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ABSTRACT OF THESIS 
 
 
 
 

SINGLE PHASE MULTILEVEL INVERTER 
FOR PHOTOVOLTAIC SYSTEMS  

 
 
 Multilevel inverters offer many well-known advantages for use in high-voltage and high-
power applications, but they are also well suited for low-power applications. A single phase 
inverter is developed in this paper to deliver power from a residential-scale system of Photovoltaic 
panels to the utility grid. The single-stage inverter implements a novel control technique for the 
reversing voltage topology to produce a stepped output waveform. This approach increases the 
granularity of control over the PV systems, modularizing key components of the inverter and 
allowing the inverter to extract the maximum power from the systems. The adaptive controller 
minimizes harmonic distortion in its output and controls the level of reactive power injected to 
the grid. A computer model of the controller is designed and tested in the MATLAB program 
Simulink to assess the performance of the controller. To validate the results, the performance of 
the proposed inverter is compared to that of a comparable voltage-sourced inverter. 
 
KEYWORDS: Multilevel Inverter, Microinverter, Grid-tied Photovoltaic Systems, Low Power Solar 
Energy, Reversing Voltage Topology  
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1 Introduction 
Due to the industrialization of developing countries, the increasing worldwide population, 

and the overall desire for an improved quality of life, there is an ever-increasing global demand 

for electrical power. Combustible fossil fuels and nuclear sources account for approximately three 

quarters of the electricity produced globally; however, these supplies are limited [1,2,3]. Due to 

the finite nature of these resources, researchers are interested in generating power from 

renewable sources in order to find a more environmentally sustainable way to produce electricity. 

Through advances in technology and manufacturing techniques, photovoltaic (PV) cells that 

harvest solar energy have become economically competitive with other technologies that 

generate power from renewable sources.  

While PV systems can be installed in a centralized generating facility, they are uniquely 

suited for distributed generation applications. Solar farms use PV cells to generate large quantities 

of power in a single location. They are comparable to the generating facilities of more traditional 

fuels, but less efficient from an energy density (power produced per square foot of land occupied) 

point of view. Due to safety and aesthetic concerns associated with traditional generation 

facilities, they are often constructed away from heavily populated areas. The electricity produced 

at these facilities must be transmitted long distances to the end user, which requires a costly, 

complex infrastructure and exposes the entire system to higher levels of power loss and security 

risks. Conversely, PV systems can produce power closer to the end user, albeit in smaller 

quantities. PV cells do not benefit from the same economy of scale as traditional 

generation technologies and thus generally do not become more effective when cells are 

conglomerated or enlarged. Their small packaging and the widespread presence of the fuel 

source, sunlight, makes solar power especially attractive for geographically distributed residential 

and commercial applications. 
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All practical PV panels require power converters to transform the electricity they produce 

into a more useful form. There are many different types of converters due to the wide variety of 

loads that PV systems serve, including inverters, which are used to connect PV systems to the 

utility grid. Some of these inverters have been designed specifically for systems that produce small 

quantities of power, such as residential rooftop units. A key focus for low-power solar systems is 

to provide as much power to the end user as possible. Two basic strategies exist to accomplish 

this task: maximize power generated by the PV panel and reduce power consumed by the 

inverter. The inverter introduced in this paper combines both strategies to maximize power 

delivered to the utility grid. Ease of installation is another factor that is increasingly important to 

customers. Micro inverters specifically are pushing towards modular plug-and-play units that 

make installation less complicated by combining the PV panel and inverter into one package 

instead of providing the two as separate products 

A single phase inverter is developed in this paper that connects PV systems to the utility 

grid. This inverter produces a grid-level output voltage at power levels lower than 2 kW. Unlike 

many traditional grid-tied PV inverters, the proposed inverter does not generate a higher DC 

voltage than the use a PWM or VSI based inverter to produce an AC voltage. Rather, the inverter 

continually changes the number of PV systems connected in a series with one another to produce 

a stepped output waveform that closely resembles a sinusoid. The inverter is similar to other 

micro inverters in that it is designed to be modular in nature and can be manufactured into the 

PV panel itself, allowing for direct plug-and-lay capabilities. Relative to other comparable micro 

inverters, the proposed inverter offers several advantages: having fewer components, consuming 

less power, and generating less harmonic distortion in its outputs. 

Part I of this paper introduces a single-phase, grid-tied inverter for PV systems. Part II 

explains why an inverter is required to connect the PV system to the utility grid. It also addresses 
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several benefits associated with VSI inverters in particular before describing micro inverters and 

reasons why they have become more popular in recent years. Lastly, there is a brief summary of 

the Fourier series and harmonics. Part III describes the proposed inverter and explains how a 

computer model of the inverter is developed in the Matlab program Simulink. Next, Part IV 

assesses the performance of the inverter. It documents the output of the inverter in absolute 

terms before weighing its performance with that of a comparable inverter using a VSI-based 

controller. Lastly, Part V concludes with a summary of arguments and discusses potential 

opportunities for this proposed technology moving forward. 
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2 Conceptual Development 

A fundamental description of photovoltaic devices is given. General techniques and circuit 

topologies used to connect photovoltaic devices to the utility grid are discussed. Methods to 

analyze harmonic content are provided. 

2.1 Photovoltaic Devices 

Energy exists in many forms, and it is often helpful or even necessary to convert it from 

one form to another. The radiant energy that comes from the sun is naturally converted into 

thermal energy by certain objects as they absorb the sunlight. In 1839, Edmond Becquerel 

observed that some materials convert sunlight into electricity, the process of which is commonly 

referred to as the photovoltaic effect [4]. Since then, humans have attempted to harness and 

exploit this phenomenon. In the 1950’s, a team of scientists at Bell Laboratories introduced one 

of the first devices that produced a useful amount of electricity when exposed to sunlight: a silicon 

solar cell [5].  

 A solar cell, also called a photovoltaic (PV) cell, produce electricity when it absorbs 

sunlight. The absorbed light excites an electron and breaks the covalent bonds holding it in place. 

The electromagnetic field inherent to the structure of the cell sweeps the freed electron away 

from its location. With exposure to significant amounts of sunlight, enough electrons are swept 

away so that a steady flow of electrons establishes an electric current.  

 The P-N junction is the fundamental structure within the PV cell that produces 

the electromagnetic field mentioned above. In many practical devices, N-type and P-type 

semiconductor materials are often layered on top of one another, and the point of contact 

between the two materials is called the P-N junction. The different electrical properties of the 

semiconductors produce an electromagnetic field across the junction, which allows the PV cell to 
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convert sunlight into a useful amount of electricity as described in the previous paragraph. This 

field creates a non-linear relationship between the current flowing through the junction and the 

voltage potential across it. 

2.1.1 Output Characteristics 

The current produced by a PV cell has a unique correlation to the voltage across its output 

terminals because the P-N junction is the heart of the PV cell. This distinct relationship is depicted 

in Figure 2.1a. 

  

(a) (b) 

Figure 2.1: Typical (a) I-V and (b) P-V curves associated with the output of a PV panel 

 

 The relationships between a PV panel’s output current, voltage, and power are complex 

and non-linear. It is difficult and sometimes unnecessary to attempt to know the exact 

coordinates of every point on the curve; however, there are three important points that are 

commonly used to describe the curve. Two straightforward points are the short circuit current 

(Isc, current when Voltage = 0 V) and the open circuit voltage, (Voc, voltage when Current = 0 A). 

These aspects are important to the design of the system as they represent the maximum levels of 

current and voltage that the PV panel can produce. There is a single point on the I-V curve that 

produces the maximum amount of power possible. This point is known as the maximum power 
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point, MPP. Controllers attempt to make the PV system operate near the MPP to maximize the 

yields and efficiency of the system.  

Values for these important voltages and currents can be determined experimentally but 

are often provided on the manufacturer’s data sheet. The data sheet values portray the panel’s 

performance when exposed to standard test conditions, STC. STC defines cell temperature 

(Tref = 25 °C), solar spectrum (AMref = 1.5) and solar irradiance (Gref = 1000 W/m2) in accordance 

with IEC 60904 standards [6]. Solar spectrum corresponds to the length of the path that light took 

through the atmosphere. Solar irradiance quantifies the power per unit area produced by the sun. 

The panel will perform differently when any of these conditions change and the I-V and P-V curves 

will shift. Figure 2.2 shows the varying performance of a PV panel under different lighting 

conditions.  

  

(a) (b) 

Figure 2.2: The effect of different levels of solar irradiance on (a) the I-V and (b) the P-V curves 
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different levels of light in different parts of the world. It is necessary to know how much power a 

single panel will produce in order to include enough PV panels in the system to meet the needs 

of the load. Large PV farm operators use that knowledge to accurately estimate the amount of 

power they can produce to improve grid-level energy planning. Significant amounts of research 

have been dedicated to developing computer models that can accurately predict the output of a 

PV panel based on levels of solar irradiance and temperature. Some of these techniques will be 

discussed in in the Methodology section. 

2.1.2 Maximum Power Point Tracking 

From Figure 2.2 it is clear that the MPP shifts as performance of the PV panel changes, 

and the ability to identify the location of the MPP at any given time is paramount. Knowledge of 

the MPP allows the inverter to draw the appropriate voltage and current from the panel to extract 

all the power that it produces. Operating at the MPP maximizes the efficiency of the panel. 

Determining where the MPP lies is not straightforward because of the complex relationship 

between the PV module’s output current and voltage. Often times a specific technique is chosen 

to determine where the MPP lies.  

Certain techniques have been developed to continuously identify the location of the MPP, 

even when it moves. Following the MPP like in this fashion is a process known as maximum power 

point tracking, MPPT. It is difficult to perform MPPT analytically for real world applications of PV 

systems. As a result, there exist several different methods commonly used to perform MPPT.  

Some of the more common MPPT techniques include perturb and observe [7], ripple correlation 

control [8], incremental conductance method, fuzzy logic method [9] and neural network [10]. 

These strategies, and the majority of others, are dynamic in nature; they observe the output of 

the PV module and respond in a way that causes the module’s operating point to shift towards 

the MPP.  
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While the details behind different MPPT strategies are interesting, there is no need to 

elaborate on the previously mentioned methods as that task lies outside the scope of this paper. 

For demonstration purposes, the means in which MPPT is performed per se is not as much of a 

concern as the fact that MPPT occurs. Furthermore, the MPPT technique employed in the 

proposed inverter is described in the Methodology section. A more effective strategy could 

potentially be employed to increase the performance of the inverter; however, the MPPT 

technique used in this paper is sufficient. As with the majority of MPPT strategies, the technique 

used in this paper analyzes the output of the PV module then adjusts the inverter’s operation to 

change the amount of voltage or current drawn by the inverter. Changing the way the inverter 

draws voltage or current from the PV modules changes the amount of power drawn by the 

inverter and thus the amount of power delivered by the PV system. Thus, MPPT is adequately 

satisfied because the PV panel is consistently changing its operating point so that it delivers nearly 

all the power it is capable of producing under the given conditions. 

2.2 Grid-tied Inverters for PV Systems 

An inverter is a circuit or device that serves as the interface to deliver power from a DC 

source to an AC load. It is often desirable to produce AC power because of its compatibility with 

common appliances and its ability to connect to a utility grid. Inverters are often identified by the 

nature of their input power source: voltage-sourced inverters have sources that resemble a DC 

voltage source and current-sourced inverters have sources that resemble a DC current source. 

Industrial settings favor voltage-sourced inverters as they generally have superior efficiency, 

reliability and dynamic response times [11]. 
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2.2.1 Energy Conversion: DC to AC 

A voltage-sourced inverter converts power from a DC voltage source and its output 

effectively serves as an AC current source. The fundamental circuitry involved in this conversion 

is known as a full-bridge inverter, also called an H-bridge inverter, and is shown in the figure 

below. In accordance with Kirchhoff’s Voltage Law, (KVL) the voltage source cannot be shorted; 

thus switches 1,1 and 2,1 cannot both be closed at the same time, and the same is true for 

switches 1,2 and 2,2. If switch 1,1 and 2,2 are both closed then the output, Vout, will be the positive 

DC voltage. If switch 2,1 and 1,2 are both closed then then the output will be the negative value 

of the DC voltage. In any other scenario, the output will be zero.  

  

(a) Electrical Circuit (b) Output voltage 

Figure 2.3: Full-bridge voltage-sourced inverter 

 

The H-bridge topology is capable of producing an alternating value across its output 

terminals, which can be vaguely similar to the desired sinusoidal waveform. Different control 

strategies are applied to the switches to produce the desired output. The most basic inverters 

produce an output voltage at one of two values: the positive or negative value of the DC input. 

Three level inverters are quite common as well; their output can be zero volts in addition to the 

positive and negative value of the DC input, as shown in Figure 2.3b. There are more complex 
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topologies whose output can have more than three values, and they fall into the category of 

multilevel inverters. 

2.2.1.1 Voltage-Sourced Inverter 

A typical voltage-sourced inverter, VSI, uses relative phase control to generate a three-

level output. VSI controls are commonly used for H-bridge inverters and rely on the fact that the 

duty ratio of the switches is 50% [12]. This means that each switch is on for half of the period and 

off for half of the period. This ensures that there are no DC components in the output. 

The VSI staggers when each switch is connected so that the output is zero volts during 

part of the cycle. For the H-bridge inverter topology, a non-zero voltage potential exists across 

the output terminals only when both switches in the diagonal pair (1,1 and 2,2 or 1,2 and 2,1 in 

Figure 2.3a) are closed. VSI delays the time that these switches close relative to on another, so 

that the output voltage is zero for a specific amount of time. The delay is called the displacement 

angle and is represented by a lowercase delta, δ. The value of the displacement angle influences 

the shape of the output waveform. If no delay occurs (δ=0) then the output is a square wave. 

However, if a delay exists, then the output voltage becomes a quasi-square wave similar to the 

one shown in Figure 2.3b [12].  

There are several advantages that justify using the VSI control technique. VSI switches 

only operate once per cycle putting them into the category of low frequency switching. Other 

strategies, such as pulse-width modulation, (PWM) induce switching over a thousand times per 

cycle and are considered to be high-frequency switching. The act of switching consumes power, 

so the VSI inherently uses less power than PWM and other high frequency switching techniques. 

The PWM technique produces distortion at higher frequencies, so PWM inverters mandate 

different design criteria for their output filters (and typically require input filters as well) than VSI 

inverters [12]. Although there are often less harmonics in VSI inverters, these harmonics occur at 
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low frequencies – near the fundamental frequency – which can make filtering more difficult and 

require larger inductors.  

The quasi-square wave produced by the VSI bears a closer resemblance to a sinusoid than 

a normal square wave. Both waveforms contain a number of harmonic components; however, 

the quasi-square wave will have less harmonic distortion than a square wave and produces a 

higher quality output. One key strategy behind the design of many inverters is to create an output 

that is as close as possible to a purely sinusoidal wave. Multilevel inverters are one such 

classification of inverters that with this goal in mind. 

2.2.1.2 Multilevel Inverters  

Increasing the number of levels in a waveform generally improves the quality of the 

waveform. Adding levels reduces the step size, which has been shown to reduce harmonic 

distortion [13]. Many researchers have developed new topologies that produce output 

waveforms that contain more than three levels. These inverters are lumped into a category called 

multilevel inverters. Such inverters have received significant attention in recent years because 

they operate with high efficiency, work particularly well in low, medium and high power systems, 

and can be readily applied to technology dealing with renewable energy sources, particularly solar 

[14]. 

 Low-power systems (<10kW) that demand high efficiency inverters have recently seen an 

increasing presence of multilevel inverters instead of the PWM inverters previously used for these 

applications [15]. Multilevel inverter topologies are particularly attractive for use with renewable 

energy sources due to the nature of the physical arrangement and the level of power produced 

[16]. When connecting PV systems to the grid, multilevel inverters offer several advantages that 

include the ability to maximize power drawn from independently operating PV arrays and to 

reduce the filtering requirements of the output voltage [17].  
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 The neutral-point clamped, NPC, topology is a multilevel inverter topology that first 

received attention in 1979 [18]. When multilevel inverters regained popularity in the early 1990’s, 

the NPC topology gave rise to what is commonly referred to as the diode-clamped inverter. The 

flying capacitor is another multilevel inverter that is similar to the diode-clamped topology. These 

models are fed by a single DC voltage source, and have multiple capacitors, sometimes called dc-

link capacitors, connected across that input. The capacitors provide intermediate voltage levels 

such that the output voltage can take one of several values that are some fraction of the input 

voltage.  

Voltage imbalance constitutes a significant drawback associated with the diode-clamped 

and flying capacitor topologies. The flow of current through the DC-link capacitors will change the 

voltage potentials across them. This effect often leads to unequal voltages from one capacitor to 

the next creating an imbalance. This issue limits diode-clamped inverters to three levels in 

practical applications [16]. The flying capacitor inverter is not as limited by this because it can 

implement some voltage balancing capabilities in its control strategy; however, voltage imbalance 

still constitutes a significant obstacle to overcome for this topology [19, 20]. The diode-clamped 

and flying capacitor topologies also expose some of their circuit elements to severe reverse 

recovery stress, moderate voltage stress and parasitic resonance between capacitors [21]. 

Additional topologies exist that avoid voltage balancing issues altogether.  One such topology is 

the cascaded H-bridge. 

2.2.1.3 Cascaded H-Bridge Inverter 

The cascaded H-bridge inverter is fed by multiple independent DC voltage sources. 

Voltage balancing is not an issue because the dc-link capacitors are not present. This topology was 

widely researched for use with renewable sources such as fuel cells, biomass and solar in the 

1990’s and is commonly used with renewable energy systems today [22]. Using multiple voltage 
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sources makes this inverter ideal for use with renewable and clean burning energy sources – 

including solar, fuel cells and biomass – which require a large number of independent systems to 

harvest energy and then combine their outputs to produce a single, sufficiently large output [22]. 

These independent systems often produce power at different levels because the conditions to 

which they are exposed vary from one system to the next.  The cascaded H-bridge topology allows 

an inverter to extract the maximum amount of power from each system before conglomerating 

all the energy into a single output. 

 The cascaded H-bridge topology, also referred to as the series full-bridge topology or any 

variation between the two, is depicted in Figure 2.4. This topology receives its name from the fact 

that a full-bridge inverter, shown in Figure 2.3a, is connected to each DC voltage input. The 

outputs of each inverter are connected in series so that the inverter’s output is the sum of their 

collective outputs. The output of a single H-bridge inverter can be one of three levels: 0, Vdc, or – 

Vdc. If all DC input voltages are the same, then the output waveform will have 2n + 1 levels, where 

n is the number of DC voltage inputs.  

 

Figure 2.4: A seven-level cascaded H-bridge inverter connecting PV modules to the grid 
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 This inverter topology is modular in nature, which presents several advantages over other 

topologies. The modular component includes the DC input and the full-bridge inverter. This 

modular nature could lead to implanting the inverter into the PV panel itself, which would simplify 

installation of the entire system and could reduce manufacturing costs. Additional modules can 

be easily added or removed from the entire system, allowing this inverter to be highly adaptable 

to different installation constraints. Furthermore, this modular input allows MPPT to be 

performed specifically for the input PV system, which ensures that the component is extracting 

maximum power from each PV system. 

 The cascaded H-bridge inverter has the ability to add levels to its output waveform 

without increasing the number of circuit elements. Simply by having different voltage levels for 

each of the DC inputs, the inverter can increase the number of voltage levels in its output 

waveform. For example, looking at Figure 2.4, when each DC input has a value of Vin, the output 

can take values between -2Vin and 2Vin, stepping in multiples of Vin. If the top DC input has a value 

of 2Vin and the bottom DC input has a value of Vin, then the output waveform can range from -

3Vin to 3Vin, in multiples of Vin. Thus by having DC sources that produce voltage at different levels, 

the output voltage changes from a 5-level waveform to a 7-level waveform. In situations   where 

the magnitude of the DC input voltage can be controlled, the cascaded H-bridge inverter has the 

ability to improve the power quality of its output waveform without increasing the number of 

circuit elements. 

One obvious benefit of this inverter over other topologies is that the Cascaded H-bridge 

inverter has fewer components. This can lead to decreased cost, size and weight of the inverter, 

which can be highly advantageous in certain scenarios. Additional topologies have been suggested 

to further reduce the number of circuit elements required. 
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2.2.1.4 Reversing Voltage Inverter 

One variation of the cascaded H-bridge inverter is capable of producing the same number 

of levels in the output waveform as its full-bridge counterpart but contains fewer components. 

Instead of a full-bridge inverter connected to each input source, a pair of switches is used to 

include or bypass that input. These pairs of switches are series connected such that this portion 

of the inverter is capable of producing a stepped, positive half-wave that is similar in nature to a 

rectified stepped full-wave. This half wave is passed through an H-bridge inverter that reverses 

the polarity periodically to produce a stepped full-wave across the output terminals. This topology 

is referred to as Reversing Voltage (RV). The circuit and the output associated with this topology 

are depicted in Figure 2.5.  

 

Figure 2.5: The seven-level reversing voltage topology 

 

A reversing voltage inverter requires fewer circuit elements than other inverters capable 

of producing multilevel output waveforms. Voltage balancing is not an issue because it does not 

contain dc-link capacitors. As a result, the topology is not limited to a three-level output 

waveform. The control strategy for the reversing voltage inverter is less complicated than other 

inverters, and the topology is more reliable [23]. 
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The topology implemented in the reversing voltage inverter has been a topic of research 

since 1994, [24] but it has only been applied to a small number of situations [25]. In its early 

applications, this topology was employed to increase the number of output voltage levels in order 

to improve the quality of the output waveform. Following the strategy described for the cascaded 

H-bridge inverter, the DC input voltages were designed to be unequal to increase the number of 

levels in the output [26]. More recently, since 2008, the topology been discussed for use in 

medium to high-voltage situations, specifically flexible AC transmission systems [23]. With 

continued research, additional applications for which this inverter is uniquely capable of 

producing optimal results may be discovered. One such application may be a micro inverter for a 

grid-tied PV system.   

Control schemes associated with the H-bridge inverter in this circuit have hitherto 

focused on high-frequency switching techniques. It is argued that this switching strategy reduces 

the harmonics in the output waveform and improves efficiency. It has been proposed that low-

frequency switching is possible with this topology, [27] although this option has not been pursued 

previously. 

Many different multilevel inverter topologies exist. A large number of these are variations 

or combinations of the topologies hitherto described. While each topology presents unique 

advantages, the basic principles of operation are no different, so the details of these models do 

not provide any new knowledge relative to inverter topology or operation. Some topologies use 

transformers. Benefits of transformers include physical isolation of the circuit, the ability to step 

up the voltage level, and effectively increasing the apparent number of voltage sources, among 

other things. The variations in topologies including transformers are practically endless. Because 

this paper proposes a transformerless inverter, a discussion of inverters that include transformers 

is out of its scope. 
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The diode-clamped, flying capacitor and cascaded H-bridge topologies previously 

discussed represent the three most common inverter topologies currently in use. These 

topologies simply reflect ways to convert voltage from DC to AC. Some of the topologies discussed 

thus far have been applied specifically to connect PV systems to the utility grid. These inverters 

have more responsibilities than simple DC to AC conversion. They are designed with those goals 

in mind and often incorporate additional circuit components. 

2.2.2 Voltage Gain Strategies 

Inverters specifically designed to connect PV systems to the utility grid have three main 

tasks to perform: convert DC to AC, increase the voltage level and produce an output that meets 

grid specifications. These inverters employ myriad methods to complete the three objectives. The 

specific design and control scheme are often chosen based upon subtle differences between 

topologies and strategies that are best suited for the application. Please note that moving forward 

the paper will use the term inverter to designate the entire system that is used to connect the PV 

array to the utility grid, not simply the portion that converts DC to AC that was described in the 

previous section. 

The voltage produced by an individual PV cell is too low to serve any useful purpose; 

however, inverter topologies are designed to compensate for this fact and still produce an output 

voltage at the desired level. A typical PV cell that occupies 0.01 m2 is capable of producing an 

output of approximately 0.5 V [28]. It is common for a PV panel to consist of 36-72 PV cells 

connected in series in an attempt to have an individual panel that produces voltage at a useful 

level [29]. While the voltage level generated by such a panel, generally less than 50 V in an open 

circuit condition, is useful for some applications, it is usually too low to allow for connection to a 

utility grid. One solution is to group multiple panels together in various configurations to produce 

an array of panels. The voltage produced by the array is sufficiently large that it can be inverted 
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and connected directly to the grid. Other solutions boost the voltage produced by an individual 

panel to the proper voltage level. 

It should be noted that connecting cells in series has several unintended consequences. 

According to KCL, elements connected in series will have the same current flowing through each 

element. If one element fails, then the flow of current is limited by the defective element. With 

respect to PV cells, if a single cell is shaded, then its MPP will exist at lower current and voltage 

levels than those cells that are not shaded. The MPP current of that cell would establish the 

current that flows through every cell. This effect will result in a drastic reduction in a panel’s 

output [30]. To prevent this effect, most panels have diodes connected across a cell’s output 

terminals to allow another path for the current when it cannot flow through that cell. These 

diodes are called bypass diodes, and they allow the panel’s output power to not be significantly 

reduced by any single cell. They have the additional benefit of protecting the cells as well because 

they prevent the cells from being subject to a destructive reverse voltage [31]. 

2.2.2.1 Single-stage Versus Two-stage Topologies 

One common technique that allows inverters to produce desirable output levels 

is to simply increase the voltage produced by an individual panel or array. Many inverter 

systems use a DC-DC boost converter, Figure 2.6a, to step up the DC voltage produced by the PV 

panel and then use an H-bridge inverter to convert that higher DC voltage to an AC voltage. These 

inverters are considered two-stage inverter topologies, Figure 2.6a.  
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(a) A boost Converter (b) A transformer 

Figure 2.6: Circuit elements required to increase an (a) DC voltage or (b) AC voltage 

 

Two-stage topologies have more circuit elements than single-stage topologies, most 

notably possessing an additional switch. The energy consumed by the switch in the boost inverter 

often results in a two-stage topology consuming more power than its single stage counterpart. 

Having an additional switch to control increases the complexity of the controls. In some cases this 

is desired, as it allows more flexibility in control strategy. However, additional complexity and 

more circuit elements will increase the system’s cost and reduce the system’s reliability [32]. 
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(a) 

 

(b) 

Figure 2.7: (a) Two-stage and (b) single stage voltage boosting inverters 

 

Single-stage topologies differ from two-stage topologies in that there exists only a single 

inverter circuit in the system to convert the DC input into an AC output. Analogous to the DC-DC 

boost converter, a single-stage topology may introduce a step up transformer on the output side 

of the inverter to boost the AC voltage to the required level, Figure 2.7b. The transformer is often 

preferable to the boost converter because it provides physical isolation of the two circuits and 

prevents loss associated with leakage currents [26]. Being a passive element with no moving parts, 

the transformer does not need to be controlled and is less likely to fail unexpectedly.  

Certain single-stage topologies exist that do not require a transformer to step up the AC 

voltage level. These inverter topologies feed off of an input voltage that is high enough to allow 

the inverter to produce an adequately large output voltage. These types of inverters are classified 
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into several categories based upon the configuration of the PV arrays with respect to the 

inverters. The most common categories are central-inverters, string-inverters and micro inverters. 

2.2.2.2 Central, String and Micro Inverters 

Inverters that connect PV systems to the utility grid are categorized into one of three 

categories: central, string or micro. Rough schematics of these layouts in single-stage topologies 

are shown in Figure 2.8. These inverters employ different methods to connect PV systems to the 

utility grid, and each has its own strengths and weaknesses.  

 

(a) 

 

 

(b) (c) 

Figure 2.8: PV array configurations for (a) centralized, (b) string and (c) micro inverters 

 

Central inverters are the traditional type of PV inverter. These inverters typically produce 

power at levels greater than or equal to 10 kW [33]. Central inverters connect many PV panels in 
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series to generate a high voltage potential between busses. They connect multiple strings of 

panels in parallel to ensure that the voltage potential seen at the inverter’s input remains 

constant. A single inverter is then used to convert that voltage to AC. MPPT occurs once for the 

entire array of PV panels. The voltage across each string of panels is equal, and all the panels in a 

string have the same current flowing through them.  

Central inverters are particularly attractive for large-scale solar applications, such as solar 

farms. The cost per unit of the entire system is often reduced through scalability factors. These 

systems are usually installed in large, flat, open areas and typically employ centralized MPPT. 

Although this layout exposes panels to nearly identical levels of solar irradiation, the little 

mismatch that does exist limits the amount of power that can be extracted from the whole system 

as a result of the centralized MPPT. Due to this fact, central inverters often have higher relative 

amounts of power losses than string and micro inverters [34]. 

String inverters typically generate between 0.5 and 1 kW of power. From the name, it can 

be inferred that these inverters use a string of PV panels connected in series as their input DC 

voltage. MPPT is performed for an individual string instead of for all the strings combined, as was 

the case for the central inverter. This feature allows string inverters to extract more power from 

their PV panels than comparable central inverters because MPPT occurs for each individual string 

so the number of panels that can hinder the performance of each string is significantly reduced. 

Similar to the case where individual PV cells are connected in series, as described above, when 

one panel in a string is shaded, the power output of the entire string is greatly reduced [35]. This 

logically creates a demand for micro inverters, which will be discussed momentarily. 

In some applications, like Figure 2.8b, the string of PV panels in the string inverter typically 

produce a sufficiently high voltage so that a voltage boost is unnecessary for connection to the 
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grid. This application is particularly appealing as it allows for flexibility in array configurations and 

added reliability when multiple strings work in parallel. 

 In other cases, boost converters are needed to boost the DC voltage produced by each 

string before feeding a centralized inverter. These are often referred to as multi-string inverters 

and are depicted in Figure 2.9. Like string inverters, the multi-string inverter performs MPPT for 

each string of PV panels, and is able to extract more energy per string than a comparable 

centralized inverter. Parallel operation of strings is still possible, and the PV system can easily be 

enlarged as a result of the boost converters. Unfortunately, the single point of failure between 

the inverter and grid eliminates the redundancy and reliability that exists with the string inverter.   

 

Figure 2.9: Multi-string inverter 

 

Micro inverters, Figure 2.8c, often connect individual PV panels to the utility grid; they 

typically generate around 300 W of power or less [33]. They are intended to be incorporated into 
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the panel itself, and for this reason are sometimes referred to as AC Modules. The modular 

concept consists of the combined PV panel and built-in micro inverter, which allows each panel 

to have “plug and play” capabilities. The installation process becomes drastically simplified as 

panels can be easily inserted or removed to meet the needs of a specific application. 

 While the upfront cost per watt of an AC module is often higher than that of a string or 

centralized inverter, the ease of installation and higher level of power extraction make it much 

more attractive and cost effective in smaller installations. MPPT is performed for each individual 

panel with a micro-inverter. This completely eliminates the voltage mismatch between PV panels 

that exists in centralized inverters and, to a lesser extent, string inverters. More power is extracted 

from each panel as a result. 

An additional benefit associated with the micro inverter manifests itself when multiple 

modules are connected to the grid. The redundant nature of units individually connected to the 

grid provides reliability. Similar to the case of the string and multi-string inverters, a single micro 

inverter or PV system can fail, but the rest of the micro inverters will continue to operate normally. 

Thus, in the case of failure of a single unit, the total power delivered to the grid will decrease, but 

it will not be reduced completely to zero. 

2.2.3 Harmonics 

One of the main roles of a grid-tied inverter is supplying power to the grid. The inverter 

must generate a high quality output waveform to improve the performance of the overall system 

and meet the interconnection requirements of the grid. Interconnection requirements often 

pertain to voltage magnitude, voltage notching, frequency, power factor and distortion. The latter 

can be the most difficult requirement to meet and is of utmost importance to this paper. In some 

cases, this standard is defined in terms of the total harmonic distortion, THD, present in the 
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waveform. THD quantifies distortion based upon the presence of different Fourier components in 

the waveform. 

2.2.3.1 The Fourier Series 

Any reasonably periodic waveform can be expressed as the summation of sine waves and 

cosine waves [12]. This mathematical description of the waveform is known as the Fourier series 

and is expressed in the following equation.  

 
𝑓𝑓(𝑡𝑡) =  𝑎𝑎0 + �(𝑎𝑎𝑛𝑛 cos(𝑛𝑛𝑛𝑛𝑡𝑡) + 𝑏𝑏𝑛𝑛sin(𝑛𝑛𝑛𝑛𝑡𝑡))

∞

𝑛𝑛=0

 (1) 

In (1), omega, ω, represents the angular frequency of the waveform. It is directly 

proportional to the frequency, f, and inversely proportional to the period, T. The Fourier 

components are part of the Fourier series, and their integer multiples (n=1, 2,…) are typically 

referred to as harmonics. The Fourier components are defined as: 
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Equation (1) can be rewritten in an alternative form by introducing several different 

variables that represent combined terms. 

 
𝑓𝑓(𝑡𝑡) =  �𝑐𝑐𝑛𝑛 cos(𝑛𝑛𝑛𝑛𝑡𝑡 + 𝜃𝜃𝑛𝑛)

∞

𝑛𝑛=0

 (4) 

Of chief concern is the frequency at which these waves oscillate. As is the case in AC 

systems, both voltage and current oscillate. Average power flow occurs only when the current 
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and voltage components have matching frequencies [12]. The same concept can be extrapolated 

to the inverter in that only power whose frequency matches the load supplies power to the load. 

The wanted component in the output waveform is the component whose frequency matches that 

of the desired load being served. The wanted component in this case is the fundamental 

component and includes the harmonic components associated with n=1, assuming the frequency 

associated with omega is equal to the frequency of the load. The unwanted components are all 

the other harmonic components present in the waveform. 

The a0 term in equation (1) constitutes the DC component in the waveform. When 

supplying power to an AC load, one must virtually eliminate this DC component to avoid damaging 

equipment and circuit elements designed exclusively for AC. As has been discussed previously, 

inverter controls are strategically employed to eliminate any DC component in the output 

waveform. 

2.2.3.2 Total Harmonic Distortion 

There are several metrics used to quantify the presence of unwanted components in a 

given signal. Total harmonic distortion (THD) is one such metric that is a ratio of the RMS values 

of the unwanted components and the fundamental component. The larger a waveform’s THD, 

the more unwanted components are present in the signal. This is commonly written in one of two 

ways.  

 

THD =  100 ∗ �
(𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅)2 − �𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓�

2
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2  (5) 
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 IEE Standard 519-1992 identifies distortion limits for Transmission and Generation 

systems. This standard lists different distortion limits based upon the size of the load with respect 

to the size of the power system to which the load is connected [36]. For the purposes of this paper, 

the utility grid constitutes the power system, and the inverter’s output constitutes the load. To 

calculate a system’s THD, one would use Equation (5) with respect to the current Systems would 

use Equation (5) to calculate the THD present in the current waveform, where f1=IL.  

The IEEE standard refers to extremely high voltage levels relative to the residential utility-

grid voltage levels addressed in this paper. It is common for applications involving lower voltage 

and power levels to calculate the THD with respect to the rated fundamental current of the system 

to avoid over-penalizing these low-load applications The THD in the output current from the 

proposed inverter will be calculated based upon a rated current. The calculated THD will be 

compared to the IEEE standard to assess the performance of the inverter. 
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3 Methodology 

This paper proposes a single-phase inverter topology that serves as the interface between 

a system of PV modules and the utility grid. The inverter employs a topology similar to that of the 

reversing voltage (RV) inverter to extract power from several PV modules operating 

independently of one another. MPPT is performed separately for each PV module. The proposed 

inverter seemingly falls into the category of micro inverters for its modularity and the high level 

of granularity that it performs MPPT; however, the levels of voltage and power produced by the 

inverter are slightly higher than those produced by a typical micro inverter. 

The proposed topology, Figure 3.1, produces a multilevel output waveform in the same 

manner as the RV topology described in section 2.2.1.6. There exists a pair of switches associated 

with each input. These pairs are strategically operated to change the number of DC voltage inputs 

that are connected in series over time. This action produces a stepped half-wave, which is also 

called a positive stepped waveform or a rectified stepped waveform. The stepped half-wave is fed 

through an H-bridge inverter that reverses the polarity of the waveform periodically to produce a 

nearly sinusoidal output waveform.  
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(b) 

 

(a) (c) 

Figure 3.1: A seven-level version of the proposed inverter topology (a) and the stepped half-

wave (b) and output (c) it produces 

 

The proposed inverter outperforms the RV topology and applies to different systems than 

the RV topology because of the control scheme employed.  The proposed control scheme allows 

each DC input voltage to exist at different, not necessarily evenly incremented, levels and is able 

to respond to changes in input voltage levels. This enables the topology to use independent PV 

modules as the DC power sources. Furthermore, the control scheme uses low-frequency 

switching to reduce switching loss and improve the efficiency of the inverter. 

The inverter proposed in this paper capitalizes on the advantages associated with the RV 

topology as a means to reduce the number of components in the inverter and improve its 

performance relative to other grid-tied PV inverters. Capacitor balancing issues do not exist within 

this topology because the inputs function independently of one another. As a result, the number 
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of levels in the output waveform is only limited by the number of input sources. This topology can 

accommodate enough input sources so that no additional voltage gain is necessary. As such, the 

inverter does not need a DC-DC boost stage or a transformer, which simplifies the design and 

control of the inverter. 

It is easy to increase the number of inputs with the proposed topology, and it is desirable 

to have a larger number of inputs.  Each input provides two additional levels to the output voltage 

and increases the quality of the waveform. Having more inputs reduces the number of PV cells 

that are connected in series. As a result, MPPT can be performed at a more granular level to 

reduce the negative effects of shading and increase the efficiency of the system. One major 

drawback associated with adding inputs is that two switches must be added for every additional 

input. The benefits described above must be weighed against the power consumed by the added 

switches to find the optimal number of inputs for a given situation. 

The modular nature of inputs associated with this topology improves the ease that 

additional inputs can be added. Each input has an associated capacitor and pair of switches. These 

can potentially be built onto the back of the PV panels, or possibly even the PV cells, at the 

manufacturing stage. This would make adding additional inputs extremely easy and lend the 

topology to be easily applied to a wide range of physical applications.  

A computer model of the proposed inverter is developed with the Matlab software in the 

Simulink program to demonstrate the capabilities of the proposed system. This model includes 

blocks that simulate the performance of PV panels, perform MPPT for the PV panels, implement 

the desired control scheme and simulate the interconnection with the grid. A computer model of 

a comparable inverter capable of interfacing with the same PV system but using a VSI control 

technique has been created for comparison purposes. 
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3.1 Computer Model of the PV System 

A simple mathematical model of a PV cell is introduced whose output power is dependent 

upon solar irradiance. This model is implemented in the Matlab program Simulink to simulate the 

performance of a cell. The Simulink model of a single cell is adjusted so that the model simulates 

the performance of an entire PV panel. The output produced by this computer model is shown to 

match the output of a real PV panel, demonstrating the validity of the Simulink model. The model 

is further adjusted to emulate multiple panels in series so that the output voltage is large enough 

to allow for grid connectivity without need of any type of voltage gain. Finally, the model is 

tweaked to simulate the performance of multiple PV modules operating independently whose 

collective output voltage is sufficiently high to support a connection with a utility grid. 

3.1.1 Electrical Equivalent Model of a PV Cell 

For the purposes of this paper, a mathematical model of a PV cell is required to simulate 

the output of a real PV system. The model must have the ability to produce representative results 

under different conditions to demonstrate the effectiveness of the inverter. There exist many 

complicated models of PV systems that take into account thermal and solar conditions to which 

PV systems are exposed.  While these models more accurately simulate the performance of 

specific PV modules, this level of detail is unnecessary for the purposes of this paper. A simplified 

model is created in Simulink that depends solely upon a single variable: solar irradiance. Despite 

this simplification, the model adequately simulates the performance of a real PV panel. 

 A photovoltaic cell can be modeled by the electrical circuit shown in Figure 3.2. The two 

most important components in the model are the ideal current source and the ideal diode, which 

are connected in parallel. This model includes two resistors, one connected in parallel with the 

current source and the other in series with the output. The terminal points A and B represent the 

output of the PV cell. 
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Figure 3.2: An electrical circuit used to model a PV cell. 

 

 The current source represents the electricity produced by the photovoltaic cell when 

illuminated. The parallel diode captures the unique and highly important nature of the P-N 

junction. The shunt resistance, RP, accounts for losses associated with a leakage current that 

appears when cells are connected in parallel. The series resistance, RS, accounts for losses in the 

path of the current flow, such as the inherent resistance in wires [37]. 

 Adding a second diode in parallel allows the electrical model to better simulate the output 

of a real PV cell, but doing this drastically increases the complexity of the mathematical model 

[38]. Instead of adding another diode, one can adjust the Shockley diode equation to incorporate 

an ideality factor and accomplish the same goal [39]. It is shown that the ideality factor provides 

a level of compensation that allows the single diode model to more accurately match the output 

of a real cell without unnecessarily complicating the mathematical model. This ideality factor will 

be discussed in more depth as the mathematical model of the PV cell is developed below. 

 Applying Kirchhoff’s Current Law (KCL) to the circuit in Figure 3.2 relates the currents 

flowing through each circuit element.  

 0 = 𝐼𝐼𝑃𝑃𝑃𝑃 − 𝐼𝐼𝐷𝐷 − 𝐼𝐼𝑃𝑃 − 𝐼𝐼𝑅𝑅 (7) 

 The current generated by the absorbed light at the P-N junction level is called the photon 

current and is represented by the term IPH. This current is highly dependent on the environmental 
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conditions, particularly sunlight and heat, to which the junction is exposed. An estimated value of 

the current can be calculated according to Equation (8) [40]. 

 𝐼𝐼𝑃𝑃𝑃𝑃 = 𝐼𝐼𝑠𝑠𝑠𝑠,𝑟𝑟𝑟𝑟𝑓𝑓
𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑓𝑓

�1 + ∆𝐼𝐼𝑠𝑠𝑠𝑠�𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓�� (8) 

 ISC,ref is the short circuit current under STC, Gref and Tref. These values can be found on most 

data sheets provided by the manufacturer of the PV panel. The solar irradiance of the sunlight 

striking the PV cell is G, and the temperature of the cell is included in the equation as the variable 

T. The term ΔISC is a correction factor used to adjust for the temperature deviation from STC. This 

correction factor is typically included on a manufacturer’s data sheet as well. This model does not 

take into account the effects of temperature, so the correction factor can be neglected.  

 The current flowing through the diode, ID, can be modeled by Shockley’s diode equation. 

The flow of current is highly dependent upon the semiconductor material, doping levels, and 

junction temperature [41]. Shockley’s equation simplifies the complex relationship to closely 

approximate the value of the current based upon the voltage across the junction, VD, and the 

junction temperature, T. The equation contains several constants, such as the elementary charge, 

q = 1.602x10-19 C, and Boltzmann’s Constant, k = 1.381x10-23 J/K. 

 
𝐼𝐼𝐷𝐷 = 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒

� 𝑞𝑞𝑉𝑉𝐷𝐷
𝑁𝑁𝑠𝑠𝑛𝑛𝑛𝑛𝑇𝑇

� − 1� (9) 

 The equation has an ideality factor, n, which is sometimes referred to as the emission 

coefficient. The inclusion of this variable coefficient allows the equation to more accurately model 

the behavior of real diodes that may have some imperfections at the junction level due to 

manufacturing difficulties. The ideality factor ranges from 1 to 2, and when it equals 1 the 

equation becomes Shockley’s ideal diode equation. In using the equation for modeling PV cells, 

the ideality coefficient is never one in order to account for the absence of a second diode. In many 



34 
 

applications the ideality factor is determined experimentally to adjust the mathematical model so 

it accurately simulates the performance of a specific PV module [20]. 

 The coefficient, Ns, is included in the equation when it is applied to PV systems, in 

accordance with industry standards. This variable identifies the number of cells connected in 

series for a given panel. This value is generally listed on the data sheet.  

 The reverse saturation current, Isat, is an important component of Equation (9). This 

variable is an innate aspect in the P-N junction and quantifies the current associated with the 

minority current carriers present in the semiconductor material.  The reverse saturation current 

can be calculated if one has knowledge of doping levels, physical dimensions, and certain physical 

properties associated with the semiconductor comprising the junction [41]. For the purposes of 

modeling a PV cell, such detailed information is generally not readily available, so many methods 

have been recommended that estimate values for the saturation current using values given on 

the manufacturer’s data sheet. It is shown that Equation (9) produces a sufficiently accurate value 

for the saturation current [37], so this equation is used for the model being developed in this 

paper.  

 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐼𝐼𝑠𝑠𝑠𝑠

�𝑒𝑒�
𝑞𝑞𝑉𝑉𝐷𝐷
𝑛𝑛𝑛𝑛𝑇𝑇� − 1�

 (10) 

 Returning to the electrical circuit in Figure 3.2, many models often neglect the shunt 

resistor. One reason for this is because the resistance of the shunt resistor can often be at least 

two orders of magnitude larger than the series resistance. Additionally, the effects of the shunt 

resistance only become noticeable when a significant number of cells are connected in parallel 

[38]. Generally PV cells are connected in series, so the series resistance has a much greater effect 

on the performance of the PV system. This paper does incorporate the shunt resistance and 

calculates rough approximations for both resistances based upon data sheet values [38]. 
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 𝑅𝑅𝑃𝑃 =
100 × 𝑉𝑉𝑂𝑂𝑂𝑂

𝐼𝐼𝑃𝑃𝑃𝑃
× �1 + ∆𝐼𝐼𝑠𝑠𝑠𝑠�𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓�� (11) 

   

 𝑅𝑅𝑅𝑅 =
0.01 × 𝑉𝑉𝑂𝑂𝑂𝑂

𝐼𝐼𝑃𝑃𝑃𝑃
× �1 + ∆𝐼𝐼𝑠𝑠𝑠𝑠�𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑓𝑓�� (12) 

Due to the unique relationship between current and voltage produced by a PV cell, this 

paper is interested in both the output voltage, VC, and the output current, IM, of the PV cell. It is 

beneficial to limit the mathematical equations describing the behavior of the electrical equivalent 

circuit to these two variables. Simple implementation of Ohm’s Law in Equation (13) conveys the 

voltage drop across the diode in terms of these two variables.  

 𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑂𝑂 + 𝑅𝑅𝑅𝑅 × 𝐼𝐼𝑅𝑅 (13) 

 Equations (8), (9), and (13) can be substituted into Equation (7) to produce Equation (14). 

Equation (14) is the mathematical equation that describes the operation of the electrical circuit 

in Figure 3.2. Equation (14) has three dependent variables, (G, VC, and IM) while the rest of the 

variables can be found on a manufacturer’s data sheet or using one of the several equations listed 

above. The solar irradiance, G, is an input parameter used to simulate different conditions and 

adjust the output power of the PV systems. The voltage across the cell’s output terminals, VC, and 

the current flowing out of the cell, IM, depend upon the operation of the inverter. 

 
𝑓𝑓(𝐺𝐺, 𝐼𝐼𝑅𝑅 ,𝑉𝑉𝑠𝑠) =  

𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑓𝑓

× 𝐼𝐼𝑠𝑠𝑠𝑠 −
𝑉𝑉𝑂𝑂
𝑅𝑅𝑃𝑃

− 𝐼𝐼𝑅𝑅 × �1 +
𝑅𝑅𝑅𝑅
𝑅𝑅𝑃𝑃
� − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒

�𝑞𝑞(𝑉𝑉𝐶𝐶+𝑅𝑅𝑆𝑆×𝐼𝐼𝑀𝑀)
𝑁𝑁𝑠𝑠𝑛𝑛𝑛𝑛𝑇𝑇

� − 1�

= 0 

(14) 

 Equation (14) is highly non-linear and cannot be solved analytically, so it must be solved 

numerically. The equation can be solved by assigning a value to the solar irradiance, G, and the 

output voltage, VC, then using one of several techniques to approximate the output current, IM. 

The computer program MATLAB has a function called fsolve that can calculate the current 
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corresponding to a specific voltage.  One can also use Newton’s method as another approach 

solving the equation. 

 
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛼𝛼

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) (15) 

 Newton’s method employs an iterative process to find an approximate solution to a given 

function. The function must be defined with a single variable and written to equal zero. An initial 

value is estimated for the variable. Newton’s method plugs this value into the function and 

calculates the result. It also calculates the derivative of the function for that value. The function 

and the derivative are compared to one another to calculate a new value for the variable that is 

closer to actual solution. This constitutes one step of the Newton method. It is represented in 

Equation (15) and the Simulink implementation is shown in Figure 3.3. Newton’s method uses the 

derivative of Equation (14) taken with respect to current, so the derivative is presented in 

Equation (16).  

 
𝑓𝑓′(𝐼𝐼𝑅𝑅) =

𝜕𝜕
𝜕𝜕𝐼𝐼𝑅𝑅

[𝑓𝑓(𝐺𝐺, 𝐼𝐼𝑅𝑅 ,𝑉𝑉𝑂𝑂)] =  −�1 +
𝑅𝑅𝑅𝑅
𝑅𝑅𝑃𝑃
� −

𝑞𝑞𝑅𝑅𝑅𝑅𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑅𝑅𝑛𝑛𝑛𝑛𝑇𝑇

𝑒𝑒
𝑞𝑞(𝑉𝑉𝐶𝐶+𝑅𝑅𝑆𝑆𝐼𝐼𝑀𝑀)

𝑁𝑁𝑠𝑠𝑛𝑛𝑛𝑛𝑇𝑇  (16) 

There exists a tradeoff between time and accuracy with Newton’s method. As each 

Newton step pushes the results closer to the actual solution, it is clear that executing fewer 

iterations takes less time to perform but yields less accurate results. As such, the precision of the 

output is used to determine the number of Newton steps necessary to yield desirable outputs. By 

comparing the results of Newton’s method to the fsolve command, five iterations of Newton’s 

method provide sufficiently accurate results (<1 % difference). Tests show that Newton’s method 

requires considerably less computation time than fsolve, 0.0022 s to 1.5853 s respectively. As a 

result, the model presented in this paper uses five Newton steps to approximate the solution to 

Equation (14) to save on computational power without sacrificing accuracy.  
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Figure 3.3: A single Newton step in the Simulink model 

 

 In this way, one can approximate a single operating point of the PV cell exposed to that 

level of solar irradiance. By assigning a different output voltage, the equation can be solved again 

to identify a second operating point of the PV cell. Solving the equation to find the corresponding 

output currents for many values of VC that exist between 0 and VOC allows one to create the I-V 

curve for that PV cell under a given level of solar irradiance.  

The model now has the capabilities of simulating the performance of an individual PV cell. 

All that remains is finding values to plug into the above equations so the model can run. While 

any values can be selected in theory, it is desired that the Simulink model simulates the output of 

a real PV system. As such, the next step is choosing an actual PV panel to emulate so that the data 

sheet values associated with that template can be used to find values for coefficients in the 

previous equations. 

3.1.2 Adjusting the Model to the Whole System 

A Simulink model has been developed that can simulate the performance of a single PV 

cell under a given solar irradiance; however, this model must be adjusted to match the entire PV 

system that will be used with the proposed inverter. The model must first be scaled to simulate 

the output of a real PV panel to verify the accuracy and capabilities of the model. The model will 
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then be adjusted so that it is capable of mimicking the performance of independently operating 

PV systems that collectively produce a sufficiently high output voltage.  

In general, PV panels are simply multiple cells connected in series, so adjusting the PV cell 

model is not terribly difficult. Specifically, Equation (9) contains a coefficient, NS, in the calculation 

of the diode current that accounts for having multiple cells connected in series.  Furthermore, the 

other variable coefficients scale proportionally to the number of cells in series due to the nature 

of the electrical circuit model of the PV cell. Specifically, the series and shunt resistances from one 

cell to the next are connected in series with one another and can be scaled accordingly. As such, 

the equations used to model the PV cell can model multiple cells in series by simply adjusting the 

coefficient NS. As a result, values can be taken directly off the data sheet and plugged into the 

equations, and the Simulink model will accurately simulate the performance of the entire PV 

panel. The Simulink model that is developed in this paper is used to imitate the output of a real 

photovoltaic module (Grape Solar model: GS-P-280-Fab1). Values for various variables used in the 

model are extracted from the module’s manufacturer’s data sheet, which can be found in 

APPENDIX A. 

Once the functionality of the Simulink model is proven, some slight changes are necessary 

to model a PV system that serves the exact purpose of this paper. To increase efficiency and power 

quality, the inverter introduced in this paper wishes to connect the PV system to the utility grid 

without the need for an additional voltage gain. To accomplish this task, the PV system must 

produce voltage at sufficiently high levels to allow for grid connectivity, namely greater than 

170 V DC. A single panel does not produce voltage at this level, so multiple panels must be 

connected in series to produce voltage at the necessary level. Connecting panels in series 

essentially multiplies the number of individual PV cells connected in series. Luckily the same 
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approach as earlier can be taken to scale the model to simulate series connected panels: 

increasing the variable coefficients proportionately to the number of cells in series.  

The Grape Solar PV panel produces 35.8 V DC when operating at its maximum power 

point under STC. As such, 5 modules can be connected in series to provide sufficiently high voltage 

to allow for grid connectivity without the need for additional voltage gain. The model is adjusted 

so that the number of cells connected in series, NS, increased from 72 (one panel), to 360 (five 

panels). In real applications, more than 5 panels would be connected in series to ensure that 

sufficiently high voltage levels are produced because conditions are often less favorable than STC; 

however, this scenario is sufficient for demonstration purposes.  

It is desirable that this large PV system be partitioned in a way so as to simulate the 

behavior of smaller independent PV modules whose collective output voltage is equivalent to that 

of the large PV model (5 panels connected in parallel). In the same way that the model is easily 

scaled to accommodate additional cells connected in series, the larger model can be easily 

partitioned to reflect fewer cells in series. The size of each smaller PV module could be as little as 

one cell operating independently or as large as 180 cells operating in series. The number of cells 

connected in series will determine the number and size of independently operating PV modules. 

There are 360 cells that are available in the larger PV system that must be included in the smaller 

PV modules to guarantee that the necessary output is produced.  

Each smaller PV module will serves as an input DC source for the proposed inverter. It is 

desirable to have as many input sources as possible. As discussed earlier, increasing the number 

of levels in the inverter’s output waveform generally improves the quality of the output 

waveform. Additionally, the performance of the PV system improves when fewer cells are 

connected in series because the effects of partial shading are reduced and MPPT can be 

performed at a higher granularity.  
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The proposed inverter uses four PV systems, N = 4, to serve as independent input DC 

voltage sources, as this is the minimum number of inputs that sufficiently demonstrate the 

capabilities of the inverter. By demonstrating the inverter works with four input sources, the 

performance reveals that the inverter is able to work with any number of input sources. The 

simulation uses the minimum number of inputs necessary in order to reduce the computational 

power and amount of time required to run simulations. 

3.2 Maximum Power Point Tracking 

In dynamic systems, myriad maximum power point tracking, MPPT, techniques exist to 

accurately track, in real time, the operating point that produces the most power. These 

techniques typically analyze the current and voltage that are produced by the PV system and 

adjust a specific parameter that causes the system to operate at a point closer to its MPP. These 

techniques are extremely effective in ensuring that the operating point closely follows the MPP. 

The Simulink model of the PV systems discussed in this paper is not as complex as a real 

PV system. The model simply generates an output based on Equation (14). Looking at the 

equation, it is apparent that the I-V curve produced by the system can be determined if the level 

of solar irradiance is known. Complicated MPPT techniques are not needed for computer 

simulations involving the proposed inverter because the level of solar irradiance is given as an 

input value, as shown in the figure below. 
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Figure 3.4: Using Newton’s method to perform MPPT in Simulink model 

 

MPPT in this paper is calculated exclusively using the solar irradiance. Equation (14) is 

modified using Ohm’s Law, as implemented in Equation (13), to be a function of solar irradiance, 

G, the output current, IM, and the voltage across the diode, VD. This equation is rearranged so that 

the output current can be written using only the solar irradiance and voltage across the diode, as 

shown in Equation (17). Please note, that when performing MPPT, the solar irradiance will be 

known so it is considered a constant. 

 
𝐼𝐼𝑅𝑅 =

𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑓𝑓

× 𝐼𝐼𝑠𝑠𝑠𝑠 −
𝑉𝑉𝐷𝐷
𝑅𝑅𝑃𝑃

− −𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒
� 𝑞𝑞𝑉𝑉𝐷𝐷
𝑁𝑁𝑠𝑠𝑛𝑛𝑛𝑛𝑇𝑇

� − 1� (17) 

The power delivered to the PV system is the product of the output current, IM, and the 

voltage across the capacitor, VC. This is written to exclude the term VC, using Equation (13), as, 

 𝑃𝑃(𝐼𝐼𝑅𝑅 ,𝑉𝑉𝐷𝐷) = 𝐼𝐼𝑅𝑅 × (𝑉𝑉𝐷𝐷 − 𝑅𝑅𝑠𝑠 × 𝐼𝐼𝑅𝑅) (18) 

This equation can be rewritten as a function of the unknown variable, VD, by plugging 

Equation (17) into (18). Basic calculus indicates that a local maximum or minimum exists at a point 

on a function where the derivative is zero. To find the maximum power produced by the PV system 

for a given solar irradiance, one must take the derivative of Equation (18) and set it equal to zero. 
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Finding a value for VD that solves Equation (19) will yield the value for VD that corresponds to the 

MPP. The derivative is shown below.  

 𝜕𝜕
𝜕𝜕𝑉𝑉𝐷𝐷

[𝑃𝑃(𝐼𝐼𝑅𝑅 ,𝑉𝑉𝐷𝐷)] = 0 (19) 

Newton’s method is employed to solve for the unknown variable, VD, in Equation (19). 

This requires taking the second derivative of Equation (18) with respect to VD; however, that 

equation will not be shown. It requires six Newton steps to generate a reasonably accurate 

voltage across the diode associated with the MPP. The Simulink block calculating MPP is shown in 

Figure 3.4. The subsystem that performs a single Newton step is presented in Figure 3.5. 

 

Figure 3.5: Simulink implementation of a single Newton step for MPPT 

 

The value produced by the MPP block, VD, can be plugged into Equation (17) and then 

(13) to yield the output current and output voltage of the PV system’s MPP. These values are fed 

to the inverter’s controller, which adjusts certain operating parameters of the inverter to push 

the PV systems towards the MPP. 

3.3 Control Scheme 

A single controller exists to monitor the performance of the inverter and orchestrate the 

operation of the switches in Figure 3.6. The control scheme is established with two goals in mind: 
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eliminate harmonic content in the output voltage waveform and deliver electricity to the grid at 

unity power factor. It is not possible to achieve both goals simultaneously because of certain 

physical restraints inherent in the topology. The control system employs a constrained 

optimization approach to coordinate the low frequency switching in a way that minimizes 

harmonic distortion and reactive power in the output.  

 

Figure 3.6: Topology of the proposed inverter 

 

The control of the switching can be divided into two logical categories: sub-module 

switching and utility-level switching. Sub-module switching involves switches S1 – S8 in Figure 3.6 

that are directly connected to the outputs of the PV modules.  These switches determine the 

shape of the output voltage waveform and influence the power factor of the electricity supplied 

to the grid. Switches S1,1 – S2,2 in Figure 3.6 are the utility-level switches. These periodically reverse 

the polarity of the voltage waveform to produce an AC voltage. 
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3.3.1 Sub-Module Switching 

The sub-module switches control which input DC voltage sources contribute to the output 

voltage of the inverter. The voltage potential across terminals 1 and 2 in Figure 3.6 depends upon 

the number of inputs connected in series to the terminals. The controller changes the number of 

inputs to change the voltage potential across the terminals. Strategic coordination of the sub-

module switches generates a stepped output waveform. The exact logic that determines when an 

input is connected depends upon the voltage levels of that input.   

 Each input has a pair of switches associated with it, for example S1 and S2 are associated 

with Input 1. The odd numbered switch connects the input in series with terminals 1 and 2 when 

closed. To simplify the explanation, the odd numbered switches will be the focus of the remaining 

discussion.  

 The state of the switches reveal if the inputs are connected or bypassed and thus can be 

used to describe the voltage potential across terminals 1 and 2. The switching function, q, 

indicates that a switch is open or closed by taking a value of 0 or 1, respectively. This paper will 

use qi to describe the state of the odd switch associated with the i-th input. For example, q2 = 1 

reveals that S3 is closed and input 2 is initially connected. The voltage potential seen across the 

output terminals 1-2 is labeled as vdc. This equals to the sum of input voltages, VC,i, that are 

connected in series at a given time. There are 4 independent PV systems, and thus N = 4 input DC 

voltage sources. Using this nomenclature, the voltage potential across terminals 1 and 2 can be 

expressed as a function of the phase angle of the grid voltage, θV, as shown in Equation (20). 

 
𝑣𝑣𝑓𝑓𝑠𝑠(𝜃𝜃𝑣𝑣) = �𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)

𝑁𝑁

𝑖𝑖=1

𝑉𝑉𝑠𝑠,𝑖𝑖 (20) 

The value of the switching function can be identified with respect to the time that the 

switch opens. Specifically, the odd numbered switch associated with the i-th input is instructed to 
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close (qi1) when θV = θi,on and open when θV = θi,off. Moreover, if a switch is open initially, 

qi(θV=0) = 0, the instruction to close will precede the instruction to open. If, however, the switch 

is closed at the beginning of the cycle, the order that the instructions are given will be reversed. 

The equation below captures this idea and defines the value of the switching function as a 

function of θV.  

𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣) =

⎩
⎪
⎨

⎪
⎧

1,
 

1,
 

0,

 

 𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛   <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

⋂ 

⋂ 

 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  ≤ 𝜃𝜃𝑣𝑣 ≤  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

�𝜃𝜃𝑣𝑣 ≤  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓      ∪      𝜃𝜃𝑣𝑣 ≥  𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛� 

 

(21) 

 The control scheme is responsible for choosing when each input should be connected, so 

the controller assigns values to θi,on and θi,off. These values dictate the shape and phase of the 

output waveform, which affect the THD and power factor. The voltage produced by each PV 

system plays a crucial role in determining when that input will be connected. The controller uses 

the input capacitor voltages to coordinate the sub-module switching in order to produce the 

optimal shape for the output voltage waveform. Optimizing the shape of the waveform minimizes 

THD in the output.  

The periodic nature of vdc enables the qualities of the waveform to be described 

mathematically. In a steady state situation, the voltage across each input capacitor will remain 

constant. It follows that the values of θi,on and θi,off will not change, so the close and open 

commands will be sent to each switch at the same time every half-cycle. In this way the function 

vdc repeats itself and becomes periodic, as portrayed in Equation (22).  

 𝑣𝑣𝑓𝑓𝑠𝑠(𝜃𝜃𝑣𝑣) = 𝑣𝑣𝑓𝑓𝑠𝑠(𝜃𝜃𝑣𝑣 + 𝜋𝜋) (22) 

The H-bridge inverter reverses the polarity of vdc every half cycle to simplify the 

mathematical analysis of the Fourier series. The strictly positive signal, vdc, is transformed into an 

AC signal when it passes through the H-bridge. These different output waveforms are depicted in 
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Figure 3.1b and c. The Fourier series can now be used to quantify the harmonic content present 

in vdc, which will be used to calculate optimal values for θi,on and θi,off. 

3.3.2 Calculating THD 

The controller calculates THD in the output voltage waveform, vac. The output can be 

described in terms of vdc as the H-bridge simply reverses the polarity of vdc. Using Equation (20), 

the output voltage can be written simply as a function of the phase angle of the grid voltage, θV, 

and the input capacitor voltage, VC,i.  

 

𝑣𝑣𝑠𝑠𝑠𝑠(𝜃𝜃𝑣𝑣) =

⎩
⎪
⎨

⎪
⎧ �𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)𝑉𝑉𝑂𝑂,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,     

−�𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣 − 𝜋𝜋)𝑉𝑉𝑂𝑂,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

,

 

 𝜃𝜃𝑣𝑣 ∈ [𝑜𝑜,𝜋𝜋] 

 

 

𝜃𝜃𝑣𝑣 ∈ [𝜋𝜋, 2𝜋𝜋] 

(23) 

 The output waveform can also be described using the Fourier series as in the equation 

below. Note that the a0 term in Equation (24) corresponds to the DC component in the waveform. 

Ideally this term will equal zero because there should be no DC component in the output AC 

waveform. 

 
𝑣𝑣𝑠𝑠𝑠𝑠(𝜃𝜃𝑣𝑣) =  𝑎𝑎0 + �(𝑎𝑎𝑛𝑛 cos(𝑛𝑛𝜃𝜃𝑣𝑣) + 𝑏𝑏𝑛𝑛sin(𝑛𝑛𝜃𝜃𝑣𝑣))

∞

𝑛𝑛=0

 (24) 

The fundamental component is an important aspect of the output waveform because it 

is used to calculate the THD in the signal. The fundamental includes all terms where n=1. The 

fundamental component of the output voltage is: 

 𝑣𝑣𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓(𝜃𝜃𝑣𝑣) =  𝑎𝑎1 cos(𝜃𝜃𝑣𝑣) + 𝑏𝑏1sin(𝜃𝜃𝑣𝑣) (25) 

The fundamental component of the output voltage contains the fundamental Fourier 

components, a1 and b1. These components are defined using Equation (2). 
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𝑎𝑎1 =

1
𝜋𝜋
� 𝑣𝑣𝑠𝑠𝑠𝑠(𝜃𝜃𝑣𝑣) cos(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

2𝜋𝜋

0

 (26) 

   

 
𝑏𝑏1 =

1
𝜋𝜋
� 𝑣𝑣𝑠𝑠𝑠𝑠(𝜃𝜃𝑣𝑣) sin(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

2𝜋𝜋

0

 (27) 

 The interval 0-2π rad comprises a single period. Equation (23) shows that the waveform 

repeats itself, though with opposite polarity, twice in a single period. As such, the integral taken 

from 0-π rad will produce the same value as that taken from π-2π rad. Thus, Equations (26) and 

(27) can be rewritten to simplify the analysis. Only the fundamental Fourier component a1 will be 

elaborated to demonstrate this point.   

 
𝑎𝑎1 =

2
𝜋𝜋
��𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)𝑉𝑉𝑠𝑠,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

cos(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜋𝜋

0

 (28) 

 The switching function will take a discrete value of zero or one. The expression for the 

fundamental Fourier components can be further simplified to only those intervals where the 

switching function takes a value of one. Such intervals can be expressed using the unknown 

variables θi,on and θi,off. Care must be taken in this step as the order of θi,on and θi,off impacts the 

expression and solution.  

 

𝑎𝑎1 =
2
𝜋𝜋
�𝑉𝑉𝑠𝑠,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

⎩
⎪⎪
⎨

⎪⎪
⎧

� cos(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜

,

� cos(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

0

+ � cos(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜋𝜋

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜

,

 

 𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  & <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

 

 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  & >  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

(29) 

 Integrating these expressions yields:  

 
𝑎𝑎1 =

2
𝜋𝜋
�𝑉𝑉𝑠𝑠,𝑖𝑖�sin�𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓� − sin�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛��
𝑁𝑁

𝑖𝑖=1

 
  

(30) 
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𝑏𝑏1 =

2
𝜋𝜋
�𝑉𝑉𝑠𝑠,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�
cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛� − cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓�,       
cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛� − cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓� + 2,

 
 𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  & <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  & >  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 
(31) 

  Equation (25) is an expression for the voltage produced with respect to the cosine of θV. 

Unfortunately, the proposed inverter model is designed with respect to the sine of θV, so the 

equation must be adjusted to reflect that. This adjustment can be made by introducing a phase 

shift of π/2 to the equation. Furthermore, all of the previous expressions have been written as a 

function of the phase angle of the inverter’s output voltage. To ensure synchronization with the 

grid, it is necessary to write this expression as a function of the grid voltage. A phase shift exists 

between the grid voltage and the inverter voltage, reasons for which will be discussed shortly. As 

a result, the inverter’s voltage will lead the grid voltage by the phase angle, φV. Thus, a phase shift 

of both π/2 and φV must be included. When Equation (25) is converted into phasor form and these 

adjustments are incorporated, the fundamental component of the output waveform can be 

written as: 

 
𝑉𝑉�𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 = �𝑎𝑎12+𝑏𝑏1

2∠ �tan−1 �
−𝑏𝑏1
𝑎𝑎1

� +
𝜋𝜋
2

+ 𝜑𝜑𝑣𝑣� (32) 

 The root mean square, RMS, value is important in calculating THD, as it compares the RMS 

value of the fundamental component to the RMS value of the entire signal. The RMS value of 

Equation (32) is simply computed by taking the absolute value of the phasor. The controller 

calculates the RMS value of the entire function according to Equation (33). 

 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 = �
1

𝑇𝑇2 − 𝑇𝑇1
� [𝑓𝑓(𝑡𝑡)]2𝑑𝑑𝑡𝑡

𝑇𝑇2

𝑇𝑇1

 (33) 

 The function of concern here is vac, whose periodic nature within a cycle once again allows 

simplification of the analysis. As has been stated previously, vac repeats itself, though with 
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opposite polarity, twice in a single period.  This function will be squared before taking the integral, 

so the scope of the equation can be reduced to the interval from 0-π rad instead of the entire 

interval, 0-2π rad. This will not change the results, but it will simplify the equation. The RMS value 

of the output voltage produced by the inverter is captured in Equation (34).  

 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝜋𝜋
� ��𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)𝑉𝑉𝑂𝑂,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

2

𝑑𝑑𝜃𝜃𝑣𝑣

𝜋𝜋

0

 (34) 

 This can be expanded, 

 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝜋𝜋
��𝑉𝑉𝑂𝑂,𝑖𝑖𝑉𝑉𝑂𝑂,𝑗𝑗𝑗𝑗

𝑁𝑁

𝑗𝑗=1

� 𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)𝑞𝑞𝑗𝑗(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜋𝜋

0

𝑁𝑁

𝑖𝑖=1

 (35) 

 And rewritten as: 

 
𝑉𝑉𝑠𝑠𝑠𝑠,𝑅𝑅𝑅𝑅𝑅𝑅 = �1

𝜋𝜋
𝑉𝑉𝑂𝑂𝑇𝑇𝛿𝛿𝑖𝑖,𝑗𝑗𝑉𝑉𝑂𝑂  (36) 

 In Equation (36), VC is an Nx1 vector that includes the values of each capacitor voltage. δi,j 

is an NxN matrix that captures the state of the switching functions. Notably the value in the ixj 

place in the δ matrix equals 1 if and only if the switching functions associated with both the i and 

j inputs equal one. Equations (35) and (36) cannot be expressed as functions of θi,on and θi,off 

because the status of each switch and its relationship to every other switch is important. As a 

result, the fundamental component of the output waveform can be compared to the entire 

output waveform, and the THD can be calculated according to Equation (37). 

 
𝑇𝑇𝑇𝑇𝑇𝑇 = �

𝑉𝑉𝑠𝑠𝑠𝑠,𝑅𝑅𝑅𝑅𝑅𝑅
2 − 𝑉𝑉𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅

2

𝑉𝑉𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅
2  (37) 
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The control strategy seeks to reduce the THD in the output voltage waveform. To 

accomplish this, the controller calculates the THD initially. It then adjusts the operating times of 

each switch to change the shape of the waveform in attempt to reduce the harmonic content. 

3.3.3 Power Factor Control 

The general function of the proposed inverter is supplying power to a utility grid. In 

discussing power systems, the focus is often placed on complex power, S. Complex power is a 

combination of real and reactive power, which are represented by P and Q respectively in 

Equation (38)(39). The values of real and reactive power are determined based upon the 

magnitude of the complex power and the phase angle between the voltage and current. Although 

the injection of reactive power can be extremely helpful in certain higher voltage scenarios, the 

proposed inverter attempts to deliver strictly real power to the utility grid.  

 𝑆𝑆 = 𝑃𝑃 + 𝑗𝑗𝑗𝑗 (38) 

 Certain effects introduced by specific elements in the proposed topology must be 

accounted for to reduce the amount of reactive power injected into the grid. As with the majority 

of inverters, the proposed inverter uses an inductor to filter the output current, as can be seen in 

Figure 3.6, and reduce undesirable distortion. An inductor acts as an energy storage device and 

looks like an impedance to an AC signal. When AC power flows through the inductor, this 

impedance changes the phase angle between the voltage and current, which changes the amount 

of reactive power present in the signal. The control scheme produces voltage that leads the 

current in order to offset the phase shift introduced by the inductor. In this way the controller 

minimizes the reactive power injected into the grid. The first step in this process is calculating the 

current flowing to the grid. This calculation can be performed according to Equation (39).  

 
𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 =

𝑉𝑉�𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 − 𝑉𝑉𝑔𝑔�
𝑗𝑗𝑛𝑛𝑗𝑗

 (39) 
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Equation (39) is written with respect to the fundamental components of the current and 

voltage. The fundamental component delivers average power to the load and is of utmost 

importance. Although non-fundamental components will influence the overall output, this 

portion of the control scheme focuses on optimizing the average power delivered to the grid and 

thus focuses exclusively on the fundamental component. It should be noted from Equation (32) 

that the inverter’s output voltage, vac, is dependent upon the phase angle between the grid 

voltage and the output voltage of the inverter, φV. This relationship has a very strong impact on 

the current fed to the grid as it is calculated in Equation (39).  

For the purposes of this simulation, it is assumed that the grid acts exactly as expected. It 

is modeled as a perfect sinusoid with an RMS voltage of Vg,RMS = 120 V. Moreover, the phase angle 

of the grid voltage is set to zero for simplicity because all the phase angles are established relative 

to the grid voltage. These details are expressed below. 

 𝑉𝑉𝑔𝑔� = 120∠0 V (40) 

 The complex power can be calculated based upon the current fed to the grid. Complex 

power is often defined as the product of the voltage times the conjugate of the current, which 

captures the relationship between the phase angles of the current and voltage. In this system, 

there are multiple voltages and currents, so care must be taken in identifying which values to use. 

To calculate the complex power delivered to the grid, one must use the grid voltage and the 

current injected into the grid, according to Equation (41).  

 𝑆𝑆𝑔𝑔 = 𝑉𝑉𝑔𝑔� 𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓
∗ (41) 

 The reactive power is easily determined from the complex power. According to Equation 

(38) the reactive power is simply the imaginary component of the complex power. Thus, the 

reactive power supplied to the grid is simply the imaginary component of Equation (41). 
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 𝑗𝑗𝑔𝑔 = Im�𝑆𝑆𝑔𝑔� (42) 

 The control strategy attempts to reduce the reactive power injected into the grid. 

The control strategy measures the reactive power first. It then adjusts the phase angle between 

the inverter’s output voltage and the grid voltage, φV, in order to decrease the amount of reactive 

power supplied to the grid. In this way the controller minimizes Qg. 

3.3.4 The Constraint 

Instead of completely eliminating the reactive power and the THD present in the output 

waveform, the controller can only minimize the amount that is injected into the grid. The 

controller must account for constraints introduced by the inverter’s topology when calculating 

operating conditions. The main constraint stems from the law of conservation of energy and 

Kirchhoff’s Current Law. In a broad sense these laws imply that the current flowing out of the 

inverter must equal the current flowing into the inverter. The controller knows that the PV 

systems are operating near their MPP’s and uses the MPP current values as an input value for 

calculations, as seen in Figure 3.7. The controller compares the average current produced by the 

PV systems to the average current injected into the grid to ensure that these values match and 

the laws are not violated.  
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Figure 3.7: Simulink Model of entire system including PV systems, proposed inverter and grid 

 

In accordance with KCL, when an input PV system is connected in series with the output, 

the current flowing through that input is equal to the current being supplied to the grid. It is 

necessary that the average current drawn from an input source match the average current 

produced by that source. This relationship establishes the constraint. It has been previously 

explained that the switches are connected at the same phase angle every half period. As such, 

one can look at the interval from 0-π rad and know that it contains the same information as the 

interval 0-2π rad. Of chief concern to the constraint is the average current flowing through an 

input, īi, which is expressed as a function of the output current and the switching function 

associated with that input. 

 
𝚤𝚤𝚤𝚤� =

1
𝜋𝜋
� 𝑞𝑞𝑖𝑖(𝜃𝜃𝑣𝑣)𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓(𝜃𝜃𝑣𝑣)𝑑𝑑𝜃𝜃𝑣𝑣

𝜋𝜋

0

 (43) 

 The term Iac,fund(θV) is equivalent to the phasor value presented in Equation (39), just 

rewritten in a different form. The variables introduced in its definition below, Iac,fundRMS and φI, are 
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simply the magnitude and phase angle associated with the fundamental component of the output 

current. These can be easily determined from the phasor form. 

 𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓(𝜃𝜃𝑣𝑣) = √2𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 sin(𝜃𝜃𝑣𝑣 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼) (44) 

 When the i-th switch is closed, current flows through the i-th input. This is the only time 

that the output current flows through the input system and contributes to the average current 

flowing through the input over the course of the period. As a result, Equation (43) can be rewritten 

with respect to θi,on and θi,off to focus exclusively on the intervals when the switch is closed.  

𝚤𝚤𝚤𝚤� =
√2
𝜋𝜋
𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅

⎩
⎪⎪
⎨

⎪⎪
⎧

� sin(𝜃𝜃𝑣𝑣 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼)

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜

𝑑𝑑𝜃𝜃𝑣𝑣,

� 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃𝑣𝑣 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼)

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

0

𝑑𝑑𝜃𝜃𝑣𝑣 + � 𝑒𝑒𝑖𝑖𝑛𝑛(𝜃𝜃𝑣𝑣 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼)
𝜋𝜋

𝜃𝜃𝑖𝑖,𝑜𝑜𝑜𝑜

𝑑𝑑𝜃𝜃𝑣𝑣,

 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛  <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

 

 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓  <   𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 

(45) 

 Taking the integral yields: 

𝚤𝚤𝚤𝚤� =
√2
𝜋𝜋
𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 �

cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼� − cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼�
2 cos(−𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼) cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼� − cos�𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 − 𝜑𝜑𝑉𝑉 + 𝜑𝜑𝐼𝐼�

 
𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 <  𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 

 

𝜃𝜃𝑖𝑖,𝑜𝑜𝑓𝑓𝑓𝑓 < 𝜃𝜃𝑖𝑖,𝑜𝑜𝑛𝑛 
(46) 

This average current is then calculated according to Equation (46).  Simultaneously, the 

MPPT technique, described in Section Maximum Power Point Tracking, calculates the current that 

the PV systems produce. The controller compares these two currents. The difference between 

these two currents must equal zero. This equation represents the constraints that must be met 

when the controller minimizes THD and reactive power. 

3.4 Simulink Implementation 

The Main Controller block shown in Figure 3.7 executes the control strategy for the 

proposed inverter. Figure 3.8 shows a more detailed view of the controller block as it exists in the 

Simulink model. The inputs are fed to the Interpreted MATLAB Function block that runs a script 

to calculate the optimal switching times for the switches. The script essentially analyzes the 
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inverter’s performance and modifies the appropriate variables to improve the performance. The 

block executes the script once every cycle to periodically update the control parameters and 

ensure optimal performance of the inverter.  

 

Figure 3.8: Simulink subsystem that constitues the main controller of the proposed inverter 

 

The Matlab script executed by the Interpreted MATLAB Function block uses the Matlab 

function fmincon. This command attempts to find solutions for functions that contain several 

interdependent variables. Due to the presence of a constraint, absolute solutions for these 

variables do not exist. The command fmincon performs a type of minimization so as to produce 

values for the variables that satisfy the function as closely as possible under the defined 

constraint. The script uses Equations (30) - (32), (36), and (39) to quantify the important 

characteristics of the output. The script compares the results of Equation (46) to the MPP current. 

This comparison constitutes the constraint in fmincon that cannot be violated because the 

average current flowing out of the inverter must equal the current being delivered to the inverter. 

Equation (37) and (42) are executed to calculate the distortion in the output, THD, and the reactive 
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power delivered to the grid, Qg. The function fmincon attempts to minimize these two variables 

by adjusting the values of φV, θi,on and θi,off. 

3.5 Comparable VSI Inverter 

The performance of the proposed inverter is compared to that of a string inverter due to 

the similarities between the two topologies. Each topology uses the conglomerated output of 

multiple PV panels. Both are capable of producing the same level of power. Both inverters 

produce voltage at the utility grid level without using any voltage gain techniques. The string 

inverter uses the VSI control technique to be comparable to the low frequency switching used by 

the proposed inverter.  Despite these strong parallels, the model of the string inverter developed 

in Simulink is noticeably different than the model of the proposed inverter. The Simulink model is 

shown in Figure 3.9. 

 

Figure 3.9: VSI developed in Simulink 

 

One major difference between the two Simulink models is how the PV modules operate 

relative to one another. In the proposed inverter, each PV module operates independently. In the 

string inverter, the PV modules are all connected in series and the performance of one module 

affects the performance of all the others. The same general approach described previously is 
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taken to simulate the behavior of the PV modules for the VSI, but a different mathematical 

relationship exists to capture the series connection between modules.  

Equation (16) still describes the performance of an individual PV module. For the 

proposed inverter, this equation is solved individually for each PV module because the current, 

voltage and solar irradiance associated with one PV module are independent of any other module. 

When Equation (16(16) is applied to each PV module in the VSI inverter – portrayed in Equation 

(47) – multiple equations are introduced that share the unknown variable IM. This establishes a 

system of non-linear equations that must be solved collectively.  

𝑓𝑓𝑖𝑖 =  
𝐺𝐺
𝐺𝐺𝑟𝑟𝑟𝑟𝑓𝑓

× 𝐼𝐼𝑠𝑠𝑠𝑠 −
𝑉𝑉𝑂𝑂,𝑖𝑖

𝑅𝑅𝑃𝑃
− 𝐼𝐼𝑅𝑅 × �1 +

𝑅𝑅𝑅𝑅
𝑅𝑅𝑃𝑃
� − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒

�
𝑞𝑞�𝑉𝑉𝐶𝐶,𝑖𝑖+𝑅𝑅𝑆𝑆×𝐼𝐼𝑀𝑀�

𝑁𝑁𝑠𝑠𝑛𝑛𝑛𝑛𝑇𝑇
�
− 1� = 0,     𝑖𝑖 = 1,2, … ,𝑛𝑛 (47) 

 There are n+1 unknown variables introduced in Equation (47) but only n functions. The 

unknown variables include the output voltage of each PV module, VC,i, and the common current 

flowing through each module, IM. The voltage output of the entire PV system, Vdc, equals the sum 

of the voltages produced by each PV module because the modules are connected in series. This 

relationship is depicted in Equation (48) and is important because it introduces a new equation 

without introducing any new unknown variable.  

 
𝑓𝑓𝑛𝑛+1 = 𝑉𝑉𝑓𝑓𝑠𝑠 −�𝑉𝑉𝑂𝑂,𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 (48) 

 One must apply the Newton-Raphson method to solve this system of equations. To do 

this, all the unknown variables are combined into a single vector variable, x, according to Equation 

(49). Similarly, each equation is included in a vector that comprises a single vector-valued 

function, f(x). Unlike the Newton method, a simple derivative of this function cannot be calculated 

due to the multivariable nature of the x. the Jacobian matrix, J(x), must be used to include all the 

partial derivatives of the function. 



58 
 

 𝑥𝑥 = �𝑉𝑉𝑂𝑂,1,𝑉𝑉𝑂𝑂,2, … ,𝑉𝑉𝑂𝑂,𝑛𝑛, 𝐼𝐼𝑅𝑅�
𝑇𝑇

 (49) 

   

 𝑓𝑓(𝑥𝑥) = [𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛, 𝑓𝑓𝑛𝑛+1]𝑇𝑇 (50) 

   

 

𝐽𝐽(𝑥𝑥) =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝑓𝑓(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝜕
𝜕𝜕𝑉𝑉𝑂𝑂,1

𝑓𝑓1 ⋯
𝜕𝜕
𝜕𝜕𝐼𝐼𝑅𝑅

𝑓𝑓1

⋮ ⋱ ⋮
𝜕𝜕

𝜕𝜕𝑉𝑉𝑂𝑂,1
𝑓𝑓𝑛𝑛+1 ⋯

𝜕𝜕
𝜕𝜕𝐼𝐼𝑅𝑅

𝑓𝑓𝑛𝑛+1⎦
⎥
⎥
⎥
⎥
⎤

 (51) 

The Newton-Raphson method uses the Jacobian matrix to solve for the unknown variable 

x. This deviation from the Newton method is captured in the following equation.  

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝛼𝛼𝐽𝐽−1�𝑥𝑥𝑛𝑛�𝑓𝑓�𝑥𝑥𝑛𝑛� (52) 

A simple script is written in Matlab to execute five iterations of the Newton-Raphson 

method presented in Equation (52). This script is incorporated into the Simulink model of the PV 

systems for the VSI inverter using the Matlab function block. This block executes the code as 

necessary. This implementation is shown in Figure 3.10.  

 

Figure 3.10: Model of PV system for VSI inverter 

 

The approach taken to implement these equations in the Simulink model for the VSI 

inverter is slightly different than that taken for the proposed inverter. The VSI uses a simple script, 

whereas the proposed inverter uses the basic Simulink blocks to implement the appropriate 



59 
 

equations and execute the necessary number of Newton steps. The performance of the Simulink 

model does not change regardless of the way that the equations are implemented. The alternate 

approach is used for the VSI inverter merely out of convenience. Both approaches use the same 

number of iterations, use the same convergence rate, α, and produce models of PV systems that 

accurately simulate the performance of real PV modules.  

As was the case with the proposed inverter, a simple approach can be used to perform 

MPPT in lieu of more complex techniques. The MPPT seeks to find the current and voltage levels 

that maximize the output power for the entire collection of PV modules. The script designed to 

perform MPPT uses the fsolve and Equation (47) to identify the I-V curves for each PV module 

based on the level of solar irradiance. Each PV module must have the same amount of current 

flowing through it, so the script calculates the total power produced by the group of PV modules 

by summing the corresponding voltages of each PV module and multiplying them with the 

current, as shown in Equation (53). This step of calculating power is repeated over the range of 

all possible currents. The level of current and the corresponding voltages that produce the 

maximum amount of power are identified as the MPP. These values are fed into the VSI controller. 

 
𝑃𝑃 = ��𝑉𝑉𝑂𝑂,𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

× 𝐼𝐼𝑅𝑅 , 𝐼𝐼𝑅𝑅 ∈ [0, 𝐼𝐼𝑅𝑅𝑂𝑂] (53) 

There are only two variables over which the VSI inverter has control: the phase delay 

angle and the angle of displacement. The controller is trying to solve an optimization problem. 

The VSI controller must calculate the phase delay angle, φV, and the displacement angle, δ, that 

minimize the reactive power delivered to the grid and push the inverter to operate near the MPP.  

Figure 3.11 shows that the Matlab function that solves the optimization problem provides values 

for these two variables. 
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Figure 3.11: Simulink subsystem for VSI controller 

 

A voltage source inverter produces a well-defined output waveform that is easily 

described in generic form by the Fourier series [12]. The VSI controller focuses on the fundamental 

component of the output because it is the only component capable of transferring average power 

to the grid. The fundamental component of the general Fourier series describing the output of 

the VSI is adapted to the current implementation to be expressed in terms of the relevant 

variables discussed in the previous paragraph. The equation is presented in polar form in Equation 

(54).  

 
𝑉𝑉�𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 =

2√2
𝜋𝜋

cos �
𝛿𝛿
2
� 𝑒𝑒𝑗𝑗𝑗𝑗 (54) 

Just like the calculations for the proposed inverter, the fundamental voltage can be used 

to calculate the fundamental current.  The phasor form is being used for calculations, but the 

current is also written to show the magnitude and phase angle of the fundamental current.  

 
𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 =

𝑉𝑉�𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 − 𝑉𝑉𝑔𝑔�
𝑗𝑗𝑛𝑛𝑗𝑗

= �𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓�∠𝜑𝜑𝑖𝑖 (55) 
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The phasor, Ĩac,fund, must be converted into an instantaneous value, iac,fund, to quantify 

the amount of current produced by the inverter over the course of one cycle.  

 𝑖𝑖𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 = √2�𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓� sin�𝜃𝜃𝑔𝑔 + 𝜑𝜑𝑖𝑖� (56) 

The fundamental current is used to calculate the average current delivered to the grid.  

 
𝚤𝚤�̅�𝑓𝑠𝑠 =

1
2𝜋𝜋

� 𝑖𝑖𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑑𝑑𝑖𝑖
2𝜋𝜋

0

 (57) 

The instantaneous current is rewritten in terms of the switching times, θon and θoff, of 

each switch. θon,1 corresponds to the phase angle at which the switch labelled q11 in Figure 2.3 

turns on or closes. θon,2 corresponds to the phase angle at which the switch labelled q22 closes.  

 

 

𝚤𝚤�̅�𝑓𝑠𝑠 =
√2�𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓�

2𝜋𝜋
� � sin�𝜃𝜃𝑔𝑔 + 𝜑𝜑𝑖𝑖� 𝑑𝑑𝜃𝜃𝑔𝑔

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜,1

𝜃𝜃𝑜𝑜𝑜𝑜,1

+ � sin�𝜃𝜃𝑔𝑔 + 𝜑𝜑𝑖𝑖� 𝑑𝑑𝜃𝜃𝑔𝑔

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜,2

𝜃𝜃𝑜𝑜𝑜𝑜,2

� (58) 

The switching times for each switch, θon and θoff, can be expressed in terms of the 

displacement angle, δ, and the phase delay angle between the grid voltage and the inverter 

voltage, φV. The VSI inverter closes each switch for half of the cycle, so it follows that the switches 

open π rad after they close. 

 𝜃𝜃𝑜𝑜𝑛𝑛,1 = −𝜑𝜑𝑣𝑣 −
𝛿𝛿
2

 (59) 

 𝜃𝜃𝑜𝑜𝑓𝑓𝑓𝑓,1 = −𝜑𝜑𝑣𝑣 +
𝛿𝛿
2

 (60) 

 𝜃𝜃𝑜𝑜𝑛𝑛,2 = −𝜑𝜑𝑣𝑣 −
𝛿𝛿
2

+ 𝜋𝜋 (61) 

 𝜃𝜃𝑜𝑜𝑓𝑓𝑓𝑓,2 = −𝜑𝜑𝑣𝑣 +
𝛿𝛿
2

+ 𝜋𝜋 (62) 
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Solving for the integral in Equation (58) and plugging in Equations (59) – (63), the average 

current produced by the inverter can be written as a function of the two variables over which the 

VSI controller has control: φV and δ.  

 
𝚤𝚤�̅�𝑓𝑠𝑠 =

2√2
𝜋𝜋

𝐼𝐼𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 cos(𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑣𝑣) cos �
𝛿𝛿
2
� 

(63) 

The VSI controller uses the Matlab function fsolve, to calculate the phase delay angle and 

the displacement angle that simultaneously minimize reactive power injected into the grid and 

push the average power of the inverter to operate closer to the MPP. 
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4 Results 

It first will be demonstrated that the PV model and MPPT perform as expected to show 

that the model simulates the performance of a real PV system. The inverter’s performance is then 

compared to a comparable VSI inverter to demonstrate the inverter’s capabilities.  

The proposed system is tested to ensure that it performs as desired. Finally the 

performance of the proposed inverter is evaluated based upon its ability to meet standards and 

through a comparison with comparable inverters. 

4.1 Simulink Model of PV System and MPPT 

The Simulink model that is developed in this paper is used to simulate the output of a real 

photovoltaic panel (Grape Solar model: GS-P-280-Fab1). Values for various variables used in the 

mathematical model of Equation (14) are extracted from the PV manufacturer’s data sheet, which 

can be found in APPENDIX A. The model uses a value of 1.17 for the ideality factor in the Shockley 

diode equation to adjust the output of the single-diode model to more accurately match the 

performance of an actual PV panel.  

The Simulink model of a PV panel successfully simulates the output of a real PV panel 

under STC. Table 4.2 focuses on several points from a panel’s I-V curve that are typically used in 

the industry to describe the performance of the panel. The table shows the value for these points 

that are listed on the data sheet furnished by the manufacturer and the value of these points on 

the I-V curve produced by the Simulink model of the PV panel under STC. In this way, the table 

compares the performance of the Simulink model to an actual PV panel. The values produced by 

the PV model are with are within 2% of the values provided on the data sheet. The data sheet 

indicates that the performance of actual panels may vary from the listed values by as much as 3%. 

Thus, the Simulink model performs within the tolerance limits specified on the data sheet. 
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Table 4.1: Comparison of the Simulink model and the manufacturer’s data sheet at STC 

Source: PMPP (w) VMPP (V) IMPP (A) VOC (V) ISC (A) 

Data Sheet 280.0 35.8 7.8 44.6 8.4 

Simulink Model 275.8 35.3 7.8 45.4 8.4 

% Difference 1.5 1.5 0.0 1.7 0.1 
 

 

For the purposes of this paper, the Simulink model of the PV panel must function in a 

similar, though not necessarily exact, fashion as a real panel in order to demonstrate the inverter’s 

ability to respond to realistic situations. The data in Table 4.1 indicates the model does simulate 

the performance of a real PV panel under STC. The performance of the actual PV panel when 

exposed to conditions other than STC is not readily provided by the manufacturer, so the 

performance of the Simulink model under different conditions cannot be assessed in a 

mathematically precise manner. Figure 4.1 does show that under different conditions, the 

Simulink model does produces appropriately shaped I-V curves and in general produces less 

power when exposed to lower levels of solar irradiance. This performance is consistent with that 

of an actual PV panel, so it can be said that the Simulink model accurately simulates the 

performance of a real PV model to the extent required for this application. 

 

Figure 4.1: I-V curves from the Simulink model of a PV panel exposed to different irradiance 
levels 
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As described in Section Adjusting the Model to the Whole System, the Simulink model of 

the single PV panel is adjusted to model a PV module, still successfully simulating the realistic 

performance of a PV system but not necessarily corresponding to the performance of a specific 

PV panel currently on the market. The values for all of the system parameters after these 

adjustments have been made are presented in the table below.  

Table 4.2: System parameters for the Simulink model 
Variable Name Symbol Value Units 

Solar Irradiance at STC Gref  1000 W/m2 
Short Circuit Current Isc  8.43 A 
Open Circuit Voltage Voc  56.725 V 
Cells in series Ns  90   
Operating Temperature T  298 K 
Shunt Resistance RP  0.6625 Ω 
Series Resistance RS  662.5 Ω 
Reverse Saturation Current Isat  6.60E-09 A 
Diode Ideality Factor n  1.17   
Independent PV Modules N  4   
Output Filter Inductance L  17 mH 
PV Capacitance C  9.2 mF 
Sampling Time Ts  16.67 ms 
Initial Voltage VC,0  43.75 V 
Controller Input Adjustment Factor τ 0.33 s 
Controller Input Signal Gain KP  0.2   
Newton Method Convergent Rate #1 alpha  1   
Newton Method Convergent Rate #2 alpha2  0.8   
Grid Voltage, rms Vg  120 V 
Grid Angular Frequency omega 377 rad/sec 
Elementary Charge q  1.60E-19 C 
Boltzmann's Constant k  1.38E-23 J/K 

 

 

The MPPT block in Simulink accurately predicts the voltage and current associated with 

the maximum power point. The current and voltage levels of the MPP as produced by the MPPT 

block are compared to the voltage and current levels that create maximum power based upon 

the I-V curves produced by the PV model. The Simulink block performing MPPT independently 
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calculates the exact same voltage and current levels of the MPP that are deduced from the I-V 

curves in Figure 4.1.  This is a result of the fact that the Simulink PV models and the MPPT blocks 

use the same equations as a basis for their calculations. Thus, the MPPT block performs as 

expected. 

4.2 General Output of the Inverter 

The inverter converts the input DC voltages supplied by the PV modules into a multilevel 

output waveform. The output voltage is a nine level waveform because the inverter has four DC 

voltage sources, where each source is an independently operating PV system. The output 

oscillates between roughly 180 V and -180 V at 60 Hz by design to match the grid voltage. Figure 

4.1a shows the output voltage produced by the inverter and its calculated fundamental 

component. The output waveform bears close resemblance to a sine wave, which indicates the 

controller is operating correctly and producing the desired output waveform. 

  

(a) (b) 

Figure 4.2: The raw outputs and their 60 Hz components 
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module is exposed to a different level of solar irradiance. The MPPT block in Simulink calculates 

currents and voltages associated with the maximum power point per individual PV module based 

upon the solar irradiance input. Those currents and voltages are documented in the table below 

under the heading “Expected MPP.” The maximum power that the PV module can theoretically 

produce is calculated using those current and voltage levels and is documented in the PMPP 

column. In the same fashion, the actual voltage and current produced by each PV module are 

recorded in the table under the “Actual Output” heading. These values are multiplied together to 

calculate the power produced by each module.  

Table 4.3: Performance of Simulink PV modules 

PV 
Module  

Solar 
Irradiance 

(W/m2) 

Expected MPP Actual Output  

PMPP 
(W) 

VMPP  
(V) 

IMPP    
(A) 

Pmax  
(W) 

VC,RMS 
(V) 

IM,RMS 
(A) 

1 1000 345 44.10 7.82 344 44.11 7.80 

2 900 312 44.28 7.04 311 44.28 7.02 

3 800 278 44.44 6.25 277 44.44 6.24 

4 700 244 44.55 5.47 243 44.55 5.46 
 

 

The table indicates that the controller allows the individual PV modules to operate near 

their expected MPP. Furthermore, the table reveals that the PV modules operate as expected.  

Figure 4.1 indicates that the voltage of the MPP of each module should be roughly the same while 

the currents produced by each module should be noticeably different. The table supports that 

relationship.   

Figure 4.3 shows the instantaneous current and voltage drawn from the input PV systems 

and capacitors. The legend identifies Input 1 through Input 4, which correspond to the individual 

PV systems serving as DC voltage source inputs for the inverter. There exists a small ripple in the 

output from the PV systems. This ripple occurs because the inputs are periodically connected in 
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series with the output.  Connecting the input causes current to flow out of the capacitor. This act 

discharges the capacitor and lowers the voltage potential across its terminals. Bypassing the input 

allows the capacitor voltage to recharge. To compare the voltage and current produced by the PV 

systems to the DC MPP operating points identified by the MPPT block, the RMS values of the 

ripples are calculated. The controller and inverter are performing well because they draw the 

maximum power possible from the inputs.  

  

(a) (b) 

Figure 4.3: The voltages and currents produced by each PV module 
 

Each PV module produces voltage at roughly the same level, but the modules generate 

noticeably different amounts of current. The voltages stay within 2 % of one another at all times. 

There is a general trend that is observed in Table 4.3 but is more easily noticed in Figure 4.3. When 

the PV module is exposed to lower levels of solar irradiance, the voltage level tends to increase 

slightly while the current and power levels decrease substantially. The controller needs to 

combine the voltages in a specific manner to produce the desired 9-level output waveform but is 

constrained by the fact that the average current produced by the inverter must equal the average 

current generated by the PV modules. The current produced by the modules heavily influences 

the timing when each module is connected because the relationship between current and solar 

irradiance has the largest impact on the constraint.  
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Figure 4.4 shows the time that each module is connected every half cycle. The horizontal 

axis indicates the time elapsed during the simulation. The vertical axis represents the phase angle 

of the grid voltage as it occurs once every cycle of the simulation. The lower four lines of the figure 

represent θON,i for each PV module. It is at this point in every cycle that the module is connected, 

which produces a step up in the output waveform of the entire inverter. The upper four lines in 

the figure show when each PV module is disconnected, θOFF,i, and represent a step down in the 

output waveform. Both θON,i and θOFF,i fluctuate slightly from one cycle to the next.  

 

Figure 4.4: Graphical representation of input switching times 

 

The figure above indicates the controller successfully assigns distinct times when each 

input is connected. When each PV module produces current at a different level, the controller 

assigns distinct times when each module will be connected and disconnected (θON,i and θOFF,i). In 
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the figure, there is a slight fluctuation in the switching times of each module. This fluctuation itself 

is a pattern that repeats itself roughly every 0.1 sec. The cause of the fluctuation is unknown, but 

is a good topic warranting further investigation.   

 

Figure 4.5: Positive half-wave produced by inverter twice per cycle 
 

The controller coordinates connecting each input in order to produce an output voltage 

with a roughly sinusoidal waveform. Figure 4.5 shows the stepped waveform produced as a 

function of the phase angle. The x-axis in Figure 4.5 corresponds to the y-axis in Figure 4.4. These 

values are listed in the table below. 
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Table 4.4: Average switching time of input every half cycle 
Input θON (rad) θOFF (rad) 

1 0.75 3.00 
2 0.18 2.73 
3 0.32 2.50 
4 0.83 2.37 

 

 

While coordinating switching times for each input, the controller aims to reduce the 

harmonic content in the output current and minimize the reactive power injected into the grid. 

The THD of the output current is 2.8 % with respect to the rated current fundamental. The 

harmonic content in the output is below the maximum allowable amount described in the IEEE 

standard, indicating the controller adequately minimized distortion in the output waveform. The 

controller also effectively minimizes reactive power injected to the grid when compared to the 

total complex power produced by the inverter. Although the MPPT predicts the PV panels can 

produce 1178 W, the panels actually produce only 1176 W. The inverter delivers 1164 W and 

2.8 Var to the grid. The inverter does well in delivering 98.8 % of the theoretical maximum power 

that the panels can produce. The controller accomplishes its goal of minimizing the reactive power 

delivered to the grid by keeping the reactive component down to 0.204% of the real power 

injected into the grid.  

4.3 Exploring Different Scenarios 

To examine the capabilities of the inverter, the input PV modules are exposed to varying 

levels of solar irradiance in different scenarios. The performance of the inverter is recorded for 

each scenario and the results are compared to the performance of a comparable VSI inverter. 

The six scenarios used to test the versatility of the inverter are presented in Table 4.5. The 

first scenarios simulate balanced conditions where the solar irradiance is evenly distributed 

between each PV module. These conditions serve to show the general relationship between the 
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solar irradiance input and the power output. The other scenarios introduce unbalanced conditions 

to test the performance of the inverter in real-world situations where the output of each PV panel 

would be affected by external factors such as shading. In the simulations, the difference between 

levels of solar irradiance from one panel to the next are relatively high and represent more 

extreme conditions than would normally occur in typical installations. 

Table 4.5: The solar irradiance (W/m2) that each input is exposed to in the different scenarios 

 Solar Irradiance (W/m2) 

                    Scenario 
Input 1 2 3 4 5 6 

1 1000 250 625 475 700 1000 
2 1000 250 625 575 800 1000 
3 1000 250 625 675 900 500 
4 1000 250 625 775 1000 1000 

Total: 4000 1000 2500 2500 3400 3500 
 

  

Each scenario elicits a similar response from the inverter as the one described in the 

previous section. In every case, the output voltage produced by the inverter is a nine-level 

waveform, and the RMS value of the fundamental component of each output voltage waveform 

is at least 120 V. Additionally, the PV modules operate within 0.25% of their expected MPP. As 

such, the controller satisfactorily performs its chief objective of producing a roughly sinusoidal 

grid-level output voltage while simultaneously extracting the maximum amount of power from 

each PV module. 

The information presented in Table 4.6 describes the output of the inverter under the 

different scenarios to help assess the performance of the inverter with respect to its secondary 

objectives: minimizing the harmonic content and reactive power in the output delivered to the 

grid. Each column, except that farthest to the left, corresponds to one of the scenarios described 

in the previous table. The first row, PMPP, displays the theoretical maximum power that the PV 
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panels could produce according to the MPPT Simulink block. The row below shows the average 

power delivered to the grid by the inverter, and the row below that includes the reactive power 

injected to the grid. The second row from the bottom presents the displacement power factor, 

which is an indicator of the phase displacement between voltage and current.  The displacement 

power factor is calculated using the real and apparent power of the fundamental component of 

the current injected into the grid. The bottom row of the table reveals the harmonic content 

present in the current injected into the grid as quantified in terms of the Total Harmonic 

Distortion.  

Table 4.6: Output data from proposed inverter during simulations 
Scenario 1 2 3 4 5 6 
PMPP (W) 1379 337 871 869 1178 1208 

Pave (W) 1363 336 864 863 1166 1196 

Qfund (Var) -14.3  4.4  17.9  5.7   2.4 -14.0  

PFDISP 0.999 0.999 0.999 1.000 1.000 0.999 

THDi (%) 7.3 5.7 6.5 4.0 2.8 9.9 
 

 

There is less than 10% THD in the output current produced in each scenario. The low-

frequency switching produces the distortion in the output current waveform. The inductor used 

as a filter helps to smooth the current injected into the grid and minimize the harmonic content. 

The harmonics exist at low frequencies making them inherently difficult to filter. For low voltage 

and power situations, this level of harmonic content is permissible, although less distortion is 

preferable.  

The filter creates a phase shift between the current and voltage, which introduces 

reactive power. Table 4.6 shows that the amount of reactive power delivered to the grid is less 

than 2.1% of the average real power delivered to the grid. While this is not zero, it is less reactive 

power than what is introduced by the inductive filter. These numbers prove that the controller 

effectively minimizes the reactive power that is delivered to the grid by adjusting the phase angle 



74 
 

of the output voltage of the inverter. The amount of reactive power produced by the proposed 

inverter can be compared to that produced by a comparable VSI inverter to assess the 

performance of the proposed inverter.  

A comparable VSI inverter is tested under the same scenarios as the proposed inverter, 

and the results are documented in Table 4.7. Just like the table above, the first row in Table 4.7 

shows the maximum power the PV cells are capable of producing under the given conditions. The 

table also shows the real and reactive power supplied to the grid by the inverter as well as the 

amount of harmonic content in the output current.  

Table 4.7:  Results of the tests performed on the comparable VSI inverter 
Scenario 1 2 3 4 5 6 
PMPP (W) 1379 337 871 736 1069 806 

Pave (W) 1362 336 864 729 1055 798 

Qfund (Var)  -4.6 10.1 -33.6  40.1  6.5  -39.1  

PFDISP 1.000 0.999 0.999 0.998 1.000 .999 

THDi (%) 8.4 14.9 13.0 18.3 14.5 20.5 
 

 

Under balanced conditions, the VSI inverter performs very similarly to the proposed 

inverter. Each inverter has the same theoretical MPP and delivers the same amount of average 

power to the grid. In these scenarios there is more harmonic content in the output current 

produced by the VSI inverter than the proposed inverter. This is consistent with the literature 

surrounding the methods that each technique uses to invert the DC input to an AC output: the 

waveform with more steps is more sinusoidal and has less harmonic content. Both inverters inject 

little reactive power to the grid relative to the real power they supply. In every scenario except 

for Scenario 1, the proposed inverter injects less reactive power into the grid than the VSI inverter.  

The data indicates that the proposed inverter is better suited to deliver more power under 

unbalanced conditions than the VSI inverter. In Scenarios 4 through 6, the distribution of the solar 

irradiance to an individual panel varies from one PV module o the next. The average power 
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delivered by both inverters is within 98.5% of the theoretical maximum that the PV modules can 

produce. This proves the controllers of each model effectively push the PV modules to operate 

near their MPP and thus work as expected. However in the unbalanced scenario, the theoretical 

MPP of the VSI inverter is anywhere from 10-30% lower than the theoretical MPP of the proposed 

inverter. An innate limitation introduced by the topology of the VSI inverter prevents the PV 

modules from producing as much power when there is an imbalance in the distribution of solar 

irradiance. This is expected because of the negative effect of shading on string inverters that is 

well documented in literature. Shading has a much smaller effect on the power produced by the 

proposed inverter because the PV modules are able to operate independently of one another. 

Unbalanced conditions hinder the ability of the VSI inverter to minimize harmonic 

distortion, but do not appear to have the same effect on the proposed inverter. Scenarios 3 and 

4 expose the PV systems to the same level of solar irradiance, collectively, but Scenario 3 exposes 

each PV system to the same level of solar irradiance while Scenario 4 exposes each system to a 

different level. The level of THD and reactive power delivered to the grid by the VSI inverter 

increase by 41% and 19% respectively in unbalanced conditions relative to balanced conditions. 

The imbalance causes the inverter to forfeit some of its control over the quality of the output in 

order to continue to maximize the quantity of the output power. The inverter still performs 

respectably, but the tradeoff is apparent. For the proposed inverter, the measured THD and 

reactive power stay low and actually decrease in the unbalanced scenario. By allowing each PV 

module to operate independently and combining their outputs at the most opportune times, the 

proposed inverter can continue to maximize power production without sacrificing quality when 

conditions are unbalanced. 

Certain scenarios that represent extreme and unrealistic conditions actually prevented 

the inverter from operating near the theoretical MPP. These scenarios introduced large 
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differences in the amount of solar irradiance distributed to each PV module, on the order of 

750 W or 75% of STC conditions. In these scenarios the Matlab function calculating the switching 

times and the phase angle would stop prematurely and could not push the inverter to operate in 

a stable state. Additional testing showed the MPPT failed to converge in these highly unbalanced 

conditions, and as a result the MPPT fed incorrect target values to the controller. The controller 

was functioning as expected and could not complete the calculations because of faulty input data 

resulting from incorrect assumptions made about the inverter. This can be prevented in future 

testing by using a dynamic and more robust MPPT technique.  

The proposed inverter is designed to excel under unbalanced conditions. The control 

strategy that allows for the inverter’s stellar performance under unbalanced conditions also helps 

the controller under semi-balanced and balanced conditions. A closer examination of the 

inverters performance during one scenario reveals the key behind the inverter’s performance. In 

every scenario the controller assigns a distinct time to each input that establishes when the input 

is connected and bypassed. In the initial scenario mentioned above, each input has the same θON 

and θOFF every cycle. In another scenario, those times change from one cycle to the next for a 

given input, as seen in the figure below.  
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Figure 4.6: The switching times of each input PV modules 

 

The figure above shows the switching times, θON,i and θOFF,i, of the input PV modules when 

a pair of modules are exposed to the same level of solar irradiance. In this scenario, Input 3 and 4 

are both exposed to G = 450 W/m2. During one cycle, the turn on and turn off times for Input 3 

are θON,3 = 1.42 rad and θOFF,3 = 2.93 rad. The turn on and turn off times for Input 4 are 

θON,4 = 0.22 rad and θOFF,4 = 2.53 rad. The next cycle, Input 3 has the same turn on and turn off 

times that Input 4 had previously, and vice versa. The controller turns an input on at a specific 

instance each cycle; however, the controller alternates which input is switched on from one cycle 

to the next. Each input produces approximately the same voltage and current because they are 

exposed to the same level of solar irradiance. When these inputs are connected for different 

lengths of time, more current is drawn from one than the other, creating an imbalance. By 

switching between inputs, the controller is actively working to balance voltage inputs. While the 

design of the inverter topology prevents capacitor imbalance issues, the control strategy responds 

4 4.05 4.1 4.15
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Th
et

a 
(r

ad
)

 

 

Input 1 Input 2 Input 3 Input 4



78 
 

to the dynamic operation of the inputs making the inverter more robust under balanced and 

imbalanced conditions.  

 

Figure 4.7: Inverter’s response to different input conditions as shown through current drawn 

from PV inputs 

 

Additionally, the inverter reacts quickly to changing conditions. In several simulations, the 

levels of solar irradiation were changed rapidly – in less than one cycle. The inverter responded 

almost immediately in every case, changing its output parameters in attempt to push the PV 

modules to operate near their MPP’s. In all but the extreme cases, the controller was able to 

stabilize the operation of the inverter quickly. Figure 4.7 shows the output current of each PV 

module. At t = 3 s, the input conditions change from those in Scenario 3 (all 625 W/m2) to those 

in Scenario 4 (evenly distributed between 475 W/m2 and 775 W/m2). The change elicits an 
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immediate drop in the output current of each PV module, but the controller quickly determines 

the optimal operating conditions and adjusts its output to push the PV modules towards their 

MPP. The PV modules are stable and operating near their expected MPP within 20 cycles, or 

roughly 0.33 s, of the inputs being changed. 

  



80 
 

5 Conclusion 

Several strategies used to convert DC to AC are discussed. An emerging and promising 

topology is reviewed, and a novel control strategy is introduced to produce a sinusoidal output. 

The proposed strategy aims to maximize the amount of power drawn from each PV input and 

minimize the harmonic distortion and reactive power injected into the grid. A computer module 

of the single-phase inverter is developed to test the performance of the controller. The model 

uses four independently operating PV modules as separate input voltage sources, and the 

performance of the proposed inverter is compared to that of a comparable VSI inverter. While 

both inverters produce similar levels of power under balanced conditions, the proposed inverter 

produces more power under unbalanced conditions. The simulation results indicate that the 

proposed inverter is more effective in minimizing the harmonic content in the output waveform 

and reducing the reactive power injected into the grid.  

Additional control strategies and minor adjustments to the topology could be made that 

would likely improve the performance of the inverter. The controller could use pulse-width 

modulation in lieu of the low-frequency technique presented in this paper. The former is a 

common control strategy used in many PV applications that would likely improve the performance 

of the controller at the expense of increasing its complexity. The use of PWM would eliminate the 

low-frequency harmonics in the output, and a LCL filter could be used instead of a single inductor 

to reduce the size of inductors required while satisfactorily removing the harmonic distortion.  

The control strategy associated with the unique topology proposed has been successfully 

proven with a relatively small number of independent PV modules. These independent modules 

are approximately the same size as commercially available PV panels. Further research is needed 

to test the capabilities of the inverter with significantly more independent PV modules operating 

at lower voltages. Processing power, physical size and time constraints are all factors that need 
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to be accounted for when evaluating the performance of the inverter with a larger number of 

input PV systems.  

The MPPT technique used in these simulations proved to be a weak point in the system. 

A dynamic MPPT technique is suggested for future research. A dynamic technique would be more 

accurate and responsive. It would improve the quality of the data delivered to the controller, 

which would likely improve the performance of the inverter.   
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