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ExECUTIVE SuMMARY 

Research Objectives 

The main objective of this investigation is to assess the structural integrity of 
the Ohio river bridge (Fig. E-1) on US51 at Wickliffe, Kentucky, when subjected to 
a 50-year earthquake. The investigation includes both the main and approach bridges. 
To achieve this objective, the scope of the work was divided into the following tasks: 
1) Field testing of the main bridge; 2) Finite element modeling and calibration; 
3)Time-history seismic response analysis; and 4) Seismic response of the approach 
bridges using response spectrum method. 

Background 

The need for evaluating the seismic adequacy of the existing infrastructure has 
come into focus following the damage and collapse of numerous structures during the 
recent earthquakes. The 1989 Lorna Prieta earthquake and 1994 Northridge 
earthquake brought to the attention ofthe public about the seismic risk to bridges and 
elevated freeway structures. In particular, the seismic rehabilitation of older bridges 
in regions of high seismicity which are designed prior to the advent of modern seismic 
design codes is a matter of growing concern. Many bridges in Kentucky were built as 
per old code requirements that had minimal provisions for earthquake loading. 

Field Testing 

The ambient vibration properties of the main bridge were determined through 
field testing under traffic and wind induced excitation. The purpose of measuring the 
ambient vibration properties was to determine the natural frequencies and their 
associated mode shapes. These vibration properties were subsequently used as the 
basis for calibrating the finite element model for seismic response analysis. 

Finite Element Modeling 

A three dimensional finite element model of the main bridge was used for free 
. vibration and seismic response analyzes. The model was calibrated by comparing the 
free vibration analysis results with the ambient vibration properties obtained from 
field testing. After calibration, the model was used for seismic response analysis. The 
three dimensional model of the main bridge was subjected to the time histories of the 
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50-year earthquake to determine the maximum displacements, stresses and forces on 
the bearings. 

Approach Spans 

The approach spans were modeled using simplified single-degree-of-freedom 
systems. Seismic response was analyzed in the longitudinal direction using response 
spectrum method. For the approach spans, the seismic analysis dealt with the 
potential for loss-of-span due to excessive longitudinal displacement and bearing forces 
along the highway main line. From the seismic response analysis, it was found that 
the anchor bolt shear force demands are higher than the available capacity whereas 
the longitudinal bearing displacements at the bearings are less than the available 
support width. 

Conclusions and Recommendations 

The seismic analysis indicates that the main bridge can resist the 50-year 
earthquake event without yielding or buckling of truss members or loss-of-span at 
supports. Consequently, retrofitting is not required for the main bridge truss members 
and bearings. 

The approach spans have the potential for anchor bolt shear failure due to 
longitudinal seismic force. Therefore, retrofitting of the fixed bearings on the 
approach span piers is recommended. It is also suggested that proper arrangement 
of additional anchor bolts or cable restrainer system can prevent from loss-of-span. A 
typical arrangement of additional anchor bolts is shown in Fig. E.2. The details of 
recommended retrofits are presented in section 6.5 and in Figures 6.11 to 6.31. 

IV 



Figure E.l The Ohio River Bridge on US51 at Wickliffe, Kentucky 
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Figure E.2 Arrangement of Additional Anchor Bolts 
on Pier Kl 
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1. INTRODUCTION 

1.1 General 

The need for evaluating the seismic adequacy of existing infrastructure has 
come into focus following the damage and collapse of numerous structures during 
recent earthquakes. In particular, the seismic rehabilitation of older bridges in 
regions of high seismicity which were designed prior to the advent of modern seismic 
design codes is a matter of growing concern. Bridge failures from earthquakes have 
so far only occurred in California and Alaska. The 1989 Lorna Prieta earthquake 
[EERI 1990] and 1994 Northridge earthquake [EERI 1995], brought to the attention 
of the public the seismic risk to bridges and elevated freeway structures. The partial 
collapse of the San Francisco - Oakland Bay Bridge and the Cypress Viaduct portion 
oflnterstate 880 not only caused the loss oflife, but created considerable problems to 
the transportation infrastructure. The Bay bridge had been unusable for a month and 
trans bay commuters were forced to commute on ferries or the crowded Bay Area Rapid 
Transit System. Following the Lorna Prieta earthquake, the Federal Highway 
Administration commissioned the seismic evaluation of bridges located in the 
seismically active regions. 

After the seismic evaluation, if the bridge is found to be deficient, not all 
bridges in highways system has to be retrofitted simultaneously; instead, only those 
bridges with the highest priority should be retrofitted first. It should always be 
remembered that the seismic retrofitting is one of several possible courses of action. 
Others are closing the bridge, replacing the bridge, taking no action at all, and 
accepting the risk of seismic damage. 

Seismic design of bridges throughout most of the United States is governed by 
AASHTO's Standard Specifications for Highway Bridges, Division I-A (1996). Use of 
the AASHTO specifications is intended: (I) to allow the structure to yield during a 
major earthquake, (2) to produce damage (yielding) only in areas that are accessible 
(visible) and repairable, and (3) to prevent collapse even during very large 
earthquakes (NHI 1996). There are many bridges in the Commonwealth of Kentucky 
which have been designed before the seismic provisions are introduced into the 
AASHTO Code. Recently, the Brent-Spence bridge on Interstate 75 connecting 
Covington, Kentucky to Cincinnati, Ohio, a double-deck through-truss bridge, was 
evaluated for seismic excitation [Harik et al.(1997a,b)]. There are many long-span 
through-truss bridges in Kentucky which require seismic evaluation. The present 
work concentrates on the seismic evaluation of the US51 Bridge over the Ohio river. 
This bridge connects US51 across the Ohio river between Ballard County, Kentucky 
and Alexander County, Illinois. 
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1.2 Field Testing 

Nowadays, field testing of bridges has become an integral part of the seismic 
evaluation process in order to eliminate the uncertainties and assumptions involved 
in analytical modeling. Full-scale dynamic tests on structures can be performed in a 
number of ways. Hudson (1977) describes the different types of testing as: (1) free 
vibration tests, including (i) initial displacement as in the pullback, quick-release test, 
and (ii) initial velocity from impacts; (2) forced vibration tests, including (i) steady-state 
resonance testing, (ii) variable frequency excitation including sweep, rundown, random 
and pulse sequences, and (iii) transient excitations including earthquakes, wind, 
traffic, and explosions. Shelley (1995b) provides a very informative discussion of the 
advantages and disadvantages of the various test methods used on highway bridges. 

An alternative technique used to dynamically test bridges is through 
measurement of the bridges response under normal traffic and wind. In this method 
no equipment is required to excite the structure, instead equipment is required only 
to record the vibrations. This technique has been used by a number of researchers 
(Abdel-ghaffer and Scanlan, 1985a,b, Alampalli and Fu 1994, Buckland et al. 1979, 
Doll 1994, Farrar et al. 1995, Harik et al. 1993, Paultre et al. 1995, Saiidi et al. 1994, 
Shahawy 1995, Ventura et al. 1994,1996, Wendichansky et al. 1995). Harik et. al. 
(1993) used this method with success to identify the vibration mode shapes and 
frequencies of the Brent-Spence Bridge crossing the Ohio River in Cincinnati, Ohio. 

1.3 Earthquake Background 

The test bridge is located in Ballard County, Kentucky. This positions the 
bridge in the New Madrid Seismic Zone, site of three of the largest earthquakes known 
to have occurred in North America (Johnston 1982, 1985, Johnston and Nava 1985, 
Street et al. 1996). The zone is named for the town of New Madrid, Missouri, epicenter 
of the third of the great earthquakes. Each of the massive earthquakes is estimated 
to have had a Richter magnitude above 8.0 and each of the main shocks was followed 
by a protracted series of strong aftershocks. The main shocks were felt throughout all 
of the Central United States, most of the Eastern United States, as well as parts of 
Canada and dramatically altered the region's landscape. 

December 16, 1811 saw the first of the great earthquakes; the second of the huge 
quakes followed on January 23, 1812. Inhabitants reported the earth to be rolling in 
waves a few feet in height during the main shocks. On February 7, 1812 the third and 
strongest of the main shocks occurred. Denoted the "hard shock", this temblor created 
waterfalls on the Mississippi and caused it to flow backward, locally, for several hours. 
Several islands in the Mississippi disappeared altogether. Present-day Reelfoot Lake, 
in Kentucky and Tennessee, was created during the February hard shock. It is 
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estimated to have had a Richter magnitude of up to 8.8 (Johnston 1985b). 

More recently, more than 2000 earthquakes had been instrumentally detected 
in the New Madrid Seismic Zone during the first 9 years of deployment of seismographs 
which began in 1974 (Johnston 1985). Although 97% of these are too small to be felt, 
roughly a Richter magnitude of 2.5, an earthquake occurs in the region, on average, 
every 48 hours (Johnston 1982). This activity makes the New Madrid Seismic Zone the 
most hazardous zone east of the Rocky Mountains (Johnston 1985). 

With increasing recognition of potential damage from a large New Madrid 
earthquake, or other less severe quake, the Kentucky Transportation Cabinet funded 
the research project Evaluation and Analysis of Innovative Concepts for Bridge Seismic 
Retrofit. Research was conducted by the Kentucky Transportation Center at the 
University ofKentucky. Fundamental to this research project was the characterization 
of the seismic potential affecting Kentucky from known seismic zones as well as 
unknown "local" events. Results from this seismological assessment of Kentucky were 
published in Source Zones, Recurrence Rates, and Time Histories for Earthquakes 
Affecting Kentucky (Street et al., 1996). In this report, three main tasks were covered: 
(1) definition and evaluation of earthquakes in seismic zones that have the potential 
to generate damaging ground motions in Kentucky, (2) specification of the source 
characteristics, accounting for the spreading and attenuation of the ground motions to 
top-of-bedrock at sites in Kentucky, and (3) determination of seismic zoning maps for 
the Commonwealth based on peak-particle accelerations, response spectra, and time­
histories. 

Time-histories generated in the aforementioned report were used in the seismic 
evaluation of the US51 bridge. Effects of these artificial earthquakes were calculated 
for bedrock elevation at the county seat of each Kentucky county. These acceleration 
time-histories were derived through the use of random vibration analysis and take into 
consideration the probability of earthquakes from nearby seismic zones, the 
attenuation of ground motions with distance in the Central United States, and the 
possibility of a random event occurring outside of the generally recognized seismic 
zones (Street et al., 1996). 

1.4 Scope of the Work 

The primary aim of this study is to assess the structural integrity of the US 51 
bridge when subjected to a 50-year earthquake event at Ballard Co., Kentucky. To 
achieve this the scope of work was divided into four tasks as: 1) Field testing of the 
main bridge, 2) finite element modeling, 3) time history seismic response analysis of 
the main bridge, and 4) seismic response of the approach bridge 
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The ambient vibration properties of the main bridge are determined through 
field testing under traffic and wind induced excitation. The purpose of measuring the 
ambient vibration properties is to determine the mode shapes and the associated 
natural frequencies. Full scale ambient or forced vibration tests have been used 
extensively in the past to determine the dynamic characteristics of highway bridges 
(Abdel-ghaffer and Scanlan, 1985a,b). 

A three dimensional finite element model of the main bridge is used for free 
vibration and seismic response analyzes. The model is first calibrated by comparing 
the free vibration analysis results with ambient vibration properties from field testing. 
After the calibration, the model is used for seismic response analysis to determine the 
maximum displacements, stresses in truss members and forces on bearings. 

The approach spans are modeled using simplified single-degree-of-freedom 
(SDOF) systems. The superstructure mass is lumped at the top of the piers. For the 
approach spans the seismic analysis dealt only with the potential for loss-of-span due 
to longitudinal displacement and forces on the bearings. Seismic response is analyzed 
in the longitudinal direction only using response spectrum method to determine the 
maximum displacements and forces. 
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2. OHIO RIVER BRIDGE ON US51 AT 

WICKLIFFE, KENTUCKY 

2.1 General 

The Ohio river bridge on US51 shown in figures 2.1(a)-(e) is a cantilever 
through-truss bridge, a bridge type commonly employed for spans of 600' (183 m) to 
1500' (457 m) through the mid 1970's. This bridge was originally designed by Modjeski, 
Masters and Case Consulting Engineers in 1936. Figures 2.l(a)-(e) show the different 
views of the main bridge. The total length of this bridge including the approach spans 
is 5865' 3/8". The length of the five-span main bridge is 2830' 3/8". The plan and 
elevation views of the main bridge is shown in figure 2.2. The details of approach 
bridge and their seismic evaluation are discussed in separate Chapter 6. 

2.2 Bridge Superstructure 

The superstructure is described in terms of the vertical truss system, the lateral 
truss system and the floor system. The lateral truss is a combination oflateral bracing, 
sway and portal bracings. The bridge is a through-truss type with anchor arms and 
cantilever arms. 

As seen from Figure 2.2, the height of vertical trusses near the midspans is 60' 
whereas at the supports, the height is 105.5'. 

The vertical truss system shown in Figure 2.2 consists of anchor arm 'A-B', 
having a span of363' 4(5/8)", which is supported over piers A and Bas shown in Figure 
2.3. The cantilever arms, spanning 145' 5(7/16)" each, 'B' and 'C' supports the 
suspended span of 436' 4(3/8)" as shown in Figure 2.4. Anchor arm 'C' with a span of 
458' 9(7/8)" is placed between piers C and D, and it is connected to the cantilever arm 
'D' having a span of 191' 2(1/8)" as shown in Figure 2.5. Anchor arm 'D' with a span of 
458' 9(7/8)" is placed between piers D and E, and connected to the cantilever arm 'E' 
having span of 191' 2(1/8)" as shown in Figure 2.6. The span between piers E and F 
is provided with anchor arm 'E-F' with a span of 363' 7(5/8)" as shown in Figure 2.7. 
The maxim urn span length between piers B and C is about 800'. The spans of C-D and 
D-E are 650' each. The end spans A-B and E-F are 363' 4(5/8) and 365' 1(1/2)", 
respectively. The length of spans A-B, B-C, C-D, D-E and E-F are 363' 4(5/8)", 800', 
650', 650' and 365' 1(1/2)", respectively. 
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The lateral truss system consists of lateral bracing members in the top and 
bottom chord planes combined with portals and sway bracing between the two vertical 
trusses as shown in Figure 2.1. At the hinge locations, longitudinal sliding joints m 
both the top and bottom chords are designed for free thermal expansion. 

The floor system consists of a 7" thick concrete slab supported by longitudinal 
WF stringers which are carried by transverse built-up floor beams as shown in Figure 
2.8. The width of the two-lane roadway is 20'. The stringers are spaced at 4' 9(3/4)". 
The floor beams span 27' 6" between the vertical trusses and are attached to the truss 
verticals. 

2.3 Fixed and Expansion Bearings 

The superstructure is supported by expansion bearings at piers A and F, and 
fixed bearings at piers B, C and D and E. The expansion bearings permit longitudinal 
translation and longitudinal rotation. The fixed bearings only allows longitudinal 
rotation. 

The fixed bearings are of standard pinned bearing design consisting of a cast 
steel upper shoe supported on a 6" diameter steel pin which bears on a cast steel 
bottom shoe. The upper shoe is bolted to the bottom chord of the truss and the bottom 
shoe is rigidly attached to the pier via anchor bolts. The anchor bolts are of 2" diameter 
and it extends 4' into the pier concrete. 

The expansion bearings consist of a bottom shoe assembly with a pin. The top 
shoe is connected to the bottom chord of the main truss, which is then connected to the 
pin. The slots in the bottom chord of the main truss allows longitudinal translation. 
The bottom shoe is rigidly attached to the pier via anchor bolts. 

2.4 Bridge Substructure 

The main bridge is supported on piers A, B, C, D, E and F, which are of tapered 
wall type piers up to a certain height from the foundation. All the piers are supported 
on caisson foundation except pier A which is supported on pile foundation. The side 
elevations and pile arrangements of the pier A are shown in figure 2.9. The cross 
section of this tapered wall pier changes after a certain height from the bottom of the 
pier. This change in cross section is mainly to accommodate the deck-truss type 
approach span on the Illinois side. Side elevation and plan view of the piers B, C, D 
and E are shown in Figures 2.10(a) and (b). The tapered wall type piers have opening 
in the upper half of the pier. The side elevations and plan of the pier F are shown in 
Figure 2.1l(a-b). It has two pairs of bearings, one pair for the main bridge and the 
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other for the approach bridge. All the piers are constructed with reinforced concrete 
of grade AA. 
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3. FIELD TESTING 

3.1 General 

Field testing a bridge provides an accurate and reliable description of its actual 
dynamic characteristics. Field testing was conducted on the US 51 main bridge over the 
Ohio river on May 20, 1997. The bridge is having two lanes of traffic, namely the 
northbound and southbound lanes. Testing was conducted on both the northbound and 
southbound lanes. Since there is no symmetry in the longitudinal direction of the 
bridge, the full bridge was tested. All measurements were taken by placing the 
instruments on the pavement. Instruments were placed on the pavement due to the 
limited access to the actual floor beams and the time constraints involved. Each 
instrument was placed with its longitudinal axis aligned parallel to the longitudinal 
direction of the bridge. Ambient vibration measurements under traffic and wind 
induced excitations were recorded at 29 locations beginning from pier A to pier F. 

3.2 Instrumentation 

The equipment used to measure the acceleration-time histories consisted of 
triaxial accelerometer (Figure 3.1a) in conjunction with its own data acquisition 
system. The system which was used consisted ofKinemetrics SSA-2 digital recording 
strong motion accelerograph. Two of the units contained internal accelerometers and 
the remaining two were connected to Kinemetrics FBA-23 force balance accelerometers. 
Each of the accelerometers is capable of measuring accelerations of+/- 2g's with a 
frequency response of DC-50 Hz. All data were sampled using a 1002Hz sampling rate 
and stored internally on the SSA-2, then downloaded to a personal computer. Each of 
these units were triggered simultaneously using laptop personal computers connected 
to each SSA-2. A nominal60 sec record was obtained at each location. Accelerometers 
were mounted in order to measure vibrations in three orthogonal directions. To ensure 
the blocks were placed in level, adjustable feet and carpenters level were attached to 
each block. Accelerometers were connected to the data acquisition system by shielded 
cables. 

Sets of three accelerometers were mounted to aluminum blocks in orthogonal 
directions. A block was positioned at each location with the accelerometers oriented 
in the vertical, transverse and longitudinal directions. To prevent any shifting of the 
accelerometers during testing, 25-pound bags of lead shot were laid on top of the 
accelerometer blocks once in position. During ambient vibration tests, traffic was 
allowed to cross at normal highway speed. 
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3.3 Testing Procedure 

A reference location, hereinafter referred as the base station, was selected based 
on the mode shapes from the preliminary finite element model at location 6 as shown 
in Figure 3.lb. Two of the accelerometers, one at each side of roadway width (Figure 
3.1c), remained at the base station 6 throughout the testing sequence. Five triaxial 
accelerometers were used at moving station locations. From the preliminary finite 
element analysis, 29locations were identified to be measured to represent the dynamic 
behavior of the bridge. Totally there were six sets of moving station data with each set 
having 5 moving station locations. Tables 3.1a and 3.1b describes the designations of 
moving and base station accelerometer on northbound lane. Tables 3.2a and 3.2b 
details the designations of moving and base station accelerometers on southbound lane. 
First five stations 1 (two accelerometers at this location in order to get 5 in each set), 
2, 3 and 4 were placed in span-1, stations 5-12 were placed in span 2, stations 14-18 
were placed in span-3, stations 20 -24 were placed in span-4, and stations 26 to 28 
were placed in span-5. Data collection began from pier A to pier F on the northbound 
lane. Same procedure was repeated for the southbound lane also without altering the 
base station. Station locations 1, 5, 13, 19, 25 and 29 indicate that they are just above 
the piers A, B, C, D, E and F, respectively. 

One set of measurements consisted of recording acceleration-time history on two 
base stations and five moving stations simultaneously. Once the data was collected, 
the moveable stations were moved to the next locations while the base stations 
remained stationary. This sequence was repeated six times to get measurements on all 
stations on the northbound lane. 

3.4 Data Analysis 

Once the data have been downloaded from the field test, a Fast Fourier 
Transform (FFT) was performed on each acceleration-time history using the DADiSP 
software. The program DADiSP (Data Analysis and Display Software) by DSP 
Development Corporation, Cambridge, Massachusetts, (DADiSP 1995) was used to view 
and analyze the large amount of data. The program has the ability to quickly access 
and display the large records of 30,000 data points. Also, the program has an extensive 
data handling and analysis library which was needed for this research. Fast Fourier 
transforms ofthe acceleration histories were possible in few seconds. The speed of the 
program made analyzing and viewing such a huge amount of data manageable. 

Acceleration records were transformed from the time domain to the frequency 
domain through the use of the Fourier transform. Equations 3.1 and 3.2 are the 
mathematical definitions of the Fourier transform pair. Equation 3.1 is referred to as 
the Fourier transform of f(t) and the equation 3.2 as the inverse Fourier transform 
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(Press et al. 1992, Chapra and Canale 1988). 

00 

F(w) - J f(t) e iwt dt 

f(t) 
1 
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( 3. 1) 

( 3. 2) 

where f(t) = a function of time, F( w) = amplitude as a function of frequency, and w = 
circular frequency (radians per second). 

From equations 3.1 and 3.2, a time function can be derived from a frequency 
function or vice versa. The problem with using equations 3.1 and 3.2 lies in the fact 
that a continuous function is required. For discretely sampled data, such as a dynamic 
bridge test, a different form of the Fourier transform is needed. A form of equation 3.1, 
known as the Discrete Fourier Transform (DFT), is used when points of data are known 
at evenly spaced intervals. Equations 3.3 and 3.4 are the Discrete forms of the Fourier 
transform pair. 
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(for k=O to N-1) (3. 4) 

where N = number of sampled points and fk = set of N sampled points. 

The DFT as expressed in equation 3.3 is usually the most useful in civil 
engineering applications where frequency components are sought from discretely 
sampled (digitized) data. However, the direct application of equation 3.3 requires N2 

complex mathematical operations. This becomes prohibitively time-consuming even for 
modest length data records. Fortunately, there is a numerical operation that reduces 
computing time for the DFT substantially. 

The method is called the fast Fourier transform (FFT) and owes its efficiency to 
exploitation of the periodicity and symmetry oftrigonometric functions. An FFT can 
be computed in approximately Nlog2N operations. For a set of 1000 data points, the 
FFT is approximately 100 times faster than the DFT. The first FFT is attributed to 
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Gauss in 1805 but did not become widely known until the mid 1960's with the advent 
of the Cooley-Tukey algorithm. A more complete mathematical and numerical 
treatment of the FFTcan be found in Press et al. (1992) and Chapra and Canale (1988). 
Using the Fast Fourier Transform (FFT), natural frequencies in three orthogonal 
directions were determined. Additional processing into a Power Spectral Density (PSD) 
plot, which squares the FFT amplitudes and divides out the record length, was 
sometimes helpful in identifying natural frequencies. 

Mode shapes were determined by plotting the ratios of accelerometer FFT 
magnitude to base station FFT magnitude at their respective locations along the bridge. 
Comparing the phase angle of an FFT frequency to the base-station FFT phase angle 
determined the sign of the magnitude to be plotted (in-phase or out-of-phase with the 
base station). 

A typical ambient vibration acceleration-time history obtained in the transverse 
direction at the moving station 6 is shown in Figure 3.2a. Similar time histories are 
shown for the vertical (figure 3.2c) and longitudinal (figure 3.2e) directions at moving 
station 6. For the transverse direction, the FFT of the acceleration time-history of 
moving station 6 is shown in Figure 3.2b. Similar FFTs for vertical and longitudinal 
direction time-histories are shown in figures 3.2d and 3.2f. By observing the peaks of 
all the stations, the natural frequencies were identified. These peaks do not always 
occur at exactly the same frequency at all locations. Therefore, the number of peaks 
of adjacent natural frequencies were calculated. Table 3.3 lists the distribution of 
frequencies from acceleration record obtained on longitudinal, transverse and vertical 
direction accelerometers. Then, the bridge natural frequency was identified as the one 
which has maximum number of peaks and also based on the mode shape that follows 
closer to the preliminary finite element model results. 

Table 3.3 also lists the comparison between the field tested natural frequency 
with that of the calibrated finite element model. They are discussed in the following 
section. 

3.5 Finite Element Model Calibration 

A logical next step to field testing in bridge evaluation is to create an analytical 
model which will correlate well to the measured dynamic properties. Many 
assumptions and modeling approximations must be made when creating a practical 
model of a bridge. For example, a finite element model requires input of the material 
properties which are inherently variable. This is one input where the analyst can only 
make a best estimate and later adjust to match the experimental results. 
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Using results from the eigenvalue analysis, the bridge model has to be 
calibrated to experimentally determined mode shapes and frequencies. A perfectly 
calibrated model would match all experimentally determined mode shapes and 
frequencies exactly. To hope for such a perfect calibration is not realistic. Therefore, 
only the most structurally significant modes and frequencies are used in the model 
calibration process. Namely, the first four transverse modes, first six vertical modes 
and the first longitudinal mode from field testing are selected as calibration targets. 

Parameters which were used to correlate with the field test are: modulus of 
elasticity (E) of the frame elements, the bearing spring stiffness, and spring stiffnesses 
for the piers. Initial parameter estimates were made based on design information. 
Initial estimates do not account for: (1) construction tolerances or errors that can make 
as-built dimensions different from design dimensions, or (2) actual strengths of 
materials such as the actual compressive strength of concrete, which affects its modulus 
of elasticity. Calibration is performed by adjusting the stiffnesses and masses of the 
bridge members until an acceptable match is observed in the natural frequency and 
mode shape. 

Since the bridge does not have a symmetry along the vertical direction, it is not 
possible to observe pure transverse modes. Instead, transverse flexural-torsional 
modes are obtained. But pure vertical mode are obtained, because the bridge is 
symmetric in the transverse direction. Longitudinal modes are accompanied with little 
vertical bending mainly because of the unequal pier stiffnesses. For comparison 
purposes, only the transverse components from field testing are taken into 
consideration for the transverse flexural-torsional modes. All the transverse flexural­
torsional modes are hereinafter referred as transverse modes, because they have major 
mass participation in the transverse direction. 

The finite element results for the mode shapes are generated at the end nodes 
in the floor beams. On the other hand, due to the limited access to the actual floor 
beams, all measurements were taken by placing the instruments on the pavement just 
above the floor stringers. Furthermore, the expansion joints in the decks were not 
accounted for in the 3-D model. 

Figure 3.3a shows the comparison of the mode shape obtained from the test and 
finite element model. Although this mode is not a pure transverse mode, Figure 3.3a 
compares only the transverse components. This mode has five half-waves along the 
length of the bridge. The distribution of fundamental natural frequency is given in 
Figure 3.3b. It can be seen from this figure that the peak in the magnitude varied from 
0.3674 Hz to 0.4342 Hz, with a maximum number of peaks occurring at 0.3871 Hz. 
Therefore, 0. 3871Hz is identified as the fundamental frequency from the field test. The 
natural frequency from the finite element model is 0.3831 Hz, and the difference is only 
about 1.7%. 
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Figure 3.4a shows the first vertical mode with a natural frequency of0.7515 Hz 
from the test. The distribution of natural frequency is shown in Figure 3.4b. Although 
the maximum of number of peaks appears to be at 0.7849 Hz, the mode shape 
corresponding to 0.7515 Hz matched better with the finite element model, and hence 
0.7515 Hz is identified as the natural frequency from field testing. The finite element 
model frequency is 0.7578 and the difference is only about 0.8%. This mode is a pure 
vertical mode with 5 half-waves along the length of the bridge. 

The traffic induced excitation can produce clear acceleration records in the 
vertical direction, and the traffic combined with wind excitations can produce in the 
transverse direction. Since there was no excitation along the longitudinal direction, 
clear acceleration records in the longitudinal direction was not obtained. Therefore, the 
matching of the frequencies is difficult for this mode. The first longitudinal mode shape 
is shown in Figure 3.5a. The natural frequency from the field test according to Figure 
3.5b is 1.2859 Hz. The FE model frequency is 1.2812 Hz and the difference is only 
about 0.36 %. Due to the difference in stiffness of the piers, pure longitudinal modes 
are not obtained. Therefore, longitudinal mode is accompanied with small vertical 
modal deformation, however, the mass participation in this mode is mainly due to the 
longitudinal deformation of the piers. 

Figure 3.6a shows the mode shape of the second transverse mode. The 
distribution of natural frequency is shown in Figure 3. 6b and the natural frequency is 
identified as 0.501 Hz. The natural frequency from the FE model is 0.502 Hz and the 
difference with the test is only 0.13%. This is not a pure transverse mode. It is a 
transverse flexural-torsional mode with five half-waves. 

The mode shape of second vertical mode is shown in Figure 3.7a. The natural 
frequency from the test is 1.052 Hz whereas from the FE model is 1.072 Hz and the 
difference with the test is 1.9%. Figure 3. 7b shows the distribution ofnaturalfrequency 
of this mode and it is seen that maximum number ofpeaks occur at 1.0521 Hz. The 
mode shape consists of five half-waves along the length of the bridge. 

Figure 3.8a shows the mode shape of the third transverse mode. This is a 
transverse flexural-torsional mode with the frequency of 0.6346 Hz from field testing 
and 0.6206 from FE model. The difference of FE model natural frequency with test is 
only 2.2%. There are six half-waves in the mode shape along the length of the bridge. 
Figure 3.8b shows the distribution of the natural frequency and 0.6346 Hz is observed 
at 22 stations out of the total 29 stations. 

Figure 3.9a shows the mode shape of the third vertical mode. The natural 
frequency of 1.336 Hz is identified from the test and 1.3978 from the FE model. The 
difference of FE model frequency with the test is 4.6%. The mode shape consists of six 
half-waves along the length of the bridge. From Figure 3.9b it is seen that the 
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maximum of number of peaks occur at 1.3026 Hz and at 1.336 Hz. The frequency 1.336 
is identified as the natural frequency, since the mode shape corresponding to this 
frequency matches better with finite element model. 

The mode shape of the fourth transverse mode is shown in Figure 3.10a. The 
natural frequency from the finite element model is 0.9147 Hz, whereas the field tested 
natural frequency is identified as 0.9352 Hz. The difference of FE model frequency with 
the test is 2.2%. There are seven half-waves in the mode shape along the length of the 
bridge. Figure 3.10b shows the distribution of natural frequency and it is seen that the 
maximum number of peaks occur at 0.9352 Hz. This frequency is observed at 18 
stations out of the total 29 stations. 

Figure 3.11a shows the fourth vertical mode. The natural frequency from the test 
is identified as 1.837 Hz and 1.8848 Hz from the FE model. The difference of FE model 
frequency with the test is 2.6%. The mode shape consists of eight half-waves along the 
length of the bridge. The distribution of the naturalfrequency is shown in Figure 3.1lb 
and test frequency of 1.837 Hz is identified at 18 stations out of 29 stations. 

The mode shape of the fifth vertical mode is shown in Figure 3.12a. The natural 
frequency from the test is 1.9038 Hz whereas from the FE model the frequency is 
1.9348 Hz. The difference of FE model frequency with the test is 1.63%. This mode 
consists of eight half-waves along the length of bridge. From Figure 3.12b, it is seen 
that the maximum number of peaks occur at 1.9038 Hz and hence it is identified as the 
frequency from the test. This frequency is found to occur at 15 out of 29 stations. 

Figure 3.13a shows the mode shape of the sixth vertical mode. The natural 
frequency of 2.2044 Hz is obtained from the test and 2.2327 Hz from the FE model. 
The difference of FE model frequency with the test is 1.28%. The mode shape consists 
of 8 half-waves along the length of the bridge. The distribution of the natural frequency 
is shown in Figure 3.13b and it is seen that the maximum number of peaks occur at 
2.2712 Hz. This frequency is observed at 16 out of 29 stations. 
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4. FINITE ELEMENT MoDELING AND 

FREE VIBRATION ANALYSIS 

4.1 General 

Based on the general dynamic characteristics of cantilever truss bridges and the 
proximity and activity of the seismic zones, the main bridge model was expected to 
remain elastic and displacements were anticipated to be small enough to neglect the 
material and geometric nonlinear effects. Hence, the consideration of linear elastic 
small displacement analysis is considered to be appropriate. 

Free vibration analysis is a key process in the dynamic analysis of a structure; 
the resulting natural frequency and mode shapes succinctly describe the dynamic 
characteristics of a complex structure. The analytical model is calibrated by comparing 
free vibration analysis results with ambient vibration measurements. 

4.2 Finite Element Model 

A three dimensional linear elastic finite element model (Figure 4.1) of the main 
bridge was developed in SAP90 finite element analysis software (Wilson and 
Habibullah, 1994). Developed for both the free vibration analysis and earthquake 
response analysis, the model represents the structure in its current as-built 
configuration. All truss members of the superstructure are modeled using two noded 
frame elements which has three translational DOF and three rotational DOF at each 
node. Rotational degrees of freedom (DOF) of members are included in this bridge 
because the connections are of riveted type that could create bending stresses in 
addition axial stresses. Based on the connection between the concrete deck and 
stringers, it is assumed that the deck and stringers will not contribute to the stiffness 
of the bridge. Wall type piers are idealized as frame elements with gross cross-sectional 
properties. The full 3D model has a total of 1816 frame elements and 818 nodes. The 
number of material and geometric property groups are 126. The total number of active 
degrees offreedom (DOF) is about 3120. 

The bearings at the end piers are "expansion" type and those at the interior piers 
are "fixed" type. The "fixed" bearings at the interior piers were modeled by simply 
releasing the rotational DOF in the vertical direction only. Pier and bearings are 
connected through a set ofrigid elements that simulate the actual behavior. 
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The "expansion" bearings at the end piers were modeled by establishing nodes 
in the bottom chord of the truss and the top of the pier at the bearing centers and 
coupling all DOF except the longitudinal translation and the vertical bending rotation 
(the ex and u, DOF). The coupled nodes provide direct output of the relative 
displacement between the top and bottom shoes of the bearings and thus indicate if the 
translation has exceeded the expansion capacity. 

While conducting free vibration analysis, it was found that the modeling of piers 
using frame elements resulted into less mass participation. This may be due to large 
differences in stiffness and masses of members in superstructure and piers of 
substructure. Therefore, the piers were replaced by springs at the bottom of bearings. 
The spring stiffnesses were obtained by applying unit displacement along the 
appropriate DOF. 

4.3 Free vibration Analysis 

An eigenvalue analysis is used to determine the undamped, free vibrations of the 
structure. The eigensolution results in the "natural" mode shapes and frequencies of 
the structure. Free vibration analysis is required first to calibrate the finite element 
model with the field ambient vibration test measurements. Secondly, to perform 
seismic response analysis using modal time-history method, the natural frequencies 
and their associated mode shapes are required from free vibration. Free vibration 
analysis involves the solution of the following eigenvalue problem: 

[ M - w K ] 11 ( 4. 1) 

where M and K are system mass and stiffness matrices and u is modal displacement 
vector. The eigenvalue of a mode (ro2

) is the square of the circular frequency of that 
mode (ro) and relates to the cyclical frequency (f) by the relation f = w/2rr., and relates 
to the period of vibration (T) by the equation T = 1/f. 

SAP90 uses an "accelerated subspace iteration" algorithm to solve the eigenvalue 
problem. The subspace iteration method was developed by Bathe in 1971 and a 
detailed discussion ofthe method and its fundamentals can be found in Bathe (1982). 
Various techniques have been used to "accelerate" the basic subspace iteration method 
and the particular algorithm used in the SAP90/SAP2000 programs can be found in 
Wilson and Tetsuji (1983). 

Traditionally, mode-superposition analysis was performed using a structure's 
eigenvectors as the basis for the analysis. Research (Wilson, Yuan, and Dickens, 1982) 
indicates that this is not the best starting point for a mode-superposition time-history 
analysis. Instead, a special set ofload-dependent, orthogonal Ritz vectors yields more 
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accurate results than the same number of natural mode shapes. Ritz vector analysis 
significantly reduces computing time and automatically includes the proven numerical 
techniques of static condensation, Guyan reduction, and static correction due to higher 
mode truncation. 

The reason that Ritz vector analysis yields better results than an equal number 
of eigenvectors is because the Ritz vectors take into account the spatial distribution of 
dynamic loading. In fact, the spatial distribution ofloading serves as a starting load 
vector to begin the process offinding appropriate Ritz vectors. Subsequent Ritz vectors 
are formed based on the preceding Ritz vector and the neglected inertial effects. In 
contrast, the eigenvectors are computed from the stiffness and mass matrices only and, 
therefore, can not account for the spatial distribution ofloading. Eigenvectors that are 
orthogonal to loading do not participate in the structural response even if they are at 
or near the forcing frequency. 

For model calibration, the natural frequencies and their mode shapes has to be 
accurate, therefore exact eigenvalues(natural frequencies) have been extracted. All the 
frequencies may not participate in calculating the response under seismic excitation 
kind of loading. In order to get full participation, many modes have to be extracted. In 
this work, around 450 modes were tried to improve the mass participation. But there 
was no increase in the mass participation. Therefore, Ritz-vector based (which are load 
dependent) extraction of eigenvalues has been carried out. This method gives more 
than 90% participation in all the three directions. 

The natural frequencies and mass participation for the lowest 45 modes are 
presented in Table 4.1. Some of the frequencies and their mode shapes have been 
compared with the field testing in the earlier chapter. The natural frequency of the 
bridge ranges from 0.3831 Hz to 2.75 Hz for the first 45 modes, and the period ranges 
from 2.61 sec to 0.36 sec. The natural frequencies listed in Table 4.1 and their mode 
shapes are used only to calibrate the finite element model. They are not used for the 
seismic response analysis. It is seen from Table 4.1 that the mass participation of the 
first three modes are only in the transverse direction. Therefore, these three modes are 
treated as transverse modes based on the mass participation point of view, although 
there is some torsional and vertical displacement component as seen from Figure 4.2b. 

Figures 4.2(a), (b) and (c) shows the first mode shape in isometric, elevation and 
plan views, respectively. The natural frequency of this mode is 0.3831 Hz. The 
percentage of mass participation of this mode is about 6.8. This mode has antisymmetic 
shape in the second and third spans. Based on mass participation, this mode is 
identified as the transverse mode. 

Figures 4.3(a), (b) and (c) shows the second mode shape with a frequency of 
0.5017 Hz in isometric, elevation and plan views, respectively. As in the first mode, 
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two major half-waves present in the same direction, and one major half-wave in the 
opposite direction. The mass participation for this mode is 2.3% . Based on mass 
participation, the second mode is also observed as the transverse mode. 

Figure 4.4(a), (b) and (c) shows the third mode shape with a frequency of0.6206 
Hz in isometric, elevation and plan views, respectively. Since three major half-waves 
are falling in the same direction, the mass participation for this mode is 32.5%. Based 
on mass participation, this mode is noted as the transverse mode. Therefore this is one 
of the very important mode that significantly contribute for the transverse seismic 
motion. 

The fourth mode shape in isometric, elevation and plan views is shown in 
Figures 4.5(a), (b) and (c), respectively. The natural frequency of this mode is 0. 7578 
Hz. Based on mass participation and from Figures 4.5(b) and (c), it is seen that this 
mode is the first vertical mode. The mass participation in the vertical direction is only 
3%. 

Figures 4.6(a), (b) and (c) show the fifth mode shape with a frequency of0.9147 
Hz, in the isometric, elevation and plan views respectively. The mass participation for 
this mode is 3%. Based on mass participation, this mode is observed as the transverse 
mode. 

The sixth mode shape in isometric, elevation and plan views is shown in Figures 
4.7(a), (b) and (c), respectively. The natural frequency of this mode is 0.9725 Hz and 
the mass participation is 1.61 %. Based on mass participation, this mode is treated as 
transverse mode. Figures 4.8(a), (b) and (c) show the seventh mode shape with a 
frequency of 0.993 Hz. The mass participation is only 0.5%. Based on Figures 4.8(b) 
and (c), this mode is mainly a torsional mode with little transverse bending. 

Figures 4.9(a), (b) and (c) show the eighth mode shape with a frequency of1.0722 
Hz. Major mass participation 2.1% is in the vertical direction with a little participation 
of 0.17% in the longitudinal direction. Therefore, this mode is observed as the vertical 
mode. The ninth mode shape with a frequency ofl.1318 Hz is shown in Figures 4.10(a), 
(b) and (c). The mass participation is only 2.1% in the transverse direction. This mode 
is identified as a transverse mode with little torsion. 

The tenth mode with a frequency of 1.1435 Hz is shown in Figures 4.11(a), (b) 
and (c). The mass participation for this mode is 4.95%. It is observed that this mode 
is a transverse mode with little torsion in first two spans. 

Figures 4.12(a), (b) and (c) shows the eleventh mode shape with a frequency of 
1.2812 Hz. From mass participation and mode shape, it is seen that this mode is the 
first longitudinal mode. Mass participation for this mode is 95% in the longitudinal 
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direction. 

The twelveth mode shape with a frequency of 1.2866 Hz is shown in Figure 
4.13(a), (b) and (c). The mass participation for this mode is 2.6%. Based on the mode 
shape and mass participation, this mode is identified as a transverse mode with many 
half-waves. Figures 4.14(a), (b) and (c) show the thirteenth mode shape with a 
frequency of 1.3279 Hz. The mass participation for this mode is 11.27%. Based on the 
mode shape and mass participation, it is observed that this mode is the second 
dominant mode to contribute significantly in the transverse direction. 

Figures 4.15(a), (b) and (c) show the fourteenth mode shape with a frequency of 
1.3849 Hz. The mass participation for this mode is less than 0.025%. Therefore, this 
mode is observed as a torsional mode with little vertical and transverse bending. The 
fifteenth mode shape with a frequency of 1.3978 Hz is shown in Figures 4.16(a), (b) 
and (c). The mass participation for this mode in the vertical direction is 18.8% and in 
the longitudinal direction is 2%. Therefore, this mode is the first dominant mode to 
contribute significantly in the vertical direction. 

Similar observations can be made for other modes from Table 4.1. However, the 
modes 21, 22 and 27 are explained in the following, since these modes are compared 
with the field test in the earlier Chapter. 

The 21 ''mode shape with a frequency of 1.8848 Hz is shown in Figures 4.17(a), 
(b) and (c). This mode has mass participation in both the vertical and longitudinal 
directions but the value is less than 0.735%. Based on Figure 4.17b and mass 
participation, it is observed that this mode is a combined vertical and longitudinal 
mode. 

Figures 4.18(a), (b) and (c) shows the zznd mode with a frequency of 1.9348 Hz. 
This mode has mass participation of 6. 5% in the vertical direction with a small mass 
participation of 0.9% in the longitudinal direction. This mode can be visualized as a 
vertical mode. The 27'h mode shape with a frequency of 2.2327 Hz is shown in Figures 
4.19(a), (b) and (c). The mass participation for this mode is 21.8% which is mainly in 
the vertical direction. Therefore, this is one of the pure vertical mode which is very 
important to contribute significantly for the vertical seismic motion. 

From Table 4.1, it is seen that there is a very good mass participation in the 
longitudinal and transverse directions. But the mass participation in the vertical 
direction is only 54%. By increasing the number of modes beyond 45 modes did not 
improve the mass participation in the vertical direction. 

The mode shapes and natural frequencies discussed above consisted of all the 
system frequencies. For earthquake response analysis, all these frequencies and modes 
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may not be excited and hence all the frequencies are not required. The Ritz-vector 
based method yields frequencies and mode shapes that provides significant 
participation in all directions. These frequencies and their mass participation are 
presented in Table 4.2. By comparing Tables 4.1 and 4.2, it is seen that the modes with 
very less mass participation in all the three directions are omitted by Ritz vector based 
eigenvalue extraction method. From Table 4.2, it is seen that the mass participation in 
all the three directions are more than 90% and this indicates that model will give 
reasonable response under earthquake type of loading. 
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5. SEISMIC RESPONSE ANALYSIS 

5.1 General 

A number of different analytical methods have been developed for assessing the 
seismic vulnerability of existing bridges including elastic analysis, inelastic pushover 
analysis, capacity spectrum analysis and nonlinear dynamic analysis (Priestly et al. 
1996). Each approach incorporates different assumptions and varies in complexity of 
application. The problem of an engineer assessing the seismic vulnerability of a bridge 
structure is to select the most appropriate and cost-effective method for performing the 
assessment. Under minor ground motions, a bridge will experience little inelastic 
behavior and thus the linear elastic analysis is convenient and reasonable for bridge 
design and assessment for minor earthquakes. A limitation of the elastic analysis 
method is that the linear analysis offers little information regarding the inelastic 
response of the structure. Disadvantages of nonlinear dynamic time-history analysis 
are that the structural elements of nonlinear models are considerably more complex 
than those of their linear elastic counterparts, the numerical algorithms do not always 
ensure convergence to a physically valid solution, processing and evaluation of the 
output often requires considerable effort, and the results can be extremely sensitive to 
input parameters and structural models. 

In this work, modal time-history analysis is used because the bridge is assumed 
to behave linearly elastic with small displacements under the expected earthquake 
loading. Modal time-history method was used instead of response spectrum method for 
the main bridge due to the importance of the bridge and also due to the lack of seismic 
considerations in its initial design. Time-history analysis is the most sophisticated 
analysis technique available to the structural analyst. Using this level of analysis 
affords the engineer a complete description of the behavior of a structure at all times 
throughout an earthquake. Since no strong earthquake records are available for the 
Eastern U.S., time-history analyses for Kentucky bridges were performed using artificial 
earthquake records characteristic of the New Madrid and other nearby seismic zones. 

Modal time-history method for the earthquake analysis involves the solution of the 
following equation of motion: 

M!>+C!l+Ku - M i1 ( 5. 1) 

where M, C and K are the system mass, damping and stiffness matrices, respectively. ,, , , 
and u are the system nodal acceleration, velocity and displacement vectors. is the 
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earthquake motion for which the bridge's response has to be calculated. The SAP90 
software performs exact integration of the modal-response equations for a linear variation 
of the time-function between the input data time points. Therefore, the results are not 
dependent on the selection of a "time-integration interval" as in some other methods 
[Wislon and Habibullah, 1992]. Damping for all the modes are assumed to be 5%. 

Time-histories representing the 50-year event and the 500-year event were 
generated for the vertical and two orthogonal horizontal directions in the report by Street 
et al. (1996). The definition of the 50-year event is: the peak horizontal particle 
acceleration, at the top of rock, that has a 90% probability of not being exceeded in 50 years 
(i.e. 10% probability of exceedance). Likewise, the 500-year event has a 90% probability 
of not being exceeded in 500 years. A recurrence rate (return period) can be calculated for 
the earthquakes which would produce the 50- and 500-year events. 

The 50-year event that has a 10% probability of exceedance corresponds to 
AASHTO's (1996) design earthquake for highway bridges. For low probability of 
exceedance, the recurrence rate is approximately (National Highway Institute, 1996) the 
ratio of time and return period. Actual return period for the 50-year event is 475 years 
(Mayes et al. 1992). Some states require even longer return periods for their design 
earthquake. For example, California's Department of Transportation (Caltrans) uses a 
2400-year return period, which has a 10% probability of exceedance every 250 years. 

For the seismic zones affecting Kentucky, the 50-year and 500-year events defined 
in Street et al. (1996) correspond to the AASHTO design earthquake and near the 
maximum credible earthquake, respectively. For the bridge location in this study, Ballard 
County, Kentucky, a time-history with peak horizontal acceleration of 30% gravity 
represents the AASHTO design earthquake. The time-history for the "near maximum 
credible earthquake" (500-year event) has a peak horizontal acceleration of 60% gravity in 
Ballard County. 

5.2 Seismic Response 

The seismic response ofthe US51 bridge is calculated for the 50-year earthquake. 
For the Ballard County bridge site, peak horizontal bedrock acceleration for this artificial 
earthquake is 30% gravity (figure 5.1). For comparison, AASHTO's map (1996) of peak 
horizontal acceleration places the Ballard County bridge site in, approximately, the 25% 
gravity contour for the same probability event. Earthquake duration is 10.24 seconds 
consisting of 2049 data points at 0.005 second intervals. The input motion along 
longitudinal, transverse and vertical directions are presented in figures 5.2-5.4, 
respectively. The peak ground accelerations along longitudinal, transverse and vertical 
directions are 115, 70.5 and 114.6 in!sec2

, respectively. Since the longitudinal direction of 
the earthquake may not coincide with the longitudinal direction of bridge, it is necessary 
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to analyze the bridge under different excitation cases as described in Table 5.1. Under LL 11 
excitation case, as mentioned in Table 5.1, the longitudinal earthquake is applied along 
longitudinal direction of the bridge and vertical earthquake is applied along the vertical 
direction of the bridge. Similarly for other excitation cases, vertical earthquake is 
considered acting in the vertical direction of the bridge. Only the longitudinal and 
transverse earthquakes are reversed. On some excitation cases, all the three direction 
earthquakes are applied simultaneously. 

Time-history analysis produces a very large quantity of output. It is difficult to 
monitor the maximum forces for all the members and maximum displacements at all the 
joints in a modal time-history analysis for seismic excitation kind of loading. Therefore, 
members and joints are selected based on their proximity to critical locations. From SAP90 
software, forces and moments are obtained for selected members. Stresses are calculated 
externally using simple computer programs/spreadsheets. Table 5.2 presents the cross­
sectional properties of members that are selected for stress calculation. 

As an example, for the L1T2V3 (Table 5.1) earthquake, the time history plots of 
transverse and vertical displacements at joint 44 (Fig. 2. 5) are presented in Figures 5.5 and 
5. 6. It is observed that the maximum transverse displacement of 1. 61" occurs at 4. 245 sees, 
and maximum vertical displacement of 1.77" occurs at 2.86 sees. The axial force time 
history for member 294 (Fig. 2.6) is presented in Figure 5.7. The maximum axial force of 
58.61 kips occurs at 3.645 sees. 

For stress calculations, the axial stresses are calculated from PIA and bending 
stresses are calculated from M,2/Z13 and M1iZ12. M12 and M13 are the bending moments in 
the local1-2 and 1-3 planes respectively. Z12 and Z13 are the section modulus about the 1-2 
and 1-3 planes, respectively. Combined stresses are calculated as the sum of PIA, M12/Z13, 

M18/Z12 with appropriate signs to get the maximum stresses. 

Axial stress = oa =Axial force/Area 
Bending stress in 1-2 plane at I'h joint= ob12;= Absolute(l\112 at Node I I Z13) 

Bending stress in 1-2 plane at J'h joint= oh12;= Absolute(l\112 at Node J I Z13) 

Bending stress in 1-3 plane at I'h joint= ob13;= Absolute(l\113 at Node I I Z12) 

Bending stress in 1-3 plane at J'1 joint = ob1s;= Absolute(l\118 at Node J I Z12) 

Combined axial and bending stress: 

Stress at node I = oa + oblzi + oblsi 

Stress at node J = oa + Ob12; + ob!Si 

Shear stress is calculated from the shear forces in 1-2 and 1-3 plane, i.e., 
Shear stress='= {Square root of [(SF12)

2 + (SF13)
2 ]}/Area 
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The absolute maximum of stresses obtained from the maximum and minimum 
responses from time-history analysis are presented in tabular form and are discussed in 
the following. Table 5.3 lists the stresses at selected members (Figs. 2.3-2. 7) due to 
seismic excitation case L1T2V3 (Table 5.1). Due to earthquake motion alone, the axial 
stresses are found to be larger than the bending stresses with a maximum of 4.3 ksi in 
member 297. Bending stresses are calculated and presented at nodes I and J of the 
member. Table 5.3 also presents the maximum of the combined stresses from the Dead load 
±Earthquake load (EQ) ±Thermal load (90° F). Shear stress is found to be very less with 
a maximum of2.4 ksi in member 182. The maximum of combined axial and bending stress 
is found to be 20.2 ksi in member 294, which is less than the yield strength of steel (36 ksi). 

Table 5.4 lists the stresses at selected members (Figs. 2.3-2. 7) when two of the 
excitation directions are reversed, i.e. under L2T1V3 (Table 5.1) case. Axial stresses due 
to seismic forces alone are found to have a maximum of6.1 ksi in member 288. This Table 
5.4 also presents the maximum ofthe combined stresses from the Dead load± Earthquake 
load (EQ) ±Thermal load (90° F). Shear stresses are very less with a maximum of 0.2 ksi 
in member 244. Maximum ofthe combined stresses is found to be 7.3 ksi in member 288, 
which is less than the yield strength of steel. 

Under the seismic excitation case LL11, the stresses calculated for selected members 
(Figs. 2.3-2.7) are presented in Table 5.5. The maximum axial stress is found to be 4.25 ksi 
in member 294. Maximum of the combined axial and bending stress is found to be 5.0 ksi 
in member 294, which is less than the yield strength. Shear stress is found to have a 
maximum of 0.16 ksi in member 243. 

Table 5.6 lists the stresses at selected members (Figs. 2.3-2.7) when the seismic 
excitation LL22 is applied. The maximum axial stress is found to be 4.2 ksi in member 288. 
Maximum of the combined axial and bending stress is 4.98 ksi in member 288, which is far 
less than the yield stress of steel. Shear stress is found to have a maximum of 0.15 ksi in 
member 243. 

For the seismic excitation case TT11, the stresses at selected members (Figs. 2.3-2. 7) 
are presented in Table 5.7. The maximum axial stress is found to be 6.12 ksi in member 
294. Maximum of the combined axial and bending stress is 7.32 ksi in member 288, which 
is less than the yield strength of steel. Shear stress is found to have a maximum of0.17 ksi 
in member 294. 

Table 5.8 lists the stresses at selected members (Figs. 2.3-2.7) when the seismic 
excitation TT22 is applied. The maximum axial stress is found to be 4.25 ksi in member 
291. Maximum ofthe combined axial and bending stresses is 5.1 ksi in member 291 which 
is less than the yield stress of steel. The shear stress is found to have a maximum of 0.15 
ksi in member 243. 

24 



The stresses at selected members (Figs. 2.3-2. 7) due to a differential temperature of 
90°F are presented in Table 5.9. The coefficient of thermal expansion for steel is taken as 
6.5 x 10"8/'F. Maximum axial stress is found to be 9.2 ksi in member 1. Maximum shear 
stress is obtained as 0.13 ksi. Combined stresses from axial and bending is 11.325 ksi in 
member 1. 

Table 5.10 lists the stresses at selected members (Figs. 2.3-2. 7) due to the self-weight 
of the bridge. Maximum axial stress is found to be 10 ksi in member 294. Maximum shear 
stress is obtained as 2.22 ksi in member 182. Combined stresses from axial and bending 
stresses have a maximum of 11.6 ksi in member 243. 

In previous calculations, the stresses produced were checked purely from the 
material yield point of view. Under earthquake loading, truss members may experience 
tensile force at one time interval and compressive force at some other time interval. 
Therefore, it is necessary to check for the buckling oftruss members. Since the bridge truss 
members are subjected to axial forces and bending moments, the equations (10-42) to (10-
44) from AASHTO is used to check whether they satisfY the inequality condition. 

AASHTO Eq. (10.42): 

c t /c. 
c I,, 
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AASHTO Eq. (10-43): At points of support 
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In Table 5.11 and 5.12, the stresses are checked by also considering the buckling of 
the member for the earthquake excitation cases L1T2V3 and L2T1V3, respectively. It is 
seen that the inequalities given in equations 10-42 and 10-43 are satisfied and hence there 
will not be any member failure due to combined axial and bending stresses. 

The displacements at selected nodes (Figs. 2.3-2.7) are presented in Table 5.13 for 
the different excitation cases (Table 5.1). Maximum displacement in the longitudinal 
direction is 1.2" at joint 29 under L1 T2V3 case. Maximum displacement in the transverse 
direction is 5" at joint 44 under L2T1V3 case. Maximum displacement in the vertical 
direction is 1.93" at joint 44 under TT22 case. 

Under static dead load and temperature, the displacements at selected joints (Figs. 
2.3-2.7) are listed in Table 5.14. Due to a temperature of90"F, maximum displacements 
in the longitudinal direction is 4.8" at the joints 89 and 818. The transverse displacement 
is maximum at joint 29 is 0.16". Maximum vertical displacement is 0.97" at joint 29. Due 
to dead load, maximum longitudinal displacement is 0.8" at joint 118. Transverse 
displacement are very less , i.e. with a maximum of 0.04". The maximum vertical 
displacement is 8.9" at joint 23. 

Maximum and minimum base shears obtained for the bridge are listed in Table 5.15. 
These values are presented for different excitation cases listed in Table 5.1. The maximum 
in each direction for all excitation cases is obtained and load combination is applied. Then, 
based on the translational stiffnesses of the piers, shear forces on top of the pier is 
calculated and presented in Table 5.16. 

5.3 Capacity/Demand Ratios 

Since the superstructure of the bridge is connected to the substructure through 
bearings, it is necessary to check these bearings against loss-of-span and anchor bolt shear 
failure. Table 5.16 lists the available anchor bolt shear capacity (V J and base shears at 
each pier. The anchor bolt capacity V, is calculated by assuming the shear strength of the 
bolt as 26.97 ksi. The resultant of base shear is calculated as the square of the sum of 
squares of the longitudinal and transverse base shears. Then the seismic demand (Vb) is 
calculated by multiplying by 1.25 as per FHWA Retrofitting manual. The pier A has force 
CID ratios rbr=0.84 and for all the other piers rb, are greater than 1.0. 

The bearings at piers A and F are of expansion type having a slotted bottom chord 
member attached to the bottom shoe of the bearing. Therefore expansion is allowed to a 
limited extent. However in this work displacement capacity/demand(C/D) ratios r,,, = (t>.,(c)­
tl./d))/t>.,q(d) [Section A.4.2, FHWA Retrofitting Manual] are calculated for these bearings 
and presented in Table 5.17. tl.Jc) is the available seat width, tl.;(d) is the displacement due 
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to temperature effects and li,q(d) is the seismic displacement. The C/D ratios are greater 
than 1.0 and hence loss-of-span cannot occur due to displacement consideration. 
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6. APPROACH BRIDGE 

6.1 General 

The US51 bridge over the Ohio river consists of Kentucky and Illinois approach 
spans as shown in figures 6.1 and 6.2, respectively. The plan and elevation views of the 
Kentucky and Illinois approaches are shown in figures 6.3 and 6.4, respectively. The 
Kentucky approach has 21 spans whereas the Illinois approach has 6 spans. All the spans 
in the Illinois approach are simply supported with expansion bearings on one support and 
fixed bearings on the other. The total length of the Illinois and Kentucky approaches are 
570.52' and 2464.4', respectively. The pier I1 on Illinois approach and piers K7, K8 and K9 
on Kentucky approach are supported on caisson foundations, and all the other piers are 
supported on pile foundations. 

The Illinois approach consist of 5 girder spans and one deck-truss span, whereas 
the Kentucky approach consists of nine deck-truss type spans, 2 suspended spans and the 
remaining 10 are girder spans. The span length of deck-truss type spans are about 182', 
whereas the girder spans ranges from 60' to 90' and the suspended spans are of 40' length. 
The cross section of superstructure for different type of spans are shown in figures 6.5-6. 7. 
The cross section of the bridge piers have taper along the height with a batter of 112" per 
foot. The approach bridge piers are made of reinforced concrete with class AA grade 
concrete. 

6.2 Structural Modeling 

Although the approach spans are large in number, 5 on Illinois side and 20 on 
Kentucky side, these spans are idealized as simple structural systems based on the type 
of bearings provided at the top of the pier. The models are designated asIa, Ib, Ic and Id 
for Illinois approach, and Ka, Kb, Kc, ... Kp for Kentucky approach. The simplified systems 
for the Illinois and Kentucky approach are shown in figures 6.8 and 6.9, respectively. 
These simplified systems are treated as single-degree-of-fi:eedom (SDOF) system for 
mathematical modeling of the bridge in longitudinal direction. The mass of the SDOF 
consists of mass of the superstructure and one-third mass of the pier. The longitudinal 
translational stiffnesses of the piers are calculated using 3EI/V. Modulus of elasticity of 
concrete is assumed as 3625 ksi for class AA grade of concrete. Average moment of inertia 
is used for calculating the stiffness of battered piers. Due to the unavailability of detailed 
site soil investigations, stiff and flexible models are adopted to get the maximum forces 
and displacement. In the stiff model, the pier is assumed to be fixed at the bottom of the 
pier, and in the flexible model the length ofthe pier is extended upto the halflength of pile, 

28 



i.e. 17.5'. The extended length is assumed to have the same flexural properties as that of 
the p1er. 

The dimensions, gross cross sectional properties and stiffuesses of all the piers are 
listed in Table 6.1. The moment of inertia of piers Kl to K6 are calculated as an average 
of moment of inertia of the upper and lower middle portions. This is to account for the 
variation of shape of the cross section at the lower and upper portions of the pier. For all 
other piers, the moment of inertia is calculated as an average of the top and bottom 
moment of inertia. Table 6.2 and 6.3 list the weight of the superstructure of the girder 
spans and deck-truss spans of the Illinois approach. Table 6.4 and 6.5list the weight of the 
superstructure of deck-truss spans and girder spans of the Kentucky approach. 

6.3 Seismic Response Analysis 

The approach spans are analyzed under seismic motion corresponding to 0.3g 
earthquake of the 50-year event. The study of damage to multi-span simple bridges 
reveals that longitudinal seismic waves have caused more damage than transverse 
(Zimmerman and Brittain, 1979). In this work, seismic analysis is performed to determine 
any loss-of-span due to excessive longitudinal displacement or shear failure of the bearings. 
In this work, seismic analysis of the simplified SDOF models for the approach spans is 
canied out using the response spectrum method. 

The response spectrum method is a technique for obtaining the solution of the 
coupled, second-order, linear, differential equations of motion that govern the forced 
vibration of a bridge. This method involves an initial eigenvalue analysis to determine the 
natural frequencies and mode shapes of the bridge. The orthogonality of the mode shapes 
with respect to the mass, stiffness and damping matrices is then used to uncouple the 
equations of motion. The peak response associated with the single-degree-of-freedom 
system represented by each of the uncoupled equations of motion is obtained through the 
use of an elastic earthquake response spectrum. An estimate of the maximum response of 
the structure is determined by combining the peak responses of the individual modes based 
on statistical procedures. 

The natural frequencies and periods of the models based on flexible system are 
presented in Table 6.6 with their stiffness and mass. These frequencies range from 0.75 
hz to 5.58 Hz for the Kentucky approach whereas for the Illinois approach it ranges from 
1.47 to 14.54 Hz. Table 6.6 also lists the minimum force demand on bearings which is 20% 
of the dead load [FHWA retrofitting manual (1995)]. This minimum force demand should 
be considered to check the bearings if the seismic force demand is less. The natural 
frequencies and periods of the models based on stiff system are given in Table 6.7. The 
natural frequency ranges from 1.26 to 22Hz for the Kentucky approach, and 3.32 to 22.4 
Hz for the Illinois approach. As expected the fi·equencies are high in the stiff system. 
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The response spectra for the Ballard County is shown in figure 6.10 for 50-year 
earthquake event with a peak acceleration of 0.30g (Harik et al. 1997). The damping is 
assumed to be 5%. The site soil coefficient is conservatively taken as 2.0 for both the 
flexible and stiff system. Table 6.8 lists the longitudinal displacements and forces for the 
different models of flexible system. The maximum longitudinal seismic displacement oflO" 
is found for one of the spans of Kentucky approach, and for the Illinois approach the 
maxim urn displacement was found to be 2. 7". The seismic force for the Kentucky approach 
ranges from 163 to 471 kips, whereas for the Illinois approach it ranges from 170 to 396 
kips. 

Table 6.9 presents the displacement and furces in the longitudinal direction for the 
stiff system. The maximum displacement is 3.71" for the Kentucky approach and 0.53" for 
the Illinois approach. The seismic force for the Kentucky approach ranges from 163 kips 
to 467 kips, whereas for the Illinois approach it ranges from 170 to 397 kips. It is seen that, 
in most of the models of the flexible and stiff systems, the response is controlled by the Cs 
~ 2 A criterion. 

6.4 Capacity/Demand Ratios 

Table 6.10 lists, for the flexible system, the bearing force capacity (V .)/demand (Vd) 
ratios, I\,r= V /Vd. and also gives information about the additional number ofbolts required 
at each bearing. The anchor bolt capacity Vc is calculated by assuming the shear strength 
of the bolt as 26.97 ksi. Seismic demand V dis calculated by multiplying the seismic force 
by 1.25 [FHWA Retrofitting manual]. The force capacity/demand ratios are less than 1.0 
for all the piers with fixed bearings. The additional anchor bolts required at each pier are 
listed in Table 6.10. 

Table 6.11 presents the capacity/demand ratios and additional anchor bolts at each 
pier for the stiff system. The capacity/demand ratios and additional anchor bolt 
requirements are same as in flexible system. Figures 6.11 to 6.31 show the arrangement 
of additional anchor bolts at the bearings as suggested in Table 6.11. 

Table 6.12 lists the bearing displacement capacity/demand ratios r,,, = (~Jc) · 
~;(d))/~'" (d) [Section A. 4. 2, FHWA Retrofitting Manual] of the flexible system. ~,(c) is the 
available seat width, ~;(d) is the displacement due to temperature effects, and ~,q(d) is the 
seismic displacement. Since the expansion bearings at the piers have anchor bolts that can 
slide horizontally may limit the horizontal displacement during earthquake, therefore, the 
method 2 in Section A.4.2 of the FHWA retrofitting manual is used for calculating the 
displacement capacity/demand ratios. These ratios are greater than 1 for all the spans, and 
hence loss-of-span can not occur from the consideration of displacement capacity/demand 
ratios. 
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6.5 Retrofit for the Approach Bridge 

From the seismic analysis of the approach spans, it is found that the fixed bearings 
at some of the piers need additional anchor bolts to resist the 0.3g earthquake 
corresponding to 50-year event at the Ballard County. Additional anchor bolts may be 
provided according to Table 6.11 and as shown in Figures 6.11 to 6.31. 
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7. CoNcLUSIONS AND REcoMMENDATIONS 

7.1 General 

The US51 bridge over the Ohio river may be subjected to future emthquakes. 
Therefore, it is important to evaluate the bridge under the projected seismic motion. In this 
work, since the bridge is located in Ballard Co. of Kentucky, 0.3g earthquake for the 50-
year event is applied. Depending upon the importance of the bridge, it has been decided to 
use more rigorous methods for the evaluation of the main bridge and simplified methods 
for the approach spans. 

7.2 Main Bridge 

The seismic evaluation of the main bridge consisted of field ambient vibration 
testing, finite element modeling and seismic response analysis using modal time-history 
method. Field testing was mainly carried out to identifY the natural frequencies and their 
mode shapes. These frequencies and mode shapes have been compared with the results 
from the finite element model. Comparisons have been performed for four transverse 
modes, six vertical modes and one longitudinal mode. 

Three dimensional finite element model was developed with frame elements and 
spring elements. This model has been calibrated with the field test for natural frequencies 
and mode shapes. Frequencies from the field test for the first modes in the transverse, 
vertical and longitudinal directions are 0.3871, 0.7515 and 1.2859 Hz, respectively. 
Frequencies from the finite element model for the first modes in the transverse, vertical 
and longitudinal directions are 0.3831, 0.7578 and 1.2812 Hz, respectively. Reasonable 
agreement between the field test and finite element model has been obtained. 

Seismic response analyses have been carried using modal time-history method. 
Displacements of selected joints and stresses for selected members have been calculated. 
The results are presented also for different seismic excitation cases by reversing the seismic 
excitation directions. Stresses for selected members are also presented for combined 
earthquake, dead load and thermal loads. For the selected joints, the maximum 
displacement in the transverse, vertical and longitudinal direction was found to be 5", 1.9" 
and 1.2", respectively. Maximum combined axial and bending stresses in the members is 
found to be 20 ksi. These stresses are less than the yield stress of steel and hence material 
yielding may not occur. Bending stresses have been combined with axial stresses by 
considering the buckling of members. It was found that for the selected members buckling 
failure may not occur. 
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Capacity/demand (C/D) ratios have been calculated for bearing displacements at pier 
A and F, and these C/D ratios are greater than 1.0. Hence loss-of-span may not occur from 
the displacement consideration. Bearing force C/D ratios have been calculated for the 
bearings at all the piers. Except at pier A, all the other piers have C/D ratios greater than 
1.0 and hence retrofit is not required for the piers B to F. Pier A has a C/D ratio of0.84. 
Therefore, the available number of anchor bolts may be increased by 16%. 

7 _3 Approach Bridge 

The US51 bridge has approach spans on Kentucky and Illinois sides. Most of the 
approach spans are single-span with expansion bearing at one support and fixed bearing 
at the other. Therefore, single-degree-of-freedom models were used along with response 
spectrum method for the seismic response analysis. Response analysis has been carried out 
only in the longitudinal direction of the bridge, and maximum displacement and force 
responses have been calculated. 

Displacement and force capacity/demand ratios have been calculated. Displacement 
CID ratios are greater than 1.0, hence loss-of-span may not occur from the displacement 
considerations. At many piers, force C/D ratios were less than 1.0, therefore, retrofit in the 
form of additional anchor bolts is recommended. Alternatively, retrofit in the form of cable 
restrainers, isolation bearings and/or connection of bottom chord members of all the spans 
may be provided. 
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T bl 31 a e a US51 B .d ntge T t" es mg D t ·1s M e a1 - ovmg St t" a 1on on N thb or oun dL anes 
Station Filename Accelerometer Channel Orientation 

Block Number (xx) 
29 Yellow 20 llorizontal 

2l Transver~ 

22 Vertical 

28 White 1 Ho1izontal 

N1chXX.dat 
18 Tr<tnsversc 
1!l Ve.~tiCi\1 

27 (NB Traffic) Red " \-lolizontal 
15 Tram;versc 
1G VcJtical 

26 Orange 11 Holi7.ontal 
12 Tranw"lse 
I:{ Vettical 

25 Green 8 Horizontill 
9 Transvcn;e 
10 Vertical 

24 Yellow 20 Horizontal 

N2chXX.dat 
21 Tr;mJJVCJ:;e 
22 Ve~tic>~ 

23 (NB Traffic) White 17 1-loJimn!lll 
18 Transverse 
1!J Vertical 

22 N3c!u'CX.dat Red 14 Horizon ttl 

(SB Traffic) 
15 T1an:werse 
16 Ye•tical 

21 Orange 11 Horizont1l 
12 Tiansverse 
1:3 Vc•tical 

20 Green 8 Ho,izontal 
9 Tran~vcn;e 

10 Vertical 

19 Yellow 20 l-lo•izont,l 
21 Tranovc1se 
22 Vettical 

18 White 17 Ho1izontal 

N 4c!u'CX. da t 
18 Tnu1SVCII!€ 

10 v~llical 

17 (NB 1\-affic) Red " Horizon~,[ 

15 Tranwetse 
16 Vertical 

16 Orange 11 Horizon til 
12 Tnmsversc 
13 Vcttkal 

15 Green 8 Horizot1tal 
9 Tlansvetoe 
10 Ycltical 

14 Yellow 20 Hotizontal 
21 Trnn5versc 
22 Vertical 

13 White 17 Horizontal 

N5chXX.dat 
18 Transverse 
19 Vertical 

12 (NB Traffic) Red 14 Hn1izontal 
15 Transvetse 
16 Vertical 

11 Orange JJ Hotiwntal 
12 Tmnsversc 
13 Vct1intl 

10 Green 8 1-l"•izontal 

" rransverse 
10 Vertical 

9 Yellow 20 
21 

Hnlizontal 
Tnmsv~rsc 

22 Vetticitl 

8 White 17 l!o,izontal 

N6chXX.dat 
18 Tranwcr;e 
19 Vc,tical 

7 (NB Traffic) Red 14 Hotimntal 
15 Transverse 
u; Vcltica! 

6 Orange 11 Hotizontal 
12 Tran~vcrse 

13 Vertical 

5 Green 8 Horizoll!al 
9 Tmnsver:;e 
10 Vertical 

4 Yellow 20 llorizonta\ 
21 Transve1>e 
22 Vettia1l 

3 White 17 llorizontal 

N7chXX.dat 
18 Transverse 
19 Vctticul 

2 (NB Traffic) Red 14 Horizontal 
15 rtansverse 
16 Venicnl 

1 Orange 11 J-l<ltiZO[Ita\ 
12 l"•an,;versc 
13 Ye•ticnl 

1 Green 8 Hol'i.zontal 

'~ T~~nsveise 
·i.· 
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Table 3 1b US51 Bridge Testing Details- Base Station on Northbound Lanes 

Moveable 
Station 

Locations 

29 
28 
27 
26 
25 

24 
23 
22 
21 
20 

19 
18 
17 
16 
15 

14 
13 
12 
11 
10 

9 
8 
7 
6 
5 

4 
3 
2 
1 

Filename Accelerometer Channel 
Block Number 

(XX) 

M1chXX.dat Black 0 

(NB Traffic) 1 
2 

Blue 3 
4 
5 

M2chXX.dat Black 0 

(NB Traffic) 1 
2 

M3chXX.dat Blue 3 

(SB Traffic) 4 
5 

Black 0 

M4chXX.dat 1 

(NB Traffic) 2 

Blue 3 
4 
5 

Black 0 

M5chXX.dat 1 

(NB Traffic) 
2 

Blue 3 
4 
5 

Black 0 

M6chXX.dat 1 

(NB Traffic) 2 

Blue 3 
4 
5 

Black 0 

M7chXX.dat 1 

(NB Traffic) 
2 

Blue 3 
4 
5 

Black Accelerometer: Upstream NB side of Bridge 
Blue Accelerometer: Downstream SB side of Bridge 

All data saved in g's 
Sampling rate is 1002 Hz 
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Orientation 

Horizontal 
Transverse 

Vertical 

Horizontal 
'l"ransverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 



a e a n T bl 3 2 US 51 B . d ge T estmg D '1 etm s- M ovmg s tat10n on s ou thbo d L un m1e 
Station Filename Accelerometer Channel Orientation 

Block Number (xx) 
1 Yellow 20 Ho1izontal 

21 Transverse 
22 Vertical 

2 White 17 Horizontal 

PlchXX.dat 
18 Tram.verse 
19 Vertical 

3 (NB Traffic) Red 14 Horizontal 
IG Tmmvetse 
!G Vertic-al 

4 Orange 11 1 lorizontal 
12 Transver.-e 
13 Vcttiutl 

5 Green 8 Hmimntal 
9 Transverse 
10 Vertical 

6 Yellow 20 Horizontal 
21 Transverse 
22 Vettical 

7 White 17 Ho1izontal 
18 Transverse 

P2chXX.dat 19 Vertical 

8 (NB Traffic) Red 14 Hmizontal 
15 Transv~•se 

16 Ve11ical 

9 Orange 11 llorizon~,\ 

12 T1ansverse 
13 Vertical 

10 Green 8 Horizontal 
9 Tmnsvcr,;e 
10 Vc1tk<ll 

11 Yellow "' Horizontal 
21 Transven;e 
22 Vettical 

12 White 17 Ho1izontal 

P3chXX.dat 
18 Transverse 
19 Vertical 

13 (NB Traffic) Red 14 Horizontal 
15 T1ansversc 
Hi Vertical 

14 Orange 11 llorizontal 
12 Tmnsvcrse 
13 Venical 

15 Green 8 Hmizontal 
9 Transverse 

10 VeJti<:al 

16 Yellow 20 Horizontal 
21 T1ansversc 
n Vcrtintl 

17 White 17 Hmi7J.111tal 
18 Tmnsversc 

P4chXX.dat 19 Yc1tical 

18 (NB Traffic) Red 14 Horizontal 
15 Transverse 
16 Vct1ical 

19 Orange 11 Hotizootal 
12 Transvcr,<e 
13 Vettical 

20 Green 8 llotizontal 
9 Tt"Eno-vetsc 
Ill Vertical 

21 Yellow 20 Hotizontal 
21 Transverse 
22 Vertical 

22 P5chXX.dat White 17 Horizontal 

(SB Traffic) 
18 Transverse 
19 Vertical 

23 Red 14 1-!orizontal 

P6chXX.dat 15 Tramvcrse 
16 Vertical 

24 (NB Traffic) Orange 11 1-!otizontal 
12 Tmnsvcrse 
13 Venical 

25 Green 8 Horizontal 
!l Transverse 
10 Vertical 

26 Yellow 20 Horiznmal 
21 Transverse 
22 Vertical 

27 White 17 Hotimtttal 
lB Tmn;ven;c 

PSchlOC.dat lH Vet1ical 

28 (NB Traffic) Red 14 l-!oti~.tlntal 

15 Transv~r~c 

!G Vcni~al 

29 Orange 11 1-lorizontal 
12 Ttansversc 
13 Vertical 

29 Green 8 Horizontal 

;9n 
Ttansvetse 

Vcr ·ol 
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Table 3 2b US51 Bridge Testing Details- Base Station on Southbound Lane 

Moveable 
Station 

Locations 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 

Filename Accelerometer Channel 
Block Number 

(XX) 

01chXX.dat Black 0 

(NB Traffic) 1 
2 

Blue 3 
4 
5 

02chXX.dat Black 0 

(NB Traffic) 1 
2 

Blue 3 
4 
5 

Black 0 

03chXX.dat 1 

(NB Traffic) 2 

Blue 3 
4 
5 

Black 0 

04chXX.dat 1 

(NB Traffic) 2 

Blue 3 
4 
5 

05chXX.dat Black 0 

(SB Traffic) 1 
2 

06chXX.dat Blue 3 
(NB Traffic) 4 

5 

Black 0 

08chXX.dat 1 

(NB Traffic) 
2 

Blue 3 
4 
5 

Black Accelerometer: Upstream NB side of Bridge 
Blue Accelerometer: Downstream SB side of Bridge 

All data saved in g's 
Sampling rate is 1002 Hz 
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Orientation 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 

Horizontal 
Transverse 

Vertical 



>!>­
>-' 

Field Tested 
Frequency, f 1 

(Hz) 

0.0835 

0.1002 

0.1169 

0.1336 

0.1503 

0.167 

0.1837 

0.2004 

0.2171 

0.2338 

0.2505 

0.2672 

0.2839 

0.3006 

0.3173 

0.334 

0.3507 

0.3674 

0.3841 

0.3871 

0.4175 

0.4342 

0.4509 

0.4676 

0.4843 

0.501 

0.5177 

0.5344 

0.5511 

0.5678 

0.5845 

0.6012 

Table 3.3 Frequency Identification from the Field Test Data 
Number of Peaks Finite Element Relative Error 

Transverse Direction Vertical Direction Longitudinal Direction 
Mode Description Frequency, frcm JOO*(f;-~om)/~ 

(Hz) 

22 20 23 

4 8 7 

10 11 7 

13 7 12 

9 10 11 

13 10 9 

8 9 11 

9 7 8 

14 16 10 

9 5 13 

13 13 9 

6 12 10 

12 9 9 

10 5 8 

10 13 8 

7 12 13 

15 8 7 

9 9 13 

4 12 8 

20 10 11 First Transverse 0.3831 1.7326 

4 7 10 

3 14 15 

16 7 9 

4 14 9 

9 5 7 

19 12 17 Second Transverse 0.5017 0.1315 

8 11 8 

6 6 5 

8 8 14 

12 7 10 

8 18 9 

15 8 14 -



"'" 1>0 

Frequencies 
from Test 
Data (Hz) 

0.6179 

0.6346 

0.6513 

0.668 

0.6847 

0.7014 

0.7181 

0.7348 

0.7515 

0.7682 

0.7849 

0.8016 

0.8183 

0.835 

0.8517 

0.8684 

0.8851 

0.9018 

0.9185 

0.9352 

0.9519 

0.9686 

0.9853 

1.002 

1.0187 

1.0354 

1.0521 

1.0688 

1.0855 

1.1022 

1.1189 

1.1356 

1.1523 -

Table 3.3 (Cont'd) Frequency Identification from Field Test Data 
Number of Peaks in all Stations Finite Element Relative Error 

Mode Type Frequencies 100*(fl·f2)/fl 
Transverse Direction Vertical Direction Longitudinal Direction (Hz) 

2 9 9 

22 8 9 Third Transverse 0.6206 2.1992 

3 7 11 

18 11 9 

5 11 13 

13 8 6 

5 7 12 

13 10 11 

10 16 10 First Vertical 0.7578 0.8321 

10 9 5 

10 17 13 I 

17 7 9 

9 10 5 

14 9 11 

5 13 14 

14 9 3 

13 10 14 

8 7 4 

4 13 13 

18 5 9 Fourth Transverse 0.9147 2.1901 

7 15 8 

10 8 15 

7 15 1 

12 7 21 

11 8 5 

5 7 10 

15 15 13 Second Vertical 1.0722 1.9146 

3 9 7 

16 10 12 

9 6 12 

2 11 3 

12 17 14 

L.._ ___ 1_1 ___ -- _6_ - ·--
_3 ___ -- ·-- ····-------L._ 



... 
():) 

Field Tested 
Frequency, ~ 

(Hz) 

1.169 

1.1857 

1.2024 

1.2191 

1.2358 

1.2525 

1.2692 

1.2859 

1.3026 

1.3193 

1.336 

1.3527 

1.3694 

1.3861 

1.4028 

1.4195 

1.4362 

1.4529 

1.4696 

1.4863 

1.503 

1.5197 

1.5364 

1.5531 

1.5698 

1.5865 

1.6032 

1.6199 

1.6366 

1.6533 

1.67 

1.6867 

l. 7034 

Table 3.3 (Cont'd) Frequency Identification from Field Test Data 
Number of Peaks Finite Element Relative Error 

Transverse Direction Vertical Direction Longitudinal Direction 
Mode Description Frequency, frem 1 00'(\· fcom)/~ 

(Hz) 

6 14 10 

12 8 4 

4 5 9 

4 12 13 

14 9 9 

4 6 9 

19 14 3 

4 10 12 First Longitudinal 1.2812 0.3641 

16 13 9 

5 5 5 

13 13 14 Third Vertical 1.3978 4.6237 

7 9 12 

11 9 5 

5 9 11 

15 10 5 

6 5 20 

9 13 3 

10 12 13 

8 11 12 

5 7 5 

9 12 14 

5 11 6 

15 12 15 

10 5 4 

4 9 14 

16 9 11 

5 12 10 

14 3 12 

10 7 5 

11 9 16 

11 13 4 

2 9 12 

19 10 8 



,;:.. 
,;:.. 

Field Tested 
Frequency, ft 

(Hz) 

1.7201 

1.7368 

1.7535 

1.7702 

1.7869 

1.8036 

1.8203 

1.837 

1.8537 

1.8704 

1.8871 

1.9038 

1.9205 

1.9372 

1.9539 

1.9706 

1.9873 

2.004 

2.0207 

2.0374 

2.0541 

2.0708 

2.0875 

2.1042 

2.1209 

2.1376 

2.1543 

2.171 

2.1877 

2.2044 

2.2211 

Table 3.3 (Cont'd) Frequency Identification from Field Test Data 
Number of Peaks Finite Element Relative Error 

Transverse Direction Vertical Direction Longitudinal Direction 
Mode Type Frequencies 100*(fl-f2)/fl 

(Hz) 

5 10 13 

11 12 5 

8 7 14 

13 9 9 

3 11 5 

12 13 15 

14 6 6 ' 

4 18 10 Fourth Vertical 1.8848 2.6036 I 

15 6 16 

8 13 14 

9 8 3 

15 15 7 Fifth Vertical 1.9348 1.6283 

8 8 17 

10 8 5 

9 14 18 

9 12 0 

9 8 21 

4 12 6 

19 10 18 

4 10 4 

13 5 23 

6 14 2 

12 9 18 

2 12 6 

15 6 7 

6 9 13 

19 19 16 

2 2 10 

17 6 14 

10 15 5 Sixth Vertical 2.2327 1.2829 

10 9 13 



Table 4.1 Natural Frequencies and Mass Participation of the Main Bridge 
(Exact Eigen System) 

Mode No. Angular Circular Period Mass Participation Cmnulative Mass Participation 
Frequency Frequency (Sec) 

Longit. Transver.'le Vertical Longit. Transverse Vertical (rad/Rec) (!h) 

1 2.41 0.3881 2.610:3 0 6.834 0 0 6_8:34 0 

2 :3.15 0.5017 1.9934 0 2.321 0 0 8.155 0 

' :-HJO O.G20G 1.611~ 0 H2.4'i"i 0 () 4l.G:J~ 0 

4 4.76 0.'7578 1.3197 0.024 0 2.889 0.024 41.632 2.898 

5 5.75 0.9117 1.0932 0 :3.117 0 0.024 14.748 2.888 

G G.ll 0.9725 1.0282 0 l.GOG 0 0.024 46.355 2.999 

7 6.24 0.9930 1.0071 0 0.527 0 0.024 46.882 2.999 

8 0.74 1.0722 0.9326 0.172 0 2.106 0.197 46.882 !5.105 

9 7.11 1.1318 0.88.16 0 2.069 0 0.197 48.951 5.105 

10 7.18 1.1435 0.8745 0 4.954 0 0.197 53.905 5.105 

11 8.05 1.2812 0.7805 95.333 0.001 0.239 95.53 S3.90G 5.844 

12 8.08 1.2866 0.7773 0.026 2.641 0 85.5.57 56.547 5.344 

13 8.::11 1.3278 0.7531 0 11.27."3 0 95.557 G7.819 5.314 

14 8.70 L\8,19 0.7221 0.003 0.0011 0.025 95.56 G7.824 5.87 

15 8.78 l.897B 0.7154 2.052 0.001 1B.765 87.612 67.825 2'1.135 

10 10.00 1.5986 O.G25G 0 0.193 0 97.G13 68.018 24.135 

17 10.20 1.G202 O.GJ72 0 7.909 0.005 97.61:=1 75.927 :M.14 

18 10.150 1.6681 0.59% 0 0.278 0 97.613 76.2 24.14 

19 10.70 1.6957 0.5897 0 0.625 0.002 97.G13 76.825 24.1-"12 

20 ll.GO l.R472 0.54H 0.002 0.092 0.001 97.614 76.917 21l.l4:3 

21 11.80 1.8848 0.5306 0.208 0 0.73t:i 97.822 76.917 24.878 

22 12.20 1.9348 0.5168 0.85 0 6.475 98.G72 7G.917 31.853 

2:3 12.80 2.0385 0.4918 0 0.235 0 98.672 77.152 :n.354 

24 13.20 2.1057 0.4749 0 0.009 0.001 98.672 77.161 81.354 

25 1::!.40 2.1405 0.4672 0 l'i.84.S 0 98.672 83.006 3U\54 

26 14.00 2.2292 0.4486 0.006 0.081 0.254 98.678 83.087 :3l.G09 

27 14.00 2.2327 0.4479 0.288 0.001 21.811 9B.966 83.088 53.42 

28 14.50 2.2999 0.4348 0 0.281 0.005 98.966 83.8f:iB 53.125 

29 15.10 2..10H1 0.4161 0 0.012 0.006 98.966 83.38 53.432 

80 15.30 2.4311 0.4113 0 0.112 0.001 98.966 83.492 53.132 

81 15.60 2.4812 0.1030 0 0.219 0.002 98.96G 83.711 53.434 

82 15.70 2.4913 0.4014 0.002 0 0.021 98.9GB 83.712 58.455 

33 Jfi.80 2.5104 0.3981 0 0 0.005 98.9GB 88.712 53.46 

84 15.90 2.5272 0.39.'i7 0 0 0.001 98.968 83.712 53.462 

85 15.90 2.5345 0.394G 0 0 0 £18.9GB 83.712 53.462 

86 16.00 2.5<197 0.3922 () 0.923 0.001 98.9GB 84.G:35 53.462 

37 lG.lO 2.5574 0.3910 0 0 0 98.9GB B4.6:·35 5:3.462 

:lB 1G.10 2.6088 0.:3833 0 0 0 98.9G8 84.635 53.462 

39 1G.40 2.6110 0.3830 0 0 0 98.909 84.6:35 58.4G3 

40 16.50 2.G217 0.3814 0 0.059 0 98.989 81\..695 5J.4G:i 

41 16.60 2.6401 o.a7ss 0 O.OOG 0.003 98.969 B4.7 5:3.466 

42 18.70 2.GG47 0.3753 0 0 0 98.968 84.7 53.466 

tiEl 17.00 2.6978 0.8707 0.001 0.186 0.004 98.97 84.SSG 53.47 

4,1 17.30 2.7476 0.3640 0 0.08G 0.076 98.97 81.952 53.54G 

45 17.:10 2.75£13 0.3G24 0.001 0.141 0.109 98.971 8.5.09G 5:3.655 
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Table 4.2 Natural Frequencies and Mass Participation of the Main Bridge 
(Ritz vector based) 

Mode Angular Circular Period Mass Participation Cumulative Mass Participation 
No. frequency Frequency (sec) 

(rad/sec) (Hz) Longit. Transverse Vertical Longit. Transverse Vertical 

1 2.4070 0.3831 2.6103 0.000 6.834 0.000 0.000 6.834 0.000 

' .'!.1520 0.5017 Ul!J34 0.000 2.:321 0.000 0.000 8.155 0.000 

,, a.S88G 0.620(:) 1.6112 0.000 32.471 0.000 0.000 -11.625 0.000 

4 4.7611 0.7578 Ul197 0.024 0.000 2.998 0.024 4Ui2G 2.99!:! 

5 5.7473 0.8147 1.09:'32 <J.OOO 3.11.5 0.000 0.024 44.7-10 2.998 

G 6.1107 0.8725 1.0282 0.000 1.609 0.000 0.024 46.349 2.998 

7 6.2389 0.9930 1.0071 0.000 0.52() 0.000 0.024 46.876 2.998 

8 6.7371 1.0722 0.9326 0.172 0.000 2.106 0.19G 46.876 5.104-

9 7.1110 1.1318 0.8836 0.000 2.062 0.000 0.196 48.938 5.104 

10 7.1849 1.1436 0.8745 0.000 4.860 0.000 0.196" .53.898 5.104 

11 8.0501 1.2812 0.780.') 85.351 0.001 0.241 95.547 53.899 6.346 

12 8.0837 1.2866 0.777:3 0.027 2.644 0.000 95.574 56.542 5.346 

13 8.3431 1.3279 0.7531 0.000 11.264 0.000 85.57tl 67.806 5.3:16 

1,1 8.7018 1.:1849 0.7221 0.008 0.004 0.025 95.577 67.811 5.371 

15 8.7824 1.8978 0.7154 2.052 0.001 18.785 97.6:30 67.811 24.156 

1G 10.0M1 1.5986 0.6256 0.000 0.200 0.000 97.6:30 68.011 24.156 

17 10.1800 1.6202 O.G172 0.000 7.890 0.005 87.G30 75.901 24.1G2 

18 10.4811 1.6681 0.5995 0.000 0.271 0.000 97.630 76.172 24.162 

19 10.6543 1.6957 0.5897 0.000 0.621 0.002 97.630 76.7£13 24.164 

20 11.6071 1.8473 0.54HI 0.000 0.080 0.001 97.G:30 76.872 24.1G5 

21 11.8126 1.8848 0.5:306 0.202 0.000 0.725 97.8:32 76.872 2;1.890 

22 12.1566 1.9348 0.5169 0.814 0.000 6.455 98.6"46 76.873 :11..'3<15 

2:3 12.8128 2.0:392 0.4904 0.000 0.291 0.000 98.646 77.164 31.34.'i 

24 13.1!594 2.1421 0.4668 0.000 6.017 0.000 98.G4G 83.181 31.345 

25 14.027.'i 2.2325 0.4479 0.287 0.000 22.127 98.93."3 83.181 5:1.472 

26 14.2838 2.2733 0.4399 0.000 0.041 0.009 88.933 83.222 5:3.481 

27 15.0217 2.3908 0..1183 0.000 O.G08 0.007 £18.933 ss.8:=m !)3.488 

28 15.7m6 2.513:1 0.3979 0.003 O.o28 0.019 .98.936 88.857 5:1.508 

29 1G.2156 2.5808 0.:3875 0.000 0.242 0.034 98.9.36 84.099 53.542 

30 1G.457:3 2.6193 0.3818 0.000 1.112 O.Q18 98.937 85.212 53.560 

31 17.3729 2.7650 0.3617 0.140 0.001 7.062 99.076 85.21:1 60.621 

32 17.5022 2.785G 0.3590 0.705 0.000 0.079 99.782 85.213 G0.700 

33 20.2316 3.2200 0.3106 0.000 0.220 0.75G 99.782 85.433 G1.45G 

34 20.5558 8.2716 0.:1057 0.002 0.5:11 1.244 99.785 85.964 6"2.700 

:15 20.8920 3.8251 0.3007 0.006 0 .. "363 0.489 99.791 86.327 6:1.189 

36 22.9109 a.64G4 0.2742 0.007 0.000 6.742 m798 86.:127 G95J31 

37 25.41G7 4.0500 0.24G9 0.015 0.385 0.000 99.813 8G.712 G9.931 

88 26.4675 4.2124 0.2374 0.005 l.G61 0.005 99.818 88.:172 G9.93f:i 

.39 28.2462 4.4955 0.2224 0.002 0.002 11.383 99.820 88.375 81.:319 

40 31.41151 4.8989 0.2000 0.128 0.896 0.020 9.9.84:1 89.271 81.:139 

41 31.7474 5.0528 0.1979 0.028 3.292 O.OGO 99.972 92.5G:1 81.389 

12 :>5.5245 5.G5:39 0.1.769 0.000 0.008 7.986 mJ.972 92.571 89.37.'5 

43 50.4892 8.0356 0.12M 0.000 .'3.341 0.014 9!).972 95.811 89.389 

44 53.047:3 8.4427 0.1184 0.000 0.008 4.585 99.972 95}J19 9:'!.974 

45 57.125:3 9.139.'i 0.1094 0.020 0.022 0.011 99.892 95.941 93 .. 984 
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Table 5.1 Description of Seismic Excitation Cases 

Seismic Excitation Cases Description 

LLll Direction-! of 50-year Earthquake Applied Along 
Longitudinal Direction of the Bridge. 

LL22 Direction-2 of 50-year Earthquake Applied Along 
Longitudinal Direction of the Bridge. 

'ITll Direction-! of 50-year Earthquake Applied Along 
Transverse Direction of the Bridge. 

TT22 Direction-2 of 50-year Earthquake Applied Along 
Transverse Direction of the Bridge. 

LlT2V3 Direction 1, 2 and 3 of 50-year Earthquakes are 
Applied Along Longitudinal, Transverse and 
Vertical Directions respectively. 

L2TlV3 Direction 1, 2 and 3 of 50-year Earthquakes are 
Applied Along Transverse, Longitudinal and 
Vertical Directions respectively. 
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Table 5.2 Cross Sectional Properties of Members for Stress Calculation 

Member Al·ea Moment of Section Distance from Moment of Section Distance from 
Nu. (in~) Inertia (in'1) Modulus (in:) centroid to Inertia (in'1), 1 1 ~ :tvWdulus (in:1) centroid to 

(A) 11:1 Z1:1 extreme fiber z~~ extreme fihel' 
(in), y (in), x 

1 55.23 5160 415 12.1375 3450 365.3687 9.4375 

10 159.92 10800 85UHJ 12.625 1:3300 1198.2 11.0625 

11 Hl.12 10400 74.1.63 13.B375 11600 105H.23 Jo.D:nrs 
.14 141.<12 10400 743.63 13.9375 11600 1059.23 10.9:-375 

35 157.42 10700 766.8.3 14 13100 1327.62.5 9.85 

51 1.32.42 9930 786.72 12.G25 10500 979.25 10.75 

52 144.94 10000 794.98 12.625 11500 1067.18 10.75 

68 1.38.42 10200 809.53 12.625 11200 1032.499 10.875 

G9 159.92 10800 851.99 12.625 13.300 1198.2 1.1.0625 

78 55.23 5160 415 12.4375 3450 365.4 9.4375 

8~) 112.2 6760 552.05 12.247 9670 894.29 10.8125 

90 112.2 6760 552.05 12.247 9670 894.:1 10.8125 

11.3 112.2 6760 552.05 12.247 9670 894.:1 10.8125 

114 112.2 6760 552.05 12.247 9670 891.3 10.8125 

130 112.2 6760 .'552.05 12.247 9670 894.3 10.812.5 

1.31 91.2 5750 467.18 12.303 7.310 704.8 10.375 

147 10.3.2 G3.30 515.51 12.27G 8640 858.18 10 0625 

148 103.2 63.30 515.51 12.276 8640 858.18 10.0625 

161 55.2 4020 321.41 12.501 3710 385.fi3 9.G25 

182 1t1.()1 287 47.833 6 1020 113.6 9 

181 58.2 4160 .361.18 11.525 3990 41UH 9.6875 

185 92.67 12000 777.31 15.5 6510 663.3 9.8125 

186 92.67 12000 777.31 15.5 6510 66.3.3 9.8125 

187 67.2 4600 .370.32 12.412 4850 491.3 9.87.5 

189 11.64 287 47.83.3 6 1020 113.6 9 

240 67.2 4600 370.32 12.412 4850 491.3 9.875 

243 14.64 287 47.833 6 1020 1!.3.6 9 

244 88.92 11800 932.04 12.625 6150 555.92 11.0625 

24,, 88.92 11800 932.04 12.625 61.50 555.H2 11.0625 

216 14.64 287 47.833 6 1020 113.G 9 

249 64.2 4450 3.58.1.3 12.431 4560 464.79 9.8125 

285 61.2 1310 345.91 12.452 4270 438.333 9.75 

288 l4.61 287 47.833 6 1020 113.6 9 

289 nn 10:1oo 665.39 15)5 5330 549.87 9.G875 

290 77.73 10300 GG5.39 15.5 5330 549.87 9.6875 

291 67.2 4600 370.:J2 12.412 4850 491.3 9.875 

294 14.64 287 47.833 G 1020 113.G 9 

330 67.2 4600 370.32 12.412 4850 1191.3 9.875 

333 14.G4 287 47.8:)3 6 1020 113.6 9 

334 85.17 11500 741.02 15.5 5800 5$18.265 9.6875 

335 8li17 11500 741.02 15.5 5800 598.265 9.6875 

33G :58.2 4160 333.67 12.475 3990 411.91 9.6875 

339 14.64 287 47.833 6 1020 113.6 9 

,)59 55.2 -1020 :J21Al 12.501 3710 385.52 9.62{) 
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Table 5.3 Stresses (ksi) in Members due to Seismic Excitation Case Ll T2V3", Dead Load and 
Temperature 

Stresses due toLl T2V3 Earthquake Maximum Stresses from (DL± 

Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined Stress EQ ±Temperature) 

No. Stress plane plane Shear 

Node I Node <T Node I NodeJ Node I NodeJ stress Combined Combined Shear 
Stress at Stress at 
Node I Norle J 

1 1.815 0.73:J 0.43B 0.742 0.586 ,U:J4 2.801 0.0211 16.717 18.G5G 0.649 

10 1.354 0.597 0.772 0.421 0.787 2.264 2.866 0.025 6.78 5.879 0.298 

11 2.722 0.757 0.582 0.662 0.418 4.075 3.483 0.024 12.181 12.546 0.317 

.34 2.309 OA-94 0.884 0.258 0.453 3.02.1 .3.581 0.009 13.025 10.975 0.25 

35 1.45 0.9:14 0.652 0.559 0.369 2.791 2.436 0.007 11.04<1 11.826 0.222 

51 2.63 0.568 0.977 0.347 0.677 .1.545 4.284 0.007 12.354 13.482 0.262 

52 1.552 1.208 0.774 0.894 0.487 3.6.31 2.812 0.009 11.825 9.152 0.244 

68 2.224 0.668 0.798 0.369 0.74 3.176 3.61.3 0.02 10.188 12.401 0322 

69 1.371 0.931 0.594 0.686 0.467 2.836 2.431 0.022 6.533 4.465 0.295 

78 2 . .188 0.446 0.446 0.487 0.605 3.275 3.439 0.013 1G.G61 14.032 0.628 

89 1.274 0.857 1 0.098 0.17 2.229 2.358 0.008 16.035 14.948 0 . .308 

90 1.284 O.G7G O.GlG 0.131 0.095 2.04 1.931 0.009 14.332 15.438 0.308 

11.3 1.946 0.993 0.917 0.089 0.174 2.899 3.037 0.029 17.055 16.015 0.401 

114 1.954 0.897 0.788 0.192 0.128 2.889 2.865 0.042 15.616 16.608 0.428 

130 2.179 0.866 0.88 0.092 0.176 3.095 3.235 0.009 15.01 11.591 0.318 

131 2.718 0.9B7 0.757 0.233 0.1.32 3.888 3.411 0.01 18.276 17.407 0.384 

147 J.643 0.949 0.983 0.12 0.153 2.695 2.723 0.009 14.053 111.254 0.338 

148 1.763 0.939 O.SM 0.157 0.103 2.839 2.617 0.031 14.621 14.191 0.444 

161 2.405 0.333 0.249 0.503 Q.418 3.21.3 3.003 0.077 6.493 6.007 0.881 

182 2.9],1 0.7.14 0.792 0.258 0.188 .3.742 .3.887 0.07G 17.871 17.1598 2.398 

184 2.772 0.327 0.371 0.41 0.151 .3.451 .3.214 0.0.39 9.391 9.893 0.188 

185 1.097 0.165 0.422 0.268 0.115 1.52 1.634 0.017 11.583 12.163 0.104 

186 0.98 0.497 0.724 0.126 0.205 1.597 1.858 0.003 11.043 10.928 0.056 

187 1.759 0 . .34 0 .. 381 0.17 0.122 2.218 2.212 O.OOG 8.446 9.199 0.088 

189 2.893 0.447 0.525 0.717 0.295 .3.889 3.712 0.021 17.424 17.G4 0.40.3 

240 1..599 0.383 0.443 0.279 0.098 2.256 2.099 0.004 7.931 9.281 0.075 

2tl3 3.1179 0.736 0.75~) 0.,319 0.124 4.456 4.23 0.158 19 . .3.33 18.174 0.761 

244 1.858 0.107 0.474 0.452 0.159 2.416 2.404 0.022 1.3.455 13.492 0.113 

245 ].642 0.548 0.78 0.1.53 0.257 2.249 2.679 0.005 12.037 12.202 0.062 

246 3.476 0.663 0.592 0.261 0.271 4.297 4.32 0.02() 18.827 18.931 0.327 

249 2.611 0.341 0.413 0.488 0.141 .3.433 3.158 0.005 10.Hl5 11.799 O.Q7,3 

285 3.659 0.468 0.445 0.431 0.123 4.488 4.184 0.0.33 11.119 12.490 0.163 

288 3.98 0.65 0.692 0.344 0.249 4.975 4.863 0.117 20.025 19.31 0.544 

289 2.883 0.114 0.454 0.471 0.15,3 2.975 2.888 0.006 13.709 1<1.62 0.067 

290 1.947 0.537 0.801 0.144 0.276 2.1576 3.012 0.006 11.577 11.782 0.066 

29.1 4.27 0.47 0.57 0.4.34 0.136 ,1).092 4.976 0.004 13.445 14.516 0.062 

294 4.003 0.721 0.606 0.228 0.275 4.953 4.744 0.143 20.149 19.641 0.565 

330 2.913 0 . .381 0.502 0.336 0.117 3.63 3.498 o.oa 11.088 12.36 0.134 

333 3.385 0.748 0.836 0.268 0.225 4.292 4.446 0.0.31 17.581 17.777 0 .. 31 

334 1.73 0.166 0.58 o.aa6 0.139 2.2.32 2.442 0.002 11.212 11.56 0.011 

3.'35 1.462 0.675 0.986 0.1.35 0.234 2.257 2.682 0.005 10.13.3 10.<!32 0.01G 

.336 3.1H5 O.i~51 0.426 0 . .364 0.168 3.866 3.75.'3 0.011 9.886 10.668 0.029 

339 3.478 0.82 0.895 0 . .305 0.275 4.554 4..581 0.105 18.124 18.421 0.135 

.359 <3.172 0.42 0.<18<1 0.625 0.5l.G 4.083 4.071 0.008 7.45 G.46G 0.082 

d Se1sm1c exc1tatwn cases descnbed m Table 5.1 
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Table 5.4 Stresses (ksi) in Members due to Seismic Excitation Case L2TlV3", Dead Load and 
Temperature 

Stresses rluo to L2T1V.'3 Earthquake Maximum Stresses from (DL± 
Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined Stress EQ ± Tempcmtme) 

No. Stress plane plane Shear 
Node I NodeJ Node I NodeJ Node T NodeJ stress Combined Combined Shem 

Stress at Stress at Rtress 
Node I Node J 

1 1.9 0.687 0.494 1.467 1.117 4.054 3 .. HG 0.043 4.054 3.316 0.043 

10 1.605 0.647 0.879 0.772 1.427 2.719 3.912 0.042 2.719 3.912 0.042 

11 2.327 0.815 0.559 1.652 0.972 4.566 3.859 0.048 1.566 3.859 0.048 

34 3.862 0.598 1.167 0.745 1.407 5.205 6.434 0.018 5.205 6.434 0.018 

:35 :1.707 1.035 0.844 1.506 0.926 6.075 5.161 0.015 6.075 5.161 0.015 

51 4.171 O.G44 1.322 0.557 1.379 5.34 6.75.'5 0.017 5 . .34 6.755 0.017 

.52 4.189 1.333 0.955 1.619 0.843 6.665 5.93 0.019 6.665 5.93 0.019 

68 3.67 0.859 0.92 0.572 1.259 4.661 5.85 0.043 4.661 5.85 0.043 

69 1.972 1.011 0.671 1.177 0.697 4.097 3.34 0.046 4.097 3.34 0.046 

78 2.397 0.487 0.648 1.106 1.431 3.776 4.143 0.023 3.776 1.443 0.023 

89 1.911 0842 0.96 0.215 0.328 2.729 3.199 O.OJA 2.729 .1.199 0.014 

90 1.778 0.822 0.71 0.227 0.195 2.744 2.611 0.015 2.744 2.Gll 0.015 

!13 2.o:J2 1.047 1.09G 0.259 0.3:)9 .3.187 8.455 0.014 3.187 3.4511 0.0111 
l\4 2.07 0.8:17 0.73 0.443 0.198 3.35 2.954 0.062 3.35 2.954 0.062 

1.30 2.173 0.804 0.871 0.165 0.443 3.113 3.487 0.012 3.113 .3.487 0.012 

131 2.659 0.727 O.fi78 0.553 0.186 3.86 3.3G7 0.01.1 .1.86 .1.367 0.013 

!47 1.817 !.148 L 115 0.15 O.:J04 2.844 3.2.3{) 0.0!3 2.844 3.2:l6 0.01:1 

148 1.965 1.29 1.156 0.:305 O.WG 3.297 :J.317 0.048 3.297 3.317 0.048 

161 2.321 0.311 0.278 1.255 1.012 3.856 .3.588 O.ll 3.856 :~.588 0.11 

182 2.857 0.707 0.753 0.287 0.274 3.70 3.883 0.158 3.79 .1.883 0.158 

181 2.68 0.343 0.357 0.808 0.284 3.7HG 3.271 0.041 3.796 3.271 0.041 
185 1.548 0.166 0.446 0.728 0.252 2.442 2.ll9 0.021 2.442 2.119 0.021 

186 1.329 0.527 0.782 0.271 0.368 2.128 2.388 0.005 2.128 2.388 0.005 
187 2.298 0.321 0.338 O.:J28 0.222 2.947 2.858 0.01 2.947 2.858 0.01 
189 2.851 0.177 0.544 0.986 0.488 4.279 3.782 .0.044 4.279 3.782 0.{1411 

2<10 3.296 0.527 0.386 0.412 0.111 4.089 3.778 0.01 1.089 8.778 0.01 
243 1.083 0.80,3 0.805 0.763 0.227 5.458 5.108 0.188 5.458 G.lOS 0.188 
244 2.061 0.].33 0.395 0.881 0.266 2.8:J7 2.721 0.024 2.837 2.721 0.024 
245 1.69 0.458 O.G7l 0.252 0.565 2.4 2.898 0.008 2.4 2.893 0.008 
246 3.984 0.677 0.567 0.608 0.79 5.138 5.108 0.015 5.138 5.108 0.045 
249 :3.058 0.366 0.533 0.945 0.29 4.369 3.863 0.012 4.369 :1.863 0.0!2 

285 2.867 0.697 0.42.5 1.047 0.29 4.422 3.581 0.036 1.422 3.5Sl 0.0:16 

288 6.099 0.573 0.615 0.653 0.51 7.312 7.217 0.109 7.312 7.217 0.109 
289 2.937 0.184 0.897 0.857 0.271 3.72 3.5!.5 0.008 3.72 3.515 0.008 
290 2.146 0.1\69 0.688 0.264 0.626 2.795 :J.46 0.007 2.795 3.46 0.007 
291 3.543 0.578 0.645 0.812 0.301 4.546 4.44 0.007 4.546 4.44 0.007 

294 6.061 O.G 0.504 0.471 0.547 7.!16 7.069 0.173 7.116 7.069 0.173 

3:JO 2.597 0.473 0.686 0.651 0.244 :l.697 3.27 0.042 3.697 3.27 0.042 

:J33 4.214 O.Bl4 1.029 0.397 0.311 5.228 5.553 0.072 .5.228 ,1'),553 0.072 

334 1.917 0.119 0.748 0.612 0.244 2.657 2.909 0.002 2.657 2.909 0.002 

.335 1.552 0.885 1.301 0.239 0.408 2.489 3.261 0.008 2.489 3.261 0.008 

:136 3.247 o.:l78 0.438 0.72.1 0.323 4.348 4.007 0.018 4.348 4.007 O.Dl8 

.1:J9 4.21;] 1.049 1.11 0 .. 387 0.494 5.30] 5.768 0.115 5.301 5.768 0.115 

359 3.203 0.51.3 0.423 1.237 1.048 4.919 4.674 0.008 4.919 4.674 0.008 

a Seismic excitation cases described in Table 5.1 
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Table 5.5 Stresses (ksi) in Members due to Seismic Excitation Case: LLll' 

Member Axial Bending Stress in 1-2 Bending Stre~>s in 1-3 Combined Stress Shear stress 
No. Stress plane plane 

Node I NodcJ Nadel NodeJ Node I Node J 

1 1.655 0.6.58 0.431 0.129 0.072 2.441 2.074 0.014 

10 1.136 0.606 0.775 O.D7 0.185 1.656 2.059 0.01.5 

11 1.684 0.784 0.582 0.161 0.071 2.557 2.244 0.016 

34 1.198 0.483 0.822 0.068 0.146 2.04:3 2.466 0.005 

35 1.285 0.931 0.664 0.13 0.055 2.326 1.953 0.004 
51 2.012 0.581 0.976 0.049 0.132 2.637 3.12 0.006 

52 1.283 1.161 0.764 0.163 0.065 2.406 2.1 0.006 
68 1.561 0.699 0.79.3 0.058 0.168 2.123 2.522 0.014 

69 1.205 0.944 0.579 0.208 0.082 2.:31 1.866 0.017 
78 1.837 0.4 0.422 0.0•13 0.063 2.276 2.272 0.011 

89 1.45 0.786 0.889 0.032 0.034 2.2G8 2.144 0.006 
90 1.406 0.676 0.614 0.049 0.065 2.131 2.085 0.007 
113 2.153 0.969 0.946 0.043 0.031 3.057 3.129 0.022 
114 2.119 0.748 0.739 0.05 0.084 2.851 2.942 0.03 
130 2.177 0.837 0.86 0.052 0.025 3.049 3.062 0.005 
131 2.65 0.8G 0.708 0.037 0.079 :J.54:l 3.292 0.007 

147 1..65 0.974 0.995 0.056 0.033 2.676 2.529 0.007 
148 1.697 0.983 0.883 O.D28 0.042 2.708 2.45~} 0.024 
161 2.286 0.355 0.267 0.129 0.073 2.715 2.61 0.054 

182 2.869 0.671 0.7.36 0.204 0.122 3.615 3.717 0.0<15 
184 2.S 0.307 0.374 0.163 0.047 2.922 2.826 0.034 
185 1.\88 0.157 0.383 0.197 0.043 1.531 1.615 0.016 
186 1.0.57 0.4.53 0.678 O.Ofll 0.0:33 1.556 1.73 0.00:3 
187 1.553 0.346 0 . .351 0.136 0.069 2.035 1.974 0.005 

189 2.861 0.462 0.529 OA6 0.261 3.739 3.606 0.019 
240 1.376 0.348 0.41.6 0.195 0.069 1.906 1.831 0.004 
243 3.152 0.751 0.769 0.136 0.051 4.D.38 3.919 0.15G 
244 1.9:32 0.108 0.432 0.261 0.049 2.2.39 2.365 0.019 

245 1.725 0.503 0.726 0.047 0.019 2.217 2.-168 0.004 
246 3.172 0.673 0.{i27 0.046 0.1.36, 3.892 3.885 0.025 
249 2.514 0.355 0.441 0.1G5 0.048 <1.0.14 2.997 0.004 
285 :3.146 0.486 0.4G5 0.20G 0.046 .3.697 3.603 0.032 
288 4.194 O.G38 0.679 0.21 0.09 11.937 4.941 0.104 
28B 2.281 0.131 0.428 0.27:l 0.051 2.657 2.705 0.006 
290 1.901 0 .. 508 0.7G5 0.055 0.016 2.404 2.G82 O.OOG 
291 3.88G 0.459 0.559 0.189 0.049 4.432 4.481 0.002 
294 4.25~ 0.682 0.564 0.087 0.2 5.00G 4.904 0.143 
330 2.706 0 . .373 0.521 0.138 0.037 3.192 3.191 0.031 
.333 3.255 0.761 0.851 0.21 0.105 4.048 4.201 0.017 
334 1.603 0.151 0.079 0.226 0.041 1.902 2.167 0.002 
:335 1.319 0.673 0.988 0.042 0.011 2.03 2.247 0.00-1 
336 2.705 0.348 0.414 0.184 0.06 3.209 3.147 0.01 
3.39 3 . .148 0.761 0.83 0.153 0.075 -!.263 4.226 0.095 

359 3.136 0.38 0.37 0.09G 0.0:14 3.58G 3..54 0.007 

a Se1sm1c exc1tatwn cases descnbed m Table 5.1 
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Table 5.6 Stresses (ksi) in Members due to Seismic Excitation Case: LL22" 

Member Axial Bending Stress in 1-2 Bending Stre8S in 1-3 Combined Stress Shear stress 
No. Stress plane plane 

Node I NodeJ Nadel Node ,J Nadel Node ,J 

1 J.:Jl2 0.46.1 0.407 0.087 0.053 1.794 1.7GG 0.011 

10 1.229 0.58 0.8.31 O.OG4 O.H4 1.729 2.204 0.015 

11 1.108 0.79G 0.55fi 0.175 0.087 2.0:16 1.718 O.OlG 

34 L:l2:'5 0.5 O.B04 0.06 0.142 1.85 2.37 0.005 

35 0.987 0.914 0.662 0.105 0.043 1.938 1.692 0.004 

51 1.689 0.582 1.046 0.042 0.096 2.305 2.585 0.005 

52 1.212 1.099 0.764 0.106 0.051 2.394 1.949 0.005 

68 1.281 0.711 0.861 O.D48 0.129 2.041 . 2.155 0.015 

G9 1.02.3 0.87 0.593 0.131 0.058 2.00.3 1.64 0.016 

78 1.5{58 0.407 0.451 0.042 0.057 1.986 1.9H 0.011 

89 1.269 0.822 0.922 0.032 0.034 2.124 2.203 0.006 

90 1.251 0.659 0.591 0.046 0.062 1.956 1.884 0.008 

113 2.076 0.92 0.897 0.04 0.025 3.018 2.997 0.021 

114 2.05 0.777 0.719 0.047 0.08 2.774 2.85 0.029 

130 2.168 0.7il,.4 0.819 0.05G 0.027 3.009 2.981 0.006 

131 2.638 0.886 0.723 0.03.5 0.076 3.558 3.239 0.007 

147 1.429 0.982 0.~}8:·3 0.057 0.034 2.459 2.353 0.008 

148 1.425 1.059 0.958 0.025 0.041 2.506 2.312 0.023 

161 2.08 0.311 0.252 0.121 0.075 2..155 2.372 0.051 

182 2.882 O.Gl3 0.631 0.206 0.122 .3.667 3.621 0.047 

184 2.299 0.31 0.343 0.161 0.047 2.749 2.62.3 0.036 

185 1.177 0.125 0.382 0.199 0.04.3 1.501 1.56 0.016 

186 1.066 0.449 0.669 0.05 0.03.1 1.512 L7GG 0.002 

187 1.64 0.34 0.3.38 0.116 0.074 2.091 2.051 0.005 

189 2.83.3 0.431 0.481 0.469 0.265 3.73.1 3.523 0.019 
240 1.275 0 . .181 0.416 0.193 0.076 1.822 1.706 0.003 
243 :1.2 0.679 O.G9 <l.l:J6 0.049 3.961 3.937 0.148 
241 1.86 0.065 0.388 0.2.52 0.051 2.115 2.283 0.019 
215 1.658 0.4[)1 0.65 0.048 0.019 2.138 2.325 0.004 
246 3.129 0.596 0.537 0.048 0.14 3.768 3.803 0.025 

249 2.452 0.329 0.436 0.156 0.041 2.924 2.929 0.004 
285 2.971 0.529 0.442 0.217 0.052 3.564 3.387 0.03 

288 4.20-3 0.571 0.617 0.21 0.085 4.984 4.82 0.106 

289 2.261 0.112 o.:nu 0.276 0.053 2.611 2.679 0.005 

290 1.889 0.419 0.67 0.057 0.017 2.385 2.57 0.005 
291 3.886 0.413 0.556 0.176 0.049 4.451 4.479 0.002 
294 1.193 0.71.3 0.591 0.089 O.UJ5 4.973 4.89 0.143 
330 2.643 0.413 0.529 0.166 0.037 3.168 3.107 0.033 

333 3.255 0.78 0.878 0.21 0.102 4.06 4.229 0.014 

334 1.515 0.12:1 0.59 0.226 0.041 1.829 2.09H 0.002 

3.'35 1.269 0.696 1.04 0.013 0.011 2.002 2.208 0.004 

336 2.814 0.315 0.42H 0.174 0.064 3.27 :1.247 0.01 

339 .3.272 0.824 0.876 0.151 0.074 4.15 4.221 0.094 

359 iUG3 0.448 0.38 0.085 0.03 3.578 3 .. 171 0.007 

"Seismic exc1tat10n cases descnbed m Table 5.1 
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Table 5. 7 Stresses (ksi) in Members due to Seismic Excitation Case: TTll' 

Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined Stress Shear stress 
No. Stress plane plane 

Nadel NodcJ Nod£ I NodeJ Node I Node ,J 

1 1.826 0.52 0.494 1.42 l.103 3.767 3.328 0.041 

10 1.454 0.649 0.878 0.754 1.369 2.559 3.7 0.041 

11 2.465 0.89.3 0.547 1.633 o.9n 4.992 3.G42 0.048 

34 a.Gsr 0.609 1.128 0.726 1.463 5.016 6.27'1 0.018 

35 4.101 1.089 0.844 1.199 0.926 G.47 5.555 0.015 

51 4.781 0.622 1.284 0.547 1.338 5.907 6.91:J 0.017 

52 3.908 1.371 0.948 1.64 0.841 6.473 5.638 0.019 

68 3.488 0.855 0.872 0.583 1.298 4.486 5.658 0.042 

69 1.942 1.002 O.GBt\ 1.227 0.714 4.062 3.34 0.046 

78 2.116 0.484 0.576 1.111 1.453 3.681 4.077 0.022 

89 1.826 0.844 0}J9G 0.211 0.329 2.636 3.151 0.013 

90 1.702 0.839 0.748 0.228 0.196 2.685 2.571 0.015 

113 2.038 1.023 1.078 0.254 0.342 3.183 .3.439 0.044 

114 2.077 0.848 0.721 0.445 0.2 .3.37 2.951 0.062 

130 2.2 0.888 0.942 0.165 0.143 .3.084 3.585 0.012 

1.11 2.704 0.732 0.554 0.553 0.186 3.963 .3.422 0.013 

147 1.821 Ll48 1.131 0.149 0.302 2.878 3.254 0.01.3 

148 1.981 1.278 1.141 o.ao8 0.197 .3.32.5 :J.318 0.049 

161 2.364 0.324 0.285 1.237 1.006 3.925 3.561 0.112 

182 2.798 0.684 0.721 0.29 0.275 3.771 3.787 0.157 

184 2.741 0.291 0.368 0.782 0.277 3.766 3.349 0.041 

185 lAS 0.084 0.431 0.724 0.253 2.288 2.096 0.021 

186 1.265 0.508 0.751 0.273 0.366 2.046 2.305 0.006 

187 2.321 0.294 0 .. 151 0.35 0.222 2.965 2.893 0.011 

189 2.848 0.527 0.548 0.977 0.436 1.325 3.756 0.046 

240 3.:m 0.502 0.892 0.16 0.112 4.138 3.866 0.009 

243 4.087 0.759 0.753 0.758 0.226 5.44 5.059 0.184 

244 2.142 0.092 0.116 0.874 0.264 2.914 2.791 0.0211 

245 1.693 0.475 0.664 0.25 0.565 2.389 2.922 0.008 

246 4.D43 0.654 0.585 0.61 0.789 5.175 5.16 0.044 

249 3.117 0.394 0.533 0.917 0.295 4.349 3.945 0.012 

285 2.903 0.671 0.454 1.045 0.294 4.387 .1.645 0.0:)9 

288 6.119 0.652 0.69 0.655 0.51 7.315 7.318 0.109 

289 2.972 0.099 0.44 0.8157 0.271 3.725 3.553 0.008 

290 2.17:) 0.521 0.774 0.264 0.624 2.826 .3.573 0.007 

291 3.591 0.61 0.643 0.79 0.297 4.662 4.49 0.008 

294 6.124 0.673 0.567 0.471 0.55 7.142 7.195 0.174 

<130 2.8 0.446 O.G91 0.68 0.25 3.854 3.1G8 0.042 

333 4.211 0.916 1.031 0.405 0.811 5.289 5.552 0.072 

.334 1.946 0.083 0.75 0.644 0.244 2.653 2.94 0.002 

335 1.56 0.887 1.3 0.239 0.408 2.495 3.268 0.008 

336 .3.347 0.411 0.447 0.704 0.32 4.462 4.114 0.018 

339 4.269 1.037 1.098 0 . .388 0.496 5.427 5.81 O.l11 

.359 3.276 0.492 0.429 1.245 1.051 4.967 4.75G 0.008 

a Seismic excitation cases described in Table 5.1 
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Table 5.8 Stresses (ksi) in Members due to Seismic Excitation Case: TT22' 

Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined StreRs Shear stress 
No. Stmss plane >lane 

Node 1 Node ,J Node I NodeJ Node I Node J 

1 1.228 o.:l78 0.422 0.72 0.575 2.327 2.17o 0.023 

10 1.11 0.575 0.7.'35 0.415 0.638 2.016 2.415 0.022 

11 Lo96 0.765 0.554 0.802 0.458 :J.l88 2.451 0.026 

~4 2.221 0.48 0.885 0.276 0.473 2.91.3 3.517 0.008 

35 1.566 0.927 0.612 0.56 0.369 2.914 2.531 0.006 

51 1.903 0.552 1.013 0.347 0.67 2.783 3.495 0.008 

52 1.685 1.1H2 0.767 0.87 0.48 3.747 2.83 0.008 

68 1.661 0.681 0.82 0.365 0.73 2.629 3.031 0.02 

69 1.398 o.m 0.617 0.618 0.447 2.683 2.429 0.02.3 

78 1.79 0.434 0.325 OA82 0.588 2.G74 2.678 0.013 

89 1.138 0.772 0.88 0.098 0.174 2.007 2.136 0.008 

90 1.206 0.676 0.6.3 0.126 0.093 2.008 1.891 0.009 

113 1.875 0.92 0.853 0.085 0.176 2.851 2.9 0.028 

114 1.892 0.915 0.808 0.\96 0.117 2.82 2.815 0.041 

130 2.222 0.853 0.879 0.088 0.173 3.082 3.27:1 0.009 

l:ll 2.771 0.928 0.744 0.23.3 0.131 3.932 :3.138 0.01 

147 1.53~ 0.958 0.989 0.121 0.149 2.589 2.619 0.009 

148 ].551 1.00(') 0.916 0.158 0.107 2.691 2.44 o.oa 
161 2.303 0.293 0.253 0.485 0.412 3.02 2.919 0.074 

182 3.055 0.564 0.613 0.261 0.187 3.881 3.835 0.077 

184 2.613 0.302 0.349 0.31 0.144 3.255 3.045 0.035 

185 1.093 0.071 0.382 0.268 0.115 1.433 L58 0.017 

186 0.961 0.446 0.659 0.127 0.205 1.515 1.825 0.003 

187 1.838 0 .. 111 0.348 0.155 0.122 2.235 2.286 0.006 

189 2.917 0.443 0.489 0.72 0.304 3.943 3.733 0.022 

240 1.535 0.378 0.416 0.265 0.093 2.151 2.022 0.004 

243 3.431 0.62.3 0.65 0.306 0.124 4.294 4.206 0.148 

244 1.769 0.061 0.40.3 0.437 0.156 2.267 2 . .326 0.022 

245 1.587 0.47 0.69 0.1.51 0.2.57 2.208 2.502 0.005 

246 3.429 0.671 0.602 0.263 0.271 4.231 4 . .302 0.028 

249 2.635 0.335 0.41 0.437 0.139 M04 3.17 0.005 

285 3.528 0.48G 0.4.31 0.427 0.121 4.3.51 4.042 0.033 

288 3.93 O.Gl5 0.648 0.3.39 0.25 4.858 4.828 0.116 

289 2.389 0.088 0.427 0.462 0.158 2.94 2.892 0.006 

290 1.975 0.509 0.762 0.143 0.276 2.541 3 0.00.5 

291 4.254 0.459 0.562 0.427 0.128 5.068 4.944 0.004 

294 4.007 0.717 0.602 0.2.32 0.274 4.B55 4.83 0.14.3 

330 3.053 0.394 0.518 0 .. 14 0.117 3.787 3.618 0.032 

3:\3 3.383 0.769 0.866 0.268 0.224 4.307 4.472 0.031 

334 1.664 0.09 0.59 0.3.34 0.1.39 2.088 2.355 0.002 

.'335 1.401 0.698 1.034 0.135 0.234 2.183 2.669 0.005 

336 3.404 0.33B 0.447 0.33.3 0.158 4.03 3.96 0.011 

.339 3.452 0.855 0.935 0.2~}8 0.27 4.561 4.566 0.095 

359 3.271 0.432 0.398 O.Gl5 0.508 4.177 1.177 0.007 

a Smsm1c exc1tatwn cases descnbed m Table 5.1 
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Table 5.9 Stresses (ksi) Due to a Temperature of 90' F 

Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined Stress 
No. Stress plane plane Shear stress 

Node 1 NodeJ Node I NodeJ Node I Node J 

1 9.242 -2.177 -0.203 0.094 ·0.08 11.325 9-52-5 O.OB4 

10 1.557 -0.199 0.888 ·0.008 0.013 1.764 2.458 0.013 

11 G.!S -0.612 -0.222 0.066 -0.048 G.72G 6.45 0.005 

34 6.101 -O.B92 0.29 -0.06 0.088 G.853 G.77B 0.018 

35 6.764 0.021 -0.291 0.06 -0.044 6.845 7.099 O.Oll 

51 7.064 -0.296 ·0.064 ·0.065 0.09 7.425 7.09 o.ot.l 
52 5.131 0.255 -0.171 0.049 -0.037 5.436 5.339 0.012 

G8 5.794 -0.13 -0.57 -0.052 0.074 5.976 6.291 0.009 

69 0.498 0.738 -0.087 0.006 -0.004 1.212 0.589 0.004 

78 6.287 -0.161 -1.6 -0.055 0.062 6.504 7.825 0.042 

89 2.754 0.696 -0.897 0.001 0.002 3.452 3.649 0.019 

90 2.761 -0.625 0.252 ·0.008 0.044 3.388 3.057 0.019 

ll3 2.454 0.354 -0.675 0.034 0.007 2.843 3.122 0.005 

111 2.44 -0.734 0 . .382 0.009 0.013 3.164 2.835 0.007 

130 3 . .375 0.497 ·0.9.33 0.017 0.016 3.888 4.291 0.017 

1:ll 4.12.3 -1.231 0.793 0.025 0.005 5.:J29 4.921 0.021 

147 3.097 0.34 -0.742 0.014 0.017 3.4rll 3.822 0.017 

148 3.12 -1.034 0.809 0.019 -0.003 1.1:14 3.927 0.008 

161 1.739 -0.961 -0.208 0.002 -0.005 2.698 1.953 0.02H 

182 2.203 0.61 -0.56 0.008 0.016 2.821 2.747 0.094 

184 0.575 -0.58 0.098 0 0.003 1.155 O.G?G 0.0-33 

185 -2.4.34 -0.548 -0.019 -0.047 0.022 -1.839 -2.431 0.011 

186 -2.188 -0.046 0.181 0.041 0 -2.184 -2.007 O.Olfi 

187 1.638 -0.328 -0.005 0.051 -0.085 1.915 1.728 0.02 

189 2.162 -0.171 0.095 ·0.505 0.342 2.837 2.599 0.092 

240 1.694 -0.245 0.143 0.019 -0.008 1.921 1.829 0.02 

243 2.914 0.397 -0 . .344 -0.046 0.077 3.265 .3.181 0.084 

244 -2.265 -0.055 0.032 -0.0.33 0.031 -2.176 -2.202 0.014 

245 -1.966 0.037 -0.0.37 0.04 -0.018 -1.889 -1.911 0.02 

246 2.88 -0.388 0.423 0.082 -0.054 3.186 3.25 0.113 

219 2.437 O.ll:l -0.081 0.024 -0.009 2.575 2.528 0.027 

285 2.582 -0.072 0.119 0.02 -0.002 2.6.34 2.699 0.027 

288 3.1.18 0.4.5 -0.387 -0.061 0.1 .3.527 3.424 0.133 

289 -3.874 0.14.3 0.044 -0.046 0.042 -3.277 -3.289 O.QJG 

290 -3.012 0.06 -0.09 0.056 -0.026 -2.896 -2.896 O.D18 

291 2.488 0.281 -0.027 0.021 -0.004 2.79 2.519 0.019 

294 3.133 -0.618 0.691 0.11 -0.081 3.641 3.748 0.079 

3:10 2.402 0.295 -0.005 0.02 -0.003 2.717 2.41 0.031 

333 LH57 0.248 -0.18.3 -0.052 O.o75 2.154 2.065 0.02 

.334 -2.61 0.452 0.057 -o.o:J7 0.084 -2.195 -2.52 0.001 

335 -2.:196 0.082 -0.199 0.043 -0.021 -2.271 -2.177 0.004 

336 0.566 0.522 -0.028 0 0.009 1.089 0.585 !LOll 

339 1.976 -0.615 0.582 -0.056 0.081 2.676 2.639 0.019 

.359 1.801 0.652 0.192 0.004 -0.006 2..16 1.991 0.004 
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Table 5.10 Self-Weight Induced Stresses (ksi) 

Member Axial Bending Stress in 1-2 Bending Stress in 1-3 Combined Stress 
No. Stress plane plane Shear stress 

Norle I NodcJ Node I Node J Node I NodeJ 

1 1.032 1.128 5.299 ·0.002 ·0.001 2.158 G.33 0.591 

10 ·4.80.> 2.017 5.407 0.033 -0.049 -2.752 0.555 0.26 

11 -4.941 6.3.5:1 2 . .>01 ·0.028 0.031 1.38 ·2.61:1 0.288 

.14 ·5.586 2.381 6.28 0.056 -0.078 .:l.J19 O.GlG 0.228 

35 -4.898 6 .. 319 2.576 -0.043 0.032 1.107 -2.291 0.204 

51 -3.813 2.423 6.001 0.036 -0.05 -1.384 2.108 0.242 

52 -3.28.3 6.073 2.259 -0.032 0.023 2.758 -1.001 0.223 

68 -3.352 2.284 5.894 0.032 -0.044 -1.036 2.497 0.29;) 

69 -:J.262 5.752 1.791 -0.035 0.025 2.455 -1.445 0.269 

78 1.458 5.189 1.296 -0.012 0.011 6.885 2.768 0.568 

89 8.894 1.496 -0.117 -0.036 0.13.3 10.:J54 8.941 0.281 

90 8.88 -0.132 l.GG4 0.156 -O.OG3 8.904 10.45 0.28 

113 9.508 1.884 -0.42 -0.079 0.103 11.313 9.856 0.367 

114 9.17 -0.001 1.496 0.097 -0.027 9.563 10.908 0.379 

J:lO 6.681 1.349 0.291 -0.003 0.062 8.027 7.0G5 0.292 

131 8.194 0.779 0.94 0.086 -0.028 9.059 9.075 0.353 

l47 G.B09 1.015 0.703 -0.017 0.066 7.907 7.709 0.312 

148 6.991 0.588 1.004 0.07 -0.016 7.648 7.947 0.405 

161 -1.132 -1.695 1.986 -0.018 0.054 0.582 1.051 0. 77.5 

182 9.877 1.333 1.074 0.099 -0.018 11.308 10.961 2.228 

184 -6.367 -1..529 -0.355 -0.0.53 0.086 -4.785 -6.ooa O.ll6 

185 -8351 0.205 -0.061 -0.077 0.188 -8.224 -8.098 0.076 

186 -7.271 -0.054 -0.003 0.066 -0.083 -7.262 -7.063 0.038 

187 -6.058 1.998 0.33 -0.253 0.376 -4.31:1 -5.259 0.062 

189 9.923 -1.451 -0.956 O.G7G -0.418 10.698 11..329 0.2B 

210 -5.781 -1.927 -0.464 -0.103 0.128 -3.754 -5.353 0.051 

24:J 9.967 1.692 0.72 -0.047 0.045 ll.G12 10.76:3 0.519 

2114 -9.12 -0.077 -0.101 -0.18 0.209 -8.8G3 -8.886 0.077 

245 -7.931 -0.119 0.239 0.087 -0.045 -7.8B9 -7.612 0.037 

246 9.986 1.306 1.337 0.052 0.07 11.314 11.361 0.188 

249 -6.665 1.844 0.369 -0.086 0.088 -4.907 -6.113 0.041 

285 -6.04 -1.97 -OAOG -0.072 0.072 -3.997 -5.612 0.103 

288 9.936 1.179 1.0G7 0.108 -0.011 11.523 I 1.023 0.294 

289 -7.607 -0.016 -0.198 -0.133 0.159 -7.457 -7.443 0.045 

290 -G.303 -0.233 0.298 0.03G 0.005 -6.105 -5.874 0.042 

291 -7.427 1.953 0.23 -0.089 0.082 -5.563 -7.021 0.039 

294 10.025 1.58 l.02G -0.05 0.134 11.555 11.154 o.:l43 

330 -G.773 -1.951 -0.299 -0.08 0.073 -4.711 -G.452 0.07.1 

333 9.859 1.135 1.426 0.141 -0.051 11.135 11.266 0.259 

334 -6.896 0.012 0.026 -0.122 0.147 -G.785 -G.598 0.008 

335 -5.675 0.039 -0.081 o.o:n 0.00.5 -5.G05 -5..173 0.037 

3:36 -G.723 1.874 0.22 -0.082 0.078 -4.931 -G.33 0.007 

3:J9 9.901 -1.125 -1.224 0.132 -0.044 10.894 11.201 0.011 

35H -2.658 1.784 -2.174 -0.0:33 0.061 -O.B07 -0.404 0.07 
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Table 5.11 Stress Requirement Based on AASHTO Equations for Ll T2V3 Earthquake 

Member No. Axial Stress (ksi) Bending Stress (ksi) 
Euler Buckling Stress (ksi), AASHTO Stress Requirement ;;; 1.0 

f,, Eq. (10-44) 

fb, £ Fcx F,, AASHTO Eq. (I 0- AASHTO L'q. (10-
by 42) 43) 

I 12.119 8.209 0.838 250.006 167.155 0.225 0.588 

10 7.714 7.067 0.849 180.716 222.549 0.195 0.434 

II 13.846 7.722 0.759 196.517 219.192 0.215 0.620 

34 14.296 7.556 0.619 196.517 219.192 0.208 0.624 

35 13.112 7.574 0.662 164.288 201.138 0.211 0.593 
51 13.537 7.274 0817 181.250 191.654 0.206 0.601 
52 9.966 7.536 0.975 166.761 191.775 0.214 0.513 
68 11.370 7.262 0.858 178.108 195.570 0.205 0.541 

69 5.131 7.421 0.727 180.469 222.244 0.198 0.369 
78 10.133 7.485 0.681 249.663 166.926 0.201 0.508 
89 12.922 3.393 0.305 142.932 204.460 0.096 0.462 
90 12.875 2.965 0.331 142.757 204.210 0.085 0.449 
113 13.908 3.552 0.311 142.757 204.210 0.101 0.494 
114 13.864 3.127 0.302 130.536 186.728 0.090 0.480 
130 !2.235 3.!62 0.255 130.536 186.728 0.089 0.435 
131 !5.D35 3.108 0.344 136.599 173.659 0.091 0.514 
147 11.649 2.740 0.236 132.892 18i.J88 0.077 0.406 

148 11.874 2.977 0.246 145.335 198.372 0.083 0.419 
161 5.276 3.280 0.562 52.299 48.266 0.101 0.253 

182 14.993 2.735 0.373 46.507 165.285 0.105 0.503 
184 9.714 2.480 0.499 87.077 83.518 0.079 0.353 

185 11.882 1.175 0.503 164.441 89.209 0.044 0.377 
186 10.442 0.959 0.329 164.441 89.209 0.033 0.326 
187 9.455 2.707 0.631 83.339 87.868 0.089 0.355 
189 14.978 2.147 1.898 46.450 165.082 0.124 0.528 
240 9.077 2.615 0.426 83.339 87.868 0.081 0.337 
243 16.360 2.848 0.443 46.450 165.083 0.115 0.546 
244 13.243 0.630 0.694 168.519 87.830 O.D35 0.405 
245 11.539 1.056 0.384 168.519 87.830 0.037 0.361 
246 16.342 2.423 0.423 42.473 150.951 0.104 O.SJJ 
249 11.713 2.370 0.600 80.515 82.505 0.082 0.408 
285 12.281 2.557 0.523 81.805 81.046 0.086 0.427 
288 17 054 2.621 0.552 42.473 150.951 0.118 0.562 
289 13.364 0.795 0.676 168.274 87.077 0.039 0.412 
290 11.262 1.189 0.368 168.274 87077 0.040 0.356 
291 14.185 2.804 0.544 79.514 83.835 0.096 0.487 
294 17.161 2.992 0.519 42.473 150.951 0.132 0.574 
330 12.088 2.748 0.436 79.514 8.1.835 0.089 0.424 
333 15.201 2.510 0.484 42.473 150.951 0.105 0.505 
334 11.236 1.058 0.520 171.466 86.479 0.041 0.356 

335 9.533 1.266 0.308 171.466 86.479 0.040 0.309 

336 10.484 2.822 0.455 87.022 83.466 0.088 0382 
339 15.350 2.764 0.518 46.450 165.084 0.111 0.518 
359 7.634 3.246 0.692 52.279 48.248 0.109 0.321 

57 



Table 5.12 Stress Requirement Based on AASHTO Equations for L2Tl V3 

Member No. Axial Stress (ksi) Bending Stress (ksi) Euler Buckling Stress (ksi), AASHTO Stress Requirements: I .0 
(. Eq. (10-44) 

fb, t;,y Fex F,Y AASHTO Eq. (I 0- AASHTO Eq. (10-
42) 43) 

1 12.174 8.163 1.563 250.006 167.15.1 0.242 0.608 

10 7.965 7.174 1.489 180.716 222.549 0.214 0.462 

II 13.451 7.780 1.749 196.517 219.192 0.241 0638 

34 !5.849 7.839 1573 196.517 219.192 0.241 0.702 

35 15.369 7.675 1609 164.288 201.138 0.241 0.685 

51 15.078 7.619 1519 181.250 191654 0.235 0.673 

52 12.603 7.661 1.730 166.761 191.775 0.239 0.611 

68 12.816 7.384 1.377 178.108 195.570 0.223 0.599 

69 5.732 7.501 1.218 180.469 222.244 0.212 0.401 

78 10.142 7.687 1.507 249.663 166.926 0.227 0.537 

89 13.559 3.353 0.463 142.932 204.460 0.099 0.4&_1 

90 13.419 3.111 0.427 142.757 204.210 0.092 0.471 

113 13.994 3.655 0.476 142.757 204.210 0.108 0.503 
114 13.980 3.067 0.553 130.536 186.728 0.095 0.489 

130 12.229 3.153 0.522 130.536 186.728 0.095 0.442 
Ill 14.976 2.898 0.664 136.599 173.659 0.094 0.515 
147 11823 2.905 0.387 132.892 181.388 0.085 0.420 

148 12.076 3.328 0.394 145.335 198.372 0.096 0.439 
161 5.192 3.258 1.314 52.299 48.266 0.120 0.271 
182 14.937 2.696 0.402 46.507 165.285 0.104 0.501 

184 9.622 2.466 0.897 87.077 83.518 0.089 0.361 
185 12333 1.199 0.963 164.441 89209 0.057 0.403 
186 10.791 1.017 0.492 164.441 89.209 0.039 0.342 

187 9.994 2.664 0.789 83.339 87.868 0.092 0.374 
189 14.939 2.166 2.167 46.450 165.082 0.132 0.535 
240 10.774 2.699 0.589 83.339 87.868 0.089 0.391 

243 16.964 2.894 0.887 46.450 165.083 0.13 I 0.576 
244 13.446 0.55 I 1.123 168.519 87.830 0.045 0.420 
245 11587 0.947 0.692 168.519 87.830 0.043 0.367 
246 16.850 2.437 0.942 42.473 150.951 0.120 0.562 
249 12.160 2.490 1.057 80.515 82.505 0.099 0.436 
285 11489 2.786 1.139 81.805 81.046 0.108 0.428 
288 19.173 2.544 0.861 42.473 150.951 0.133 0.627 
289 13.918 0.738 1.062 168.274 87.077 0.049 0.437 
290 11.461 1.076 0.718 168.274 87.077 0.047 0368 
291 13.458 2.879 0.922 79.514 83.835 0.108 0.479 
294 19.219 2.871 0.791 42.473 150.951 0.145 0.636 
330 11.772 2.932 0.751 79.514 83.835 0.102 0.429 
333 16030 2.703 0.613 42.473 150.951 0.119 0.537 
334 11.423 1.226 0.826 171466 86.479 0.053 0.374 

335 9.623 1.581 0.482 171.466 86.479 0.052 0.325 
336 10.536 2.834 0.814 87.022 83.466 0.098 0.394 
339 16.090 2.979 0.707 46.450 165.084 0.126 0549 
359 7.665 3339 1.304 52.279 48.248 0.129 0342 
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01 
(.0 

Joint 
No. 

1 

G 

7 

8 

11 

15 

17 

22 

23 

24 

29 
31 

35 

44 

45 

46 

52 

GO 

61 

62 

69 

73 

74 

75 

79 

118 

120 

130 

132 

813 

8U 

815 

S!G 

817 

818 

Ux 

0.789 

0.743 

0.747 

0.754 

0.76 

0.851 

0.904 

0.996 

0.989 

0.997 

1.158 

1.055 

0.92 

1.057 

1.104 

1.123 

0.974 

0.931 

0.924 

0.912 

0.836 

0.874 

0.86 

0.844 

0.715 

0.887 

0.883 

0.919 

1.1 

0.77 

0.718 

0.896 

0.942 

0.8 

0.733 

Table 5.13 Displacements (in) due to Seismic Excitation of the 50-year Earthquake 

LIT2V3" L2TlV3" LLll'' LL22" TTl I" TI22' 

1.Jy u, Ux Uy u, Ux Uy u, Ux Uy u, Ux Uy u, Ux Uy u, 
0.001 0.011 0.502 0.002 0.012 0.777 0 0.01 0.476 0 0.01 0.2 0.002 0.012 0.175 0.001 0.012 

0.664 0.81 0.506 1.458 0.903 0.742 0.02 0.798 0.486 0.021 0.861 0.08 1.46 0.818 0.08 0.666 0.795 
0.608 0.709 0.545 1.372 0.795 0.732 0.02 0.702 0.489 0.02 0.76 0.084 1.374 0.72 0.086 0.61 0.693 
0.497 0.594 0.569 1.156 0.645 0.735 0.013 0.572 0.489 0.013 0.609 0.109 1.158 0.583 0.091 0.499 0.586 
0.023 0.027 0.598 0.043 0.039 0.74 0.003 0.023 0.484 0.003 0.023 0.155 0.043 0.039 0.097 0.023 0.027 

0.97 0.867 0.706 2.562 0.909 0.844 0.037 0.862 0.534 0.037 0.903 0.219 2.562 0.853 0.139 0.969 0.852 

1.199 1.072 0.708 2.91 1.125 0.875 0.027 1.06 0.541 0.028 1.113 0.202 2.91 1.053 0.152 1.197 1.054 

1.58 1.244 0.649 4.168 1.545 1.009 0.016 1.187 0.581 0.018 1.391 0.227 4.167 1.508 0.115 1.577 1.312 

1.523 1.217 0.665 3.982 1.579 1.015 0.017 1.203 0.583 0.018 1.432 0.222 3.981 1.535 0.112 1.522 1.346 
1.403 1.194 0.672 3.498 1.565 1.011 0.026 1.232 0.598 0.028 1.429 0.208 3.496 1.516 0.102 1.402 1.342 

1.209 0.95 0.626 3.549 0.961 1.101 0.035 0.98 0.656 0.035 0.986 0.295 3.549 1.007 0.202 1.211 0.991 

1.094 0.777 0.745 3.333 0.751 1.012 0.044 0.8 0.683 0.044 0.785 0.331 3.333 0.788 0.216 1.096 0.768 

0.025 0.042 0.802 0.065 0.068 0.911 0.003 0.034 0.656 0.003 0.033 0.293 0.065 0.069 0.122 0.025 0.04 

1.61 1.774 0.633 5.001 1.851 1.057 0.012 1.729 0.653 0.013 1.81 0.161 5.002 1.923 0.137 1.61 1.927 

1.486 1.446 0.699 4.456 1.546 1.083 0.013 1.411 0.659 0.013 1.505 0.257 4.456 1.625 0.172 1.486 1.622 

1.311 1.154 0.753 3.717 1.221 1.085 0.009 1.139 0.645 0.01 1.166 0.318 3.719 1.307 0.182 1.311 1.289 

0.032 0.049 0.588 0.058 0.054 0.959 0.002 0.042 0.595 0.002 0.041 0.17 0.058 0.055 0.145 0.032 0.049 

1.799 1.39 0.678 3.781 1.38 0.933 0.007 1.335 0.63 0.009 1.278 0.164 3.781 1.502 0.128 1.8 1.446 

1.697 1.263 0.665 4.006 1.205 0.926 0.008 1.227 0.64 0.01 1.282 0.11 4.006 1.305 0.11 1.698 1.298 

1.75 1.214 0.655 4.097 1.075 0.917 0.004 1.192 0.649 0.005 1.255 0.128 4.097 1.107 0.12 1.75 1.281 

0.022 0.032 0.55 0.038 0.045 0.82 0.001 0.034 0.568 0.001 0.034 0.288 0.038 0.046 0.189 0.022 0.032 

0.616 1.054 0.535 1.715 1.042 0.865 0.006 1.026 0.565 0.006 1.038 0.203 1.715 1.081 0.208 0.617 1.104 

0.652 1.191 0.548 1.842 1.197 0.857 0.008 1.166 0.554 0.009 1.187 0.179 1.842 1.238 0.192 0.653 1.251 

0.632 1.117 0.559 1.782 1.132 0.848 0.007 1.095 0.547 0.008 1.121 0.184 1.782 1.161 0.173 0.631 1.177 

0.004 0.016 0.558 0.01 0.015 0.741 0 0.016 0.481 0 0.016 0.146 0.01 0.015 0.166 0.004 0.016 

1.022 1.085 0.725 2.335 1.092 0.889 0.08 1.08 0.601 0.082 1.088 0.198 2.332 1.02 0.127 1.021 1.017 

1.215 1.182 0.726 3.148 1.247 0.916 0.066 1.173 0.623 0.071 1.284 0.188 3.15 1.162 0.119 1.214 1.161 

1.322 1.012 0.662 3.299 1.001 0.941 0.111 1.028 0.607 0.114 1.043 0.251 3.304 1.041 0.144 1.324 1.082 

1.208 0.935 0.671 3.524 0.938 1.088 0.037 0.963 0.608 0.04 0.959 0.272 3.527 0.982 0.19 1.208 0.965 

0.001 0.001 0.472 0.002 0.001 0.768 0 0.001 0.47 0 0.001 0.15 0.002 0.001 0.145 0.001 0.001 

0.023 0.004 0.47 0.042 0.004 0.718 0.003 0.004 0.472 0.003 0.004 0.089 0.042 0.004 0.087 0.023 0.004 

0.025 0.006 0.649 0.064 0.005 0.894 0.003 0.006 0.646 0.003 0.006 0.115 0.064 0.005 0.107 0.025 0.005 

0.032 0.007 0.578 0.058 0.007 0.942 0.001 0.007 0.583 0.001 0.007 0.134 0.058 0.007 0.13 0.032 0.007 

0.022 0.005 0.555 0.038 0.005 0.799 0.001 0.005 0.554 0.001 0.005 0.179 0.038 0.005 0.179 0.022 0.005 

0.004 0.002 0.482 0.01 0.002 0.734 0 0.002 0.477 0 0.002 0.141 0.01 0.002 0.153 0.004 0.002 

a Seismic excitation cases are described in Table 5.1 
Ux =Longitudinal displacement; Uy =Transverse displacement; Uz=Vertical displacement 



Table 5.14 Displacements (in) due to Self-weight and Temperature 

Joint Thermal Displacement Self-weight Displacement 
Number Ux Uy Uz Ux Uy Uz 

1 4.021 0.097 0.000 0.188 0.000 -0.001 

6 3.287 0.110 0.156 0.179 -0.007 0.128 

7 3.080 0.108 0.216 0.142 -0.007 0.304 

8 2.853 0.106 0.177 0.072 -0.008 0.379 

11 2.162 0.096 -0.003 -0.142 0.000 -0.025 

15 1.611 0.096 0.053 -0.492 0.031 -3.601 

17 1.557 0.096 -0.100 -0.489 0.042 -4.825 

22 1.152 0.112 -0.212 0.025 0.022 -8.859 

23 1.031 0.115 -0.077 0.157 0.017 -8.905 

24 0.911 0.117 -0.042 0.288 0.014 -8.755 

29 0.525 0.161 0.970 0.761 -0.007 -4.335 

31 1.274 0.159 0.893 0.705 -0.013 -3.156 

35 0.742 0.097 -0.001 0.311 0.000 -0.029 

44 -0.242 0.109 -0.368 0.035 0.005 -1.491 

45 -0.270 0.110 -0.192 0.079 0.004 -1.296 

46 -0.303 0.110 -0.206 0.094 0.002 -1.092 

52 -0.905 0.097 -0.002 .0.190 0.000 -0.024 

60 -2.230 0.108 0.209 -0.188 0.006 -4.548 

61 -2.348 0.108 -0.063 -0.095 0.007 -4.593 

62 -2.467 0.110 -0.157 -0.002 0.006 -4.284 

69 -2.664 0.097 -0.003 0.014 0.000 -0.022 

73 -3.651 0.098 0.444 -0.173 -0.002 -0.369 

74 -3.883 0.098 0.409 -0.180 0.000 -0.564 

75 -4.115 0.100 0.326 -0.186 0.001 -0.626 

79 -4.817 0.097 0.000 -0.090 0.000 -0.002 

118 1.684 0.141 -0.521 0.796 0.033 -4.613 

120 1.604 0.118 ·0.705 0.785 0.036 -5.845 

130 0.149 0.129 0.174 -0.568 -0.011 -5.398 

132 1.571 0.118 0.546 -0.486 -0.005 -4.114 

813 4.017 0.000 0.001 0.184 0.000 -0.001 

814 2.161 0.000 -0.001 -0.144 0.000 -0.022 

815 0.742 0.000 0.000 0.312 0.000 -0.027 

816 -0.904 0.000 0.000 -0.192 0.000 -0.022 

817 -2.661 0.000 -0.001 0.015 0.000 -0.019 

818 -4.815 0.000 0.001 -0.086 0.000 -0.002 

Ux =Longitudinal displacement; Uy =Transverse displacement; Uz=Vertical displacement 
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co ,.... 

Seismic 
Excitation 

Cases 

LLll 

LL22 

TTll 

TT22 

L1T2V3 

L2T1V3 

Maximum 
(Kip) 

2174 

1413 

224.2 

225.4 

2174 

1412 

Table 5.15 Maximum and Minimum Base Shears from Modal Time-History 
for the 50-Year Earthquake 

Longitudinal direction Transverse direction Vertical direction 

Time Minimu Time Maximum Time Minimum Time Maximum Time Minimu 
(sec) m (sec) (Kip) (sec) (Kip) (sec) (Kip) (sec) m (Kip) 

(Kip) 

2.99 -1975 4.7 36.58 1.925 -32.54 3.41 2087 3.025 -2567 

3.81 -1413 4.16 42.03 1.92 -36.33 3.41 2001 3.025 -2598 

3.875 -173.4 4.13 896.2 3.34 -1221 2.535 2064 3.025 -2630 

3.875 -177.1 4.14 454.2 3.85 -469.9 3.42 2070 3.025 -2639 

2.99 -1974 4.7 453 3.85 -467.7 3.42 2080 3.025 -2570 

3.81 -1410 4.16 896.1 3.33 -1220 2.535 1988 3.025 -2591 

Time 
(sec) 

3.65 

3.65 

3.65 

3.65 

3.65 

3.6[) -



Pier 

A 

B 

c 
D 

E 

F 

Table 5.16 Bearing Force Capacity/Demand Ratios of the Main bridge 
without site soil coefficients for the 50-Year Earthquake 

Anchor Bolt Seismic Force (kip) Seismic 
Capacity Demand, 
(kip), v, Longitudinal Transverse Resultant VB=l.25 xHR 

HL H, Ha 

857.88 249.76 780.25 819.25 1024.06 

857.88 559.4 86.23 566.01 707.51 

857.88 364.3 62.42 369.61 462.01 

857.88 389.9 64.887 395.26 494.08 

857.88 528.66 76.48 534.16 667.70 

857.88 149.9 162.89 221.37 276.71 

Force 
CID ratio 
rht~VcNb 

0.8377 

1.2125 

1.8568 

1. 7363 

1.2848 

3.1003 

Table 5.17 Bearing Displacement Capacity/Demand Ratio for the 50-Year Earthquake 

Seismic Seismic Displacement (in) Displacement Capacity (in) Thermal Displacement (in) Capacity/Demand Ratio 
Excitation !'.,(d) "'i c) I'.;( d) rbd ~ ( l'.,(c)-l'.;(d))/l'.",(d) 

Cases Pier A PierF 

Pier A PierF Pier A PierF Pier A PierF 

L!T2V3 0.77 0.73 28.56 30 4.017 4.815 31.87 34.50 

L2TIV3 0.145 0. !53 28.56 30 4.017 4.815 169.26 164.61 

LLII 0.15 0.14 28.56 30 4.017 4.815 163.62 179.89 

LL22 0.47 0.47 28.56 30 4.017 4.815 52.22 53.59 

TTl I 0.47 0.48 28.56 30 4.017 4.815 52.22 52.47 

TT22 0.77 0.73 28.56 30 4.017 4.815 31.87 34.50 
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O'l 
w 

Pier 

K1 

K2 
K3 
K4 
K5 
K6 
K7 
K8 
K9 

K10 
Kll 
K12 
K13 
K14 
K15 

K16 
K17 
K18 
K19 

K20 
I 1 
I2 

I 3 
I4 
I 5 

A 

208 

172 
172 
172 
172 

172 
172 
172 
172 

136 
136 
136 

136 
136 
136 

136 
136 
136 
136 

136 
172 
136 
136 
136 
136 

Table 6.1 Dimensions and Stiffnesses of the Approach Span Piers 

Pier Dimensions (in) Pier Area (in') M.I. for Longitudinal Pier Stiffness Pier Stiffness 
Bending (in4

) (K,.) for (K~,) with 
Longitudinal pile effect 

I bending, (kip/ft) 

B c D Bottom Top Top Bottom (kip/ft) 
I 

= 3EI/I} 
I 

376 616.5625 111.375 31460.53 10747.4 1829863 3598903 1511.299 540.603 
348 483 100.25 27442.07 10747.4 1829863 3598903 3143.694 892.113 I 

348 457.4375 98.125 26696.61 10747.4 1829863 3598903 3700.721 992.063 
348 432 96 25958.25 10747.4 1829863 3598903 4393.700 1106.913 
348 406.3125 93.875 25226.97 10747.4 1829863 3598903 5280.817 1241.610 
328 380.75 91.75 24502.8 10747.4 1829863 3598903 6417.441 1398.251 
328 355.1875 89.625 23785.71 14527.44 3598903 12584024 23564.840 4717.035 
328 329.625 87.5 23075.72 14527.44 3598903 11690450 27855.390 5070.379 
328 412.0625 94.375 25398.4 14527.44 3598903 14747522 17109.710 4087.946 
304 471.375 71.4375 17938.46 8037.878 781203.7 6281544 4400.019 1217.485 
304 458.75 70.6875 17708.49 8037.878 781203.7 6082136 4638.609 1247.284 
304 463.9375 71 17804.2 8037.878 781203.7 6164692 4538.688 1235.047 
304 446.75 69.9375 17479.4 8037.878 781203.7 5887067 4879.778 1275.347 
304 443.5625 69.75 17422.27 8037.878 781203.7 5838972 4949.776 1283.635 
304 421.125 68.3125 16986.08 8037.878 781203.7 5479062 5469.407 1339.325 
304 405.25 67.3125 16684.56 8037.878 781203.7 5237765 5901.108 1383.282 
304 378.5 65.625 16179.31 8037.878 781203.7 4847088 6772.664 1465.217 
304 398.75 66.9375 16571.9 8037.878 781203.7 5149170 6103.240 1404.171 
304 323.875 62.25 15182.22 8037.878 781203.7 4125883 9424.797 1676.562 
292 260.8125 58.25 14023.66 8037.878 781203.7 3369698 15266.440 2008.386 
328 219.75 78.3125 20087.68 14527.44 3598903 8320548 73290.910 7408.001 
304 350.875 63.9375 15678.53 8037.878 781203.7 4476651 7942.036 1565.696 
304 399 66.9375 16571.9 8037.878 781203.7 5149170 6091.775 1402.554 
304 299.75 60.75 14744.82 8037.878 781203.7 3830142 11171.990 1791.353 
304 274.3125 59.125 14274.95 8037.87§_ 781203.7 '--352632[;_ 13616.700 _ _1927.870_-
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Span 

Abut-IS 

15-14 

14-13 

13-12 

12-11 

Span 

1_:1-M~n 

Length 

59.5 

90 

80 

80 

80 

Area of 
Cross 

section 

14.788 

14.788 

14.788 

14.788 

14.788 

Deck 

Table 6.2 Weight of the Superstructure of the Illinois Approach Spans (Girder Spans) 
Note: The dimensions are in kip and ft units 

Beams Girders Knee Bracing Lateral Bracing Bracing Handrails 
Total 

WeighVft Total Total WeighUft Total Total WeighUft Total Total WeighUfl Total Weightlft Weight Length Weightlft 
weight length Weight length Weight length length 

2.218 131.985 244 0.045 10.98 119 0.237 28.203 61.81 0.0079 80.442 0.01 1.293 119 0.0167 

2218 199.641 352 0.045 15.84 180 0.258 46.35 85.534 0.0079 118 0.01 1.856 180 0.0167 

2.218 177.458 332 0.045 14.94 180 0.237 37.872 74.17 0.0079 116.33 0.01 1.749 160 0.0167 

2.218 177.458 332 0.045 14.94 160 0.237 37.872 74.17 0_0079 116.33 0.01 1.749 160 0.0167 

2.218 177.458 332 0_045 14.94 160 0.237 37.872 74.17 0_0079 116.33 0.01 1.749 160 0.0167 

Table 6.3 Weight of the Superstructure of the Illinois Approach Spans (Deck-truss Span) 
Note: The dimensions are in kip and £t units 

Total 
Weight 

1.987 

3.006 

2.672 

2.672 

2.672 

Deck Beams Truss Lower beams Lower lateral Upper lateral Hand rails 

Length I Area/ft I Weightlft I Total 
Weight 

Total I WeighUft I Total 
length Weight 

#Panel IWeighUpa I Total 
nel Weight 

Total I Weightlft 
length 

Total I Weightlft 
length 

Total I Total 
Weight Weight 

Length I WeighUft I Weight 

1s_1,o2_1_ I -.H.7882__l_ 2.21 U 401_5458 684 o_o45 I 30.78 20 _1_~993 __ L9M6 __ _go_l_jl.02I _ 217.54 _I _ ____Q,o_Q_ __ 2.35 _j 10.911.±_ __l§_2.187_~o.o1e7 I 6.0485 

Span Span Total 
Total Mass 

Weight 

174.448 5.420 

266.692 8.286 

234.692 7.292 

234.692 7.292 

234.692 7.292 

Span Span 
Total Total 

Weight Mass 

552.019 17.151 



Table 6.4 Weight of the Superstructure of the Kentucky Approach Spans (From Pier F to Pier K9) 
Note: The dimensions are in kip and ft units 

Span Deck Beams Truss Lower beams lower lateral Bracing Upper lateral Bracing Handrails 

Length Cross Weightlft Total Total Weightlft Total #Panel Weight! Total Total !weight/ft Total Weightlft Total Total length Weight/It 
Section Weight length Weight 

Panel 
Weight length length Weight Weight 

Area 

Main-K1 182.5 14.788 2.218 404.827 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10941 362.188 0.0167 

K1-K2 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K2-K3 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K3-K4 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K4-K5 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K5-K6 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K6-K7 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K7-K8 182 14.788 2.218 403.718 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

K8 K9 181 14.788 2.218 401.500 684 0.045 30.78 20 4.993 99.86 120 0.027 217.54 0.025 2.35 10.941 362.188 0.0167 

Table 6.5 Weight ofthe Superstructure of the Kentucky Approach Spans (From Pier K9 to K20) 
Note: The dimensions are in kip and ft units 

Span Deck Beams Girders Knee Bracing Lateral Bracing Handrails Span Span 
Total Total 

Length Area/11 Weightlft Total weight Total Weightlft Total Total Total Weightlft Total Weightlft Length Weight/It Total Weight Mass 
length We.lght Weight length length Weight 

K9-K10 89.71 14.788 2.218 198.997 376 0.045 16.92 48.42 74.17 0.0079 126.2 0.0098 538 0.0167 8.985 275.150 8.5490 

K10-K 25 14.788 2.218 55.456 84 0.045 3.78 13.37 12.36 0.0079 38.66 0.0098 150 0.0167 2.505 75.600 2.3489 

K-K 40 14.788 2.218 88.729 2 X 20 X 0.074 + 6 X 6.8125 X 0.0318 + 40 X 5 X 0.080"' 20.25 240 0.0167 4.0 113.000 3.5110 

K-K11 25 14.788 2.218 55.456 84 0.045 3.78 13.37 12.36 0.0079 38.66 0.0098 150 0.0167 2.505 75.600 2.3489 

K11-K12 48 14.788 2.218 106.475 176 0.045 7.92 27.22 12,36 0.0079 76.52 0.0098 288 0.0167 2.8096 147.500 4.5829 

K12-K 25 14.788 2.218 55.456 84 0.045 3.78 13.37 12.36 0.0079 38.66 0.0098 150 0.0167 2.505 75.600 2.3489 

K-K 40 14.788 2.218 88.729 2 X 20 X 0.074 + 6 X 6.8125 X 0.0318 + 40 X 5 X 0.080 = 20.25 240 0.0167 4.0 113.000 3.5110 

K-K13 25 14.788 2.218 55.456 84 0.045 3.78 13.37 12.36 0.0079 38.66 0.0098 150 0.0167 2.505 75.600 2.3489 

K13-K14 89.677 14.788 2.218 198.924 376 0.045 16.92 48.42 74.28 0.0079 126.2 0.0098 538 0.0167 8.985 275.000 8.5444 

K14-K15 60 14.788 2.218 133.094 244 0.045 10.98 22.52 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

K15-K16 60 14.788 2.218 133.094 244 0.045 10.98 22.52 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

K16-K17 60 14.788 2.218 133.094 244 0.045 10.98 2252 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

K17-K18 60 14.788 2.218 133.094 244 0.045 10.98 22.52 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

K18-K19 60 14.788 2.218 133.094 244 0.045 10.98 22.52 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

K19-K20 60 14.788 2.218 133.094 244 0.045 10.98 22.52 371.4 0.0079 126.2 0.0098 360 0.0167 6.012 175.500 5.4529 

1<20-Abut 59.5 14.788 2.218 131.985 244 0.045 10.98 22.33 371.4 0.0079 126.2 0.0098 357 0.0167 5.962 174.000 5.4062 
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Longitudinal M'lsH Frequency Period Tvlin:imum 
Model Bending (k-sec2/ft) (Hz) (sec) Force Demandh 

Designation" Stiffness (Kip) 
Klft 

Ka 540.603 24.2 0.7522 1.3294 155.78 

Kb 892.113 22.66 0.9986 1.0014 115.86 

Kc 992.063 22.27 1.0623 0.91114 14.3 .. 15 

Kd 1106.913 21.97 1.1297 0.8852 141A2 

Ke 1241.610 21.68 1.2041 0.8303 139.55 

Kf 1398.251 21..38 1.2871 0.7769 137.G2 

Kg 23564.840 23.2 5.0723 0.1971 149.CI4 

Kh 27855.390 22.65 5.5811 0.1792 145.80 

Ki 17109.710 24.4 4.2145 0.2373 157.06 

Kj 1217.485 16.4 1.3713 0.7292 105.57 

Kk 2482.000 23.54 1.6.342 0.6119 151.53 

Kl 1275.347 19.51 1.2868 0.7771 125.59 

fun 1.339 . .325 15.64 1.4728 0.6790 100.67 

Kn 146,5.217 15.02 1.5719 0.6.362 96.68 

Ko 1676.562 14.266 1. 7254 0.5796 91.83 

Kp 1950.000 8.16 2.4163 0.4139 54.46 

!a 73290.910 8.78 14.5411 0.0688 56.52 

lb 1791..353 18 .. 58 1.5627 0.6.399 119.GO 

lc 1565.696 18.27 1.173.3 0.6787 117.60 

ld 1791.353 20.49 1.4881 0.6720 1.31.89 

"Shown in Figures 6.8 and 6.9 
11 As per Section A.2 in "Seismic Retrofitting Manna! for Highway Bridges (1995}'. 

Table 6.7 Natural Frequencies of the Approach Spans- Stiff System 
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Model Longitudinal Mass Frequency Period Minimum 
Designation" Bending (k-sec2/ft) (Hz) (sec) Force 

Stiffness 
(kilt) Demand'' 

(Kip) 

Ka 151.2.500 24.2 1.2582 0.7948 155.78 

Kb :3146.000 22.66 1.8753 0.53i\::~ 145.86 

Il£ 3703.250 22.27 2.0524 0.1872 113.:15 

Kd 4397.000 21.97 2.2516 0.4441 141.42 

Ke 5284.750 21.68 2.4849 0.4024 139.55 

Kf 6422.250 21.38 2.7584 0.3625 137.62 

Kg 24155.750 23.2 5.1.155 0.1947 149.:14 

Kh 28400.000 22.65 5.G357 0.1774 145.80 

Ki 17327.000 24.4 4.2412 0.2358 157.06 

Kj 4399.250 16.4 2.6067 0.3836 105.57 

Kk 9172.500 23.54 3.1417 0.3183 151..53 

Kl 4886.250 19.51 2.5187 0.3970 125.59 

Km l5471..250 15.64 2.9768 0.3359 100.67 

](n G787.000 1..5.02 .3.3832 0.2956 9G.68 

Ko 9399.000 14.266 4.0852 0.2448 91.83 

Kp 171l{)00.000 8.46 22.8407 0.04.38 54..16 

I a 171000.000 8.78 22.120G 0.0446 56.52 

lb 11152.750 18.58 3.8993 0.2565 119.60 

Ic 7955.750 18.27 3.3212 0 . .3011 117.60 

ld 73186.250 20.49 9.5118 0.1051 la1.89 

n Shown in Figures 6.8 and 6.9 
il As per SectionA.2 in "Seismic Retrofitt£ng Manual for H£ghwa.y B1idges (1995}'. 

Table 6.8 Seismic Response using Response Spectrum Method- Flexible System 
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Model Longitudinal Longitudinal Based on Cs < Horizontal Horizontal HL=2A.M.K 
Designation a Displacement, Displacement, 2A; Seismic Force Seismic Force Based on Cs < 

Ka 
Kb 
Kc 
Kd 
Ke 
Kf 
Kg 
Kh 
Ki 
Kj 
Kk 
K1 

Km 
Kn 
Ko 
Kp 

I a 
Ib 
Ic 
Id 

DL=PSA.M/K DL=1.2. PSA. DL=2AMIK HL=PSA.M HL =1.2. PSA. 
(in) S/gW/K (in) (kip) S/g. W 

(in) (kip) 

4.17 10.01 10.37 188.00 451.20 
3.02 7.24 5.89 224.00 537.60 
2.73 6.55 5.20 226.00 542.40 
2.48 5.95 4.60 229.00 549.60 
2.27 5.45 4.05 235.00 564.00 
2.09 5.01 3.54 243.00 583.20 
0.31 0.74 0.23 607.60 1458.24 
0.28 0.68 0.19 656.24 1574.98 
0.41 0.98 0.33 581.41 1395.38 
1.94 4.65 3.12 197.00 472.80 
1.48 3.54 2.20 305.00 732.00 
2.09 5.01 3.55 222.00 532.80 
1.75 4.21 2.71 252.00 604.80 
1.58 3.78 2.38 425.00 1020.00 
1.36 3.27 1.97 523.00 1255.20 
0.87 2.08 O.Dl 191.00 458.40 
0.07 0.17 O.Dl 444.77 1067.45 
1.59 3.82 2.40 237.00 568.80 
1.75 4.20 2.70 229.00 549.60 
1. 72 4.14 2.65 257.00 616.80 

Note: M and K are the Mass and Stiffness of the System; A:::: Acceleration Coefficent=0.3; 
PSA = Psuedo-spectral acceleration from the response spectra; S = Soil Site Coefficient==2, and 

g =Acceleration due to gravity 
a Shown in Figm·es 6.8 and 6.9 

Table 6.9 Seismic Response using Response Spectrum Method - Stiff System 
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2A 
(kip) 

451.20 
437.59 
430.06 
424.26 
418.66 
412.87 
448.02 
437.39 
471.19 
316.70 
454.58 
376.76 
302.02 
290.05 
275.49 
163.37 

169.55 
358.80 
352.81 
395.68 



Model Longitudinal Longitudinal Based on Cs < Horizontal Horizontal HL=ZA.M.K 
Designation a Displacement, Displacement, ZA; Seismic Force Seismic Force Based on Cs.; 

DL=PSA.M/K DL=L2. PSA DL=ZAM/K HL=PSA.M HL=1.2. PSA. 2A 
(in) S/g W/K (in) (kip) 8/g. w (kip) 

(in) (kip) 

Ka 2.14 5.14 3.71 269.80 647.52 467.33 

Kb 1.21 2.90 1.67 316.60 759.84 437.59 

Kc 1.07 2.56 1.39 328.50 788.40 430.06 

Kd 0.95 2.28 1.16 348.40 836.16 424.26 

Ke 0.83 2.00 0.95 366.90 880.56 418.66 

Kf 0.73 1.76 0.77 392.00 940.80 412.87 

Kg 0.31 0.74 0.22 607.60 1458.24 448.02 

Kh 0.28 0.68 0.18 656.24 1574.98 437.39 

I{i 0.41 0.98 0.33 581.40 1395.36 471.19 

Kj 0.79 1.89 0.86 288.40 692.16 316.70 

Kk 0.61 1.47 0.59 469.41 1126.58 454.58 

Kl 0.82 1.97 0.93 333.40 800.16 376.76 

Km 0.66 1.59 0.66 482.90 1158.96 302.02 

Kn 0.55 1.33 0.51 479.50 1150.80 290.05 

Ko 0.43 1.02 0.35 480.70 1153.68 275.49 

Kp 0.03 0.07 0.01 305.30 732.72 163.37 

I a 0.03 0.08 0.01 469.63 1127.11 169.55 

Ib 0.46 1.09 0.39 424.60 1019.04 358.80 

Ic 0.57 1.36 0.53 375.44 901.06 352.81 

Id 0.14 0.33 0.06 828.75 1989.00 395.68 

Note: M and K are the Mass and Stiffness of the System; A= 
Acceleration Coefficent.:::-0.3; 
PSA::::: Psuedo-spectral acceleration fmm the response spectra; S :::Soil Site Coefficient:::2, and 
g ==Acceleration due to gravity 

a Shown in Figm·es 6.8 and 6.9 
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Table 6.10 Bearing Force Capacity/Demand Ratios and Retrofitting Recommendations- Flexible System 
(Note: The additional bolts are to be provided at the fixed bearing locations only) 

Span Location Seismic Seismic Available Available C!D ratio Required Required Required Provided Pier and Number 
Force Demand, Number of Bolt rbr=V,Nb Additional Additional Number of Additional of Bolts at 
(Kip) Vb=l.25 X Bolts Capacity', Bolt Bolt Area Additional Anchor Each Pier 

SF V, Capacity (in2
) Bolts Bolt Area 

(Kip) (kip) (in2
) 

Pier F-K1 K1 451.20 564.00 8, 1.5" 381.28 0.676 182.72 6.775 4#, 2" 12.570 4@K1 

K1-K2 K2 437.59 546.98 8, 1.5" 381.28 0.697 165.71 6.144 4#, 1.5" 7.068 4@K2 

K2-K3 K3 430.06 537.57 8, 1.5" 381.28 0.709 156.29 5.795 4#, 1.5" 7.068 4@K3 

K3-K4 K4 424.26 530.33 8, 1.5 11 381.28 0.719 149.05 5.526 4#, 1.5" 7.068 4@K4 

K4-K5 K5 418.66 523.33 8, 1.5" 381.28 0.729 142.05 5.267 4#, 1.5" 7.068 4@K5 

K5-K6 K6 412.87 516.09 8, 1.5" 381.28 0.739 134.81 4.998 4#, 1.5!1 7.068 4@K6 

K6-K7 K7 448.02 560.02 8, 1.5" 381.28 0.681 178.74 6.627 4#, 1.5!! 7.068 4@K7 

K7-K8 K8 437.39 546.74 8, 1.5" 381.28 0.697 165.46 6.135 4#, 1.5" 7.068 4@K8 

K8-K9 K9 471.19 588.99 4, 1.5" 190.64 0.324 398.35 14.770 8#, 1.5" 14.136 8@K9 

K9-K10K K10 316.70 395.88 4, 1.25" 132.39 0.334 263.49 9.770 4#, zn 12.570 4@K10 

KK11-K12K K11-K12 454.58 568.23 8, 1.25" 264.78 0.466 303.45 11.251 8#,1.5" 14.136 4@K11, 4@K12 

KK13-K14 K13 376.76 470.95 4, 1.2511 132.39 0.281 338.56 12.553 8#, 1.5" 14.136 8@K13 

K14K15K16 K15 302.02 377.53 8, 1.25" 264.78 0.701 112.75 4.181 8#,1.5" 14.136 8@K15 

K16K17K18 K17 290.05 362.56 8, 1.25" 264.78 0.730 97.79 3.626 8#, 1.5" 14.136 8@K17 

K18K19K20 K19 275.49 344.36 8, 1.25" 264.78 0.769 79.59 2.951 8#,1.5" 14.136 8@K19 

K20-Abut. Abutment 163.37 204.21 4, 1.25" 132.39 0.648 71.83 2.663 4#, 1.5" 7.068 4@KY-Abutment 

Abut.-I5 Abutment 169.55 211.94 4, 1.25 132.39 0.625 79.55 2.950 4#, 1.5" 7.068 4@IL-Abutment 

I5I4I3 I4 358.80 448.50 8, 1.25 264.78 0.590 183.72 6.812 8#, 1.5" 14.136 8@I4 

I3I2Il I2 352.81 441.02 8, 1.25 264.78 0.600 176.24 6.535 8#,1.5" 14.136 8@I2 

Il-Pier A Il 395.68 494.60 4, 1.5 190.64 0.385 303.96 11.270 8#, 1.5" 14.136 S@Il 
" Bolt Shear Strength is assumed as 26.97 ksi (186 MPa) 

I 

I 
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Table 6.11 Bearing Force Capacity/Demand Ratios and Retrofitting Recommendations - Stiff System 

Span Fixed 
Bearing 
Location 

Pier F-K1 K1 

K1-K2 K2 

K2-K3 K3 

K3-K4 K4 

K4-K5 K5 

K5-K6 K6 

K6-K7 K7 

K7-K8 K8 
K8-K9 K9 

K9-K10K K10 

KK11-K12K Kll-K12 

KK13-K14 K13 

K14K15K16 K15 

K16K17K18 K17 

K18K19K20 K19 

K20-Abut. Abutment 

Abut.-15 Abutment 

151413 14 

131211 12 

11-Pier A ll 

r Note: 'l'he addaional bolts are to be provided at the fixed bearing locatwns only) 
Seismic 

Force 
(Kip) 

467.33 

437.59 

430.06 

424.26 

418.66 

412.87 

448.02 

437.39 

471.19 

316.70 

454.58 

376.76 

302.02 

290.05 

275.49 

163.37 

169.55 

358.80 

352.81 

395.68 

Seismic Available Available CID ratio Required Required Required 
Demand, Number Bolt rbr=VcNd Additional Additional Additional 
Vb=l.25 X of anchor Capacity' Bolt Anchor Number of 

SF Bolts , V, Capacity Bolt Area Bolts 
(Kip) (kip) (in2

) 

584.16 8, 1.5" 381.28 0.653 202.88 7.522 4#, 2" 

546.98 8, 1.5" 381.28 0.697 165.71 6.144 4#, 1.5" 

537.57 8, 1.5" 381.28 0.709 156.29 5.795 4#, 1.5" 

530.33 8, 1.5" 381.28 0.719 149.05 5.526 4#, 1.5" 

523.33 8, 1.5" 381.28 0.729 142.05 5.267 4#, 1.5" 

516.09 8, 1.5" 381.28 0.739 134.81 4.998 4#, 1.5" 

560.02 8, 1.5" 381.28 0.681 178.74 6.627 4#, 1.5" 

546.74 8, 1.5" 381.28 0.697 165.46 6.135 4#, 1.5" 

588.99 4, 1.5" 190.64 0.324 398.35 14.770 8#, 1.5" 

395.88 4, 1.25" 132.39 0.334 263.49 9.770 4#, 2" 

568.23 8, 1.25" 264.78 0.466 303.45 11.251 8#,1.5" 

470.95 4, 1.25" 132.39 0.281 338.56 12.553 8#, 1.5" 

377.53 8, 1.25" 264.78 0.701 112.75 4.181 8#,1.5" 

362.56 8, 1.25" 264.78 0.730 97.79 3.626 8#, 1.5" 

344.36 8, 1.25" 264.78 0.769 79.59 2.951 8#,1.5" 

204.21 4, 1.25" 132.39 0.648 71.83 2.663 4#, 1.5" 

211.94 4, 1.25 132.39 0.625 79.55 2.950 4#, 1.5" 

448.50 8, 1.25 264.78 0.590 183.72 6.812 8#,1.5" 

441.02 8, 1.25 264.78 0.600 176.24 6.535 8#,1.5" 

494.60 4, 1.5 190.64 0.385 303.96 11.270 8# 1.5" 
, 

Bolt Shear Strength is assumed as 26.97 ksi (186 MPa) 
hArrangement of additional anchor bolts is shown in FiguTes 6.10 to 6.30 

Provided 
Additional 

Anchor Bolt 
Area 
(in2

) 

12.570 

7.068 

7.068 

7.068 

7.068 

7.068 

7.068 

7.068 

14.136 

12.570 

14.136 

14.136 

14.136 

14.136 

14.136 

7.068 

7.068 

14.136 

14.136 

14.136 

Pier and Number 
of Bolts at 
Each Pierh 

4@K1 
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--J 
t'.o 

Span 

Abutment-IS 
I5-I4 

I4-I3 
I3-I2 
I2-Il 

Il-PIERA 
PIER F-K1 

K1-K2 
K2-K3 
K3-K4 
K4-K5 
K5-K6 
K6-K7 
K7-K8 
K8-K9 

K9-K10 
K9-K10K 

K12K 

KK13 
K13-K14 
K14-K15 

K15-K16 
K16-K17 
K17-K18 
K18-K19 
K19-K20 

K20-A 

Table 6.12 Bearing Displacement Capacity/Demand Ratio for the Flexible System 

Span Thermal Available Seismic Displacement, ~{'q(d) CID ratio 
Location Length (ft) displacement (ft), Seat 

(ft) (in) 
rbd = (1\(c) -I'.;( d))/ 

I'.;( d) Width (ft), I'.,( c) L'. ,(d) 

I5 59.5 0.0348 0.75 0.20 2.4117 3.56 

15 90 0.0527 0.75 0.20 2.4117 3.47 
I3 80 0.0468 0.75 0.43 5.1040 1.65 
I3 80 0.0468 0.75 0.43 5.1040 1.65 

Il 80 0.0468 1.5 0.45 5.3550 3.26 
PIER A 180 0.1053 2.75 0.44 5.3020 5.99 
PIERF 180 0.1053 2.5 1.67 20.0200 1.44 

K1 180 0.1053 1.5 1.33 15.8960 1.05 

K2 180 0.1053 1.5 0.92 11.0880 1.51 

K3 180 0.1053 1.5 0.82 9.8010 1.71 
K4 180 0.1053 1.5 0.72 8.6450 1.94 

K5 180 0.1053 1.5 0.63 7.5890 2.21 

K6 180 0.1053 1.5 0.31 3.7710 4.44 
K7 180 0.1053 1.5 0.03 0.4160 40.23 
K8 180 0.1053 1.5 0.04 0.5185 32.28 
K9 89.677 0.0525 1.5 0.29 3.4505 5.03 

K 25 0.0146 0.75 0.44 5.3180 1.66 

K 25 0.0146 0.75 0.48 5.7430 1.54 

K 65 0.0380 0.75 0.20 3.5640 2.40 

K14 154.7 0.0905 0.75 0.52 6.2510 1.27 

K14 60 0.0351 0.75 0.52 6.2510 1.37 

K16 60 0.0351 0.75 0.42 5.0810 1.69 

K16 60 0.0351 0.75 0.42 5.0810 1.69 

K18 60 0.0351 0.75 0.36 4.3470 1.97 

K18 60 0.0351 0.75 0.36 4.3470 1.97 

K20 60 0.0351 0.75 0.17 1.9830 4.33 

K20 59.5 0.0348 0.75 0.17 1.9830 - - 4.1ill_ ·--



2.1a View showing Illinois approach and US51 main bridge 

2.lb US51 main bridge across the Ohio river 
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2.1c Illinois approach and end view of the main bridge 

2.ld End portal of the main bridge 
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2.1e Bottom view of the main bridge 
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Figure 2.10a Plan View of Pier B, C, D and E 
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Figure 3.la Triaxial Accelerometer Block 
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Figure 3.1b Accelerometer Locations (l\1oving and Base Stations) on One Side ofthe Bridge 
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Figure 4.2 Mode Shape of the First Natural Frequency (0.3831 Hz) 
(a) Isometric View (b) Elevation View (c) Plan View 
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Figure 4.3 Mode Shape of the Second Natural Frequency (0.5017 Hz) 
(a) Isometric View, (b) Elevation View and (c) Plan View 
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Figure 4.4 Mode Shape of the Third Natural Frequency (0.6206 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.5 Mode Shape of the Fourth Natural Frequency (0. 7578Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.6 Mode Shape of the Fifth Natural Frequency (0.9147 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.7 Mode Shape of the Sixth Natural Frequency (0.9725 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 

108 



(a) 

(b) 

-~-~·r··n·l~t·t·~"'l"r~'kj .. l'i't·~--· ~~--·--" -·-~·'""J'i::·r,.-~ .. -.... r-,.-,_ -._-_; .. ,) _, 11;::>~······· ··"'·' '·' · • r, .. J ll'r("i· ·-"'i' .-.~\X 

(c) 

M(lfJ\·. 

';f\,\PL 

i ·~:'' i-_11; 

;v10D! 

SAP90 

SAP90 

Figure 4.8 Mode Shape of the Seventh Natural Frequency (0.993 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4. 9 Mode Shape of the Eighth N atlll'al Frequency (1. 072 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.10 Mode Shape of the Ninth Nat ural Frequency (1.1318 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.11 Mode Shape of the Tenth Natural Frequency (1.1435 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 

112 



y _'( 

MoDF i \ 

SAP90 

(a) 
l -

fJS5<f-x: 

(b) :-:1 !:\!"1 

!viOIH- ;; 

(c) 

SAP90 

Figure 4.12 Mode Shape of the Eleventh Natural Frequency (1.2812 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.13 Mode Shape of the Twelveth Natural Frequency (1.2866 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.14 Mode Shape of the Thirteenth Natural Frequency (1.3279 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.15 Mode Shape of the Fourteenth Natural Frequency (1.3849 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 

116 

(a) 



I \1.41 !4L: ·-(1() 

SA1'90 

(a) 

X 

' ~--

l:ssl uc, 

(b) MOUF 

Sll:\Pl-

(c) 

SAP90 

Figure 4.16 Mode Shape of the Fifteenth Nat ural Frequency (1.3978 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.17 Mode Shape of the 21 ''Natural Frequency (1.8848 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.18 Mode Shape of the 22"'1 Nat ural Frequency (1. 9348 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 4.19 Mode Shape of the 27'' Natural Frequency (2.2327 Hz) 
(a) Isometric View, (b) Elevation View, and (c) Plan View 
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Figure 5.1 Time-history and Response spectra identification map for 
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121 



Figure 5.2 

'I<) 

I 

-" 

I!Ml 

liiSi'OHY 

!-,_-~l'iiON 

F-\(' I'' JR 

SAI'9() 
l ________ --c __ ---~---

Acceleration-Time History in the Horizontal Direction 
(Direction 1) for the 50-year Earthquake 

1'!~11 

lii.'-'TUR\' 

-J R·'l'l 

l-'1.':\C'iHl'-' 

Fi\L'! ()IZ 

.(l.(\1(171-'-L).' 

MAX 

()_7<l"/.C\!O;-(J~ 

AT i.J2.'i(l0 

::. <·(• "·' nH ,.,, S_AP9_Q_ __ , 

Figure 5.3 Acceleration-Time History in the Transverse Direction 
(Direction 2) for the 50-Year Earthquake 
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Figure 5.4 Acceleration-Time History in the Vertical Direction 
(Direction 3) for the 50-Year Earthquake 
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Figure 5.6 Displacement-Time History in the Vertical Direction 
at Node 44 for Ll T2V3 Excitation Case 
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Figures G.l(a)-(b). Different Views of Illinois Approach 
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(c) (d) 

Figures 6.2(a)-(d). Different Views of Kentucky Approach 
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Figure 6.5 Cross Section of the Deck-Truss Type Approach Span 

Figure 6.6 Cross Section of the Girder and Suspended Spans 
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Figure 6.7 Details of the Deck-Truss Span (Kl0-K13) 

129 



Span Abutment-IS Span IS-I4 Span I4-I3 

Fix. ( l Exp_ U --
Pier IS 

Pier I4 

Illinois Abutment 

~-~ 

Madella Modellb 

Span I3-I2 Span I2-Il Span Il-Pier A 
Exp~j_)_ Fix. I ) E:w__,_l _l__ Fix. I ) Exp. ___ _ !_2 __ 

Pieri3 Pier Il Pier A 

Pier 12 
Pier Il 

p;;·~ ~~ 
Model Ic Modelld 

Figure 6.8 Structural Components for the SDOF Models of the Illinois Approach Spans 
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Figure 6.9 Structural Components for the SDOF models of the Kentucky Approach Spans 
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Figure 6.9 (cont'd). Structural Components for the SDOF models of the 
Kentucky Approach Spans 
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Figure 6.9 (cont'd). Structural Components for the SDOF models of the 
Kentucky Approach Spans 
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Figure 6.9 (cont'd). Structural Components for the SDOF models of the 
Kentucky Approach Spans 
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Figure 6.10 Response spectra for the 50-year event for Ballard Co. 
(0.30g-1 from fig. 5.1); Damping ratio= 0.05. 
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Figure 6.11 Arrangement of Additional Anchor Bolts on Pier K1 
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Figure 6.12 Arrangement of Additional Anchor Bolts on Pier K2 
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138 



-<(--- - -- -­

SpanK3-K4 
I_ 

Pier K4 
I~ ;1[--, 'l 
l--) ___ ' ->1 \ --~ j 

(-__) (>i 
• a,[ 

__ ':_::_I 

Fixed Bearing 
• Provided Additional Anchor Bolts 

4, 1.5" dia. 

I) Available Anchor Bolts 
8, 1.5" dia. 

--- --- -- -- --~ 

Span K4-K5 

Additional Anchor 
Bolt Area Required = 5.526 in2 

Expansion Bearing 

• , Available Anchor Bolts 
4, 1.5" dia. 

Figure 6.14 Arrangement of Additional Anchor Bolts on Pier K4 

139 



~ - - - - - - - - -I- - - - --- -- - -- - _,.. 
Span K4-K5 Span K5-K6 

Pier KS 

~-- -:-- l 
.I ' I 

I 
L ~--' _j 

Fixed Bearing 
• Provided Additional Anchor Bolts 

4, 1.5'' dia. 

· ' Available Anchor Bolts 
8, 1.5'' dia. 

Additional Anchor 
Bolt Area Required = 5.267 in2 

Expansion Bearing 

, , Available Anchor Bolts 
4, 1.5" dia. 
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