
University of Kentucky
UKnowledge

Physics and Astronomy Faculty Publications Physics and Astronomy

9-8-2014

Alleviating Polarity-Conflict at the Heterointerfaces
of KTaO3/GdScO3 Polar Complex-Oxides
Justin K. Thompson
University of Kentucky, justin.thompson5@uky.edu

J. Hwang
University of California, Santa Barbara

John Nichols
University of Kentucky

John G. Connell
University of Kentucky, johnconnell@uky.edu

S. Stemmer
University of California, Santa Barbara

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and
Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Thompson, Justin K.; Hwang, J.; Nichols, John; Connell, John G.; Stemmer, S.; and Seo, Sung S. Ambrose, "Alleviating Polarity-
Conflict at the Heterointerfaces of KTaO3/GdScO3 Polar Complex-Oxides" (2014). Physics and Astronomy Faculty Publications. 244.
https://uknowledge.uky.edu/physastron_facpub/244

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232567917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron_facpub?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/physastron_facpub?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/physastron_facpub/244?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors
Justin K. Thompson, J. Hwang, John Nichols, John G. Connell, S. Stemmer, and Sung S. Ambrose Seo

Alleviating Polarity-Conflict at the Heterointerfaces of KTaO3/GdScO3 Polar Complex-Oxides

Notes/Citation Information
Published in Applied Physics Letters, v. 105, no. 10, article 102901, p. 1-4.

Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any
other use requires prior permission of the author and the American Institute of Physics.

The following article appeared in Applied Physics Letters, v. 105, n. 10, article 102901, p. 1-4 and may be found
at http://dx.doi.org/10.1063/1.4895392.

Digital Object Identifier (DOI)
http://dx.doi.org/10.1063/1.4895392

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/244

http://dx.doi.org/10.1063/1.4895392
https://uknowledge.uky.edu/physastron_facpub/244?utm_source=uknowledge.uky.edu%2Fphysastron_facpub%2F244&utm_medium=PDF&utm_campaign=PDFCoverPages


Alleviating polarity-conflict at the heterointerfaces of KTaO3/GdScO3 polar
complex-oxides

J. Thompson,1 J. Hwang,2 J. Nichols,1 J. G. Connell,1 S. Stemmer,2 and S. S. A. Seo1,a)
1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
2Materials Department, University of California, Santa Barbara, California 93106, USA

(Received 31 January 2014; accepted 29 August 2014; published online 8 September 2014)

We have synthesized and investigated the heterointerfaces of KTaO3 (KTO) and GdScO3 (GSO),

which are both polar complex-oxides along the pseudo-cubic [001] direction. Since their layers

have the same, conflicting net charges at interfaces, i.e., KO(�1)/ScO2(�1) or TaO2(þ1)/GdO(þ1),

forming the heterointerface of KTO/GSO should be forbidden due to strong Coulomb repulsion, the

so-called polarity conflict. However, we have discovered that atomic reconstruction occurs at the het-

erointerfaces between KTO thin-films and GSO substrates, which effectively alleviates the polarity

conflict without destroying the hetero-epitaxy. Our result demonstrates one of the important ways to

create artificial heterostructures from polar complex-oxides.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4895392]

The polarity of materials and their electrostatic boundary

conditions are key factors to create unprecedented electronic

and magnetic properties in complex-oxide heterostructures.

For example, the discontinuous polarity at the heterointerface

between polar LaAlO3 (LAO) and non-polar SrTiO3 (STO)
1,2

has resulted in confined electrons at the interface to form

a two-dimensional electron gas (2DEG),3,4 which exhibits

intriguing properties such as metal-insulator transitions,5

colossal capacitance,6,7 and the coexistence of superconduc-

tivity and magnetism.8 These phenomena are thought to origi-

nate from electron-transfer that prevents the electric potential

from diverging within the polar layer, the so-called “polar

catastrophe.”1

Here, we address a simple but important question:

“What happens at heterointerfaces where two different polar

complex oxides meet?” As a model system, we have investi-

gated the heterointerfaces of KTaO3 (KTO) and GdScO3

(GSO), which are both polar complex-oxides along the

pseudo-cubic [001] direction. Since their layers have the

same, conflicting net charges at interfaces, i.e., KO(�1)/

ScO2(�1) or TaO2(þ1)/GdO(þ1), forming the heterointer-

face of KTO/GSO should be forbidden due to the “polarity

conflict” resulting from strong Coulomb repulsion. However,

we have discovered that atomic reconstruction occurs at the

heterointerfaces between KTO thin films and GSO sub-

strates, which effectively alleviates the polarity conflict with-

out destroying the hetero-epitaxy. Our results demonstrate an

important way to create artificial heterostructures from polar

complex-oxides.

There are two possible configurations of heterointerfaces

between KTO and GSO along the pseudo-cubic [001] direc-

tion. Because the valence states of Kþ, Ta5þ, Gd3þ, and
Sc3þ are stable, the KO (GdO) layers have a net charge of

�1 (þ1) and the TaO2 (ScO2) layers have a net charge of þ1

(�1), respectively. The net charge of �1 (þ1) means one

electron (hole) per unit-cell square lattice in a simple ionic

picture. What is controversial here is that the two adjacent

atomic layers at the heterointerfaces, i.e., KO(�1)/ScO2(�1)

(Fig. 1(a)) and TaO2(þ1)/GdO(þ1) (Fig. 1(b)), have the

same net charge, in which one can expect unstable interfacial

states due to strong Coulomb repulsion. Note that this

so-called polarity conflict, i.e., the strong electrostatic

Coulomb repulsion between two polar materials at their

interfaces, occurs regardless of the termination layers of

KTO and GSO (Fig. 1). Hence, one may expect that the po-

larity conflict would result in forbidden growth of epitaxial

KTO thin-films on GSO substrates and every I-V and III-III

complex-oxide heterostructure. However, here we show that

high-quality KTO thin-films can be grown epitaxially on

atomically flat GSO substrates even with the anticipated po-

larity conflict at the heterointerfaces.

Figure 2 shows a few possible ways to avoid the polarity

conflict at the heterointerfaces of KTO and GSO, as well as

any I-V and III-III complex-oxide heterostructures. One way

is to introduce a rock-salt interfacial structure of (K, Gd)O

(Fig. 2(a)), which is commonly observed in the Ruddlesden-

Popper phases. Since each KO and GdO layer has a net

FIG 1. Schematic diagrams of two possible configurations of KTO/GSO het-

erointerface. (a) ScO2 (�1) terminated GSO substrate with the first film

layer of KO (�1) and (b) GdO (þ1) terminated GSO substrate with the first

film layer of TaO2 (þ1).a)E-mail: a.seo@uky.edu
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charge of (�1) and (þ1), respectively, the polar nature of the

heterostructure can be conserved. Another way to alleviate

the conflict is through the presence of defects such as oxygen

vacancies (Fig. 2(b)) or interstitial oxygen ions (Fig. 2(c)) at

the heterointerface, which provide the necessary additional

charge. A more complicated resolution is to introduce an

atomically mixed layer such as an interfacial bi-layer of

KxGd1�xO/TaySc1�yO2. If x � 0.5 and x ¼ y þ 0.5, then this

interfacial bi-layer will have a net charge of (�1), which will

conserve the overall polarity of the system, as shown in

Fig. 2(d). For example, a bi-layer with quarter-filled Gd and

Ta ions, i.e., K0.75Gd0.25O/Ta0.25Sc0.75O2 (x ¼ 0.75, y¼ 0.25),

results in an overall net charge of (�1). Complete absence

of either Gd3þ or Ta5þ ions, i.e., KO/Ta0.5Sc0.5O2 (x¼ 1,

y¼ 0.5) or K0.5Gd0.5O/ScO2 (x¼ 0.5, y¼ 0), will yield a net

charge of (�1) as well. In the following paragraphs, our ex-

perimental investigations show that the polarity conflict at the

heterointerfaces between KTO and GSO is effectively

resolved by forming an interfacial bi-layer of KxGd1�xO/

TaySc1�yO2 with negligible influence from interfacial defects.

We have grown epitaxial KTO thin films (30–50 nm in

thickness) on atomically flat GSO (110)o single crystal sub-

strates using pulsed laser deposition (PLD). Bulk KTO is a

cubic perovskite with a lattice parameter of a¼ 3.989 Å,9

whose lattice mismatch with GSO (pseudo-cubic lattice,

3.967 Å) is only –0.55% (slight in-plane compressive strain

on KTO thin-films). Such a good lattice match is an ideal

condition for coherent, epitaxial growth of complex-oxide

thin films. While bulk KTO is an incipient ferroelectric,10

recent studies of KTO have revealed interesting ferromagnet-

ism at the interfaces of KTO/STO11 and the formation of a

2DEG at KTO surfaces.12 The PLD growth conditions were a

substrate temperature of 700 �C, an oxygen partial pressure of

100 mTorr, and a laser (KrF excimer, k¼ 248nm) fluence of

1.6 J/cm2. We used a segmented target of KNO3 and KTO, in

which half of the target consists of a semi-circular cold-

pressed KNO3 pellet and the other half a KTO single crys-

tal.13,14 Atomically flat GSO substrates have been prepared by

annealing at 1000 �C for 1 h in air.

We have grown KTO thin films on GSO substrates of

various miscut angles, between 0.05� and 0.18�. Figures 3(a)
and 3(b) show topographic images of two GSO substrates

with the lowest and highest miscut angles, respectively,

which are obtained with an atomic force microscope. The

quality of the KTO thin film has no noticeable dependence

on the substrate miscut-angle (discussed in detail in the fol-

lowing paragraphs). Note that supplying an excess of volatile

potassium ions is one of the keys for success during the PLD

growth of KTO thin films.

X-ray diffraction (XRD) shows that KTO thin films are

fully strained, and epitaxially grown on GSO substrates.

XRD h–2h scans (Fig. 3(c)) have revealed only the (00l)
peaks of the KTO thin films, which confirm the [001] orien-

tation. It is remarkable that the full-width half-maxima of

rocking curve scans of the thin films (Dx� 0.04�) are com-

parable to that of the GSO substrates (Fig. 3(d)), which show

the high crystallinity of our KTO thin films. A typical Dx is

FIG 2. Examples of alleviating the polarity-conflict of KTO/GSO heterointerfaces. (a) The formation of a rock-salt interfacial layer. Introducing (b) 0.5 oxygen

vacancies per unit-cell area of ScO2 layer or (c) 0.5 interstitial oxygen ions per unit-cell area (sheet density� 3.2� 1014cm�2). (d) The formation of interfacial

bi-layer KxGd1�xO/TaySc1�yO2 with x¼ 0.75 and y¼ 0.25, which gives a net charge of (�1). Any conditions satisfying x� 0.5 and x – y¼ 0.5 will yield a net

charge of (�1).

FIG 3. Substrate miscut angles and X-ray diffraction. Atomic force micro-

scope topographic images of two different GSO substrates with their corre-

sponding line profiles (white lines) of miscut angles (a) 0.05� and (b) 0.18�.
(c) XRD h-2h scan around a KTO (001) thin-film peak. (d) Rocking curves

around the KTO (001) thin-film and the GSO (110)o substrate peaks.
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0.04� for the 110 GSO peak measured with our Goebel X-ray

mirror optics. X-ray reciprocal space mapping (RSM) near the

GSO (332)o diffraction peak shows that the KTO thin films

are fully strained to the substrates, as shown in Fig. 4(a). The

lattice parameters of the KTO thin films from this RSM are

estimated as a¼ 3.963 Å and c¼ 3.994 Å. This result of syn-

thesizing such high-quality, fully strained KTO thin films on

GSO substrates is surprising since thin-film growth should be

forbidden due to the polarity conflict between the two polar

materials, as discussed above. It is possible that the polarity

conflict weakens when KTO thin films are grown on high

miscut-angle substrates due to the increased number of step-

terraces. However, as we have mentioned above, we have

tested GSO substrates with various miscut angles and high-

quality thin films can be grown even on substrates with a mis-

cut angle as low as 0.05� (Fig. 3(a)).
To probe the microscopic structure of the questionable

KTO/GSO heterointerfaces, we have measured Z-contrast

high-resolution scanning transmission electron microscopy

(STEM). Our STEM samples have been prepared by 2�

wedge polishing across the heterointerface and the high

angle annular dark field (HAADF) cross-sectional

images are acquired with a FEI Titan STEM (Cs¼ 1.2mm,

a¼ 9.6 mrad, 300 kV). Figure 4(b) shows a Z-contrast
STEM image, which indicates that the KTO films are of high

quality and fully strained; there is no indication of misfit dis-

locations at the interface and the thin film, which is consist-

ent with the XRD data. It is well known that the brightness

(intensity) of the Z-contrast STEM image depends on the

atomic number (Z).15 Since there is a large difference in

atomic numbers between A-site ions (K (Z¼ 19) and Gd

(Z¼ 64)), as well as B-site ions (Ta (Z¼ 73) and Sc

(Z¼ 21)), we can easily see that the brightest dots in the film

(upper) and the substrate (lower) regions of the STEM image

are Ta and Gd atoms, respectively. Note the horizontal shift

of the bright columns of the atoms across the interface (3)

is seen in the STEM image since Ta atoms are at B-sites

while Gd atoms are at A-sites of the perovskite (ABO3)

structure. Hence, the rock-salt interfacial structure (Fig. 2(a))

is ruled out: If there were a rock-salt interfacial structure, the

bright columns should have appeared straight with no hori-

zontal shift across the interface. Moreover, we can reason-

ably presume that a large concentration (�3.2� 1014cm�2)

of oxygen vacancies or interstitial oxygen ions, which are

suggested mechanisms of solving the polarity-conflict in

Figs. 2(b) and 2(c), is not present in our samples. If it were,

we would have observed strain relaxation from the X-ray

RSM data (Fig. 4(a)) or misfit dislocations from the STEM

data (Fig. 4(b)). Upon closer examination of the STEM data,

we have observed that an atomic reconfiguration occurs at

the heterointerface, which reveals important clues about how

the polarity conflict is alleviated. The high-magnification

STEM image in Figure 5(a) shows that there is a bi-layer of

neighboring atoms with reduced intensities near the inter-

face, marked with filled (") and open (�) triangles, com-

pared to the Ta and Gd atoms of the regions far away from

the interface. The top layer (open triangle) and the bottom

layer (filled triangle) can be attributed to atomically recon-

structed layers of KxGd1�xO and TaySc1�yO2 layers, respec-

tively. The good contrast in atomic numbers between K and

Gd, as well as Ta and Sc, allows us to readily examine the

FIG 4. X-ray RMS and STEM data. (a) X-ray RSM around the GSO (332)o
plane. The vertical dashed line indicates that the KTO film is fully strained

to the GSO substrate. (b) HAADF cross-sectional STEM image of the KTO/

GSO heterointerface. The white line is a 5 nm scale bar. The heterointerface

between KTO and GSO is marked by a triangle (3).

FIG 5. The configuration of interfacial

bi-layer. (a) High-magnification STEM

image of the KTO/GSO heterointerface.

The white line is a 1 nm scale bar. (b)

Line profiles of the bi-layers at the het-

erointerface. The solid and open trian-

gles indicate the locations of the

profiles in (a). The asterisks (*) indicate

reduced intensities with Ta-deficient

atomic rows. (c) Schematic diagram of

the reconstructed heterointerface, with

the net charge of the bi-layer indicated

on the right. A net charge of (�1) in the

interfacial bi-layer (dashed line) main-

tains the overall polarity of the system.
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interfacial layer using STEM intensity profiles. Figure 5(b)

shows the STEM intensity line profiles along the bi-layer.

While it is a formidable task to measure the exact atomic oc-

cupancy factor of the interfacial bi-layer, our best estimate

of the interfacial layer using the STEM intensity profile is

K0.7Gd0.3O/Ta0.2Sc0.8O2, indicating that there are more K

and Sc ions than Gd and Ta ions. In order to obtain these val-

ues for x and y, we first performed an STEM intensity profile

far away from the interface in both the KTO and GSO

regions, along the different layers of KO, TaO2, GdO, and

ScO2. Next, we performed an intensity profile along the

mixed (K, Gd)O and (Ta, Sc)O2 layers at the interface.

Finally, we made a comparison of the average intensities of

each row and obtained the approximate estimates of

x¼ 0.76 0.1 and y¼ 0.26 0.1. It is important to note that

without supplying excessive K ions to the GSO substrate, by

laser-ablating KNO3 pellets, we are unable to fabricate these

KTO thin-films. This step of supplying excessive K ions is

particularly important during the initial deposition process.

This growth condition may result in the deficiency of either

Gd3þ ions at A-sites or Ta5þ ions at B-sites in the interfacial

bi-layer due to the excessive supply of K ions and the ScO2

termination of GSO substrates. Hence, the fully occupied

interfacial bi-layer becomes K0.7Gd0.3O/Ta0.2Sc0.8O2, which

satisfies the conditions of x� 0.5 and x¼ yþ 0.5 necessary

to achieve a net charge of (�1). Two extreme configurations

of KO/Ta0.5Sc0.5O2 and K0.5Gd0.5O/ScO2 can give a net

charge of (�1) as well, but these configurations are not con-

sistent with our STEM data. Thus, the polarity conflict in

this heterointerface is effectively resolved by the formation

of a bi-layer with a net charge of (�1) resulting from atomic

reconstruction at the heterointerface. Note that there is an

alternating intensity along the Ta0.2Sc0.8O2 interfacial layer

while the K0.7Gd0.3O layer does not show such a fluctuation.

This suggests that there is an additional atomic ordering of

Ta and Sc ions (B-site elements) at the heterointerface while

the K and Gd ions are rather randomly mixed, which is sche-

matically illustrated in Fig. 5(c).

The atomically reconstructed bi-layer formed between

two polar layers can provide an unprecedented way to create

intriguing electronic states at heterointerfaces. For instance,

a dimensionally confined, highly electron-doped interfacial

layer can be formed at the heterointerfaces between two po-

lar materials. As shown in the schematic diagram of Fig.

5(c), the reconstructed, interfacial bi-layer should have a net

charge of one extra electron per unit-cell due to the adjacent

polar KTO and GSO layers. Note that an extra half-electron

per unit-cell is created at the interface of LAO/STO polar/

non-polar heterointerfaces to avoid the polar catastrophe

of polar LAO layers.1 Hence, in the KTO/GSO system, a sim-

ple electrostatic picture will ideally lead to a two-dimensional

electronic state with a carrier density twice as large as

observed in the LAO/STO system since there are two polar

layers instead of just one. We have measured dc-transport
properties of our samples as a function of temperature, and

found them all to exhibit an insulating behavior. However, in

order to further understand this heterostructure system, micro-

scopic characterization such as local atomic positions and

displacements are suggested as future studies. Moreover, theo-

retical investigations such as ab initio calculations of KTO/

GSO heterostructures will shed light on how the interfacial bi-

layer formation is preferential to other options such as rock-

salt structures and interfacial defects.

In summary, we have shown that high quality KTO

thin films can be grown on GSO substrates despite the po-

larity conflict of the heterointerfaces. The polarity conflict

in this system is resolved by the formation of a recon-

structed bi-layer at the heterointerface, whose net charge is

(�1) per unit-cell. Our observations suggest that two-

dimensionally confined states with high electron densities

can be created at the heterointerfaces between two polar

complex-oxides, which may result in unprecedented, in-

triguing physical properties.
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