
University of Kentucky
UKnowledge

Biosystems and Agricultural Engineering Faculty
Publications Biosystems and Agricultural Engineering

5-2015

Scalable Control Architecture for Variable-Rate
Turn Compensation
Michael P. Sama
University of Kentucky, michael.sama@uky.edu

Joe D. Luck
University of Nebraska

Timothy S. Stombaugh
University of Kentucky, tim.stombaugh@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/bae_facpub

Part of the Bioresource and Agricultural Engineering Commons

This Article is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been accepted for
inclusion in Biosystems and Agricultural Engineering Faculty Publications by an authorized administrator of UKnowledge. For more information,
please contact UKnowledge@lsv.uky.edu.

Repository Citation
Sama, Michael P.; Luck, Joe D.; and Stombaugh, Timothy S., "Scalable Control Architecture for Variable-Rate Turn Compensation"
(2015). Biosystems and Agricultural Engineering Faculty Publications. 9.
https://uknowledge.uky.edu/bae_facpub/9

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/bae_facpub?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/bae_facpub?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/bae?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/bae_facpub?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/bae_facpub/9?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

Scalable Control Architecture for Variable-Rate Turn Compensation

Notes/Citation Information
Published in Applied Engineering in Agriculture, v. 31, no. 3, p. 425-435.

© 2015 American Society of Agricultural and Biological Engineers

The copyright holders have granted the permission for posting the article here.

Digital Object Identifier (DOI)
http://dx.doi.org/10.13031/aea.31.10848

This article is available at UKnowledge: https://uknowledge.uky.edu/bae_facpub/9

https://uknowledge.uky.edu/bae_facpub/9?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

Applied Engineering in Agriculture

Vol. 31(3): 425-435 © 2015 American Society of Agricultural and Biological Engineers ISSN 0883-8542 DOI 10.13031/aea.31.10848 425

TECHNICAL NOTE:

SCALABLE CONTROL ARCHITECTURE FOR
VARIABLE-RATE TURN COMPENSATION

M. P. Sama, J. D. Luck, T. S. Stombaugh

ABSTRACT. The objective of this study was to determine if a CAN bus could be used to implement variable-rate turn
compensation in a manner that is scalable by encoding application rates for an entire implement into a single data
message. A variable-rate turn compensation test fixture was developed that used a CAN bus to communicate application
rates to 16 individual nodes using a 2-byte data message (80-bit extended identifier CAN messages). The system assumed
that the physical structure of an implement was linear and that the control nodes were equally spaced. Application rates
for the outer-most nodes were broadcasted and the remaining nodes calculated their application rate using a linear
interpolation method. Node locations were determined using a 4-bit binary thumbwheel switch located at each control
node, allowing all nodes to run an identical program. Servo-controlled gauges were used to visualize node application
rate across the test fixture. A joystick interface was developed to simulate vehicle movements and desired application
rates. The system transmitted Bluetooth serial messages at a rate of 20 Hz, which were received by the test fixture and
converted to CAN messages before being broadcasted to the control nodes. Two USB to CAN interfaces were connected to
the CAN bus to insert additional traffic and measure bandwidth utilization. Due to the minimal amount of bandwidth
required (<1%) to transmit variable-rate control messages, the system functioned properly when the CAN bus was heavily
loaded with traffic up to 99% of the available bandwidth of 250 kbps. The variable-rate turn compensation test fixture
demonstrated that a CAN bus is a suitable protocol for communicating variable-rate data. The scalable encoding
technique developed in this study resulted in a single message required to update all nodes, regardless of the number of
nodes in the system. The system has broad applicability in future planting, fertilizing, and chemical application systems
where deposition points are evenly spaced along an implement.

Keywords. Control, Controller area network, Precision agriculture, Turn compensation, Variable-rate.

ariable-rate control uses spatial information to
adjust the application rate of field inputs.
Despite the published benefits of variable-rate
control, it is an aspect of precision agriculture

that has lagged behind other widely adopted management
practices (Woods-DeWitt, 2008); contributing factors
include large capital requirements and highly customized
systems that only provide a single function. Consider a
producer who purchases a GPS-based navigation aid or
steering system. The same technology is easily used for
different field operations and equipment configurations. In
many cases, the technology is brand independent due to

standardized protocols and interfaces. On the other hand,
most variable-rate controllers are designed for a specific
field application and cannot be readily interchanged
between implements. The move towards standardized
communication and hardware specific to variable-rate
technology will allow fewer unique components across
product lines and greater interoperability. A well-designed
variable-rate control system that is scalable will be able to
address application rate requirements for several field
operations including, but not limited to, planting,
fertilizing, and chemical applications.

Variable-rate technology can be subdivided into two
categories: constant-coverage, where the goal is to
uniformly apply a material across an area; and variable-
coverage, where the application rate is adjusted based upon
additional parameters. In a constant-coverage scenario, a
centralized controller attempts to regulate the flow rate of a
material to compensate for variations in speed and turning
rate. The controller receives speed and heading information
from an on-board GPS and uses this information to actuate
individual or groups of deposition points such that the
applied rate to the field surface is constant. In a variable-
coverage scenario, the controller receives additional data
from on-board sensors or prescription maps that are used to
adjust the desired application rate with respect to position.

Submitted for review in July 2014 as manuscript number 10848;

approved as a Technical Note for publication by the Machinery Systems
Community of ASABE in December 2014.

The authors are Michael P. Sama, ASABE Member, Assistant
Professor, Department of Biosystems and Agricultural Engineering,
University of Kentucky, Lexington, Kentucky; Joe D. Luck, ASABE
Member, Assistant Professor, Department of Biological Systems
Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska;
Timothy S. Stombaugh, ASABE Member, Extension Professor,
Department of Biosystems and Agricultural Engineering, University of
Kentucky, Lexington, Kentucky. Corresponding author: Michael P.
Sama, Department of Biosystems and Agricultural Engineering, 119 C.E.
Barnhart Bldg., Lexington, KY 40546-0276; phone: 859-218-4325;
e-mail: michael.sama@uky.edu.

V

426 APPLIED ENGINEERING IN AGRICULTURE

A key limitation of existing variable-rate technology
from a producer’s standpoint is lack of verification that the
system is functioning. For example, a common method for
calculating the average application rate in a fixed-rate
scenario is to measure the volume of fluid used over a
known area. However, the average application rate is not
always indicative of the actual distribution of rate of
applied product. Local application errors from vehicle
dynamics tend to average out over a large dataset. This may
lead a producer to falsely conclude that the correct
application rate was applied over the entire implement
throughout the field.

Implement dynamics are a major cause of local errors in
application rates and uniformity. Research has shown that
implement acceleration and height affects performance
(Jeon et al., 2004). Turning movements also influence local
applications rates. The velocity at the individual application
points varies as an implement turns. Luck et al. (2011)
reported that failure to compensate for turning movements
could result in off-rate errors of more than 10% from the
target application occurring in as much as 6.5% to 23.8% of
the total field area. The variability in the amount of off-rate
error was due to differences in the amount of turning
required to cover an individual field. The percentage of a
field predicted to have an off-rate application was directly
proportional to the percentage of field area covered while
turning.

The control architecture of existing sprayer application
equipment commonly involves the use of a single flow
meter and/or pressure sensor to calculate the total flow of
material from a reservoir. The overall flow is adjusted to
match the desired rate of the entire system. An example
system currently available for variable-rate control utilizes
solenoids to rapidly turn individual nozzles on and off. The
timing of this operation is controlled by parameters
including vehicle speed, system fluid pressure, and system
flow rate. Although these types of systems use real-time
inputs, they should not be misconstrued as a closed-loop
control of flow rate at the nozzle level. The control signal is
merely calculated from a calibration curve that relates
overall pressure and flow rate to individual nozzle flow
rate. Many factors such as variations in fluid viscosity and
normal wear on the system can potentially cause deviations
between desired and actual flow rates. Research has also
shown that turning individual valves on or off interferes
with the pressure, and thus the flow rate, of surrounding
nozzles (Sharda et al., 2010). Other common sources of
application error are latency in processing data from the
GPS receiver (Anglund and Ayers, 2003) and valve
actuation delays (Sharda et al., 2011) which reduce the
ability to adjust the system flow rate in response to pressure
fluctuations caused by individual nozzle control.

A closed-loop system uses sensory feedback as part of a
decision-making process to determine the state of an
output. If the dynamics of the system to be controlled are
well defined, then mathematical techniques to compensate
for variability can be applied. Measuring pressure and flow
rate at individual nozzles, as opposed to upstream in the
system, will reduce application error due to pressure
fluctuations and latency.

DISTRIBUTED CONTROL FOR VARIABLE-RATE

APPLICATIONS
Distributed control systems are common in agricultural

vehicles and some implements; however, they are not as
commonly used in variable-rate technology due to
bandwidth requirements from the large number of control
nodes. A distributed control system uses a network, or
shared communication bus, to communicate information
between devices. Each device, referred to in this study as a
node, has some computing capacity as opposed to a simple
actuator or sensor connected to a single centralized
controller that performs all computational tasks. There are
several advantages to a distributed approach but the most
visible effect is the reduction in the complexity of wiring.
Large commercial sprayers can have boom lengths
exceeding 30 m. Running control and sensor wiring to each
nozzle can be cost prohibitive and exacerbate maintenance
issues. Rough estimates indicate that a fully instrumented
implement would require a minimum of four wires for
every distribution point. The bundle of wiring returning to a
centralized controller would exceed several inches in
diameter. As a result, commercially available nozzle
controllers typically have fewer outputs than the number of
nozzles and virtually no sensory feedback. Instead of
controlling nozzles individually, they are controlled in
groups of nozzles referred to as sections.

One widely adopted network protocol is the controller
area network (CAN). It was originally designed for the
automotive industry (Bosch, 2001) and successfully
adapted to the agricultural equipment industry (ISO, 2007).
CAN (Ver. 2.0b) has a maximum specified bit-rate of 1
Mbps and is typically operated at 250 kbps per ISOBUS
specifications. Sensors can be located close to the device
processing their output which reduces susceptibility to
noise. The cost of a distributed control system is
proportional to the number of nodes. Since each individual
controller is a fraction of the cost of a larger centralized
controller, the financial risk associated with node failure is
greatly reduced. Actuation latency due to complex
processing can also be reduced as each node only computes
a single output parameter.

OBJECTIVES
The overall objective of this study was to determine if a

CAN bus could be used to implement variable-rate turn
compensation in a manner that is scalable by encoding
application rates for an entire implement into a single data
message. Individual objectives were as follows:

1. Fabricate controller nodes capable of communicating
over a CAN bus and generating PWM signals as
variable-rate outputs.

2. Develop an algorithm for communicating and
processing application rates through an encoded
CAN message.

3. Fabricate a variable-rate test fixture and evaluate the
system’s performance.

31(3): 425-435 427

MATERIALS AND METHODS
CAN CONTROLLER HARDWARE

Sixteen individual CAN controllers were fabricated to
serve as control nodes on a variable-rate turn compensation
system. The controller was based on a design used by Sama
et al. (2013) to synchronize serial data streams with GNSS
time. Major components relevant to this study were a
microprocessor (dsPIC30F4013, Microchip Technology
Inc., Chandler, Ariz.), CAN transceiver (MCP2551,
Microchip Technology Inc., Chandler, Ariz.), custom
printed circuit boards (PCB), voltage regulators, light-
emitting diodes (LEDs), resistors, capacitors, and
connectors. The PCB layouts (figs. 8-13) and complete
component lists (table 1) are included in the Appendix.
Two PCBs were used in each node to limit the overall
dimensions to 7.6 × 7.6 × 2.9 cm (3 × 3 × 1-1/8 in.) (fig. 1).

The controllers were assembled in-house using a reflow
soldering oven. Solder paste (Indium 8.9HF; Indium
Corporation of America; Utica, N.Y.) was silk-screened on
the PCBs using a 0.127 mm (0.005 in.) thick stencil and
components were individually placed by hand. The reflow
oven was configured to roughly follow the reflow soldering
profile defined by the solder paste manufacturer. Oven
temperature started at 150°C and linearly reached 180°C
over 180 s. After reaching 180°C, the temperature was
increased linearly to 237°C over 150 s. Cooling between
the final soldering temperature and room temperature
(25°C) was approximately 2°C s-1.

The controllers were configured to use four active-low
digital inputs with pull-up resistors for identifying the
controller location, one digital output for generating pulse-
width modulation (PWM) signals based on an internal
timer, and two serial pins for CAN-H and CAN-L signals.
Additionally, 5 VDC and ground were made available to
power external components.

CAN CONTROLLER SOFTWARE
A C program (MPLAB C30 C Compiler v3.31; Micro-

chip; Chandler, Ariz.) was written using the Microchip

Integrated Development Environment (IDE) (MPLAB IDE
v8.87; Microchip; Chandler, Ariz.). The program
configured the microcontroller in the following sequence:

1. Define the oscillator speed and pin aliases
2. Include C libraries for the dsPIC30F4013, delay

functions, and CAN
3. Configure digital I/O port directions
4. Configure and enable the CAN and timer hardware

peripherals
5. Wait for CAN messages to be received and process

the messages into PWM outputs based on the control-
ler location along the CAN bus

The complete program can be found in the Appendix.
The status of four digital inputs (RE0-RE3) were used to

identify the position of each controller as an integer
location along the CAN bus between 0 and 15. A linear
interpolation method was devised that used two bytes of
data in a single CAN message to calculate the control rate
at every node along the bus. For this study, control rates of
0 to 100 were used to represent the minimum and
maximum output rate, respectively. However, the control
rates could be easily scaled over a 0 to 255 range to fully
utilize the 8-bit data byte structure of the CAN protocol
without increasing message length. The control rate was
configured to set the position of a PWM servo (900-00005,
Parallax Inc., Rocklin, Calif.), which provided a visual
indication of the control rate in real-time. The PWM servo
had a physical rotation range of 0° to 180° that correspond-
ed to pulse widths of 2300 to 500 μs, respectively. The
mapping used to convert control rates to servo output pulse
width is show in equation 1.

 ()2300 18wP C= − (1)

where
Pw = pulse width (µs),
C = control rate (integer 0-100).
Linear interpolation based on controller location was
incorporated into equation 1 using two steps. The first step
calculated the integer location of each controller based

Figure 1. Bottom (left) and top (right) CAN Controller PCBs with components (Sama et al., 2013).

Digital
Signal

Processor

Voltage
Regulators

CAN
Transceiver

12-Bit D/A
Converters

Wire-to-Board
Terminal
Blocks

RS-232
Level
Shifter

Programming
Connector

CAN and RS-232
Status Diodes

Reset and Configuration
Push Buttons

Crystal
Oscillator

428 APPLIED ENGINEERING IN AGRICULTURE

upon the status of the active-low digital inputs (eq. 2). The
second step calculated the servo pulse width based on the
integer location and the control rate specified for the outer-
most control nodes (eq. 3).
 () () () ()3 2 1 08 1 4 1 2 1 1n B B B B= − + − + − + − (2)

where
n = integer address
B0, B1, B2, B3 = digital input bits (integer 0 or 1)

()()() ()()()1 22300 18 1 2300 18

1w
C N n C n

P
N

− − − + −
=

−
 (3)

where
C1 = left-most node control rate (integer 0 to 100),
C2 = right-most node control rate (integer 0 to 100),
N = number of control nodes.

The CAN co-processor filter and mask settings were
configured to accept extended identifier messages with an
ID of 0 into receiver buffer 0 and ignore all other messages.
CAN filters and masks directed bus traffic into receive
buffers without the need to sort out messages using a
software routine. The receive buffer was continually polled
to determine if a CAN message had been received. When a
new message had been received, the program read the first
two bytes which contained the left-most and right-most
control rates. The dsPIC30F4013 used 16-bit registers for
CAN receive buffers which combined the first two data-
bytes into a single 16-bit register. The 16-bit register was
decoded directly into base-10 integer numbers using the
modulus and division operators (eq. 4). The modulus
operation retrieved the first 8-bits of the 16-bit register (R0)
as a base-10 integer (C1) by returning the remainder of the
division between the 16-bit register and 25610. The division
operator retrieved the second 8-bits as a base-10 integer
(C2) by truncating the first 8-bits of the 16-bit register.
Therefore, R0 register values between 010 and 2570010
resulted in control rates for C1 and C2 between 010 and
10010. For example, the 16-bit register R0 = 1234510 would
result in C1 = 5710 and C2 = 4810.

 1 0 256C R % = 2 0 256C R / = (4)

where
R0 = 16-bit CAN receive buffer register 0 (integer 0 to
 65535).

TEST FIXTURE
Individual controllers were mounted on a test fixture

constructed from aluminum t-slotted framing and 18-gauge
mild steel sheet metal (fig. 2). Sheet metal components

were cut on a computer-numeric-controlled (CNC) plasma
table and included mounting holes for components and
access holes for wiring. Four-pin Deustch DT style
connectors (AT06-4S, AT04-4P, Amphenol, Wallingford,
Conn.) and 18-AWG stranded wire were used to construct a
wiring harness which provided power and CAN signals to
each controller. A 120 W 12 VDC power supply, supplied
with 120 VAC, was used to power the test fixture. A power
entry module in series with a rocker switch allowed power
to be physically disconnected and selectively enabled.

Visual gauges were fabricated from 0.32 cm (1/8 in.)
acrylic plastic on a CNC milling machine. The servos were
mounted behind the gauge and a dial indicator, fabricated
on a 3D printer from ABS-like plastic, was attached to each
servo (fig. 3). Each servo was powered by the 5 VDC
regulator on the corresponding controller and received
PWM signals at a rate of 50 Hz.

A four-bit binary thumbwheel switch (CH688, Cherry,
Pleasant Prairie, Wis.) was mounted above each controller
to set the node location along the test fixture. The switch
was connected to four digital inputs (RE0-RE3) and
ground. A switch state of 0 set all digital inputs at logic
high through pull-up resistors while a switch state of 15 set
all digital inputs to a logic low by grounding the digital
inputs.

A Bluetooth-to-CAN interface (CANblue II, IXXAT,
Chicago, Ill.) was connect to the CAN bus to provide a
serial interface between a PC and the test fixture. The
interface used the virtual com port driver, which allowed
software to be written using Visual Studio 2010 (Microsoft;
Redmond, Wash.) without using custom interface drivers.

Figure 2. Test fixture.

Figure 3. Visual gauge representation of application rate.

1.88 m

0.
30

 m

31(3): 425-435 429

Two USB-to-CAN interfaces (Leaf Light HS; Kvaser;
Mölndal, Sweden) were connected to a PC and used to
generate CAN bus traffic and record bus utilization (fig. 4).

INTERFACE SOFTWARE
An interface program was written to allow a user to

simulate the motion of an agricultural vehicle using a
joystick and transmit an encoded application rate based on
the joystick position (fig. 5). The program used the DirectX
DirectInput (Version 1.0.2902.0; Microsoft; Redmond,
Wash.) plug-in to sample the joystick position and convert
position to application rates.

The program was configured to connect to the virtual
serial communication port assigned to the Bluetooth-to-
CAN interface. The user display contained six labels and
associated text boxes for displaying data. The “Joystick”
label displayed the joystick model to indicate which
joystick was used as a control input. The program
automatically selected the first available joystick if any
were connected to the computer. The “Coordinates” label
displayed the current position of the x and y axis as a 16-bit
integer. The joystick position output for each axis ranged
from 0 to 65535 and was oriented in the first quadrant of a
Cartesian coordinate system. The “Throttle” label displayed
a simulated throttle position based on the y-axis of the
joystick and ranged from 0 to 100. The “Turning” label
displayed a simulated turning rate that was based on the x-
axis of the joystick and ranged from -1.00 to 1.00. The
“Control (dec)” label was a base-10 integer representation
of the desired application rate at both ends of the CAN test
fixture with values ranging from 0 to 100. The “Control
(hex)” label was a CAN message formatted for the
Bluetooth-to-CAN interface and contained two data bytes
in hexadecimal format ranging from 0×00 to 0×64. The
resulting CAN message was capture from the CAN HIGH

signal using a digital oscilloscope (DPO 4034, Tektronix,
Beaverton, Ore.) to visualize the message format (fig. 6).

The example CAN message shown in figure 6 demon-
strates the protocol structure of the CAN message including
the extended identifier (Id), number of bytes of data,
individual data bytes (D), and the checksum (CRC) for
error checking, in order from left to right.

CAN BUS TESTING
Two instances of CanKing (Version 5.00.229, Kvaser,

Mölndal, Sweden) were run to generate CAN bus traffic
from the USB-to-CAN interfaces. Dummy messages, or
messages not intended for the test fixture, were transmitted
from both interfaces in addition to the 20 Hz CAN data
used to control the test fixture. The dummy message had
extended identifiers of 0×0001 or 0×0002 and eight data
bytes of 0×FF resulting in 128-bit length CAN messages.
The CanKing program was capable of transmitting the
dummy message at a fixed interval. The interval was

Figure 4. Test fixture communication schematic.

Figure 5. CAN test bench interface software.

USB

Bluetooth

CAN

Joystick
Input PC

Bluetooth-to-
CAN

Interface

Node 0 Node N-1 Node n

⋯ ⋯

USB-to-CAN
Interfaces

USB

Bluetooth

USB

430 APPLIED ENGINEERING IN AGRICULTURE

controllable between 1 and 1000 ms in increments of 1 ms,
resulting in a theoretical maximum data message rate of
2000 Hz. Note that this data rate exceeded the bandwidth
limitations of a 250 kbps CAN bus when transmitting 8-
byte extended identifier messages. Therefore, the expected
maximum data message rate was less than 2000 Hz.

RESULTS AND DISCUSSION
RESPONSE TIME

Extended identifier data messages were broadcasted
from the interface software to the CAN test bench at a data
message rate of 20 Hz. The transmission time, or the time
that it took to transmit the 80-bit CAN message, was 320
μs. Given that all nodes received the broadcasted message
at nearly identical times, there was no difference in
response time between individual nodes. If the same data
structure had been used but with individual identifiers for
each node, the time delay between when the first node and
the last node received a new data message would have been
5.12 ms. The delay between the first and last node will
increase linearly with the number of nodes used in the
control system. If, for instance, 100 nodes were used to
control 100 individual nozzles on a sprayer, the minimum
delay between the first and last node would be 32 ms. On a
self-propelled sprayer travelling at 10 m/s, 32 ms of delay
would result in 0.32 m of position error at the last node
solely due to the time it takes for all preceding messages to
be sent. The estimated position error increases when adding

the fact that boom tips may move much faster than the
vehicle speed due to turning movements.

BUS LOADING
Each USB-to-CAN interface was capable of individually

generating CAN messages at 1000 Hz. The maximum
combined CAN bus message rate was determined to be
approximately 1650 Hz and was a result of the CAN baud
rate and message format. The USB-to-CAN interfaces were
not capable of loading the bus beyond 100% or intentional-
ly generating bus collisions. As a result, The relationship
between data update rate and percentage of bus utilization
was determined to be linear over the entire range of bus
utilization when only three devices were transmitting on the
bus (fig. 7). Application rate CAN messages were
successfully transmitted, regardless of bandwidth usage, as
long as bus collisions were not present. An actual CAN bus
on an agricultural vehicle or implement may have
substantially more nodes attempting to transmit at the same
time which could result in arbitration, a process where
nodes determine message priority, as well as collisions
between nodes transmitting data with the same priority
level. However, typical CAN bus implementations are
rarely designed to use 100% of the available bandwidth.
The worst-case scenario for interference in transmitting
application rate CAN messages will be a short delay
between when the data is available and when it is
transmitted over the bus.

Figure 6. Two-byte extended ID CAN message.

Figure 7. Data update rate vs. bandwidth usage.

y = 0.0006x + 0.0011
R² = 0.9999

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

B
an

dw
id

th
 U

sa
ge

 (
%

)

Message Rate (Hz)

31(3): 425-435 431

CONCLUSION
Sixteen CAN-based control nodes were designed and

fabricated as part of a test fixture for evaluating a variable-
rate turn compensation control scheme. A control scheme
was developed to allow individual nodes to simultaneously
calculate their application rate from a single CAN message
containing two data bytes. The data bytes in each CAN
message corresponded to the application rates at the outer-
most control nodes. Nodes calculated their respective
application rate using linear interpolation. The system
required two assumptions, (1) that the target implement
was a linear structure and (2) that application nodes were
evenly spaced.

The user interface software developed to test the control
method was capable of transmitting 20 Hz control data,
regardless of CAN bus utilization. Results showed that the
control data were successfully transmitted to the control
nodes at bandwidth utilization rates up to 99% when bus
traffic was generated at a constant interval. Not all data are
transmitted at the same interval on a typical CAN bus so
the bandwidth utilization can vary over time. Additional
testing should be conducted to determine the effect of bus
collisions and un-equally spaced data rates.

The test fixture successfully demonstrated that the CAN
bus is a suitable protocol for implementing a large number
of control nodes when using an encoded data message to
broadcast application rate to all nodes, simultaneously. This
methodology addressed a bottleneck of current systems by
eliminating bandwidth concerns for applications like
modern high clearance sprayers with implement widths in
excess of 40 m and over 100 dispersion points. Existing
manufacturers of CAN-based variable-rate systems that
operate over standardized protocols, such as ISOBUS, will
be able to implement the encoding and decoding method
outlined in this study through simple firmware updates to
their systems. The substantial reduction in bandwidth
required for control will allow more flexibility in CAN bus
utilization for other tasks such as data acquisition.

In this study, the total number of nodes was hard-coded
into the controller software. Future work will involve
developing initialization routines to improve node
identification and to make the system more scalable by
self-identifying the total number of nodes every time the
system is powered on.

ACKNOWLEDGEMENTS
The authors would like to thank John T. Evans for his

assistance in the fabrication of the CAN controllers used in
this study. This material is based upon work supported by
the National Institute of Food and Agriculture, U.S.
Department of Agriculture, under Agreements 2010-34628-
21691 and KAES 14-02. Any opinions, findings, or
conclusions expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the
U.S. Department of Agriculture or the Kentucky
Agricultural Experiment Station. The information reported
in this paper (No. 15-05-054) is part of a project of the
Kentucky Agricultural Experiment Station and is published
with approval of the Director.

REFERENCES
Anglund, E. A., & Ayers, P. D. (2003). Field evaluation of response

times for a variable rate (pressure-based and injection) liquid
chemical applicator. Appl. Eng. Agric., 19(3), 273-282.
http://dx.doi.org/10.13031/2013.13659.

Bosch. (2001). D-70442: CAN Specification. Stuttgart, Germany:
Bosch Gmbh.

ISO. (2007). 11783-1: Tractors and machinery for agriculture and
forestry—Serial control and communications data network—
Part 1: General standard for mobile data communication.
ISO/DIS.

Jeon, H. Y., Womac, A. R., & Gunn, J. (2004). Sprayer boom
dynamic effects on application uniformity. Trans. ASAE, 47(3),
647-658. http://dx.doi.org/10.13031/2013.16094.

Luck, J. D., Pitla, S. K., Zandonadi, R. S., Sama, M. P., & Shearer,
S. A. (2011). Estimating off-rate pesticide application errors
resulting from agricultural sprayer turning movements.
Precision Agric., 12(4), 534-545.
http://dx.doi.org/10.1007/s11119-010-9199-9.

Sama, M. P., Stombaugh, T. S., & Lumpp, J. E. (2013). A hardware
method for time-stamping asynchronous serial data streams
relative to GNSS time. Computers Elec. Agric., 97, 56-60.
http://dx.doi.org/10.1016/j.compag.2013.07.003.

Sharda, A., Fulton, J. P., McDonald, T. P., & Brodbeck, C. J.
(2011). Real-time nozzle flow uniformity when using automatic
section control on agricultural sprayers. Computers Elec. Agric.,
79(2), 169-179. http://dx.doi.org/10.1016/j.compag.2011.09.006.

Sharda, A., Fulton, J. P., McDonald, T. P., Zech, W. C., Darr, M. J.,
& Brodbeck, C. J. (2010). Real-time pressure and flow dynamics
due to boom section and individual nozzle control on
agricultural sprayers. Trans. ASABE, 53(5), 1363-1371.
http://dx.doi.org/10.13031/2013.34891.

Woods-DeWitt, M. T. (2008). Precision agriculture in the corn belt
region of Ohio 2007: A Double hurdle model estimating farmer
characteristics resulting in adoption and satisfaction.MS thesis.
The Ohio State University.

432 APPLIED ENGINEERING IN AGRICULTURE

APPENDIX
BOARD LAYOUTS (SCALE = 1:1)

Figure 8. Controller board top (left) and bottom (right) copper.

Figure 9. Controller board paste mask (left) and solder mask (right).

Figure 10. Controller board silk screen.

31(3): 425-435 433

Figure 11. I/O interface board top (left) and bottom (right) copper.

Figure 12. I/O interface board paste mask (left) and solder mask (right).

Figure 13. I/O interface board silk screen.

434 APPLIED ENGINEERING IN AGRICULTURE

COMPONENT LIST

CONTROLLER PROGRAM

Table 1. CAN Node Component List.
Controller Board

Component Part Number Manufacturer PCB Label
Microcontroller DSPIC30F4011-30I/PT Microchip Technology dsPIC30F4011
12-Bit Digital-to-Analog Converter DAC121C081CIMM/NOPB National Semiconductor DAC1, DAC2, DAC3
5V Regulator LM1084IS-5.0/NOPB National Seminconductor VR1
2.5V Regulator LM1086CS-2.5/NOPB National Seminconductor VR2
24 Pin Receptical 1-534206-2 TE Connectivity H1, H2
6 Pin Right-Angle Connector 70553-0005 Molex ICSP
2 Pin Right-Angle Connector 70553-0001 Molex POWER1, POWER2
15 MHZ Crystal Oscillator HC49US-15.000MABJ-UB Citizens Finetech Miyota XTAL
2312 Capacitor 10 uF Tantalum F931V106MCC Nichicon C6, C8
1210 Capacitor 10 uF Tantalum F931A106MBA Nichicon C5, C7
0603 Capacitor 0.1 uF C1608X7R1C104K TDK Corporation C1, C2, C3, C4, C11
0603 Capacitor 22 pF 06035A220JAT2A AVX Corporation C9, C10
0603 Resistor 10 kOhm CRCW060310K0FKEA Vishay Dale R1
0603 Resistor 4.7 kOhm CRCW06034K70FKEAHP Vishay Dale R2, R3
DPDT Side PCB Switch MMS22R TE Connectivity SW1

I/O Interface Board
Component Part Number Manufacturer PCB Label
Tactile SPST Switch EVQPJJ04T Panasonic SW1, SW2, SW3, SW4, SW5
10 Position 0.150” Terminal Block 1-284392-0 TE Connectivity T1 ,T2, T3, T4
2 Position 0.150” Terminal Block 284392-2 TE Connectivity T1 ,T2, T3, T4
2 Position SPST DIP Switch ADE0204 TE Connectivity SW6
Yellow 1206 LED LTST-C150KSKT Lite-On Inc. U1RX, U2RX, CANRX
Red 1206 LED LTST-C150KRKT Lite-On Inc. POWER
Green 1206 LED LTST-C150KGKT Lite-On Inc. U1TX, U2TX, CANTX
PNP Transistor MMBT3906 Fairchild Semiconductor MMBT, 3906
Dual RS232 Level Shifter MAX232DR Texas Instruments MAX232
CAN Transceiver MCP2551-I/SN Microchip Technology MCP2551
0603 Capacitor 0.1 uF C1608X7R1C104K TDK Corporation C6
0603 Capacitor 1uF C1608Y5V1E105Z TDK Corporation C1, C2, C3, C4, C5, 1uF
0603 Resistor 10 kOhm CRCW060310K0FKEA Vishay Dale R1 - R6, R8 - R13, 10K
0603 Resistor 470 Ohm CRCW0603470RJNEAHP Vishay Dale 470
0603 Resistor 120 Ohm CRCW0603120RFKEA Vishay Dale R7
24 POS Pin Header (80 Pins) 4-103186-0 TE Connectivity H1, H2

///
// Title: CANBasedTurnCompensation.c //
// Author: Michael P. Sama //
// Date: May, 2012 - June, 2014 //
///
#define SYSCLK 15000000UL //Define the system clock speed as 15 MHz.
#define FCY 3750000UL //Define the instruction clock speed as 3.75 MHz.
//Pin aliases for 4-bit board position thumbwheel switch.
#define B1 PORTEbits.RE0 //LSB.
#define B2 PORTEbits.RE1.
#define B3 PORTEbits.RE2.
#define B4 PORTEbits.RE3 //MSB.
#include <p30fxxxx.h> //Base Library for the dsPIC30F4013.
#include <libpic30.h> //Software Delay Library.
#include <can.h> //CAN Library.
_FOSC(XT) //Set the oscillator to external high speed crystal.
_FWDT(WDT_OFF) //Turn off the watch dog timer.
/* Main Function */.
 int main (void).
{.
 TRISC = 0b101111111111111; //Configure PORTC I/O directions.
 TRISD = 0b01; //Configure PORTD I/O directions.
 TRISE = 0b001111; //Configure PORTE I/O directions.
 TRISF = 0b0101; //Configure PORTF I/O directions.
 __delay_ms(500); //Wait 0.5 s.
 /* Configure Timer 2 */.
 T2CONbits.TSIDL = 0; //Continue timer operation in Idle mode.
 T2CONbits.TGATE = 0; //Timer gated time accumulation disabled.
 T2CONbits.TCKPS = 1; //Timer input clock pre-scale bits set to 1:64.

31(3): 425-435 435

 T2CONbits.T32=0; //Timer2 and Timer3 form separate 16-bit timers.
 T2CONbits.TCS=0; //Internal timer clock (FOSC/4).
 T2CONbits.TON=1; //Start Timer2.
 /* Configure Output Compare 2 */.
 OC2CONbits.OCSIDL = 0; //Continue in idle mode.
 OC2CONbits.OCFLT = 0; //Reset any fault conditions.
 OC2CONbits.OCTSEL = 0; //Timer2 is the clock source for output compare 2.
 OC2CONbits.OCM = 6; //PWM mode on OC2, fault pin disabled.
 /* Set request for configuration mode */.
 CAN1SetOperationMode(CAN_IDLE_CON & CAN_CAPTURE_DIS & CAN_MASTERCLOCK_0 &.
 CAN_REQ_OPERMODE_CONFIG);.
 while(C1CTRLbits.OPMODE !=4); //Wait for configuration mode.
 /* Configure CAN Registers */.
 C1CTRLbits.CANCKS = 0; //CAN Master Clock (TQ) is set to 4 FCY.
 C1CFG1bits.SJW = 0; //Synchronized jump width = 1 x TQ.
 C1CFG1bits.BRP = 2; //Baud rate pre-scaler = 8.
 C1CFG2bits.WAKFIL = 0; //CAN bus line filter is not used for wake-up.
 C1CFG2bits.SEG2PHTS = 1; //SEG2 is freely programmable.
 C1CFG2bits.SEG2PH = 5; //Phase Segment 2 = 5 x TQ.
 C1CFG2bits.SEG1PH = 8; //Phase Segment 1 = 8 x TQ.
 C1CFG2bits.SAM = 0; //Bus line is sampled once at each sample point.
 C1CFG2bits.PRSEG = 1; //Propagation time segment = 2 x TQ
 /* Load Acceptance Filter Register 0 */.
 CAN1SetFilter(0, CAN_FILTER_SID(0) & CAN_RX_EID_EN,
 CAN_FILTER_EID(0));.
 /* Load Mask Filter Register 0 */.
 CAN1SetMask(0, CAN_MASK_SID(3) & CAN_MATCH_FILTER_TYPE,
 CAN_MASK_EID(0));.
 C1RXM0SID = 0b0001111111111111; //Include all bits in filter comparison.
 /* Set CAN Receiver Mode */.
 CAN1SetRXMode(0, CAN_RXFUL_CLEAR & CAN_BUF0_DBLBUFFER_EN);.
 /* Set request for Normal mode */.
 CAN1SetOperationMode(CAN_IDLE_CON & CAN_CAPTURE_DIS & CAN_MASTERCLOCK_0 &.
 CAN_REQ_OPERMODE_NOR);.
 while(C1CTRLbits.OPMODE != 0); //Wait for normal mode.
 C1RX0CONbits.RXFUL = 0; //Clear receive buffer 0 flag.
 /* Set the Initial Servo Position and Node Location*/.
 unsigned int SERVO = 2300; //2300 ms = gauge value 0.
 unsigned int DATA1 = 0; //Default to..
 unsigned int DATA2 = 0; //location 0.
 /* Calculate the PWM Parameters From the Desired Servo Pulse Width */.
 OC2RS = (unsigned int) (((unsigned long) SERVO * 468) / 1000);.
 PR2 = OC2RS+9372; //Set the period register.
 while(1) // do forever.
 {.
 if(C1RX0CONbits.RXFUL) //Receiver buffer 0 contains a CAN message.
 {.
 DATA1 = C1RX0B1%256; //Retrieve the first data byte.
 DATA2 = C1RX0B1/256; //Retrieve the second data byte.
 C1RX0CONbits.RXFUL = 0; //Reset the receive buffer 0 flag.
 /* Calculate the Node Location from the Thumbwheel Switch */.
 CAN_ADDR = 8*(1-B4) + 4*(1-B3) + 2*(1-B2) + (1-B1);.
 /* Calculate the Servo Pulse Width */ .
 SERVO = ((2300 - DATA1 * 18)*(15-CAN_ADDR)) / 15 + ((2300 - DATA2 *
 18)*(CAN_ADDR)) / 15;.
 /* Calculate the PWM Parameters from the Desired Servo Pulse Width */.
 OC2RS = (unsigned int) (((unsigned long) SERVO * 468) / 1000);.
 PR2 = OC2RS+9372; //Set the period register.
 } .
 }.
 return 0;.
}.

	University of Kentucky
	UKnowledge
	5-2015

	Scalable Control Architecture for Variable-Rate Turn Compensation
	Michael P. Sama
	Joe D. Luck
	Timothy S. Stombaugh
	Repository Citation
	Scalable Control Architecture for Variable-Rate Turn Compensation
	Notes/Citation Information
	Digital Object Identifier (DOI)

	Microsoft Word - MS 10848final.docx

