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TECHNICAL NOTE: 

 

SCALABLE CONTROL ARCHITECTURE FOR 
VARIABLE-RATE TURN COMPENSATION 

M. P. Sama,  J. D. Luck,  T. S. Stombaugh 

ABSTRACT. The objective of this study was to determine if a CAN bus could be used to implement variable-rate turn 
compensation in a manner that is scalable by encoding application rates for an entire implement into a single data 
message. A variable-rate turn compensation test fixture was developed that used a CAN bus to communicate application 
rates to 16 individual nodes using a 2-byte data message (80-bit extended identifier CAN messages). The system assumed 
that the physical structure of an implement was linear and that the control nodes were equally spaced. Application rates 
for the outer-most nodes were broadcasted and the remaining nodes calculated their application rate using a linear 
interpolation method. Node locations were determined using a 4-bit binary thumbwheel switch located at each control 
node, allowing all nodes to run an identical program. Servo-controlled gauges were used to visualize node application 
rate across the test fixture. A joystick interface was developed to simulate vehicle movements and desired application 
rates. The system transmitted Bluetooth serial messages at a rate of 20 Hz, which were received by the test fixture and 
converted to CAN messages before being broadcasted to the control nodes. Two USB to CAN interfaces were connected to 
the CAN bus to insert additional traffic and measure bandwidth utilization. Due to the minimal amount of bandwidth 
required (<1%) to transmit variable-rate control messages, the system functioned properly when the CAN bus was heavily 
loaded with traffic up to 99% of the available bandwidth of 250 kbps. The variable-rate turn compensation test fixture 
demonstrated that a CAN bus is a suitable protocol for communicating variable-rate data. The scalable encoding 
technique developed in this study resulted in a single message required to update all nodes, regardless of the number of 
nodes in the system. The system has broad applicability in future planting, fertilizing, and chemical application systems 
where deposition points are evenly spaced along an implement. 

Keywords. Control, Controller area network, Precision agriculture, Turn compensation, Variable-rate.  

ariable-rate control uses spatial information to 
adjust the application rate of field inputs. 
Despite the published benefits of variable-rate 
control, it is an aspect of precision agriculture 

that has lagged behind other widely adopted management 
practices (Woods-DeWitt, 2008); contributing factors 
include large capital requirements and highly customized 
systems that only provide a single function. Consider a 
producer who purchases a GPS-based navigation aid or 
steering system. The same technology is easily used for 
different field operations and equipment configurations. In 
many cases, the technology is brand independent due to 

standardized protocols and interfaces. On the other hand, 
most variable-rate controllers are designed for a specific 
field application and cannot be readily interchanged 
between implements. The move towards standardized 
communication and hardware specific to variable-rate 
technology will allow fewer unique components across 
product lines and greater interoperability. A well-designed 
variable-rate control system that is scalable will be able to 
address application rate requirements for several field 
operations including, but not limited to, planting, 
fertilizing, and chemical applications. 

Variable-rate technology can be subdivided into two 
categories: constant-coverage, where the goal is to 
uniformly apply a material across an area; and variable-
coverage, where the application rate is adjusted based upon 
additional parameters. In a constant-coverage scenario, a 
centralized controller attempts to regulate the flow rate of a 
material to compensate for variations in speed and turning 
rate. The controller receives speed and heading information 
from an on-board GPS and uses this information to actuate 
individual or groups of deposition points such that the 
applied rate to the field surface is constant. In a variable-
coverage scenario, the controller receives additional data 
from on-board sensors or prescription maps that are used to 
adjust the desired application rate with respect to position. 

  
  
Submitted for review in July 2014 as manuscript number 10848; 

approved as a Technical Note for publication by the Machinery Systems
Community of ASABE in December 2014.  

The authors are Michael P. Sama, ASABE Member, Assistant 
Professor, Department of Biosystems and Agricultural Engineering,
University of Kentucky, Lexington, Kentucky; Joe D. Luck, ASABE
Member, Assistant Professor, Department of Biological Systems
Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska;
Timothy S. Stombaugh, ASABE Member, Extension Professor,
Department of Biosystems and Agricultural Engineering, University of
Kentucky, Lexington, Kentucky. Corresponding author: Michael P. 
Sama, Department of Biosystems and Agricultural Engineering, 119 C.E.
Barnhart Bldg., Lexington, KY 40546-0276; phone: 859-218-4325; 
e-mail: michael.sama@uky.edu. 

V 



426  APPLIED ENGINEERING IN AGRICULTURE 

A key limitation of existing variable-rate technology 
from a producer’s standpoint is lack of verification that the 
system is functioning. For example, a common method for 
calculating the average application rate in a fixed-rate 
scenario is to measure the volume of fluid used over a 
known area. However, the average application rate is not 
always indicative of the actual distribution of rate of 
applied product. Local application errors from vehicle 
dynamics tend to average out over a large dataset. This may 
lead a producer to falsely conclude that the correct 
application rate was applied over the entire implement 
throughout the field. 

Implement dynamics are a major cause of local errors in 
application rates and uniformity. Research has shown that 
implement acceleration and height affects performance 
(Jeon et al., 2004). Turning movements also influence local 
applications rates. The velocity at the individual application 
points varies as an implement turns. Luck et al. (2011) 
reported that failure to compensate for turning movements 
could result in off-rate errors of more than 10% from the 
target application occurring in as much as 6.5% to 23.8% of 
the total field area. The variability in the amount of off-rate 
error was due to differences in the amount of turning 
required to cover an individual field. The percentage of a 
field predicted to have an off-rate application was directly 
proportional to the percentage of field area covered while 
turning. 

The control architecture of existing sprayer application 
equipment commonly involves the use of a single flow 
meter and/or pressure sensor to calculate the total flow of 
material from a reservoir. The overall flow is adjusted to 
match the desired rate of the entire system. An example 
system currently available for variable-rate control utilizes 
solenoids to rapidly turn individual nozzles on and off. The 
timing of this operation is controlled by parameters 
including vehicle speed, system fluid pressure, and system 
flow rate. Although these types of systems use real-time 
inputs, they should not be misconstrued as a closed-loop 
control of flow rate at the nozzle level. The control signal is 
merely calculated from a calibration curve that relates 
overall pressure and flow rate to individual nozzle flow 
rate. Many factors such as variations in fluid viscosity and 
normal wear on the system can potentially cause deviations 
between desired and actual flow rates. Research has also 
shown that turning individual valves on or off interferes 
with the pressure, and thus the flow rate, of surrounding 
nozzles (Sharda et al., 2010). Other common sources of 
application error are latency in processing data from the 
GPS receiver (Anglund and Ayers, 2003) and valve 
actuation delays (Sharda et al., 2011) which reduce the 
ability to adjust the system flow rate in response to pressure 
fluctuations caused by individual nozzle control. 

A closed-loop system uses sensory feedback as part of a 
decision-making process to determine the state of an 
output. If the dynamics of the system to be controlled are 
well defined, then mathematical techniques to compensate 
for variability can be applied. Measuring pressure and flow 
rate at individual nozzles, as opposed to upstream in the 
system, will reduce application error due to pressure 
fluctuations and latency. 

DISTRIBUTED CONTROL FOR VARIABLE-RATE 

APPLICATIONS 
Distributed control systems are common in agricultural 

vehicles and some implements; however, they are not as 
commonly used in variable-rate technology due to 
bandwidth requirements from the large number of control 
nodes. A distributed control system uses a network, or 
shared communication bus, to communicate information 
between devices. Each device, referred to in this study as a 
node, has some computing capacity as opposed to a simple 
actuator or sensor connected to a single centralized 
controller that performs all computational tasks. There are 
several advantages to a distributed approach but the most 
visible effect is the reduction in the complexity of wiring. 
Large commercial sprayers can have boom lengths 
exceeding 30 m. Running control and sensor wiring to each 
nozzle can be cost prohibitive and exacerbate maintenance 
issues. Rough estimates indicate that a fully instrumented 
implement would require a minimum of four wires for 
every distribution point. The bundle of wiring returning to a 
centralized controller would exceed several inches in 
diameter. As a result, commercially available nozzle 
controllers typically have fewer outputs than the number of 
nozzles and virtually no sensory feedback. Instead of 
controlling nozzles individually, they are controlled in 
groups of nozzles referred to as sections. 

One widely adopted network protocol is the controller 
area network (CAN). It was originally designed for the 
automotive industry (Bosch, 2001) and successfully 
adapted to the agricultural equipment industry (ISO, 2007). 
CAN (Ver. 2.0b) has a maximum specified bit-rate of 1 
Mbps and is typically operated at 250 kbps per ISOBUS 
specifications. Sensors can be located close to the device 
processing their output which reduces susceptibility to 
noise. The cost of a distributed control system is 
proportional to the number of nodes. Since each individual 
controller is a fraction of the cost of a larger centralized 
controller, the financial risk associated with node failure is 
greatly reduced. Actuation latency due to complex 
processing can also be reduced as each node only computes 
a single output parameter. 

OBJECTIVES 
The overall objective of this study was to determine if a 

CAN bus could be used to implement variable-rate turn 
compensation in a manner that is scalable by encoding 
application rates for an entire implement into a single data 
message. Individual objectives were as follows: 

1. Fabricate controller nodes capable of communicating 
over a CAN bus and generating PWM signals as 
variable-rate outputs. 

2. Develop an algorithm for communicating and 
processing application rates through an encoded 
CAN message. 

3. Fabricate a variable-rate test fixture and evaluate the 
system’s performance. 
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MATERIALS AND METHODS 
CAN CONTROLLER HARDWARE 

Sixteen individual CAN controllers were fabricated to 
serve as control nodes on a variable-rate turn compensation 
system. The controller was based on a design used by Sama 
et al. (2013) to synchronize serial data streams with GNSS 
time. Major components relevant to this study were a 
microprocessor (dsPIC30F4013, Microchip Technology 
Inc., Chandler, Ariz.), CAN transceiver (MCP2551, 
Microchip Technology Inc., Chandler, Ariz.), custom 
printed circuit boards (PCB), voltage regulators, light-
emitting diodes (LEDs), resistors, capacitors, and 
connectors. The PCB layouts (figs. 8-13) and complete 
component lists (table 1) are included in the Appendix. 
Two PCBs were used in each node to limit the overall 
dimensions to 7.6 × 7.6 × 2.9 cm (3 × 3 × 1-1/8 in.) (fig. 1). 

The controllers were assembled in-house using a reflow 
soldering oven. Solder paste (Indium 8.9HF; Indium 
Corporation of America; Utica, N.Y.) was silk-screened on 
the PCBs using a 0.127 mm (0.005 in.) thick stencil and 
components were individually placed by hand. The reflow 
oven was configured to roughly follow the reflow soldering 
profile defined by the solder paste manufacturer. Oven 
temperature started at 150°C and linearly reached 180°C 
over 180 s. After reaching 180°C, the temperature was 
increased linearly to 237°C over 150 s. Cooling between 
the final soldering temperature and room temperature 
(25°C) was approximately 2°C s-1. 

The controllers were configured to use four active-low 
digital inputs with pull-up resistors for identifying the 
controller location, one digital output for generating pulse-
width modulation (PWM) signals based on an internal 
timer, and two serial pins for CAN-H and CAN-L signals. 
Additionally, 5 VDC and ground were made available to 
power external components. 

CAN CONTROLLER SOFTWARE 
A C program (MPLAB C30 C Compiler v3.31; Micro-

chip; Chandler, Ariz.) was written using the Microchip 

Integrated Development Environment (IDE) (MPLAB IDE 
v8.87; Microchip; Chandler, Ariz.). The program 
configured the microcontroller in the following sequence: 

1. Define the oscillator speed and pin aliases 
2. Include C libraries for the dsPIC30F4013, delay 

functions, and CAN 
3. Configure digital I/O port directions 
4. Configure and enable the CAN and timer hardware 

peripherals 
5. Wait for CAN messages to be received and process 

the messages into PWM outputs based on the control-
ler location along the CAN bus 

The complete program can be found in the Appendix. 
The status of four digital inputs (RE0-RE3) were used to 

identify the position of each controller as an integer 
location along the CAN bus between 0 and 15. A linear 
interpolation method was devised that used two bytes of 
data in a single CAN message to calculate the control rate 
at every node along the bus. For this study, control rates of 
0 to 100 were used to represent the minimum and 
maximum output rate, respectively. However, the control 
rates could be easily scaled over a 0 to 255 range to fully 
utilize the 8-bit data byte structure of the CAN protocol 
without increasing message length. The control rate was 
configured to set the position of a PWM servo (900-00005, 
Parallax Inc., Rocklin, Calif.), which provided a visual 
indication of the control rate in real-time. The PWM servo 
had a physical rotation range of 0° to 180° that correspond-
ed to pulse widths of 2300 to 500 μs, respectively. The 
mapping used to convert control rates to servo output pulse 
width is show in equation 1. 

 ( )2300 18wP C= −  (1) 

where 
Pw  =  pulse width (µs), 
C  =  control rate (integer 0-100). 
Linear interpolation based on controller location was 
incorporated into equation 1 using two steps. The first step 
calculated the integer location of each controller based 

Figure 1. Bottom (left) and top (right) CAN Controller PCBs with components (Sama et al., 2013). 
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upon the status of the active-low digital inputs (eq. 2). The 
second step calculated the servo pulse width based on the 
integer location and the control rate specified for the outer-
most control nodes (eq. 3). 
 ( ) ( ) ( ) ( )3 2 1 08 1 4 1 2 1 1n B B B B= − + − + − + −  (2) 

where 
n  =  integer address 
B0, B1, B2, B3 = digital input bits (integer 0 or 1) 

( )( )( ) ( )( )( )1 22300 18 1 2300 18

1w
C N n C n

P
N

− − − + −
=

−
 (3) 

where 
C1  =  left-most node control rate (integer 0 to 100), 
C2  =  right-most node control rate (integer 0 to 100), 
N  =  number of control nodes. 

The CAN co-processor filter and mask settings were 
configured to accept extended identifier messages with an 
ID of 0 into receiver buffer 0 and ignore all other messages. 
CAN filters and masks directed bus traffic into receive 
buffers without the need to sort out messages using a 
software routine. The receive buffer was continually polled 
to determine if a CAN message had been received. When a 
new message had been received, the program read the first 
two bytes which contained the left-most and right-most 
control rates. The dsPIC30F4013 used 16-bit registers for 
CAN receive buffers which combined the first two data-
bytes into a single 16-bit register. The 16-bit register was 
decoded directly into base-10 integer numbers using the 
modulus and division operators (eq. 4). The modulus 
operation retrieved the first 8-bits of the 16-bit register (R0) 
as a base-10 integer (C1) by returning the remainder of the 
division between the 16-bit register and 25610. The division 
operator retrieved the second 8-bits as a base-10 integer 
(C2) by truncating the first 8-bits of the 16-bit register. 
Therefore, R0 register values between 010 and 2570010 
resulted in control rates for C1 and C2 between 010 and 
10010. For example, the 16-bit register R0 = 1234510 would 
result in C1 = 5710 and C2 = 4810. 

 1 0 256C R  % =    2 0 256C R  / =  (4) 

where 
R0  =  16-bit CAN receive buffer register 0 (integer 0 to  
  65535). 

TEST FIXTURE 
Individual controllers were mounted on a test fixture 

constructed from aluminum t-slotted framing and 18-gauge 
mild steel sheet metal (fig. 2). Sheet metal components 

were cut on a computer-numeric-controlled (CNC) plasma 
table and included mounting holes for components and 
access holes for wiring. Four-pin Deustch DT style 
connectors (AT06-4S, AT04-4P, Amphenol, Wallingford, 
Conn.) and 18-AWG stranded wire were used to construct a 
wiring harness which provided power and CAN signals to 
each controller. A 120 W 12 VDC power supply, supplied 
with 120 VAC, was used to power the test fixture. A power 
entry module in series with a rocker switch allowed power 
to be physically disconnected and selectively enabled. 

Visual gauges were fabricated from 0.32 cm (1/8 in.) 
acrylic plastic on a CNC milling machine. The servos were 
mounted behind the gauge and a dial indicator, fabricated 
on a 3D printer from ABS-like plastic, was attached to each 
servo (fig. 3). Each servo was powered by the 5 VDC 
regulator on the corresponding controller and received 
PWM signals at a rate of 50 Hz. 

A four-bit binary thumbwheel switch (CH688, Cherry, 
Pleasant Prairie, Wis.) was mounted above each controller 
to set the node location along the test fixture. The switch 
was connected to four digital inputs (RE0-RE3) and 
ground. A switch state of 0 set all digital inputs at logic 
high through pull-up resistors while a switch state of 15 set 
all digital inputs to a logic low by grounding the digital 
inputs. 

A Bluetooth-to-CAN interface (CANblue II, IXXAT, 
Chicago, Ill.) was connect to the CAN bus to provide a 
serial interface between a PC and the test fixture. The 
interface used the virtual com port driver, which allowed 
software to be written using Visual Studio 2010 (Microsoft; 
Redmond, Wash.) without using custom interface drivers. 

Figure 2. Test fixture. 

Figure 3. Visual gauge representation of application rate. 
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Two USB-to-CAN interfaces (Leaf Light HS; Kvaser; 
Mölndal, Sweden) were connected to a PC and used to 
generate CAN bus traffic and record bus utilization (fig. 4). 

INTERFACE SOFTWARE 
An interface program was written to allow a user to 

simulate the motion of an agricultural vehicle using a 
joystick and transmit an encoded application rate based on 
the joystick position (fig. 5). The program used the DirectX 
DirectInput (Version 1.0.2902.0; Microsoft; Redmond, 
Wash.) plug-in to sample the joystick position and convert 
position to application rates. 

The program was configured to connect to the virtual 
serial communication port assigned to the Bluetooth-to-
CAN interface. The user display contained six labels and 
associated text boxes for displaying data. The “Joystick” 
label displayed the joystick model to indicate which 
joystick was used as a control input. The program 
automatically selected the first available joystick if any 
were connected to the computer. The “Coordinates” label 
displayed the current position of the x and y axis as a 16-bit 
integer. The joystick position output for each axis ranged 
from 0 to 65535 and was oriented in the first quadrant of a 
Cartesian coordinate system. The “Throttle” label displayed 
a simulated throttle position based on the y-axis of the 
joystick and ranged from 0 to 100. The “Turning” label 
displayed a simulated turning rate that was based on the x-
axis of the joystick and ranged from -1.00 to 1.00. The 
“Control (dec)” label was a base-10 integer representation 
of the desired application rate at both ends of the CAN test 
fixture with values ranging from 0 to 100. The “Control 
(hex)” label was a CAN message formatted for the 
Bluetooth-to-CAN interface and contained two data bytes 
in hexadecimal format ranging from 0×00 to 0×64. The 
resulting CAN message was capture from the CAN HIGH 

signal using a digital oscilloscope (DPO 4034, Tektronix, 
Beaverton, Ore.) to visualize the message format (fig. 6). 

The example CAN message shown in figure 6 demon-
strates the protocol structure of the CAN message including 
the extended identifier (Id), number of bytes of data, 
individual data bytes (D), and the checksum (CRC) for 
error checking, in order from left to right. 

CAN BUS TESTING 
Two instances of CanKing (Version 5.00.229, Kvaser, 

Mölndal, Sweden) were run to generate CAN bus traffic 
from the USB-to-CAN interfaces. Dummy messages, or 
messages not intended for the test fixture, were transmitted 
from both interfaces in addition to the 20 Hz CAN data 
used to control the test fixture. The dummy message had 
extended identifiers of 0×0001 or 0×0002 and eight data 
bytes of 0×FF resulting in 128-bit length CAN messages. 
The CanKing program was capable of transmitting the 
dummy message at a fixed interval. The interval was 

Figure 4. Test fixture communication schematic. 

Figure 5. CAN test bench interface software. 
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controllable between 1 and 1000 ms in increments of 1 ms, 
resulting in a theoretical maximum data message rate of 
2000 Hz. Note that this data rate exceeded the bandwidth 
limitations of a 250 kbps CAN bus when transmitting 8-
byte extended identifier messages. Therefore, the expected 
maximum data message rate was less than 2000 Hz. 

RESULTS AND DISCUSSION 
RESPONSE TIME 

Extended identifier data messages were broadcasted 
from the interface software to the CAN test bench at a data 
message rate of 20 Hz. The transmission time, or the time 
that it took to transmit the 80-bit CAN message, was 320 
μs. Given that all nodes received the broadcasted message 
at nearly identical times, there was no difference in 
response time between individual nodes. If the same data 
structure had been used but with individual identifiers for 
each node, the time delay between when the first node and 
the last node received a new data message would have been 
5.12 ms. The delay between the first and last node will 
increase linearly with the number of nodes used in the 
control system. If, for instance, 100 nodes were used to 
control 100 individual nozzles on a sprayer, the minimum 
delay between the first and last node would be 32 ms. On a 
self-propelled sprayer travelling at 10 m/s, 32 ms of delay 
would result in 0.32 m of position error at the last node 
solely due to the time it takes for all preceding messages to 
be sent. The estimated position error increases when adding 

the fact that boom tips may move much faster than the 
vehicle speed due to turning movements. 

BUS LOADING 
Each USB-to-CAN interface was capable of individually 

generating CAN messages at 1000 Hz. The maximum 
combined CAN bus message rate was determined to be 
approximately 1650 Hz and was a result of the CAN baud 
rate and message format. The USB-to-CAN interfaces were 
not capable of loading the bus beyond 100% or intentional-
ly generating bus collisions. As a result, The relationship 
between data update rate and percentage of bus utilization 
was determined to be linear over the entire range of bus 
utilization when only three devices were transmitting on the 
bus (fig. 7). Application rate CAN messages were 
successfully transmitted, regardless of bandwidth usage, as 
long as bus collisions were not present. An actual CAN bus 
on an agricultural vehicle or implement may have 
substantially more nodes attempting to transmit at the same 
time which could result in arbitration, a process where 
nodes determine message priority, as well as collisions 
between nodes transmitting data with the same priority 
level. However, typical CAN bus implementations are 
rarely designed to use 100% of the available bandwidth. 
The worst-case scenario for interference in transmitting 
application rate CAN messages will be a short delay 
between when the data is available and when it is 
transmitted over the bus. 

Figure 6. Two-byte extended ID CAN message. 

 

Figure 7. Data update rate vs. bandwidth usage. 

y = 0.0006x + 0.0011
R² = 0.9999

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 U

sa
ge

 (
%

)

Message Rate (Hz)



 

31(3): 425-435  431 

CONCLUSION 
Sixteen CAN-based control nodes were designed and 

fabricated as part of a test fixture for evaluating a variable-
rate turn compensation control scheme. A control scheme 
was developed to allow individual nodes to simultaneously 
calculate their application rate from a single CAN message 
containing two data bytes. The data bytes in each CAN 
message corresponded to the application rates at the outer-
most control nodes. Nodes calculated their respective 
application rate using linear interpolation. The system 
required two assumptions, (1) that the target implement 
was a linear structure and (2) that application nodes were 
evenly spaced.  

The user interface software developed to test the control 
method was capable of transmitting 20 Hz control data, 
regardless of CAN bus utilization. Results showed that the 
control data were successfully transmitted to the control 
nodes at bandwidth utilization rates up to 99% when bus 
traffic was generated at a constant interval. Not all data are 
transmitted at the same interval on a typical CAN bus so 
the bandwidth utilization can vary over time. Additional 
testing should be conducted to determine the effect of bus 
collisions and un-equally spaced data rates. 

The test fixture successfully demonstrated that the CAN 
bus is a suitable protocol for implementing a large number 
of control nodes when using an encoded data message to 
broadcast application rate to all nodes, simultaneously. This 
methodology addressed a bottleneck of current systems by 
eliminating bandwidth concerns for applications like 
modern high clearance sprayers with implement widths in 
excess of 40 m and over 100 dispersion points. Existing 
manufacturers of CAN-based variable-rate systems that 
operate over standardized protocols, such as ISOBUS, will 
be able to implement the encoding and decoding method 
outlined in this study through simple firmware updates to 
their systems. The substantial reduction in bandwidth 
required for control will allow more flexibility in CAN bus 
utilization for other tasks such as data acquisition. 

In this study, the total number of nodes was hard-coded 
into the controller software. Future work will involve 
developing initialization routines to improve node 
identification and to make the system more scalable by 
self-identifying the total number of nodes every time the 
system is powered on. 
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APPENDIX 
BOARD LAYOUTS (SCALE = 1:1) 

 

 
  

    

Figure 8. Controller board top (left) and bottom (right) copper. 

     

Figure 9. Controller board paste mask (left) and solder mask (right). 

Figure 10. Controller board silk screen. 
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Figure 11. I/O interface board top (left) and bottom (right) copper. 
 

    

Figure 12. I/O interface board paste mask (left) and solder mask (right). 

Figure 13. I/O interface board silk screen. 
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COMPONENT LIST 

 
 

CONTROLLER PROGRAM 

  

Table 1. CAN Node Component List. 
Controller Board 

Component Part Number Manufacturer PCB Label 
Microcontroller DSPIC30F4011-30I/PT Microchip Technology dsPIC30F4011 
12-Bit Digital-to-Analog Converter DAC121C081CIMM/NOPB National Semiconductor DAC1, DAC2, DAC3 
5V Regulator LM1084IS-5.0/NOPB National Seminconductor VR1 
2.5V Regulator LM1086CS-2.5/NOPB National Seminconductor VR2 
24 Pin Receptical 1-534206-2 TE Connectivity H1, H2 
6 Pin Right-Angle Connector 70553-0005 Molex ICSP 
2 Pin Right-Angle Connector 70553-0001 Molex POWER1, POWER2 
15 MHZ Crystal Oscillator HC49US-15.000MABJ-UB Citizens Finetech Miyota XTAL 
2312 Capacitor 10 uF Tantalum F931V106MCC Nichicon C6, C8 
1210 Capacitor 10 uF Tantalum F931A106MBA Nichicon C5, C7 
0603 Capacitor 0.1 uF C1608X7R1C104K TDK Corporation C1, C2, C3, C4, C11 
0603 Capacitor 22 pF 06035A220JAT2A AVX Corporation C9, C10 
0603 Resistor 10 kOhm CRCW060310K0FKEA Vishay Dale R1 
0603 Resistor 4.7 kOhm CRCW06034K70FKEAHP Vishay Dale R2, R3 
DPDT Side PCB Switch MMS22R TE Connectivity SW1 

I/O Interface Board 
Component Part Number Manufacturer PCB Label 
Tactile SPST Switch EVQPJJ04T Panasonic SW1, SW2, SW3, SW4, SW5 
10 Position 0.150” Terminal Block 1-284392-0 TE Connectivity T1 ,T2, T3, T4 
2 Position 0.150” Terminal Block 284392-2 TE Connectivity T1 ,T2, T3, T4 
2 Position SPST DIP Switch ADE0204 TE Connectivity SW6 
Yellow 1206 LED LTST-C150KSKT Lite-On Inc. U1RX, U2RX, CANRX 
Red 1206 LED LTST-C150KRKT Lite-On Inc. POWER 
Green 1206 LED LTST-C150KGKT Lite-On Inc. U1TX, U2TX, CANTX 
PNP Transistor MMBT3906 Fairchild Semiconductor MMBT, 3906 
Dual RS232 Level Shifter MAX232DR Texas Instruments MAX232 
CAN Transceiver MCP2551-I/SN Microchip Technology MCP2551 
0603 Capacitor 0.1 uF C1608X7R1C104K TDK Corporation C6 
0603 Capacitor 1uF C1608Y5V1E105Z TDK Corporation C1, C2, C3, C4, C5, 1uF 
0603 Resistor 10 kOhm CRCW060310K0FKEA Vishay Dale R1 - R6, R8 - R13, 10K 
0603 Resistor 470 Ohm CRCW0603470RJNEAHP Vishay Dale 470 
0603 Resistor 120 Ohm CRCW0603120RFKEA Vishay Dale R7 
24 POS Pin Header (80 Pins) 4-103186-0 TE Connectivity H1, H2 

///////////////////////////////////////////////// 
//   Title: CANBasedTurnCompensation.c         // 
//   Author: Michael P. Sama                   // 
//   Date: May, 2012 - June, 2014              // 
///////////////////////////////////////////////// 
#define SYSCLK 15000000UL  //Define the system clock speed as 15 MHz. 
#define FCY 3750000UL      //Define the instruction clock speed as 3.75 MHz. 
//Pin aliases for 4-bit board position thumbwheel switch. 
#define   B1   PORTEbits.RE0   //LSB. 
#define   B2   PORTEbits.RE1. 
#define   B3   PORTEbits.RE2. 
#define   B4   PORTEbits.RE3   //MSB. 
#include <p30fxxxx.h>   //Base Library for the dsPIC30F4013. 
#include <libpic30.h>   //Software Delay Library. 
#include <can.h>        //CAN Library. 
_FOSC(XT)        //Set the oscillator to external high speed crystal. 
_FWDT(WDT_OFF)   //Turn off the watch dog timer. 
/* Main Function */. 
  int main (void). 
{. 
   TRISC = 0b101111111111111;   //Configure PORTC I/O directions. 
   TRISD = 0b01;                //Configure PORTD I/O directions. 
   TRISE = 0b001111;            //Configure PORTE I/O directions. 
   TRISF = 0b0101;              //Configure PORTF I/O directions. 
     __delay_ms(500);             //Wait 0.5 s. 
  /* Configure Timer 2 */. 
  T2CONbits.TSIDL = 0;   //Continue timer operation in Idle mode. 
  T2CONbits.TGATE = 0;   //Timer gated time accumulation disabled. 
  T2CONbits.TCKPS = 1;   //Timer input clock pre-scale bits set to 1:64. 



 

31(3): 425-435  435 

  T2CONbits.T32=0;       //Timer2 and Timer3 form separate 16-bit timers. 
  T2CONbits.TCS=0;       //Internal timer clock (FOSC/4). 
  T2CONbits.TON=1;       //Start Timer2. 
  /* Configure Output Compare 2 */. 
  OC2CONbits.OCSIDL = 0;   //Continue in idle mode. 
  OC2CONbits.OCFLT = 0;    //Reset any fault conditions. 
  OC2CONbits.OCTSEL = 0;   //Timer2 is the clock source for output compare 2. 
  OC2CONbits.OCM = 6;      //PWM mode on OC2, fault pin disabled. 
  /* Set request for configuration mode */. 
  CAN1SetOperationMode(CAN_IDLE_CON  & CAN_CAPTURE_DIS & CAN_MASTERCLOCK_0 &. 
                       CAN_REQ_OPERMODE_CONFIG);. 
  while(C1CTRLbits.OPMODE !=4);  //Wait for configuration mode. 
  /* Configure CAN Registers */. 
  C1CTRLbits.CANCKS = 0;     //CAN Master Clock (TQ) is set to 4 FCY. 
    C1CFG1bits.SJW = 0;        //Synchronized jump width = 1 x TQ. 
    C1CFG1bits.BRP = 2;        //Baud rate pre-scaler = 8. 
  C1CFG2bits.WAKFIL = 0;     //CAN bus line filter is not used for wake-up. 
  C1CFG2bits.SEG2PHTS = 1;   //SEG2 is freely programmable. 
  C1CFG2bits.SEG2PH = 5;     //Phase Segment 2 = 5 x TQ. 
  C1CFG2bits.SEG1PH = 8;     //Phase Segment 1 = 8 x TQ. 
  C1CFG2bits.SAM = 0;        //Bus line is sampled once at each sample point. 
  C1CFG2bits.PRSEG = 1;      //Propagation time segment = 2 x TQ 
    /* Load Acceptance Filter Register 0 */. 
  CAN1SetFilter(0, CAN_FILTER_SID(0) & CAN_RX_EID_EN,  
                  CAN_FILTER_EID(0));. 
  /* Load Mask Filter Register 0 */. 
  CAN1SetMask(0, CAN_MASK_SID(3) & CAN_MATCH_FILTER_TYPE,  
                CAN_MASK_EID(0));. 
  C1RXM0SID = 0b0001111111111111;  //Include all bits in filter comparison. 
  /* Set CAN Receiver Mode */. 
  CAN1SetRXMode(0, CAN_RXFUL_CLEAR & CAN_BUF0_DBLBUFFER_EN);. 
  /* Set request for Normal mode */. 
  CAN1SetOperationMode(CAN_IDLE_CON & CAN_CAPTURE_DIS & CAN_MASTERCLOCK_0 &. 
                       CAN_REQ_OPERMODE_NOR);. 
  while(C1CTRLbits.OPMODE != 0);  //Wait for normal mode. 
  C1RX0CONbits.RXFUL = 0;         //Clear receive buffer 0 flag. 
  /* Set the Initial Servo Position and Node Location*/. 
    unsigned int SERVO = 2300;  //2300 ms = gauge value 0. 
  unsigned int DATA1 = 0;  //Default to.. 
  unsigned int DATA2 = 0;  //location 0. 
  /* Calculate the PWM Parameters From the Desired Servo Pulse Width */. 
  OC2RS = (unsigned int) (((unsigned long) SERVO * 468) / 1000);. 
  PR2 = OC2RS+9372;   //Set the period register. 
  while(1)  // do forever. 
  {. 
       if(C1RX0CONbits.RXFUL)  //Receiver buffer 0 contains a CAN message. 
     {. 
        DATA1 = C1RX0B1%256;      //Retrieve the first data byte. 
        DATA2 = C1RX0B1/256;      //Retrieve the second data byte. 
        C1RX0CONbits.RXFUL = 0;   //Reset the receive buffer 0 flag. 
          /* Calculate the Node Location from the Thumbwheel Switch */. 
        CAN_ADDR = 8*(1-B4) + 4*(1-B3) + 2*(1-B2) + (1-B1);. 
        /* Calculate the Servo Pulse Width */     . 
        SERVO = ((2300 - DATA1 * 18)*(15-CAN_ADDR)) / 15 + ((2300 - DATA2 *  
                  18)*(CAN_ADDR)) / 15;. 
        /* Calculate the PWM Parameters from the Desired Servo Pulse Width */. 
        OC2RS = (unsigned int) (((unsigned long) SERVO * 468) / 1000);. 
        PR2 = OC2RS+9372;   //Set the period register. 
      } . 
     }. 
     return 0;. 
}. 
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