0          | 0            |  |  |
| l-75                                           | 43 [27]             | <u> </u>       | 264 [164]                                              | 43 [27]      | 159 [99]     | 0          | 105 [65]     |  |  |
| I-264                                          | 3 [2]               | 0              | 34 [21]                                                | 0            | 5 [3]        | 0          | 32 [20]      |  |  |
| 1-265                                          | 0                   | 0              | 40 [25]                                                | 00           | 3 [2]        | 0          | 37 [23]      |  |  |
| I-275                                          | 0                   | 0              | 39 [24]                                                | 0            | 0            | 0          | 39 [24]      |  |  |
| I-471                                          | 0                   | 0              | 8 [5]                                                  | 0            | O            | : <b>0</b> | 8 [5]        |  |  |
| Total km<br>[mi]                               | 258<br>[161]        | 3<br>[2]       | 953<br>[592]                                           | 255<br>[159] | 409<br>[254] | 3<br>[2]   | 548<br>[340] |  |  |
| %                                              | 22%                 | 0%             | 78%                                                    | 21%          | 34%          | 0%         | 45%          |  |  |
| **includes 37                                  |                     | 8 lane kilomet | neters [miles]<br>ters (92 Iane mi<br>neters (456 Iane |              |              | Prepare    | ed 1/94      |  |  |

| TABLE II. Kentucky Interstate Highway System, Initial and Present Pavement Types | TABLE II. | Kentucky | Interstate | Highway S | System, | Initial and | Present | Pavement Typ | es |
|----------------------------------------------------------------------------------|-----------|----------|------------|-----------|---------|-------------|---------|--------------|----|
|----------------------------------------------------------------------------------|-----------|----------|------------|-----------|---------|-------------|---------|--------------|----|

| KENTUCKY PARKWAYS - PAVEMENT TYPE (km [mi])* |                                                                                                                                                                                                  |             |              |              |              |             |              |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|--------------|-------------|--------------|--|--|
|                                              |                                                                                                                                                                                                  | Initially   |              | Presently    |              |             |              |  |  |
| Parkway                                      | AC/DGA                                                                                                                                                                                           | FDAC        | PCC          | AC/DGA       | AC/PCC       | FDAC        | PCC**        |  |  |
| Mountain***                                  | 51 [32]                                                                                                                                                                                          | 0           | 69 [43]      | 51 [32]      | 63 [39]      | 0           | 6 [4]        |  |  |
| Western KY                                   | 74 [46]                                                                                                                                                                                          | 0           | 146 [91]     | 74 [46]      | 68 [42]      | 0           | 79 [49]      |  |  |
| Bluegrass                                    | 56 [35]                                                                                                                                                                                          | 0           | 56 [35]      | 56 [35]      | 23 [14]      | 0           | 34 [21]      |  |  |
| Pennyrile                                    | 0                                                                                                                                                                                                | 0           | 114 [71]     | 0            | 26 [16]      | 0           | 90 [56]      |  |  |
| Aububon                                      | 0                                                                                                                                                                                                | 0           | 37 [23]      | 0            | 0            | 0 ·         | 37 [23]      |  |  |
| Daniel Boone***                              | 40 [25]                                                                                                                                                                                          | 16 [10]     | 39 [24]      | 40 [25]      | 0            | 16 [10]     | 39 [24]      |  |  |
| Green River                                  | 40 [25]                                                                                                                                                                                          | 11 [7]      | 61 [38]      | 40 [25]      | 0            | 11 [7]      | 61 [38]      |  |  |
| Jackson Purchase                             | 84 [52]                                                                                                                                                                                          | 0           | 00           | 84 [52]      | , <u>0</u>   | 0           | 0            |  |  |
| Cumberland                                   | 56 [35]                                                                                                                                                                                          | 87 [54]     | 0            | 56 [35]      | 0            | 87 [54]     | 0            |  |  |
| Total km<br>(mi)                             | 401<br>(250]                                                                                                                                                                                     | 114<br>[71] | 522<br>[325] | 401<br>[250] | 180<br>[111] | 114<br>[71] | 346<br>[215] |  |  |
| %                                            | 39%                                                                                                                                                                                              | 11%         | 50%          | 39%          | 17%          | 11%         | 33%          |  |  |
| **Includes 154 km [                          | *Multiply miles by ≈3.9 to convert to lane kilometers [miles]<br>**Includes 154 km [96 mi] (618 lane kilometers [384 lane miles]) of PCC Repairs Prepared 1/94<br>***Portions are 2- and 3-lanes |             |              |              |              |             |              |  |  |

TABLE III. Kentucky's Parkway Highway System, Initial and Present Pavement Types

| Route      | Kilometers [Miles] | Average Age at Overlay (Years) |  |  |  |
|------------|--------------------|--------------------------------|--|--|--|
| I-64       | 58 [36]            | 21                             |  |  |  |
| I-65       | 58 [36]            | 21                             |  |  |  |
| I-71       | 126 [78]           | 15                             |  |  |  |
| I-75       | 159 [99]           | 22                             |  |  |  |
| I-264      | 5 [3]              | 21                             |  |  |  |
| I-265      | 3 [2]              | 30                             |  |  |  |
| Average fo | r Interstates      | 19.6 years                     |  |  |  |
| · · · · ·  | [                  |                                |  |  |  |
| MP         | 63 [39]            | 26                             |  |  |  |
| WKP        | 68 [42]            | 26                             |  |  |  |
| BGP        | 22 [14]            | 21                             |  |  |  |
| PRP        | 26 [16]            | 22                             |  |  |  |
| Average fo | or Parkways        | 24.6 Years                     |  |  |  |

## TABLE IV. Average Age (Years) of PCC Pavements at the Time of An Asphalt Overlay

| Route               | Kilometers [Miles] | Average Age (Years) |  |  |  |
|---------------------|--------------------|---------------------|--|--|--|
| l-24*               | 77 [48]            | 17                  |  |  |  |
| l-64                | 113 [70]           | 25                  |  |  |  |
| 1-65                | 72 [45]            | 27                  |  |  |  |
| l-75                | 93 [58]            | 27                  |  |  |  |
| 1-264               | 13 [8]             | 24                  |  |  |  |
| 1-265*              | 37 [23]            | 12                  |  |  |  |
| l-275*              | 32 [20]            | 14                  |  |  |  |
| <u>l-471*</u>       | 8 [5]              | 14                  |  |  |  |
| Average             | for Interstates    | 22.2 years          |  |  |  |
| <br>                |                    |                     |  |  |  |
| MP                  | 6 [4]              | 32                  |  |  |  |
| WKP                 | 85 [53]            | 31                  |  |  |  |
| BGP                 | 34 [21]            | 29                  |  |  |  |
| PRP                 | 88 [55]            | 27                  |  |  |  |
| AUDP                | 37 [23]            | 24                  |  |  |  |
| DBP                 | 39 [24]            | 21                  |  |  |  |
| GRP                 | 60 [37]            | 22                  |  |  |  |
| Average             | for Parkways       | 26.4 Years          |  |  |  |
| *More recent constr | uction             |                     |  |  |  |

# TABLE V. Average Age (Years) of Original PCC Pavements Still in Service

TABLE VI. General Comparison of the Design Details for PCC Pavements UsedDuring the 1960s and 1970s and Those in Common Use Today

| Factor              | 1960s & 1970s                                                                                                                       | Currently                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| PCC Slab Thickness  | 200 mm (8 in.) Primary (standard)<br>225 mm (9 in.) Parkway (standard)<br>250 mm (10 in.) Interstate (standard)                     | 250 mm to 325 mm (10 in. to 13 in.)<br>(variable depending on traffic, etc.),<br>275 mm (11 in.) normal |
| Base Thickness      | 100 mm (4 in.) Primary (standard)<br>100 mm (4 in.) Parkway (standard)<br>125 mm to 150 mm (5 in. to 6 in. Interstate<br>(standard) | 200 mm (8 in.) (consisting of 100-<br>mm (4-in.) drainable base and 100<br>mm (4 in.) of DGA)           |
| Base Material       | Dense graded aggregate (high % of fines)                                                                                            | Stabilized, drainable base on a DGA base (lower % of fines)                                             |
| Joint Spacing       | 15.2 m (50 ft) for limestone aggregate (most)<br>7.6 m (25 ft) for gravel aggregate                                                 | Random (variable) spacing, averaging 4.6 m (15 ft)                                                      |
| Joint Pattern       | 90°                                                                                                                                 | Skewed                                                                                                  |
| Reinforcement       | Welded wire fabric                                                                                                                  | None                                                                                                    |
| Joint Filler        | Hot-pour asphalt                                                                                                                    | Neoprene or Silicone                                                                                    |
| Joint Load Transfer | Dowel bars                                                                                                                          | Dowel bars                                                                                              |
| Mix Parameters      |                                                                                                                                     | More screening for potentially active aggregate, fly ash permitted                                      |
| Mix Production      | <u> </u>                                                                                                                            | Tighter standards on mix variations                                                                     |

## Table VII. Pavement and Laboratory Test Results

|                            |                              | PORTLAND CEMENT CONCRETE CORES                    |                                                   |                                                                       | DENSE GRADED AGGREGATE*            |                                       |                        |                                               |  |
|----------------------------|------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|---------------------------------------|------------------------|-----------------------------------------------|--|
| PROJECT<br>IDENTIFICATION  | AGE<br>AT<br>TEST<br>(YEARS) | AVERAGE<br>THICKNESS<br>(mm) [in.]                | AVERAGE<br>COMPRESSIVE<br>STRENGTH<br>(MPa) [psi] | AVERAGE<br>MODULUS OF<br>ELASTICITY<br>(GPa) [psi x 10 <sup>6</sup> ] | AVERAGE<br>THICKNESS<br>(mm) [in.] | AVERAGE<br>MOISTURE<br>CONTENT<br>(%) | AVERAGE<br>IN-SITU CBR | AVERAGE<br>MINUS NO.<br>200 SIEVE SIZE<br>(%) |  |
| I-64; FAYETTE              | 32                           | 250 [10.0]                                        | 51.2 [7,430]                                      | 35.0 [5.08]                                                           | 155 [6.2]                          | 6.1                                   | 20                     | 10.6                                          |  |
| I-75; LAUREL               | 26                           | 250 [10.0]                                        | 40.0 [5,800]                                      | 31.2 [4.52]                                                           | 135 [5.4]                          | 6.1                                   | 12                     | 9.2                                           |  |
| I-64; SHELBY               | 34                           | 250 [10.0]                                        | 47.0 [6,810]                                      | 31.2 [4.53]                                                           | 150 [6.0]                          | 6.2                                   | 16                     | 10.4                                          |  |
| BGP/NELSON                 | 30                           | 225 [9.0]                                         | 57.2 [8,300]                                      | 35.0 [5.08]                                                           | 105 [4.2]                          | 5.9                                   | 14                     | 11.2                                          |  |
| WKP/HOPKINS                | 32                           | 230 [9.2]                                         | 48.7 [7,060]                                      | 32.2 [4.67]                                                           | 108 [4.3]                          | , <b>7.</b> 9                         | 9                      | 12.7                                          |  |
| PRP/HOPKINS &<br>CHRISTIAN | 27                           | 230 [9.2]                                         | 48.7 [7,060]                                      | 30.2 [4.38]                                                           | 88 [3.5]                           | 4.7                                   | 11                     | 12.4                                          |  |
| PRP/HOPKINS                | 27                           | 225 [9.0]                                         | 39.6 [5,750]                                      | 28.1 [4.07]                                                           | 103 [4.1]                          | 5.7                                   | 12                     | 12.3                                          |  |
| GRP/OHIO                   | 23                           | 225 [9.0]                                         | 45.4 [6,580]                                      | 31.6 [4.58]                                                           | 103 [4.1]                          | 5.4                                   | 17                     | 10.6                                          |  |
| AUP/DAVIESS                | 25                           | 225 [9.0]                                         | 39.6 [5,740]                                      | 25.7 [3.73]                                                           | 100 [4.0]                          | 5.8                                   | 16                     | 17.0                                          |  |
| US127/OWEN                 | 23                           | 205 [8.2]                                         | 41.3 [5,990]                                      | 28.3 [4.10]                                                           | 88 [3.5]                           | 9.3                                   | 8                      | 11.3                                          |  |
| US27/PULASKI               | 35                           | 188 [7.5]                                         | 51.3 [7,440]                                      | 33.4 [4.85]                                                           | 93 [3.7]                           | 8.1                                   | 9                      | 12.1                                          |  |
| US119/PIKE                 | 13                           | _230 [9.2]                                        | 42.3 [6,140]                                      | 27.9 [4.05]                                                           | 98 [3.9]                           | 5.6                                   | 24                     | 16.9                                          |  |
| RANGE                      | 13 - 34                      | 188 - 250<br>[7.5 - 10.0]                         | 39.6 - 57.2<br>[5,740 - 8,300]                    | 25.7 - 35.0<br>[3.73 - 5.08]                                          | 88 - 155<br>[3.5 - 6.2]            | 4.7 - 9.3                             | 8- 24                  | 9.2 - 17.0                                    |  |
| AVERAGE                    | 27                           | 250 [10.0] Int.<br>228 [9.1] Pkwy<br>208 [8.3] US | 46.1 [6,680]                                      | 30.8 [4.47]                                                           | 5.9 lnt.<br>4.0 Pkwy<br>3.7 US     | 6.4                                   | 14(13)**               | 12.2                                          |  |

\* All base samples were non-plastic \*\* Excluding sandstone base project

# Table VII (Continued)

|                            | SUBGRAD                                            | E SAMPLES              | SU                                    | BGRADE TUBE SAMP                                 | LES (0-175 mm) [0 to                                 | 7 in.]                            |
|----------------------------|----------------------------------------------------|------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------|
| PROJECT<br>IDENTIFICATION  | AVERAGE<br>MOISTURE<br>CONTENT<br>BELOW DGA<br>(%) | AVERAGE<br>IN-SITU CBR | AVERAGE<br>MOISTURE<br>CONTENT<br>(%) | AVERAGE<br>UNCONFINED<br>STRENGTH<br>(kPa) [psi] | AVERAGE<br>WET DENSITY<br>(kg/m <sup>3</sup> ) [pcf] | GENERAL<br>SOIL<br>CLASSIFICATION |
| I-64; FAYETTE              | 24.8                                               | 2                      | 23.2                                  | 240.6 [34.9]                                     | 2,119 [132.3]                                        | CL                                |
| I-75; LAUREL               | 15.5                                               | 3                      | 15.1                                  | 157.2 [22.8]                                     | 2,223 [138.8]                                        | VARIABLE                          |
| I-64; SHELBY               | 22.8                                               | 3                      | 23.4                                  | 156.5 [22.7]                                     | 2,102 [131.2]                                        | CL                                |
| BGP/NELSON                 | 23.6                                               | 2                      | 22.2                                  | 161.3 [23.4]                                     | 2,135 [133.3]                                        | CL                                |
| WKP/HOPKINS                | 21.1                                               | 4                      | 16.2                                  | 131.0 [19.0]                                     | 2,199 [137.3]                                        | VARIABLE                          |
| PRP/HOPKINS &<br>CHRISTIAN | 14.8                                               | 4                      | 18.3                                  | 233.0 [33.8]                                     | 2,191 [136.8]                                        | CL                                |
| PRP/HOPKINS                | 15.2                                               | 6                      | 15.0                                  | 248.2 [36.0]                                     | 2,211 [138.0]                                        | CL                                |
| GRP/OHIO                   | 13.8                                               | 7                      | 11.4                                  | 200.6 [29.1]                                     | 2,223 [138.8]                                        | VARIABLE                          |
| AUP/DAVIESS                | 14.5                                               | 9                      | 13.3                                  | 279.9 [40.6]                                     | 2,182 [136.2]                                        | CL                                |
| US127/OWEN                 | 24.6                                               | 2                      | 22.6                                  | 92.4 [13.4]                                      | 2,138 [133.5]                                        | CL                                |
| US27/PULASKI               | 26.3                                               | 2                      | 28.0                                  | 128.9 [18.7]                                     | 1,978 [123.5]                                        | СН                                |
| US119/PIKE                 | 8.1                                                | 13                     | 9.8                                   | NA                                               | NA                                                   | SM-SC                             |
| RANGE                      | 8.1 - 26.3                                         | 2 - 13                 | 9.8 - 28.0                            | 92.4 - 279.9<br>[13.4 - 40.6]                    | 1,978 - 2,223<br>[123.5 - 138.8]                     |                                   |
| AVERAGE                    | 18.8 (19.7)**                                      | 4.8 (4.0)**            | 18.2 (19.0)**                         | 184.1 [26.7]                                     | 2,154 [134.5]                                        |                                   |

\* All base samples were non-plastic \*\* Excluding sandstone base project

# **APPENDIX A**

# PAVEMENT TYPES FOR EACH SECTION OF EACH INTERSTATE HIGHWAY IN KENTUCKY AS OF DECEMBER 1993

|                     |             |          | Initially                 |         |                              | Presently        |         |         |                  |  |
|---------------------|-------------|----------|---------------------------|---------|------------------------------|------------------|---------|---------|------------------|--|
|                     |             |          | AC                        | FDAC    | PCC                          | AC/DGA           | AC/PCC  | FDAC    | PCC              |  |
| County              | Mileposts   | Dates    | km [mi]                   | km [mi] | km [mi]                      | km [mi]          | km [mi] | km [mi] | km [mi]          |  |
| McCracken           | 1.00-4.33   | 74/89    | 5.36 [3.33]               |         |                              | 5.36 [3.33]      |         |         |                  |  |
| T                   | 4.33-10.32  | 78/90    | 9.64 [5.99]               |         |                              | 9.64 [5.99]      |         |         |                  |  |
| <b>n</b>            | 10.32-13.80 | 78/90    | 5.60 [3.48]               |         |                              | 5.60 [3.48]      | -       |         |                  |  |
| Π                   | 13,80-16,16 | 78/90    | 3.80 [2.36]               |         |                              | 3.80 [2.36]      |         |         |                  |  |
| /icCracken/Marshali | 16,60-22,04 | 77/85/93 | 9.46EB [5.88]             |         |                              | 9.46 [5.88EB]    |         |         |                  |  |
| iπ                  | 16.60-22.04 | 77/83/93 | 9.46WB [5.88]             |         |                              | 9.46WB [5.88]    |         |         |                  |  |
| Marshall            | 22.04-26.56 | 77/86    | 7.27 [4.52]               |         |                              | 7.27 [4.52]      |         |         |                  |  |
| n                   | 26.56-27.55 | 79/90/93 | 1.59 [0.99]               |         |                              | 1.59 [0.99]      |         |         |                  |  |
| 'n                  | 27.55-29.14 | 79/90/93 | 2.56 [1.59]               |         |                              | 2.56 [1.59]      |         | -       |                  |  |
| Livingston          | 29.54-30.55 | 79/90/93 | 1,63 [1.01]               |         |                              | 1.63 [1.01]      |         |         |                  |  |
| H                   | 30.55-33.88 | 80/91    | 5.36 [3.33]               |         |                              | 5.36 [3.33]      |         |         |                  |  |
| Lyon                | 33.88-39.51 | 79/87    | 9.06 [5.63]               |         |                              | 9.06 [5.63]      |         |         |                  |  |
| n                   | 39.51-41.60 | 80/87    | 3.36 [2.09]               | •       |                              | 3.36 [2.09]      |         |         |                  |  |
| n                   | 41.60-45.20 | 80/87    | 5.79 [3.60]               |         |                              | 5.79 [3.60]      |         |         |                  |  |
| Lyon-Caldwell       | 45.20-55.63 | 80       |                           |         | 16.78 [10.43]                |                  |         |         | 16.78 [10.       |  |
| Caldwell-Trigg      | 55.63-65.35 | 80*      |                           |         | 15.64 [9.72]                 |                  |         |         | 15.64 [9.3       |  |
| Trigg-Christian     | 65.35-76.07 | 75/85**  |                           |         | 17.25 [10.72]                |                  |         |         | 17.25 [10.]      |  |
| Christian           | 76.07-85.56 | 75/85**  |                           |         | 15.27 [9.49]                 |                  |         |         | 15.27 [9.4       |  |
| 11                  | 85.56-93.30 | 75/85**  |                           |         | 12.45 [7.74]                 |                  |         |         | 12.45 [7.]       |  |
|                     | , Totals    |          | 70. <b>4</b> 7<br>[43.80] | 0       | 77.3 <del>9</del><br>[48.10] | 70.47<br>[43.80] | _ 0     | 0       | 77.39<br>[48.10] |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | Initially Presently            |          |                    |                     |                  | v        |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------------------|----------|--------------------|---------------------|------------------|----------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                 |                   | AC/DGA                         | FDAC     | PCC                | AC/DGA              | AC/PCC           | FDAC     | PCC               |
| County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mileposts         | Dates             | km [mi]                        | km (mi)  | km [mi]            | km [mi]             | km [mi]          | km [mi]  | km [mi            |
| Jefferson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72-1.34         | 69/88*/94         |                                |          | 1.00 [0.62]        |                     | <u></u>          |          | 1.00 [0.6         |
| н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.97-2.06         | 70/82/94          |                                |          | 0.14 [0.09]        |                     |                  |          | 0.14 [0.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25-3.26         | 71/88*/94         | <u> </u>                       | <u> </u> | 1.63 [1.01]        |                     |                  |          | 1.63 [1.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.95-5.50         | 70/85             | <u> </u>                       | · · ·    | 0.88 [0.55]        |                     | 0.88 [0.55]      |          | 1.03 [1.0         |
| ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.50-6.45         | 70/84BS*          |                                |          | 1.53 [0.95]        | ·                   |                  |          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.45-8.20         | 68/84BS*          | <u> </u>                       |          | 2.82 [1.75]        |                     | 1.53 [0.95]      |          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.20-9.46         | 70                | <u> </u>                       |          | 2.02 [1.76]        |                     | 2.82 [1.75]      | <u> </u> | 0.00.[1.0         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 69                |                                |          |                    |                     |                  |          | 2.03 [1.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.46-12.58        |                   | <u> </u>                       | <u> </u> | 5.02 [3.12]        |                     |                  |          | 5.02 [3,1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.58-14.89       | 64/89BS/94        | ╞─────                         |          | 3.12 [2.31]        |                     | 0.00 (0.071      |          | 3.12 [2.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.89-18.86       | 64/88BS           |                                | [        | 6.39 [3.97]        |                     | 6.39 [3.97]      | <u> </u> | l                 |
| Jefferson/Shelby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.86-25.09       | 61/84BS*          | <u> </u>                       |          | 10.02 [6.23]       |                     | 10.02 [6.23]     | <u> </u> |                   |
| Sheiby<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.09-31.84       | 61/84BS*          |                                |          | 10.86 [6.75]       |                     | 10.86 [6.75]     | <u> </u> |                   |
| , n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.84-38.18       | 62/84 BS*         | <u> </u>                       |          | 10.20 [6.34]       |                     | 10.20 [6.34]     | <u> </u> |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38.18-43.33       | 61/84*            | <u> </u>                       |          | 8.29 (5.15)        |                     |                  |          | 8.29 [5.1         |
| Shelby-Franklin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.33-47.76       | 62/80/88          | <u> </u>                       |          | 7.13 [4.43]        |                     | 7.13 [4.43]      |          |                   |
| Franklin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.76-53.12       | 62/80/88          | <u> </u>                       | <u> </u> | 8,62 [5.36]        |                     | 8.62 [5.36]      | <br>     |                   |
| 77<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.12-57,90       | 62/85**           | <br>                           |          | 6,76 [4.20]        |                     |                  |          | 6.76 [4.2         |
| Franklin-Woodford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.90-65,27       | 72/91*            |                                |          | 11.86 [7.37]       |                     |                  | <br>     | 11.86 [7.3        |
| Woodford-Scott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65.27-68.55       | 73/91*            | <b> </b>                       |          | 5.28 [3.28]        |                     |                  |          | 5.28 [3.2         |
| Scott-Fayette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68,55-75,20       | 73/91*            | <u></u>                        |          | 10.70 [6.65]       |                     | <u></u>          |          | 10.70 [6.6        |
| combines with I-75 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | approximately 9.2 | 5 km (5.75 ml) in | Fayette County                 |          |                    |                     |                  |          |                   |
| Fayelte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.95-82.32       | 81*               | <u> </u>                       |          | 2.20 [1.37]        |                     |                  |          | 2.20 [1.3         |
| π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82.32-89,48       | 63/87*            | <u> </u>                       |          | 11,16 [7,16]       |                     |                  | · · ·    | 11.16[7.1         |
| Clark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89.48-94.23       | 63/73/84          | 7.64 [4.75]                    |          |                    | 7.64 [4.75]         | <u></u>          |          |                   |
| + ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.23-101.74      | 61/73/84          | 12.08 [7.51]                   |          |                    | 12.08 [7.51]        |                  | [        |                   |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101.74-104.26     | 61/73/84          | 4.05 [2.52]                    |          |                    | 4.05 [2.52]         |                  |          |                   |
| Montgomery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104.26-112.30     | 61/73/84          | 12.94 [8.04]                   |          |                    | 12.94 [8.04]        |                  | [        |                   |
| Montgomery-Bath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.30-123.02     | 68/84**           |                                |          | 16,60 [10.32]      |                     |                  |          | 16.60 [10.        |
| Bath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.02-128.96     | 68/84**           |                                |          | 9,56 [5.94]        |                     |                  |          | 9.56 [5.9         |
| Rowan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128.96-137.28     | 68/84**           |                                |          | 13.39 [8.32]       |                     |                  | <u> </u> | 13.39 [8.3        |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137.28-146.10     | 69/84**           |                                |          | 14.19 [8.82]       |                     |                  |          | 14.19 [8.8        |
| Rowan-Carter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146.10-154.22     | 69/82             | 13.07 [8.12]                   |          |                    | 13.07 [8.12]        |                  |          |                   |
| Carter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.22-161.45     | 69/82             | 11.63 [7.23]                   |          |                    | 11.63 [7.23]        |                  |          |                   |
| π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161.45-168,50     | 68/82             | 11.34 [7.05]                   |          |                    | 11.34 [7.05]        |                  |          |                   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168.50-171.61     | <del>6</del> 9/82 | 5.00 [3.11]                    |          |                    | 5.00 [3.11]         |                  |          |                   |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 171.61-180.81     | 73/82             | 14.80 [9.20]                   |          |                    | 14.80 [9.20]        |                  |          |                   |
| Boyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.81-185.47     | 64/81/90          | 7.50 [4.66]                    |          |                    | 7.50 [4.66]<br>SAMI |                  |          |                   |
| aan <u>- 1</u> 2007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 | 185.47-191.30     | 64/81/90          | 9.38 [5.83]                    |          |                    | 9.38 [5.83]<br>SAMI |                  |          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Totals            |                   | 10 <del>9</del> .44<br>[68.02] | · 0      | 182.32<br>[113.31] | 109.44<br>[68.02]   | 58.44<br>[36.32] | 0        | 123.88<br>[76.99] |

\*\*Edge Drains, PCC Repairs, Joint Seals

 $v_{1} \in \mathbb{Z}$ 

| County         Mileposts           Simpson         0.00-1.98           "         1.98-12.81           Simpson-Warren         12.81-22.35           Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart         98.66-85.58           "         90.58-93.69           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         93.69-95.12           "         93.69-95.12           "         97.58-101.98           Hard                                                                                                                        | Dates<br>69/87* | AC/DGA           | Initially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                   | Presen                                 | tlv                                   |                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|----------------------------------------|---------------------------------------|-------------------|--|
| Simpson         0.00-1.98           "         1.98-12.81           Simpson-Warren         12.81-22.35           Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         105.18-107.26                                                                                                        |                 | AC/DGA           | i _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Presently                                         |                                        |                                       |                   |  |
| Simpson         0.00-1.98           "         1.98-12.81           Simpson-Warren         12.81-22.35           Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         105.18-107.26 <th></th> <th></th> <th>FDAC</th> <th>PCC</th> <th>AC/DGA</th> <th>AC/PCC</th> <th>FDAC</th> <th>PCC</th> |                 |                  | FDAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCC                | AC/DGA                                            | AC/PCC                                 | FDAC                                  | PCC               |  |
| "         1.98-12.81           Simpson-Warren         12.81-22.35           Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           Larue         70.41-76.10           Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71                                                                                                        | 69/87*          | km [mi]          | km [mi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | km [mi]            | km [mi]                                           | km [mi]                                | km [mi]                               | km [mi]           |  |
| Simpson-Warren         12.81-22.35           Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           Hart         58.20-61.20           "         64.15-70.41           HartLarue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68                                                                                                   |                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.19 [1.98]        | ····                                              |                                        | · .                                   | 3.19 [1.98]       |  |
| Warren         22.35-28.01           "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         70.41-76.10           Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-90.58           "         90.58-91.2           "         91.2-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26                                                                                                                               | 65/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.43 [10.83]      |                                                   |                                        |                                       | 17.43 [10.8       |  |
| "         28.01-33.00           "         33.00-35.56           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71                                                                                                                           | 65/82           | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.35 [9.54]       |                                                   | 15.35 [9,54]                           |                                       |                   |  |
| "33.00-35.56           "35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "61.20-64.15         64.15-70.41           Hart         64.15-70.41           Hart         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "93.69-95.12         95.12-97.58           "93.69-95.12         95.12-97.58           "97.58-101.98         101.98-103.57           Bullitt         103.57-105.18           "105.18-107.26         "107.26-110.71           "105.18-107.26         "118.68-121.38           "118.68-121.38         "123.18-123.18           Jefferson         123.18-126.12                                                                                                                                                                                                                                                                                                                                                                                              | 66/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.11 [5.66]        |                                                   |                                        |                                       | 9.11 [5,66        |  |
| 33.00-33.88           "         35.56-42.61           Warren/Edmonson/Barren         42.61-46.88           Barren         46.88-51.90           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         58.20-61.20           Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68      " <td< td=""><td>66/87*</td><td></td><td></td><td>8.03 [4.99]</td><td></td><td></td><td></td><td>8.03 [4.99</td></td<>   | 66/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.03 [4.99]        |                                                   |                                        |                                       | 8.03 [4.99        |  |
| 33.55-42.81           Warren/Edmonson/Barren         42.61.46.88           Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         70.41-76.10           Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-90.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         105.18-107.26           "         105.18-107.26           "         107.26-110.71           "         110.71-115.82           "                                                                                                                        | 66/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.12 [2.56]        |                                                   | _                                      |                                       | 4.12 [2.56        |  |
| Barren         46.88-51.90           Barren-Hart         51.90-58.20           Hart         58.20-61.20           "61.20-64.15           "64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "93.69-95.12         90.58-90.58           "93.69-95.12         95.12-97.58           "97.58-101.98         101.98-103.57           Bullitt         103.57-105.18           "107.26-110.71         107.26-110.71           "115.82-118.68         "118.68-121.38           "118.68-121.38         "123.18-126.12           "123.18-126.12         "126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.34 [7.05]       |                                                   |                                        |                                       | 11.34 [7.08       |  |
| Barren-Hart         51.90-58.20           Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart         70.41-76.10           Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         95.12-97.58           "         97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68           "         118.68-121.38           "         123.18-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                      | 69/87*          | · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.87 [4.27]        |                                                   |                                        |                                       | 6.87 [4.27        |  |
| Hart         58.20-61.20           "         61.20-64.15           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68           "         118.68-121.38           "         123.18-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                              | 68/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.08 [5.02]        |                                                   |                                        |                                       | 8.08 [5.02        |  |
| "         61.20-64.15           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68           "         118.68-121.38           "         123.18-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                               | 68/88BS         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.14 [6.30]       |                                                   | 10.14 [6,30]                           | , <u></u>                             |                   |  |
| 81.20-84.13           "         64.15-70.41           Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         110.71-115.82           "         118.68-121.38           "         123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                | 67/87*          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.83 [3.00]        | ····                                              |                                        | · · · ·                               | 4.83 [3.00        |  |
| Hart-Larue         70.41-76.10           Larue         76.10-78.66           Hardin         78.66-85.58           "85.58-90.58         90.58-93.69           93.69-95.12         93.69-95.12           "93.69-95.12         95.12-97.58           "97.58-101.98         101.98-103.57           Bullitt         101.98-103.57           Bullitt         103.57-105.18           "107.26-110.71         107.26-110.71           "110.71-115.82         "115.82-118.68           "118.68-121.38         "121.38-123.18           Jefferson         123.18-126.12           "126.12-127.57         "126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67/84           | 4.75 [2.95]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 4.75 [2.95]                                       |                                        |                                       |                   |  |
| Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68           "         115.82-118.68           "         113.8-121.38           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                     | 65/84           | 10.07 [6.26]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 10.07 [6.26]                                      |                                        |                                       |                   |  |
| Larue         76.10-78.66           Hardin         78.66-85.58           "         85.58-90.58           "         90.58-93.69           "         93.69-95.12           "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         107.26-110.71           "         115.82-118.68           "         115.82-118.68           "         113.8-121.38           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                     | 65/84           | 9.16 [5.69]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 9,16 [5.69]                                       |                                        |                                       |                   |  |
| "85.58-90.58           "90.58-93.69           "93.69-95.12           "95.12-97.58           "97.58-101.98           Hardin-Bullitt           101.98-103.57           Bullitt           103.57-105.18           "105.18-107.26           "107.26-110.71           "115.82-118.68           "118.68-121.38           Jefferson         123.18-126.12           "126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63/84*BS        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.12 [2.56]        |                                                   | 4.12 [2.56]                            |                                       |                   |  |
| "85.58-90.58           "90.58-93.69           "93.69-95.12           "95.12-97.58           "97.58-101.98           Hardin-Bullitt           101.98-103.57           Bullitt           103.57-105.18           "105.18-107.26           "107.26-110.71           "115.82-118.68           "118.68-121.38           Jefferson         123.18-126.12           "126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59/84*BS        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.13 [6.92]       |                                                   | 11.13 [6.92]                           |                                       |                   |  |
| "90.58-93.69           "93.69-95.12           "95.12-97.58           "95.12-97.58           "97.56-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "105.18-107.26         "107.26-110.71           "107.26-110.71         "110.71-115.82           "115.82-118.68         "118.68-121.38           "121.38-123.18         Jefferson         123.18-126.12           "126.12-127.57         "126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59/84*BS        | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.05 [5.00]        |                                                   | 8.05 [5.00]                            |                                       |                   |  |
| "         93.69-95.12           "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85/86           | 5.00 [3.11]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 5.00 [3.11]                                       | <u>_</u>                               |                                       |                   |  |
| "         95.12-97.58           "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         118.68-121.38           #         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84/86           | 2.30 [1.43]      | and the second sec |                    | 2.30 [1.43]                                       |                                        |                                       |                   |  |
| "         97.58-101.98           Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83/86/93        | 1                | 3.96 [2.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                   | ······································ | 3,96 [2.46]                           |                   |  |
| Hardin-Bullitt         101.98-103.57           Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83/86G          |                  | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.08 [4.40]        |                                                   |                                        |                                       | 7.08 [4.40        |  |
| Bullitt         103.57-105.18           "         105.18-107.26           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         115.82-118.68           "         113.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.56 [1.59]        |                                                   |                                        |                                       | 2.56 [1.59        |  |
| "         105.18-107.26           "         107.26-110.71           "         110.71-115.82           "         115.82-118.68           "         115.82-118.68           "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 85            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.59 [1.61]        |                                                   |                                        |                                       | 2.59 [1.61        |  |
| "         107.26-110.71           "         110.71-115.82           ."         115.82-118.68           "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.35 [2.08]        |                                                   |                                        | <u> </u>                              | 3.35 [2.08        |  |
| "       110.71-115.82         "       115.82-118.68         "       118.68-121.38         "       121.38-123.18         Jefferson       123.18-126.12         "       126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.55 [3.45]        |                                                   | · · · · · · · · · · · · · · · · · · ·  |                                       | 5.55 (3.45        |  |
| " 115.82-118.68<br>" 118.68-121.38<br>" 121.38-123.18<br>Jefferson 123.18-126.12<br>" 126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.22 [5.11]        |                                                   | ·                                      |                                       | 8.22 [5.11        |  |
| "         118.68-121.38           "         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.60 [2.86]        |                                                   |                                        |                                       | 4.60 [2.86        |  |
| *         121.38-123.18           Jefferson         123.18-126.12           "         126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.34 [2.70]        |                                                   |                                        | · · · · · · · · · · · · · · · · · · · | 4.34 [2.70        |  |
| Jefferson 123.18-126.12<br>" 126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.90 [1.80]        |                                                   |                                        |                                       | 2.90 [1.80        |  |
| " 126.12-127.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.73 [2.94]        | <u> </u>                                          |                                        |                                       | 4.73 [2.94        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87              | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.33 [1.45]        | ··· <u>································</u> ····· |                                        | · · · ·                               | 2.33 [1.45        |  |
| Jefferson 127.57-128.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89              | 0,90 [0.56]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 0.90 [0.56]                                       |                                        |                                       |                   |  |
| " 128.13-128.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89              |                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14 [0.71]        |                                                   |                                        | ~                                     | 1.14 [0.71        |  |
| " 128.84-131.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.07 [2.53]        | -** <sub>024</sub>                                |                                        |                                       | 4.07 [2.53        |  |
| " 131.37-136.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71/81/86        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.61 [5.35]        |                                                   | 8.61 [5.35]                            | ·                                     |                   |  |
| Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | 31.18<br>[20.00] | 3.96<br>[2.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183.84<br>[114.26] | 32.18<br>'[20.00]                                 | 57.39<br>[35.67]                       | 3.96<br>[2.46]                        | 126.45<br>[78.59] |  |

|                       |             |            | Init    | ially             | Presently |                |         |  |
|-----------------------|-------------|------------|---------|-------------------|-----------|----------------|---------|--|
|                       | · ·         | 70.0       | AC/DGA  | PCC               | AC/DGA    | AC/PCC         | PCC     |  |
| County                | Mileposts   | Dates      | km (mi) | km [mi]           | km [mí]   | km [mi]        | km [mi] |  |
| Jefferson             | 0.08-1.75   | 67/88BS*   |         | 2.69 [1.67]       |           | 2.69 [1.67]    |         |  |
| U                     | 1,75-5.55   | 68/88BS*   |         | 6.12 [3.80]       |           | 6.12 [3.80]    |         |  |
| 11                    | 5.55-9.06   | 68/84BS*   |         | 5.65 [3.51]       |           | 5.65 [3.51]    |         |  |
| Jefferson-Oldham      | 9.06-21.38  | 69/84BS*   |         | 20.10 [12.49]     |           | 20.10 [12.49]  |         |  |
| Oldham-Henry          | 21,38-27.71 | 69/84BS*   |         | 10.19 [6.33]      |           | 10.19 [6.33]   |         |  |
| Henry                 | 27.71-37.18 | 69/84BS*   |         | 15.24 [9.47]      |           | 15.24 [9.47]   |         |  |
| Henry-Trimble-Carroll | 37.18-44.08 | 68/82      |         | 11.10[6.90]**     |           | 11.10 [6.90]   |         |  |
| Carroll-Gallatin      | 44.08-56.67 | 68/84BS*   |         | 20.26 [12.59]     |           | 20.26 [12.59]  |         |  |
| Gallatin              | 56.67-61.77 | 68/82BS*** |         | 8.21 [5.10]       |           | 8.21 [5.10]    | _       |  |
| 11                    | 61.77-69.89 | 68/82BS    |         | 13.07 [8.12]      |           | 13.07 [8.12]   |         |  |
| Boone                 | 69.89-77.72 | 68/84BS*   |         | 12.60 [7.83]      |           | 12.60 [7.83]   |         |  |
|                       | Totals      |            | 0       | 125.22<br>[77.81] | · 0       | 125.22 [77.81] | 0       |  |

a da zara

"Edge Dra

\*\*CRCP

\*\*\*Research Test Section, Different Size Breaks

| ·······                               |               |              |              |                              |              | Presently     |              |
|---------------------------------------|---------------|--------------|--------------|------------------------------|--------------|---------------|--------------|
| <u></u>                               |               |              |              |                              | 10/001       |               |              |
|                                       |               | Dete         | AC/DGA       | PCC                          | AC/DGA       | AC/PCC        | PCC          |
| County                                | Mileposts     | Dates        | km [mi]      | km [mi]                      | km (mi)      | km [mi]       | km (mi)      |
| Whitley                               | 0.00-0.48     | 62/84        |              | 0.77 [0.48NB]                |              | 0.77 [0.48NB] |              |
|                                       | 0.00-0.48     | 62/84**      |              | 0.77 [0.48SB]                |              |               | 0.77 [0.48SI |
|                                       | 0.48-3.68     | 62/84**      |              | 5,15 [3.20]                  |              |               | 5,15 [3.20]  |
| 0                                     | 3.68-10.55    | 65/84**      |              | 11.06 [6.87]                 |              |               | 11.06 [6.87  |
| N                                     | 10.55-15.46   | 66/84**      |              | 7,90 [4.91]                  |              | ·             | 7.90 [4.91   |
| IF                                    | 15.46-20.20   | 68/84**      |              | 7.63 [4.74]                  |              |               | 7.63 [4.74   |
| 11<br>                                | 20.20-21.88   | 68/84**/91BS |              | 2.70 [1.68]                  |              | 2.70 [1.68NB] |              |
| 17                                    | 21.88-23.38   | 68/84S*      |              | 2.41 [1.50]                  |              | 2.41 [1.50NB] |              |
|                                       | 23,38-24.66   | 68/86BS*     |              | 2.06 [1.28]                  |              | 2.06 [1.28NB] | ·            |
| u                                     | 20.20-24.66   | 68/84**      | i            | 7.18 [4.46SB]                |              |               | 7.18 [4.465  |
| Whitley-Laurel                        | 24.66-28.85   | 68/84**      |              | 6.74 [4.19]                  |              |               | 6.74 [4.19   |
| Laurel                                | 28.85-34.40   | 69/84**/91G  |              | 8.93 [5.55]                  |              |               | 8.93 [5.550  |
| n .                                   | 34.40-40.70   | 69/84**/91G  |              | 10.14 [6.30]                 |              |               | 10.14 [6.300 |
| и                                     | 40,70-46.95   | 69/84**      |              | 10.06 [6.25]                 |              |               | 10.06 [6.28  |
| 17                                    | 46.95-48.95   | 69/84**      |              | 3.22 [2.00]                  |              |               | 3.22 [2.00   |
| и                                     | 48.95-50.77   | 69/84        |              | 2.93 [1.82]                  |              | 2.93 [1.82]   |              |
| Rockcastle                            | 50,77-55.80   | 69/78/90     | 8.10 [5.03]  |                              | 8.10 [5.03]  |               |              |
| и                                     | 55.80-58.95   | 69/78/90     | 5.07 [3.15]  |                              | 5.07 [3.15]  |               |              |
| n                                     | 58.95-62.01   | 68/78/90     | 4.92 [3.06]  |                              | 4.92 [3.06]  |               |              |
| "                                     | 62.01-65.22   | 68/78/90     | 5.17 [3.21]  |                              | 5.17 [3.21]  |               |              |
| 11                                    | 65,22-68.31   | 68/88BS*     |              | 4.97 [3.09]                  |              | 4.97 [3.09]   |              |
| 11                                    | 68,31-70.20   | 67/88BS*     |              | 3.04 [1.89]                  |              | 3.04 [1.89]   |              |
| Rockcastle-                           |               |              |              | _                            |              |               |              |
| Madison                               | 70.20-75.52   | 67/88BS*     |              | 8.56 [5.32]                  |              | 8.56 [5.32]   |              |
| Madison                               | 75,52-77.00   | 66/88BS*     |              | 2.38 [1.48]                  |              | 2.38 [1.48]   |              |
| н                                     | 77.00-84.66   | 66/89BS*     |              | 12.33 [7.66]                 |              | 12.33 [7.66]  | -            |
| n                                     | 84.66-87.32   | 66/89BS*     |              | 4.28 [2.66]                  |              | 4.28 [2.66]   |              |
| 11                                    | 87.32-89.80   | 64/72/84     | 3.99 [2.48]  |                              | 3.99 [2.48]  |               |              |
| II                                    | 89,80-97.54   | 62/72/84     | 12.46 [7.74] |                              | 12.46 [7.74] |               |              |
| Fayette                               | 97.54-100.32  | 63/72/84     | 4.47 [2.78]  |                              | 4.47 [2.78]  |               |              |
| 17                                    | 100.32-103.89 | 63/89*       |              | 5.75 [3.57]                  |              |               | 5.75 [3.57   |
| 19<br>19                              | 103.89-110.25 | 64/89*       |              | 10.24 [6.36]                 |              |               | 10.24 [6.36  |
| Fayette                               | 110.25-111.82 | 81*/94       |              | 2.53 [1.57]                  |              |               | 2.53 [1.57   |
| *1                                    | 111.82-117.80 | 64/81        |              | 9.62 [5.98]                  |              | 9.62 [5.98]   |              |
| Fayette-Scott                         | 117.80-122.29 | 63/86*/92BS  |              | 7.23 [4.49]                  |              | 7.23 [4.49]   |              |
| Scott                                 | 122.29-126.83 | 63/86*/92BS  |              | 7.31 [4.54]                  |              | 7.31 [4.54]   |              |
| ـــــــــــــــــــــــــــــــــــــ | 126.83-130.25 | 62/86*/93BS  |              | 5.50 [3.42]                  |              | 5.50 [3.42]   |              |
|                                       | 130,25-134.08 |              | ·            | 6.16 [3.83]                  |              | 6.16 [3.83]   |              |
| u .                                   | 134.08-136.47 | 62/86*/94BS  |              | 3.85 [2.39]                  |              | 3.85 [2.39]   |              |
| N                                     | 136.47-138.00 | 63/86*/94BS  |              | 2.46 [1.53]                  |              | 2.46 [1:53]   |              |
|                                       | 138.00-143.24 | 63/84*BS     |              | 8.43 [5.24]                  |              | 8.43 [5.24]   | ļ            |
| Grant                                 | 143.24-154.47 | 63/84 BS     |              | 8.43 [5.24]<br>18.07 [11.23] |              | 18.07 [11.23] |              |

| Grant-Kenton- |               |                      |                  |                    |                  |                   |                   |
|---------------|---------------|----------------------|------------------|--------------------|------------------|-------------------|-------------------|
| Boone         | 165,79-173,50 | 61/78/85*BS          |                  | 12.41 [7.71]       | ·····            | 12.41 [7.71]      |                   |
| Boone         | 173.50-179.20 | 61/78/86/<br>93*BS   |                  | 9.17 [5.70]        |                  | 9.17 [5.70]       |                   |
| lŧ            | 179.20-180.00 | 61/78/86/89          |                  | 1.29 [0.80]        |                  | 1.29 [0.80]       |                   |
| 11            | 180.00-182.46 | 61/80/86BS/89        |                  | 3.96 [2.46]        |                  | 3.96 [2.46]       |                   |
| IT            | 182.46-183.18 | 62/80/85/93          |                  | 1.16 [0.72]        |                  | 1.16 [0.72]       |                   |
| Boone-Kenton  | 183.18-184.72 | 78                   |                  | 2.48 [1.54]        |                  |                   | 2.48 [1.54]       |
| Kenton        | 184.72-187.95 | 62/76/80/90/93       |                  | 5.20 [3.23]        |                  | 5.20 [3.23]       |                   |
| H .           | 187.95-191.20 | 90<br>(Temporary)*** | !                | 5.23 [3.25]        |                  |                   | 5.23 [3.25]       |
|               | Totals        |                      | 44.18<br>[27.45] | 263.19<br>[163.54] | 44,18<br>[27.45] | 159.31<br>[98.99] | 104.22<br>[64.76] |

.

\*Edge Drains

\*\*Edge Drains, PCC Repairs, Joint Seals

\*\*\*Presently being rebuilt with PCC on new alignment

|           |                                              |             |             | 1 1-1 14  |                          |         | <u> </u>    |         |          |
|-----------|----------------------------------------------|-------------|-------------|-----------|--------------------------|---------|-------------|---------|----------|
|           |                                              |             |             | Initially |                          |         |             | sently  |          |
|           | 0-2015 KIII KIII KIII KIII KIII KIII KIII KI |             | AC/DGA      | FDAC      | PCC                      | AC/DGA  | AC/PCC      | FDAC    | PCC      |
| County    | Mileposts                                    | Dates       | km [mi]     | km [mi]   | km [mi]                  | km (mi) | km [mi]     | km (mi) | km [rr   |
| Jefferson | 0.00-0.48                                    | 68/88*/94** |             |           | 0.77 [0.48]              |         |             |         | 0.77 [0. |
| "         | 0.48-1.89                                    | 68/87*      |             |           | 2,27 [1.41]              |         |             |         | 2.27 [1. |
| R         | 1.89-2.86                                    | 70/87*      |             |           | 1.58 [0.97]              |         |             | . ^     | 1.58 [0. |
| 4         | 2.86-3.78                                    | 70/87*      |             |           | 1.48 [0.92]              |         |             |         | 1.48 [0. |
| lŧ        | 3.78-4.54                                    | 70/87*      |             |           | 1.22 [0.76]              |         |             |         | 1.22 [0. |
| 14        | 4.54-5.96                                    | 70/87*      |             |           | 2.29 [1.42]              |         |             |         | 2.29 [1. |
| . 14      | 5.96-7.18                                    | 71/87*      |             |           | 1.96 [1.22]              |         |             |         | 1.96 [1. |
| "         | 7.18-8.03                                    | 73/87*      |             |           | 1.37 [0.85]              |         |             |         | 1.37 [0. |
| U         | 8.03-9.23                                    | /90***      |             |           | 1.93 [1.20]              |         |             |         | 1.93 [1. |
| 14        | 9.23-10.15                                   | /90**       |             |           | 1.48 [0.92]              |         | -           |         | 1.48 [0. |
| n         | 10.15-12.68                                  | /90**       |             |           | <sup>6</sup> 4.07 [2.53] |         |             |         | 4.07 [2. |
| 17        | 12.68-14.20                                  | /93**       |             |           | 2.45 [1.52]              |         |             |         | 2.45 [1. |
|           | 14.20-18.40                                  | /93**       |             |           | 6.80 [4.20]***           |         |             |         | 6.80 [4. |
| n         | 18.40-20.13                                  | /94**       | 2.78 [1.73] |           | -                        |         |             |         | 2.78 [1. |
|           | 20.13-21.93                                  | 61/83*BS    |             | -         | 2.90 [1.80]              |         | 2.90 [1.80] |         |          |
| U         | 21.93-22.65                                  | 68/83*BS    |             |           | 1.16 [0.72]              |         | 1.16 [0.72] |         |          |
| n         | 22.65-23.24                                  | 68/88*BS    |             |           | 0.95 [0.59]              |         | 0.95 [0.59] |         |          |
|           | Totals                                       |             | 2.78        | 0         | 34.62                    | 0       | 5.01        | 0       | 32.40    |
|           |                                              |             | [1.73]      |           | [21.51]                  |         | [3.11]      |         | [20.13   |

\*\*Replaced with PCC

|           |             | IN    | ITERSTATE  - | 265 - PAVI | EMENT TYPE       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |         |                  |
|-----------|-------------|-------|--------------|------------|------------------|----------------------------------------|----------------|---------|------------------|
|           |             |       |              | Initially  |                  |                                        | Preser         | tly     |                  |
|           |             |       | AC/DGA       | FDAC       | PCC              | AC/DGA                                 | AC/PCC         | FDAC    | PCC              |
| County    | Mileposts   | Dates | km [mi]      | km [mi]    | km [mi]          | km [mi]                                | km [mi]        | km [mi] | km [mi]          |
| Jefferson | 10.25-11.46 | 85    |              |            | 1.95 [1.21]      |                                        |                |         | 1.95 [1.21]      |
| u         | 11.46-13.92 | 86    |              |            | 3.96 [2.46]      |                                        |                |         | 3.96 [2.46]      |
| 17        | 13.92-15.66 | 87    |              |            | 2.80 [1.74]      |                                        |                |         | 2.80 [1.74]      |
| "         | 15.66-18.80 | 87    |              |            | 5.05 [3.14]      |                                        |                |         | 5.05 [3.14]      |
| - <u></u> | 18.80-23.26 | 87    |              |            | 7.18 [4.46]      |                                        |                |         | 7.18 [4.46]      |
|           | 23.26-25.35 | 69    |              |            | 3.36 [2.09]      |                                        |                |         | 3.36 [2.09]      |
| ji<br>/   | 25.35-26.84 | 61/91 | ·            |            | 2.40 [1.49]      |                                        | 2.40 [1.49]    |         |                  |
| 11        | 26.84-29.83 | 84    |              |            | 4.81 [2.99]      |                                        |                |         | 4.81 [2.99]      |
| n.        | 29.83-32.66 | 78    |              |            | 4.55 [2.83]      |                                        |                |         | 4.55 [2.83]      |
| 11        | 32.66-34.73 | 70    |              |            | 3.33 [2.07]      |                                        |                |         | 3.33 [2.07]      |
|           | Totals      |       | 0            | 0          | 39.40<br>[24.48] | 0                                      | 2.40<br>[1.49] | 0       | 37.00<br>[22.99] |

|                 | ·           | 11         | ITERSTATE | I-275 - PA | VEMENT TYPE      |         |         |         |                  |
|-----------------|-------------|------------|-----------|------------|------------------|---------|---------|---------|------------------|
|                 |             |            |           | Initially  | ,                |         | Pre     | sently  |                  |
|                 |             |            | AC/DGA    | FDAC       | PCC              | AC/DGA  | AC/PCC  | FDAC    | PCC              |
| County          | Mileposts   | Dates      | km [mi]   | km [mi]    | km [mi]          | km [mi] | km [mi] | km [mi] | km [mi]          |
| Kenton          | 0.00-1.09   | 77/93      |           |            | 1.75 [1.09]*     |         |         |         | 1.75 [1.09]      |
| Kenton-Boone    | 1.09-4.06   | 73/91***   |           |            | 4.78 [2.97]*WB   |         |         |         | 4.78 [2.97]*V    |
| 0               | 1.09-4.06   | 77         |           | ·          | 4.78 [2.97]EB    |         |         | -       | 4.78 [2.97]E     |
| Boone           | 4.06-7.15   | 77         |           |            | 4.97 [3.09]      |         |         |         | 4.97 [3.09]      |
|                 | 7.15-13.50  | 77         |           |            | 10.21 [6.35]     |         |         |         | 10.21 [6.35      |
| Campbell        | 73.55-75.39 | 80/91G**** |           |            | 2,96 [1.84]      |         |         |         | 2,96 [1.84]      |
| u               | 75.39-77.22 | 80         |           |            | 2.95 [1.83]      |         |         |         | 2.95 [1.83]      |
| Campbell-Kenton | 77.22-78.76 | 76         | ·         |            | 2.48 [1.54]      |         |         |         | 2.48 [1.54]      |
| Kenton          | 78.76-79.80 | 77         |           |            | 1.67 [1.04]      | 1971    |         |         | 1.67 [1.04]      |
| 31              | 79.80-82.48 | 77         |           |            | 4.31 [2.68]      |         |         |         | 4.31 [2.68       |
| n               | 82.48-83.58 | 76/94      |           |            | 1.77 [1.10]      |         |         | l       | 1.77 [1.10]      |
| 71              | 83.58-83.78 | 77/94      |           |            | 0.32 [0.20]*     |         |         |         | 0,32 [0.20]      |
|                 | Totals      |            | 0         | 0          | 38.19<br>[23.73] | 0       | 0       | 0       | 38.19<br>[23.73] |

z

\*CRCP

\*\*PCC Reconstructed

\*\*\*With Drainage Layer

14.00

\*\*\*\*With Repairs and Joint Seals

|          |           |         |         | Initially |                | Presently |         |         |                |  |
|----------|-----------|---------|---------|-----------|----------------|-----------|---------|---------|----------------|--|
|          |           |         | AC/DGA  | FDAC      | PCC            | AC/DGA    | AC/PCC  | FDAC    | PCC            |  |
| County   | Mileposts | Dates   | km [mi] | km [mi]   | km [mi]        | km [mi]   | km [mi] | km [mi] | km [mi]        |  |
| Campbell | 0.00-1.75 | 80/92G* |         |           | 2.82 [1.75]    |           |         |         | 2.82 [1.75     |  |
| "        | 1.75-3.23 | 80/92G* |         |           | 2.38 [1.48]    |           |         |         | 2.38 [1.48     |  |
|          | 3.23-4.55 | 81/92G* |         |           | 2.12 [1.32]    |           |         |         | 2.12 [1.32     |  |
| 17       | 4.55-4.75 | 81      |         | <u> </u>  | 0.32 [0.20]    |           |         |         | 0.32 [0.2      |  |
|          | Totals    |         | 0       | 0         | 7.64<br>[4.75] | Ö         | o       | 0       | 7.64<br>[4.75] |  |

## **APPENDIX B**

## PAVEMENT TYPES FOR EACH SECTION OF EACH PARKWAY HIGHWAY IN KENTUCKY AS OF DECEMBER 1993

|              | 1           |          | Initi            | ally             |                                        | Presently        |                |
|--------------|-------------|----------|------------------|------------------|----------------------------------------|------------------|----------------|
|              |             |          | AC/DGA           | PCC              | AC/DGA                                 | AC/PCC           | PCC            |
| County       | Mileposts   | Dates    | km [mi]          | km (mi)          | km [mi]                                | km (mi)          | km [mi]        |
| Clark        | 0.00-3,68   | 62       |                  | 5.92 [3.68]      |                                        |                  | 5.92 [3.6      |
| 17           | 3.68-10.58  | 62/86BS* |                  | 11.10 [6.90]     | ······                                 | 11.10 [6.90]     |                |
| Clark-Powell | 10.58-16.02 | 62/86BS* |                  | 8.75 [5,44]      |                                        | 8.75 [5.44]      | 1              |
| Powell       | 16.02-19.15 | 62/89BS* |                  | 5.04 [3,13]      |                                        | 5.04 [3.13]      |                |
|              | 19.15-22.31 | 62/89BS* |                  | 5.09 [3.16]      |                                        | 5.09 [3.16]      |                |
| "            | 22.31-26.12 | 62/88BS* |                  | 6.13 [3.81]      |                                        | 6.13 [3.81]      |                |
| *            | 26.12-29.30 | 62/88BS* |                  | 5.12 [3.18]      | ······································ | 5.12 [3.18]      | 1              |
| D            | 29.30-32.90 | 62/89BS* |                  | 5.83 [3.62]      |                                        | 5.83 [3.62]      |                |
| 7            | 32.90-36.00 | 62/90BS* |                  | 4.96 [3.08]      |                                        | 4.96 [3.08]      | 1              |
| Wolfe        | 36.00-39.51 | 62/90BS* |                  | 5.65 [3.51]      |                                        | 5.65 [3.51]      |                |
|              | 39.51-43.20 | 62/91BS* |                  | 5.94 [3.69]      |                                        | 5.94 [3.69]      | 1              |
| л. <u></u> т | 43.20-49.80 | 63/75/91 | 10.62 [6.60]     |                  | 10.62 [6.60]                           |                  |                |
| a            | 49.80-55.43 | 63/75/92 | 9.06 [5.63]      |                  | 9.06 [5.63]                            |                  |                |
| Wolle-Morgan | 55.43-59.50 | 63/75/88 | 6,55 [4,07]      | -                | 6.55 [4.07]                            |                  | "<br>          |
| Morgan       | 59.50-63.08 | 63/75/89 | 5.76 [3.58]      |                  | 5,76 [3,58]                            |                  |                |
| Magoffin     | 63.08-67.40 | 63/75/87 | 6.95 [4.32]      |                  | 6,95 [4.32]                            |                  |                |
|              | 67.40-71.65 | 63/75/88 | 6.84 [4.25]      |                  | 6.84 [4.25]                            |                  |                |
| #            | 71.65-74.58 | 63/75/86 | 4.72 [2.93]      |                  | 4.72 [2.93]                            |                  |                |
| H            | 74.58-75.63 | 63/75/85 | 1.69 [1.05]      |                  | 1.69 [1.05]                            |                  |                |
|              | Totals      |          | 52.19<br>[32.43] | 69,52<br>[43,20] | 52.19<br>[32.43]                       | 63.60<br>[39.52] | 5.92<br>[3.68] |

|                         |               |             | Initia           | aliy              |                  | Presently        |                  |
|-------------------------|---------------|-------------|------------------|-------------------|------------------|------------------|------------------|
|                         |               |             | AC/DGA           | PCC               | AC/DGA           | AC/PCC           | PCC              |
| County                  | Mileposts     | Dates       | km [mi]          | km [mi]           | km [mi]          | km [mi]          | km [mi]          |
| Lyon                    | 0.00-3.70     | 79          | 5.95 [3.70]      |                   | 5.95 [3,70]      | <u>•</u>         |                  |
| · Lyon-                 |               |             |                  |                   |                  |                  |                  |
| Caldwell                | 9.74-14.85    | 63/73/89    | 8.22 [5.11]      |                   | 8.22 [5.11]      |                  |                  |
| 17                      | 14.85-18.26   | 63/73/87/91 | 5.49 [3.41]      |                   | 5.49 [3.41]      |                  |                  |
|                         | 18.26-21,15   | 63/75/88    | 4.65 [2.89]      |                   | 4.65 [2.89]      |                  |                  |
| Caldwell-<br>Hopkins    | 21.15-25.64   | 63/75/88    | 7.23 [4.49]      |                   | 7.23 [4.49]      |                  |                  |
| Hopkins                 | 25.64-35.50   | 63          |                  | 15.87 [9.86]      |                  | <del></del>      | 15,87 [9.8       |
| n                       | 35.50-43.42   | 63/89BS*    |                  | 12.75 [7.92]      |                  | 12.75 [7.92]WB   |                  |
| н                       | 35.50-43.42   | 63          | -                | 12.75 [7.92]      |                  |                  | 12.75 [7.92      |
| Muhlenbeig              | 43.42-49.96   | 63          | · ·              | 10.53 [6.54]      |                  |                  | 10.53 [6.        |
| · N                     | 49.96-54.90   | 63          |                  | 7.95 [4.94]       |                  | *D-01            | 7.95 [4,9        |
| n                       | 54.90-58,85   | 63          |                  | 6.36 [3.95]       |                  |                  | 6.36 [3.9        |
| 1                       | 58.85-65.68   | 63          |                  | 10.99 [6.83]      |                  |                  | 10.99 [6.8       |
| Ohio                    | 65,68-71.90   | 63/86BS*    | 1                | 10.01 [6.22]      |                  | 10.01 [6.22]     |                  |
|                         | 71.90-83.25   | 63/87BS*    | _                | 18.27 [11.35]     |                  | 18.27 [11.35]    |                  |
| Ohio-Butler-<br>Grayson | 83.25-90.08   | 63/89BS*    |                  | 10.99 [6.83]      |                  | 10.99 [6.83]     |                  |
| Grayson                 | 90.08-95.15   | 63          |                  | 8.16 [5.07]WB     |                  |                  | 8.16 [5.07]      |
| п                       | 90.08-95,15   | 63/91BS*    |                  | 8.16 [5.07]EB     |                  | 8.16 [5.07]EB    |                  |
| n                       | 95.15-100.25  | 63          |                  | 8.21 [5.10]       |                  |                  | 8.21 [5.1        |
| N                       | 100.25-103.95 | 63/89BS*    |                  | 5.95 [3.70]WB     |                  | 5.95 [3.70]WB    |                  |
| <b>H</b>                | 100.25-103.95 | 63          |                  | 5.95 [3.70]EB     |                  |                  | 5.95 [3.70]      |
| π                       | 103.95-105.88 | 63          |                  | 3.11 [1.93]       |                  |                  | 3.11 [1.9        |
|                         | 105.88-109.05 | 63/92BS*    |                  | 5.10 [3.17]WB     | ····             | 5.10 [3.17]WB    | - <u> </u>       |
|                         | 109.05-110.50 | 63          |                  | 2.33 [1.45]WB     |                  |                  | 5.10 [3.17]      |
| n                       | 110.50-112.75 | 63/92BS*    |                  | 3.62 [2:25]WB     |                  | 3.62 [2.25]WB    |                  |
| n                       | 112.75-114.80 | 63          | 1                | 3.30 [2.05]WB     |                  |                  | 3.30 [2.05]      |
| #                       | 114.80-116.83 | 63/93BS*    |                  | 3.27 [2.03]WB     |                  | 3.27 [2.03]WB    |                  |
| n                       | 105.88-107.80 | 63/93BS*    |                  | 3.09 [1.92]EB     |                  | 3.09 [1.92]EB    |                  |
| n                       | 107.80-110.50 | 63          |                  | 4.35 [2.70]EB     |                  |                  | 4.35 [2.70       |
| π                       | 110.50-112.65 | 63/93BS*    |                  | 3.46 [2.15]EB     |                  | 3.46 [2.15]EB    |                  |
| Grayson                 | 112.65-114.80 | 63          |                  | 3.46 [2.15]EB     |                  |                  | 3.46 [2.15       |
| N                       | 114.80-116.83 | 63/91BS*    |                  | 3.27 [2.03]EB     |                  | 3.27 [2.03]EB    |                  |
| n                       | 116.83-119.65 | 63/79/85/88 | 4.54 [2.82]      |                   | 4.54 [2.82]      |                  |                  |
| Hardin                  | 119.65-123.44 | 63/79/88    | 6.10 [3.79]      |                   | 6.10 [3.79]      |                  |                  |
|                         | 123.44-136.07 | 63/79/89    | 20.33 [12.63]WB  |                   | 20.33 [12.63]WB  |                  |                  |
| H                       | 123.44-136.07 | 63/79/90    | 20.33 [12.63]EB  |                   | 20.33 [12.63]EB  |                  |                  |
|                         | 136.07-136.80 | 86          | 1.17 [0.73]      |                   | 1.17 [0.73]      |                  |                  |
|                         | Totals        |             | 73.40<br>[45.61] | 146.76<br>[91.19] | 73.40<br>[45.61] | 68.51<br>[42.57] | 78.25<br>[48.62] |

|                         |             |             | Initia           | dly              |                           | Presently        |                                               |
|-------------------------|-------------|-------------|------------------|------------------|---------------------------|------------------|-----------------------------------------------|
|                         | · ·         |             | AC/DGA           | PCC              | AC/DGA                    | AC/PCC           | PCC                                           |
| County .                | Mileposts   | Dates       | km [mi]          | km (mi)          | km (mi)                   | km [mi]          | km [mi]                                       |
| Hardin-Nelson           | 0.45-9.04   | 65/79/88/93 | 13.82 [8.59] EB  |                  | 13.82 [8.59] EB           |                  | <u>, , , , , , , , , , , , , , , , , , , </u> |
| Neison                  | 9.04-16.54  | 65/79/88/92 | 12.07 [7.50] EB  |                  | 12.07 [7.50] EB           |                  | 0.00,                                         |
| <b>n</b> -              | 16.54-24.24 | 65/79/88/92 | 12.39 [7.70] EB  |                  | 12.39 [7.70] EB           |                  |                                               |
| Hardin                  | 0.45-4.90   | 65/79/88    | 7.16 [4.45] WB   |                  | 7.16 [4.45] WB            |                  |                                               |
| Hardin-Neison           | 4.90-9.52   | 65/79/88/93 | 7.44 [4.62] WB   |                  | 7.44 [4.62] WB            |                  |                                               |
| Nelson                  | 9.52-10.17  | 65/79/88/92 | 1.05 [0.65] WB   | -                | 1.05 [0.65] WB            |                  |                                               |
|                         | 10.17-16.54 | 65/79/88    | 10.25 [6.37] WB  |                  | 10.25 [6.37] WB           | A                | <u></u>                                       |
| n                       | 16.54-24.24 | 65/79/88    | 12.39 [7.70] WB  | · -              | 12.39 [7.70]WB            |                  |                                               |
| Nelson                  | 24.24-32.60 | 65/91**     |                  | 13.46 [8.36]     |                           |                  | 13.46 [8.36]                                  |
|                         | 32.60-34.91 | 65/91**     |                  | 3.72 [2.31]      |                           |                  | 3.72 [2.31]                                   |
|                         | 34.91-39.27 | 65          |                  | 7.02 [4.36]      |                           |                  | 7.02 [4.36]                                   |
| Washington              | 39.27-41.79 | 65/87BS*    |                  | 4.06 [2.52]      | -                         | 4.06 [2.52]      |                                               |
| Washington-<br>Anderson | 41.79-47.69 | 65/85BS*    |                  | 9.50 [5.90]      |                           | 9.50 [5.90]      |                                               |
| Anderson                | 47.69-51.84 | 65/86BS*    | · · · ·          | 6.68 [4.15]      |                           | 6.68 [4.15]      |                                               |
| Anderson-Mercer         | 51.84-59.59 | 65          |                  | 12.47 [7.75] EB  |                           |                  | 12.47 [7.75] 🗄                                |
| Anderson-Mercer         | 51.84-56.29 | 65          |                  | 7.16 [4.45] WB   |                           |                  | 7.16 [4.45] W                                 |
| Anderson                | 56,29-59.59 | 65/93BS*    |                  | 5.31 [3.30] WB   |                           | 5.31 [3.30] WB   |                                               |
| Anderson-<br>Woodford   | 59.59-71.13 | 65/82       | 18.57 [11.54] EB |                  | 18.57 [ <u>1</u> 1.54] EB |                  |                                               |
| н                       | 59.59-67.00 | 65/82/93    | 11.93 [7.41] WB  |                  | 11.93 [7.41] WB           |                  |                                               |
| Woodford                | 67.00-71.13 | 65/82/92    | 6.65 [4.13] WB   |                  | 6.65 [4.13] WB            |                  |                                               |
|                         | Totals      |             | 56.86<br>[35.33] | 56.89<br>[35.35] | 56.86<br>[35.33]          | 22.97<br>[14.27] | 33.94<br>[21.09]                              |

|                       |             |              | l       | nitially          |                                        | Presently        |                  |
|-----------------------|-------------|--------------|---------|-------------------|----------------------------------------|------------------|------------------|
|                       |             |              | AC/DGA  | PCC               | AC/DGA                                 | AC/PCC           | PCC              |
| County                | Mileposts   | Dates        | km [mi] | km [mi]           | km [mi]                                | km [mi]          | km (mi)          |
| Christian             | 6.77-10.77  | 68           |         | 6.44 [4.00]       |                                        |                  | 6,44 [4.00       |
| Ħ                     | 10.77-16.50 | 68           |         | 9.22 [5.73]       |                                        |                  | 9.22 [5.73       |
| Π                     | 16.50-22.48 | 68           |         | 9.62 [5.98]       |                                        |                  | 9.62 [5.98       |
| Christian-<br>Hopkins | 22.48-29.91 | 68/92***     |         | 11.96 [7.43]      |                                        |                  | 11.96 [7.4       |
| Hopkins               | 29.91-32.94 | 63           |         | 4.88 [3.03] NB    |                                        |                  | 4.88 [3.03]      |
| π                     | 29.91-31.36 | 63/90*       |         | 2.33 [1.45] SB    |                                        | 2.33 [1.45] SB   |                  |
| Ħ                     | 31.36-32.94 | 63/90*       |         | 2.54 [1.58] SB    |                                        | 2.54 [1.58] SB   |                  |
| Ħ                     | 32,94-37,07 | 63           |         | 6.65 [4.13] NB    |                                        |                  | 6.65 [4.13]      |
| π                     | 32.94-35.55 | 63/90*       |         | 4.20 [2.61] SB    |                                        | 4.20 [2.61] SB   |                  |
| 'n                    | 35.55-37.07 | 63/90BS*     |         | 2.45 [1.52] SB    |                                        | 2.45 [1.52] SB   |                  |
| H                     | 37.07-41.00 | 63           |         | 6.32 [3.93]       |                                        |                  | 6.32 [3.93       |
| ۳                     | 41.00-45.00 | 63           |         | 6.44 [4.00]       |                                        |                  | 6.44 [4.00       |
|                       | 45,00-53.11 | 68           |         | 13.05 [8.11]      |                                        |                  | 13.05 [8.1       |
| Hopkins-<br>Webster   | 53.11-61.84 | 69/87BS**/90 |         | 14.05 [8.73] NB   |                                        | 14.05 [8.73] NB  |                  |
| π                     | 53.11-61.84 | 69/92**      |         | 14.05 [8.73] SB   | `````````````````````````````````````` | 14.05 [8.73] SB  |                  |
| Webster-<br>Henderson | 61,84-65,50 | 69/88BS*     |         | 5.89 [3.66]       |                                        | 5.89 [3.66]      | -                |
| Henderson             | 65,50-70.35 | 69           |         | 7.81 [4.85]       |                                        | ļ.               | 7.81 [4.8        |
| н                     | 70.35-78.25 | 68           |         | 12.71 [7.90]      |                                        |                  | 12.71 [7.9       |
|                       | Totais      |              | · 0     | 115.04<br>[71.48] | 0                                      | 25.54<br>[15.87] | 89.48<br>[55.60] |

\*\*Edge Drains and PCC Repairs \*\*\*Edge Drains, PCC Repairs, Joint Seals

|            |             |         | Initially |                  | Presently |         |             |
|------------|-------------|---------|-----------|------------------|-----------|---------|-------------|
|            |             |         | AC/DGA    | PCC .            | AC/DGA    | AC/PCC  | PCC         |
| County     | Mileposts - | Dates   | km (mi)   | km [mi]          | km [mi]   | km (mi) | km [mi]     |
| Henderson  | 0.00-8.75   | 70/87** |           | 14.08 [8.75]     | · ·       |         | 14.08 [8,75 |
| <b>H</b> . | 8.75-15.88  | 70/87** |           | 11.47 [7.13]     |           |         | 11.47 [7.13 |
| Daviess    | 15.88-23.46 | 70/87** |           | 12.20 (7.58)     |           |         | 12.20 [7.58 |
|            | Totals      |         | 0         | 37.76<br>[23.46] | 0         | 0       | 37.76       |

|              |             |                  | 1                | Initially       |                  |                  | Presently       |                  |
|--------------|-------------|------------------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|              |             | <u> </u>         | AC/DGA           | FDAC            | PCC              | AC/DGA           | FDAC            | PCC              |
| County       | Mileposts   | Dates            | km [mi]          | km [mi]         | km [mi]          | km [mi]          | km [mi]         | km [mi]          |
| Laurel       | 0.00-0.93   | 70/87**          |                  |                 | 1.50 [0,93]      |                  |                 | 1.50 [0.93]      |
| π            | 0.93-8.80   | 71/87**          |                  |                 | 12.67 [7.87]     |                  |                 | 12.67 [7.87]     |
| Laurel-Clay  | 8.80-15.00  | 71/79/93         | 9.98 [6.20]      |                 |                  | 9.98 [6.20]      |                 | ······           |
| Clay         | 15.00-20.33 | 71/79/93         | 8.58 [5.33]      |                 |                  | 8,58 [5.33]      |                 |                  |
| n .          | 20.33-35.08 | 74               |                  |                 | 23.74 [14.75]    |                  |                 | 23.74 [14.75]    |
| Clay-Leslie  | 35.08-41.46 | 74/79/86         | ·                | 10.27 [6.38]    |                  |                  | 10.27 [6.38]    | i                |
| Lesie        | 41.46-44.04 | 74/79/86         |                  | 4.15 [2.58] EB  |                  |                  | 4.15 [2.58] EB  |                  |
| ñ            | 41.46-44.04 | 74/79/82/86/91TL |                  | 4.15 [2.58] WB  |                  |                  | 4.15 [2.58] WB  |                  |
| r r          | 44.04-44.35 | 74***            |                  |                 | 0.50 [0.31]      |                  |                 | 0.50 [0.31]      |
|              | 44.35-45.37 | 74/86            |                  | 1.64 [1.02]     |                  |                  | 1.64 [1.02]     |                  |
| Leslie-Perry | 45,37-59,09 | 74/86            | 22.08 [13.72]    |                 |                  | 22.08 [13.72]    |                 |                  |
|              | Totals      |                  | 40.64<br>[25.25] | 16.06<br>[9.98] | 38.40<br>[23,86] | 40,64<br>[25,25] | 16,06<br>[9.98] | 38.40<br>[23.86] |

\*Edge Drains \*\*Edge Drains and Joint Seals \*\*\*Joint Seals

,

|               | · · ·       |         |                  | Initially       |                  |                  | Presently       |                  |
|---------------|-------------|---------|------------------|-----------------|------------------|------------------|-----------------|------------------|
|               |             |         | AC/DGA           | FDAC            | PCC              | AC/DGA           | FDAC            | PCC              |
| County        | Mileposts   | Dates   | km [mi]          | km [mi]         | km [mi]          | km [mi]          | km [mi]         | km [mi]          |
| Warren        | 0.00-7.10   | 72/91   |                  | 11.43 [7.10]    |                  |                  | 11.43 [7.10]    |                  |
| n             | 7.10-17.80  | 72/90   | 17.22 [10.70]    |                 |                  | 17.22 [10.70]    |                 |                  |
| Warren-Butler | 17.80-26.42 | 72/89   | 13,87 [8.62]     |                 |                  | 13.87 [8.62]     |                 |                  |
| Butler        | 26.42-32.64 | 72/88   | 10.01 [6.22]     |                 |                  | 10.01 [6.22]     |                 |                  |
| Butler-Ohio   | 32.64-42.27 | 72/87** |                  |                 | 15.50 [9.63]     |                  |                 | 15.50 [9.63      |
| Ohio          | 42.27-52.60 | 72/87** |                  |                 | 16.62 [10.33]    |                  |                 | 16.62 [10.33     |
| Ohio-Daviess  | 52.60-70.21 | 72/87** |                  |                 | 28.34 [17.61]    |                  |                 | 28.34 [17.6      |
|               | Totals      |         | 41.10<br>[25.54] | 11.43<br>[7.10] | 60.46<br>[37.57] | 41.10<br>[25.54] | 11.43<br>[7.10] | 60.46<br>[37.57] |

|                 | JA          | CKSON PURCHAS | E PARKWAY - PAVE | MENT TYPE |                  |           |                  |
|-----------------|-------------|---------------|------------------|-----------|------------------|-----------|------------------|
|                 |             |               | Initially        | r         |                  | Presently |                  |
|                 |             |               | AC/DGA           | PCC       | AC/DGA           | AC/PCC    | PCC              |
| County          | Mileposts   | Dates         | km [mi]          | km (mi)   | km [mi]          | km [mi]   | km [mi           |
| Fuiton          | 0.00-2.48   | 68/85         | 3.99 [2.48]      |           | 3.99 [2.48]      |           |                  |
| Fulton-Hickman  | 2.48-8.35   | 68/86/91      | 9.45 [5.87] NB   |           | 9.45 [5.87] NB   |           |                  |
| Fulton          | 2.48-3.41   | 68/83/88      | 1.50 [0.93] SB   |           | 1.50 [0.93] SB   |           |                  |
| Hickman         | 3.41-8.35   | 68/88         | 7.95 [4.94] SB   |           | 7.95 [4.94] SB   |           |                  |
| Graves          | 8.35-13.64  | 68/88         | 8.51 [5.29]      |           | 8.51 [5.29]      |           |                  |
| n               | 13.64-21.86 | 68/88         | 13.23 [8.22]     |           | 13.23 [8.22]     |           |                  |
|                 | 21.86-25.40 | 62/67/83/88   | 5.70 [3.54]      |           | 5.70 [3.54]      |           |                  |
| Graves-Marshall | 25.40-39.92 | 68/92         | 23.37 [14.52] NB |           | 23.37 [14.52] NB |           |                  |
| η               | 25.40-39,92 | 68/89         | 23.37 [14.52] SB |           | 23.37 [14.52] SB |           | <u>ко, служе</u> |
| Marshall        | 39.92-52.33 | 68/91         | 19.97 [12.41]    |           | 19.97 [12.41]    |           |                  |
|                 | Totals      |               | 84.22<br>[52.33] | 0         | 84.22<br>[52.33] | 0         | 0                |

|                 |             |           | Initia          | lly .        | . Presen        | tly      |
|-----------------|-------------|-----------|-----------------|--------------|-----------------|----------|
|                 |             |           | AC/DGA          | FDAC         | AC/DGA          | FDAG     |
| County          | Mileposts   | Dates     | km [mi]         | km [mi]      | km [mi]         | km [m    |
| Barren          | 0.00-8.17   | 72/93     |                 | 13.15 [8.17] |                 | 13.15 [8 |
| H               | 8.17-16.00  | 72        |                 | 12.60 [7.83] |                 | 12,60 [7 |
| Barren-Metcalfe | 16.00-24.10 | 72        |                 | 13.04 [8.10] |                 | 13.04 [8 |
| Metcalfe        | 24.10-33.36 | 72        |                 | 14.90 [9.26] |                 | 14.90 [9 |
| 8               | 33,36-36.16 | 73/81     |                 | 4.51 [2,80]  |                 | 4.51 [2. |
| Adair           | 36.16-43.02 | 73/79/87* | ·               | 11.04 [6.86] |                 | 11.04 [6 |
| a               | 43.02-48.08 | 73/88*    |                 | 8.14 [5.06]  |                 | 8.14 [5. |
| 11              | 48.08-53.89 | 73/89*    |                 | 9.35 [5.81]  |                 | 9.35 [5, |
| Adair-Russell   | 53.89-62.56 | 73        | 13.95 [8.67]    |              | 13.95 [8.67]    |          |
| Russell         | 62.56-71.34 | 73        | 14.13 [8.78] WB |              | 14.13 [8.78] WB |          |
| Russell         | 62.56-71.34 | 73/93     | 14.13 [8.78] EB |              | 14.13 [8.78] EB |          |
| Russell-Pulaski | 71.34-76.55 | 74/92     | 8.38 [5.21] EB  |              | 8.38 [5.21] EB  |          |
| 0               | 71.34-76.55 | 74        | 8.38 [5.21] WB  |              | 8.38 [5.21] WB  |          |
| Pulaski         | 76.55-84.31 | 74/91     | 12.49 [7.76] EB | -            | 12.49 [7.76] EB |          |
| n               | 76.55-84.31 | 74/92     | 12.49 [7.76] WB |              | 12.49 [7.76] WB |          |
| *               | 84.31-88.55 | 74/91     | 6.83 [4.24]     |              | 6.83 [4.24]     |          |
| •               | Totals      |           | 55.78           | 86.73        | 55.78           | 86.73    |
|                 | 1           | 1         | [34.66]         | [53.89]      | [34.66]         | (53.89   |

## **APPENDIX C**

### SUMMARY DATA FOR PAVEMENT SECTIONS EVALUATED

#### PENNYRILE PARKWAY, HOPKINS COUNTY

PORTLAND CEMENT CONCRETE

THICKNESS = 230 mm (229 to 235) [9.04 in. (9.00 to 9.25)] COMPRESSIVE STRENGTH = 39.6 MPa (32.4 to 52.5) [5,750 psi (4,710 to 7,570)] MODULUS OF ELASTICITY = 28.1 GPa (26.9 to 29.6) [4.07 x 10<sup>6</sup> (3.90 to 4.30)]

DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 104 mm (95 to114) [4.08 in. (3.75 to 4.50)] MOISTURE CONTENT = 5.7% (3.5 to 7.1)

IN-SITU CBR = 12 (8 to 15)

MINUS 75- $\mu$ m (NO. 200) SIEVE = 12.3% (9.8 to 14.2)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 15.2% (10.9 to 20.8) IN-SITU CBR = 6 (2 to 12)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 15.0% (11.4 to 20.7) UNCONFINED COMPRESSIVE STRENGTH = 248 KPa (123 to 419) [36.0 psi (17.9 to 60.8)] WET DENSITY = 2,215 kg/m<sup>3</sup> (2,153 to 2,278) [138.0 pcf (134.1 to 141.9)] GENERAL SOIL CLASSIFICATION = CL

**GENERAL NOTES** 

CONSTRUCTED 1968 RATED TO BE IN NEAR EXCELLENT CONDITION NO SUBSEQUENT MAINTENANCE ACTIVITIES PERFORMED THROUGH JANUARY 1994

### US 119, PIKE COUNTY

PORTLAND CEMENT CONCRETE

THICKNESS = 234 mm (222 to 254) [9.21 in. (8.75 to 10.00)] COMPRESSIVE STRENGTH = 42.3 MPa (37.6 to 48.1) [6,140 psi (5,460 to 6,980)] MODULUS OF ELASTICITY = 27.9 GPa (27.2 to 29.0) [4.05 x 10<sup>6</sup> (3.95 to 4.20)] DENSE GRADED AGGREGATE (DGA) BASE THICKNESS = 99 mm (83 to114) [3.88 in. (3.25 to 4.50)] MOISTURE CONTENT = 5.6% (3.4 to 8.2) IN-SITU CBR = 24 (13 to 48) MINUS 75- $\mu$ m (NO. 200) SIEVE = 16.9% (14.2 to 20.5) NON-PLASTIC SUBGRADE SAMPLES MOISTURE CONTENT BELOW DGA = 8.1% (5.8 to 12.1) IN-SITU CBR = 13 (1 to 30) SUBGRADE TUBE SAMPLES MOISTURE CONTENT © 0.178 mm (0.7 in ) = 0.9%

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 9.8% GENERAL SOIL CLASSIFICATION = SM-SC

GENERAL NOTES

CONSTRUCTED 1982 RATED TO BE IN EXCELLENT CONDITION VARIABLE JOINT SPACING

#### I-64, FAYETTE COUNTY

PORTLAND CEMENT CONCRETE

- THICKNESS = 254 mm (254 to 254) [10.00 in. (10.00 to 10.00)] COMPRESSIVE STRENGTH = 51.2 MPa (47.7 to 58.5) [7,430 psi (6,920 to 8,490)] MODULUS OF ELASTICITY = 35.0 GPa (33.1 to 37.6) [5.08 x 10<sup>6</sup> (4.80 to 5.45)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 159 mm (152 to165) [6.25 in. (6.00 to 6.50)]

MOISTURE CONTENT = 6.1% (5.7 to 6.4)

IN-SITU CBR = 20 (13 to 27)

MINUS 75-µm (NO. 200) SIEVE = 10.6% (9.3 to 11.5)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 24.8% (18.8 to 30.1) IN-SITU CBR = 2 (1 to 3)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 23.2% (19.6 to 27.2) UNCONFINED COMPRESSIVE STRENGTH = 241 KPa (108 to 432) [34.9 psi (15.6 to 62.7)] WET DENSITY = 2,124 kg/m<sup>3</sup> (2,066 to 2,175) [138.0 pcf (134.1 to 141.9)] GENERAL SOIL CLASSIFICATION = CL

<u>GENERAL NOTES</u>

CONSTRUCTED 1963 RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS INSTALLED IN 1987

#### **I-75, FAYETTE COUNTY**

PORTLAND CEMENT CONCRETE

THICKNESS = 254 mm (254 to 254) [10.00 in. (10.00 to 10.00)]

- COMPRESSIVE STRENGTH = 40.0 MPa (36.7 to 43.0) [5,800 psi (5,330 to 6,230)]
- MODULUS OF ELASTICITY = 31.2 GPa (27.2 to 34.8) [4.52 x 10<sup>6</sup> (3.95 to 5.05)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 137 mm (127 to140) [5.38 in. (5.00 to 5.50)]

MOISTURE CONTENT = 6.1% (5.4 to 7.4)

IN-SITU CBR = 12 (6 to 16)

MINUS 75- $\mu$ m (NO. 200) SIEVE = 9.2% (6.5 to 12.0)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 15.5% (8.7 to 21.6) IN-SITU CBR = 3 (1 to 5)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 15.1% (12.8 to 20.6) UNCONFINED COMPRESSIVE STRENGTH = 157 KPa (73 to 241) [22.8 psi (10.6 to 34.9)] WET DENSITY = 2,228 kg/m<sup>3</sup> (2,122 to 2,334) [138.8 pcf (132.2 to 145.4)] GENERAL SOIL CLASSIFICATION = VARIABLE

GENERAL NOTES

CONSTRUCTED 1969 RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS, PCC REPAIRS & JOINT SEALS 1984

#### I-64, SHELBY COUNTY

PORTLAND CEMENT CONCRETE

THICKNESS = 254 mm (248 to 260) [10.00 in. (9.75 to 10.25)]

- COMPRESSIVE STRENGTH = 47.0 MPa (39.1 to 55.4) [6,810 psi (5,670 to 8,030)]
- MODULUS OF ELASTICITY = 31.2 GPa (27.9 to 34.8) [4.53 x 10<sup>6</sup> (4.05 to 5.05)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 152 mm (140 to159) [6.00 in. (5.50 to 6.25)]

MOISTURE CONTENT = 6.2% (5.1 to 7.0)

IN-SITU CBR = 16 (6 to 27)

MINUS 75- $\mu$ m (NO. 200) SIEVE = 10.4% (9.0 to 11.9)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 22.8% (18.8 to 25.2) IN-SITU CBR = 3 (2 to 3)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 23.4% (17.9 to 27.8) UNCONFINED COMPRESSIVE STRENGTH = 156 KPa (71 to 321) [22.7 psi (10.3 to 46.5)] WET DENSITY = 2,106 kg/m<sup>3</sup> (2,050 to 2,174) [131.2 pcf (127.7 to 135.4)] GENERAL SOIL CLASSIFICATION = CL

GENERAL NOTES

CONSTRUCTED 1961 RATED TO BE IN NEAR EXCELLENT CONDITION EDGE DRAINS INSTALLED IN 1984

#### **US 27, PULASKI COUNTY**

PORTLAND CEMENT CONCRETE

THICKNESS = 192 mm (1XX to 2XX) [7.54 in. (7.XX to 8.XX)]

- COMPRESSIVE STRENGTH = 51.3 MPa (44.9 to 57.4) [7,440 psi (6,510 to 8,320)]
- MODULUS OF ELASTICITY = 33.4 GPa (31.7 to 35.5) [4.85 x 10<sup>6</sup> (4.60 to 5.15)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 93 mm (64 to 102) [3.67 in. (2.50 to 4.00)]

MOISTURE CONTENT = 8.1% (4.2 to 9.6)

IN-SITU CBR = 9(2 to 16)

MINUS 75- $\mu$ m (NO. 200) SIEVE = 12.1% (9.3 to 16.7)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 26.3% (25.2 to 27.4) IN-SITU CBR = 2 (0 to 4)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 28.0% (20.6 to 31.9) UNCONFINED COMPRESSIVE STRENGTH = 129 KPa (110 to 176) [18.7 psi (15.9 to 25.6)] WET DENSITY = 1,982 kg/m<sup>3</sup> (1,885 to 2,042) [123.5 pcf (117.4 to 127.2)] GENERAL SOIL CLASSIFICATION = CH

GENERAL NOTES

CONSTRUCTED 1960 RATED TO BE PERFORMING VERY WELL NO SUBSEQUENT MAINTENANCE ACTIVITIES PERFORMED THROUGH 1994

#### US 127, OWEN COUNTY

PORTLAND CEMENT CONCRETE

THICKNESS = 208 mm (197 to 216) [8.17 in. (7.75 to 8.50)] COMPRESSIVE STRENGTH = 41.3 MPa (34.0 to 50.5) [5,990 psi (4,930 to 7,330)] MODULUS OF ELASTICITY = 28.3 GPa (27.9 to 28.6) [4.10 x 10<sup>6</sup> (4.05 to 4.15)]

DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 90 mm (76 to 121) [3.54 in. (3.00 to 4.75)]

MOISTURE CONTENT = 9.3% (6.8 to 13.2)

IN-SITU CBR = 8 (4 to 17)

MINUS 75- $\mu$ m (NO. 200) SIEVE = 11.3% (9.4 to 12.9)

NON-PLASTIC

<u>SUBGRADE SAMPLES</u>

MOISTURE CONTENT BELOW DGA = 24.6% (19.7 to 27.5) IN-SITU CBR = 2 (1 to 4)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 22.6% (18.5 to 24.2) UNCONFINED COMPRESSIVE STRENGTH = 92 KPa (59 to 121) [13.4 psi (8.6 to 17.6)] WET DENSITY = 2,143 kg/m<sup>3</sup> (2,052 to 2,209) [133.5 pcf (127.8 to 137.6)] GENERAL SOIL CLASSIFICATION = CL

**GENERAL NOTES** 

CONSTRUCTED 1973

RATED TO BE IN EXCELLENT CONDITION

NO SUBSEQUENT MAINTENANCE ACTIVITIES PERFORMED THROUGH JANUARY 1994

#### **BLUEGRASS PARKWAY, NELSON COUNTY**

PORTLAND CEMENT CONCRETE THICKNESS = 229 mm (222 to 235) [9.00 in. (8.75 to 9.25)] COMPRESSIVE STRENGTH = 57.2 MPa (53.2 to 62.6) [8,300 psi (7,710 to 9,080)] MODULUS OF ELASTICITY = 35.0 GPa (32.1 to 37.6) [5.08 x 10<sup>6</sup> (4.65 to 5.45)] DENSE GRADED AGGREGATE (DGA) BASE THICKNESS = 106 mm (89 to 146) [4.17 in. (3.50 to 5.75)] MOISTURE CONTENT = 5.9% (4.7 to 7.7) IN-SITU CBR = 14 (11 to 19) MINUS 75-µm (NO. 200) SIEVE = 11.2% (9.3 to 13.1) NON-PLASTIC SUBGRADE SAMPLES MOISTURE CONTENT BELOW DGA = 23.6% (19.5 to 27.4) IN-SITU CBR = 2(1 to 2)SUBGRADE TUBE SAMPLES MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 22.2% (19.5 to 26.5) UNCONFINED COMPRESSIVE STRENGTH = 161 KPa (92 to 231) [23.4 psi (13.3 to 33.5)] WET DENSITY = 2,140 kg/m<sup>3</sup> (2,133 to 2,164 [133.3 pcf (132.9 to 134.8)] GENERAL SOIL CLASSIFICATION = CL

GENERAL NOTES

CONSTRUCTED 1965 RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS, PCC REPAIRS & JOINT SEALS 1984

#### **PENNYRILE PARKWAY, HOPKINS AND CHRISTIAN COUNTIES**

PORTLAND CEMENT CONCRETE THICKNESS = 234 mm (229 to 241) [9.21 in. (9.00 to 9.50)] COMPRESSIVE STRENGTH = 48.7 MPa (40.6 to 52.8) [7,060 psi (5,890 to 7,660)] MODULUS OF ELASTICITY = 30.2 GPa (28.6 to 32.1) [4.38 x 10<sup>6</sup> (4.15 to 4.65)] DENSE GRADED AGGREGATE (DGA) BASE THICKNESS = 90 mm (76 to 102) [3.54 in. (3.00 to 4.00)] MOISTURE CONTENT = 4.7% (3.2 to 5.5) IN-SITU CBR = 11 (7 to 14) MINUS 75-µm (NO. 200) SIEVE = 12.4% (10.6 to 14.7) NON-PLASTIC SUBGRADE SAMPLES MOISTURE CONTENT BELOW DGA = 14.8% (11.8 to 17.7) IN-SITU CBR = 4(1 to 6)SUBGRADE TUBE SAMPLES MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 18.3% (12.3 to 21.5) UNCONFINED COMPRESSIVE STRENGTH = 233 KPa (69 to 515) [33.8 psi (10.0 to 74.7)] WET DENSITY = 2,196 kg/m<sup>3</sup> (2,143 to 2,300) [136.8 pcf (133.5 to 143.3)] GENERAL SOIL CLASSIFICATION = CL **GENERAL NOTES CONSTRUCTED 1968** RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS, PCC REPAIR & JOINT SEALS 1993

53

#### **AUDUBON PARKWAY, DAVIESS COUNTY**

PORTLAND CEMENT CONCRETE THICKNESS = 229 mm (229 to 229) [9.00 in. (9.00 to 9.00)] COMPRESSIVE STRENGTH = 39.6 MPa (35.0 to 45.0) [5,740 psi (5,080 to 6,530)] MODULUS OF ELASTICITY = 25.7 GPa (24.8 to 26.5) [3.73 x 10<sup>6</sup> (3.60 to 3.85)]

DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 101 mm (95 to 102) [3.96 in. (3.75 to 4.00)] MOISTURE CONTENT = 5.8% (4.9 to 6.8) IN-SITU CBR = 16 (9 to 34) MINUS 75- $\mu$ m (NO. 200) SIEVE = 17.0% (14.8 to 18.9)

NON-PLASTIC

SUBGRADE SAMPLES

MOISTURE CONTENT BELOW DGA = 14.5% (10.0 to 17.4) IN-SITU CBR = 9 (5 to 15)

SUBGRADE TUBE SAMPLES

MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 13.3% (8.4 to 18.1) UNCONFINED COMPRESSIVE STRENGTH = 280 KPa (153 to 345) [40.6 psi (22.2 to 50.1)] WET DENSITY = 2,186 kg/m<sup>3</sup> (2,088 to 2,231) [136.2 pcf (130.1 to 139.0)] GENERAL SOIL CLASSIFICATION = CL

GENERAL NOTES

CONSTRUCTED 1970 RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS & JOINT SEALS 1987

#### **GREEN RIVER PARKWAY, OHIO COUNTY**

PORTLAND CEMENT CONCRETE

- THICKNESS = 230 mm (229 to 235) [9.04 in. (9.00 to 9.25)] COMPRESSIVE STRENGTH = 45.4 MPa (40.8 to 52.3) [6,580 psi (5,920 to 7,580)] MODULUS OF ELASTICITY = 31.6 GPa (30.3 to 33.1) [4.58 x  $10^6$  (4.40 to 4.80)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 103 mm (89 to 114) [4.06 in. (3.50 to 4.50)] MOISTURE CONTENT = 5.4% (3.5 to 7.1) IN-SITU CBR = 17 (11 to 30) MINUS 75- $\mu$ m (NO. 200) SIEVE = 10.6% (8.9 to 16.0) NON-PLASTIC

SUBGRADE SAMPLES MOISTURE CONTENT BELOW DGA = 13.8% (11.2 to 16.0) IN-SITU CBR = 7 (3 to 13)

SUBGRADE TUBE SAMPLES MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 11.4% (10.3 to 13.2) UNCONFINED COMPRESSIVE STRENGTH = 201 KPa (158 to 243) [29.1 psi (22.9 to 35.2)] WET DENSITY = 2,228 kg/m<sup>3</sup> (2,209 to 2,246) [138.8 pcf (137.6 to 139.9)] GENERAL SOIL CLASSIFICATION = VARIABLE

GENERAL NOTES

CONSTRUCTED 1972 RATED TO BE IN EXCELLENT CONDITION EDGE DRAINS & JOINT SEALS 1987

#### WESTERN KENTUCKY PARKWAY, HOPKINS COUNTY

PORTLAND CEMENT CONCRETE

THICKNESS = 234 mm (229 to 235) [9.21 in. (9.00 to 9.25)]

- COMPRESSIVE STRENGTH = 48.7 MPa (43.4 to 51.8) [7,060 psi (6,290 to 7,520)]
- MODULUS OF ELASTICITY = 32.2 GPa (31.0 to 34.5) [4.67 x 10<sup>6</sup> (4.50 to 5.00)]
- DENSE GRADED AGGREGATE (DGA) BASE

THICKNESS = 109 mm (95 to 121) [4.30 in. (3.75 to 4.75)]

MOISTURE CONTENT = 7.9% (6.0 to 10.2)

IN-SITU CBR = 9 (5 to 11)

MINUS 75-µm (NO. 200) SIEVE = 12.7% (10.7 to 14.5) NON-PLASTIC

SUBGRADE SAMPLES MOISTURE CONTENT BELOW DGA = 21.1% (15.7 to 27.5) IN-SITU CBR = 4 (2 to 5)

SUBGRADE TUBE SAMPLES

- MOISTURE CONTENT @ 0-178 mm (0-7 in.) = 16.2% (12.1 to 20.7)
- UNCONFINED COMPRESSIVE STRENGTH = 131 KPa (36 to 197) [19.0 psi (5.3 to 28.6)] WET DENSITY = 2,204 kg/m<sup>3</sup> (2,143 to 2,284) [137.3 pcf (133.5 to 142.3)]
  - GENERAL SOIL CLASSIFICATION = VARIABLE (mostly CL)
- GENERAL NOTES

CONSTRUCTED 1963 RATED TO BE IN EXCELLENT CONDITION NO SUBSEQUENT MAINTENANCE ACTIVITIES PERFORMED THROUGH JANUARY 1994

# **APPENDIX D**

## DETAILED TEST RESULTS FOR THE PAVEMENT SECTIONS EVALUATED

|            | WEN COUNTY      |                   |                              |                 |                     |
|------------|-----------------|-------------------|------------------------------|-----------------|---------------------|
|            | POR             | LAND CEMENT CONC  | RETE CORES                   | -               |                     |
|            |                 | COMPRESSIVE       | MODULUS OF                   |                 |                     |
| SAMPLE     | THICKNESS       | STRENGTH          | ELASTICITY                   |                 |                     |
| D          | (mm) [in.]      | MPa. {psi]        | GPa [psi x 10 <sup>6</sup> ] |                 |                     |
| 127-21-1   | 213 [8.50]      | 50.5 [7,330]      | 27.9_[4.05]                  |                 |                     |
| 127-21-2   | 206 [8.25]      | • •               |                              |                 |                     |
| 127-21-3   | 213 [8.50]      | 34.0 [4,930]      |                              |                 |                     |
| 127-23-1   | 200 [8.00]      |                   |                              |                 |                     |
| 127-23-2   | 200 [8.00]      | 46.4 [6,730]      |                              |                 |                     |
| 127-23-3   | 194 [7.75]      | 34.3 [4,980]      | 28.6 [4.15]                  |                 |                     |
| AVERAGE    | 204 [8.17]      | 41.3 [5,990]      | 28.3 [4.10]                  |                 |                     |
|            |                 |                   |                              |                 |                     |
|            | <u> </u>        | NSE GRADED AGGREG | ATE BASE                     | <u> </u>        |                     |
|            |                 | MOISTURE          | IN-SITU                      | MINUS 75 µm     |                     |
| SAMPLE     | THICKNESS       | CONTENT           | CBR                          | (No. 200) SIEVE | PLASTICITY          |
| D          | <u>mm [in,]</u> | (%)               |                              | (%)             | INDEX               |
| 127-21-1   | 75 [3.00]       | 6.8               | 7                            | 12.0            |                     |
| 127-21-2   | 81 [3.25]       | 12.3              | 4                            | 12.3            |                     |
| 127-21-3   | 119 [4.75]      | 9.3               | . 9                          | 10.3            |                     |
| 127-23-1   | 100 [4.00]      | 13.2              | 17                           | 9.4             |                     |
| 127-23-2   | 81 [3.25]       | 7.1               | 8                            | 12.9            |                     |
| 127-23-3   | 75 [3.00]       | 6.9               | 4                            | 11.0            |                     |
| AVERAGE    | 89 [3.54]       | 9.3               |                              | 11.3            | ·                   |
|            |                 | BGRADE SAMPLES    |                              | •               |                     |
|            | MOISTURE        | DGRADE SAWELES    |                              | · .             |                     |
|            |                 |                   |                              |                 |                     |
| O A LUDI E | CONTENT         | IN-SITU           |                              |                 |                     |
| SAMPLE     | BELOW DGA       | CBR               |                              |                 |                     |
| ID         | (%)             |                   |                              |                 |                     |
| 127-21-1   | 26.3            | 2                 |                              |                 |                     |
| 127-21-2   | 29.1            | . <b>1</b>        |                              |                 | ,                   |
| 127-21-3   | 27.5            | 2                 |                              |                 |                     |
| 127-23-1   | 25.0            | 4                 |                              |                 |                     |
| 127-23-2   | 20.2            | 3                 |                              |                 |                     |
| 127-23-3   | 19.7            | 2                 |                              |                 |                     |
| AVERAGE    | 24.6            | 2                 |                              |                 |                     |
|            | SUBGRADE 1      | UBE SAMPLES       | -                            |                 |                     |
|            |                 |                   | UNCONFINED                   |                 |                     |
|            |                 | MOISTURE          | COMPRESSIVE                  | WET             |                     |
| SAMPLE     | DEPTH           | CONTENT           | STRENGTH                     | DENSITY         | ATTERBURG LIMITS    |
|            | mm [in.]        | (%)               | kPa [psi]                    | kg/m³ [pcf]     | <u>LL PL PI CLA</u> |
| 127-21-1   | 0-150 [0-6]     | 24,0              | 121.3 [17.6]                 | 2,047 [127.8]   | 40 20 20 CL         |
| 127-21-2   | 0-175 [0-7[     | 18.5              | 59.3 [8.6]                   | 2,204 [137.6]   | 38 20 18 CI         |
| 127-21-3   | 0-175 [0-7]     | 24,2              | 68.9 [10.0]                  | 2,130 [133.0]   | 37 20 17 Cl         |
| 127-23-1   | 0-150 [0-6]     | 24.0              | 98.6 [14.3]                  | 2,182 [136.2]   | 45 19 26 CI         |
| 127-23-2   | 175-350 [7-14]  | 30,2              | 133.1 [19.3]                 | 2,076 [129.6]   | 37 20 17 CL         |
|            | 0-150 [0-6]     | 22.4              | 114.5 [16.6]                 | 2,132 [133.1]   | 39 17 22 CL         |
| 127-23-3   | 0-150 0-61      | 77 a              | I FAID FIDINE                | 2 32 1135 11    | 39 17 72 0          |

1.10

|              | PORTLAND CEMEN    | L CONCRETE CORES        | 11711                                    | 1112au                  |          |         |           |       |
|--------------|-------------------|-------------------------|------------------------------------------|-------------------------|----------|---------|-----------|-------|
| SAMPLE       | THICKNESS         | COMPRESSIVE<br>STRENGTH | MODULUS OF<br>ELASTICITY                 |                         |          |         |           |       |
| O            | mm_(in.]          | MPa [psi]               | <u>GPa [psi x 10<sup>6</sup>]</u>        |                         |          |         |           |       |
| 27-14-1      | 181 [7.25]        |                         |                                          |                         |          |         |           |       |
| 27-14-2      | 181 [7.25]        | 47.2 [6,840]            | 31.7 [4.60]                              |                         |          |         |           |       |
| 27-14-3      | 188 [7.50]        | 55.8 [8,100]            | 35.5 [5.15]                              |                         |          |         |           |       |
| 27-12-1      | 194 [7.75]        |                         |                                          |                         |          |         |           |       |
| 27-12-2      | 194 [7.75]        | 44.9 [6,510]            |                                          | н.<br>1                 |          |         |           |       |
| 27-12-3      | 194 [7.75]        | 57.4 [8,320]            | 33.1 [4.80]                              |                         |          |         |           |       |
| AVERAGE      | 188 [7.54]        | 51.3 [7,440]            | 33.4 [4.85]                              |                         |          |         |           |       |
|              | DENSE GRADED AG   |                         |                                          |                         |          |         |           |       |
| •            |                   | MOISTURE                | an a | MINUS 75µm              |          |         |           |       |
| SAMPLE       | THICKNESS         | CONTENT                 | IN-SITU                                  | (No. 200) SIEVE         | · 1      | PLASTIC | ITV       |       |
| SAMPLE<br>ID |                   |                         | CBR                                      |                         |          |         | 111       |       |
|              |                   | (%)                     |                                          | (%)                     |          | INDEX   |           |       |
| 27-14-1      | 88 [3.50]         | 9.6                     | 2                                        | 16.7                    |          |         |           |       |
| 27-14-2      | 100 [4.00]        | .9.5                    | 9                                        | 11.3                    |          |         |           |       |
| 27-14-3      | 63 [2.50]         | 8.1                     | 6                                        | 12.7                    |          |         |           |       |
| 27-12-1      | 100 [4.00]        | 8.7                     | 10                                       | 10.5                    |          |         |           |       |
| 27-12-2      | 100 [4.00]        | 4.2                     | 16                                       | 9,3                     |          |         |           |       |
| 27-12-3      | 100 [4.00]        | 8.3                     | 12                                       | 12.0                    |          |         |           |       |
| AVERAGE      | 92 [3.67]         | 8.1                     | 9                                        | 12.1                    | <u> </u> |         |           |       |
| -            | DISTLIBBED SUBGRA | DE SAMPLES              |                                          |                         |          |         |           |       |
|              | MOISTURE          |                         |                                          |                         |          |         |           |       |
|              | CONTENT           |                         | · ·                                      |                         |          |         |           |       |
| SAMPLE       | BELOW DGA         | IN-SITU                 |                                          |                         |          |         |           |       |
|              | (%)               | CBR                     |                                          |                         |          |         |           |       |
| 7-14-1       | 27.4              | 2                       |                                          |                         |          |         |           |       |
| 7-14-2       | 27.4              | 2                       |                                          |                         |          |         |           |       |
| 7-14-3       | 26.2              | 0                       |                                          |                         |          |         |           |       |
| 7-12-1       | 26.4              | 2                       |                                          |                         |          |         |           |       |
|              |                   |                         |                                          |                         |          |         |           |       |
| 7-12-2       | 25.2              | 3                       |                                          |                         |          |         |           |       |
| 7-12-3       | 25.2              | 4                       |                                          |                         |          |         |           |       |
| AVERAGE      | 26.3              | 2                       | <u></u>                                  |                         |          |         |           |       |
| )<br>4       | SURGRADE TURE SA  | MPLES                   |                                          | •                       |          |         |           |       |
|              |                   |                         | UNCONFINED                               |                         |          |         |           |       |
|              |                   | MOISTURE                | COMPRESSIVE                              | WET                     |          |         |           |       |
| SAMPLE       | DEPTH             | CONTENT                 | STRENGTH                                 | DENSITY                 | •        | ATTER   |           |       |
| ID           |                   | (%)                     | kPa [psi]                                | kg/m <sup>3</sup> [pcf] |          | PL      | PI        | _CLAS |
| 7-14-1       | 0-150 [0-6]       | 27.9                    | 140.0 [20.3]                             | 2,038 [127.2]           | 59       | 23      | 36        | CH    |
| 7-14-1       | 150-300 [6-12]    | 27.7                    | 210.3 [30.5]                             | 2,006 [125.2]           |          |         |           |       |
| 7-14-2       | 150-350 [6-14]    | 33.3                    | 166.9 [24.2]                             | 1,986 [124.0]           | 55       | 21      | 34        | CH    |
| 7-14-3       | 0-150 [0-6]       | 31.8                    | 112.4 [16.3]                             | 1,941 [121.2]           | 66       | 22      | 44        | CH    |
| 7-14-3       | 150-325 [6-13]    | 25.5                    | 130.3 [18.9]                             | 2,025 [126.4]           |          |         |           |       |
| 7-12-1       | 0-150 [0-6]       | 27.8                    | 109.6 [15.9]                             | 2,012 [125.6]           | 52       | 19      | 33        | CH    |
| 7-12-1       | 150-300 [6-12]    | 28.2                    | 151.0 [21.9]                             | 2,092 [130.6]           |          |         |           | 211   |
| 7-12-2       | 75-250 [3-10]     | .31.9                   | 107.6 [15.6]                             | 1,881 [117.4]           | 67       | 30      | 37        | СН    |
| 7-12-2       | 250-400 [10-16]   | 34.8                    | 176.5 [25.6]                             | 1,901 [118.7]           | 01       | 50      | <i></i>   | UL    |
|              |                   |                         |                                          | -                       |          |         |           |       |
| 7-12-2       | 400-575 [16-23]   | 25.8                    | 171.7 [24.9]                             | 1,991 [124.3]           | -0       |         | ~7        | ~     |
| '-12-3       | 50-225 [2-9]      | 20.6                    | 176.5 [25.6]                             | 2,107 [125.9]           | 50       | 23      | 27        | СН    |
| 7-12-3       | 225-375 [9-15]    | 35.8                    | 313.7 [45.5]                             | 1,929 [120.4]           |          |         |           |       |
|              | 375-550 [15-22]   | 30.1                    | 372.3 [54.0]                             | 1,974 [123.2]           |          |         |           |       |
| AVERAGE      |                   | 29,3                    | 164.1 [23.8]                             | 1.985 [123.9]           | 58       | 23      | <u>35</u> |       |

 $\{ i, j \neq j \}$ 

2 . •

|                                                                                                                                                             |                                                                                                                                                                                                                  | T CONCRETE CORES                                                                                                                           |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------------------|
|                                                                                                                                                             |                                                                                                                                                                                                                  | COMPRESSIVE                                                                                                                                | MODULUS OF                                                                                                                 |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE                                                                                                                                                      | THICKNESS                                                                                                                                                                                                        | STRENGTH                                                                                                                                   | ELASTICITY                                                                                                                 |                                                                                                                         |                                   |                                  |                                  |                                           |
|                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
|                                                                                                                                                             | mm_[in.]                                                                                                                                                                                                         | MPa (psi)                                                                                                                                  | <u>GPa [psi x 10<sup>6</sup>]</u>                                                                                          |                                                                                                                         |                                   |                                  |                                  | -                                         |
| BG-26-1                                                                                                                                                     | 225 [9.00]                                                                                                                                                                                                       | 59.4 [8,620]                                                                                                                               | 37.6 [5.45]                                                                                                                |                                                                                                                         |                                   |                                  |                                  |                                           |
| BG-26-2                                                                                                                                                     | 225 [9.00]                                                                                                                                                                                                       | 53.7 [7,790]                                                                                                                               | 32.1 [4.65]                                                                                                                |                                                                                                                         |                                   |                                  |                                  |                                           |
| BG-26-3                                                                                                                                                     | 219 [8.75]                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| BG-25-1                                                                                                                                                     | 225 [9.00]                                                                                                                                                                                                       | 53.2 [7,710]                                                                                                                               |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| BG-25-2                                                                                                                                                     | 231 [9.25]                                                                                                                                                                                                       | 62.6 [9,080]                                                                                                                               | 35.5 [5.15]                                                                                                                |                                                                                                                         |                                   |                                  |                                  |                                           |
| BG-25-3                                                                                                                                                     | 225 [9.00]                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| AVERAGE                                                                                                                                                     | 225 [9.00]                                                                                                                                                                                                       | 57.2_[8,300]                                                                                                                               | 35.0 [5.08]                                                                                                                |                                                                                                                         |                                   |                                  | <u>_</u>                         |                                           |
|                                                                                                                                                             | DENSE GRADED AG                                                                                                                                                                                                  |                                                                                                                                            | ,                                                                                                                          | •                                                                                                                       |                                   |                                  |                                  |                                           |
|                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                            | an a                                                                                   |                                                                                                                         |                                   |                                  |                                  |                                           |
|                                                                                                                                                             | THOMEOO                                                                                                                                                                                                          | MOISTURE                                                                                                                                   | IN-SITU                                                                                                                    | MINUS 75µm                                                                                                              |                                   | 10100                            | τv                               |                                           |
| SAMPLE                                                                                                                                                      | THICKNESS                                                                                                                                                                                                        | CONTENT                                                                                                                                    | CBR                                                                                                                        | (No. 200) SIEVE                                                                                                         |                                   | ASTICI                           | ΙY                               |                                           |
| ID                                                                                                                                                          | mm [in.]                                                                                                                                                                                                         | (%)                                                                                                                                        | ······································                                                                                     | (%)                                                                                                                     |                                   | NDEX                             |                                  |                                           |
| 3G-26-1                                                                                                                                                     | 100 [4.00]                                                                                                                                                                                                       | 6.1                                                                                                                                        | 12                                                                                                                         | 13.1                                                                                                                    |                                   |                                  |                                  |                                           |
| 3G-26-2                                                                                                                                                     | 144 [5.75]                                                                                                                                                                                                       | 4.7                                                                                                                                        | 12                                                                                                                         | 11.0                                                                                                                    |                                   |                                  |                                  |                                           |
| 3G-26-3                                                                                                                                                     | 88 [3.50]                                                                                                                                                                                                        | 5.0                                                                                                                                        | 19                                                                                                                         | 11.3                                                                                                                    |                                   |                                  |                                  |                                           |
| 3G-25-1                                                                                                                                                     | 88 [3.50]                                                                                                                                                                                                        | 5,3                                                                                                                                        | 12                                                                                                                         | 10.0                                                                                                                    |                                   |                                  |                                  |                                           |
| 3G-25-2                                                                                                                                                     | 112 [4.50]                                                                                                                                                                                                       | 7,7                                                                                                                                        | 17                                                                                                                         | 9.3                                                                                                                     |                                   |                                  |                                  |                                           |
| 3G-25-3                                                                                                                                                     | 94 [3.75]                                                                                                                                                                                                        | 6.4                                                                                                                                        | 11                                                                                                                         | 12.4                                                                                                                    |                                   |                                  |                                  |                                           |
| AVERAGE                                                                                                                                                     | 104 [4.17]                                                                                                                                                                                                       | 5,9                                                                                                                                        | 14                                                                                                                         | 11.2                                                                                                                    |                                   |                                  |                                  |                                           |
|                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
|                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
|                                                                                                                                                             | DISTUBRED SURGE                                                                                                                                                                                                  | ADE SAMPLES                                                                                                                                | an a                                                                                   | -                                                                                                                       |                                   |                                  |                                  |                                           |
|                                                                                                                                                             | MOISTURE                                                                                                                                                                                                         | ADE SAMPLES                                                                                                                                | and the second secon            | -                                                                                                                       | ·                                 |                                  |                                  |                                           |
|                                                                                                                                                             | MOISTURE<br>CONTENT                                                                                                                                                                                              | IN-SITU                                                                                                                                    | ىرىپىيەمىسىيىنى مەمەمەتىيە <u>بەرىمىسىيە بەرىمىسىيە بەرىمىمىيە مەمەمەمە</u> مەرىيە بەرىمى                                  | -                                                                                                                       |                                   |                                  |                                  |                                           |
| SAMPLE                                                                                                                                                      | MOISTURE<br>CONTENT<br>BELOW DGA                                                                                                                                                                                 | · · ·                                                                                                                                      | 99000000 <u>00000000000000000000000000000</u>                                                                              | -                                                                                                                       |                                   |                                  |                                  |                                           |
| Sampleid                                                                                                                                                    | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)                                                                                                                                                                          | IN-SITU<br>CBR                                                                                                                             |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>IG-26-1                                                                                                                                     | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1                                                                                                                                                                  | IN-SITU<br>CBR<br>1                                                                                                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                     |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2                                                                                                                          | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5                                                                                                                                                          | IN-SITU<br>CBR<br>1<br>2                                                                                                                   | <u>ور میں محمد میں کہ محمد میں کہ محمد محمد محمد محمد محمد محمد محمد محم</u>                                               | -<br>                                                                                                                   |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>JG-26-1<br>JG-26-2<br>JG-26-3                                                                                                               | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9                                                                                                                                                  | IN-SITU<br>CBR<br>1                                                                                                                        |                                                                                                                            | _                                                                                                                       |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1                                                                                                    | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4                                                                                                                                          | IN-SITU<br>CBR<br>1<br>2                                                                                                                   |                                                                                                                            | _                                                                                                                       |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1<br>3G-25-2                                                                                         | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4                                                                                                                                  | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>1<br>2                                                                                               |                                                                                                                            | -                                                                                                                       |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1<br>3G-25-2<br>3G-25-3                                                                              | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.1                                                                                                                          | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2<br>2                                                                                |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>IG-26-1<br>IG-26-2<br>IG-26-3<br>IG-25-1<br>IG-25-2                                                                                         | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4                                                                                                                                  | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>1<br>2                                                                                               |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  | · · · · · · · · · · · · · · · · · · ·     |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-3<br>3G-25-2<br>1G-25-3<br>AVERAGE                                                                   | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.1                                                                                                                          | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2                                                                      |                                                                                                                            |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-3<br>3G-25-2<br>1G-25-3<br>AVERAGE                                                                   | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.1<br>23.6                                                                                                                  | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                  | UNCONFINED                                                                                                                 |                                                                                                                         |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1<br>3G-25-2<br>3G-25-3<br>AVERAGE                                                                   | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA                                                                                      | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE                                                           | COMPRESSIVE                                                                                                                | -<br>-<br>-<br>WET                                                                                                      |                                   |                                  |                                  |                                           |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-25-3<br>3G-25-3<br>G-25-3<br>AVERAGE<br>SAMPLE                                                                     | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH                                                                             | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPI ES<br>MOISTURE<br>CONTENT                                               | COMPRESSIVE<br>STRENGTH                                                                                                    | DENSITY                                                                                                                 | P                                 | ATTERB                           |                                  |                                           |
| SAMPLE<br>ID<br>IG-26-1<br>IG-26-2<br>IG-26-3<br>IG-25-1<br>IG-25-2<br>G-25-3<br>AVERAGE<br>SAMPLE<br>ID                                                    | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]                                                                 | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)                                              | COMPRESSIVE<br>STRENGTH<br><u>kPa (psi</u> )                                                                               | DENSITY<br>kg/m³ [pcf]                                                                                                  | <u>      LL      </u>             | PL                               | PI                               | CLASS                                     |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-25-3<br>3G-25-3<br>G-25-3<br>AVERAGE<br>SAMPLE<br>ID                                                               | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH                                                                             | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPI ES<br>MOISTURE<br>CONTENT                                               | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]                                                                | DENSITY                                                                                                                 | <u>LL</u><br>46                   | PL<br>21                         | <u>Р</u> ]<br>25                 | CLASS<br>CL                               |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1<br>3G-25-2<br>3G-25-3<br>AVERAGE<br>SAMPLE<br>ID<br>G-26-1                                         | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]                                                                 | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)                                              | COMPRESSIVE<br>STRENGTH<br><u>kPa (psi</u> )                                                                               | DENSITY<br>kg/m³ [pcf]                                                                                                  | <u>      LL      </u>             | PL                               | PI                               | CLASS                                     |
| SAMPLE<br>ID<br>IG-26-1<br>IG-26-2<br>IG-26-3<br>IG-25-1<br>IG-25-2<br>G-25-3<br>AVERAGE<br>SAMPLE<br>ID<br>G-26-1<br>G-26-2                                | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]<br>0-175 [0-7]                                                  | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>26.5                                 | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]                                                                | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,129 [132.9]                                                                     | <u>LL</u><br>46                   | PL<br>21                         | <u>Р</u> ]<br>25                 | CLASS<br>CL                               |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-2<br>3G-25-3<br>3G-25-3<br>AVERAGE<br>SAMPLE<br>ID<br>G-26-1<br>G-26-2<br>G-26-3                                | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]<br>0-175 [0-7]<br>0-150 [0-6]                                   | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>26.5<br>21.3               | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]<br>130.3 [18.9]                                                | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,129 [132.9]<br>2,132 [133.1]                                                    | LL<br>46<br>39                    | PL<br>21<br>18                   | <u>Pl</u><br>25<br>21            | CLASS<br>CL<br>CL                         |
| SAMPLE<br>ID<br>IG-26-1<br>IG-26-2<br>IG-26-3<br>IG-25-1<br>IG-25-2<br>G-25-3<br>AVERAGE<br>SAMPLE<br>ID<br>G-26-1<br>G-26-2<br>G-26-3<br>G-25-1            | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]<br>0-175 [0-7]<br>0-150 [0-6]<br>0-175 [0-7]<br>0-175 [0-7]             | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>MPI ES<br>MOISTURE<br>CONTENT<br>(%)<br>26.5<br>21.3<br>22.3           | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]<br>130.3 [18.9]<br>91.7 [13.3]                                 | DENSITY<br><u>kg/m<sup>3</sup> [pcf]</u><br>2,129 [132.9]<br>2,132 [133.1]<br>2,130 [133.0]                             | <u>LL</u><br>46<br>39<br>41       | PL<br>21<br>18<br>20             | P <br>25<br>21<br>21             | CLASS<br>CL<br>CL<br>CL<br>CL             |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-26-3<br>3G-25-1<br>3G-25-2<br>3G-25-3<br>AVERAGE<br>SAMPLE<br>ID<br>G-26-1<br>G-26-2<br>G-26-3<br>G-25-1<br>G-25-2 | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TLIBE SA<br>DEPTH<br>mm [in.]<br>0-175 [0-7]<br>0-175 [0-7]<br>0-175 [0-7]<br>175-325 [7-13] | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>26.5<br>21.3<br>22.3<br>21.6<br>19.1 | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]<br>130.3 [18.9]<br>91.7 [13.3]<br>228.9 [33.2]<br>293.0 [42.5] | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,129 [132.9]<br>2,132 [133.1]<br>2,130 [133.0]<br>2,129 [132.9]<br>2,186 [136.5] | <u>LL</u><br>46<br>39<br>41<br>44 | PL<br>21<br>18<br>20<br>20       | Pl<br>25<br>21<br>21<br>24       | CLASS<br>CL<br>CL<br>CL<br>CL<br>CL       |
| SAMPLE<br>ID<br>3G-26-1<br>3G-26-2<br>3G-25-3<br>3G-25-3<br>3G-25-3<br>AVERAGE<br>SAMPLE                                                                    | MOISTURE<br>CONTENT<br>BELOW DGA<br>(%)<br>23.1<br>19.5<br>20.9<br>23.4<br>27.4<br>27.1<br>23.6<br>SUBGBADE TUBE SA<br>DEPTH<br>mm [in.]<br>0-175 [0-7]<br>0-150 [0-6]<br>0-175 [0-7]<br>0-175 [0-7]             | IN-SITU<br>CBR<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>MPI FS<br>MOISTURE<br>CONTENT<br>(%)<br>26.5<br>21.3<br>22.3<br>21.6        | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>231.0 [33.5]<br>130.3 [18.9]<br>91.7 [13.3]<br>228.9 [33.2]                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,129 [132.9]<br>2,132 [133.1]<br>2,130 [133.0]<br>2,129 [132.9]                  | LL<br>46<br>39<br>41<br>44<br>42  | PL<br>21<br>18<br>20<br>20<br>20 | Pl<br>25<br>21<br>21<br>24<br>22 | CLASS<br>CL<br>CL<br>CL<br>CL<br>CL<br>CL |

,

|                                                                                                                 | POBTLAND CEMEN                                                                                  | T CONCRETE CORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | <u>jenet och popiednal närgigini interder der der der der der der der der de</u>                | COMPRESSIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MODULUS OF                                                                                                                  | 22                                                                                                                      |                                                                                                                                                                                                                                                                              |
| SAMPLE                                                                                                          | THICKNESS                                                                                       | STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ELASTICITY                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| ID                                                                                                              |                                                                                                 | MPa_[psi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GPa [psi x 10 <sup>6</sup> ]                                                                                                |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-84-1                                                                                                         | 250 [10.00]                                                                                     | 47.7 [6,920]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ······································                                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 64-84-2                                                                                                         | 250 [10.00]                                                                                     | 48.0 [6,960]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.6 [5.45]                                                                                                                 | _                                                                                                                       |                                                                                                                                                                                                                                                                              |
| 54-84-3                                                                                                         | 250 [10.00]                                                                                     | 10:0 [0:000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . or o to to to                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-86-1                                                                                                         | 250 [10.00]                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-86-2                                                                                                         | 250 [10.00]                                                                                     | 58.5 [8,490]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.1 [4.80]                                                                                                                 |                                                                                                                         | ,                                                                                                                                                                                                                                                                            |
| 64-86-3                                                                                                         | 250 [10.00]<br>250 [10.00]                                                                      | 50.7 [7,360]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.5 [5.00]                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| AVERAGE                                                                                                         | 250 [10.00]                                                                                     | 51.2 [7,430]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.0 [5.08]                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 | DENSE GRADED AG                                                                                 | GREGATE BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| -                                                                                                               |                                                                                                 | MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | MINUS 75µm                                                                                                              |                                                                                                                                                                                                                                                                              |
| SAMPLE                                                                                                          | THICKNESS                                                                                       | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN-SITU                                                                                                                     | (No. 200) SIEVE                                                                                                         | PLASTICITY                                                                                                                                                                                                                                                                   |
| ID                                                                                                              | mm [in.]                                                                                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CBR                                                                                                                         | (110: 200) 31212                                                                                                        | INDEX                                                                                                                                                                                                                                                                        |
| <br>54-84-1                                                                                                     | <u> </u>                                                                                        | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                          | 11.0                                                                                                                    |                                                                                                                                                                                                                                                                              |
| 54-84-2                                                                                                         |                                                                                                 | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                          | 11.0                                                                                                                    |                                                                                                                                                                                                                                                                              |
| 54-84-2<br>54-84-3                                                                                              |                                                                                                 | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27<br>25                                                                                                                    | 9.3                                                                                                                     |                                                                                                                                                                                                                                                                              |
| 54-86-1                                                                                                         | 150 10 001                                                                                      | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-86-2                                                                                                         | 150 [6.00]                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             | 11.5                                                                                                                    |                                                                                                                                                                                                                                                                              |
|                                                                                                                 | 163 [6.50]                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                          | 11.1                                                                                                                    |                                                                                                                                                                                                                                                                              |
| 64-86-3<br>AVE DAGE                                                                                             | 156 [6.25]                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19<br>20                                                                                                                    | 10.0                                                                                                                    |                                                                                                                                                                                                                                                                              |
| AVERAGE                                                                                                         | 156 [6.25]                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>4v</u>                                                                                                                   | 10.6                                                                                                                    | ····=                                                                                                                                                                                                                                                                        |
| 1                                                                                                               | NISTLIBBED SUBGR                                                                                | ADE SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 | MOISTURE                                                                                        | <u>Aladan de Lin</u> d fi te landa de <sub>Lind</sub> de la constante de |                                                                                                                             | <i>a</i>                                                                                                                |                                                                                                                                                                                                                                                                              |
|                                                                                                                 | CONTENT                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| SAMPLE                                                                                                          | BELOW DGA                                                                                       | IN-SITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| ID                                                                                                              | (%)                                                                                             | CBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| <u>10</u>                                                                                                       | 21.1                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>.</u>                                                                                                                    | <u></u>                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                     |
| 54-84-2                                                                                                         | 18.8                                                                                            | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-84-3                                                                                                         | 27.7                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 54-86-1                                                                                                         |                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 | 24.0<br>30.1                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| V4 00 0                                                                                                         | 240-1                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 |                                                                                                 | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| \$4-86-3                                                                                                        | 26.9                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                 |                                                                                                 | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                           | <u> </u>                                                                                                                |                                                                                                                                                                                                                                                                              |
| 4-86-3<br>AVERAGE                                                                                               | 26.9<br>24.8                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 64-86-3<br>AVERAGE                                                                                              | 26.9                                                                                            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UNCONFINED                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 04-86-3<br>AVERAGE                                                                                              | 26.9<br>24.8                                                                                    | 2<br>AMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UNCONFINED<br>COMPRESSIVE                                                                                                   | •<br>WET                                                                                                                |                                                                                                                                                                                                                                                                              |
| 4-86-3<br><u>AVERAGE</u>                                                                                        | 26.9<br>24.8<br>SUBGRADE TURE SA                                                                | 2<br>AMPLES<br>MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPRESSIVE                                                                                                                 | WET<br>DENSITY                                                                                                          | ATTERBURG LIMITS                                                                                                                                                                                                                                                             |
| 4-86-3<br><u>AVERAGE</u><br>SAMPLE                                                                              | 26.9<br>24.8<br>SUBGRADE TUBE SA<br>DEPTH                                                       | 2<br>MPLES<br>MOISTURE<br>CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPRESSIVE<br>STRENGTH                                                                                                     | DENSITY                                                                                                                 | ATTERBURG LIMITS                                                                                                                                                                                                                                                             |
| 34-86-3<br>AVERAGE<br>S<br>SAMPLE<br>ID                                                                         | 26.9<br>24.8<br>SUBGRADE TUBE SA<br>DEPTH<br>mm_[in.]                                           | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMPRESSIVE<br>STRENGTH<br>kPa [psi]                                                                                        | DENSITY<br>kg/m³ [pcf]                                                                                                  | LL PL PI CLASS                                                                                                                                                                                                                                                               |
| 34-86-3<br><u>AVERAGE</u><br>SAMPLE<br>ID<br>34-84-1                                                            | 26.9<br>24.8<br>SUBGRADE TUBE SA<br>DEPTH<br>mm_[in.]<br>50-175 [2-7]                           | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]                                                                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]                                                                     | LL PL PI CLASS<br>41 23 18 CL                                                                                                                                                                                                                                                |
| 34-86-3<br><u>AVERAGE</u><br>SAMPLE<br>ID<br>34-84-1<br>14-84-2                                                 | 26.9<br>24.8<br>DEPTH<br>(in.]<br>50-175 [2-7]<br>0-175 [0-7]                                   | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]<br>432.3 [62.7]                                                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]<br>2,170 [135.5]                                                    | LL PL PI CLASS                                                                                                                                                                                                                                                               |
| 34-86-3<br><u>AVERAGE</u><br>SAMPLE<br>ID<br>4-84-1<br>4-84-2<br>4-84-2                                         | 26.9<br>24.8<br>SUBGRADE TUBE SA<br>DEPTH<br>mm_[in.]<br>50-175 [2-7]                           | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]                                                                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]                                                                     | LL PL PI CLASS<br>41 23 18 CL<br>40 22 18 CL                                                                                                                                                                                                                                 |
| 34-86-3<br>AVERAGE<br>SAMPLE<br>ID<br>34-84-1<br>34-84-2<br>34-84-2<br>34-84-3                                  | 26.9<br>24.8<br>DEPTH<br>DEPTH<br>mm [in.]<br>50-175 [2-7]<br>0-175 [0-7]<br>175-350 [7-14]     | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3<br>19.6<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]<br>432.3 [62.7]<br>537.8 [78.0]                                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]<br>2,170 [135.5]<br>2,217 [138.4]                                   | LL         PL         PI         CLASS           41         23         18         CL           40         22         18         CL           46         22         24         CL                                                                                             |
| S4-86-3<br>AVERAGE<br>SAMPLE<br>ID<br>S4-84-1<br>S4-84-2<br>S4-84-2<br>S4-84-3<br>S4-84-3<br>S4-86-1            | 26.9<br>24.8<br>DEPTH<br>[in.]<br>50-175 [2-7]<br>0-175 [0-7]<br>175-350 [7-14]<br>25-200 [1-8] | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3<br>19.6<br>20.4<br>27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]<br>432.3 [62.7]<br>537.8 [78.0]<br>108.2 [15.6]                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]<br>2,170 [135.5]<br>2,217 [138.4]<br>2,094 [130.7]                  | LL         PL         PI         CLASS           41         23         18         CL           40         22         18         CL           46         22         24         CL           52         24         28         CL                                               |
| S4-86-3<br>AVERAGE<br>SAMPLE<br>ID<br>34-84-1<br>34-84-2<br>34-84-2<br>34-84-3<br>34-86-1<br>34-86-1<br>34-86-2 | 26.9<br>24.8<br>DEPTH<br>                                                                       | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3<br>19.6<br>20.4<br>27.2<br>20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]<br>432.3 [62.7]<br>537.8 [78.0]<br>108.2 [15.6]<br>121.3 [17.6] | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]<br>2,170 [135.5]<br>2,217 [138.4]<br>2,094 [130.7]<br>2,190 [136.7] | LL         PL         PI         CLASS           41         23         18         CL           40         22         18         CL           46         22         24         CL           52         24         28         CL           38         20         18         CL |
| SAMPLE                                                                                                          | 26.9<br>24.8<br>DEPTH<br>[in.]<br>50-175 [2-7]<br>0-175 [0-7]<br>175-350 [7-14]<br>25-200 [1-8] | 2<br>MPLES<br>MOISTURE<br>CONTENT<br>(%)<br>24.3<br>19.6<br>20.4<br>27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMPRESSIVE<br>STRENGTH<br><u>kPa [psi]</u><br>213.0 [30.9]<br>432.3 [62.7]<br>537.8 [78.0]<br>108.2 [15.6]                 | DENSITY<br>kg/m <sup>3</sup> [pcf]<br>2,062 [128.7]<br>2,170 [135.5]<br>2,217 [138.4]<br>2,094 [130.7]                  | LL         PL         PI         CLASS           41         23         18         CL           40         22         18         CL           46         22         24         CL           52         24         28         CL                                               |

1 <del>1</del> 1 1

|                    | PORTLAND CEMEN                   | CONCRETE CORES |                                                                                                                 | uputat                                |            |              |           |      |
|--------------------|----------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|--------------|-----------|------|
|                    |                                  | COMPRESSIVE    | MODULUS OF                                                                                                      |                                       |            |              |           |      |
| SAMPLE             | THICKNESS                        | STRENGTH       | ELASTICITY                                                                                                      |                                       |            |              |           |      |
| <u>ID</u>          | [in.]                            | MPa [psi]      | GPa [psi x 106]                                                                                                 |                                       |            |              |           |      |
| AP-19-1            | 225 [9.00]                       |                |                                                                                                                 |                                       | 1          | 1            |           |      |
| AP-19-2            | 225 [9.00]                       | 40.7 [5,900]   | 26.5 [3.85]                                                                                                     |                                       |            |              |           |      |
| AP-19-3            | 225 [9.00]                       | 35.0 [5,080]   |                                                                                                                 |                                       |            |              |           |      |
| AP-21-1            | 225 [9.00]                       |                |                                                                                                                 |                                       |            |              |           |      |
| AP-21-2            | 225 [9.00]                       | 45.0 [6,530]   | 24.8 [3.60]                                                                                                     |                                       |            |              |           |      |
| AP-21-3            | 225 [9.00]                       | 37.6 [5,460]   | 25.9 [3.75]                                                                                                     |                                       |            |              |           |      |
| AVERAGE            | 225 [9.00]                       | 39.6 [5,740]   | 25.7 [3.73]                                                                                                     |                                       |            |              |           |      |
|                    |                                  | 0010 [01.10]   | <u></u>                                                                                                         |                                       |            |              |           |      |
| •                  | DENSE GRADED AG                  |                | ann an ait a mar an ait a mar a da aite an ait a tha aite a da aite a d |                                       |            |              |           |      |
| A 1                |                                  | MOISTURE       | IN-SITU                                                                                                         | MINUS 75//m                           |            |              |           |      |
| SAMPLE             | THICKNESS                        | CONTENT        | CBR                                                                                                             | (No. 200) SIEVE                       | P          | LASTIC       |           |      |
| ID                 | mm_[in.]                         | . (%)          | · · · · · · · · · · · · · · · · · · ·                                                                           | (%)                                   |            | INDEX        |           |      |
| \P-19-1            | 100 [4.00]                       | 4.9            | 34                                                                                                              | 17.2                                  |            |              |           |      |
| \P-19-2            | 100 [4.00]                       | 5.5            | 18                                                                                                              | 18.9                                  |            | NP           |           |      |
| P-19-3             | 100 [4.00]                       | 5.7            | 14                                                                                                              | 17.2                                  |            | NP           |           |      |
| P-21-1             | 94 [3.75]                        | 6.8            | 9.                                                                                                              | 17.0                                  |            |              |           |      |
| P-21-2             | 100 [4.00]                       | 6.1            | 12                                                                                                              | 14.8                                  |            | NP           |           |      |
| P-21-3             | 100 [4.00]                       | 6.0            | 10                                                                                                              | 17.0                                  |            | NP           |           |      |
| AVERAGE            | 99 [3.96]                        | 5.8            | 16                                                                                                              | 17.0                                  |            |              |           |      |
| SAMPLE             | MOISTURE<br>CONTENT<br>BELOW DGA | IN-SITU<br>CBR |                                                                                                                 |                                       |            |              |           | -    |
| <u>ID</u>          | (%)                              |                |                                                                                                                 | ·                                     |            |              |           |      |
| .P- <b>19</b> -1   | 10,0                             | 15             |                                                                                                                 |                                       |            |              |           |      |
| P-19-2             | 13.2                             | · 11           |                                                                                                                 |                                       |            |              |           |      |
| P-19-3             | 15.8                             | 6              |                                                                                                                 |                                       |            |              |           |      |
| P-21-1             | 17.4                             | 8              |                                                                                                                 |                                       |            |              |           | -    |
| P-21-2             | 13.3                             | 5              |                                                                                                                 | -                                     |            |              |           |      |
| P-21-3             | 17.1                             | 6              | •                                                                                                               |                                       |            |              |           |      |
| AVERAGE            | 14.5                             | 9              | ·                                                                                                               | · · · · · · · · · · · · · · · · · · · |            | . • <u>.</u> |           |      |
|                    | URGRADE TURE SA                  | MPLES          | · .                                                                                                             | _                                     |            |              |           |      |
| -                  |                                  |                | UNCONFINED                                                                                                      |                                       |            |              |           |      |
|                    |                                  | MOISTURE       | COMPRESSIVE                                                                                                     | WET                                   |            |              |           |      |
| SAMPLE             | DEPTH                            | CONTENT        | STRENGTH                                                                                                        | DENSITY                               |            | ATTER        |           |      |
| <u>ID</u>          | <u>mm [in.]</u>                  | (%)            | <u>kPa [psi]</u>                                                                                                | kg/m³ [pcf]                           | <u> </u> L | <u> </u>     | <u>PI</u> | CLAS |
| <sup>5</sup> -19-1 | 0-175 [0-7]                      | 8.4            |                                                                                                                 |                                       |            |              | NP        | SM   |
| <sup>5</sup> -19-2 | 0-175 [0-7]                      | 9.6            |                                                                                                                 |                                       | 19         | 15           | 4         | CL   |
| <sup>D</sup> -19-3 | 0-175 [0-7]                      | 18.1           | 153.1 [22.2]                                                                                                    | 2,084 [130.1]                         | 35         | 21           | 14        | CL   |
| D-19-3             | 175-325 [7-13]                   | 16.5           | 217.2 [31.5]                                                                                                    | 2,081 [129.9]                         |            |              |           |      |
| <sup>-</sup> -21-1 | 0-175 [0-7]                      | 14.2           | 319.9 [46.4]                                                                                                    | 2,204 [137.6]                         | 27         | 20           | 7         | ML-C |
| D-21-1             | 175-325 [7-13]                   | 15.4           | 329.6 [47.8]                                                                                                    | 2,177 [135.9]                         |            |              |           |      |
| P-21-1             | 325-500 [13-20]                  | 18.7           | 201.3 [29.2]                                                                                                    | 2,177 [135.9]                         |            |              |           |      |
| P-21-2             | 0-7                              | 14.2           | 345.1 [50.1]                                                                                                    | 2,227 [139.0]                         | 28         | 20           | 8         | CL   |
| P-21-2             | 7-13                             | 13.2           | 244.8 [35.5]                                                                                                    | 2,283 [142.5]                         |            |              | -         |      |
|                    | 0-7                              | 15.5           | 299.9 [43.5]                                                                                                    | 2,214 [138.2]                         | 30         | 19           | 11        | CL   |
| 2.21.3             |                                  |                |                                                                                                                 |                                       |            |              |           |      |
| 2-21-3<br>2-21-3   | 7-13                             | 13.3           | 200.0 [40.0]                                                                                                    |                                       | 00         |              |           |      |

e se de la C

| -         | PORTLAND CEMEN  | T CONCRETE CORES        | -^^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   |                                       |                  |
|-----------|-----------------|-------------------------|------------------------------------------|---------------------------------------|------------------|
| SAMPLE    | THICKNESS       | COMPRESSIVE<br>STRENGTH | MODULUS OF<br>ELASTICITY                 |                                       |                  |
| ID        | mm_[in.]        | MPa [psi]               | GPa [psi x 10 <sup>6</sup> ]             |                                       |                  |
| 119-27-1  | 219 [8.75]      | -<br>-                  | <u> </u>                                 | · · · · · · · · · · · · · · · · · · · |                  |
| 19-27-2   | 250 [10.00]     | 43.9 [6,360]            |                                          |                                       |                  |
| 19-27-3   | 238 [9.50]      | 37.6 [5,460]            | 29.0 [4.20]                              |                                       |                  |
| 19-28-1   | 225 [9.00]      | 48.1 [6,980]            | 27.2 [3.95]                              |                                       | ·                |
| 19-28-2   | 213 [9.25]      | 39.7 [5,760]            | 27.6 [4.00]                              |                                       |                  |
| 19-28-3   | 219 [8.75]      |                         | [ /··••]                                 |                                       |                  |
| AVERAGE   | 230 [9.21]      | 42.3 [6,140]            | 27.9 [4.05]                              |                                       |                  |
|           |                 |                         |                                          |                                       |                  |
| L.        | DENSE GRADED AG |                         | abaanna ayaa ayaa ayaa ayaa ayaa ayaa ay |                                       |                  |
|           |                 | MOISTURE                | IN-SITU                                  | MINUS 75µm                            |                  |
| SAMPLE    | THICKNESS       | CONTENT                 | CBR                                      | (No. 200) SIEVE                       | PLASTICITY       |
| <u>ID</u> | mm [in.]        | (%)                     |                                          | (%)                                   |                  |
| 19-27-1   | 113 [4.50]      | 8.2                     | 13                                       | 20.5                                  |                  |
| 19-27-2   |                 | 7.8                     | 33                                       | 17.9                                  |                  |
| 19-27-3   |                 | 4.3                     | 18                                       | 14.2                                  | 7.5              |
| 19-28-1   | 81 [3.25]       | 3.4                     | 48                                       | 14.4                                  |                  |
| 19-28-2   | 113 [4.50]      | 4.8                     | 16                                       | 17.5                                  | NP               |
| 19-28-3   | 81 [3.25]       | 5.2                     | 13                                       | 16.6                                  |                  |
| AVERAGE   | 97 [3,88]       | 5,6                     | 24                                       | 16,9                                  | <u> </u>         |
| Г         | NISTURBED SUBGR | ADE SAMPLES             |                                          |                                       |                  |
|           | MOISTURE        |                         |                                          |                                       |                  |
|           | CONTENT         |                         |                                          |                                       |                  |
| SAMPLE    | BELOW DGA       | IN-SITU                 |                                          |                                       |                  |
| ID        | (%)             | CBR                     |                                          |                                       |                  |
| 19-27-1   | 5.8             | 30                      |                                          |                                       |                  |
| 19-27-2   |                 |                         |                                          |                                       |                  |
| 19-27-3   |                 | ,                       |                                          |                                       |                  |
| 19-28-1   | 6.2             |                         |                                          |                                       |                  |
| 19-28-2   | 8.1             | 7                       |                                          |                                       |                  |
| 19-28-3   | 12.1            | 1                       |                                          |                                       | · ·              |
| AVERAGE   | 8.1             | 13                      | -                                        | <u></u>                               |                  |
| 2         | URGRADE TURE SA | MPLES                   |                                          | -                                     |                  |
| -         |                 |                         |                                          |                                       |                  |
|           |                 |                         | UNCONFINED                               |                                       | -                |
|           |                 | MOISTURE                | COMPRESSIVE                              | WET                                   |                  |
| SAMPLE    | DEPTH           | CONTENT                 | STRENGTH                                 | DENSITY                               | ATTERBURG LIMITS |
| <u>ID</u> | mm [in.]        | (%)                     | kPa [psi]                                | kg/m <sup>3</sup> [pcf]               | LL_PL_PI_CLAS    |
| 19-28-3   | 0-175 [0-7]     | 9.8                     | · · ·                                    |                                       | 21 17 4 SM-SO    |

| I-64, SHELBY COU           | NTY                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
|----------------------------|-------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------|
|                            | PORTLAND CEMEN                | LCONGRETE CORES.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
|                            |                               | COMPRESSIVE                                              | MODULUS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                        |       |
| SAMPLE                     | THICKNESS                     | STRENGTH                                                 | ELASTICITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                        |       |
| ID                         | mm [in.]                      | MPa [psi]                                                | GPa [psi x 106]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 54-39-2                    | 256 [10.25]                   | 55.4 [8,030]                                             | 34.8 [5.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                        |       |
| 34-39-3                    | 250 [10.00]                   | 46.3 [6,720]                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 64-40-1                    | 250 [10.00]                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 34-40-2                    | 250 [10.00]                   | 42.9 [6,220]                                             | 27.9 [4.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                        |       |
| 64-40-3                    | 244 [9.75]                    | 39,1 [5,670]                                             | 31.0 [4.50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                        |       |
| AVERAGE                    |                               | 47.0 [6.810]                                             | 31.2 [4.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                        |       |
|                            | DENSE GRADED AG               | GREGATE BASE                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       |                                        |       |
|                            |                               | MOISTURE                                                 | Construction of the Construction of Constructi | MINUS 75µm                              |                                        |       |
| SAMPLE                     | THICKNESS                     | CONTENT                                                  | IN-SITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (No. 200) SIEVE                         | PLASTICITY                             |       |
| ID                         | (in.)                         | (%)                                                      | CBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (************************************** |                                        |       |
| 4-39-2                     | 150 [6.00]                    | 6.1                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0                                     |                                        |       |
| 34-39-3                    | 100 [0100]                    | 5.1                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.1                                    |                                        |       |
| 54-40-1                    | 138 [5.50]                    | 6.0                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.9                                    |                                        |       |
| 64-40-2                    | 156 [6.25]                    | 7.0                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.7                                     |                                        |       |
| 4-40-3                     | 156 [6,25]                    | 6.9                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.1                                    |                                        |       |
| AVERAGE                    |                               | 6.2                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,4                                    | <u></u>                                |       |
|                            | DISTUBBED SUBGR               |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
|                            | MOISTURE                      | ale di anta da la da | anna an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                        |       |
|                            | CONTENT                       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| SAMPLE                     | BELOW DGA                     | IN-SITU                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
|                            | (%)                           | CBR                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 4-39-2                     | 24.3                          | 3                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | ······································ | ·     |
| 4-39-3                     | E-1.0                         | Ū                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 4-40-1                     | 18.8                          | 3                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 4-40-2                     | 25.2                          | 2                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 4-40-2<br>4-40-3           | LV.L                          | E.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| AVERAGE                    | 22.8                          | 3                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·                               |                                        |       |
|                            | SURGRADE TUBE SA              | MPLES.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       |                                        |       |
|                            |                               |                                                          | UNCONFINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                       |                                        |       |
|                            |                               | MOISTURE                                                 | COMPRESSIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WET                                     |                                        |       |
| SAMPLE                     | DEPTH                         | CONTENT                                                  | STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DENSITY                                 | ATTERBURG LIN                          | AITS  |
| ID                         |                               | (%)                                                      | kPa [psi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg/m <sup>3</sup> [pcf]                 | LL PL PI                               | CLASS |
| 4-39-2                     | 0-175 [0-7]                   | 27.8                                                     | 107.6 [15.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,046 [127.7]                           | 63 25 38                               | СН    |
| 4-39-3                     | 0-175 [0-7]                   | 17.9                                                     | 320.6 [46.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,169 [135.4]                           | 29 21 8                                | CL    |
| 4-40-1                     | 0-150 [0-6]                   | 21.6                                                     | 125.5 [18.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,130 [133.0]                           | 42 21 21                               | CL    |
| 2                          | 150-325 [6-13]                | 22.2                                                     | 197.2 [28.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.134 [133.2]                           |                                        |       |
| 4-40-1                     |                               |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |       |
| 4-40-1<br>4-40-2           |                               | 26.2                                                     | 71.0 [10.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,058 [128.5]                           | 46 22 24                               | CL    |
| 4-40-1<br>4-40-2<br>4-40-2 | 0-150 [0-6]<br>150-325 [6-13] | 26.2<br>24.0                                             | 71.0 [10.3]<br>169.6 [24.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,058 [128.5]<br>2,126 [132.7]          | 46 22 24                               | CL    |

1917 A.S. 

| 1-75, LAUREL COUN | ίΤγ                                                                                                             |                                         | - <b>,</b>                  |                         |    | <u> </u>  |        |       |
|-------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|-------------------------|----|-----------|--------|-------|
|                   |                                                                                                                 |                                         |                             |                         |    |           |        |       |
|                   | utersjonislaaterbetering betering te state te state of the object te state of the state termination of the stat | COMPRESSIVE                             | MODULUS OF                  |                         |    |           |        |       |
| SAMPLE            | THICKNESS                                                                                                       | STRENGTH                                | ELASTICITY                  |                         |    |           |        |       |
| ΠD                |                                                                                                                 | MPa psi]                                | GPa psi x 10 <sup>6</sup> ] |                         |    |           |        |       |
| 75-42-1           | 250 [10.00]                                                                                                     | 41.6 [6,040]                            | 31.4 [4.55]                 |                         |    |           |        |       |
| 75-42-2           | 250 [10.00]                                                                                                     | 43.0 [6,230]                            | 34.8 5.05                   |                         |    |           |        |       |
| 75-42-3           | 250 [10.00]                                                                                                     |                                         |                             |                         |    |           |        |       |
| 75-44-1           | 250 [10.00]                                                                                                     | 36.7 [5,330]                            | 27.2 [3.95]                 |                         |    |           |        |       |
| /5-44-2           | 250 [10.00]                                                                                                     | • • •                                   |                             |                         |    |           |        |       |
| 75-44-3           | 250 [10.00]                                                                                                     | 1                                       |                             | •                       |    |           |        |       |
| 75-44-4           | 250 [10.00]                                                                                                     | 38,6 [5,600]                            |                             |                         |    |           |        |       |
| AVERAGE           | 250 [10.00]                                                                                                     | 40.0 [5,800]                            | 31,2 [4,52]                 |                         |    |           |        |       |
|                   | DENSE GRADED AG                                                                                                 | GREGATE RASE                            |                             |                         |    |           |        |       |
|                   |                                                                                                                 | MOISTURE                                |                             | MINUS 75µm              |    |           |        |       |
| SAMPLE            | THICKNESS                                                                                                       | CONTENT                                 | IN-SITU                     | (No. 200) SIEVE         | q  | LASTIC    | ITY    |       |
|                   |                                                                                                                 | (%)                                     | CBR                         | (NO. 200) SIEVE         | ſ  | INDEX     |        |       |
| /5-42-1           | 138 [5.50]                                                                                                      | <u>(78)</u> 6.4                         | 16                          | 12.0                    |    |           | ·      |       |
| '5-42-2           | 138 [5.50]                                                                                                      | 5.7                                     | 16                          | 10.7                    |    |           |        |       |
| 5-42-3            | 125 [5.00]                                                                                                      | 5.4                                     | 8                           | 10.7                    |    |           |        |       |
| '5-44-1           | 138 [5.50]                                                                                                      | 5.6                                     | 9                           | 9.2                     |    |           |        |       |
| 5-44-2            | 131 [5.25]                                                                                                      | 7.4                                     | 14                          | 6.0                     |    |           |        |       |
| 5-44-3            | 138 [5.50]                                                                                                      | 5.8                                     | 6                           | 6.5                     |    |           |        |       |
| AVERAGE           | 134 [5.38]                                                                                                      | 6.1                                     | 12                          | 9.2                     |    |           |        |       |
|                   |                                                                                                                 |                                         |                             |                         |    |           |        |       |
| •                 | DISTUBBED SUBGB/<br>MOISTURE                                                                                    | ADE SAMPLES                             |                             |                         |    |           |        |       |
|                   | CONTENT                                                                                                         |                                         |                             |                         |    |           |        |       |
| SAMPLE            | BELOW DGA                                                                                                       | IN-SITU                                 |                             |                         |    |           |        |       |
|                   | (%)                                                                                                             | CBR                                     |                             |                         |    |           |        |       |
| 5-42-1            | 15.5                                                                                                            | 4                                       |                             |                         |    | · · · · · |        |       |
| 5-42-1<br>5-42-2  | 14.5                                                                                                            | 4                                       |                             |                         |    |           |        |       |
| 5-42-2<br>5-42-3  | 16.3                                                                                                            | 2                                       |                             |                         |    |           |        |       |
| 5-42-3<br>5-44-1  | 16.1                                                                                                            | 4                                       |                             |                         |    |           |        |       |
| 5-44-1<br>5-44-2  | 8.7 -                                                                                                           | 4<br>5                                  |                             |                         |    |           |        |       |
| 5-44-2<br>5-44-3  | 21.6                                                                                                            | 5                                       | н<br>Тарана (1997)          |                         |    |           |        |       |
| <u> </u>          | <u> </u>                                                                                                        | 3                                       |                             |                         |    | . <b></b> |        |       |
|                   | SURGRADE TURE SA                                                                                                |                                         |                             |                         |    |           |        |       |
|                   | <u></u>                                                                                                         | 999) da a | UNCONFINED                  |                         |    |           |        |       |
|                   |                                                                                                                 | MOISTURE                                | COMPRESSIVE                 | WET                     |    |           |        |       |
| SAMPLE            | DEPTH                                                                                                           | CONTENT                                 | STRENGTH                    | DENSITY                 |    | ATTER     | BURG L | IMITS |
| ID                | mm_[in.]                                                                                                        | (%)                                     | kPa [psi]                   | kg/m <sup>3</sup> [pcf] |    | PL        | PI     | CLAS  |
| 5-42-1            | 0-175 [0-7]                                                                                                     | 13.9                                    |                             |                         | 30 | 20        | 10     | GC    |
| 5-42-1            | 175-350 [7-14]                                                                                                  | 11.5                                    | 105.5 [15.3]                | 2,361 [147.4]           |    |           |        |       |
| 5-42-2            | 0-175 [0-7]                                                                                                     | 13.1                                    | 240.6 [34.9]                | 2,329 [145.4]           | 33 | 21        | 12     | GC    |
| 5-42-2            | 175-275 [7-11]                                                                                                  | 12.0                                    |                             | · ·                     |    |           |        |       |
| 5-42-3            | 0-175 [0-7]                                                                                                     | 14.9                                    |                             |                         | 32 | 21        | 11     | CL    |
| 5-42-3            | 175-350 [7-14]                                                                                                  | 16.0                                    | 224.1 [32.5]                | 2,219 [138.5]           |    |           |        |       |
| 5-44-1            | 25-150 [1-6]                                                                                                    | 12.8                                    |                             |                         | 24 | 15        | 9      | SC    |
| 5-44-2            |                                                                                                                 | SAMPLE                                  |                             |                         | 19 | 14        | 5      | SM-SC |
| 5-44-3            | 25-175 [1-7]                                                                                                    | 20.6                                    | 73.1 [10.6]                 | 2,118 [132.2]           | 31 | 18        | 13     | CL    |
|                   |                                                                                                                 | 14,4                                    | 160.6 [23.3]                | 2,257 [140.9]           | 28 | 18        | 10     | 02    |

÷.,

- 17

· ...

|          | PORTLAND CEMEN   | LCONCRETE CORES                       |                              | 2008                                   |       |        |              |        |
|----------|------------------|---------------------------------------|------------------------------|----------------------------------------|-------|--------|--------------|--------|
|          |                  | COMPRESSIVE                           | MODULUS OF                   |                                        |       |        |              |        |
| SAMPLE   | THICKNESS        | STRENGTH                              | ELASTICITY                   |                                        |       |        |              |        |
| ID       | mm_[in.]         | MPa [psi]                             | GPa [psi x 10 <sup>6</sup> ] |                                        |       |        |              |        |
| WKP-31-1 | 231 [9.25]       | · · · · · · · · · · · · · · · · · · · |                              | ······································ |       |        |              |        |
| WKP-31-2 | 225 [9,00]       | 48.3 [7,010]                          | 34.5 [5.00]                  |                                        |       |        |              |        |
| NKP-31-3 | 231 [9.25]       | 43.4 [6,290]                          |                              |                                        |       |        |              |        |
| NKP-34-1 | 231 [9.25]       | 51.8 [7,520]                          | 31.0 [4.50]                  |                                        |       |        | ,            |        |
| VKP-34-2 | 231 [9.25]       | 51.2 [7,430]                          | 31.2 [4.52]                  |                                        |       |        |              |        |
| VKP-34-3 | 231 [9.25]       | 0112 (11100)                          |                              |                                        |       |        |              |        |
| AVERAGE  | 230 [9.21]       | 48.7 [7.060]                          | 32.2 [4.67]                  |                                        |       |        |              |        |
| AVENAGE  | 200 [9.21]       | 40.7 [7.000]                          | <u> </u>                     |                                        |       |        |              |        |
|          | DENSE GRADED AG  | GREGATE BASE                          |                              |                                        |       |        |              |        |
|          |                  | MOISTURE                              |                              | MINUS 75µm                             |       |        |              |        |
| SAMPLE   | THICKNESS        | CONTENT                               | IN-SITU                      | (No. 200) SIEVE                        | P     | LASTIC | ITY          |        |
| ID       |                  | (%)                                   | CBR                          | (%)                                    | • • • | INDEX  |              |        |
| VKP-31-1 | 100 [4.00]       | 8.0                                   | 10                           | 12.7                                   |       | NP     |              |        |
| /KP-31-2 | 119 [4.75]       | 6.0                                   | 11                           | 12.0                                   |       |        |              |        |
| /KP-31-3 | 106 [4.25]       | 6.6                                   | 9                            | 14.5                                   |       | NP     |              |        |
| /KP-34-1 | 100 [1:20]       | 9.1                                   | 5                            | 12.9                                   |       | NP     |              |        |
| /KP-34-2 | 94 [3.75]        | 10.1                                  | 8                            | 13.4                                   |       | NP     |              |        |
| /KP-34-3 | 119 [4.75]       | 7.3                                   | 8                            | 10.7                                   |       | NP     |              |        |
| AVERAGE  | 108 [4.30]       | 7.9                                   | G C                          | 10.7                                   |       | 1.11   |              |        |
|          |                  |                                       | v                            |                                        |       |        |              | ······ |
|          | DISTUBBED SUBGB  | ADE SAMPLES                           |                              | 660z                                   |       |        |              |        |
| •        | MOISTURE         |                                       |                              |                                        |       |        |              |        |
|          | CONTENT          |                                       |                              |                                        |       |        |              |        |
| SAMPLE   | BELOW DGA        | IN-SITU<br>CBR                        |                              |                                        |       |        |              |        |
| ID       | (%)              |                                       |                              |                                        |       |        |              |        |
| KP-31-1  | 23.5             | 5                                     |                              |                                        |       |        |              |        |
| /KP-31-2 | 19.3             | 3                                     |                              |                                        |       |        |              |        |
| /KP-31-3 | 19.1             | 2                                     |                              |                                        |       |        |              |        |
| /KP-34-1 | 21.7             | 3                                     |                              |                                        |       |        |              |        |
| KP-34-2  | 27.5             | 5                                     |                              |                                        |       |        |              |        |
| KP-34-3  | 15.7             | 5                                     |                              |                                        |       |        |              |        |
| AVERAGE  | 21.1             | 4                                     |                              |                                        |       |        | ,            |        |
|          | £a].t            | 1                                     | <u></u>                      |                                        |       |        |              | ······ |
| 1        | SURGRADE TURE SA | MPLES                                 |                              |                                        |       |        |              |        |
|          |                  |                                       | UNCONFINED                   |                                        |       |        |              |        |
|          |                  | MOISTURE                              | COMPRESSIVE                  | WET                                    |       |        |              |        |
| SAMPLE   | DEPTH            | CONTENT                               | STRENGTH                     | DENSITY                                |       | ATTER  | BURG L       | IMITS  |
| ID.      |                  | (%)                                   | kPa [psi]                    | kg/m <sup>3</sup> [pcf]                |       | PL.    | PI           | CLAS   |
| KP-31-1  | 0-175 [0-7]      | 18.2                                  | 197.2 [28.6]                 | 2,127 [135.3]                          | 30    | 17     | 13           | CL     |
| KP-31-1  | 175-300 [7-12]   | 15.9                                  | 215.1 [31.2]                 | 2,169 [135.4]                          | 2 -   | -      |              |        |
| KP-31-2  | 0-175 [0-7]      | 20.7                                  | 112.4 [16.3]                 | 2,138 [133.5]                          | 30    | 20     | 10           | CL     |
| KP-31-2  | 175-325 [7-13]   | 16.6                                  | 59.3 [8.6]                   | 2,177 [135.9]                          | 50    |        |              | 95     |
| KP-31-2  | 325-500 [13-20]  | 15.1                                  | 82.7 [12.0]                  | 2,065 [128.9]                          |       |        |              |        |
| KP-31-3  | 0-175 [0-7]      | 13.3                                  | 93.8 [13.6]                  | 2,185 [136.4]                          | 28    | 16     | 12           | SC     |
| KP-31-3  | 175-325 [7-13]   | 18.2                                  | 148.9 [21.6]                 | 2,172 [135.6]                          | 20    | 19     | • <i>f</i> ~ | 50     |
|          | • •              |                                       |                              |                                        |       |        |              |        |
| KP-31-3  | 325-475 [13-19]  | 16.3                                  | 249.6 [36.2]                 | 2,278 [142.2]                          | 04    | 04     | 10           | ~~     |
| KP-34-1  | 0-175 [0-7]      | 15.4                                  | 169.6 [24.6]                 | 2,279 [142.3]                          | 34    | 21     | 13<br>10     | GC     |
| KP-34-2  | 0-175 [0-7]      | 12.1                                  | 178.6 [25.9]                 | 2,223 [138.8]                          | 31    | 19     | 12           | CL     |
| KP-34-2  | 175-350 [7-14]   | 16.4                                  | 355.1 [51.5]                 | 2,106 [131.5]                          |       |        |              |        |
| KP-34-2  | 350-500 [14-20]  | 21.9                                  | 119.3 [17.3]                 | 2,033 [126.9]                          | _     |        | -            |        |
| KP-34-3  | 0-175 [0-7]      | 17.8                                  | 36.5 [5.3]                   |                                        | 27    | 21     | 6            | ML-CL  |
| AVERAGE  |                  |                                       | 155.1 [22.5]                 | 2,166 [135,2]                          | 30    | 19     | 11           |        |

. Alexandria

|                      | PORTLAND CEMEN              | L CONCRETE CORES |                                                                                                                      |                         |                 |                 |                 |      |
|----------------------|-----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------|-----------------|------|
|                      |                             | COMPRESSIVE      | MODULUS OF                                                                                                           |                         |                 |                 |                 |      |
| SAMPLE               | THICKNESS                   | STRENGTH         | ELASTICITY                                                                                                           |                         |                 |                 |                 |      |
| ID                   | [in.]                       | MPa [psi]        | _GPa [psi x 106]                                                                                                     | ·                       |                 |                 |                 |      |
| PRP-25-1             | 225 [9.00]                  | 49.5 [7,180]     | 28.6 [4.15]                                                                                                          |                         |                 |                 |                 |      |
| PRP-25-2             | 231 [9.25]                  | [.,]             |                                                                                                                      |                         |                 |                 |                 |      |
| PRP-25-3             | 231 [9.25]                  | 52.8 [7,660]     | 32.1 [4.65]                                                                                                          |                         |                 |                 |                 |      |
| PRP-28-1             | 231 [9.25]                  | 51.9 [7,530]     | 30.0 [4,35]                                                                                                          |                         |                 |                 |                 |      |
| PRP-28-2             | 225 [9.00]                  | 40.6 [5,890]     | 0010 [1100]                                                                                                          |                         |                 |                 |                 |      |
| PRP-28-3             | 238 [9.50]                  | 1010 [0,000]     |                                                                                                                      |                         |                 |                 |                 |      |
| AVERAGE              | 230 [9,21]                  | 48.7 [7,060]     | 30.2 [4.38]                                                                                                          |                         |                 |                 |                 |      |
|                      |                             |                  |                                                                                                                      |                         |                 |                 |                 |      |
| •                    | DENSE GRADED AG             |                  |                                                                                                                      |                         |                 |                 |                 |      |
|                      |                             | MOISTURE         | IN-SITU                                                                                                              | MINUS 75µm              |                 |                 |                 |      |
| SAMPLE               | THICKNESS                   | CONTENT          | CBR                                                                                                                  | (No. 200) SIEVE         | F               | LASTIC          |                 |      |
| <u>ID</u>            | [in.]                       | (%)              |                                                                                                                      | (%)                     |                 | <u>INDE</u>     | (               |      |
| PRP-25-1             | 100 [4.00]                  | 4.5              | 7                                                                                                                    | 11.8                    |                 |                 |                 |      |
| PRP-25-2             | 94 [3.75]                   | 5.0              | 11                                                                                                                   | 13.4                    |                 |                 |                 |      |
| PRP-25-3             | 94 [3.75]                   | 3.2              | 13                                                                                                                   | 11.0                    |                 | NP              |                 |      |
| PRP-28-1             | 88 [3.50]                   | 、 5.1            | 9.                                                                                                                   | 10.6                    |                 | 2               |                 |      |
| PRP-28-2             | 81 [3.25]                   | 5.5              | 14                                                                                                                   | 12.6                    |                 | NP              |                 |      |
| PRP-28-3             | 75 [3.00]                   | 5.1              | 9                                                                                                                    | 14.7                    |                 | NP              |                 |      |
| AVERAGE              | 88 [3.54]                   | 4.7              | 11                                                                                                                   | 12.4                    |                 |                 |                 |      |
| SAMPLE<br>ID         | CONTENT<br>BELOW DGA<br>(%) | IN-SITU<br>CBR   |                                                                                                                      |                         |                 |                 |                 |      |
| <br>PRP-25-1         | 15.0                        | 1                |                                                                                                                      |                         |                 |                 |                 |      |
| PRP-25-2             | 15.0                        | 1                |                                                                                                                      |                         |                 |                 |                 |      |
| PRP-25-2<br>PRP-25-3 | 12.5                        | 4                |                                                                                                                      |                         |                 |                 |                 |      |
| PRP-28-1             |                             | 4                |                                                                                                                      |                         |                 |                 |                 |      |
|                      | 17.7<br>16.8                | 4.               | н.<br>По стало |                         |                 |                 |                 |      |
| PRP-28-2<br>PRP-28-3 |                             | 0                |                                                                                                                      |                         |                 |                 |                 |      |
| AVERAGE              | 11.8<br><u>14.</u> 8        | 6<br>4           |                                                                                                                      |                         |                 |                 |                 |      |
|                      |                             |                  |                                                                                                                      | · · ·                   |                 |                 |                 |      |
| <u>.</u>             | LIBGRADE TUBE SA            | MPLES            |                                                                                                                      | 544                     |                 |                 |                 |      |
|                      |                             | MOISTURE         | UNCONFINED<br>COMPRESSIVE                                                                                            | WET                     |                 |                 |                 |      |
|                      | הבטגו                       |                  |                                                                                                                      |                         |                 |                 | י המוופ         | міте |
| SAMPLE<br>ID         | DEPTH                       | CONTENT          | STRENGTH                                                                                                             | DENSITY                 |                 | ATTER           |                 |      |
| ID<br>RP-25-1        | <u>mm [in.]</u>             | (%)              | kPa [psi]                                                                                                            | kg/m <sup>3</sup> [pcf] | <u>LL</u><br>39 | <u>PL</u><br>17 | <u>Pl</u><br>22 | CLAS |
|                      | 0-175 [0-7]                 | 21.5             | 160.0 [23.2]                                                                                                         | 2,194 [137.0]           | 39              | F7              | 22              | CL   |
| RP-25-1              | 175-325 [7-13]              | 17.5             | 180.6 [26.2]<br>240.6 [34.9]                                                                                         | 2,164 [135.1]           | 00              | 18              | 44              | 0    |
| RP-25-2              | 100-275 [4-11]              | 14.9<br>10.5     |                                                                                                                      | 2.228 [139.1]           | 29              |                 | 11              | CL   |
| RP-25-3              | 0-175 [0-7]                 | 19.5             | 68.9 [10.0]                                                                                                          | 2,140 [133.6]           | 28              | 17              | 11              | CL   |
| RP-25-3              | 175-325 [7-13]              | 17.1             | 41.4 [6.0]                                                                                                           | 2,118 [132.2]           | -0              | 0.4             | 00              | ~    |
| RP-28-1              | 0-175 [0-7]                 | 21.4             | 164.8 [23.9]                                                                                                         | 2,139 [133.5]           | 50              | 24              | 26              | CL   |
| RP-28-1              | 175-325 [7-13]              | 24.3             | 281.3 [40.8]                                                                                                         | 2,223 [138.8]           | ~-              |                 |                 | ~.   |
| RP-28-2              | 0-175 [0-7]                 | 12.3             | 515.0 [74.7]                                                                                                         | 2,295 [143.3]           | 25              | 14              | 11              | CL   |
| RP-28-3              | 125-275 [5-11]              | 20.4             | 247.5 [35.9]                                                                                                         | 2,146 [134.0]           | 31              | 18              | 13              | SC   |
| AVERAGE              |                             | 18.8             | 211.0 [30.6]                                                                                                         | 2,183 [136.3]           | 34              | 18              | 16              |      |

|                      | POBLIAND CEMENI                       | CONCRETE CORES               | nyy amana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana |                                       |           |                    |         |         |
|----------------------|---------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|--------------------|---------|---------|
| SAMPLE               | THICKNESS                             | COMPRESSIVE<br>STRENGTH      | MODULUS OF<br>ELASTICITY                                                                                        |                                       |           |                    |         |         |
|                      | mm_[in,]                              | <u>MPa [psi]</u>             | <u>GPa [psi x 10<sup>6</sup>]</u>                                                                               |                                       |           |                    |         |         |
| PRP-47-1             | 225 [9.00]                            | 32.5 [4,710]                 | 29.6 [4.30]                                                                                                     |                                       |           |                    |         |         |
| PRP-47-2 -           | 225 [9.00]                            | 38.3 [5,550]                 | 27.6 [4.00]                                                                                                     |                                       |           |                    |         |         |
| PRP-47-3<br>PRP-50-1 | 231 [9.25]                            |                              |                                                                                                                 |                                       |           |                    |         |         |
| PRP-50-1             | 225 [9.00]<br>225 [9.00]              | 50.0 [7 570]                 | 26.9 [3.90]                                                                                                     |                                       |           |                    |         |         |
| PRP-50-2<br>PRP-50-3 | 225 [9.00]                            | 52.2 [7,570]<br>35.7 [5,180] | 20.9 [0.90]                                                                                                     |                                       |           |                    |         |         |
| AVERAGE              |                                       | 39.6 [5,750]                 | 28.1 [4.07]                                                                                                     |                                       |           |                    |         |         |
|                      | • •                                   | •                            |                                                                                                                 |                                       |           |                    |         |         |
|                      | DENSE GRADED AGO                      |                              |                                                                                                                 | MINUS 75µm                            |           |                    |         |         |
|                      | THOWNERS                              | MOISTURE                     | IN-SITU                                                                                                         |                                       |           | DLACTIC            | ITV     |         |
| SAMPLE               | THICKNESS                             | CONTENT                      | CBR                                                                                                             | (No. 200) SIEVE<br>(%)                |           | PLASTIC            |         |         |
| <u> </u>             | (n.)<br>106 [4.25]                    | <u>(%)</u><br>6.8            | 15                                                                                                              | (%)<br>11.2                           |           | <u>INDE</u> X<br>4 |         |         |
| RP-47-1<br>RP-47-2   | 100 [4.00]                            | 3.5                          | 10                                                                                                              | 12.5                                  |           | 4<br>NP            |         |         |
| RP-47-2<br>RP-47-3   | 94 [3.75]                             | 6.3                          | 11                                                                                                              | 9.8                                   |           | NP                 |         |         |
| RP-50-1              | 100 [4.00]                            | 4.3                          | 14                                                                                                              | 12.6                                  |           | NP                 |         |         |
| RP-50-1<br>RP-50-2   | 100 [4.00]                            | 4.3<br>6.0                   | · 8                                                                                                             | 14.2                                  |           | NF                 |         |         |
| RP-50-2              | 113 [4,50]                            | 7.1                          | 10                                                                                                              | 13.3                                  | •         |                    |         |         |
| AVERAGE              |                                       | 5.7 -                        | 10                                                                                                              | 12.3                                  |           |                    |         |         |
| <u></u>              | · · · · · · · · · · · · · · · · · · · | 0.7                          | · · · · · · · · · · · · · · · · · · ·                                                                           |                                       |           |                    |         |         |
|                      |                                       | NE SAMPLES                   | <u></u>                                                                                                         |                                       |           |                    |         |         |
| -                    | MOISTURE                              |                              |                                                                                                                 |                                       |           |                    |         |         |
|                      | CONTENT                               | IN-SITU                      |                                                                                                                 |                                       |           |                    |         |         |
| SAMPLE               | BELOW DGA                             | CBR                          |                                                                                                                 |                                       |           |                    |         |         |
| ID                   | (%)                                   |                              |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |           |                    |         |         |
| RP-47-1              | 10.9                                  | 3                            |                                                                                                                 |                                       |           |                    |         |         |
| RP-47-2              | 14.7                                  | 2                            |                                                                                                                 |                                       |           |                    |         |         |
| RP-47-3              | 20.8                                  | 4                            |                                                                                                                 |                                       |           |                    |         |         |
| RP-50-1              | 13.4                                  | 12                           |                                                                                                                 |                                       |           |                    |         |         |
| RP-50-2              | 14.4                                  | 8                            |                                                                                                                 |                                       |           |                    |         |         |
| RP-50-3              | 16.8                                  | 6                            |                                                                                                                 |                                       |           |                    |         |         |
| AVERAGE              | 15.2                                  | 6                            |                                                                                                                 |                                       | <b></b> . |                    |         |         |
|                      | SURGRADE TURE SA                      | MPLES                        | ana ana amin'ny sorana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fana  |                                       |           |                    |         |         |
|                      |                                       | ÷                            | UNCONFINED                                                                                                      |                                       |           |                    |         |         |
|                      |                                       | MOISTURE                     | COMPRESSIVE                                                                                                     | WET                                   |           |                    |         |         |
| SAMPLE               | DEPTH                                 | CONTENT                      | STRENGTH                                                                                                        | DENSITY                               |           |                    | BURG LI |         |
| ID                   |                                       | (%)                          | kPa [psi]                                                                                                       | kg/m <sup>3</sup> [pcf]               |           | <u>PL</u>          | PI      | CLAS    |
| RP-47-1              | 0-175 [0-7]                           | 20.7                         | 123.4 [17.9]                                                                                                    | 2,158 [134.7]                         | 35        | 19                 | 16      | CL      |
| RP-47-1              | 175-325 [7-13]                        | 18.6                         | 370.9 [53.8]                                                                                                    | 2,191 [136.8]                         |           |                    |         |         |
| RP-47-1              | 325-500 [13-20]                       | 16.6                         | 240.6 [34.9]                                                                                                    | 2,102 [131.2]                         | _         |                    | . '     | <i></i> |
| RP-47-2              | 0-175 [0-7]                           | 11.7                         | 173.7 [25.2]                                                                                                    | 2,273 [141.9]                         | 27        | 19                 | 8       | CL      |
| RP-47-3              | 0-175 [0-7]                           | 14.9                         | 144.1 [20.9]                                                                                                    | 2,185 [136.4]                         | 63        | 21                 | 42      | CH      |
| RP-47-3              | 175-325 [7-13]                        | 15.0                         | 142.0 [20.6]                                                                                                    | 2,236 [139.6]                         |           |                    |         | ~       |
| RP-50-1              | 0-175 [0-7]                           | 11.4                         | 362.0 [52.5]                                                                                                    | 2,225 [138.9]                         | 30        | 19                 | 11      | CL      |
| RP-50-1              | 175-325 [7-13]                        | 21.5                         | 162.7 [23.6]                                                                                                    | 2,081 [129.9]                         |           |                    |         | ~.      |
| RP-50-2              | 0-175 [0-7]                           | 18.2                         | 265.5 [38.5]                                                                                                    | 2,148 [134.1]                         | 29        | 19                 | 10      | CL      |
| RP-50-2              | 175-325 [7-13]                        | 17.6                         | 224.1 [32.5]                                                                                                    | 2,252 [140.6]                         | _         |                    |         |         |
| 3P-50-3              | 0-175 [0-7]                           | 13.2                         | 419.2 [60.8]                                                                                                    | 2,271 [141.8]                         | 30        | 18                 | 12      | CL      |
| RP-50-3              | 175-325 [7-13]                        | 13.2                         | 597.1 [86.6]                                                                                                    | 2,283 [142.5]                         |           |                    |         |         |
| RP-50-3              | 325-500 [13-20]                       | 14.3                         | 444.0 [64.4]                                                                                                    | 2,308 [144.1]                         |           |                    |         |         |
| AVERAGE              |                                       | 15.9                         | 282.0 [40.9]                                                                                                    | 2,209 [137.9]                         | 36        | 19                 | .17     |         |

-1 x 1

2.5

|                                          |                                                  |                      |                              |                                       | ,        |        |           |       |
|------------------------------------------|--------------------------------------------------|----------------------|------------------------------|---------------------------------------|----------|--------|-----------|-------|
| GREEN RIVER PAP                          | ROBTLAND CEMEN                                   | CONCRETE CORES       |                              |                                       |          |        |           |       |
|                                          |                                                  | COMPRESSIVE          | MODULUS OF                   |                                       |          |        |           |       |
| SAMPLE                                   | THICKNESS                                        | STRENGTH             | ELASTICITY                   |                                       |          |        |           |       |
| ID                                       | mm [in.]                                         | MPa [psi]            | GPa [psi x 10 <sup>6</sup> ] |                                       |          |        |           |       |
| GRP-37-1                                 | 225 [9.00]                                       | 43.6 [6,320]         | 31.4 [4.55]                  |                                       |          | ,      |           |       |
| GRP-37-2                                 | 225 [9.00]                                       | 44.7 [6,480]         | 30.3 [4.40]                  |                                       |          |        |           |       |
| GRP-37-3                                 | 231 [9.25]                                       |                      |                              |                                       |          |        |           |       |
| GRP-39-1                                 | 225 [9.00]                                       | 40.8 [5,920]         | 4                            |                                       |          |        |           |       |
| GRP-39-2                                 | 225 [9.00]                                       | 52.3 [7,580]         | 33.1 [4.80]                  |                                       |          |        |           |       |
| GRP-39-3                                 | 225 [9.00]                                       |                      |                              |                                       |          |        |           |       |
| AVERAGE                                  | 226 [9.04]                                       | 45.4 [6.580]         | 31.6 [4.58]                  |                                       |          |        |           |       |
|                                          | DENSE GRADED AG                                  | GREGATE BASE         |                              |                                       |          |        |           |       |
|                                          |                                                  | MOISTURE             |                              | MINUS 75//m                           |          |        |           |       |
| SAMPLE                                   | THICKNESS                                        | CONTENT              | IN-SITU                      | (No. 200) SIEVE                       | F        | LASTIC | ITY       |       |
| ID                                       | (in.)                                            | (%)                  | CBR                          | (%)                                   |          | INDEX  |           |       |
| GRP-37-1                                 | ······································           | 3.5                  | 30                           | 9.0                                   |          | NP     |           | ·     |
| GRP-37-2                                 | 100 [4.00]                                       | 4.9                  | 16                           | 11.9                                  |          | NP     |           |       |
| GRP-37-3                                 | 88 [3.50]                                        | 4.3                  | 17                           | 8.9                                   |          |        |           |       |
| GRP-39-1                                 | 00 [0100]                                        | 6.5                  | 11                           | 11.0                                  |          |        |           |       |
| GRP-39-2                                 | 113 [4.50]                                       | 6.3                  | 16                           | 12.5                                  |          |        |           |       |
| GRP-39-3                                 | 106 [4.25]                                       | 7.1                  | 10                           | 10.4                                  |          |        |           |       |
| AVERAGE                                  | -                                                | 5,4                  | <u> </u>                     | 10.4                                  |          |        |           |       |
|                                          |                                                  |                      |                              |                                       |          |        |           |       |
|                                          | DISTURBED SURGRA                                 | DE SAMPLES           | 1799199                      |                                       |          |        |           |       |
|                                          | MOISTURE                                         |                      |                              |                                       |          |        |           |       |
|                                          | CONTENT                                          | IN-SITU              |                              |                                       |          |        |           |       |
| SAMPLE                                   | BELOW DGA                                        | CBR                  |                              |                                       |          |        |           |       |
| ID                                       | (%)                                              |                      |                              | · · · · · · · · · · · · · · · · · · · |          |        |           |       |
| GRP-37-1                                 | 11,9                                             | 13                   |                              |                                       |          |        |           |       |
| GRP-37-2                                 | 13.2                                             | 7                    |                              |                                       |          |        |           |       |
| RP-37-3                                  | 11.2                                             | 10                   |                              |                                       |          |        |           |       |
| GRP-39-1                                 | 14.8                                             | 5                    |                              |                                       |          |        |           |       |
| GRP-39-2                                 | 16.0                                             | 6                    |                              |                                       |          |        |           |       |
| RP-39-3                                  | 15.5                                             | 3                    |                              |                                       |          |        |           |       |
| AVERAGE                                  | 13.8                                             | 7                    |                              | · · · · · · · · · · · · · · · · · · · |          | ·····  |           |       |
|                                          | SURGRADE TURE SA                                 | MPLES                |                              |                                       |          |        |           |       |
|                                          |                                                  | MOIOTURE             | UNCONFINED                   |                                       |          |        |           |       |
|                                          | 0.50-11                                          | MOISTURE             | COMPRESSIVE                  | WET                                   |          |        |           |       |
| SAMPLE                                   | DEPTH                                            | CONTENT              | STRENGTH                     | DENSITY                               |          | ATTER  |           |       |
| ID                                       | [in.]                                            | (%)                  | kPa (psi)                    | kg/m <sup>3</sup> [pcf]               | <u> </u> | PL     | <u>P1</u> | CLAS  |
| RP-37-1                                  | 0-175 [0-7]                                      | 10.5                 |                              |                                       | 22       | 16-    | 6         | SM-S  |
| RP-37-2                                  | 0-175 [0-7]                                      | 12.7                 |                              |                                       |          |        | NP        | SM    |
| RP-37-2                                  | 175-325 [7-13]                                   | 14.5                 |                              |                                       |          |        |           |       |
| RP-37-2                                  | 325-500 [13-20]                                  | 16.6                 | 126.2 [18.3]                 | 2,119 [132.3]                         |          |        |           |       |
| RP-37-3                                  | 50-200 [2-8]                                     | 10.3                 |                              |                                       |          |        | NP        | SM    |
| RP-39-1                                  | 0-175 [0-7]                                      | 11.5                 | 157.9 [22.9]                 | 2,241 [139.9]                         | 27       | 17     | 10        | CL    |
| RP-39-1                                  | 175-325 [7-13]                                   | 13.0                 | 185.5 [26.9]                 | 2,246 [140.2]                         |          |        |           |       |
| RP-39-2                                  | 0-175 [0-7]                                      | 10.3                 | -                            |                                       | 23       | 14     | 9         | GC    |
|                                          | 175-325 [7-13]                                   | 14.3                 | 157.9 [22.9]                 | 2,172 [135.6]                         |          |        |           |       |
| HP-39-2                                  |                                                  | 14.3                 | 272.3 [39.5]                 | 2,219 [138.5]                         |          |        |           |       |
|                                          | 325-500 [13-20]                                  | 14.0                 |                              |                                       |          |        |           |       |
| RP-39-2                                  | 325-500 [13-20]<br>0-175 [0-7]                   |                      |                              |                                       | 25       | 18     | 7         | SM-S( |
| RP-39-2<br>RP-39-2<br>RP-39-3<br>RP-39-3 | 325-500 [13-20]<br>0-175 [0-7]<br>175-325 [7-13] | 14.3<br>13.2<br>10.1 | 242.7 [35.2]                 | 2,204 [137.6]                         | 25       | 18     | 7         | SM-SC |