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We observed ultra-short laser pulse-induced transient optical anisotropy in a LaMnO3 thin film.

The anisotropy was induced by laser pulse irradiation with a fluence of less than 0.1 mJ/cm2 at

room temperature. The transmittance and reflectance showed strong dependence on the polarization

states of the pulses. For parallel and perpendicular polarization states, there exists a difference of

approximately 0.2% for transmittance and 0.05% for reflectance at 0.3 ps after the irradiation with

a pump pulse, respectively. The theoretical values for optical transmittance and reflectance with an

assumption of an orbital ordering of 3d eg electrons in Mn3þ ions showed good agreement with the

experimental results, demonstrating that the transient optical anisotropy in LaMnO3 thin film is

due to the photo-induced symmetry-breaking of orbital ordering in excited states. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914094]

Optically anisotropic materials exhibit different optical

reflectance and transmittance depending on the polarization

state of incident light. The anisotropy arises from the non-

transient and inherent broken symmetry of the lattice.

However, if the anisotropy is transient and can be induced

by ultra-short laser pulses within a picosecond time scale, it

has great potential to be used as detectors, switches, and re-

cording devices that operate at extremely high speeds.

Photo-induced changes in the reflectance or transmit-

tance of complex transition metal oxides have been previ-

ously observed.1–3 In particular, optical birefringence was

found in a charge-orbital ordered manganese oxide,

La0.5Sr1.5MnO4.
4 The birefringence was attributed to the

melting of the charge-orbital ordered state as a result of

strong perturbation by an external light field. Such an in-

triguing phenomenon may allow for potential applications

for the material. However, since the phenomenon was

observed at a very low temperature (20K) and under rela-

tively strong light fluence (�2 mJ/cm2), device application

of this material is impractical.

In this letter, we report that the ultra-short laser pulse

induces anisotropic polarization dependence of the transmit-

tance and reflectance of a LaMnO3 thin film grown on a

SrTiO3 substrate. The experiment was carried out at room

temperature, and the laser pulse fluence required for the

photo-induced anisotropy was less than 0.1 mJ/cm2. A nu-

merical simulation based on a simple Hubbard model sug-

gests that the laser pulse causes the anisotropy through

symmetry change in the Mn eg electron orbital state.

We also present the polarization-dependent transmittance

and reflectance of a Nd0.5Sr0.5MnO3 thin film grown on a

SrTiO3 substrate for comparison. A Nd0.5Sr0.5MnO3 thin film

has the chemical composition and lattice structure similar to

those of LaMnO3 thin film. In Nd0.5Sr0.5MnO3, Mn eg orbitals
are optically active and known to form a charge-orbital order-

ing at a low temperature (<150K).5 However, the orbitals of

Nd0.5Sr0.5MnO3 become disordered at room temperature,

while the orbitals of LaMnO3 remain ordered. The compari-

son between LaMnO3 thin film and Nd0.5Sr0.5MnO3 thin film

was performed to clarify the role of orbital ordering in the

laser pulse-induced anisotropy of LaMnO3 thin film.

The LaMnO3 thin film was grown epitaxially by pulsed-

laser deposition on a double-side polished single-crystal

SrTiO3 (001) substrate. The thickness of the thin film was

about 100 nm,6 and the structural properties and linear

optical conductivity were reported in previous studies.7–9

The Nd0.5Sr0.5MnO3 thin film was also grown epitaxially

using the same technique on a double-sided polished single-

crystal SrTiO3 (001) substrate. The growth conditions and

physical properties of Nd0.5Sr0.5MnO3 thin film were deter-

mined in a previous study.10 For the pump-probe measure-

ment, laser pulses were generated from a custom-built mode-

locked Ti:sapphire oscillator, and the center wavelength of

the pulse was 800 nm (1.5 eV) with a pulse duration of 10 fs.

The pulse energy was about 1.5 nJ at a repetition rate of

140MHz. The bandwidth of the laser pulse is shown in Fig.

1. The details of the laser pulse used in this study can be

found in a previous report.11

The laser beam was split into a pump beam (�80% of

the total pulse energy), a probe beam (�10%), and aa)Electronic mail: mwkim@chonbuk.ac.kr
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reference beam (�10%). The pump and probe beams were

focused on the surface of the sample with a diameter of

about 100 lm. The pump beam was normally incident to

the sample surface, and the angle between the probe beam

and the surface normal was approximately 8�. The trans-

mitted or reflected probe beam was detected with a photo-

diode, and the temporal coincidence between the probe and

pump pulses was determined using the sum frequency sig-

nal. The zero-time-delay was defined at the time delay

point where the sum frequency signal was the strongest.

The transmittance and reflectance were measured by com-

paring the probe beam with the reference beam. When the

pump pulse was blocked, the reference beam intensity was

tuned to be the same as that of the probe beam. The refer-

ence beam intensity was fixed during the measurement.

The intensity change of the transmitted or reflected probe

beam due to the pump beam irradiation was obtained as

transmittance change (DT) or reflectance change (DR),
respectively. All experiments were conducted at room

temperature.

Figure 1(a) shows the polarization-dependent transmit-

tance (T) of a LaMnO3 thin film measured using a conven-

tional optical spectrometer. The T of the electric field

polarization (E) parallel ðkÞ to the [100] direction of the

LaMnO3 film is identical to that of E k ½010�, within experi-

mental error, indicating that T was isotropic. The T of a

Nd0.5Sr0.5MnO3 thin film grown on a SrTiO3 (001) substrate

(Fig. 1(b)) and of a SrTiO3 (001) substrate (Fig. 1(c)) are

shown for comparison and are also isotropic.

Figure 2 shows the change in transmittance, DT, induced
by the pump pulse as a function of time delay (s) between
the pump pulse and the probe pulse. The sharp features

around the zero-time-delay (s¼ 0) are due to artifact,12 and

the exponential decrease (or increase) at a finite s is due to

charge excitation and relaxation processes.

Laser pulse-induced transmittance change in LaMnO3

film is not isotropic, exhibiting transient anisotropy. The

probe pulse polarization is modulated in order to investigate

the polarization dependence of the finite s response. The

pump pulse polarization is maintained along the [100] direc-

tion of the SrTiO3 substrate, and the probe pulse polarization

is varied parallel and perpendicular to the pump pulse polar-

ization. The DT of the two probe pulse polarizations is the

same before the pump pulse irradiation (s<�0.2) but

becomes different after the pump pulse irradiation

(s>�0.2). The difference is about 0.2% at 0.3 ps after

pump pulse irradiation. The DT of a SrTiO3 (001) substrate

and a Nd0.5Sr0.5MnO3 thin film grown on a SrTiO3 (001)

substrate are shown for comparison and do not show any sig-

nificant differences.

Figure 3 shows the pump-probe reflectance changes

(DR) of the LaMnO3 thin film. The DR for the two polariza-

tions is the same before pump pulse irradiation. After the

pump pulse irradiation, DR showed an abrupt increase, ani-

sotropic response, and an exponential relaxation at later time

delay. The difference between the two polarizations is about

0.05% at 0.3 ps after pump pulse irradiation.

It should be noted that the pump pulse-induced transient

anisotropy is negligible for the Nd0.5Sr0.5MnO3 thin film and

FIG. 1. Transmittance (T) of (a) a LaMnO3 thin film grown on a SrTiO3 sub-

strate, (b) a Nd0.5Sr0.5MnO3 thin film grown on SrTiO3, and (c) a SrTiO3

(001) substrate at different electric field polarizations. Black (red) lines rep-

resent the data for light polarization parallel (perpendicular) to the SrTiO3

substrate [100] direction. (d) The intensity profile of the laser pulse used in

the pump-probe experiment.

FIG. 2. Pump-probe transmittance changes (DT) in thin films and SrTiO3

substrate. Black and red lines correspond to the probe polarization (E) paral-
lel ðkÞ and perpendicular ð?Þ to the pump polarization, respectively.

FIG. 3. Pump-probe reflectance changes (DR) in the LaMnO3 thin film. The

black and red lines correspond to the probe polarization (E) parallel ðkÞ and
perpendicular ð?Þ to the pump polarization, respectively. Dashed lines rep-

resent fitting lines for the exponential change in the background. Inset:

Fourier transform of the data after subtracting the electronic background.

Arrows mark the coherent phonon modes.
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SrTiO3 substrate. This suggests that the anisotropy is not due

to the interface or the substrate but is an intrinsic property of

the LaMnO3 film. LaMnO3 has a famous chessboard type

orbital-ordered state, even at room temperature.13 The orbital

ordering temperature for a single crystal is about 800K, and

the temperature is about 600K for the thin film grown on

SrTiO3 substrate.
14 Orbital ordering is stable at room temper-

ature, and the observed anisotropy originates from a similar

mechanism to that suggested for La0.5Sr1.5MnO4 below the

charge/orbital ordering temperature.4

In addition to the anisotropy, an oscillating signal is

observed as a result of coherent phonon oscillation.15,16 The

inset of Fig. 3 shows the Fourier transformations of the data

after subtracting the exponentially changing background.

Five modes are observed at 1.05, 2.74, 8.65, 14.47, and

18.11 THz. The frequencies and amplitudes of these modes

are consistent with those in prior literature,15 suggesting that

the optical properties of the thin film sample are close to

those of a single crystal. The modes at 1.05 and 2.74 THz

are not observed in data of the single crystal. The origin of

the 1.05 THz mode is not clear, while the 2.74 THz mode

could be related to the La-ion oscillation observed in the res-

onant Raman scattering experiment.17

The relaxation behavior is slightly different from that

observed in bulk LaMnO3 single crystal.15 Two exponential

curves were sufficient for single crystal data fitting.15

However, for the thin film, three exponential curves

ðP3
i¼1 Cie

�t=siÞ yielded a better fit. The relaxation time con-

stants obtained from the fitting are s1� 60 fs, s2� 0.3 ps,

and s3� 10 ps. s1 can be attributed to electron-electron ther-

malization time and s2 to electron-phonon or orbital-phonon

thermalization. s3 was not observed in bulk LaMnO3. This

may be due to the thermal diffusion time from the sample to

the substrate,18,19 which slows the relaxation process in the

thin film sample.

A microscopic model was established in order to under-

stand the origin of the anisotropy in DT and DR. A quasi-

two-dimensional two-orbital Hubbard Hamiltonian was

numerically solved to obtain the time-dependent optical con-

ductivity, and DT and DR were obtained from optical con-

ductivity change. Details of the model and calculation can be

found in a previous study.16 Effects of multiple reflections at

the interfaces are ignored to simplify the calculations. The

energy relaxation from system to environment is not consid-

ered in the model; therefore the exponential decay can not be

found in the simulated data.

Figures 4(a) and 4(b) show the calculated DT and DR
from the model, respectively. The simulated data demon-

strate clear anisotropy, qualitatively consistent with the

experimental data. It is noteworthy that the anisotropy can

be obtained only when the Mn-ion eg orbital ordering ground

state is assumed in our simulation, which suggests that the

anisotropy is related to the spatial symmetry of the orbitals

in the photo-excited states. The spatial symmetry of the ideal

orbital ordered state prevents optical anisotropy. However,

when the pump pulse excites the Mn-ion eg electrons and

generates holes and double-occupied sites with different

orbital configurations, the symmetry can be broken, resulting

in an anisotropic optical response for the probe pulse. A case

of the symmetry-broken pump pulse-induced photo-excited

state is illustrated in Fig. 4(c).

The data also show oscillations caused by interference

between the quantum states.16 The inset of Fig. 4(b) shows

the Fourier transform result. The strong peak around 15 THz

was due to the Jahn-Teller Q2 phonon mode, and the weak

peak around 35 THz was due to the phonon-orbiton coupled

excitation.16 Other phonon modes observed in the experi-

mental data are not considered in the calculation.

The simulation overestimates the anisotropy of transmit-

tance and reflectance by factors of about 4 and 12, respec-

tively. We can consider two possible origins of the

overestimation. First is the small size (four-atom-cluster) of

the model system. In the model, all electrons of four Mn

atom sites should be excited by the laser field. This corre-

sponds to a situation involving the much higher pump laser

pulse fluence in the real experiment, which is different from

our experimental condition. The second possibility is the dis-

crepancy in the orbital ordering configuration between the

model and real material. We assumed perfect spatial order-

ing of ideal 3x2 � r2 and 3y2 � r2 orbitals at 0K. However,

in real material, the orbital ordering may be different from

the ideal case because of imperfections, high temperature,

and substrate strain.

FIG. 4. (a) and (b) The thick red and thin black lines represent the theoreti-

cal optical transmittance change (DT) and reflectance change (DR) for the
probe polarization (E) parallel ðkÞ and perpendicular ð?Þ to the pump polar-

ization, respectively, as a function of the time delay between the pump and

probe pulses. Inset of (b): Fourier transform of the DR as a function of pho-

ton frequency. (c) An example of photo-excitation generated by a pump

laser light. Left: ideal orbital ordered ground state of Mn eg electron orbitals.
One electron occupies one Mn-ion site. Spatial symmetry is conserved.

Optical responses along the x- and y-axes are the same. Right: photo-excited

state. Two holes and two double-occupied sites are generated by pump

pulse. Spatial symmetry is broken. Optical responses along the x- and y-axes

are different.
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In conclusion, ultra-short laser pulse-induced optical

anisotropy was observed in a LaMnO3 thin film, and the ani-

sotropy could be induced using a small laser pulse fluence

(<0.1 mJ/cm2) at room temperature. This material can be

potentially used for ultrafast optical switching devices. The

theoretical model suggests that the anisotropy is related to

the orbital ordering. Therefore, careful engineering involving

the control of the substrate-induced strain or varying the

chemical pressure can result in increased anisotropy. Also,

further study is required to detect anisotropy at lower laser

pulse fluencies.
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