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ERROR BOUNDS FOR THE LANCZOS METHODS FOR
APPROXIMATING MATRIX EXPONENTIALS∗

QIANG YE†

Abstract. In this paper, we present new error bounds for the Lanczos method and the shift-and-
invert Lanczos method for computing e−τAv for a large sparse symmetric positive semidefinite matrix
A. Compared with the existing error analysis for these methods, our bounds relate the convergence
to the condition numbers of the matrix that generates the Krylov subspace. In particular, we show
that the Lanczos method will converge rapidly if the matrix A is well-conditioned, regardless of what
the norm of τA is. Numerical examples are given to demonstrate the theoretical bounds.

Key words. matrix exponential, Krylov subspace method, Lanczos method

AMS subject classifications. 15A18, 65F15, 62B10

DOI. 10.1137/11085935X

1. Introduction. In this paper, we are concerned with Lanczos-type methods
for approximating the product of a matrix exponential and a vector of the form

w(τ) = e−τAv,(1.1)

where A ∈ R
n×n is a large, sparse, and symmetric positive semidefinite matrix, v ∈ R

n

with ‖v‖2 = 1, and τ is a fixed positive constant. This problem arises in the initial
value problem for a time-dependent ODE,

dv(t)

dt
= −Av(t) + r(t), v(0) = v0.(1.2)

Often, τ is a time step parameter in a finite difference discretization of (1.2), which
is typically based on an approximation of the formula

v(t+ τ) = e−τAv(t) +

∫ τ

0

e−(τ−δ)Ar(t + δ)dδ.(1.3)

The calculation of (1.3) with the integral approximated by a quadrature rule involves
matrix-vector products of form (1.1). There are many other practical applications
where the problem (1.1) arises directly; see [10, 16, 17, 22] for examples. We also
refer to Moler and Van Loan [19] for a discussion on general theory and numerical
methods for matrix exponentials.

The Lanczos method and more generally the Krylov subspace methods intro-
duced by Saad [24] and Gallopoulos and Saad [14] are some of the most efficient
methods for computing exp(A)v; see Sidje [25] for a robust implementation. The
methods have found applications in a variety of problems; see [5, 12, 17, 21, 23], for
example. With the matrix A used to form matrix-vector products only, they are the-
oretically equivalent to a polynomial approximation of exp(A) and implicitly define
a high-order explicit-type scheme for solving (1.2). Since their introduction [14, 24],

∗Received by the editors December 19, 2011; accepted for publication (in revised form) October
31, 2012; published electronically January 2, 2013. This research was supported in part by NSF
grant DMS-0915062.

http://www.siam.org/journals/sinum/51-1/85935.html
†Department of Mathematics, University of Kentucky, Lexington, KY 40506 (qye3@uky.edu).
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LANCZOS METHODS FOR MATRIX EXPONENTIALS 69

several generalizations of the original Krylov subspace methods have been proposed
in [1, 9, 10, 11, 13, 15, 18, 29]. Several other methods have also been proposed as a
preconditioning technique for problem (1.1) in [4, 17, 20, 27]. In particular, the shift-
and-invert Lanczos method that uses projections on a Krylov subspace generated by
a shift-and-invert matrix can significantly accelerate the convergence of the Lanczos
method; see van den Eshof and Hochbruck [27] and Moret and Novati [20].

Simultaneously, error bounds that aim at explaining convergence properties of the
Krylov subspace methods have been extensively studied. Some a priori error bounds
and a posteriori error estimates were first presented in [14, 24]. More sophisticated
and refined error bounds have been obtained in [9, 10, 15, 21]. The existing error
bounds suggest that the speed of convergence depends on the norm of τA. This may
limit the use of the Krylov subspace methods to problems where τ‖A‖ is not too
large. In the context of time stepping (1.3) for solving the initial value problem, a
small time step τ may be required, which may significantly increase overall cost and
makes the method less attractive. We note that one way for increasing the step size
is to use implicit schemes based on some rational approximations of the exponential
(see [26], for example), which typically requires inverting a certain matrix. When
an inexact inverse with an iterative solver is used in an implicit scheme, the Krylov
subspace methods appear more competitive overall; see [14, 23].

We observe that the matrix spectral distribution, such as the condition number
and spectral gaps, plays a dominant role in determining convergence behavior of
the Krylov subspace methods for other linear algebra problems. For example, if a
symmetric positive definite matrix A has a small condition number, then the Krylov
subspace method (i.e., the conjugate gradient method) for the linear system Ax = b
converges rapidly. This property can be understood by observing that the eigenvalues
of a well-conditioned matrix A are clustered near some point λ0 or A = λ0I + E
for some small E. For such a matrix, computing the exponential exp(−τA)v =
e−τλ0 exp(−τE)v is also reduced to the easier problem for exp(−τE)v. Therefore,
the spectral distribution, in addition to the norm, can be expected to influence the
convergence of the Krylov subspace method for e−τAv as well.

In this paper, we consider symmetric matrices and present new a posteriori and a
priori error bounds for the Lanczos method and the shift-and-invert Lanczos method.
Our a priori bound demonstrates dependence of convergence of these two methods
on the condition numbers of the related matrices. Indeed, for the Lanczos method,
we show that it converges at least at the same convergence rate as the conjugate
gradient method for A, regardless of what the norm of τA is. Our numerical tests
confirm this convergence behavior. We remark that as in the Krylov subspace methods
for other linear algebra problems, such a convergence property may potentially have
implications in preconditioning, i.e., transforming the matrix exponential problem
(1.1) to another one for accelerated convergence. However, at the moment, it is not
clear what transformation can accomplish this.

The paper is organized as follows. In section 2, we first present some decay bounds
obtained in [2] on entries of functions of banded matrices, which are used in this paper
to derive new a priori bounds. We then present new error bounds for the Lanczos
method in section 3 and for the shift-and-invert Lanczos method in section 4. We
present some numerical examples to illustrate our bounds in section 5, followed by
some concluding remarks in section 6.

Notation. Throughout, ei denotes the ith coordinate vector, the dimension of
which is determined from context. I denotes an identity matrix and In specifies the
n × n identity matrix. For a symmetric matrix A, λmax(A) and λmin(A) denote its
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70 QIANG YE

largest and smallest eigenvalues, respectively. ‖·‖ always denotes the 2-norm for both
vectors and matrices.

2. Decay bounds for entries of matrix functions. For certain functions of a
banded matrix, there is an interesting property that the entries that are away from the
main diagonal decrease very rapidly. Earlier results concerning the inverse function
can be found in [6, 7] and results for more general matrix functions were obtained in
[2, 3]. In this paper, this peculiar decay property will be used to explain convergence
of the Krylov subspace method for approximating the matrix exponential. In this
section, we present the general decay bound of Benzi and Golub [2] on the elements
away from the main diagonal for certain functions of banded matrices. It will be
the basis of several bounds related to approximation errors of the Krylov subspace
methods in the next section.

Let F be an analytic function on a simply connected region of the complex plane
that contains the interval [−1, 1]. Then, there exist ellipses with foci in −1 and 1 such
that F is analytic in the interiors of the ellipses. Let α > 1 be the major half axis
and β > 0 be the minor half axis of such an ellipse. Since we have α2 − β2 = 1, the
ellipse can be defined from one parameter, say,

χ = α+ β > 1.

We denote the ellipse so defined by Eχ. Then Eχ has the major and minor half axes
given by

α =
1

2

(
χ+

1

χ

)
and β =

√
α2 − 1.(2.1)

In particular, α and β are increasing functions of χ for χ > 1. Therefore, we have

Eχ ⊂ Eχ̄ if 1 < χ < χ̄.(2.2)

Below, we say that a matrix B = (bij) is k-banded if bij = 0 whenever |i−j| > k/2.
For a k-banded matrix B, the following theorem from [2] bounds the elements of F (B).

Theorem 2.1 (Benzi and Golub [2, Theorem 2.2]). Let F be an analytic function
in the interior of the ellipse Eχ and continuous on Eχ for some χ > 1. Assume that
F (z) is real for real z. Let B be symmetric, k-banded, and such that [−1, 1] is the

smallest interval containing the spectrum of B. Let q = 1
χ , ρ = q

2
k , and

K = max {K0, ‖F (B)‖2}

with K0 = 2χM(χ)
χ−1 , where M(χ) = maxz∈Eχ |F (z)|. Then we have

|(F (B))ij | ≤ Kρ|i−j|.

By definition, a tridiagonal matrix is 2-banded. Then, if B in the theorem is a
tridiagonal matrix, the above bound is simplified to

|(F (B))ij | ≤ Kq|i−j|.(2.3)

Therefore, the bound shows that an entry of F (B) decreases in absolute value at the
rate of ρ (or q in the tridiagonal case) as it moves away from the main diagonal. In
particular, we can expect that the (m, 1) entry of F (B) is tiny compared to its norm.
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LANCZOS METHODS FOR MATRIX EXPONENTIALS 71

This is the property that we will use to explain convergence of the Lanczos method
or the shift-and-invert Lanczos method for approximating e−τAv.

We finally note that the rate of decay ρ is determined by the size of ellipse Eχ. If
F is analytic on a larger ellipse Eχ, we have a smaller q, but M(χ) and hence K may
be larger as well.

3. Error bounds for the Lanczos method. In this section, we consider the
Lanczos method that was originally introduced in [14, 24] for approximating (1.1),
i.e., w(τ) = e−τAv, where A is a symmetric positive semidefinite matrix, v ∈ Rn, and
τ > 0. Without loss of generality, we assume that ‖v‖ = 1.

With v1 = v, the Lanczos algorithm applied to A and v1 generates an orthonormal
basis v1, v2, . . . , vm, vm+1 for the Krylov subspace

Km+1(A, v) := span{v,Av,A2v, . . . , Amv}

and an m×m tridiagonal matrix Tm such that

AVm = VmTm + βm+1vm+1e
T
m,(3.1)

where Vm = [v1, v2, . . . , vm]; see [8, Algorithm 6.10] for a detailed algorithm. Recall
that ei ∈ Rn is the ith coordinate vector. The vector VmV

T
m e

−τAv is the orthogonal
projection of e−τAv on Km(A, v), which is the closest approximation to e−τAv from
Km(A, v). The Lanczos method further approximates it as

VmV
T
m e

−τAv = VmV
T
m e

−τAVme1 ≈ Vme
−τTme1.

We call

wm(τ) := Vme
−τTme1(3.2)

the Lanczos approximation to w(τ) = e−τAv. The following is an a priori bound on
the error due to Saad [24, Corollary 4.6]:

‖w(τ) − wm(τ)‖ ≤ 2

m!

(
τ‖A‖
2

)m

.(3.3)

The bound suggests that the Lanczos method converges rapidly if τ‖A‖ is not too
large. When τ‖A‖ is large, the bound actually increases initially, although its limit
as m → ∞ is 0. Several more refined bounds have been obtained in [9, 10, 15] but
they all suggest similar dependence of convergence on τ‖A‖. This appears to limit
applicability of the Lanczos method to problems where τ‖A‖ is not too large. Noting
that the Lanczos method has the finite termination property, i.e., wn = w, we have
used terms like convergence to refer to reduction of the error as m increases to n.

We shall show that convergence of the Lanczos method also depends on the con-
dition number of A. We first present the following a posteriori error bound on the
Lanczos method, which relates the error to the (m, 1) entry of e−tTm .

Theorem 3.1. Let A be a symmetric positive semidefinite matrix and let wm(τ)
be the Lanczos approximation to w(τ) as defined in (3.2) and (3.1). Then, for any α
with 0 ≤ α ≤ τ , the error satisfies

‖w(τ)− wm(τ)‖ ≤ βm+1

(
h0,αe

(α−τ)λmin(A)α+ hα,τ (τ − α)
)
,(3.4)
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72 QIANG YE

where

ht1,t2 = max
t1≤t≤t2

|h(t)| for 0 ≤ t1 ≤ t2 ≤ τ(3.5)

and h(t) = eTme
−tTme1.

Proof. First, w(t) = e−tAv is the solution to

w′(t) = −Aw(t), w(0) = v.

Since w′
m(t) = −VmTme−tTme1, we obtain from (3.1) that

w′
m(t) = −(AVm − βm+1vm+1e

T
m)e−tTme1

= −AVme−tTme1 + βm+1vm+1e
T
me

−tTme1

= −Awm(t) + βm+1(e
T
me

−tTme1)vm+1.

Subtracting the above two equations and writing Em(t) = w(t) − wm(t), we have

E′
m(t) = −AEm(t)− βm+1(e

T
me

−tTme1)vm+1.

Solving this initial value problem with Em(0) = w(0) − wm(0) = 0, we obtain

Em(τ) =

∫ τ

0

e(t−τ)A
(−βm+1(e

T
me

−tTme1)vm+1

)
dt

= −βm+1

∫ τ

0

h(t)e(t−τ)Avm+1dt.

Separating the integral into two subintervals and bounding them separately, we have

‖Em(τ)‖ ≤ βm+1

∥∥∥∥
∫ α

0

h(t)e(t−τ)Adt+

∫ τ

α

h(t)e(t−τ)Adt

∥∥∥∥
≤ βm+1

(
h0,α

∫ α

0

‖e(t−τ)A‖dt+ hα,τ

∫ τ

α

‖e(t−τ)A‖dt
)

≤ βm+1

(
h0,α

∫ α

0

e(t−τ)λmin(A)dt+ hα,τ

∫ τ

α

e(t−τ)λmin(A)dt

)

= βm+1

(
h0,α

e(α−τ)λmin(A) − e−τλmin(A)

λmin(A)
+ hα,τ

1− e(α−τ)λmin(A)

λmin(A)

)

= βm+1

(
h0,αe

(α−τ)λmin(A) 1− e−αλmin(A)

λmin(A)
+ hα,τ

1− e(α−τ)λmin(A)

λmin(A)

)
.

By noting that 1− e−x ≤ x for any x ≥ 0, (3.4) is proved.
An optimal bound can be obtained by minimizing (3.4) with respect to α, but a

sufficiently good one can be derived by using the minimum of (3.4) over some equally
spaced points in [0, τ ]. To use the bound as a practical estimate of errors, we may
replace λmin(A) in (3.4) by a lower bound, say, 0. The other terms used in the
bound are all computable at the end of step m of the Lanczos algorithm, although
maxt1≤t≤t2 |h(t)| can only be approximated.

If α = τ , the bound above reduces to

‖w(τ) − wm(τ)‖ ≤ τβm+1 max
0≤t≤τ

|h(t)|.
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LANCZOS METHODS FOR MATRIX EXPONENTIALS 73

This is similar to a posteriori error estimates derived by Saad [24, section 5]. However,
since the values of h(t) may be very small for small t, separately bounding h(t) over
two intervals in (3.4) may improve significantly over the above bound. Indeed, (3.4)
with an optimal α provides a quite sharp estimate of the actual error.

From our discussions in section 2, eTme
−tTme1, the (m, 1) entry of e−tTm , is ex-

pected to have a decay property as m increases. Indeed, it can be bounded as follows.
Lemma 3.1. Let Tm 
= 0 be an m×m symmetric positive semidefinite tridiagonal

matrix and let a = λmin(Tm) and b = λmax(Tm) be the smallest and the largest
eigenvalues of Tm, respectively. Then for any t ≥ 0 and any q with 0 < q < 1, we
have

|eTme−tTme1| ≤ 2

1− q
e−

tγ
4q qm−1,(3.6)

where γ = (b− a)(q − q0)(q
−1
0 − q) and q0 =

√
b−√

a√
b+

√
a
. In particular, if a 
= 0, we have

|eTme−tTme1| ≤ (
√
κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

,(3.7)

where κ = b/a.
Proof. Let f(λ) = e−tλ and F = f ◦ ψ−1, where ψ : C → C is defined by

ψ(λ) =
2λ− (a+ b)

b− a
.

Then ψ([a, b]) = [−1, 1]. Let B = ψ(Tm). Then B is symmetric tridiagonal and its
spectrum is contained in [−1, 1]. Let χ = 1

q . Since F is analytic on C, F is analytic

in the interior of the ellipse Eχ (as defined in (2.1)) and continuous on Eχ. Applying
Theorem 2.1 with k = 2 to the function F and the matrix B, we have the following
bound on the (m, 1) entry of the matrix e−tTm :

|eTme−tTme1| = |eTmF (B)e1| ≤ Kqm−1,(3.8)

where

K = max {K0, ‖F (B)‖}, K0 =
2χM(χ)

χ− 1
, and M(χ) = max

z∈Eχ

|F (z)|.

We bound K now. For any z = x+ iy ∈ Eχ, set

u =
(b− a)x+ a+ b

2
, v =

b− a

2
y,

i.e., u+ iv = ψ−1(z). Then

|F (z)| = |e−t(u+iv)| = e−tu.

Note that the major half axis of Eχ is α := 1
2 (χ+ 1

χ ) =
1
2 (q +

1
q ); see (2.1). Then we

have −α ≤ x ≤ α. Furthermore, it can be checked that

b − a

4

(
q +

1

q

)
− a+ b

2
= −b− a

4q
(q − q0)(q

−1
0 − q) = − γ

4q
.
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Thus, we have

M(χ) = max
z∈Eχ

et((a−b)x−a−b)/2 = max
−α≤x≤α

et((a−b)x−a−b)/2

= et((b−a)(q+ 1
q )−2(a+b))/4 = e−tγ/(4q).

It follows that

K0 =
2χM(χ)

χ− 1
=

2

1− q
e−tγ/(4q).

Furthermore,

‖F (B)‖ = ‖e−tTm‖ = e−ta ≤ e−t(a+b)/2 ≤ e−tγ/(4q).

Thus

K =
2

1− q
e−tγ/(4q).(3.9)

Substituting this into (3.8), the first bound is proved. If a 
= 0, q0 =
√
κ−1√
κ+1

. Then, the

second bound (3.7) follows from substituting q = q0 into the first bound (3.8).
The lemma above shows that eTme

−tTme1 is reduced at least at the rate of q0 as
m increases. However, we can choose q in the first bound (3.6) to be smaller than q0,

resulting in a faster decreasing factor qm−1, but the coefficient e−
tγ
4q (with γ < 0 now)

may be very large, offsetting any decrease in qm. However, as long as q < q0 is such

that e−
tγ
4q is not too large, this may still lead to a better bound. Specifically, given

any δ > 0, setting

q =

(
1

q0
+

4δ

t(b− a)

)−1

< q0

leads to − tγ
4q ≤ t(b − a)(q0q

−1 − 1)q−1
0 /4 = δ and hence

|eTme−tTme1| ≤ 2

1− q
eδqm−1.(3.10)

Using a modest value for δ here (say, less than 10) may result in an overall stronger
bound (3.10) with a modest eδ but much reduced q if t(b − a) is not too large.

Lemma 3.1 demonstrates the influence of the condition number of Tm on the
(m, 1) entry of e−tTm , but if tTm has a small norm, e−tTm is close to I and then
eTme

−tTme1 is close to 0 whatever its condition number. Therefore, eTme
−tTme1 also

depends on the magnitude of t‖Tm‖. The next lemma demonstrates this dependence.
Lemma 3.2. Let Tm be an m × m symmetric positive semidefinite tridiagonal

matrix. For any t ≥ 0, we have

|eTme−tTme1| ≤ 1

(m− 1)!

(
tb

2

)m−1

,(3.11)

where b = λmax(Tm) is the largest eigenvalue of Tm.
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Proof. For any m×m tridiagonal matrix T̂m, by Lemma 3.1 of [28], eTmT̂
j
me1 = 0

for 1 ≤ j ≤ m− 2. Then

|eTme−tT̂me1| =
∣∣∣∣∣∣
∞∑
j=0

1

j!
eTm(−tT̂m)je1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=m−1

1

j!
eTm(−tT̂m)je1

∣∣∣∣∣∣
≤ 1

(m− 1)!

∞∑
j=0

1

j!
(t‖T̂m‖)j+m−1

=
1

(m− 1)!
(t‖T̂m‖)m−1et‖T̂m‖.

Applying this bound to T̂m = Tm − b
2I as in [24], we have

|eTme−tTme1| = e−t b
2 |eTme−tT̂me1| ≤ e−t b

2
1

(m− 1)!
(t‖T̂m‖)m−1et‖T̂m‖

=
1

(m− 1)!

(
tb

2

)m−1

,

where we note that ‖T̂m‖ = b/2.
Now, we can obtain various a priori bounds by applying the bounds on |eTme−tTme1|

to Theorem 3.1. In particular, for small α, h0,α is small due to small α‖Tm‖ and we
use (3.10) or (3.11) to bound it. We use (3.7) to bound hα,τ .

Theorem 3.2. Let A be an n × n symmetric positive definite matrix and let
λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues. Let wm(τ) be the Lanczos approximation to
w(τ) as defined in (3.2) and (3.1). Then, for any α with 0 ≤ α ≤ τ and for any δ > 0,
the error of the Lanczos method satisfies

‖w(τ) − wm(τ)‖ ≤ αe(α−τ)λ1‖A‖ε1(m) + (τ − α)‖A‖ε2(m),(3.12)

where

ε1(m) = min

{
(αλn/2)

m−1

(m− 1)!
,

2eδ

1− q
qm−1

}
, ε2(m) = (

√
κ+ 1)qm−1

0 ,

q = ( 1
q0

+ 4δ
α(λn−λ1)

)−1, q0 =
√
κ−1√
κ+1

, and κ = λn

λ1
.

Proof. For βm+1 that is defined from the Lanczos algorithm (3.1), we have

|βm+1| = ‖βm+1vm+1e
T
m‖ = ‖AVm − VmTm‖ ≤ ‖AVm‖ ≤ ‖A‖,

where we notice that (VmTm)T (AVm − VmTm) = 0 and hence

‖AVm‖2 = ‖(AVm − VmTm) + VmTm‖2 ≥ ‖AVm − VmTm‖2.

Let a = λmin(Tm) and b = λmax(Tm) be the smallest and the largest eigenvalues of
Tm, respectively, and let κ0 = b

a . It follows from Tm = V T
mAVm that b ≤ λn and

a ≥ λ1. Thus, κ0 ≤ κ.
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Now, applying Theorem 3.1, the error satisfies (3.4). From (3.11), we obtain
h0,α ≤ 1

(m−1)!(αb/2)
m−1 ≤ 1

(m−1)! (αλn/2)
m−1. We also obtain from (3.10) that

|eTme−tTme1| ≤ 2
1−q̂ e

δ q̂m−1 ≤ 2
1−q e

δqm−1 for 0 ≤ t ≤ α, where q̂ := ( 1
q0

+ 4δ
t(b−a) )

−1 ≤
q. Therefore, h0,α ≤ ε1(m). On the other hand, it follows from (3.7) that

hα,τ ≤ (
√
κ0 + 1)

(√
κ0 − 1√
κ0 + 1

)m−1

≤ (
√
κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

.

Substituting these into (3.4), we obtain (3.12).
The parameter δ in the above bound should be chosen to be a modest number, say,

δ = 5 or 10, to balance the fast growth of eδ with the decrease in q. The bound also
allows choosing a parameter α. An optimal bound requires minimizing the bound
(3.12) with respect to α, but a sufficiently good bound can be obtained by using
minimum over a few equally spaced points in [0, τ ]. Indeed, for most problems we
tested, the best bound is essentially given by either α = 0 or α = τ , which yields ε2 or
ε1 as a bound, respectively. The two bounds reflect two independent factors affecting
the convergence of the Lanczos method. We discuss two situations:

1. If A is well-conditioned, ε2 decreases rapidly at the rate of
√
κ−1√
κ+1

. Then

choosing α = 0, the bound is given entirely by ε2 as

‖w(τ) − wm(τ)‖ ≤ τ‖A‖(√κ+ 1)

(√
κ− 1√
κ+ 1

)m−1

.

Therefore, regardless of how large the norm of τA is, the Lanczos method
converges at least at the same rate as the conjugate gradient method. This
is a property that cannot be inferred from previous bounds such as (3.3).

2. If A is not well-conditioned, then by choosing α = τ , the bound is given by
τ‖A‖ε1. Inspecting ε1, we have good convergence if τλn or τ(λn − λ1) is
small. Note that asymptotically for very large m, ε1 always gives a better
bound.

Thus, for a general matrix, our bound (3.12) combines two different forces driving
the convergence of the Lanczos method. On the one hand, as a high-order polynomial
approximation scheme, its convergence depends on the norm of the matrix and τ .
On the other hand, as a projection method, which captures most important spectral
information of A in the time propagation, its convergence also depends on the spectral
distribution, i.e., the condition number. The method itself will achieve an optimal
combination of the two factors through a weighted average, as indicated in our bound
(3.12). Our numerical examples in section 5 confirm this behavior.

Finally, Theorem 3.2 considers a symmetric positive definite A, but Theorem 3.1,
Lemma 3.1, and Lemma 3.2 are all valid for symmetric positive semidefinite matrices.
When A is symmetric positive semidefinite, it is straightforward to see that the bound
by ε1 still holds and we have ‖w(τ) − wm(τ)‖ ≤ τ‖A‖ε1. However, ε2 can no longer
be used because the condition number may be undefined.

4. Shift-and-invert Lanczos method. One implication of Theorem 3.2 is on
preconditioning, i.e., to accelerate convergence of the Lanczos method by transforming
the problem into an equivalent one with a well-conditioned matrix. For the Krylov
subspace method for solving linear systems, the condition number is reduced using
the transformation M−1A for some preconditioner matrix M ≈ A. Unfortunately,
it is not clear whether and how the transformation M−1A can be used for exp(A)v,
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although there are some related works [4, 17] to indirectly use a preconditioner matrix
M to compute e−τAv.

Shifting the matrix A by a positive σ is another transformation that reduces the
condition number. With the transformation A+ σI, we may use

e−τAv = eτσe−τ(A+σI)v.(4.1)

Then, applying the Lanczos method to e−τ(A+σI)v will indeed result in faster con-
vergence, which is confirmed in our numerical experiments. However, to compute
e−τAv, the corresponding approximate solution and hence the associated error for
e−τAv need to be multiplied by eτσ > 1, which turns out to cancel the reduction in
the error achieved by using the shift. Indeed, the larger the shift σ is, the better the
condition number of A + σI is and hence the faster convergence to e−τ(A+σI)v, but
also the larger eσ is. The final approximation is unfortunately not improved by this
simple transformation.

A somewhat related approach is to consider (A+ σI)−1, which also has a smaller
condition number for σ > 0. However, there is no simple relation like (4.1) for the
shift-and-invert matrix (A + σI)−1. Instead one can construct an approximation of
e−τAv from the Krylov subspace generated by (A+σI)−1. This is basically the shift-
and-invert Lanczos method introduced by van den Eshof and Hochbruck [27] and by
Moret and Novati [20], which we describe now.

For some σ ≥ 0, applying m steps of the Lanczos algorithm to (A + σI)−1 and
v1 = v, we obtain

(A+ σI)−1Vm = VmTm + βm+1vm+1e
T
m,(4.2)

where the columns of Vm = [v1, v2, . . . , vm] form an orthonormal basis of Km((A +
σI)−1, v), and Tm is a tridiagonal matrix. Then, VmV

T
m e

−τAv is the projection of
e−τAv on Km((A + σI)−1, v), and the shift-and-invert Lanczos method further ap-
proximates it as

VmV
T
m e

−τAv = VmV
T
m e

−τ(B−1−σI)Vme1 ≈ Vme
−τ(T−1

m −σI)e1,

where B = (A+ σI)−1. We call

wSIL
m (τ) := Vme

−τ(T−1
m −σI)e1(4.3)

the shift-and-invert Lanczos approximation to w(τ) = e−τAv.
The shift-and-invert Lanczos method has been derived primarily from the points

of view of a special rational approximation in [20, 27] but has also been called a
preconditioning scheme in [27]. Its convergence has been analyzed in [20, 27] by
bounding ESIL

m (τ) in terms of the error of a certain rational approximation to e−t

with σ as a parameter. Some a posteriori error estimates have also been discussed
in [27]. We note that the method (4.3) cannot be formulated as a standard Lanczos
method and therefore its convergence property cannot be analyzed or inferred from
the existing theory for the Lanczos method.

Here, in light of the dependence of convergence of the Lanczos method on the
condition number of A and the fact that the shift-and-invert transformation reduces
the condition number, we shall analyze the shift-and-invert Lanczos method by con-
sidering it as a way to reduce the condition number. Specifically, we shall relate the
error to the condition number of (A+σI)−1 or equivalently of A+σI. We first present
the following a posteriori error bound.
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Theorem 4.1. Let A be an n × n symmetric positive semidefinite matrix and
let λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues. Let wSIL

m (τ) be the shift-and-invert
Lanczos approximation to w(τ) = e−τA as defined in (4.2) and (4.3) and let h(t) =

eTmT
−1
m e−t(T−1

m −σI)e1. For any α with 0 ≤ α ≤ τ , we have

‖w(τ) − wSIL
m (τ)‖ ≤ βm+1(λn + σ)

(
h0,αe

(α−τ)λ1α+ hα,τ (τ − α)
)
,(4.4)

where

ht1,t2 = max
t1≤t≤t2

|h(t)| for 0 ≤ t1 < t2 ≤ τ.(4.5)

Proof. We rewrite (4.2) as

Vm(T−1
m − σI) = AVm + βm+1(A+ σI)vm+1e

T
mT

−1
m .

Then, we have

d

dt
wSIL

m (t) = −Vm(T−1
m − σI)e−t(T−1

m −σI)e1

= −(AVm + βm+1(A+ σI)vm+1e
T
mT

−1
m )e−t(T−1

m −σI)e1

= −AVme−t(T−1
m −σI)e1 − βm+1(A+ σI)vm+1h(t)

= −AwSIL
m (t)− βm+1h(t)(A+ σI)vm+1.

Let ESIL
m (t) = w(t)− wSIL

m (t). We have

d

dt
ESIL

m (t) = −AESIL
m (t) + βm+1h(t)(A+ σI)vm+1.

Solving the above ODE with the initial condition ESIL
m (0) = 0, we obtain

ESIL
m (τ) = βm+1

(∫ τ

0

h(t)e(t−τ)A(A+ σI)dt

)
vm+1.(4.6)

For a fixed α, we bound this error as

‖ESIL
m (τ)‖ ≤ βm+1

∥∥∥∥
∫ α

0

h(t)e(t−τ)A(A+ σI)dt+

∫ τ

α

h(t)e(t−τ)A(A+ σI)dt

∥∥∥∥
≤ βm+1

(
h0,α

∫ α

0

‖e(t−τ)A(A+ σI)‖dt+ hα,τ

∫ τ

α

‖e(t−τ)A(A+ σI)‖dt
)

≤ βm+1(λn + σ)

(
h0,α

e(α−τ)λ1 − e−τλ1

λ1
+ hα,τ

1− e(α−τ)λ1

λ1

)

= βm+1(λn + σ)

(
h0,αe

(α−τ)λ1
1− e−αλ1

λ1
+ hα,τ

1− e(α−τ)λ1

λ1

)

≤ βm+1(λn + σ)
(
h0,αe

(α−τ)λ1α+ hα,τ (τ − α)
)
.

The theorem is proved.
As before, we can derive a near optimal bound by minimizing (4.4) with respect to

α over some equally spaced discrete points in [0, τ ]. We also note that (4.6) has been
presented in [27], from which an a posteriori error estimate is derived by replacing
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e(t−τ)A by the leading term of its Taylor series. The bound obtained here follows a
different approach by relating the error to h(t). We bound h(t) now.

Lemma 4.1. Let Tm be an m × m symmetric positive definite tridiagonal ma-
trix with a = λmin(Tm) and b = λmax(Tm) being its smallest and largest eigenvalue,

respectively. Let κ = b
a and q0 =

√
κ−1√
κ+1

. Then, for any fixed q with q0 < q < 1, we

have

|eTmT−1
m e−tT−1

m e1| ≤ 8

(1− q)γ
e
− tγ

4q(a+b)2 qm,(4.7)

where γ = (b− a)(q − q0)(q
−1
0 − q) > 0.

Proof. Let ψ(λ) = 2λ−(a+b)
b−a and B = ψ(Tm). Then B is a symmetric tridiagonal

matrix with the spectrum contained in [−1, 1]. Let Eχ̄ be the ellipse that has foci at
−1 and 1 with major half axis α0 = (b + a)/(b− a) (see (2.1)). Then

χ̄ = α0 +
√
α2
0 − 1 =

b+ a

b− a
+

√(
b+ a

b− a

)2

− 1 =

√
κ+ 1√
κ− 1

.

Let f(λ) = λ−1e−tλ−1

and F = f ◦ ψ−1. Then

F (z) =

(
b− a

2
z +

a+ b

2

)−1

e−t( b−a
2 z+ a+b

2 )
−1

.

Clearly, F is analytic in the interior of the ellipse Eχ̄. Let χ = 1/q. Then, 1 < χ < χ̄
and hence Eχ ⊂ Eχ̄; see (2.2). Thus, the function F is analytic inside Eχ and continuous
on Eχ. It follows from Theorem 2.1 and f(Tm) = F (B) that

|eTmT−1
m e−tT−1

m e1| = |eTmF (B)e1| ≤ Kqm−1,(4.8)

where K = max { 2χM(χ)
χ−1 , ‖F (B)‖2} and M(χ) = maxz∈Eχ |F (z)|.

We bound K now. Let z = x+ iy ∈ Eχ. Set u+ iv = ψ−1(x+ iy), i.e.,

u =
(b− a)x+ a+ b

2
, v =

b− a

2
y.

Since the major half axis of Eχ is α := 1
2 (χ + 1

χ ) <
1
2 (χ̄ + 1

χ̄ ) =
b+a
b−a , it follows from−α ≤ x ≤ α that

u ≥ −b− a

4

(
χ+

1

χ

)
+
a+ b

2
=
b− a

4q
(q − q0)(q

−1
0 − q) =

γ

4q
,(4.9)

where we note that q = 1/χ. Then

|F (z)| = |(u+ iv)−1e−t(u+iv)−1 | = 1√
u2 + v2

|e−t u−iv

u2+v2 | = 1√
u2 + v2

e
−t u

u2+v2 .

Since u + iv is contained in the ellipse ψ−1(Eχ̄), which has foci at a and b with the
major half axis equal to 1

2 (a + b), and since this ellipse ψ−1(Eχ̄) is contained in the
disk centered at 1

2 (a+ b) with the radius 1
2 (a+ b), we have u2 + v2 ≤ (a+ b)2. Thus,

|F (z)| ≤ 1

u
e
−t u

(a+b)2 ≤ 4q

γ
e
− tγ

4q(a+b)2 .

D
ow

nl
oa

de
d 

10
/2

2/
15

 to
 1

28
.1

63
.8

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

80 QIANG YE

Hence,

2χM(χ)

χ− 1
=

2

1− q
max
z∈Eχ

|F (z)| ≤ 8q

(1 − q)γ
e
− tγ

4q(a+b)2 .

On the other hand, we have

‖F (B)‖ = ‖T−1
m e−tT−1

m ‖ ≤ 1

a
e−t 1

b .

Finally, noting that γ/(4q) = − b−a
4 (χ+ 1

χ ) +
a+b
2 ≤ − b−a

2 + a+b
2 = a and γ

4q(a+b)2 ≤
a

(a+b)2 ≤ 1
b , we have 8q

(1−q)γ e
− tγ

4q(a+b)2 ≥ 1
ae

−t 1
b and hence

K = max

{
2χM(χ)

χ− 1
, ‖F (B)‖2

}
≤ 8q

(1 − q)γ
e
− tγ

4q(a+b)2 ,

which together with (4.8) proves (4.7).
Finally, as in section 3, combining Theorem 4.1 with Lemma 4.1, we obtain an a

priori error bound.
Theorem 4.2. Let A be an n×n symmetric positive semidefinite matrix and let

λ1 ≤ λ2 ≤ · · · ≤ λn be its eigenvalues. For any σ > 0, let

κ =
λn + σ

λ1 + σ
and q0 =

√
κ− 1√
κ+ 1

.

For any fixed q with q0 < q < 1, the error of the shift-and-invert Lanczos method to
the matrix exponential e−τAv as defined in (4.2) and (4.3) satisfies

‖w(τ) − wSIL
m (τ)‖ ≤ 8(λn + σ)2μ

(1− q)γ
qm,(4.10)

where γ = (λn − λ1)(q − q0)(q
−1
0 − q) and

μ = min
0≤α≤τ

(
αe(α−τ)λ1+ασ + (τ − α)e−

αγ
16qκ+τσ

)
≤ τeτσ.

Proof. By using (4.2), βm+1 can be bounded as

|βm+1| = ‖βm+1vm+1e
T
m‖ = ‖(A+ σI)−1Vm − VmTm‖ ≤ ‖(A+ σI)−1Vm‖ ≤ 1

λ1 + σ
,

where we note that (VmTm)T
(
(A+ σI)−1Vm − VmTm

)
= 0 and hence

‖(A+σI)−1Vm‖2 = ‖(A+σI)−1Vm−VmTm+VmTm‖2 ≥ ‖(A+σI)−1Vm−VmTm‖2.

Let a = λmin(Tm) and b = λmax(Tm) be the smallest and the largest eigenvalues of
Tm, respectively. It follows from Tm = V T

m (A + σI)−1Vm that b ≤ (λ1 + σ)−1 and

a ≥ (λn + σ)−1. Let κ0 = b/a and q̂0 =
√
κ0−1√
κ0+1 . Then κ0 ≤ κ and hence q0 ≥ q̂0.

Now, applying Lemma 4.1 to Tm with q > q0 ≥ q̂0, we obtain

|eTmT−1
m e−tT−1

m e1| ≤ 8

(1− q)γ0
e
− tγ0

4q(a+b)2 qm,
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where γ0 = (λn − λ1)(q − q̂0)(q̂
−1
0 − q). It follows that

h0,α := max
0≤t≤α

|eTmT−1
m e−tT−1

m e1|etσ ≤ 8

(1− q)γ0
eασqm

and

hα,τ := max
α≤t≤τ

|eTmT−1
m e−tT−1

m e1|etσ

≤ 8

(1− q)γ0
e
− αγ0

4q(a+b)2 eτσqm

≤ 8

(1− q)γ0
e−

αγ0(λ1+σ)2

16q +τσqm.

Now, as in (4.9), it can be checked that γ0

4q = (a−b
4 (1q + q) + a+b

2 ). Thus, we have

γ0
4q

=
a

2

(
1 +

1

2

(
1

q
+ q

))
+
b

2

(
1− 1

2

(
1

q
+ q

))

≥ 1

2(λn + σ)

(
1 +

1

2

(
1

q
+ q

))
+

1

2(λ1 + σ)

(
1− 1

2

(
1

q
+ q

))

=
1

2(λ1 + σ)(λn + σ)

(
λ1 − λn

2

(
1

q
+ q

)
+ λ1 + λn + 2σ

)

=
(λn − λ1)(q − q0)(q

−1
0 − q)

4q(λ1 + σ)(λn + σ)
=

γ

4q(λ1 + σ)(λn + σ)
.

Substituting these into (4.4) of Theorem 4.1, the theorem is proved.
The bound in the above theorem involves choosing q. It can be chosen to be as

close to q0 as one wishes, but as q → q0, γ → 0. However, choosing, for example,
q = 1.01q0 will result in a moderate factor 1/γ with γ = 0.01(λn − λ1)(1 − 1.01q20),
while qm−1 = 1.01mqm−1

0 decreases effectively at the same rate as q0. The parameter
α can again be chosen as some equally spaced points in [0, τ ] and we use the best
corresponding bound.

Our bound directly relates convergence of the shift-and-invert Lanczos method to
σ through the condition number κ of A − σI, but σ also affects the bound through
the coefficient μ. We do not have a simple upper bound for μ other than μ ≤ τeτσ,
which may become very large if τσ is not small. In that case, (4.10) results in a
very pessimistic bound of the actual error; see the numerical examples in section 5.
Qualitatively, the shift σ affects the bound and hence convergence in two ways. That
is, it improves the condition number on the one hand, but it also increases the coef-
ficient μ of the bound quickly on the other hand. Our numerical examples confirm
such convergence behavior. It is difficult to determine an optimal σ from our current
bound, unfortunately.

5. Numerical examples. In this section, we present some numerical examples
to demonstrate error bounds obtained in this paper. All numerical tests were carried
out on a PC with an AMD Athlon processor in MATLAB (R2012a) with machine
precision ≈ 2 · 10−16.

We shall use in our examples diagonal matrices and discretized Laplacian matrices
for which e−τA is readily available. We shall compare the approximation errors with
the new a posteriori and a priori bounds. In our a posteriori bounds, we need to
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compute hα1,α2 = maxα1≤t≤α2 |h(t)|, where h(t) = eTme
−tTme1 for the Lanczos method

and h(t) = eTmT
−1
m e−t(T−1

m −σI)e1 for the shift-and-invert Lanczos method. They can
be computed by first computing the eigenvalue decomposition of Tm to obtain an
algebraic expression for h(t) and h′(t) and then applying an optimization algorithm
to find its extremum. However, since h(t) is a fairly smooth function, they can also
be easily approximated by its maximum at some densely distributed discrete points,
i.e., hα1,α2 ≈ max{|h( i

k τ)| : 0 ≤ i ≤ k and α1 ≤ i
k τ ≤ α2}, where k is some positive

integer. We have used this approach with k = 1000 in our tests and we have used
the same discrete points for the parametric value α in our a posteriori and a priori
bounds (i.e., α = i

k τ for 0 ≤ i ≤ k). Also, the a priori bounds (3.12) and (4.10)
involve choosing parametric values for δ and q, respectively. We have used δ = 10
and q = 1.01q0 in our tests; see the remarks after Theorems 3.2 and 4.2.

We first consider two well-conditioned diagonal matrices to illustrate the influence
of the condition number on the convergence of the Lanczos method.

Example 1. Let A be the n× n diagonal matrix with the diagonal entries equal
to aii = 1 − ζ i−1

n−1 for 1 ≤ i ≤ n, i.e., A = diag{1, 1− ζh, 1 − 2ζh, . . . , 1 − ζ}, where
h = 1/(n− 1) and 0 < ζ < 1. Then ‖A‖ = 1 and κ = λmax(A)/λmin(A) = 1/(1− ζ).
We apply m steps of the Lanczos method to compute w(τ) = e−τAv, where v is a
random vector with ‖v‖ = 1. We test various values of τ and we compare the error
‖w−wm‖ with the new bounds as well as the classical bound of Saad (3.3) by plotting
them against m with the error in the solid lines, our a posteriori bound (3.4) in the
+-lines, our a priori bound (3.12) in the dashed lines, and Saad’s a priori bound (3.3)
in the dash-dotted lines.

In our first test, we use n = 103 and ζ = 0.9, resulting in a modestly well-
conditioned matrix with κ = 10. We present the results for τ = 0.1, 1, 10, 100 in
Figure 5.1(a)–(d), respectively. We observe that when τ is very small (τ = 0.1), the
classical bound of Saad and our a priori bound are comparable. In this case, the
convergence of the Lanczos method can be attributed to the small norm of τA. As τ
increases, the classical bound deteriorates, while ours remains sharp. For τ = 10, our
bound is already much better than the classical bound, and for τ = 100, the classical
bound increases dramatically (out of range in the figure), while our bound follows
the actual convergence curve quite closely. In this situation, the convergence of the
Lanczos method is due to modest conditioning of A. For all cases, the a posteriori
bound follows the actual error very closely.

In our second test, we use n = 103 and ζ = 0.1, resulting in κ = 10/9. We
present the results for τ = 0.1 and 100 in Figure 5.2(a) and (b), respectively. For
this very well-conditioned matrix, even when τ is very small (τ = 0.1), our bound
reflects the actual convergence rate more accurately; see Figure 5.2(a). Namely, the
convergence is more driven by the small condition number even for τ = 0.1. As τ
increases from 0.1, τ‖A‖ increases and the classical bound (3.3) further deteriorates
with similar behavior, as observed in Example 1. We present the result for τ =
100 only. For this case, since the smallest diagonal entry for the matrix is 0.9, the
solution w = e−90e−τ(A−0.9I)v has effectively a scaling factor e−90 ≈ 10−40 and,
with wm(τ) = Vme

−τTme1 = e−90Vme
−τ(Tm−0.9I)e1, the Lanczos approximation can

implicitly capture this scaling in the solution. Therefore, the error converges from
about 10−40 to approximately 10−55. The a posteriori error bound is derived from
the maximum of h(t) = |eTme−tTme1| for 0 ≤ t ≤ τ , which removes this scaling for t
near 0, and is therefore pessimistic in such an extreme situation.

Our next example uses an ill-conditioned matrix with a large τ for which we
consider the shift-and-invert Lanczos method.

D
ow

nl
oa

de
d 

10
/2

2/
15

 to
 1

28
.1

63
.8

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LANCZOS METHODS FOR MATRIX EXPONENTIALS 83

2 4 6 8 10
10

−20

10
−15

10
−10

10
−5

10
0

Iteration number

E
rr

or
 a

nd
 it

s 
B

ou
nd

s

(a)  tau=0.1

5 10 15
10

−20

10
−15

10
−10

10
−5

10
0

Iteration number

E
rr

or
 a

nd
 it

s 
B

ou
nd

s

(b)  tau=1

5 10 15 20 25 30
10

−20

10
−10

10
0

Iteration number

E
rr

or
 a

nd
 it

s 
B

ou
nd

s

(c)  tau=10

10 20 30 40 50 60
10

−20

10
−10

10
0

10
10

Iteration number

E
rr

or
 a

nd
 it

s 
B

ou
nd

s

(d)  tau=100

Fig. 5.1. Example 1, case ζ = 0.9. Error (solid), a posteriori bound (+), new a priori bound
(dashed), Saad’s bound (dash-dotted).
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Fig. 5.2. Example 1, case ζ = 0.1. Error (solid), a posteriori bound (+), new a priori bound
(dashed), Saad’s bound (dash-dotted).

Example 2. Consider computing w = e−τAv for a random vector v with ‖v‖ = 1,
where τ = 1000 and A is the n × n diagonal matrix with the diagonal entries equal
to aii =

i
n for 1 ≤ i ≤ n, i.e., A = diag{1/n, 2/n, . . . , 1}. We use n = 104 in our test

and both τ‖A‖ and the condition number of A are large. We approximate w using
wSIL

m obtained by m steps of the shift-and-invert Lanczos method (4.3) with various
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Fig. 5.3. Example 2. Left: σ = 0.1 (error, solid; a posteriori bound, + line; a priori bound,
dashed). Right: Error (σ = 1, dotted; σ = 0.1, dash-dotted; σ = 0.01, solid; σ = 0.001, dashed; and
σ = 0, + line).

shifts σ (i.e., σ = 0, 0.001, 0.01, 0.1, 1). In Figure 5.3, left, we present the results
for the shift σ = 0.1 by plotting the error and its bounds against m with the error
‖w − wSIL

m ‖ in the solid lines, the a priori bound (3.12) in the dashed line, and the
a posteriori bound (4.4) in the + lines. In Figure 5.3, right, we compare convergence
results for different shifts by plotting the error against m for σ = 1 (the dotted line),
σ = 0.1 (the dash-dotted line), σ = 0.01 (the solid line), σ = 0.001 (the dashed line),
and σ = 0 (the + line).

From Figure 5.3, left, we observe that the a posteriori bound gives a fairly good
estimate of the error. In our experiments, however, the bounds tend to deteriorate
when a smaller shift σ is used. (See Example 3 for such a result.) The a priori bound,
however, overestimates the actual error by several orders of magnitude. We attribute
this mainly to the pessimistic bound of the factor μ. In spite of this, it still seems to
roughly capture the rate of convergence. With respect to influence of different shifts
σ on the convergence, we observe from Figure 5.3, right, that increasing σ accelerates
the convergence up to a certain point (σ = 0.01 in this case), after which the overall
convergence actually decelerates. In terms of our bound, q0 decreases as σ increases,
but the factor μ increases very rapidly when τσ is sufficiently large, overwhelming
any decrease in q0. Interestingly, even when the overall convergence is much slower
for σ = 0.1 than for σ = 0.01, the asymptotic convergence (iterations 35 to 45) is
actually faster, which appears to be a reflection of a smaller q0 for σ = 0.1.

Our final example is the discrete Laplacian matrix that arises in space discretiza-
tion of the heat equation

∂

∂t
u(x, y, t) = Δu(x, y, t) for (x, y) ∈ R = [0 1]2(5.1)

with the boundary condition u = 0 on ∂R.
Example 3. Let A = TN ⊗IN +IN ⊗TN , where ⊗ denotes the Kronecker product

and TN is the N×N tridiagonal matrix with the diagonal elements equal to 2 and the
off-diagonal elements equal to −1. Since TN has a known eigenvalue decomposition

TN = ZΛZT with Z = [
√

2
N+1 sin

jkπ
N+1 ]

N
j,k=1 and Λ = diag{2(1 − cos jπ

N+1 )} (see [8,
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Fig. 5.4. Example 3 (the Lanczos method). Error (solid), a posteriori bound (+), new a priori
bound (dashed), Saad’s bound (dash-dotted).

p. 268]), we have exp(−τTn) = Z exp(−τΛ)ZT . It can be checked that exp(−τA) =
exp(−τTN )⊗ exp(−τTN ) and therefore e−τAv can be efficiently computed using this
formula.

Computing w(τ) = e−τAv arises in discretizing the heat equation (5.1) by the
finite difference methods where τ = Δt/Δx2, Δx = 1/(N +1) is the space mesh size,
and Δt is the time step. In this context, even a modestly small Δt will result in a
large τ . We test both the Lanczos method and the shift-and-invert Lanczos method
for e−τAv with various values of τ . We use N = 102, resulting in a 104 × 104 matrix
with norm ≈ 8 and condition number ≈ 4·103. v is chosen to be a unit random vector.

We first apply m steps of the Lanczos method to compute w(τ) and we compare
the error ‖w − wm‖ with our bounds as well as the classical bound of Saad (3.3). In
Figure 5.4, we present the results for τ = 1 and τ = 100 by plotting against m the
error in the solid lines, our a posteriori bound (3.4) in the + lines, our a priori bound
(3.12) in the dashed lines, and Saad’s a priori bound (3.3) in the dash-dotted lines.
We point out that if τ = 1000 (not shown here), the error of the Lanczos method
does not converge in any meaningful way. We observe again, as in Example 1, that
the a posteriori bound provides a fairly good estimate of the actual error and our a
priori bound significantly improves the classical a priori bound, although it is also
very pessimistic in the case τ = 100.

We next apply m steps of the shift-and-invert Lanczos method (4.3) to the prob-
lem with τ = 100 for which the Lanczos method converges slowly. We consider various
shifts σ (i.e., σ = 0.001, 0.01, 0.1, 1). In Figure 5.5, left, we present the results for
the shift σ = 0.1 by plotting against m the error ‖w−wSIL

m ‖ in the solid lines, our a
priori bound (3.12) in the dashed line, and our a posteriori bound (4.4) in the + lines.
In Figure 5.5, right, we compare convergence results for different shifts by plotting
the error ‖w − wSIL

m ‖ against m for σ = 1 (the dotted line), σ = 0.1 (the solid line),
σ = 0.01 (the dashed line), and σ = 0.001 (the + line).

From Figure 5.5, left, we see that the a posteriori bound is rather pessimistic in
this case. This appears to be due to bounding the integral form of the error (4.6) in
the proof of Theorem 4.1 by the maximum of |h(t)|. In our experiments, however,
the bound improves for larger shift (e.g., σ = 1); see similar behavior discussed in
Example 3. The a priori bound is inherently weak in this case as it is based on the
a posteriori bound. With respect to influence of different shifts σ on convergence, we
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Fig. 5.5. Example 3 (the shift-and-invert Lanczos method). Left: σ = 0.1 (error, solid; a
posteriori bound, + line; a priori bound, dashed). Right: Error (σ = 1, dotted; σ = 0.1, solid;
σ = 0.01, dashed; σ = 0.001, + line).

observe from Figure 5.5, right, that increasing σ accelerates the convergence up to σ =
0.1, after which the overall convergence actually deteriorates, but we also note that
the asymptotic convergence for the case σ = 1 (around iteration 40) appears slightly
better. The best shift σ = 0.1 here is larger than the one in Example 2. These results
and those of Example 3 confirm the influence of the condition number of A + σI on
the asymptotic convergence rate. They also suggest that the factor μ plays an equally
important role in the overall convergence and an optimal σ is problem dependent.

6. Concluding remarks. We have presented new error bounds for the Lanczos
method and the shift-and-invert Lanczos method for computing e−τAv. The bounds
relates the error to the (m, 1) entry of the exponential of the tridiagonal matrix
which is known to have a decay property. Furthermore, the bounds demonstrate
the dependence of convergence on the condition numbers of the related matrices.
Numerical examples confirm the theoretical results.

For future work, it will be interesting to further investigate if the convergence
property revealed here can be used for preconditioning. Another interesting question
is how to choose an optimal shift in the shift-and-invert Lanczos method. Our a priori
bound is still too pessimistic for this. It would be interesting to see if a sharper bound
can be derived that more precisely reflects the two effects of increasing the shift.
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