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Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor

Sr2IrO4 are investigated with point-contact devices. The point-contact technique allows to probe

very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-

contact measurements with single crystals of Sr2IrO4 were intended to see whether the additional

local resistance associated with a small contact area between a sharpened Cu tip and the antiferro-

magnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measure-

ments at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields

(250mT) applied within an IrO2 (ab) plane with angular dependence showing a crossover from

four-fold to two-fold symmetry with an increasing magnetic field. Point contact measurement exhib-

its distinctive anisotropic magnetoresistance (AMR) in comparison to a bulk experiment, imposing

intriguing questions about the mechanism of AMR in this material. Temperature-dependent MR

measurements show that the MR falls to zero at the Neel temperature, but the temperature depend-

ence of the MR ratio differs qualitatively from that of the resistivity. This AMR study helps to unveil

the entanglement between electronic transport and magnetism in Sr2IrO4 while the observed magne-

toresistive phenomena can be potentially used to sense the antiferromagnetic order parameter in

spintronic applications.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913300]

The emerging developments of spintronics aim to tackle

critical challenges in nowadays data storage technologies. So

far, most magneto-electronic devices have been exploring the

magnetism in ferromagnets (FMs) while antiferromagnets

(AFMs) are mainly used in secondary roles such as exchange

biasing FMs.1 However, AFM materials have some unique

advantages over FMs such as a minimized cross-talk between

AFM nanocrystals due to the absence of stray fields; possibly

stronger spin-transfer torques, which is important for a better

control of magnetic states in spintronics applications.2–5 A

critical milestone towards the implementation of AFMs in

spintronic devices is to find reliable ways to sense the local

antiferromagnetic order. Anisotropic magnetoresistance

(AMR)6 and tunneling AMR7,8 observed in AFMs are prom-

ising candidates for this purpose. The iridate Sr2IrO4 (SIO),

which has been found to have Jeff¼ 1/2 magnetic moments

ordered in a canted antiferromagnetic manner below its Neel

temperature (240K) is a particularly interesting material for

such AMR studies because of a strong spin-orbit coupling

and intriguing responses under external electric/magnetic

fields.9,10 Recently magneto-electronic transport studies have

reported magneto-electric phenomena in SIO crystals10,11 and

thin films,6 suggesting that this 5d transition metal oxide

could provide a rich playground for studying the correlations

between AFM magnetic-order properties, electron transport,

and orbital physics.

Here we report a point-contact (PC) study of temperature-

dependent magnetoresistive (MR) phenomena in Sr2IrO4 (SIO)

single crystals. Point contacts enable us to probe locally elec-

tron transport on a microscopic scale, and we intended to

examine whether the local resistive probe in the small con-

tact area between a sharpened Cu tip and the SIO crystal can

sense MR signals similar to those seen in bulk measure-

ments. The measurements at liquid nitrogen temperature

revealed large MRs (up to 28%) for modest magnetic fields

(250mT) applied within the IrO2 a-b plane. The MR ratios

were found to drop to zero with increasing temperature up to

TNeel� 240K, confirming that the observed MR is associated

with the response of magnetic order under external magnetic

fields. Moreover, the angular dependence of MR exhibited

an AMR behavior with an intriguing transition from 4-fold

to 2-fold symmetry in response to an increasing magnetic

field, which is tentatively attributed to a magnetic-field-

induced change of the canted magnetic order in the IrO2

planes of the SIO Ruddlesden-Popper phase.12 Notably,

AMR of point contacts showed a distinctive magnetic field

dependence that is different from the AMR of the bulk crys-

tal. Comparison of the point-contact AMR and the bulk

AMR may help to unveil the domain dynamics under applied

magnetic fields. Our observations also support potential

applications of AMR phenomenon in AFM spintronics

where it can be used to sense the magnetic order of AFMs.

The investigated single crystal of layered Sr2IrO4

(1.5mm� 1mm� 0.5mm) was synthesized via a self-flux

technique.13 Sr2IrO4 crystallizes in a reduced tetragonal
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structure with a unit cell of 4 layers of IrO6 as a result of a

rotation of the IrO6 octahedra about the c-axis by �12�.14 It
has been known that Jeff¼ 1/2 moments of the 5d electrons of

Ir4þ tend to lie in the ab-plane and approximately follow the

rotation of the IrO6 octahedra, thus forming a canted antiferro-

magnetic order below the Neel temperature of about 240K.

The SIO magnetic order can experience a meta-magnetic tran-

sition where weakly ferromagnetic residual moments of IrO6

planes can be saturated by an externally applied magnetic

field above the critical field Bc� 200mT.15 We performed

magneto-electronic transport measurements on the micro-

scopic scale of SIO by utilizing PC devices. Mechanically

controlled point contacts16 were made between sharpened Cu

tips and the (001) surface of a SIO single crystal; this experi-

mental geometry enables us to inject electrical currents locally

into the crystal with current flowing (primarily) along the 001

c-axis into a macroscopic Cu electrode on the back of the

sample (see inset to Fig. 1). The PC system used in this study

can produce contacts with cross-sectional dimensions a from

microns down to a few nanometers, which can be estimated

from the diffusive model of electronic transport in such PCs

using the PC resistance R¼ q/2a.17 Given the resistivity q
� 50 Xcm of SIO at T¼ 77K, the observed resistance ranging

from R¼ 15 kX – 1.4 MX yields a� 45 nm – 4.2lm. MR of

such PCs was measured with magnetic fields (up to 250mT)

applied in the basal (ab–) plane of the perovskite. As is shown
in Fig. 1, negative MRs (i.e., resistance decreases in the pres-

ence of magnetic field) with hysteresis were observed at

T¼ 77K (top trace in Fig. 1). The hysteresis in MR is suppos-

edly following the hysteresis in sample magnetization coming

from the saturated residual moments of IrO planes. MRs

were found in all of contacts investigated with highest MR

ratios (Rmax�Rmin)/Rmin up to 28%.12 Here we focus on the

temperature dependence of PC resistance and MR measured

at temperatures T from 77K to 295K, covering the Neel tem-

perature of magnetic phase transition at 240K. We also com-

pare the PC behavior with bulk transport measurements (see

Fig. 2(b)) performed on the same single crystal, which showed

similar temperature dependence to that measured with PC

(see Fig. 2(a)). For the bulk measurements the PC was

replaced by a macroscopic silver-paste electrode with a cross-

sectional area �1mm2.

The temperature dependence of PC (and bulk) resistance

shows an exponential decay with increasing temperature that

clearly reflects the semiconducting nature of transport in

SIO. Note that our PCs to SIO are ohmic in nature12 as PC

current-voltage (I-V) characteristics are linear at small biases

applied; we have not observed any significant decreases in

PC resistance vs bias which would be expected in the tunnel-

ing regime of transport between a metallic (Cu) tip and a

semiconductor with a relatively small gap (30–200meV).

From the R vs T measurement, one can obtain band-gap val-

ues D� 60meV following the model of thermally excited

conductivity in semiconductors. The MR ratio decreases

with increasing temperature until it vanishes at T� 240K,

implying that MR should be associated with changes in mag-

netic order under externally applied fields. At the same time,

as is shown in the inset to Fig. 2, the MR ratio decreases to

zero approximately linearly, showing qualitatively different

behavior as a function of temperature if compared to the ex-

ponential decay of R vs T. It is known from previously

reported field cooling (FC) data that saturated magnetic

moments would not vary significantly at temperatures below

200K.10 Therefore, the linear temperature dependence of

MR ratio cannot be simply interpreted as an indication of a

temperature effect on magnetic moments. According to the

model that MR is the result of lattice distortions induced by

the reoriented magnetic moments under fields, a rising MR

ratios at low temperatures (well below TNeel) implies that the

influence of magnetism on lattice dynamics and electron

transport may be stronger at lower temperatures.

The observed MR signals are found to be anisotropic

when the direction of the applied magnetic field is varied

within the ab-plane. The normalized AMR defined as

[R(h)�Rmin]/[Rmax�Rmin], with h being the angle between

the applied magnetic field and the 100 a-axis (see the inset to

Fig. 1), is shown in Fig. 3 with 2D density plots as a function

of magnetic field strength B and angle h. Note that the rela-

tive direction between the electrical current (injected along

the c-axis) and the applied magnetic field remains essentially

unchanged when the field is rotated in the ab-plane.

FIG. 1. Magnetoresistance of SIO measured by point-contacts at 3 different

temperatures (T¼ 77K, 120K, and 250K). One can see that the MR signal

has vanished at T¼ 250K (above TNeel� 240K). Black (grey) curves corre-

spond to up (down) sweeps of applied magnetic field. The vertical-axis scale

is the same for all 3 curves. Inset shows the experimental geometry: sharp-

ened Cu tip (top grey cone) is in contact with SIO single crystal (center

black block) backed by a Cu plate (bottom grey). The applied magnetic field

B is rotated in the ab-plane thus changing the angle h between B and the

(100) axis.

FIG. 2. Resistance R (circles) and change of resistance DR (solid) vs temper-

ature measured in (a) point-contact geometry and (b) bulk sample. The insets

show the magnetoresistance (MR¼DR/R) ratio vs temperature in respective

measurements.
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Therefore, we would like to point out that the AMR observed

in our experiments cannot be explained by the conventional

AMR in polycrystalline magnetic conductors, which is

defined solely by the relative angle between the current

direction and magnetic moments. Instead, it is the relative

orientation between the crystal lattice and the applied mag-

netic field that is being altered when rotating magnetic fields

in the ab-plane, and thus the observed AMR is attributed to a

crystalline component of AMR.6 Similar AMRs have been

found in all PCs studied. We found the AMR measured by

point contacts can be as large as 14%, which is very large

compared to previously reported weak signals of crystalline

AMRs in 3d transition metal alloys/oxides (0.1%–0.5%)18–20

and is also larger than crystalline AMRs observed to date in

Sr2IrO4.
6

The angular dependence of MR (T¼ 77K) exhibits an

intriguing dependence on the strength of the applied mag-

netic field: the AMR starts with a 4-fold rotational symmetry

at small fields (�40mT), and changes from 4-fold to 2-fold

symmetry as the applied magnetic field ramps up towards

saturation. As we show in Fig. 3(a), the symmetry of the

AMR becomes mostly 2-fold at a relatively low field

(�60mT), indicating the predominance of uniaxial anisot-

ropy upon the saturation of the uncompensated residual

moments of IrO6 planes. Bulk AMR was also measured and

analyzed as a function of B and h (to be compared with the

PC AMR). It is found that bulk AMR is smaller and exhibits

a qualitatively different field dependence as shown in Fig.

3(b). Although the field-induced changes in AMR symmetry

are clearly present, there is a “boundary field” around

100mT that defines two distinct regimes of the observed

AMR. In the low field (B� 100mT) regime, the field de-

pendence of the AMR symmetry of the bulk qualitatively

resembles that in PCs. On the other hand, in the large field

(B� 100mT) regime, where the PC AMR readily exhibits a

2-fold symmetry, bulk AMR shows a reminiscence of the 4-

fold symmetry up to B� 150mT in the bulk. Another clear

distinction is that the axis of maximum AMR experiences a

step-like shift and becomes independent of the magnetic field

magnitude up to the largest fields applied.

The observed AMR reveals the entanglement of magne-

toelastic effects, spin-orbit coupling, and electron conduc-

tion. From previous studies, it is known that the magnetic

moments in Sr2IrO4 follow approximately the rotations of

the IrO6 octahedra.
22–24 In the presence of a strong magneto-

elastic effect in SIO, any reorientations of magnetic

moments under external fields can induce lattice distortions

which, in turn, may result in sensible signals from electron

transport measurements.11,21 Therefore, at low magnetic

fields, where the uncompensated residual moments of IrO6

planes are not yet saturated (yielding no net moment), the

observed 4-fold rotational symmetry AMR may be ascribed

to the nature of the (non-distorted) tetragonal lattice struc-

ture, while the 2-fold AMR symmetry induced by large mag-

netic fields may be associated with field-induced

metamagnetic transition of the magnetic order, thus demon-

strating the emerging saturated state via the electron trans-

port. Interestingly, as suggested by recent neutron scattering

studies,23 there may exist twinning domains of orthorhombic

magnetic structures in SIO, with magnetic moments in twin-

ning domains having 90� difference within the ab-plane. The
PC AMR involves magnetic moments primarily from the

local contact region (�1 lm), where the observations may be

associated with a single-domain behavior. In such a scenario,

the uniaxial magnetic anisotropy observed in PC measure-

ments at higher fields may be induced when the canting of

magnetic moments is tuned by an externally applied mag-

netic field. As for bulk AMR, multi-domain magnetic tex-

tures may be involved and possibly associated with the

peculiar magnetic-field dependence. The abrupt shift of the

AMR symmetry axis seen in the bulk measurement may be

an indication of domain switching/realignments induced by

the applied fields. The robust 2-fold AMR symmetry in the

high field regime suggests that, under applied magnetic

fields, one of the twinning magnetic domains is preferred

over the other. The boundary field (of �150mT) may corre-

spond to the field needed for the reorientation.

In summary, point-contact investigations of magneto-

electronic transport in canted antiferromagnetic semiconduc-

tor Sr2IrO4 revealed large crystalline AMRs (up to 14%) at

liquid nitrogen temperature. Temperature dependent transport

measurement found that MR vanishes at T�TNeel, confirm-

ing the crucial role of magnetic order in magneto-electronic

transport. Bulk and local (point contact) measurements of

AMR exhibit qualitative differences, which may be attributed

to the magnetic field effect on magnetic textures involved,

including SIO twinning domains. The magnetic field depend-

ence of AMR demonstrates strong correlations between elec-

tronic transport, magnetic properties and orbital states of this

5d transition metal oxide. Our results suggest that the mag-

netic order in AFM spintronic devices can be probed by

AMR as observed in Sr2IrO4.

This work was supported in part by C-SPIN, one of six

centers of STARnet, a Semiconductor Research Corporation

program, sponsored by MARCO and DARPA, and by NSF

Grant Nos. DMR-1207577, DMR-1265162, and DMR-

1122603.
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