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ABSTRACT OF DISSERTATION 
 

 
 

TARGET-DIRECTED BIOSYNTHETIC EVOLUTION: 
REDIRECTING PLANT EVOLUTION TO GENOMICALLY 
OPTIMIZE A PLANT’S PHARMACOLOGICAL PROFILE 

 

 
 
 

The dissertation describes a novel method for plant drug discovery based 
on mutation and selection of plant cells. Despite the industry focus on chemical 
synthesis, plants remain a source of potent and complex bioactive metabolites. 
Many of these have evolved as defensive compounds targeted on key proteins in 
the CNS of herbivorous insects, for example the insect dopamine transporter 
(DAT). Because of homology with the human DAT protein some of these 
metabolites have high abuse potential, but others may be valuable in treating 
drug dependence. This dissertation redirects the evolution of a native Lobelia 
species toward metabolites with greater activity at this therapeutic target, i.e. the 
human DAT. This was achieved by expressing the human DAT protein in 
transgenic plant cells and selecting gain-of-function mutants for survival on 
medium containing a neurotoxin that is accumulated by the human DAT. This 
created a sub-population of mutants with increased DAT inhibitory activity. Some 
of the active metabolites in these mutants are novel (i.e. not detectable in wild-
type cells). Others are cytoprotective, and also protect DAergic neurons against 
the neurotoxin. This provides proof-of-concept for a novel plant drug discovery 
platform, which is applicable to many different therapeutic target proteins and 
plant species.	
  
 
KEYWORDS: Plant secondary metabolites, Lobelia cardinalis, human dopamine 
transporter, target-directed biosynthetic evolution, drug dependence 
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Chapter 1 
 
 

Introduction 
 
 

1.1. Plants as a source of drugs and drug leads 

 

Plant-derived medicines have been used to treat human disease for 

millennia. Their utilization likely predates even the earliest records signifying the 

therapeutic utilization of plants, such as Sumerian artifacts dating back to 5000 

B.C. indicating the clinical use of opium [1]. Plant-derived small molecule natural 

products (SMNPs) continue to be used in modern medicine in fields ranging from 

neurology (e.g. galantamine) to oncology (e.g. vincristine) [2]. Furthermore, 

pharmacotherapies and drug leads continue to be discovered from plant sources 

[3]. Undoubtedly, plants are an excellent source of novel drug leads. However, 

there are a number of challenges and limitations associated with plant-based 

drug discovery including low yields of bioactive metabolites, identifying which of 

the thousands of plant species in existence contain metabolites with a desired 

bioactivity, the isolation of a single bioactive metabolite of interest from potentially 

thousands in a single extract, and threats of extinction to plant species, to name 

a few [4, 5].  

 In the last quarter of the 20th century, many drug discovery programs 

largely discontinued screening of plant SMNPs in favor of synthetics as a source 

of structurally diverse drug leads [2, 4, 6]. This was largely due to the advent of 

combinatorial chemistry (CC) and high-throughput pharmacological screening 

(HTPS), as well as the perceived difficulties associated with plant-based drug 

discovery [2, 4]. The transition seemed logical. The development of CC gave 

medicinal chemists the capacity to generate thousands of novel molecules in a 

relatively short period of time, which could be rapidly screened for a given 

biological activity using HTPS [2, 7]. Thus, the coupling of CC to HTPS (CC-
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HTPS) enabled drug discovery programs to rapidly sort through thousands of 

synthetics to identify novel drug leads. However, CC-HTPS fell short of 

expectations, yielding a single small molecule of complete synthetic origin 

approved by the FDA for use in humans over the 30 year span between 1981 

and 2010 [6]. During that same span of time, 64% of small molecules approved 

by the FDA for use in humans were natural products, or natural product derived, 

despite reductions in revenue, facilities, and manpower contributed to this effort 

[4, 6]. The disparity between the success rates of synthetics and SMNPs, or 

derivatives thereof, compelled researchers to investigate the physiochemical 

properties of each as compared to those of FDA-approved small molecule 

therapeutics. This led to the consensus that SMNPs, including those from plant 

sources, share a greater degree of physiochemical similarity to FDA approved 

small molecule therapeutics leading to greater “druggability” of bioactive SMNPs 

[8, 9]. Furthermore, plant SMNPs must have a certain degree of biocompatibility 

to exist in living cells, bioavailability in order to reach and interact with their 

target/s in other organisms, and bioactivity to elicit a response upon reaching 

their target/s, all of which contribute to the inherent “druggability” of bioactive 

plant secondary metabolites [9, 10].  

Numerous investigators have made efforts to overcome obstacles 

encountered in plant-based drug discovery [5, 11]. Recent advances in analytical 

chemistry will undoubtedly facilitate the isolation and structural elucidation of 

bioactive plant SMNPs [4, 7]. Progress in the fields of plant molecular biology 

and plant sciences are also addressing challenges associated with plant-based 

drug discovery [5, 7, 11]. For example, the expression of genes encoding 

biosynthetic enzymes to generate transgenic rice containing Vitamin A was one 

of the greatest, and most successful efforts to reduce blindness caused by 

malnutrition in countries where rice is the major grain consumed by humans [12]. 

An example of the use of plant cell cultures for the purpose of drug discovery is 

the growth of hairy roots to obtain precursors for the semi-synthesis of the 

chemotherapeutic Taxol [13]. Another breakthrough in plant molecular biology 

enabling the generation of stable, “gain-of-function” mutants, known as activation 
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tagging mutagenesis (ATM), has been used to generate mutants with increased 

yields of therapeutically valuable plant secondary metabolites [14, 15]. Herein, 

“gain-of-function” mutation refers to mutations that cause enhanced gene 

transcription. “Gain-of-function” mutations are induced by transforming plant cells 

with agrobacterial strains harboring binary vectors carrying a tetramer of the 

enhancer element from the Cauliflower Mosaic Virus (CaMV) 35S promoter gene 

[14, 16-19]. Successful transformation and integration of the enhancer tetramer 

into the plant genome “activates” flanking genes 10-kb upstream and 

downstream of the integration site [14, 18]. Using ATM, Littleton (2007) 

generated activation tagged Nicotiana tabacum mutants with increased yields of 

nicotine, as well as putatively “novel” nicotinic acetylcholine receptor ligands that 

were undetectable in the wild-type plant [14, 15]. Utilization of Agrobacterium 

tumifaciens in the former study was less than ideal, since the resulting neoplastic 

callus cultures are undifferentiated leading to a reduction in their biosynthetic 

capacity [19]. However, transformation of plant cells with A. rhizogenes carrying 

ATM vectors induces the formation of stable, gain-of-function hairy roots, which 

develop from a single transformed cell, are clonal in nature, and are differentiated 

retaining much of the biosynthetic capacity of an intact plant [19]. Hairy roots are 

easy to culture, do not require hormones to sustain growth, and methods are 

available to scale-up the growth of hairy root cultures [19]. However, the use of 

ATM alone requires the generation and maintenance of thousands of mutants to 

saturate a plant’s genome, as well as the preparation and screening of extracts 

from each mutant [14, 15]. The use of ATM alone for the purpose of drug 

discovery is inefficient (“positive hit” rate, ~1/1000), timely, and laborious, 

limitations we seek to overcome by combining ATM with artificial selection 

favoring the survival of mutants with a genotype of interest [14, 15]. 

The majority of medicinal compounds derived from plants are secondary 

metabolites, molecules of astonishing complexity and diversity which evolved to 

enable plants to react and respond to stimuli arising from abiotic and biotic 

sources in their local environment [13, 20]. Over plants’ ~3 billion year existence, 

natural selection has optimized the interactions between plant secondary 
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metabolites and macromolecules present in co-existing prokaryotic and 

eukaryotic organisms to elicit a required biological response [3, 10, 13, 14]. 

Plants containing SMNPs with optimal function had a survival advantage, thus 

natural selection favored the retention of such molecules and their respective 

biosynthetic pathways [3, 4, 13]. The evolutionary process is essentially 

analogous to optimization and screening of compound libraries during drug 

discovery and development [4]. Variation in plants’ metabolomes and 

biosynthetic pathways, arising from sexual reproduction, mutations, and 

horizontal gene transfer, leads to the genesis of new metabolites and/or 

numerous congeners of a single molecule (optimization), which are retained or 

lost through the process of natural selection (screening) depending on the 

survival advantage a metabolite/s affords a plant [3, 4, 13]. The evolutionary 

plasticity of plants, their remarkable biosynthetic capacity, and “experience” 

arising from their ~3 billion year existence gives plants a tremendous advantage 

over medicinal chemists [2, 7, 10, 14]. 

Given biosynthesis plant secondary metabolites, including those of 

medicinal value, evolved via natural selection, it should be possible to devise 

artificial selection conditions favoring the survival of plants with pharmacologically 

optimized genotypes, and resultant phenotypes. Here, we present a novel 

approach aimed to overcome the challenges and limitations associated with drug 

discovery from plant sources, outlined above, by applying the principles of 

natural selection and evolution to harness the biosynthetic capacity of plants to 

generate SMNPs with desirable drug-like properties that are active at molecular 

targets of interest. Essentially, the evolution of a plant species is redirected to 

encourage synthesis of metabolites designed to interact with a specific human 

target protein, coined target-directed biosynthesis. This is accomplished by 

generating a heterogeneous population of gain-of-function mutant plant cells 

expressing a human protein that is a therapeutic molecular target. The 

aforementioned population of mutant plant cells is subject to selection conditions 

such that survival is contingent upon beneficial mutations that increase yields 

and/or cause biosynthesis of novel metabolites with a desired/required 



	
  

 5	
  

therapeutic activity. Therefore, we are able to select individual cultures with 

optimized pharmacological genotypes/phenotypes, and thereby massively 

accelerate the evolution of plant secondary metabolism. This innovative 

approach redirects plant biosynthetic evolution to produce molecules with a 

specific human target and related potential therapeutic activity. In the example 

described below, we have generated mutant cultures of Lobelia cardinalis which 

are overproducing inhibitors of the human dopamine transporter, a molecular 

target for therapeutics in drug dependence. 

 

1.2. Plants as a source of novel drug leads for the treatment of drug abuse 

 

  The vast majority of pharmacotherapies implemented for the treatment of 

drug abuse, including those used for the treatment of nicotine use disorders and 

opioid dependence, are natural products, natural product-derived, and/or were 

inspired by the structure of natural products. Plant-derived SMNPs, such as 

nicotine and cytisine, are approved in the United States and many countries in 

Eastern Europe, respectively, as smoking cessation agents [20, 21]. Varenicline, 

another FDA-approved smoking cessation agent, was inspired by the structure of 

cytisine [20-22]. Varenicline and cytisine function as α4β2-nicAchR partial 

agonists, whereas nicotine is a full agonist at α4β2-nicAchRs [22]. The 

aforementioned nicAchR ligands are utilized as substitution therapies for nicotine 

use disorders [20-22]. However, cytisine and varenicline are unique from nicotine 

in that they have the capacity to blunt the rewarding effects associated with 

smoking by functionally antagonizing the effect of nicotine [21]. Bupropion is a 

DAT inhibitor based on the structure of cathinone, an alkaloid present in khat, 

which is also approved by the FDA as a smoking cessation agent [23-26]. 

Buprenorphine is a structural analogue of thebaine, a naturally occurring alkaloid 

present in Papaver somniferum [27]. Buprenorphine is a µ-opioid receptor partial 

agonist FDA-approved for the treatment of opioid addiction [27]. The structure of 

methadone, which is also utilized as a substitution therapy for opioid 

dependence, is derived from the structural backbone of atropine, a naturally 
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occurring alkaloid present in Atropa belladonna [20]. Furthermore, the structure 

of the µ-opioid receptor antagonists, naltrexone and naloxone, were inspired by 

that of the alkaloid oripavine (also present in P. somniferum), and are approved 

by the FDA for the management of opioid dependence and overdose, 

respectively [27]. A summary of select pharmacotherapeutics used for the 

treatment of drug abuse, as well as SMNPs on which their structure is based, 

and the SMNPs’ plant origin, is presented in Table 1.1. Indeed, plant metabolites’ 

structural scaffolds may possess the “blueprints” necessary to develop promising 

drug leads for the treatment of drug abuse, including psychostimulant addiction. 

 Plants are an invaluable source of medicines and novel drug leads, and 

plant’s repository of SMNPs arguably represents one of the most structurally 

complex and diverse small molecule libraries in existence [14, 20, 28]. However 

a question remains: why are plant SMNPs biologically active in humans? It would 

be egocentric, and quite naïve to think that plants evolved molecules with 

therapeutic effects for the sole purpose of curing human disease. A recent review 

by Kennedy and Wightman (2012) addressing this topic provides compelling 

evidence that natural selection arising from plant’s interaction with co-existing 

organisms led to the evolution of SMNPs that are bioactive in humans [13, 14]. 

Given humans only came into existence relatively recently in evolutionary time, 

their impact on the evolution of plant biosynthesis is relatively negligible [13, 14]. 

The major culprits accredited underlie the evolution of plant SMNPs having 

bioactivity in the human CNS are herbivorous insects [13, 14]. Plants and 

herbivorous insects have co-existed for 400 million years [13]. Furthermore, 

plant-insect interactions occur at a greater frequency owing to the tremendous 

number insect species [13]. To date, insect species represent greater than half of 

the multicellular species identified on earth, and nearly half of existing insect 

species are herbivorous [13]. Additionally, the collective biomass of insects 

outweighs that of vertebrates by a factor of 10 to 1 [13]. The co-existence of 

plants and insects necessitated the evolution of defense strategies ensuring the 

continuing existence of plants, despite threats imposed by herbivorous insects 

[13, 14]. Since plants are sessile, their primary means of deterring herbivorous 
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insects is the synthesis of chemical defenses in the form of secondary 

metabolites [13, 14]. Plant secondary metabolites are not required for plants’ 

primary metabolism, and thus evolved enabling plants to respond and react to 

changes in their local environment [13, 14]. Well-known examples of defensive 

metabolites synthesized by plants include nicotine and cocaine [13, 14, 29, 30]. 

Waxy substances exuded by plant cells immobilize and/or suffocate herbivorous 

insects, whereas chemical attractants are released from plants attracting 

predators of insects that pose as threats [13]. In order to address the genesis of 

plant SMNPs bioactive in the human CNS, a closer examination of insect 

neurotransmission and similarity shared between key proteins present in the 

human and insect CNS is required. 

 The major excitatory neurotransmitter in the insect CNS is acetylcholine, 

which activates nicotinic acetylcholine receptors (nicAchR) [14]. Given the 

importance of cholinergic neurotransmission in insects, the disruption of signaling 

at insect nicAchRs presents an excellent target for plant chemical defenses [13, 

14]. A variety of nicAchR ligands have been identified in plants, which are 

primarily believed to function as natural insecticides, including nicotine and 

cytisine [13, 14, 29]. For example, ingestion of nicotine by insects produces 

aversive stimuli, paralysis, and/or death, via activation of insect nicAchRs [14, 

29]. Acetylcholine is also a prominent excitatory neurotransmitter in the human 

CNS, which influences the activity of numerous neurotransmitter systems via the 

modulation of nicAchRs [31, 32]. NicAchRs present in the human and insect CNS 

share structural homology due to their common evolutionary ancestry [13, 14]. 

Courtesy of their shared homology, nicAchR ligands synthesized by plants 

display bioactivity across Phyla, modulating the activity of nicAchRs present in 

the insect CNS, and their human counterparts [13, 14]. This holds true for a 

variety of proteins essential for regulation of human and insect 

neurotransmission, including the DAT [33, 34]. 

 In contrast to humans, insect DAergic neurotransmission is strongly 

implicated with aversive learning [13, 35]. Increased DAergic neurotransmission 

in insects has also been reported to signal satiety, attenuate negative geotaxis, 
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and even induce convulsions and death in insects [36, 37]. Any of the 

aforementioned affects, which can be elicited by cocaine, would deter insects 

from feeding on plants containing metabolites that augment DAergic 

neurotransmission. Thus, inhibition of the DAT represents a viable mechanism to 

increase DAergic tone in the insect CNS, thereby preventing insect herbivory [30, 

35-37]. As such, natural selection would be predicted to favor the biosynthesis of 

metabolites that function as DAT inhibitors, given plants possessing such 

compounds would have a survival advantage increasing their evolutionary fitness 

[3, 4, 13]. Genes encoding the biosynthetic machinery responsible for the 

synthesis of DAT inhibitors would thereby be retained by the forces of natural 

selection, and further optimized over time by the forces of evolution [3, 4, 13]. 

Cocaine, a well-known example of a DAT inhibitor synthesized by the plant 

Erythroxylum coca, functions as a natural insecticide [30].  

 

1.3. Psychostimulant drug abuse 

 

 Psychostimulant drug abuse is a major public health concern in the United 

States and around the world. The abuse of psychostimulants, such as cocaine 

and methamphetamine, is associated with a significant socioeconomic burden 

arising from healthcare costs, crime, and lost productivity [38, 39]. Detrimental 

health effects caused by short-term psychostimulant abuse include hypertension, 

tachycardia, cardiac arrhythmia, heart attack, stroke, convulsions, paranoia, 

and/or psychosis [38, 39]. Their long-term use can potentially lead to psychosis, 

mood disturbances, and/or infection potentially causing death due to bowel 

ischemia, amongst other adverse health effects [38, 39]. In 2012, 1.2 million 

individuals reported the use of methamphetamine alone in the past year 

(National Survey on Drug Use and Health), with an estimated $23.4 billion cost 

associated with its abuse in 2005 (RAND report, 2009) [38, 39]. Despite years of 

research and substantial effort on the behalf of scientific investigators, at present 

there is no pharmacotherapy approved by the United States Food and Drug 

Administration (FDA) for the treatment of psychostimulant addiction, a significant 
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unmet medical need [23-25, 40-42]. Multiple lines of evidence indicate the 

reinforcing effects of cocaine and methamphetamine result from augmentation of 

dopaminergic (DAergic) neurotransmission in the mesocorticolimbic DAergic 

pathway [43-45]. Increased DAergic tone in the nucleus accumbens, in particular, 

is highly implicated in mediating the positive rewarding effects of 

psychostimulants and other drugs of abuse [43-45].  

The dopamine transporter (DAT) is the primary regulator of DAergic tone 

in the striatum and nucleus accumbens, and is recognized as a key molecular 

target of cocaine and methamphetamine [33, 43, 46-55]. Cocaine is an inhibitor 

of the DAT, and enhances vesicular DA release [23, 45]. Methamphetamine is a 

substrate of the DAT, which competitively inhibits DA reuptake, and also 

redistributes vesicular DA leading to an increase in cytosolic DA [23, 25, 45]. 

Subsequently, cytosolic DA is released via methamphetamine-induced reversal 

of DAT function [23, 25, 45]. As such, the use of both psychostimulants has a 

common outcome: increased DAergic tone in brain regions densely innervated 

by DAergic neurons, including the nucleus accumbens [23, 25, 43-45, 56].  

Multiple lines of evidence indicate that modulation of DAT function 

underlies the locomotor and hedonic effects of cocaine and methamphetamine 

[43-45, 57, 58]. In homozygous DAT knockout mice, cocaine and amphetamine 

fail to increase locomotor activity above baseline, and do not produce stereotypy 

[43]. In homozygous mutant knock-in mice expressing a cocaine-insensitive DAT 

(CI-DAT), cocaine failed to produce locomotor stimulation, conditioned place 

preference, or an increase in DA levels in the NAcc, yet these effects of 

amphetamine are preserved supporting the notion that the interaction of the two 

psychostimulants with the DAT are distinct [57]. Of note, cocaine actually 

produced conditioned place aversion and suppressed locomotor activity in CI-

DAT mice [57, 58]. Expression of the wild-type DAT (wtDAT) in adult CI-DAT 

mice using adeno-associated viral expression vectors restored cocaine’s ability 

to produce psychomotor stimulation and reward [58]. Furthermore, in animal 

models of cocaine abuse, “atypical” DAT inhibitors (e.g. JHW-007) reduce 

psychostimulant self-administration and display low abuse liability (see section 
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1.4 for further details on “atypical” DAT inhibitors) [59, 60]. These observations 

led to a renewed interest in the development of DAT ligands capable of inducing 

a conformational change in the DAT that attenuates the reinforcing effects of 

cocaine [59-62]. DAT inhibitors with the aforementioned profile represent 

potentially novel pharmacotherapies for the treatment of cocaine addiction [59]. 

“Atypical” DAT inhibitors (e.g. JHW-007) also reduce self-administration of 

methamphetamine in animal models [59]. Therefore, DAT ligands capable of 

antagonizing the hedonic effects of psychostimulants, which possess minimal 

abuse potential and acceptable side effect profiles, represent potential novel 

pharmacotherapies for the treatment of psychostimulant abuse [63]. Clinical 

utilization of pharmacotherapeutic agents with the latter profile would be 

analogous to the treatment of opioid dependence with methadone, thus a 

delayed rate of onset and a prolonged duration of action would be desirable [42, 

59-61, 64, 65]. DAT ligands with the aforementioned profile would not necessarily 

have to be devoid of reinforcing effects, as this would likely increase compliance 

and reduce attrition rates [41, 65, 66]. 

 The efficacy of a variety of treatment modalities has been evaluated in an 

effort to develop effective approaches to combat psychostimulant addiction. 

These include cognitive behavioral therapy, pharmacotherapeutic intervention, 

and combinations thereof, none of which has been demonstrated as an 

efficacious approach to increase abstinence in individuals addicted to cocaine or 

methamphetamine [23]. However, of the various pharmacotherapeutic agents 

examined in human trials, DAT inhibitors have arguably demonstrated the most 

success.   

Modafinil, an “atypical” DAT inhibitor that also enhances glutamatergic 

neurotransmission, reduced the subjective hedonic effects of cocaine in naïve 

human subjects [23, 24, 64, 67]. In cocaine-dependent individuals, modafinil 

decreased cocaine intake, and improved the efficacy of cognitive behavioral 

therapy [23-25]. Bupropion is a DA reuptake inhibitor that was reported to 

decrease the subjective effects of methamphetamine and reduced drug craving 

in a Phase I clinical trial [23-25, 41, 67]. In a Phase II clinical study, bupropion 
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effectively increased abstinence rates in low-to-moderate methamphetamine 

abusers, but was not efficacious in heavy users [23-25, 41, 67]. Methylphenidate 

is a selective DAT inhibitor commonly used to treat attention-deficit/hyperactivity 

disorder, which has been reported as an effective treatment for cocaine and 

amphetamine addiction [23, 25, 40, 68]. Despite these observations, none of the 

aforementioned medications has displayed the level of efficacy necessary to 

merit approval by the FDA for the indication of treating psychostimulant addiction 

[23-25, 40-42]. 

  Numerous structural analogues of cocaine and benztropine have been 

synthesized and investigated for their ability to decrease cocaine and/or 

methamphetamine self-administration [59, 61, 69]. The “atypical” DAT inhibitor 

JHW-007 is a structural congener of benztropine that reduces cocaine and 

methamphetamine self-administration in animal models of psychostimulant 

abuse [59, 67]. The cocaine analogue RTI-336 antagonized cocaine intake, as 

well, although the dose of RTI-336 required to reduce cocaine self-administration 

reduced water and food intake [63]. In contrast, JHW-007’s ability to decrease 

psychostimulant self-administration occurred at doses that did not significantly 

reduce the seeking of natural rewards (e.g. food intake) [59, 70]. A variety of 

phenylpiperazine derivatives were also synthesized in an attempt to develop DAT 

ligands capable of antagonizing the hedonic effects of cocaine and/or 

amphetamine [61, 69]. GBR12909 was perhaps one of the most promising, and 

thoroughly investigated phenylpiperazines [56, 59, 61, 63]. In animal models of 

psychostimulant abuse, GBR12909 reduced self-administration of cocaine and 

methamphetamine at doses that had little effect on the seeking of natural 

rewards [42, 56, 59, 61, 63, 66]. Although each of the these DAT inhibitors 

demonstrated promise in preclinical models of psychostimulant abuse, their 

development was halted due to the realization of undesirable effects unveiled in 

latter studies, as described below. 

One of the most commonly encountered problems limiting the 

development of DAT inhibitors for the treatment of psychostimulant abuse was 

their potential abuse liability. GBR12909 and RTI-336 readily are self-
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administered by non-human primates, and produce discriminative stimulus 

effects similar to those observed for cocaine [59, 65, 66]. Furthermore, 

GBR12909 prolonged the QT interval, which increases the risk of potentially fatal 

ventricular arrhythmia [59, 63]. In a Phase I clinical study GBR12909 produced 

QT interval prolongation in 5 out of 5 human subjects, leading to the termination 

of the clinical trial [63]. This effect of GBR12909 arose due to the inhibition of the 

hERG channel [59]. Given ventricular arrhythmia is associated with hERG 

inhibition, binding and inhibitory activity at this channel has received increased 

attention by drug discovery programs [71]. Given both 4-chlorobenztropine and 

4,4-dichlorobenztropine bind the hERG channel, molecules structurally related to 

these compounds (e.g. JHW-007) are also likely to interact with the ion channel 

[72]. As such, a deviation from the structural scaffolds commonly utilized to 

synthesize DAT inhibitors may be necessary to identify and develop DAT 

inhibitors for the treatment of psychostimulant abuse, which are both effective 

and lack potentially fatal adverse effects. 

 

1.4. The dopamine transporter 

 

 The DAT is the primary regulator of extracellular DAergic tone, and is a 

member of the neurotransmitter sodium symporter (NSS) superfamily [33, 43, 46-

55]. NSSs couple the energetically unfavorable “uphill” (up concentration 

gradient) movement of their respective substrate/s to the “downhill” (down 

concentration gradient) movement of Na+ to drive substrate translocation [33, 47, 

48, 50-52, 54, 55, 73]. As such, NSS transporters are electrochemically-coupled 

secondary active transporters [33, 47, 54, 55]. Members of the NSS superfamily 

(the SLC6 gene family) include transporters for dopamine, norepinephrine (NET), 

serotonin (SERT), glycine (GlyT1 and GlyT2), and gamma-aminobutyric acid 

(GAT1-4) [33, 48, 49, 51, 52, 54, 73]. 

 Jardetzky proposed one of the first mechanistic models for secondary 

active transporters [54]. This model hypothesized that secondary active 

transporters must meet three general criteria to have the capacity to translocate 
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substrate: 1) the transporter much have a central binding cavity at it’s core of 

sufficient and appropriate structure to enable binding interaction between the 

transporter and it’s substrate/s, 2) the transporter must be capable of adopting at 

least two conformational states, an extracellular-facing (outward-facing) 

conformation and an intracellular facing (inward-facing) conformation, and 3) the 

extracellular and intracellular facing conformations of the transporter must have 

differing affinities for substrate/s, the extracellular facing conformation having 

higher binding affinity than the intracellular facing conformation [54]. Based on 

this model, the outward-facing conformation of the transporter initially binds 

extracellular substrate at it’s core, a conformational change occurs upon binding 

substrate shifting the transporter to a substrate-bound inward-facing 

conformation, then substrate dissociates from transporter to the intracellular 

environment due to decreased binding affinity for substrate associated with the 

transition to the inward-facing conformation [54]. The release of substrate to the 

intracellular environment then triggers a shift back to the outward-facing 

conformation [54]. Indeed, this proposed mechanism was quite close to the 

current theoretical conformational states that the DAT adopts throughout its 

translocation cycle. At present, there are five proposed conformational states of 

the transporter which occur in the following stepwise fashion: 1) Na+ and Cl- bind 

to the transporter stabilizing the outward-facing conformation priming the 

transporter for DA binding, 2) DA binds to the outward facing conformation 

promoting a transition to, 3) the occluded conformation in which the transporter is 

closed to both the extracellular and intracellular milieu with substrate and 

accompanying ions sheltered in its central core, 4) a transition to the inward-

facing conformation and subsequent dissociation of substrate and bound ions 

occurs, and then 5) the transporter adopts an inward-facing ligand-free 

conformation [54]. The low intracellular concentrations of Na+ and Cl- favors their 

dissociation, and that of an accompanying DA molecule, after which the outward 

facing conformation is promoting due to high extracellular Na+ and Cl- 

concentrations, which stabilize the outward-facing conformation of the DAT [54]. 

Thus, the transporter adopts the outward-facing conformation, after which Na+ 
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and Cl- associate with their respective binding sites priming the DAT to accept 

another DA molecule [54].  

 Translocation of DA is accompanied by the import of two Na+ ions and one 

Cl- ion [33, 47, 52, 54, 55, 74]. As such, translocation of DA by DAT is associated 

with the net import of two positive charges [33, 47, 52, 54, 55]. The electrogenic 

nature of the DAT led to the future realization that DAT influences membrane 

potential and neuronal excitability [47, 55, 74]. In addition to inward currents 

associated with the translocation of DA, DAT also functions in a channel-like 

mode [33, 47, 74]. A non-selective ion current is potentiated by arachidonic acid 

(AA), which is inhibited by pretreatment with cocaine [33, 74]. AA also decreases 

the rate of DA uptake, as has been observed for other polyunsaturated fatty 

acids (PUFAs), including docosahexaenoic acid, linoleic acid, and oleic acid [74, 

75]. A higher the degree of unsaturation leads to an increased DAT inhibitory 

potency in such PUFAs [75]. 

 As mentioned above, the DAT is the primary regulator of extracellular 

DAergic tone [33, 43, 46-54]. A number of studies have been performed, all of 

which support the DAT as the key mechanism governing extracellular DA 

concentration. In striatal slices from DAT knockout mice, DA’s extracellular 

lifetime, monitored using fast-scanning cyclic voltammetry, increased ~100-fold, 

in which case diffusion would account for the “disappearance” of DA [43]. 

Furthermore, in in vivo studies measuring extracellular DA clearance in the rat 

striatum or nucleus accumbens using Nafion coated carbon-fiber microelectrodes 

coupled to high-speed chronoamperometry, selective DAT inhibitors, but not 

select selective serotonin or norepinephrine transporter (SERT and NET, 

respectively) inhibitors, significantly prolonged the extracellular lifetime of DA 

[46]. Additionally, after producing lesions with the selective DAergic neurotoxin 6-

OHDA, thereby destroying DAergic terminals expressing the DAT, DA clearance 

was again due to diffusion alone [46]. These studies strongly support the role of 

the DAT as the primary regulator of extracellular DAergic tone, particularly in 

regions receiving dense DAergic innervation, such as the dorsal striatum and 

nucleus accumbens [33, 43, 46-55]. 
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 The DAT is a glycoprotein comprised of 12 transmembrane-spanning 

domains, with both its amino- and carboxyl- termini located on the intracellular 

face of the membrane, modification of which influences DAT function [48, 51, 52, 

55]. The importance of DAT is further illustrated by the complexity of its 

regulatory mechanisms. DAT substrates and inhibitors are capable of regulating 

DAT function [33, 47, 48, 51, 55]. Brief exposure (~30 seconds) to DAT 

substrates, such as DA or amphetamine, causes a transient increase in 

transporter expression, followed by a downregulation of DAT function after 

prolonged exposure intervals (~1 hour) [48]. DAT inhibitors, such as cocaine, 

cause an increase in DAT expression [33, 47, 48, 51, 55]. The effects of 

substrates are accompanied by a decrease in Vmax, whereas the KD is 

unaffected, indicating trafficking of the transporter away from the plasma 

membrane is responsible for substrate-induced downregulation of the DAT [47, 

48]. These effects are believed to occur, in part, via enzymatic post-translational 

modifications to the transporter (e.g. phosphorylation by kinases) [47, 48, 55]. 

Activation of protein kinase C (PKC) by phorbol esters causes a downregulation 

of DAT expression, which is associated with endocytic trafficking of the 

transporter via a clathrin-dependent mechanism [47, 48, 55]. Amphetamine-

induced internalization of the DAT is prevented by PKC inhibition, supporting the 

notion that substrates decrease DAT activity via internalizing the transporter [47, 

48, 55]. 

 The tertiary structure of the DAT is also an important determinant of DAT 

protein expression [33, 48, 49, 51, 55, 73, 76]. Mutations to residues that prevent 

the oligomerization of NSSs prevent trafficking of the transporter to the plasma 

membrane [33, 48, 49, 51, 55, 73]. Amphetamine also causes a shift, disrupting 

the association of DAT oligomers with a subsequent increase in monomeric DAT, 

which is believed to contribute to amphetamine-induced internalization [48, 49, 

76]. 

 Numerous proteins influence DAT function. As outlined above, PKC 

activation leads to increased phosphorylation of DAT and an accompanying 

decrease in DAT surface expression [33, 47, 48, 51-53, 55, 77]. A number of 
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other kinases influence DAT activity, including phosphatidylinositol-3-kinase 

(PI3K), protein tyrosine kinase (PTK), and mitogen-activated kinase (MAPK) 

families [33, 48, 51, 52, 55]. Activation of PI3K and MAPK respective signaling 

pathways leads to an increase in DAT activity [33, 48, 51, 52, 55]. Activation of 

TrkB, a PTK, by BDNF leads to increased DAT activity, as well [48, 51]. 

Increased activity of the DAT by PI3K, MAPK, and TrkB is mediated by an 

increase in DAT surface expression [33, 48, 51, 52, 55]. Furthermore, activation 

of the presynaptic DA D2 receptor, a G protein coupled receptor, increases DAT 

activity [33, 47, 48, 51, 52, 78]. The intricacy of the regulatory mechanisms that 

influence DAT function highlight’s the importance of the transporter in controlling 

DAergic neurotransmission. 

 “Atypical” DAT inhibitors are another class of DAT ligands that alter the 

activity of the transporter, and are of particular interest in the development of 

treatments for psychostimulant abuse [60, 67]. In contrast to traditional DAT 

inhibitors, such as cocaine and methylphenidate, “atypical” DAT inhibitors are not 

associated with significant abuse potential despite inhibiting DA reuptake [79]. 

“Atypical” DAT inhibitors preferentially bind to the inward-facing conformation of 

the DAT transporter, whereas traditional DAT inhibitors prefer the outward-facing 

DAT [79]. Examples of “atypical” DAT inhibitors include GBR-12909, JHW-007, 

and modafinil, all of which decrease cocaine self-administration in animal models 

at doses that minimally influence seeking of natural rewards (e.g. food intake) 

[23, 60]. Binding studies with traditional and “atypical” DAT inhibitors were 

performed with mutant variants of the human DAT  (hDAT) whose conformational 

equilibrium was shifted favoring either the inward- or outward-facing conformer 

[79]. In these studies, as indicated above, traditional DAT inhibitors interacted 

more favorably with outward-facing mutant variants, while “atypical” DAT 

inhibitors preferentially bound the inward-facing DAT [79]. As such,  

“atypical” DAT ligands that bind DAT stabilizing a conformation that minimizes 

cocaine’s ability to influence the transporter, while minimally affecting normal 

transport function, could serve as novel leads to develop treatments for 

psychostimulant abuse [61, 62]. Considering “atypical” DAT inhibitors have been 
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demonstrated to decrease self-administration of both psychostimulants in animal 

models, this holds true for both cocaine and methamphetamine abuse [59, 60].  

 

1.5. Target-directed biosynthetic evolution 

 

Plant-derived medicines have been used to treat human disease for 

millennia. Given plant secondary metabolites evolved via natural selection, it 

should be possible to design artificial selection pressures to redirect the evolution 

of a plant biosynthesis [13, 14]. For drug discovery, selection pressures should 

favor the survival of genetically optimized medicinal plants with increased yields 

therapeutically valuable SMNPs and/or novel metabolites with a desired/required 

bioactivity. Note that plant secondary metabolites evolved to target 

macromolecules present in organisms other than humans, given species of the 

Genus Homo have only come into existence relatively recently in evolutionary 

time [13, 14]. Therefore, human’s impact on the evolution of plant secondary 

metabolism is negligible (a limited number of exceptions exist, such as increased 

yields of nicotine in tobacco as the result of human cultivation) [10, 13]. 

Bioactivity of plant metabolites in humans arises due to homology that exists 

between human macromolecules and those present in other organisms with 

which plant secondary metabolites were intended to target and elicit a biological 

response [13]. Thus, leads from natural sources often require structural 

optimization by medicinal chemists to fine-tune their pharmacologic profile 

making them suitable for use in humans [10]. Our approach is designed to 

redirect the evolution of plants with medicinal value favoring the biosynthesis of 

metabolites meant to interact with human macromolecules. This could potentially 

reduce and/or eliminate the need for further optimization of novel chemical 

entities to tailor their activity to human systems. 

To provide proof-of-concept for this innovative approach to plant-based 

drug discovery, coined target-directed biosynthesis, the human dopamine 

transporter (hDAT) was functionally expressed in Lobelia cardinalis. L. cardinalis 

contains the complex binitrogenous alkaloid lobinaline, which is a relatively low 



	
  

 18	
  

potency DAT inhibitor and cannot be synthesized in the laboratory. Although 

tracer studies have shed light on the precursors for lobinaline biosynthesis in 

planta, methods for the total synthesis of the alkaloid remain elusive [80]. 

Additionally, the yield of lobinaline from L. cardinalis plant material is low and 

purification via recrystallization is particularly challenging [81]. Thus, L. cardinalis 

was an ideal candidate species for proof-of-concept studies utilizing target-

directed biosynthesis. Transgenic L. cardinalis primary hairy roots expressing the 

hDAT (hDAT-1°HRs) display increased susceptibility to dopaminergic (DAergic) 

neurotoxins that are DAT substrates, including 1-methyl-1,2,3,6-

tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) [82, 83]. The 

selective DAT inhibitor GBR12909 attenuates MPTP-induced cytotoxicity in 

hDAT-1°HRs [84-88]. L. cardinalis transgenic plant cells expressing the hDAT 

were activation tagged, generating transgenic gain-of-function plant cells 

expressing the hDAT. These cells were generated on selection medium 

containing 1-methly-4-phenylpyridinium (MPP+), a cytotoxic DAT substrate, such 

that selection should favor the survival of cells with beneficial gain-of-function 

mutations enabling MPP+-resistance [89, 90]. MPP+ is a selective DAergic 

neurotoxin used to model Parkinson’s disease (PD), which is accumulated in 

DAergic neurons by the DAT, causing subsequent impairment of mitochondrial 

function and ultimately neuronal death [89-92].  

To date, 120 gain-of-function mutants functionally expressing the hDAT 

that are resistant to MPP+ have been generated. Theoretically, these mutants 

may be resistant to MPP+ due to gain-of function mutations causing: 1) increased 

synthesis of lobinaline and/or other more potent DAT inhibitors preventing MPP+ 

accumulation and subsequent toxicity, 2) synthesis of cytoprotective metabolites, 

and/or 3) activation of cytoprotective genes that prevent MPP+ toxicity (see 

Figure 1.1). Analysis of DAT inhibitory activity of extracts from MPP+-resistant 

gain-of-function mutants expressing the hDAT revealed that the population was 

greatly enriched with individuals whose extracts inhibit DAT much more potently 

than extracts from the wild-type plant, or controls. Chemical analysis by gas 

chromatography-mass spectrometry (GC-MS) led to the identification of mutants 
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that synthesize increased yields and/or novel metabolites undetectable in the 

wild-type plant or controls. Furthermore, individuals were identified which had 

increased yields of squalene and/or linoleic acid, a natural products that 

attenuate MPP+-induced neurodegeneration in models of PD [93, 94]. DAT 

inhibitors generated in the current study may hold therapeutic value in the 

treatment of DAergic neurodegeneration, psychostimulant abuse, nicotine use 

disorders, ADHD/ADD, depression, and/or other neuropsychiatric disorders [54, 

95-104]. Mitochondrial protectants and/or other molecules that prevent 

intracellular mechanisms of MPP+ toxicity are of potential therapeutic value in the 

treatment of neurodegenerative disorders in which mitochondrial dysfunction is 

implicated in the pathogenesis of disease, including PD [92, 105-126]. This novel 

approach to re-direct evolution of plant biosynthetic machinery has the potential 

to revitalize plant-based drug discovery, and feed the pipelines of many drug 

discovery programs. 
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Table 1.1. 
FDA-approved pharmacotherapeutics inspired by plant SMNPs used for the 
treatment of drug abuse 

Medication Clinical Application Plant 
SMNP 

Plant Source# 

(common name) 

Nicotine* Smoking cessation1, 2 -------- Nicotiana tabacum 
(Tobacco) 

Cytisine* Smoking cessation1, 2 -------- Cytisus laborinum 
(Golden Rain acacia) 

Varenicline Smoking cessation1, 2, 3 Cytisine Cytisus laborinum 
(Golden Rain acacia) 

Bupropion Smoking cessation4, 5, 6, 7 Cathinone Catha edulis 
(Khat) 

Buprenorphine Opioid dependence8 Thebaine Papaver somniferum 
(Poppy) 

Methadone Opioid dependence1   

Naltrexone Opioid dependence8 
Alcohol use disorder8 Oripavine Papaver somniferum 

(Poppy) 

Naloxone Opioid overdose8 Oripavine Papaver somniferum 
(Poppy) 

*Molecule is a naturally occurring plant SMNP 
#Plant SMNP occurs naturally in other plant species 
1Salim et al. (2008) [20] 
2Leaviss et al. (2014) [21] 
3Daly (2005) [22] 
4Vocci et al. (2007) [23] 
5Montoya et al. (2008) [24] 
6Karila et al. (2010) [25] 
7Appendino et al. (2014) [26] 
8Hostzafi (2014) [27] 
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Figure 1.1. Schematic of selection process. A) MPP+ is translocated to the 
interior of DAergic neurons via DAT-mediated uptake. Inside the DAergic 
terminal, MPP+ inhibits complex-I of the electron transport chain causing 
excessive production of reactive oxygen species (ROS), which causes 
cytotoxicity and ultimately cell death. B) The plant cell’s phenotype is made to 
resemble that of DAergic neurons on a fundamental level: the hDAT is 
expressed in transgenic plant cells rendering them vulnerable to MPP+. MPP+-
induced cytotoxicity theoretically ensues by the same/similar mechanism/s as 
described in DAergic neurons. C) Activation tagging mutagenesis (ATM) 
creates stable gain-of-function mutations randomly throughout plant genome 
that should confer resistance to MPP+ via: 1) inducing increased biosynthesis of 
DAT inhibitors (lobinaline and/or “novel” DAT inhibitors of greater potency) 
preventing intracellular accumulation of MPP+ and ensuing cytotoxicity and/or 
2) biosynthesis of metabolites that interfere with MPP+ toxicity intracellularly. 
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Chapter 2 
 
 

General methodology 
 

 

2.1. Chemicals and Supplies  

 
Methanol, hexane, chloroform, ethyl acetate, butanol, acetonitrile, (-)-

nicotine (NIC), methyllycaconitine (MLA) citrate salt hydrate, mecamylamine 

(MEC) hydrochloride, nomifensine, (-)-lobeline hydrochloride, and 2,2-diphenyl-1-

picrylhydrazyl (DPPH) were purchased from Sigma Aldrich (St. Louis, MO, USA). 

Streptomycin (10,000 µg/ml), penicillin (10,000 units/ml), fetal bovine serum 

(FBS), and Dulbecco’s Modified Eagle Medium (DMEM) were purchased from 

Life Technologies Corporation (Grand Island, NY, USA). Quercetin was 

purchased from Chromadex (Irvine, CA, USA). [3H]-epibatidine (S.A. = 30 

Ci/mmol), [3H]-cytisine (S.A. = 16 Ci/mmol), [3H]-MLA (S.A. = 60 Ci/mmol), [3H]-

GBR12935 (S.A. = 40 Ci/mmol), 45CaCl2 (S.A. = 12.05 mCi/mg), and [3H]-DA 

(S.A. = 60 Ci/mmol) were purchased from American Radiolabeled Chemicals, 

Inc. (St. Louis, MO, USA). All other chemicals and materials were purchased 

from Fisher Scientific (Pittsburgh, PA, USA), unless otherwise stated. 
 
2.2. Animals 

 
Adult, male Sprague-Dawley rats (200 – 250 g) purchased from Harlan 

Laboratories (Indianapolis, IN, USA) were housed in cages in groups of 3 – 4 at 

the Division of Laboratory Animal Resources at the University of Kentucky. 

Animals had access to food and water ad libitum. All protocols for the handling, 

care, and use of animals were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Kentucky and were performed in 
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accordance with the National Institute of Health’s Guide for Care and Use of 

Laboratory Animals. 

 
2.3. Collection of Plant Material 

 
Plant samples were collected as previously described by Littleton et al. 

(2005) [15]. Briefly, plant samples were collected from field sites by a highly 

qualified botanist. GPS coordinates were recorded for each accession. Samples 

were snap-frozen with liquid nitrogen immediately after field collection, and 

stored at -80°C prior to solvent extraction. Reference samples of each species 

were deposited at the University of Kentucky Herbarium. Lobelia cardinalis was 

grown at the University of Kentucky Spindletop Farm to obtain plant material in 

bulk. 
 
2.4. Aqueous plant extract library 

 
A library of aqueous plant extracts was prepared as previously described 

[15]. Briefly, snap-frozen plant samples collected from the field were removed 

from storage at -80°C, immediately freeze-dried using a lyophilizer, and finely 

powdered. Powdered plant material was extracted (100 mg/ml) by suspending 

samples in aqueous solution (100% Milli-Q H2O) and placing them on a shaker 

overnight. The following day, aqueous extracts were collected via vacuum 

filtration, and freeze-dried using a lyophilizer. The resulting residue was re-

suspended in an appropriate volume of assay buffer to achieve a final 

concentration of 100 mg/ml. When necessary, dimethylsulfoxide (DMSO) was 

added (<0.05%) to promote solubility of samples in aqueous solution. The 

resulting aqueous extracts were stored at -80°C prior to pharmacological 

screening. 
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2.5. HTPS: Differential smart screen 

 

HTPS was conducted on a library of aqueous plant extracts prepared from 

~1,000 species native to the Southeastern United States, completing the 

screening of the library previously described by Littleton et al. (2005) [15]. HTPS 

was performed using a Packard Multiprobe liquid handling system in a 96-well 

plate format (350 µl well volume) as previously described, with minor 

modifications [15, 127-129]. An innovative assay design, coined “differential 

smart screening” (DSS), was employed to identify extracts that contained 

nicAchR ligands with a pharmacological profile unlike that of nicotine [15]. Briefly, 

pure compounds or plant extracts were prepared, and dissolved in a volume of 

Krebs-Ringers buffer (120 mM NaCl, 3.9 mM KCl, 650 µM MgSO4, 510 µM 

CaCl2, 190 µM NaHPO4, 100 µM pargyline, 2 mg/ml glucose, 0.2 mg/ml ascorbic 

acid, 20 mM HEPES, pH 7.4, saturated with 95% O2/5% CO2) necessary to 

prepare a 100 mg/ml stock solution (see section 2.4). Dilutions of the stock 

solution were prepared for screening (1:10, 1:20, 1:50, 1:100, 1:200, 1:500, 

1:1,000, 1:2,000). Samples were evaluated over this concentration range to 

determine the dilution that effectively displaced 50% of [3H]-epibatidine (168 pM, 

3 hour incubation period) from rat cortical membranes (ID50). [3H]-epibatidine is a 

potent, high affinity nicAchR ligand with similar binding affinity at most nicAchRs 

present in the mammalian CNS [130, 131]. Determination of a plant species’ ID50 

enabled the identification of extracts containing nicAchR ligands, and provided a 

“reference point” for subsequent binding studies [15]. Plant extracts that inhibited 

[3H]-epibatidine binding were tested for their ability to displace [3H]-cytisine (1 

nM, 1 hour incubation) and [3H]-MLA (2 nM, 2 hour incubation) at a concentration 

equal to their ID50 for [3H]-epibatidine displacement. [3H]-cytisine and [3H]-MLA 

displacement studies were performed in rat cortical and hippocampal 

membranes, respectively. [3H]-cytisine is a β2-subtype selective ligand, and thus 

will reflect mainly α4β2-nicAchR binding in the mammalian CNS, whereas [3H]-

MLA is α7-nicAchR selective ligand [22, 128, 132, 133]. The final protein 

concentration of membrane preparations in HTPS assays was 150 µg/ml. After 
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reaching equilibrium, membranes were harvested onto 96-well GF/B filtration 

plates (PerkinElmer Inc., Waltham, MA, USA) and rapidly washed three times 

with ice-cold 50 mM Tris-HCl buffer (pH 7.4). Filtration plates were allowed to dry 

overnight before adding 35 µl of scintillation fluid (Microscint 20, Packard Inc.). 

Plates were then kept in the dark for 2 hours, after which radioactivity was 

measured using a Packard TopCount® NXT™ microplate scintillation counter. 

Non-specific binding was measured in the presence of excess NIC (300 µM) and 

total binding was measured in the presence of radioligand alone. Total specific 

binding and specific binding in the presence of competitors was calculated by 

subtracting non-specific binding. Specific binding in the presence of a competitor 

was expressed as a percentage to total specific binding. Dividing the percentage 

displacement of [3H]-cytisine by that of [3H]-MLA at a concentration equal to the 

ID50 for [3H]-epibatidine displacement yields a “differential displacement ratio” 

(DDR) indicative of nicAchR subtype selectivity. DDR values > 5 indicate the 

plant extract contains metabolites selective for α4β2-nicAchRs, while DDR values 

< 1 indicate the presence of metabolites selective for α7-nicAchR, as previously 

described [14, 15]. Likewise, the DDR can also be used to identify plant extracts 

containing metabolites with equipotent binding activity at α4β2- and α7-nicAchRs. 

In theory, a DDR value of ~3 should indicate the presence of nicAchR ligands 

with equipotent binding affinity at α4β2- and α7-nicAchRs. In support of this 

hypothesis, anabasine, a nicAchR ligand with relatively equipotent binding affinity 

at α4β2- and α7-nicAchRs (Ki = 65 and 58 nM, respectively), was previously 

reported to have a DDR value of 4.16 [15, 22]. Similarly, aqueous extracts from 

Nicotiana species with greater amounts of nicotine than anabasine produce DDR 

values of > 5, whereas those having greater quantities of anabasine produce a 

DDR value of ~3 (see Table 2.1 for comparison) [15, 134]. Therefore, plant 

extracts that produced DDR values of ~3 were predicted to contain metabolites 

with equipotent binding affinity at α4β2- and α7-nicAchRs, thus warranting further 

investigation in the present study. Aqueous extracts from species of interest were 

evaluated in vitro for their ability to activate nicAchRs and inhibit the DAT (see 

sections 2.12 and 2.13). Plant species whose extracts displayed a combination of 
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the aforementioned pharmacological activities (presence of a ligand with similar 

binding affinity at α4β2- and α7-nicAchRs, ability to activate nicAchRs, and 

inhibition of the DAT) were prioritized for further evaluation. 

 

2.6. Fractionation of the L. cardinalis crude methanolic extract 

 

Air-dried aerial portions of L. cardinalis were ground to a coarse powder, 

and extracted with 9 volumes of methanol (3 volumes per extraction, 24 hours 

per extraction). The methanolic extract obtained was dried under vacuum using a 

rotary evaporator, resuspended in water, and partitioned with organic solvents of 

increasing polarity in the order that follows: hexane, chloroform (CHCl3), ethyl 

acetate, and butanol. Sodium sulfate was added to the organic fractions obtained 

to remove any residual water, removed by vacuum filtration, and each organic 

fraction was dried under vacuum. The remaining aqueous phase was freeze-

dried using a lyophilizer. Fractions were resuspended in modified Krebs-Ringers 

buffer (final concentration, 100 mg/ml) and assessed in the DSS (see section 

2.5). Additionally, fractions were re-suspended in uptake buffer (final 

concentration, 100 mg/ml) and assessed for their ability to inhibit DAT-mediated 

[3H]-DA uptake in rat striatal synaptosomes (see section 2.13).  

 
2.7. pHPLC sub-fractionation of the L. cardinalis CHCl3 fraction. 

 

The CHCl3 fraction obtained from the L. cardinalis crude methanolic 

extract was sub-fractionated via pHPLC using a Waters XBridge Prep C18 (5 µm 

OBD, 19 x 150 mm) column attached to a Waters 600E Multisolvent Delivery 

System coupled to a Waters 2998 Photodiode Array Detector and Waters 2767 

Sample Manager, Injector, and Collector. The pHPLC instrument was operated 

using Waters MassLynx Software (Version 4.1) and FractionLnyx Collection 

Control Software (Version 4.1). The mobile phase consisted of a mixture of 

Solvent A (100% Milli-Q water, pH 7.0) and Solvent B (100% acetonitrile, HPLC 

grade). Separation was performed with the following gradient at a flow rate of 7 
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ml/minute: initial conditions, 1% B in A; 0 – 6 minutes, linear gradient, 1 – 20% B 

in A; 6 – 12 minutes, linear gradient, 20 – 40% B in A; 12 – 18 minutes, linear 

gradient, 40 – 50% B in A; 18 – 24 minutes, linear gradient, 50 – 75% B in A; 24 

– 30 minutes, linear gradient, 75 – 95% B in A; 30 – 35 minutes, linear gradient, 

95 – 100% B in A; 35 – 43 minutes, isocratic gradient, 100% B. Sub-fractions 

were dried, and then re-suspended in modified Krebs-Ringer’s buffer or uptake 

buffer (333 µg/ml) for nicAchR binding studies and [3H]-DA uptake studies, 

respectively (see section 2.13). 

 
2.8. Isolation of lobinaline 

 
The CHCl3 fraction was obtained from L. cardinalis, as described above. 

Acid-base extraction was performed on the CHCl3 fraction to obtain lobinaline. 
Briefly, 100 mg of the dried CHCl3 fraction was dissolved in 50 ml of CHCl3. The 

solution was acidified with 1 M HCl (final pH, 2 – 3), shaken gently, and the 

organic phase was discarded. The remaining aqueous phase was washed 2 – 3 

times with CHCl3. The aqueous phase was subsequently basified with 

ammonium hydroxide (final pH, 10 – 12), partitioned between CHCl3 and water, 

and the resulting organic phase was collected. The basified aqueous layer was 

extracted two additional times with CHCl3, and each of the organic phases 

obtained from the basified aqueous phase were combined. Sodium sulfate was 

added to the combined organic phases to remove any residual water, removed 

by vacuum filtration, and the organic phase was dried under vacuum using a 

rotary evaporator. Lobinaline obtained using this method was analyzed using gas 

chromatographic-mass spectrometric (GC-MS) methods (see section 2.9). 
 
2.9. GC-MS analysis 

 
GC-MS analyses were performed using a Hewlett Packard 6890 Gas 

Chromatogram interfaced to a Hewlett Packard 5973 Series Mass Selective 

Detector, an Agilent Technologies 7683 Series Injector, and a Hewlett Packard 
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7683 Series Autosampler. ChemStation Software (Version 1.02.06) and the 

Wiley Spectral Database (Version 4.0) were used for instrument control, data 

analysis, and structural elucidation. Separation was performed on a HP-5MS 

column ((5%-phenyl)-methylpolysiloxane; 30.0 m x 320 µm x 0.25 µm). Ultra-high 

purity helium (flow rate of 1.2 ml/minute) served as the carrier gas. Sample 

volumes of 1 µl were injected in split mode (split ratio, 10.0:1; split flow 12.3 

ml/minute) at an inlet pressure of 1.60 psi. The inlet temperature was held at 

250°C. The oven was operated using the following parameters: initial 

temperature, 80°C; 80°C, 2 minute hold; 10°C/minute to 160°C, 1 minute hold; 

60°C/minute to 275°C, 12 minute hold; 60°C/min to 60°C, 0 minute hold; total 

runtime, 28.50 minutes. The transfer line temperature was held at 280°C. The L. 

cardinalis CHCl3 pHPLC sub-fraction of interest (based on its DDR value and 

DAT inhibitory activity) was analyzed via GC-MS to identify the most abundant 

constituent/s present. Lobinaline isolated from crude plant material was injected 

at 2 mg/ml, two runs per sample. Purity of the alkaloid was determined by 

integrating the area under the curve (AUC) of lobinaline’s chromatographic peak 

(GC-MS run in TIC mode). The identity of the alkaloid was confirmed based on 

previously reported MS fragmentation data for lobinaline [135]. 

 
2.10. [3H]-Epibatidine, [3H]-cytisine, and [3H]-MLA binding 

 

Radioligand displacement studies with pure compounds were performed 

using methods previously described [136]. Briefly, adult male Sprague-Dawley 

(200 – 250 g) rats were anesthetized with CO2 and decapitated. Hippocampal 

and cortical tissues were rapidly dissected, placed in 10 volumes of ice-cold 

sucrose buffer (0.32 M sucrose, 1 mM EDTA, 0.1 mM phenylmethylsulfonyl 

fluoride, 0.01% w/v sodium azide, pH 7.4), and homogenized in a glass 

homogenization tube with a Teflon pestle. The homogenate was centrifuged at 

1,000 x g for 10 minutes at 4°C, and the supernatant was placed on ice. The 

pellet was re-suspended in sucrose buffer, and centrifuged again at 1,000 x g for 

10 minutes at 4°C. The two supernatants were combined and the pellet was 



	
  

 29	
  

discarded. The combined supernatants were centrifuged at 50,000 x g for 10 

minutes at 4°C. The resulting supernatant was discarded, and the pellet was 

washed twice with assay buffer (50 mM Tris-HCl, 144 mM NaCl, 1.5 mM KCl, 2 

mM CaCl2, 1 mM MgSO4, 20 mM HEPES, pH 7.4). The total protein content was 

measured using the bicinchoninic acid kit (Sigma Aldrich). The final protein 

concentration was adjusted to 3 mg/ml with assay buffer, and membranes were 

stored at -80°C prior to further experimentation. 

One the day on which competition binding studies were performed, 

membrane preparations were removed from storage at -80°C and thawed on ice. 

Lobinaline (final concentration, 3.4 mM – 3.4 nM) was dissolved in assay buffer. 

DMSO (< 0.1%) was added to promote solubility. Solutions containing lobinaline 

were mixed with membrane (final protein concentration, 1 mg/ml) and radioligand 

(168 pM [3H]-epibatidine, 3 hour incubation; 2 nM [3H]-cytisine, 2 hour incubation; 

2 nM [3H]-MLA, 2 hour incubation) in individual wells in a 96-well plate format. 

Experiments were performed at room temperature. After reaching equilibrium (2 

– 3 hours), membranes were harvested onto 96-well GF/B filter plates 

(PerkinElmer Inc., Waltham, MA, USA) by vacuum filtration, and rapidly washed 

three times with ice-cold 50 mM Tris-HCl buffer (pH 7.4). Filter plates were 

allowed to dry overnight. The following day, 35 µl of scintillation fluid was added 

to each well (Mircoscint 20, Packard Inc.) and plates were placed in the dark for 

two hours. Afterward, radioactivity was measured by scintillation counting (2 

minutes per well) using a Packard TopCount® NXT™ microplate scintillation 

counter. In each plate, non-specific binding was measured in the presence of 

excess NIC (final concentration, 300 µM) and total binding was measured with 

radioligand alone. Total specific binding and specific binding in the presence of 

lobinaline was calculated by subtracting non-specific binding. Specific binding in 

the presence of lobinaline was expressed as a percentage of total specific 

binding. Binding studies with pHPLC sub-fractions were conducted with 

essentially the same methods with the exception that only [3H]-MLA binding was 

performed, whereas the displacement of all three nicAchR ligands was 

characterized for lobinaline. The CHCl3 sub-fraction that was the most effective at 
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displacing [3H]-MLA was analyzed via GC-MS (see section 2.9) to determine the 

major constituent/s present. 

 

2.11. [3H]-GBR12935 binding 

 

Competition binding studies were conducted using previously described 

methods with minor modifications [84, 86, 137]. Membranes were prepared as 

described (see section 2.10) with the exception that striatal tissue was collected, 

homogenized in ice-cold homogenization buffer (120 mM NaCl, 50 mM Tris-HCl, 

pH = 7.4), centrifuged at 25,000 x g for 20 minutes at 4°C, then washed thrice 

with assay buffer (120 mM NaCl, 50 mM Tris-HCl, 0.01% FBS, pH 7.4). Each 

wash was performed by re-suspending the pellet 10 volumes of assay buffer 

followed by centrifugation at 25,000 x g for 20 minutes at 4°C. Total protein 

content was measured using the bicinchoninic acid kit (Sigma Aldrich). The final 

protein concentration was adjusted to 3 mg/ml with assay buffer. Striatal 

membranes were stored at -80°C prior to further experimentation. 

One the day binding experiments were performed, membranes were 

removed from storage at -80°C and thawed on ice. Lobinaline (final 

concentration, 0.1 nM – 1.0 mM) was dissolved in assay buffer. DMSO (< 0.1%) 

was added to promote solubility. Solutions containing lobinaline were mixed with 

membrane (final protein concentration, 1 mg/ml) and incubated for 15 minutes 

prior to the addition of radioligand (1 nM [3H]-GBR12935, 1 hour incubation) in a 

96-well plate format. Experiments were performed at room temperature. After 

reaching equilibrium, membranes were harvested onto 96-well GF/B filter plates 

(PerkinElmer Inc., Waltham, MA, USA) by vacuum filtration, and rapidly washed 

three times with ice-cold 50 mM Tris-HCl buffer (pH 7.4). Filter plates were 

pretreated with a solution of 0.1% polyethyleneimine 1 hour prior to harvesting 

membranes to reduce non-specific binding. Filter plates were allowed to dry 

overnight. The following day, 35 µl of scintillation fluid (Microscint 20, Packard 

Inc.) was added to each well and plates were placed in the dark for two hours. 

Afterward, radioactivity was measured by scintillation counting (2 minutes per 
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well) using a Packard TopCount® NXT™ microplate scintillation counter. In each 

plate, non-specific binding was measured in the presence of excess GBR12909 

(final concentration, 10 µM) and total binding was measured with radioligand 

alone. Total specific binding and specific binding in the presence of lobinaline 

was calculated by subtracting non-specific binding. Specific binding in the 

presence of lobinaline was expressed as a percentage of total specific binding. 

 

2.12. 45Ca2+ entry in SH-SY5Y cells 

 
Cell-based assays evaluating functional activity of pure compounds or 

extracts at nicAchRs were conducted using previously described methods with 

modifications [138-140]. SH-SY5Y human neuroblastoma cells were sub-cultured 

in polylysine coated petri dishes containing culture medium (DMEM 

supplemented with 10% FBS, 1 mM glutamine, 50 units/ml penicillin, and 50 

µg/ml streptomycin) and maintained in an incubator at 37°C in a humidified 

atmosphere (95% O2/5% CO2). The day prior to performing 45Ca2+ entry studies, 

SH-SY5Y cells were plated onto 24-well polylysine coated plates containing 300 

µl of culture medium at a seeding density of 20,000 cells/well and placed back in 

the incubator. After allowing 24 hours for cells to adhere, culture medium was 

aspirated and replaced with 300 µl of assay buffer (130 mM NaCl, 5 mM KCl, 6 

mM glucose, 20 mM HEPES, and 1 mM CaCl2, pH 7.4). Pure compounds or 

extracts were dissolved in assay buffer to allow direct addition to wells. DMSO 

(final concentration, < 0.1%) was added to promote solubility of extracts or 

compounds. Control and treatment groups were performed in quadruplicate on 

each plate. SH-SY5Y cells were pretreated with vehicle, pure compounds, and/or 

extracts for 1 minute prior to the addition of 45Ca2+ (~5 µCi). 45Ca2+ entry was 

terminated by aspirating assay buffer, and then washing cells thrice with 1 ml of 

ice-cold assay buffer. Cells were lysed overnight by the addition 0.5 M NaOH 

(0.5 ml/well). Lysates were pooled for each group, and two 100 µl aliquots were 

counted per group. Radioactivity was measured by scintillation counting using a 

Packard Tri-Carb Liquid Scintillation Counter (Gaithersberg, MD, USA). Basal 
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45Ca2+ entry was designated as that observed in vehicle treated cells. 45Ca2+ 

entry in treatment groups was normalized to that observed in vehicle treated 

controls. 

 
2.13. DAT-mediated [3H]-DA uptake in rat striatal synaptosomes 

 

In vitro [3H]-DA uptake was performed as previously described with minor 

modifications [57]. Briefly, adult male Sprague-Dawley rats (200 – 250 g) were 

anesthetized with CO2 and decapitated. Striata were rapidly dissected and 

immediately placed into 10 volumes of ice-cold uptake buffer (120 mM NaCl, 3.9 

mM KCl, 650 µM MgSO4, 510 µM CaCl2, 190 µM NaHPO4, 100 µM pargyline, 2 

mg/ml glucose, 0.2 mg/ml ascorbic acid, 20 mM HEPES, pH 7.4, saturated with 

95% O2/5% CO2) containing 0.32 M sucrose. Striatal tissue was homogenized in 

a glass homogenization tube with a Teflon pestle. The homogenate was 

centrifuged at 1,000 x g for 10 minutes at 4°C. The resulting supernatant was 

collected and centrifuged at 16,000 x g for 20 minutes at 4°C. The resulting pellet 

was washed twice with ice-cold uptake buffer and re-suspended in 10 ml of 

uptake buffer (synaptosome preparation). Synaptosomes (100 µl) were added to 

individual wells in a 96-well plate and incubated at 37°C for 10 minutes. 

Lobinaline was dissolved in 100% DMSO, then diluted with uptake buffer (0.3 nM 

– 3.0 mM). The final concentration of DMSO in uptake studies never exceeded 

1.0%, which had no significant effect on radiotracer uptake using methods 

outlined in the present study. Lobinaline (100 µl; final concentration, 0.1 nM – 1.0 

mM) was co-incubated with synaptosomes for 10 minutes at 37°C prior to the 

addition of [3H]-DA (100 µl). After the 10-minute co-incubation, [3H]-DA was 

added to each well (final concentration, 15 – 30 nM) and uptake was allowed to 

proceed for 5 minutes at 37°C. Uptake was terminated by placing 96-well plates 

on ice, and then immediately harvesting synaptosomes onto 96-well GF/C filter 

plates (PerkinElmer Inc.) by vacuum filtration, followed by three rapid washes 

with ice-cold 50 mM Tris-HCl buffer (pH 7.4). After allowing filtration plates to dry 

overnight, 35 µl of scintillation fluid (Microscint 20, Packard Inc.) was added to 
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each well and the plate was kept in the dark for 2 hours. Subsequently, 

radioactivity was measured by scintillation counting using a Packard TopCount® 

NXT™ microplate scintillation counter. Total uptake was measured in the 

presence of [3H]-DA alone. Non-specific uptake was determined in the presence 

of 10 µM GBR-12909. Total specific uptake and specific uptake in the presence 

of inhibitor was calculated by subtracting non-specific uptake from each, 

respectively. Specific uptake in the presence of inhibitor was expressed as a 

percentage of total specific uptake. [3H]-DA uptake studies with conducted with 

extracts, fractions, or CHCl3 sub-fractions were conducted using the same 

methods. The CHCl3 sub-fraction that most potently inhibited the DAT was 

analyzed via GC-MS (see section 2.9) to determine the major constituent/s 

present. 

 

2.14. DPPH free radical scavenging assay 

 
           Lobinaline’s capacity to scavenge free radicals was examined using the 

DPPH free radical scavenging assay. The DPPH assay was performed as 

previously described with minor modifications [141]. Briefly, a DPPH stock 

solution (600 µM) and stock solutions (1 mg/ml) of lobinaline, lobeline, and the 

reference compound quercetin were prepared by dissolving compounds in 

methanol. Stock solutions of DPPH and test compounds were prepared fresh on 

the day of the experiment. The assay was performed in a 96-well plate format. 

DPPH solution (final concentration, 300 µM), or DPPH solution and solutions of 

pure compounds were (final concentration, 1 – 500 µg/ml) added to each plate in 

quadruplicate. Plates were immediately covered and placed in the dark for 5 

minutes. After 5 minutes, the reaction mixture’s absorbance at 517 nm was 

measured using a Wallac 1420 VICTOR plate reader (PerkinElmer Inc., MA, 

USA). DPPH free radical scavenging activity was calculated using the following 

equation: 

 

DPPH Free Radical Scavenging Activity (%) = ((Abs1 – Abs2) / Abs1) x 100 
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,where Abs1 is the absorbance of the solution containing DPPH only and Abs2 is 

the absorbance of the solution containing DPPH and pure compounds. 

 

2.15. Fractional [3H] release from [3H]-DA preloaded striatal slices 

 

The ability of lobinaline to evoke fractional [3H] release from [3H]-DA 

preloaded striatal slices was examined as previously described, with minor 

modifications [142, 143]. Briefly, coronal slices of rat striatum (500 µm, 6 – 8 mg) 

were incubated in Krebs’ buffer (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2 1.0 

mM NaH2PO4, 1.3 mM CaCl2, 11.1 mM glucose, 25 mM NaHCO3, 0.11 mM 

ascorbic acid, and 0.004 mM EDTA, pH 7.4, saturated with 95%O2/5%CO2) for 

30 minutes in a metabolic shaker at 34°C. Afterward, slices were incubated in 

Krebs’ buffer containing 0.1 µM [3H]-DA (6 – 8 slices/3 ml) for 30 minutes at 

34°C. Subsequently, slices were rinsed and transferred to a glass superfusion 

chamber maintained at 34°C. Slices were superfused with oxygenated Krebs’ 

buffer containing the monoamine oxidase (MAO) inhibitor pargyline (10 µM) and 

the DAT inhibitor nomifensine (10 µM) at 1 ml/minute. The inclusion of a MAO 

inhibitor reduced [3H] signal arising from [3H]-DA metabolites, and the DAT 

inhibitor prevented the release of [3H]-DA via DAT reversal, promoting the 

measurement of fractional [3H] release via exocytosis of [3H]-DA from vesicular 

stores [143, 144]. Slices were superfused for 60 minutes, and then five 4-minute 

samples (4 ml) were collected in scintillation vials to determine the level of basal 

[3H] outflow ensuring baseline was stable. 

In studies assessing the lobinaline’s ability to concentration-dependently 

evoke fractional [3H] release, a single concentration of lobinaline (10, 100, or 

1000 µM) was perfused through an individual superfusion chamber after 

collection of basal samples. Slices treated with lobinaline were superfused with a 

single concentration of the alkaloid for the remainder of the experiment. In each 

experiment, one chamber was superfused with vehicle only throughout the entire 

course of the experiment. After the addition of lobinaline, superfusate samples 
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were collected at 4-minute intervals. A repeated-measures design was utilized for 

superfusion studies to establish a concentration-response for lobinaline-evoked 

fractional [3H] release.  

After establishing a concentration-response for lobinaline in fractional [3H] 

release studies, experiments were performed to determine whether MEC (10 µM) 

could antagonize lobinaline-evoked fractional [3H] release. A repeated-measures 

design was used for studies evaluating the effect of MEC on lobinaline-evoked 

fractional [3H] release. Slices were perfused for 60 minutes prior to the collection 

of two 4-minute samples to determine basal [3H] overflow ensuring baseline was 

stable. After collection of basal samples, chambers were superfused with vehicle 

or Krebs’ buffer containing MEC (10 µM) for 20 minutes. After being superfused 

with vehicle or MEC for 20 minutes, lobinaline (100 µM) was added to a single 

chamber for the remainder of the experiment. In each experiment performed, one 

chamber was superfused with vehicle only throughout the entire course of the 

experiment. Superfusate samples were collected in scintillation vials at 4-minute 

intervals.  

Upon completion of each superfusion experiment, slices were carefully 

removed from superfusion chambers and solubilized with 1 ml of TS-2 in 

scintillation vials. The volume and pH of solubilized striatal slices were adjusted 

to match that of superfusate samples. Radioactivity in the samples collected 

during superfusion studies was measured by liquid scintillation using a Packard 

Tri-Carb Liquid Scintillation Counter (Gaithersberg, MD, USA). Fractional [3H] 

release was calculated by expressing [3H] collected in superfusate samples as a 

percentage of [3H] present in solubilized striatal slices upon completion of each 

superfusion study. Fractional [3H] release evoked by various treatments was 

compared to vehicle treated control slices.  

 

2.16. In vivo electrochemical studies 

 
In vivo electrochemical studies were conducted using previously described 

methods to evaluate lobinaline’s ability to modulate DAT function in the dorsal 
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striatum of anesthetized rats [46, 83]. Briefly, high-speed chronoamperometric 

(HSC) measurements were performed using a FAST-16 system (Quanteon, 

L.L.C., Nicholasville, KY, USA). Square wave pulses, 0.00 V to +0.55 V vs. 

Ag/AgCl reference electrodes, were applied for 100 milliseconds at a frequency 

of 5 Hz. Oxidation and reduction currents were integrated during the last 80 

milliseconds of each pulse and averaged over 1 second. Carbon-fiber 

microelectrodes (Quanteon, L.L.C., Nicholasville, KY, USA), constructed as 

previously described, consisted of a single carbon-fiber (outer diameter, 30 – 33 

µm) passed through and sealed in a glass capillary tube (exposed fiber length, 

~150 µm). Nafion (5% solution, Aldrich Chemical Co., Milwaukee, WI) coating of 

the exposed carbon-fiber tip (2 – 3 coats cured in a 200°C-oven, 5-minute cure 

interval per coat) provided excellent selectivity for DA over other anionic 

interferents (DA over ascorbic acid ≥ 100:1; DA over DOPAC ≥ 100:1), as 

previously reported [145]. Microelectrodes were calibrated in vitro in phosphate 

buffered saline (0.05 M) to generate calibration curves for DA (slope > 0.2 nA/µM 

and L.O.D < 50 nM) for each microelectrode prior to in vivo studies. Electrode 

responses to DA were linear (r2 ≥ 0.997). Lobinaline was evaluated in vitro prior 

to in vivo studies to determine whether the alkaloid was electroactive. For in vivo 

studies, micropipette-microelectrode assemblies were constructed using sticky 

wax (Kerr, Orange, CA, USA) to affix double-barrel micropipettes (A-M System, 

Sequim, WA) to the microelectrodes. The distance between micropipette and 

electrode tips ranged from 250 – 350 µm. Care was taken to ensure parallel, 

vertical alignment of micropipettes and microelectrodes. Double-barrel 

micropipettes contained a solution of DA (200 µM in 0.9% saline, pH 7.4) in one 

micropipette and lobinaline (1 mM in 0.9% saline solution containing 0.1% 

DMSO, pH 7.4; vehicle containing DMSO did not affect DA dynamics) in the 

second micropipette. Animals were anesthetized using isoflurane (1 – 3%) and 

placed securely in a stereotaxic frame. Body temperature was maintained at 

37°C throughout the experiment using a heating pad coupled to a rectal 

thermometer. Ag/AgCl reference electrodes were implanted in the brain 

parenchyma at a region remote to recording sites through a burr hole and 
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secured using dental acrylic. Skin overlying the cranium of rats was reflected, 

and the skull and dura overlying recording sites were removed bilaterally. 

Micropipette-microelectrode assemblies were implanted in the striatum under 

stereotactic control using the following coordinates: anterior-poster, +1.5 mm; 

medial-lateral, ±2.2 mm; dorsal-ventral, -3.8 to -5.4 mm. The atlas of Paxinos and 

Watson (2007) was used to determine coordinates for stereotaxic placement 

[146]. Solutions of DA (ejection volume, ~100 nl) or lobinaline (ejection volume, 

~250 nl) were pressure ejected using a Picospritzer III (Parker instrumentation) 

and the volume ejected was monitored with a dissecting microscope equipped 

with a 10 mm reticule [147]. After implantation, the micropipette-microelectrode 

assembly was left undisturbed to achieve baseline (~30 minutes) before starting 

the experiment. DA was then pressure ejected at 5-minute intervals until three 

reproducible signals were obtained (±10%) at each recording site. Lobinaline was 

then applied slowly (10 – 15 seconds) to minimize disturbance of electrochemical 

signals. DA was ejected 1 minute following the lobinaline application, and then at 

5-minute intervals thereafter (4 – 5 times). The micropipette-microelectrode 

assembly was lowered 0.5 mm to obtain additional recordings (4 – 6 recordings 

per hemisphere). Responses to DA were averaged from each animal and data 

were analyzed using FAST analysis software (Version 6.0; Quanteon, L.L.C., 

Nicholasville, KY, USA). Two DA signal parameters were obtained: 1) the T80 

(80% decay time from peak response), and 2) the clearance rate, the first order 

rate of decay of the DA signal multiplied times the peak amplitude. The T80 and 

the clearance rate reflect alterations in DAT function, rather than diffusion or 

metabolism [83, 148]. Comparisons were made between amplitude matched DA 

signals pre- and post-lobinaline application. 

 

2.17. Assessment of lobinaline’s oral “druggability” 

 

The oral “druggability” of a molecule is commonly evaluated using 

Lipinski’s “Rule of Five” [149]. These criteria enable prediction of a lead 

molecule’s potential as a drug candidate based on its physiochemical properties. 
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Assessment of lobinaline’s druggability based on these criteria was assessed 

using data readily available at the PubChem website 

(https://pubchem.ncbi.nlm.nih.gov/) [150, 151]. 

  

2.18. Statistical analysis 

 

Statistical analyses, curve fitting, and graphical presentation of data were 

performed using GraphPad Prism software (Version 6.0; GraphPad Software, 

San Diego, CA, USA). The statistical significance of treatment-induced 45Ca2+ 

entry in SH-SY5Y cells was determined using a one-tailed Student’s t-test. The 

statistical significance of DAT inhibition caused by pretreatment of rat striatal 

synaptosomes with the LCaq and the LCCHCl3 was determined with a one-tailed 

Student’s t-test. ID50, IC50, and EC50 values for high-throughput DSS, [3H]-DA 

uptakes studies, and DPPH free radical scavenging assays, respectively, were 

calculated using nonlinear regression analysis to fit data to a variable slope, 

sigmoidal dose-response curve. Ki values were calculated using the Cheng-

Prusoff equation for radioligand binding studies using nonlinear regression 

analysis to fit data to a one-site competition binding model, sigmoidal 

concentration-response curve. Repeated-measures, two-way analysis of 

variance (ANOVA) was performed (lobinaline x time interaction) to determine 

whether lobinaline evoked a significant, dose-dependent increase in fractional 

[3H] release from [3H]-DA preloaded striatal slices. Repeated-measures, two-way 

ANOVA was performed (treatment x time interaction) to determine whether 

lobinaline-evoked fractional [3H] release was MEC-sensitive. Bonferroni’s post-

hoc analysis was used to determine time points at which fractional [3H] release 

was statistically different from vehicle treated controls. DA signals from in vivo 

electrochemical studies were obtained using Fast Analysis Software (Version 

6.0; Quanteon, L.L.C., Nicholasville, KY, USA) and GraphPad Prism software 

was used for graphical presentation of data. DAT inhibitors consistently increase 

the T80, whereas the clearance rate may increase or decrease depending on 

experimental conditions [148]. Thus, a paired one-tailed Student’s t-test and a 
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paired two-tailed Student’s t-test were performed to determine the significance of 

lobinaline’s effects on the aforementioned DA signal parameters, respectively. All 

data are expressed as the mean ± the standard error of the mean (S.E.M.), 

unless otherwise stated. A p-value < 0.05 was defined as statistically significant. 
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Table 2.1. 
DDR values, anabasine, and nicotine content of select Nicotiana species 

Species Nicotine : Anabasine, % of total alkaloids1 DDR  Value2 
N. tabacum 94.8 : 0.3 9.5 
N. undulate 95.3 : 1.3 6.7 
N. velutina 2.8 : 8.1 2.9 

1Alkaloid content reported by Saitoh et al. (1984) [134] 
2DDR values reported by Littleton et al. (2005) [15] 
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Chapter 3 
 
 

Identification of Lobelia cardinalis and the isolation of lobinaline 
 
 
3.1. Introduction 

 

Plants are a rich source of nicotinic acetylcholine receptor (nicAchR) 

ligands used as medicines, drug leads, and/or pharmacological probes [22]. In 

plants, metabolites active at nicAchRs are believed to function as chemical 

defenses against herbivorous insects [13, 14, 29]. Nicotine is a well-known 

example of a naturally occurring insecticide present in Nicotiana tabacum 

(tobacco) that, upon ingestion, targets and activates nicAchRs present in the 

insect central nervous system (CNS) producing aversive stimuli and/or death [14, 

29]. Nicotine also activates nicAchRs present in the human CNS, which underlies 

its rewarding and neuroprotective properties [14, 152]. The latter effect has 

generated interest in the development of nicAchR agonists as neuroprotective 

agents [153-160]. Nicotine itself is undergoing evaluation in the NIC-PD trial 

funded by the Michael J. Fox Foundation to assess its therapeutic efficacy in the 

early stage of Parkinson’s disease (PD) patients (https://www.michaeljfox.org/) 

[153].  

The neuroprotective effects of nicAchR ligands are primarily a function of 

agonist activity at α4β2- and α7-nicAchR subtypes [153, 154, 156-161]. 

Considering plants are known to synthesize nicAchR ligands of astonishing 

complexity and diversity, the screening of plant extracts to discover novel 

nicAchRs ligands with potential as neuroprotective drug leads seems logical [15, 

22]. However, the majority of nicAchR ligands that have been isolated from plant 

sources are either α4β2-nicAchRs selective agonists (e.g. cytisine), or selective 

antagonists at α7-nicAchRs (e.g. methyllycaconitine) [22, 128, 132, 133]. 

Agonists selective for α4β2-nicAchRs are likely to induce dependence, whereas 
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α7-nicAchR selective antagonism is associated with toxicity [15, 132, 162-164]. 

Therefore, development of a screen that enables rapid identification of plant 

extracts, which contain metabolites with appropriate nicAchR selectivity is 

necessary to efficiently discover novel neuroprotective drug leads from plant 

sources [15].  

In the present study, high-throughput pharmacological screening (HTPS) 

was performed on a library of aqueous plant extracts prepared from ~1,000 

species in an effort to discover novel nicAchR ligands with greater therapeutic 

potential as neuroprotective agents, as compared to previously investigated 

ligands. The “differential smart screen” employed in the present study, as 

previously described by Littleton et al. (2005), measures a plant extract’s binding 

activity at α4β2- and α7-nicAchRs, yielding a differential displacement ratio (DDR) 

indicative of nicAchR selectivity [15]. The DDR was previously utilized to identify 

plant extracts containing metabolites selective for α7-nicAchRs, although it can 

be readily applied to identify extracts containing metabolites with equipotent 

binding activity at α4β2- and α7-nicAchRs (see section 2.5) [15]. The latter may 

fully exploit neuroprotection afforded by nicAchR agonists via activation of both 

receptor subpopulations associated with nicotine’s neuroprotective effects [154, 

158, 160, 161]. 

Several previously uninvestigated plant species were identified in the 

HTPS as having activity meriting further investigation. Lobelia cardinalis was one 

of these displaying activity indicative of the presence of metabolites with 

equipotent binding activity at α4β2- and α7-nicAchRs. Furthermore, the extract 

from L. cardinalis induced 45Ca2+ uptake via nicAchR activation in SH-SY5Y cells, 

indicating the metabolite/s present functioned as an agonist/s [111]. Lobelia 

alkaloids have previously been described as inhibitors of the dopamine 

transporter (DAT), thus the extract from L. cardinalis was screened for this 

activity [143, 165, 166]. Indeed, the extract significantly inhibited DAT-mediated 

[3H]-dopamine (DA) uptake in rat striatal synaptosomes. This combination of 

pharmacological activities is potentially of considerable value for the 

development of neuroprotective agents targeted on the dopaminergic (DAergic) 
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neurodegeneration that occurs in PD, and psychostimulant-induced DAergic 

neurotoxicity [95-99, 102, 103, 153-160, 167]. 

Native Americans knew the potential medicinal value of L. cardinalis, 

although the uses show no clear relation to the pharmacology described herein. 

Formulations of the plant were consumed by tribes for a wide variety of 

purposes, ranging from its use as an emetic, a remedy for the treatment of 

typhoid, and even as a “love potion” [168]. In addition, a close relative of L. 

cardinalis, L. inflata, is the source of lobeline [166]. Lobeline has been generated 

interest as a treatment for neurodegenerative disorders, such as PD and 

Alzheimer’s disease, as well as neuropsychiatric disease including 

psychostimulant dependence and attention deficit hyperactivity disorder [166]. 

Bioactive metabolites originating from species of the Genus Lobelia may hold 

therapeutic potential for a variety of neurological disorders. Here, we describe the 

putative identification of the major bioactive metabolite present in L. cardinalis, 

lobinaline, and the subsequent isolation of the alkaloid. 

 
3.2. Identification of L. cardinalis as a “species of interest” using the high-

throughput DSS 

 

In the present study, a library of aqueous plant extracts was screened to 

identify extracts that contained nicAchR ligands with relatively equipotent binding 

affinity at α4β2- and α7-nicAchRs. This was accomplished utilizing an innovative 

HTPS previously described by Littleton et al. (2005), coined “differential smart 

screening” (DSS) [15]. As described above, this translated into the prioritization 

of extracts with a DDR value of ~3 in the DSS (see section 2.5). An extract’s 

DDR value was calculated (see section 2.5) by dividing the percentage 

displacement of [3H]-cytisine by that of [3H]-MLA at a concentration equal to the 

ID50 for [3H]-epibatidine displacement [15]. The aqueous extract from L. cardinalis 

(LCaq) displaced [3H]-epibatidine from rat cortical membranes (ID50 = 1:300, 333 

µg/ml), and exhibited a DDR value of 2.96. Thus, L. cardinalis was designated as 



	
  

 44	
  

a “species of interest,” since its DDR value indicated the presence of a nicAchR 

ligand(s) with relatively equipotent binding affinity at α4β2- and α7-nicAchRs. 

 
3.3. The LCaq activates nicAchRs and inhibits the DAT 

 

The LCaq activated nicAchRs and inhibited the DAT in functional studies 

performed in vitro (Figure 3.1). In a variety of neuronal and non-neuronal cell 

types, acute treatment with nicAchR agonists (e.g. NIC and DMPP) has been 

reported to increase 45Ca2+ entry [140, 169]. In contrast, basal levels of 

intracellular Ca2+ are generally unaltered by treatment with nicAchR antagonists, 

such as MEC or MLA [111, 140, 169, 170]. Here, 45Ca2+ entry studies were 

conducted with SH-SY5Y cells due to their neuronal properties, 

catecholaminergic phenotype, and utility as an in vitro model of DAergic 

neurotoxicity [123, 124]. Furthermore, SH-SY5Y cells express β2-subunit 

containing and α7-nicAchRs, reported to mediate many of the neuroprotective 

effects of nicAchR agonists, as well as α3β4-nicAchRs that are believed to 

indirectly modulate the activity of the mesolimbic DAergic pathway [111, 153, 

154, 156-161, 170]. Ca2+ entry elicited by nicAchR ligands and extracts was 

measured using 45Ca2+, rather than calcium fluorimetry, to eliminate signal arising 

from other sources of Ca2+, such as that released from intracellular stores via 

Ca2+-induced Ca2+ release [111, 169]. In the SH-SY5Y cells, NIC (10.0 µM) 

significantly increased 45Ca2+ entry (374% increase above basal, p = 0.0001). 
45Ca2+ entry was unaffected by MEC (1.0 µM), a non-selective nicAchR 

antagonist, in agreement with previous studies [111, 140, 143, 169-171]. The 

LCaq (1.0 mg/ml) significantly increased 45Ca2+ entry (137% increase above 

basal, p < 0.001), and this effect was completely blocked by MEC. 45Ca2+ entry 

was significantly increased in SH-SY5Y cells concomitantly treated with the LCaq 

and NIC (1.0 mg/ml and 10 µM, respectively; 232% increase above basal, p < 

0.001), yet the effect was significantly less (p = 0.0143) than that observed in SH-

SY5Y cells treated with NIC alone. The NIC-evoked increase in Ca2+ entry in the 

current study is consistent with previous studies reporting nicAchR agonist-
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evoked Ca2+ entry in SH-SY5Y cells, measured using fluorimetric techniques 

[111]. These results suggest the LCaq likely contains a metabolite(s) that 

functions as a nicAchR partial agonist. Consistent with this view, the LCaq 

displays intrinsic activity at nicAchRs present on SH-SY5Y cells, but functions as 

a nicAchR antagonist in the presence of a nicAchR full agonist (i.e. NIC) [170, 

172, 173]. Furthermore, in rat striatal synaptosomes the LCaq significantly and 

dose-dependently inhibited DAT-mediated [3H]-DA uptake. The LCaq significantly 

inhibited DAT-mediated [3H]-DA uptake at concentrations of 74.1 µg/ml (35% 

uptake, p < 0.001), 151.3 µg/ml (12% uptake, p < 0.001) and 3.3 mg/ml (2% 

uptake, p < 0.001). The unique combination of pharmacological effects (i.e. 

nicAchR partial agonism and DAT inhibition) merited further investigation of L. 

cardinalis with the aim of identifying a metabolite or metabolites responsible for 

the aforementioned activities. 

 

3.4. Putative identification of a multifunctional alkaloid present in L. cardinalis  

 

A crude methanolic extract prepared from air-dried aerial portions of L. 

cardinalis was subject to bioassay-guided fractionation. Fractions obtained were 

evaluated in the DSS and for their ability to inhibit the DAT in vitro. The CHCl3 

fraction thus obtained displaced [3H]-epibatidine from rat cortical membranes 

(ID50 = 1:60,000, 1.67 µg/ml), and exhibited a DDR value of 1.59 in the DSS, 

indicative of the presence of a ligand(s) with comparable affinity at α4β2- and α7-

nicAchRs, as compared to nicotine or lobeline (DDR values of 13.00 and 6.27, 

respectively) [15]. The CHCl3 fraction also caused a significant, dose-dependent 

inhibition of DAT-mediated [3H]-DA uptake in rat striatal synaptosomes (Figure 
3.2) at 33.3 µg/ml (38% uptake, p < 0.001) and 3.3 µg/ml (90% uptake, p = 

0.0013). Thus, pHPLC sub-fractionation of the CHCl3 fraction was performed in 

an effort to identify a multifunctional plant metabolite responsible for the 

aforementioned activities. A single CHCl3 sub-fraction was the most effective at 

displacing [3H]-MLA from rat hippocampal membranes, and was also the most 

potent inhibitor of the DAT in rat striatal synaptosomes. These results indicated 
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the presence of a putatively novel multifunctional plant metabolite. GC-MS 

analysis of the CHCl3 sub-fraction revealed lobinaline, the major alkaloid present 

in L. cardinalis, as the most abundant constituent (AUC = 70%) of the sub-

fraction [80, 81, 135, 174, 175]. The identity of lobinaline, a complex 

binitrogenous alkaloid, was confirmed based on previously reported structural 

and MS data [135, 174, 175]. 

 

3.5. Isolation of lobinaline 

 

The crude methanolic extract prepared from air-dried aerial portions of L. 

cardinalis was fractionated to obtain the CHCl3 fraction. Acid-base extraction was 

performed on the CHCl3 fraction, yielding lobinaline (purity ≥ 95%). The identity of 

the alkaloid was confirmed based on previously reported MS data, and its purity 

was determined by integration of the AUC of the chromatographic peak 

corresponding to lobinaline on the GC trace [135]. Lobinaline (Figure 3.3) was 

stored in the dark at -20°C prior to further experimentation. 

 

3.6 Discussion 

 

 Plants are a rich source of multifunctional drug leads, as described in 

recent reviews [13, 176, 177]. The complex alkaloid lobinaline was putatively 

identified as the major bioactive metabolite present in L. cardinalis [80, 81, 135, 

174, 175]. The alkaloid was presumably responsible for nicAchR agonism and 

DAT inhibition caused by L. cardinalis extracts. NicAchR agonists and DAT 

inhibitors attenuate DAergic neurotoxicity in animal models of PD and 

psychostimulant abuse [95-99, 102-104, 119, 153-160, 167, 178-182]. Thus, 

lobinaline may prove to be a particularly valuable lead for the development of 

multifunctional neuroprotective therapeutics aimed to prevent DAergic 

neurotoxicity if, indeed, it is responsible for the aforementioned pharmacological 

effects. 
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 Initially, HTPS was conducted on a library of aqueous plant extracts from 

~1,000 species in an effort to identify a novel nicAchR agonist with equipotent 

binding affinity at α4β2- and α7-nicAchRs. Using the DSS previously described by 

Littleton et al. (2005), the L. cardinalis aqueous extract (LCaq) produced a DDR 

value of 2.96 signifying the extract contained a metabolite/s with similar binding 

affinity at α4β2- and α7-nicAchRs, as described above (see section 2.5) [14, 15]. 

In SH-SY5Y cells, the LCaq (1.0 mg/ml) significantly increased 45Ca2+ entry. The 

LCaq-induced increase in 45Ca2+ entry was abolished by MEC (1.0 µM), indicating 

the effect was mediated by nicAchR activation [111, 140, 143, 169-171]. 

Furthermore, the LCaq significantly reduced NIC-induced 45Ca2+ entry in SH-

SY5Y cells. Collectively, these results indicated the LCaq contained a 

metabolite/s that functioned as a nicAchR partial agonist with relatively 

equipotent affinity for α4β2- and α7-nicAchRs [170, 172, 173]. This is in contrast to 

“typical” nicAchR ligands from plant sources, the majority of which are α4β2-

nicAchR selective agonists (e.g. cytisine) or α7-nicAchR antagonists (e.g. MLA) 

[22, 128, 132, 133]. Additionally, the extract inhibited DAT-mediated [3H]-DA 

uptake in rat striatal synaptosomes. This was an intriguing observation since, to 

the best of our knowledge, all plant metabolites reported to inhibit the DAT and 

modulate nicAchRs act as antagonists at the latter [22, 143, 144, 183].  

 Bioassay-guided fractionation of the L. cardinalis methanolic extract, 

followed by pHPLC sub-fractionation, indicated both activities resided in a single 

CHCl3 sub-fraction. GC-MS analysis of the sub-fraction revealed lobinaline was 

the major constituent present (AUC = 70%), the identity of which was confirmed 

based on previously reported MS data [135]. Lobinaline, the alkaloid putatively 

responsible for multifunctional pharmacological effects of L. cardinalis, was 

subsequently isolated (purity ≥ 95%). Studies then were conducted to 

characterize the pharmacology of lobinaline, confirming the multi-target effects of 

the alkaloid. 

 
 

Copyright © Dustin Paul Brown 2015 
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Figure 3.1. Modulation of 45Ca2+ entry in SH-SY5Y cells and DAT-
mediated [3H]-DA uptake in rat striatal synaptosomes by the LCaq. Data 
expressed as the mean ± S.E.M. A) NIC (10.0 µM) and the LCaq (1.0 
mg/ml) significantly increased 45Ca2+ entry in SH-SY5Y cells. The LCaq 
significantly attenuated NIC-induced 45Ca2+ entry, and MEC (1.0 µM) 
pretreatment completely abolished LCaq-induced 45Ca2+ entry. *** p < 
0.001 vs. vehicle (VEH), Student’s one-tailed t-test; # p < 0.05 compared 
to cells treated with NIC alone, Student’s one-tailed t-test. B) DAT-
mediated [3H]-DA uptake is significantly and dose-dependently inhibited 
by the LCaq. *** p < 0.001 vs. VEH, one-tailed Student’s t-test. n = 3 - 4. 
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Figure 3.2. Modulation of DAT-mediated [3H]-DA uptake in rat 
striatal synaptosomes. Data expressed as the mean ± S.E.M. 
The L. cardinalis chloroform fraction (LCCHCl3) significantly and 
dose-dependently inhibited the DAT. ** p < 0.01, *** p < 0.001 
vs. vehicle (VEH), one-tailed Student’s t-test. n = 4. 
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Figure 3.3. The structure of lobinaline. Red circles denote chiral centers. 
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Chapter 4 
 
 

Pharmacological characterization of lobinaline 
 
 
4.1 Introduction 

 

Lobinaline was putatively identified as the major bioactive metabolite 

present in L. cardinalis. Here, the multifunctional pharmacology of the complex 

decahydroquinoline alkaloid is described, as well as its potential therapeutic 

applications. The alkaloid possesses a unique polypharmacological profile 

functioning as a nicAchR agonist, DAT inhibitor, and free radical scavenger. 

These pharmacological effects of lobinaline are previously unreported, and to the 

best of our knowledge, the alkaloid is the only natural product with a combination 

of the aforementioned activities. NicAchR agonists, DAT inhibitors, and free 

radical scavengers attenuate DAergic neurotoxicity in animal models of PD and 

psychostimulant abuse [95-99, 102-104, 119, 153-160, 167, 178-182]. Thus, 

lobinaline may be a particularly valuable lead for the development of 

multifunctional neuroprotective therapeutics aimed to prevent DAergic 

neurotoxicity. 

Here, the in vitro pharmacological characterization major bioactive 

metabolite present in L. cardinalis, lobinaline, is described. The alkaloid’s effects 

on DA uptake in vivo were examined by measuring the clearance of exogenous 

DA locally applied in the striatum of isoflurane-anesthetized rats using Nafion-

coated carbon fiber microelectrodes in combination with high-speed 

chronoamperometry (HSC) [46, 78, 83, 184-187]. Since excessive free radical 

production contributes to DAergic neurotoxicity seen in PD and psychostimulant 

abuse, lobinaline’s capacity to scavenge free radicals was evaluated in the 1,1-

diphenyl-2-picrylhydracyl (DPPH) free radical scavenging assay [97, 98, 104, 

167, 188, 189]. All of the data presented suggest lobinaline is a potential lead 
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compound for the development of multifunctional neuroprotective agents to 

prevent DAergic neurotoxicity. 

 
4.2. Lobinaline displaces radioligands selective for nicAchRs and the DAT 

 

 Lobinaline concentration-dependently inhibited [3H]-epibatidine, [3H]-

cytisine, and [3H]-MLA binding at nicAchRs (Ki = 16.2, 1.1, and 67.5 µM, 

respectively; Figure 4.1 A – C). Radioligand binding studies with the 

aforementioned nicAchR ligands were performed as described previously [15, 

136]. Competition binding studies with [3H]-epibatidine and [3H]-cytisine were 

conducted in rat cortical membranes. The former nicAchR ligand is relatively 

non-selective at neuronal nicAchR subtypes, while the latter is selective for α4β2-

nicAchRs [22, 128, 130, 131]. Competition binding studies with the α7-nicAchR 

selective ligand [3H]-MLA were conducted in rat hippocampal membranes [128, 

132]. In contrast to nicotine and lobeline, lobinaline has similar affinity at α4β2- 

and α7-nicAchRs (see Table 4.1 for comparison) [190, 191]. Lobinaline produced 

a DDR value of 1.32, virtually identical to that produced by the CHCl3 fraction, 

indicating lobinaline was the main metabolite responsible for the fraction’s 

nicAchR binding activity. Lobinaline also inhibited binding of  [3H]-GBR12935, a 

highly selective DAT ligand, in rat striatal membranes (Ki = 2.5 µM; Figure 4.2) 

[84, 86]. 

 

4.3. Lobinaline activates nicAchRs and inhibits the DAT in vitro 

 
Lobinaline’s functional effect at nicAchRs was evaluated by assessing its 

ability to modulate 45Ca2+ entry in SH-SY5Y cells (Figure 4.3 A). In these 

experiments, NIC (10.0 µM) significantly increased 45Ca2+ entry (197% increase 

above basal, p = 0.0008). Treatment of cells with MEC alone (1.0 µM) did not 

affect 45Ca2+ entry. At the concentration tested in the current study, lobinaline 

(1.0 mM) significantly increased 45Ca2+ entry (42% increase above basal, p = 

0.0011). Lobinaline-induced 45Ca2+ entry in SH-SY5Y cells was completely 
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abolished by MEC. Concomitant treatment of SH-SY5Y cells with lobinaline and 

NIC (1.0 mM and 10 µM, respectively) significantly increased 45Ca2+ entry (116% 

increase above basal, p < 0.001). Similar to the LCaq, concomitant treatment of 

SH-SY5Y cells with lobinaline and NIC significantly reduced 45Ca2+ entry (p = 

0.0347), as compared to cells treated with NIC alone. The observation of 

nicAchR activation by lobinaline, in combination with its ability to attenuate NIC-

induced 45Ca2+ entry, is consistent with the view that lobinaline functions as a 

partial agonist at nicAchRs expressed by SH-SY5Y cells [170, 172, 173]. In order 

to assess lobinaline’s efficacy as an inhibitory modulator of the DAT, [3H]-DA 

uptake was performed in rat striatal synaptosomes. DAT-mediated [3H]-DA 

uptake was inhibited by lobinaline (IC50 = 12.0 µM; Figure 4.3 B). Based on 

these results, and data obtained from binding studies, lobinaline functions as a 

multifunctional alkaloid with unique pharmacological profile, acting as a nicAchR 

partial agonist and an inhibitor of the DAT.  

 

4.4. Lobinaline is a relatively potent DPPH free radical scavenger 

 

Multiple lines of evidence indicate excessive free radical production 

contributes to DAergic neurotoxicity seen in PD and psychostimulant abuse [97, 

98, 104, 167, 188, 189]. The DPPH free radical scavenging assay is commonly 

utilized to assess a molecule’s ability to quench free radicals [141]. Lobinaline 

acted as a potent free radical scavenger (EC50 = 18.0 µM), as did quercetin (EC50 

= 11.2 µM), a plant metabolite previously reported to potently scavenge DPPH 

free radicals (Figure 4.4) [141]. In contrast, lobeline was a weak DPPH free 

radical scavenger (EC50 = 228.8 µM). Although quercetin’s EC50 is greater than 

previously reported (6.22 µM), this was expected given the concentration of 

DPPH used in the present study (300 µM) was 6-fold greater than the former (50 

µM) [141].  
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4.5. Lobinaline dose-dependently evokes fractional [3H] release from [3H]-DA 

preloaded rat striatal slices 

 

The modulation of nicAchRs by lobinaline was also examined by 

monitoring its ability to evoke fractional [3H] release from rat striatal slices 

preloaded with [3H]-DA. Superfusion studies were performed in the presence of 

pargyline (10.0 µM) and nomifensine (10.0 µM). The inclusion of a MAO inhibitor 

reduced the contribution of [3H]-DA metabolites to the [3H] signal recorded, and 

the use of a DAT inhibitor promoted measurement of [3H]-DA released from 

vesicular stores, rather than efflux of [3H]-DA via reversal of the DAT [143, 144]. 

Lobinaline caused a significant, concentration-dependent increase in fractional 

[3H] release from rat striatal slices preloaded with [3H]-DA (Figure 4.5 A). 

Repeated measures, two-way ANOVA revealed a significant main effect of 

concentration (F(3,26) = 15.5, p < 0.001), a significant main effect of time (F(11, 286) 

= 4.9, p < 0.001), and a significant concentration x time interaction (F(33, 286) = 3.6, 

p < 0.001). The lowest concentration of lobinaline that evoked a significant 

increase in fractional [3H] release compared to vehicle was 100 µM. At 

concentrations of 100 µM and 1000 µM, lobinaline-evoked fractional [3H] release 

reached significance (p < 0.05 and p < 0.001, respectively) 8 minutes after 

treatment (the second sample collected after lobinaline treatment). Fractional [3H] 

release evoked by 1000 µM lobinaline reached a maximum (494% greater than 

vehicle treated, p < 0.001) 8 minutes post-treatment. Fractional [3H] release 

evoked by 100 µM lobinaline reached a maximum (186% greater than vehicle 

treated, p < 0.001) 12 minutes post-treatment, and was no longer significantly 

different from vehicle treated slices 16 minutes after treatment. In contrast, 

fractional [3H] release evoked by 1000 µM lobinaline remained significantly 

elevated above that of vehicle treated slices for the remainder of the experiment 

(28 minutes).  

After establishing lobinaline’s ability to concentration-dependently evoke 

fractional [3H] release, studies were performed to evaluate the contribution of 

nicAchR stimulation to lobinaline-evoked fractional [3H] release. Striatal slices 
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preloaded with [3H]-DA were pretreated with MEC (10.0 µM) for 20 minutes prior 

to the addition of lobinaline (100 µM). Fractional [3H] release from vehicle treated 

striatal slices served as a control. MEC significantly attenuated lobinaline-evoked 

fractional [3H] release indicating activation of nicAchRs contributes to fractional 

[3H] release evoked by the alkaloid (Figure 4.5 B) [143]. Repeated measures, 

two-way ANOVA revealed a significant main effect of treatment (F(2, 9) = 9.683, p 

= 0.0057) and a significant main effect of time (F(13, 117) = 2.465, p = 0.0053). The 

treatment x time interaction was not significant (F(26, 117) = 1.488, p = 0.0793). In 

this set of experiments, the effect of lobinaline (100 µM) alone was generally in 

agreement with initial studies, albeit the time course of its effect was slightly 

prolonged. That is, lobinaline-evoked fractional [3H] release reached significance 

8 minutes after treatment (160% greater than vehicle, p < 0.05), and was no 

longer significantly different from vehicle treated slices after 24 minutes. 

Additionally, the maximal increase in fractional [3H] release occurred 16 minutes 

after lobinaline treatment and the maximum (262% greater than vehicle treated 

controls, p < 0.001) was greater than that observed in initial studies. When 

comparing fractional [3H] release from vehicle treated slices and slices pretreated 

with MEC prior to lobinaline, no significant difference was observed at any time 

point. These results indicate lobinaline’s effect was MEC-sensitive, providing 

additional evidence that the alkaloid is a nicAchR agonist. This is in contrast to 

lobeline, which evokes fractional [3H] release from rat striatal slices that is MEC-

insensitive, and was reported to antagonize nicAchRs [143, 144]. 

 

4.6. Lobinaline inhibits DA uptake in vivo in the striatum of isoflurane-

anesthetized rats 

 

In vivo electrochemical studies were performed to evaluate modulation of 

DA uptake in isoflurane-anesthetized rats. In agreement with in vitro [3H]-DA 

uptake studies, local application of lobinaline in the dorsal striatum significantly 

prolonged the clearance rate of exogenous DA. A representative trace of 

exogenous DA clearance recorded pre- and post-lobinaline application is 
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depicted in Figure 4.6 A. The alkaloid significantly increased the T80 (76.3 ± 39.5 

sec., p = 0.0203) and significantly decreased the clearance rate (0.09 ± 0.05 

µM/sec., p = 0.0459) 1-minute post-application, as compared to the T80 (33.7 ± 

12.5 sec.) and clearance rate (0.13 ± 0.07 µM/sec.) pre-application (Figure 4.6 B 
and C). The effects of lobinaline on the aforementioned DA signal parameters 

are indicative of DAT inhibition. Lobinaline’s effects on DA clearance are short 

acting, as they are no longer significant 3 – 5 minutes after lobinaline ejection. 

Lobinaline’s effects on DA clearance are somewhat like those observed after 

local application of nomifensine in the dorsal striatum of urethane-anesthetized 

Sprague-Dawley rats, but were not as efficacious, which is consistent with in vitro 

studies of nomifensine in synaptosomes [84, 148]. In vitro electrochemical 

studies confirmed lobinaline itself was not electroactive by chronoamperometric 

recordings used to measure endogenous DA (data not shown). In vivo, lobinaline 

had no direct effects when locally applied from a micropipette (n = 10; data not 

shown). Given lobinaline prolonged exogenous DA clearance and failed to cause 

DA release, the alkaloid appears to act as a DAT inhibitor, rather than a DAT 

substrate/releasing agent. 

 

4.7. Lobinaline fits the criteria set forth by Lipinski’s “Rule of Five” 

 
The oral “druggability” of lobinaline, based on its physiochemical 

properties, was assessed according to Lipinski’s “Rule of Five” [149]. These data 

are readily available the PubChem website (https://pubchem.ncbi.nlm.nih.gov/) 

[150, 151]. Lobinaline did not violate any of the criteria set forth by Lipinski’s 

“Rule of Five”: molecular weight = 386, hydrogen bond donors = 0, hydrogen 

bond acceptors = 2, cLogP = 4.8, molar fractivity = 82.47. Additionally, based on 

previously reported in vivo studies, lobinaline displays appropriate 

pharmacokinetics and low mammalian toxicity in mice relative to lobeline, the 

most widely studied Lobelia alkaloid [81]. 
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4.8. Discussion 

 

Plants are a rich source of multifunctional drug leads [13, 176, 177]. The 

multifunctional alkaloid lobinaline was identified as the major bioactive metabolite 

present in L. cardinalis [80, 81, 135, 174, 175]. The alkaloid possesses a unique 

polypharmacological profile functioning as a nicAchR agonist, DAT inhibitor, and 

free radical scavenger. These pharmacological effects of lobinaline are 

previously unreported, and to the best of our knowledge, the alkaloid is the only 

natural product with a combination of the aforementioned activities. NicAchR 

agonists, DAT inhibitors, and free radical scavengers attenuate DAergic 

neurotoxicity in animal models of PD and psychostimulant abuse [95-99, 102-

104, 119, 153-160, 167, 178-182]. Thus, lobinaline may be a particularly valuable 

lead for the development of multifunctional neuroprotective therapeutics aimed to 

prevent DAergic neurotoxicity. 

Lobinaline inhibited binding of the α4β2-nicAchR selective ligand [3H]-

cytisine (Ki = 1.1 µM), and the α7-nicAchR selective ligand [3H]-MLA (Ki = 67.5 

µM), in rat cortical and hippocampal membranes, respectively, and produced a 

DDR value of 1.32 [22, 128, 132, 133]. Compared to other plant metabolites, 

such as nicotine and lobeline, lobinaline is relatively non-selective with respect to 

α4β2- and α7-nicAchRs (see Table 4.1 for comparison) [190, 191]. The plant 

metabolite anabasine is also non-selective at α4β2- and α7-nicAchRs (Ki = 65 nM 

and 58 nM at α4β2- and α7-nicAchRs, respectively) [22]. However, anabasine is 

teratogenic, limiting its clinical utility [192]. In SH-SY5Y cells, lobinaline 

significantly increased 45Ca2+ entry, an effect that was blocked by MEC. 

Lobinaline also significantly reduced NIC-induced 45Ca2+ entry in SH-SY5Y cells. 

The ability of lobinaline to activate nicAchRs and functionally antagonize the 

effect of a nicAchR full agonist (i.e. NIC) suggests the alkaloid may be a nicAchR 

partial agonist [170, 172, 173]. Lobeline, on the other hand, antagonizes 

nicAchRs in a variety of experimental models [143, 144]. Based on these data, 

lobinaline appears to be distinct from nicotine and lobeline in terms of its 

selectivity and functional effects at nicAchRs. Electrophysiological studies (e.g. 
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two-electrode voltage clamping) assessing lobinaline’s efficacy at nicAchRs are 

necessary to confidently designate lobinaline as a nicAchR partial agonist. 

Lobinaline was further evaluated in vitro for its ability to interact with and 

modulate the DAT. In rat striatal membranes, binding of the highly selective DAT 

ligand [3H]-GBR12935 was inhibited by lobinaline (Ki = 2.5 µM), and the alkaloid 

dose-dependently attenuated DAT-mediated [3H]-DA uptake (IC50 = 12.0 µM) in 

rat striatal synaptosomes [84, 86]. Lobeline also inhibits the DAT, but is less 

potent (IC50 = 28.2 – 80.0 µM) than lobinaline [143, 190]. In contrast, nicotine is 

inactive at the DAT in rat striatal synaptosomes [143]. However, in in vivo 

electrochemical studies performed in rats, systemic administration of nicotine 

enhanced DAT function [193]. The latter study suggests an intact neurological 

system is required to examine modulation of DAT activity by nicotinic agonists. 

As described above, lobinaline exerts pleiotropic pharmacological effects 

relevant to the prevention and/or reduction of DAergic neurotoxicity seen in PD 

and psychostimulant abuse, including nicAchR activation and DAT inhibitory 

modulation [95, 98, 99, 102, 103, 153-157, 160, 167]. Since multiple lines of 

evidence indicate excessive free radical production contributes to DAergic 

neurotoxicity seen in the aforementioned pathologies, lobinaline was assessed 

for its capacity to scavenge free radicals [97, 98, 104, 167, 188, 189]. In the 

DPPH free radical scavenging assay, lobinaline acted as a potent scavenger of 

free radicals (EC50 = 18.0 µM), as compared to quercetin (EC50 = 11.2 µM), a 

natural product known for its free radical scavenging and antioxidant activity 

[119, 141, 177, 182]. Lobeline’s capacity to scavenge DPPH free radicals was 

relatively poor (EC50 = 228.8 µM). Given quercetin’s neuroprotective effects in 

cellular and animal models of PD, lobinaline may exert similar effects warranting 

future investigation of the alkaloid in models of PD [119, 182]. 

In superfusion studies, lobinaline caused a significant, dose-dependent 

increase in fractional [3H] release from rat striatal slices preloaded with [3H]-DA. 

The buffer used in superfusion studies contained a MAO inhibitor and a DAT 

inhibitor to reduce signal arising from [3H]-DA metabolites and [3H]-DA release 

via reversal of the DAT, respectively [143, 144]. At the highest concentration 
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examined in the current study (1000 µM), lobinaline-evoked fractional [3H] 

release remained significantly greater than control for the duration of the 

experiment. This effect mirror’s that observed for high concentrations of lobeline 

(10.0 – 1000 µM) under essentially identical experimental conditions [143]. In 

contrast, nicotine’s effect on fractional [3H] release is transient, even at high 

concentrations, likely due to desensitization of nicAchRs [143]. Subsequent 

experiments revealed lobinaline-evoked fractional [3H] release was MEC-

sensitive, providing additional evidence that the alkaloid is an agonist at 

nicAchRs. Based on these observations, stimulation of nicAchRs underlies 

lobinaline’s ability to evoke fractional [3H] release from [3H]-DA preloaded striatal 

slices. Lobeline, on the other hand, is reported to antagonize nicAchRs, and 

evokes fractional [3H] release that is MEC-insensitive and Ca2+-independent 

[143].  

Lobinaline’s ability to affect vesicular monoamine transporter type-2 

(VMAT-2) activity, inhibition of which is believed to underlie lobeline’s effect in 

similar superfusion studies, was not examined [143]. Furthermore, the [3H] signal 

measured in studies examining lobeline-evoked fractional [3H] release from [3H]-

DA preloaded rat striatal slices was reported to arise predominantly from an 

increase in [3H]-DOPAC release, rather than [3H]-DA [143]. The authors reached 

this conclusion upon measuring lobeline-evoked endogenous DA and DOPAC 

release from rat striatal slices via HPLC coupled with electrochemical detection 

(HPLC-ECD). Lobinaline’s ability to modulate VMAT-2 and endogenous 

DA/DOPAC release from rat striatal slices, measured using HPLC-ECD, remain 

to be explored.  

The effect of lobinaline on DAT function was examined in vivo in the 

striatum of isoflurane-anesthetized rats using HSC coupled to local applications 

of exogenous DA. This technique allows measurement of DA dynamics in vivo in 

an intact neurological system with a high degree of spatial and temporal 

resolution, and has been used extensively to characterize effects of DAT 

inhibitors [46, 78, 148, 184, 194]. Consistent with in vitro [3H]-DA uptake studies, 

lobinaline significantly prolonged the clearance rate of exogenous DA 1-minute 
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post-application. Local application of the alkaloid in the dorsal striatum 

significantly increased the T80 and significantly reduced the clearance rate when 

compared to amplitude matched DA signals pre-lobinaline application. These 

observations demonstrate lobinaline’s ability to inhibit DAT function in vivo, 

although the alkaloid’s effects are transient and are no longer significant 3 – 5 

minutes post-application. Alterations in the T80 and the clearance rate reflect 

modulation of DAT activity, as has been characterized for other DAT inhibitors 

[46, 148, 195]. Effects somewhat like those of lobinaline were observed following 

local application of the DAT inhibitor nomifensine in the dorsal striatum of 

Sprague-Dawley rats, albeit lobinaline was less efficacious, which is consistent 

with in vitro studies of nomifensine in synaptosomes [84, 148]. In isoflurane-

anesthetized rats, lobinaline locally applied in the striatum had no direct effects. 

DAT substrate-releasing agents, such as amphetamines, induce endogenous DA 

release [196, 197]. Thus, lobinaline likely functions as a DAT inhibitor, rather than 

a substrate, although the results are not conclusive. The transient nature of 

lobinaline’s effects in vivo may result from the alkaloid’s relatively low affinity 

and/or potency at the DAT. Conformational changes resulting from lobinaline’s 

interaction with the DAT and mechanism/s underlying lobinaline’s effects on 

DAergic neurotransmission and DAT function in vivo remain to be thoroughly 

elucidated. 

The multifunctional pharmacological effects of lobinaline are somewhat 

expected in view of the structural complexity and functional groups present in the 

decahydroquinoline alkaloid. For example, lobinaline meets all criteria of the 

“refined” pharmacophore proposed by Inamdar (2011) for DAT inhibitors: 1) 

ionizable nitrogen, 2) aromatic ring, 3) hydrogen bond acceptor, and 4) two 

hydrophobic groups [198]. Although these requirements are not absolute, an 

ionizable nitrogen within ~6 Å of a phenyl moiety is present in the vast majority of 

DAT inhibitors [198, 199]. Illustrating this point, the lack of a phenyl and/or benzyl 

substituent in nicotine and anabasine seems to be a reasonable explanation for 

their inability to inhibit DAT, especially given their structural similarity to the 

competitive DAT inhibitor/substrate 1-methyl-4-phenlypiperidinium [22, 151, 200]. 
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On the other hand, structural features common to lobinaline and the alkaloids 

anabasine and anabaseine likely explain lobinaline’s selectivity and activity at 

select nicAchR subtypes. The 3-(2-piperidyl)pyridine alkaloids anabasine and 

anabaseine, the latter having a 1,2-unsaturated piperidyl group, are nicAchR 

agonists with similar affinity for α4β2- and α7-nicAchRs [22, 200]. Although 

lobinaline lacks a pyridyl functional group, the aromatic character of its phenyl 

substituents in the vicinity of the 1,2-dehydropiperidine functional group may 

suffice to create a physiochemical environment adequate to engender similar 

interactions with nicAchRs. The agonist activity lobinaline displays at nicAchRs is 

of note, given other decahydroquinolines studied to date antagonize nicAchRs, 

possibly due to the lack of a tetrahydropiperidyl substituent in those previously 

investigated [201, 202].  

A question becomes apparent when considering the pharmacological 

actions of lobinaline, and the amount of energy that is likely required to 

synthesize a molecule of its complexity: What benefit does lobinaline afford to the 

plant? One explanation relates to the effects of nicAchR agonists and DAT 

inhibitors on insect behavior. Both classes of compounds have been reported to 

function as naturally occurring insecticides, nicotine and cocaine representing 

examples of the former and latter [14, 29, 30]. Additionally, modulating two 

molecular targets may be more effective, due to synergistic effects. Targeting 

nicAchRs and the DAT also ensures protection against herbivorous insects 

resistant to one mode-of-action, or the other. Thus, having a “shotgun” approach 

to fend off herbivorous threats is potentially “safer” for the plant.  Furthermore, 

lobinaline’s ability to function as an antioxidant should reduce oxidative stress 

arising from excessive exposure to ultraviolet radiation, or free radical species 

that are generated during normal metabolism [13]. All in all, synthesis of a 

multifunctional molecule is potentially a more efficient strategy, given a single 

biosynthetic pathway and resulting metabolite addresses each of the challenges 

plants encounter, outlined above. Given evolution favors efficiency and 

effectiveness, natural selection would likely favor the retention and optimization 
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of multifunctional molecules, such as lobinaline, and their respective biosynthetic 

pathways.  

Only one other molecule which activates nicAchRs and inhibits the DAT 

has been reported, a synthetic analogue of cocaine, cocaine methiodide (CMI) 

[22, 183, 203]. However, the clinical utility of CMI is severely limited due its toxic 

peripheral effects [203]. Previously, a limited number of in vivo studies were 

performed with lobinaline [81]. Intravenous administration of lobinaline in cats 

and rabbits was reported to lower blood pressure, whereas respiration was 

unaffected by the alkaloid [81]. The authors reported minimal lethal doses of 800 

and 300 mg/kg for lobinaline and lobeline, respectively, following subcutaneous 

administration in mice [81]. These initial studies indicate the alkaloid’s 

pharmacokinetic (PK) and toxicity profile are acceptable for a drug lead, 

especially considering complications arising from PK and toxicity reportedly 

underlie failure of ~30% of NCEs in clinical development [204, 205]. Additionally, 

lobinaline does not violate criteria outlined by Lipinski’s “Rule of Five,” a common 

assessment used to predict a molecule’s oral “druggability” based on its 

physiochemical properties [149]. Thus, lobinaline holds considerable value as a 

potential lead molecule for the development of therapeutics with its combination 

of effects. One hurdle that may stall optimization of the alkaloid via traditional 

medicinal chemistry is the lack of a method for the total synthesis of lobinaline, 

limiting access to a pure starting material [8, 20, 206]. Although tracer studies 

examining lobinaline biosynthesis in planta indicate phenylalanine and lysine are 

the likely precursors of the alkaloid, a method for the total synthesis of lobinaline 

remains elusive [80]. Also the presence of five chiral centers in lobinaline would 

necessitate the separation of enantiomers likely to arise during chemical 

optimization, creating additional challenges and costs [8]. To address this 

problem, our group is currently developing a novel plant-based drug discovery 

platform that favors evolution of plant biosynthetic pathways yielding molecules 

with desirable interactions at a protein which is a therapeutic molecular target. 

Proof-of-application studies are being conducted using the hDAT as the 

molecular target, and L. cardinalis as the candidate plant species.  
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Lobinaline, or congeners with similar pharmacological effects represent 

promising multifunctional drug leads to prevent DAergic neurotoxicity seen in PD 

or psychostimulant abuse. For example, DAT inhibitors prevent uptake of 

endogenous and exogenous neurotoxic substrates of the transporter thought to 

contribute to DAergic neuron loss in PD, and DAT inhibitors alleviate specific 

parkinsonian symptoms in rodent and nonhuman primate models of PD [95-101]. 

NicAchR agonists selective for α4β2- or α7-nicAchRs are neuroprotective in 

cellular and animal models of PD, and reduce drug-induced dyskinesia caused 

by therapeutics used to treat PD [153-160, 207]. In models of psychostimulant 

abuse, α4β2- and α7-nicAchR selective agonists, as well as DAT inhibitors, 

attenuate neurotoxicity caused by amphetamines [99, 102-104, 153, 154, 156, 

159, 160, 167]. In animal models of cocaine and amphetamine abuse, “atypical” 

DAT inhibitors (e.g. JHW-007) reduce psychostimulant self-administration and 

display low abuse liability [59, 60, 65, 66, 70, 79]. DAergic neurotoxicity caused 

by psychostimulants and neurotoxic DAT substrates utilized to model PD is 

attenuated by pre-treatment with antioxidants, including ubiquinol (coenzyme 

Q10) and flavonoids (e.g. baicalein) [119, 178-182]. Thus multifunctional 

molecules, such as lobinaline, which activate α4β2- and α7-nicAchRs, inhibit the 

DAT, and function as free radical scavengers may be superior DAergic 

neuroprotectants that act via a single mechanism of action. This notion is 

supported by recent reviews indicating multifunctional leads have a higher 

probability of displaying efficacy with minimal side effects [177, 204, 208]. 

Furthermore, high affinity binding is not required for multifunctional drugs 

presumably due to synergistic and/or additive effects arising from their multi-

target activities, and this relative lack of potency at a single molecular target may 

reduce adverse effects [177, 204, 208]. Collectively, the data presented herein 

indicate lobinaline’s potential as a lead to develop multifunctional neuroprotective 

therapeutics for neurological disorders involving DAergic neurodegeneration 

and/or psychostimulant abuse. 

 

Copyright © Dustin Paul Brown 2015 
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Figure 4.1. Lobinaline displaces nicAchR-
selective radioligands. Data are expressed as 
the mean ± S.E.M. Concentration-dependent 
inhibition of A) [3H]-epibatidine (Ki = 16.2 μM) 
and B) [3H]-cytisine (Ki = 1.1 µM) binding at 
nicAchRs by lobinaline in rat cortical 
membranes. C) Concentration-dependent 
inhibition of [3H]-MLA binding (Ki = 67.5 µM) at 
nicAchRs in rat hippocampal membranes. n = 
3 – 4. 
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Table 4.1.  
NicAchR selectivity of lobinaline, lobeline, and nicotine at α4β2- and α7-
nicAchRs 
 Ki µM NicAchR Selectivity 
Compound α4β2-nicAchR α7-nicAchR (-fold difference)5 DDR value 
Lobinaline 1.1 67.5 63 1.32 
Lobeline3 4.0 x 10-3 6.26 1565 6.276 
Nicotine4 9.6 x 10-4 1.448 1508 13.006 

3Ki’s previously reported by Hojahmat et al. (2010) [209] 
4Ki’s previously reported by Rueter et al. (2006)  [191] 
5Selectivity based on comparison of Ki’s  

6DDR values previously reported by Littleton et al. (2005) [15] 
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Figure 4.2. Lobinaline displays affinity for the DAT. Data 
expressed as the mean + S.E.M. A.) Lobinaline concentration-
dependently displaces [3H]-GBR12935 (Ki = 2.5 µM) from rat 
striatal membranes. n = 4. 
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Figure 4.3. Lobinaline (LBNA) activates nicAchRs and 
inhibits the DAT. Data expressed as the mean ± S.E.M.  A) 
NIC (10.0 µM) and LBNA (1.0 mM) significantly increase 
45Ca2+ entry in SH-SY5Y cells. LBNA significantly attenuates 
NIC-induced 45Ca2+ entry, and MEC (1.0 µM) pretreatment 
completely abolishes LBNA-induced 45Ca2+ entry. ** p < 
0.01, *** p < 0.001 vs. vehicle (VEH), Student’s one-tailed t-
test. # p < 0.05 vs. cells treated with NIC alone, Student’s 
one-tailed t-test. n = 3 – 4. B.) Lobinaline dose-dependently 
inhibits the DAT (IC50 = 12.0 µM). n = 3 – 4.  
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Figure 4.4. DPPH free radical scavenging activity. 
Data expressed as the mean ± S.E.M. Quercetin (u) 
and lobinaline (n) are potent DPPH free radical 
scavengers (EC50 = 11.2 and 18.0 µM, respectively). 
Lobeline ( ) is a relatively poor scavenger of DPPH 
free radicals (EC50 = 228.8 µM). n = 3 - 5.  
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Figure 4.5. Time course of lobinaline-evoked fractional [3H] release from [3H]-DA 
preloaded rat striatal slices. Data expressed as the mean ± S.E.M. A) Lobinaline 
significantly, and dose-dependently increased fractional [3H] release at 100 µM 
( ) and 1,000 µM ( ) vs. vehicle treated controls ( ). Fractional [3H] release was 
not significantly increased by 10 µM ( ) lobinaline. Lobinaline was added 
immediately after the collection of the fifth sample, as indicated by the arrow. * p 
< 0.05, *** p < 0.001, 100 µM lobinaline vs. vehicle treated slices; ## p < 0.01, 
### p < 0.001, 1,000 µM lobinaline vs. vehicle treated slices; Two-way ANOVA, 
Bonferroni’s post-hoc test. n = 4 – 10 rats. B) Effect of MEC on the time course of 
lobinaline-evoked fractional [3H] release from [3H]-DA preloaded rat striatal slices. 
Fractional [3H] release was significantly increased by 100 µM lobinaline ( ). 
Fractional [3H] release from striatal slices pretreated with 10 µM MEC prior to the 
addition of 100 µM lobinaline ( ) was not significantly different from vehicle 
treated slices ( ). MEC was added immediately after the collection of the second 
sample (small arrow). Lobinaline was added immediately after collection of the 
seventh sample (large arrow). * p < 0.05, *** p < 0.001, 100 µM lobinaline vs. 
vehicle treated slices; Two-way ANOVA, Bonferroni’s post-hoc test. n = 4.  
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Figure 4.6. Effects of lobinaline (LBNA) on exogenous DA clearance in 
isoflurane-anesthetized rats measured using HSC. Data are expressed as the 
mean ± S.E.M. A) Representative trace of exogenous DA clearance pre- (solid 
line) and post-LBNA (dashed line) application. B) LBNA significantly increased (p 
= 0.0203) the T80 1-minute post application (76.3 ± 39.5 sec.), as compared to 
the T80 pre-application (33.7 ± 12.5 sec.). * p < 0.05, pre- vs. post-lobinaline 
application, paired one-tailed Student’s t-test.  C) LBNA significantly decreased 
(p = 0.0459) the clearance rate 1-minute post-application (0.09 ± 0.05 µM/sec.), 
as compared to the clearance rate pre-application (0.13 ± 0.07 µM/sec.). * p < 
0.05, pre- vs. post-LBNA application, paired two-tailed Student’s t-test. n = 6. 
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Chapter 5 
 
 

Hairy root methodology 
 
 
5.1. Chemicals and supplies 

 

Methanol, hexane, and chloroform were purchased from Sigma Aldrich 

(St. Louis, MO, USA). [3H]-GBR12935 (S.A. = 40 Ci/mmol) and [3H]-DA (S.A. = 

60 Ci/mmol) were purchased from American Radiolabeled Chemicals, Inc. (St. 

Louis, MO, USA). All other chemicals and materials were purchased from Fisher 

Scientific (Pittsburgh, PA, USA), unless otherwise stated. In all instances, the use 

of water (preparation of media, aqueous solutions, etc.) refers to the use of Milli-

Q® H2O (Millipore, Billerica, Massachusetts, USA). Sterile water refers to Milli-Q 

H2O sterilized by autoclaving at 120°C for 20 minutes. 

 

5.2. Selection of candidate plant species 

 

The selection of the candidate plant species for proof-of-concept studies 

aimed to demonstrate the use target-directed biosynthesis to optimize a plant’s 

pharmacological genotype/phenotype was identified based on the following 

characteristics: 1) biological activity of interest, 2) bioactivity arising from a 

structurally complex metabolite that was not amenable to pharmacological 

optimization via traditional approaches used by medicinal chemist, 3) amenable 

to genetic transformation using well-established methodology to generate stable 

transgenic cultures, and 4) transgenic cultures generated from the candidate 

species which are readily maintained in vitro. In the present study, this translated 

to each of the following, respectively: 1) inhibitory modulation of the DAT, 2) 

bioactivity arising due to a metabolite having for which no published method for 

total synthesis exists which possessed a high degree of structural complexity 
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rendering total synthesis unfeasible, 3) amenable to A. rhizogenes-mediated 

genetic transformation, and 4) resultant transgenic hairy root cultures having a 

rapid rate of growth using conventional in vitro methodology for plant cell culture. 

These characteristics were required and/or desirable to increase the feasibility of 

successfully demonstrating proof-of-concept. 

 

5.3. Bacterial and plant cell culture media formulations 

 

All bacterial cultures were grown using lysogeny broth (LB; pH 7.0), 

prepared as previously described [210]. LB media was autoclaved at 121°C for 

20 minutes. Solid LB medium was prepared by adding a gelling agent (agar, 15 

g/l) prior to autoclaving. Autoclaved media was placed in a water bath, allowed to 

reach 55°C, and then filter sterilized (0.45 µm pore size) solutions of antibiotics 

were added as required. The following LB media compositions were used during 

the course of the study: liquid LB supplemented with kanamycin (50 mg/ml) or 

ampicillin (100 mg/ml), and solid LB supplemented with kanamycin (50 mg/ml) or 

ampicillin (100 mg/ml). Solid LB used to isolate transformed E. coli bacterial 

colonies carrying pGEM-T vectors was prepared using instructions provided with 

the p-GEMT Easy Vector System (Promega, Madison, WI, USA). Transformed A. 

rhizogenes strains carrying pCambia1301-based binary vectors were selected 

solidified LB supplemented with kanamycin, whereas strains carrying the binary 

vector pKYLX80 or pPCVICE4hpt were selected on solidified LB containing 

ampicillin. 

In vitro plant growth media was prepared using hormone-free half-strength 

Murashige and Skoog salts containing B vitamins (½ MS), supplemented with 

sucrose (30 g/l) and MES hydrate (0.5 g/l), adjusted to a pH of 5.8. Solid media 

was prepared by adding Gelrite (3.875 g/l) prior to autoclaving. All media was 

sterilized by autoclaving at 121°C for 20 minutes. After autoclaving and allowing 

media to cool to 55°C in a water bath, filter sterilized (0.45 µm pore size) 

solutions of antibiotics (cefotaxime) and selection agents (MPTP or MPP+) were 

added to achieve required media formulations. The following media were used 
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during the course of experimentation: antibiotic-free liquid ½ MS, liquid ½ MS 

supplemented with cefotaxime (800 mg/ml), antibiotic-free solid ½ MS, solid ½ 

MS supplemented with cefotaxime (800 mg/ml or 400 mg/ml), and solid ½ MS 

supplemented with cefotaxime (400 mg/ml) and MPTP or MPP+ (final 

concentration, 100 µM).  

 

5.4. Binary vectors and the construction of pCambia1301-hDAT 

 

Binary vectors mobilized into A. rhizogenes for the purpose of hairy root 

induction, including their respective reporter genes, genes of interest, and 

selectable marker genes, are summarized in Table 6.1. Human brain total 

reference RNA obtained from Ambion RNA Company (Life Technologies, Grand 

Island, NY, USA) was used to isolate cDNA via reverse transcription. Full-length 

cDNA coding for the hDAT (1.8-kb pairs) was PCR amplified (forward primer: 5’-

AAGCTTATGAGTAAGAGCAAATGCTC-3’; reverse primer: 5’-TCTAGACTACA-

CCTTGAGCCAGTGGC-3’), and cloned into the p-GEMT Easy Vector System 

(Promega, Madison, WI, USA) using methods provided by the manufacturer. 

HindIII and XbaI restriction enzyme sites were added to the 5’-end of the forward 

and reverse primers, respectively (underlined above). Authenticity of the gene 

was confirmed via sequencing. Full-length cDNA encoding the hDAT was sub-

cloned into the binary vector pKYLX80 downstream of the CaMV 35S promoter 

using a directional cloning strategy using the restriction enzymes HindIII and 

Xba1, thus creating pKYLX80-hDAT. The CaMV 35S promoter, multiple cloning 

site, and rbcs 3’ terminator sequence was restricted from pKYLX80 using EcoR1 

and Cla1, then sub-cloned into the multiple cloning site of pBluescript SK- 

creating a modified pBluescript SK- (mpBluescript SK-). The CaMV 35S promoter 

and cDNA encoding the hDAT were excised from pKYLX80-hDAT with EcoR1 

and Xba1 restriction enzymes, and ligated into mpBluescript SK- upstream of the 

rbcs 3’ terminator, creating hDATmpBluescript SK-. The expression cassette 

consisting of the CaMV 35S promoter, full length cDNA coding for the hDAT, and 

the rbcs 3’ terminator was excised from hDATmpBluescript SK- using EcoR1 and 
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Sal1 restriction enzymes, and ligated into the binary vector pCabmia1301, 

ultimately obtaining pCambia1301-hDAT. The presence of the hDAT expression 

cassette in pCambia1301-hDAT was confirmed via PCR amplification (forward 

primer: 5’-ATGAGTAAGAGCAAATGCTCCGTGGG-3’; reverse primer: 5’- 

CTACACCTTGAGCCAGTGGCGGAG-3’). 

 

5.5. Agrobacterial strains and transformation 

 

In the present study, A. rhizogenes strain R1000 (AR1000) was used to 

generate hairy roots. Competent cells of AR1000 were transformed with binary 

vectors using the freeze-thaw method, as previously described [210]. AR1000 

carrying pCambia1301, pCambia1301-hDAT, pKM24GFP, or pPCVICE4hpt was 

thus obtained (AR1000-C, AR1000-hDAT, AR1000-GFP, and AR1000-ATM, 

respectively). Agrobacterial strains were stored at -80°C in 60% glycerol. Fresh 

agrobacterial stocks retrieved from storage at -80°C and grown overnight were 

used for all plant transformation experiments. Fresh agrobacterial stocks were 

prepared every 6 months to conserve the viability and integrity of bacterial strains 

their respective vectors. 

  

5.6. Plant growth conditions 

  

In vitro grown plant cultures were maintained in a plant growth chamber at 

25°C ± 2°C on a 12-hour light/dark cycle under commercially available 

fluorescent lights (light intensity, 45 µmol ! m-2 ! sec-1). All in vitro grown plants, 

wild-type roots, and hairy root cultures were maintained under aseptic conditions. 

In vitro grown plants, wild-type roots, and hairy root cultures were subcultured 

onto fresh medium every 4 – 6 weeks, unless otherwise stated. 
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5.7. Germination of L. cardinalis seedlings and induction hairy roots: primary 

hairy root induction 

 

L. cardinalis seeds obtained from the Prairie Moon Nursery (Winona, MN, 

USA) were surface sterilized with an aqueous 30% bleach solution for 15 

minutes, washed three times with sterile water, then stored at 4°C in 10 volumes 

of sterile water. Under aseptic conditions, sterilized seeds were aspirated into a 

sterile 9-inch pipette, plated onto antibiotic-free solid ½ MS, and then placed in a 

plant growth chamber. Care was taken to distribute the seeds evenly over the 

surface of the medium. Seeds generally germinated within 4 – 8 weeks. 

Hairy roots were generated using methods previously described for L. 

erinus, with minor modifications [211, 212]. Briefly, AR1000-hDAT was grown 

overnight to an OD600 of ~0.6 in liquid LB supplemented with kanamycin (100 

mg/ml). The following day, the bacterial suspension was centrifuged at 4,000 x g 

for 8 minutes. The resulting pellet was re-suspended 25 ml of antibiotic-free liquid 

½ MS. Plant tissue explants used for hairy root induction consisted of hypocotyl 

segments (length, ~1.5 cm) prepared by excising and discarding cotyledons and 

radicles from 4 – 6 week old seedlings grown in vitro under aseptic conditions. 

Explants were placed in antibiotic-free liquid ½ MS containing agrobacteria, 

punctured three times with a sterile hypodermic needle, and allowed to soak for 

20 minutes in presence of agrobacteria. Explants were then removed from the 

solution containing agrobacteria, blotted on sterile filter paper, placed on 

antibiotic-free solid ½ MS, and kept in the dark in a plant growth chamber for a 3-

day co-cultivation period. Afterward, explants were transferred to a 50 ml conical 

tube containing 40 ml of liquid ½ MS supplemented with cefotaxime (1,000 

mg/ml) for 30 minutes. The conical tubes were gently shaken (~30 seconds) at 5-

minute intervals. Explants were then removed, blotted on sterile filter paper, 

placed on solid ½ MS supplemented with cefotaxime (800 mg/ml), and 

subcultured onto fresh medium every 3 – 5 days for 2 weeks. Next, explants 

were transferred to and maintained on solid ½ MS supplemented with cefotaxime 

(400 mg/ml), and subcultured onto fresh medium every 1 – 2 weeks. Hairy roots 
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emerged from explants within 4 – 6 weeks. Upon reaching a length ≥ 1.5 cm, 

hairy roots were excised and maintained on solid ½ MS supplemented with 

cefotaxime (400 mg/ml). Control hairy roots were induced using essentially 

identical methods, with the exception of being transformed with AR1000-C. Hairy 

roots generated directly from L. cardinalis hypocotyls herein are referred to as 

primary hairy roots (1°HRs). Two populations of 1°HRs were thus obtained: 1) 

transgenic primary hairy roots expressing the hDAT (hDAT-1°HRs) and 2) control 

primary hairy roots (Ctrl-1°HRs). 

 

5.8. β-glucuronidase (GUS) histochemical staining assay 

 

Successful transformation of L. cardinalis hairy roots induced with 

AR1000-C or AR1000-DAT was confirmed using the GUS histochemical staining 

assay, as previously described [210]. Briefly, a stock solution of GUS staining 

buffer (50 mM Na3PO4, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 10 mM EDTA, 

and 0.05% Triton X-100 dissolved in 150 ml of water, pH 7.0) was prepared and 

15 ml aliquots of the stock were stored at -20°C. For GUS staining, a 15 ml 

aliquot of stock GUS staining buffer was thawed, diluted with water (final volume, 

100 mL), and then 35 mg of 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-Gluc) 

dissolved in 150 µl of DMF was added to the diluted stock buffer. Hairy roots 

(length, ~3 – 4 cm) were divided into equal halves with a sterile surgical blade. 

Hairy root apices were maintained on solid ½ MS supplemented with cefotaxime 

(400 mg/ml). Basal portions of hairy roots were incubated in GUS staining buffer 

containing X-Gluc for a 24-hour period at 37°C. The formation of a blue 

precipitate indicated successful integration of T-DNA. Hairy root apices 

corresponding to basal portions that tested positive for GUS reporter gene 

expression were maintained for use in later studies. 
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5.9. Conformation of cDNA encoding the hDAT in hDAT-1°HRs 

 

Total RNA was isolated from Ctrl- and hDAT-1°HRs that tested positive for 

GUS reporter gene expression. RNA (1 µg) from each sample was reversely 

transcribed and subsequently amplified using a cDNA synthesis kit from 

Invitrogen and 0.5 mmol of both sense and antisense primers specific to the 

hDAT gene sequence. Ten-fold dilutions (initial concentration, 100 ng) of 

pCambia1301-hDAT plasmid DNA was used as positive control (standard). 

Standards and samples were simultaneously PCR amplified for 30 cycles in a 

thermocycler. After amplification, the PCR products were run in agarose gel-

based electrophoresis and visualized after ethidium bromide staining. The 

amplified PCR products were analyzed under UV light in a Gel-Doc system. The 

following primer sequences were used for PCR amplification: forward, 5’-

ATGAGTAAGAGCAAATGCTCCGTGGG-3’; reverse, 5’-CTACACCTTGAGCCA-

GTGGCGGAG-3’. hDAT-1°HRs that tested positive for cDNA encoding the hDAT 

were maintained for use in later studies. 

 

5.10. [3H]-GBR12935 binding in transgenic L. cardinalis hairy root membranes 

 

Radioligand binding studies were conducted in 1°HR membrane 

preparations with the highly selective DAT ligand [3H]-GBR12935 [84, 86]. 

Membranes were prepared as previously described, with minor modifications 

[213]. Briefly, plant tissue from Ctrl- or hDAT-1°HRs that tested positive for cDNA 

encoding the hDAT was flash frozen with liquid nitrogen and lyophilized. Freeze-

dried tissue was ground to a fine powder and homogenized in 10 volumes of 

buffer (0.1 M Na2HPO4, 0.5 M mannitol, 50 mM ascorbic acid, 5 mM EDTA, 40 

mM 2-mercaptoethanol, 0.5 M PMSF, 10 µg/ml leupeptin, 4.4 µg/ml aprotenin 

and 2.5 µg/ml bacitracin). The resulting homogenates were centrifuged at 10,000 

x g for 15 minutes at 4°C, the resulting pellet was discarded, and the supernatant 

was centrifuged at 50,000 x g for 30 minutes at 4°C. The resulting pellet was 

resuspended in buffer (20 mM HEPES, 20 mM NaCl, 1 mM MgCl2, 1 mM EDTA, 
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30% glycerol, 0.2 mM PMSF, 10 µg/ml leupeptin, 4.4 µg/ml aprotenin, 2.5 µg/ml 

bacitracin), washed 3 times, then pelleted again at 50,000 x g for 30 minutes at 

4°C. The resulting membrane isolates (final tissue concentration, 3.3 µg/ml) were 

incubated with [3H]-GBR12935 (final concentration, 0 – 250 nM) in assay buffer 

(50 mM Na2PO4, 120 mM NaCl, 10 µM ZnCl, adjusted to pH 7.4) for 2 hours in a 

96-well plate format (final reaction volume, 300 µL). Experiments were performed 

at room temperature. After reaching equilibrium, membranes were harvested 

onto 96-well GF/B filter plates (PerkinElmer Inc., Waltham, MA, USA) by vacuum 

filtration, and rapidly washed three times with ice-cold 50 mM Tris-HCl buffer (pH 

7.4). Filter plates were pretreated with a solution of 0.1% polyethyleneimine 1 

hour prior to harvesting membranes to reduce non-specific binding. Filter plates 

were allowed to dry overnight. The following day, 35 µL of scintillation fluid 

(Microscint 20, Packard Inc.) was added to each well and plates were placed in 

the dark for two hours. Afterward, radioactivity was measured by scintillation 

counting (2 minutes per well) using a Packard TopCount® NXT™ microplate 

scintillation counter.  Total binding was measured in the presence of radioligand 

alone, and non-specific binding was measured in the presence of excess 

GBR12909 (final concentration, 10 µM). Specific binding was calculated by 

subtracting non-specific binding from total binding. hDAT-1°HRs that tested 

positive for hDAT protein expression were maintained for use in subsequent 

experiments.  

 

5.11. [3H]-DA uptake studies in L. cardinalis 1°HRs 

 

Radiotracer uptake studies were performed with apices from Ctrl- or 

hDAT-1°HRs. Briefly, excised 1°HR apices (n = 20 per group; total mass, 

~100mg) were incubated in uptake buffer (120 mM NaCl, 3.9 mM KCl, 650 µM 

MgSO4, 510 µM CaCl2, 190 µM NaHPO4, 100 µM pargyline, 2 mg/ml glucose, 

0.2 mg/ml ascorbic acid, 20 mM HEPES, pH 7.4), uptake buffer containing the 

highly selective DAT inhibitor GBR12909 (final concentration, 100 µM), or Na+-

free uptake buffer at 37°C for 15 minutes prior to the addition of [3H]-DA (final 
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concentration, 20 – 30 nM) [84-88]. Initial experiments were performed at a 

single time point, terminating uptake 4 minutes after the addition of [3H]-DA. 

Experiments examining the time-dependence of [3H]-DA uptake were performed 

by incubating Ctrl- or hDAT-1°HRs in uptake buffer at 37°C for 15 minutes, after 

which [3H]-DA was added. Uptake in time course studies was terminated 1 – 30 

minutes after the addition of [3H]-DA. In a final set of experiments, Ctrl- or hDAT-

1°HRs were incubated in uptake buffer, or uptake buffer containing GBR12909 

(final concentration, 10 µM or 100 µM) for 15 minutes at 37°C, after which [3H]-

DA was added, and uptake was allowed to proceed for 5 or 25 minutes. The final 

concentration of [3H]-DA was consistent in all uptake studies. Uptake in all 

experiments was terminated by washing 1°HR apices thrice with ice-cold uptake 

buffer after the removal of solution containing [3H]-DA. After removing the last 

wash, 1°HR apices were flash frozen with liquid nitrogen, lyophilized, and ground 

to a fine powder. Ground hairy root tissue was extracted with 300 µl of uptake 

buffer containing cellulase enzyme (1,500 units/ml) for 24 hours, then centrifuged 

at 20,0000 x g for 20 minutes at 4°C. Aliquots (100 µl) from the supernatants of 

various treatment groups were added to scintillation fluid and radioactivity was 

measured by scintillation counting using a Packard Tri-Carb Liquid Scintillation 

Counter (Gaithersberg, MD, USA). Data were expressed as the rate of uptake 

per unit mass of hairy root tissue per unit time (CPM/mg tissue/minute).  

 

5.12. 6-OHDA- and MPTP/MPP+-induced cytotoxicity 

  

Wild-type roots (WT-Rs), Ctrl-1°HRs, and hDAT-1°HRs were exposed to 

cytotoxic DAT substrates, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), which are neurotoxins used to model PD [43, 

89-92, 114, 214]. The oxidative metabolite of MPTP, 1-methyl-4-phenylpyridinium 

(MPP+), is a cytotoxic DAT substrate [89, 90]. Hairy root apices (n = 5 per 

treatment group; total mass, ~ 120 mg total) were placed in conical tubes 

containing 5 ml of liquid ½ MS (vehicle), or liquid ½ MS containing MPTP or 6-

OHDA (final concentration, 100 µM and 50 µM, respectively), and then incubated 
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at room temperature for 24 hours in the dark. Cell viability was normalized to that 

of WT-Rs. In a separate set of experiments, Ctrl- or hDAT-1°HR apices were 

placed in conical tubes containing 5 mL of liquid ½ MS (vehicle) or liquid ½ MS 

containing GBR12909 (final concentration, 10 µM or 100 µM) for 1 hour prior to 

being treated with MPTP or 6-OHDA, as described above. In the latter 

experiments, only hDAT-1°HR apices were treated with GBR12909 and/or 

neurotoxins. Cell viability was normalized to that of vehicle treated Ctrl-1°HRs.  

After the 24-hour treatment period, root apices were stained with trypan 

blue to visualize dead or dying cells, as previously described with modifications 

[215]. Briefly, treatment solutions were removed and discarded, then root apices 

were washed 3 times with liquid ½ MS. The final wash was removed, replaced 

with 5 ml of trypan blue stain (0.4%), and the staining solution was vacuum 

infiltrated for 30 minutes. Root apices were then incubated at 90°C for 2 hours, 

the trypan blue staining solution was then removed, and replaced with an 

aqueous solution (5 ml) of chloral hydrate (final concentration, 2.5 g/ml). Roots 

were incubated in the solution of choral hydrate at room temperature overnight in 

the dark. The following day, root apices were placed on a microscope slide and 

visualized at 32x magnification using a dissecting microscope. Images were 

captured with a digital camera affixed to the microscope. Trypan blue staining 

intensity was quantified with ImageJ software and converted to an index of cell 

viability. 

 

5.13. Sequential hairy root transformation: induction of secondary hairy roots 

 

Sequential transformation of hairy roots was accomplished using 

essentially the same protocol as that described to induce 1°HRs (see section 

5.7), with the exception that 1°HRs served as a source of explants. Explants 

(length, ~1.5 – 2 cm) excised from Ctrl-1°HRs that tested positive for GUS 

reporter gene expression (see section 5.8) were co-cultured with AR1000-GFP. 

Secondary hairy roots (2°HRs) emerged ~2 – 4 weeks later at cut surfaces and 

wound sites on the lateral surfaces of explants created with a sterile hypodermic 
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needle. Individual hairy roots were tested for both GFP and GUS reporter gene 

expression via florescent microscopy (equipment, wave length of excitation, etc.) 

and histochemical staining, respectively. Initially, 2°HRs were evaluated for GFP 

reporter gene expression, since GUS staining would preclude GFP imaging. The 

transformation frequency was determined by dividing the total number of 2°HRs 

emerging from the each 1°HR explant by the number of 2°HRs that tested 

positive for both GUS and GFP reporter gene expression. 

 

5.14. Induction and selection of transgenic gain-of-function hairy roots 

functionally expressing the hDAT 

 

Explants (length, ~1.5 – 2 cm) obtained from hDAT-1°HRs functionally 

expressing the hDAT were co-cultured with AR1000-ATM for 3 days, using 

methods for sequential hairy root induction described above. Following the co-

cultivation period, hairy root explants were soaked in liquid ½ MS supplemented 

with cefotaxime (1,000 mg/ml) for 30 minutes, blotted on sterile filter paper, and 

placed on solid ½ MS supplemented with cefotaxime (800 mg/ml). Explants were 

subcultured every 3 days onto fresh medium for 1 week. Nodules indicating the 

initiation of 2°HR formation began form at cut surfaces and wound sites on the 

lateral surfaces of explants ~2 weeks after co-culture. Explants were then 

transferred to selection medium, solid ½ MS supplemented with cefotaxime (400 

mg/ml) and a neurotoxin/selection agent, MPTP or MPP+ (final concentration, 

100 µM). During the first month of selection, explants were subcultured onto 

fresh selection medium weekly. Subsequently, explants were subcultured onto 

fresh selection medium every 4 – 6 weeks. Fully differentiated secondary gain-of-

function transgenic hairy roots expressing the hDAT which were resistant to the 

selection agent (toxin resistant secondary hairy roots, TR-2°HRs) emerged 4 – 6 

weeks later, and were excised from hDAT-1°HR explants after reaching a length 

≥ 1.5 cm. Excised TR-2°HRs were maintained on selection medium ≥ 4 months 

prior to being transferred to solid ½ MS supplemented with cefotaxime (400 

mg/ml) only. TR-2°HRs that were initially selected on medium containing MPTP 
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were transferred to and maintained on selection medium containing MPP+ for ≥ 4 

months prior to be transferred to solid ½ MS supplemented with cefotaxime (400 

mg/ml) only. MPP+ was used as a selection agent, rather than MPTP, in later 

studies since differences in MPTP susceptibility could have arisen due to 

variations in 2°HRs’ ability to oxidize MPTP to MPP+. Selection with MPP+ also 

prevented resistance that could have arisen from mutations leading synthesis of 

oxidase inhibitors and/or reduction of oxidase activity. Therefore, MPP+ selection 

was more selective for the survival of TR-2°HRs having mutations leading to 

increased hDAT inhibitory modulation. A separate population of secondary gain-

of-function transgenic hairy roots expressing the hDAT was generated, but was 

not selected on medium containing a cytotoxic DAT substrate (ATMhDAT-

2°HRs). 

 

5.15. Hairy Root Populations and Tissue collection 

 

Four hairy root populations were established: Ctrl-1°HRs (n = 68), hDAT-

1°HRs (n = 77), ATMhDAT-2°HRs (n = 72), and RHRs (n = 109). Root apices 

(length, ~1.5 cm) were placed on fresh medium to propagate individual cultures 

when hairy root populations were subcultured. All remaining tissue from 

individual hairy root cultures was placed in 15 ml conical tubes labeled with the 

corresponding population and hairy root number, then stored at -20°C prior to 

use in subsequent experiments. 

 

5.16. Preparation of hairy root MeOH extracts and the isolation of lobinaline 

 

Tissue samples collected from individual hairy roots were removed from 

storage at -20°C, immediately freeze-dried, ground to a coarse powder, and 

extracted with 3 volumes of methanol overnight in the dark. The following day, 

samples were centrifuged at 10,000 RPM for 30 minutes. Equal volumes of the 

resulting supernatants were aliquoted into two pre-weighed, labeled 1.5 ml 

conical tubes, dried using a CentriVap, and the masses conical tubes containing 
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dried extract were determined. The mass of a dried extract was calculated by 

subtracting the mass of the conical tube and from that of a conical tube 

containing dried extract. One aliquot from each individual hairy root was 

assessed in pharmacological assays. The other was subject to gas 

chromatographic-mass spectrometric (GC-MS) analysis. Lobinaline was isolated 

as previously described (see section 3.5). Lobinaline thus obtained was analyzed 

using GC-MS methods described below (see section 5.18), and the purity of the 

alkaloid was determined by integrating the area under the curve (AUC) of 

lobinaline’s chromatographic peak (GC-MS run in TIC mode; purity ≥ 95%). The 

identity the alkaloid was confirmed based on previously reported MS 

fragmentation data for lobinaline [135]. Dried methanolic (MeOH) hairy root 

extracts and lobinaline were stored at -20°C prior to further experimentation. 

 

5.17. Pharmacological analysis of hairy root MeOH extracts: inhibition of DAT-

mediated [3H]-DA uptake  

  

The DAT inhibitory activity of MeOH extracts from individual hairy roots 

was examined by performing [3H]-DA uptake in rat striatal synaptosomes. In vitro 

[3H]-DA uptake was performed as previously described with minor modifications 

[57]. Briefly, adult male Sprague-Dawley rats (200-250 g) were anesthetized with 

CO2 and decapitated. Striata were rapidly dissected and immediately placed into 

10 volumes of ice-cold uptake buffer (120 mM NaCl, 3.9 mM KCl, 650 µM 

MgSO4, 510 µM CaCl2, 190 µM NaHPO4, 100 µM pargyline, 2 mg/ml glucose, 

0.2 mg/ml ascorbic acid, 20 mM HEPES, pH 7.4, saturated with 95% O2/5% CO2) 

containing 0.32 M sucrose. Striatal tissue was homogenized in a glass 

homogenization tube with a Teflon pestle. The homogenate was centrifuged at 

1,000 x g for 10 minutes at 4°C. The resulting supernatant was collected and 

centrifuged at 16,000 x g for 20 minutes at 4°C. The resulting pellet was washed 

twice with ice-cold uptake buffer and re-suspended in 10 ml of uptake buffer 

(synaptosome preparation). Synaptosomes (100 µl) were added to individual 

wells in a 96-well plate and incubated at 37°C for 10 minutes. Hairy root MeOH 
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extracts were dissolved in uptake buffer containing 1.0% DMSO. Lobinaline was 

dissolved in 100% DMSO, then diluted with uptake buffer (0.3 nM – 3 mM). The 

final concentration of DMSO in uptake studies never exceeded 1.0%, which had 

no significant effect on radiotracer uptake using methods outlined in the present 

study. Hairy root MeOH extracts (100 µl; final concentration 200 or 100 µg/ml) or 

lobinaline (100 µl; final concentration, 0.1 nM – 1 mM) were co-incubated with 

synaptosomes for 10 minutes at 37°C prior to the addition of [3H]-DA (100 µl). 

After the 10-minute co-incubation, [3H]-DA was added to each well (final 

concentration, 15 – 30 nM) and uptake was allowed to proceed for 5 minutes at 

37°C. Uptake was terminated by placing 96-well plates on ice, and then 

immediately harvesting synaptosomes onto a 96-well GF/C filter plates 

(PerkinElmer Inc.) by vacuum filtration, followed by three rapid washes with ice-

cold 50 mM Tris-HCl buffer (pH 7.4). After allowing filtration plates to dry 

overnight, 35 µl of scintillation fluid (Microscint 20, Packard Inc.) was added to 

each well and the plate was kept in the dark for 2 hours. Subsequently, 

radioactivity was measured by scintillation counting using a Packard TopCount® 

NXT™ microplate scintillation counter. Total uptake was measured in the 

presence of [3H]-DA alone. Non-specific uptake was determined in the presence 

of 10 µM GBR-12909. Total specific uptake and specific uptake in the presence 

of extract or lobinaline was calculated by subtracting non-specific uptake from 

each, respectively. Specific uptake in the presence of inhibitor was expressed as 

a percentage of total specific uptake. Each extract’s inhibitory activity at the DAT 

was expressed as lobinaline equivalents, extrapolated from the lobinaline dose-

response curve. DAT inhibitory activity (mean ± S.E.M) of each hairy root 

population was calculated. The frequencies of “highly active DAT inhibitors,” 

designated as hairy roots whose extract produced DAT inhibition ≥ 2 S.D. above 

mean DAT inhibition observed for the hDAT-1°HR population, were calculated for 

ATMhDAT- and TR-2°HR populations. 
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5.18. GC-MS analysis of hairy root MeOH extracts 

 

MeOH extracts from individual hairy roots were analyzed via GC-MS. GC-

MS analyses were performed using a Hewlett Packard 6890 Gas Chromatograph 

interfaced to a Hewlett Packard 5973 Series Mass Selective Detector, an Agilent 

Technologies 7683 Series Injector, and a Hewlett Packard 7683 Series 

Autosampler. ChemStation Software (Version 1.02.06) and the Wiley Spectral 

Database (Version 4.0) were used for instrument control, data analysis, and 

structural elucidation. Separation was performed on a HP-5MS column ((5%-

phenyl)-methylpolysiloxane; 30.0 m x 320 µm x 0.25 µm). Ultra-high purity helium 

(flow rate of 1.2 ml/minute) served as the carrier gas. Sample volumes of 1 µl 

were injected in split mode (split ratio, 10.0:1; split flow 12.3 ml/minute) at an inlet 

pressure of 1.60 psi. The inlet temperature was held at 250°C. The oven was 

operated using the following parameters: initial temperature, 80°C; 80°C, 2 

minute hold; 10°C/minute to 160°C, 1 minute hold; 60°C/minute to 275°C, 12 

minute hold; 60°C/min. to 60°C, 0 minute hold; total runtime, 28.50 minutes. The 

transfer line temperature was held at 280°C. Lobinaline content of each extract 

was quantified. A concentration-response curve for lobinaline was generated by 

dissolving the alkaloid in methanol (concentrations prepared, 10 µg/ml, 25 µg/ml, 

50 µg/ml, 100 µg/ml, 250 µg/ml, 500 µg/ml, and 1,000 µg/ml), and then analyzing 

duplicate samples at each concentration. The abundances of the peak 

corresponding to m/z = 186 in the MS extracted from lobinaline’s 

chromatographic peak were averaged at each concentration. Data were 

analyzed using linear regression, and response to lobinaline over this 

concentration range displayed excellent linearity (r2 = 0.9965, x-intercept = 1.8 

µg/ml). Lobeline was dissolved in methanol (final concentration, 10 – 1000 

µg/ml), and subject to GC-MS analysis using the same chromatographic 

conditions to identify and determine the retention time of it’s chromatographic 

peaks (two prominent peaks were observed, presumably due to decomposition of 

lobinaline in the instrument prior to reach the MSD). In the present study, 

chromatographic peaks indicating the presence of lobeline were not detected in 
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any of the MeOH extracts prepared from L. cardinalis hairy roots. Dried MeOH 

extracts obtained from individual hairy roots were resuspended in methanol (final 

concentration, 4 mg/ml), and then each sample was analyzed in duplicate. The 

peak abundance (m/z = 186) in the MS extracted from the lobinaline’s 

chromatographic peak was averaged for each individual hairy root. The 

concentration of lobinaline present was calculated from the lobinaline calibration 

curve. The mean lobinaline content of each hairy root population was calculated. 

The frequencies of “lobinaline overproducers,” designated as hairy roots whose 

extract’s lobinaline content was ≥ 2 S.D. above the mean lobinaline content 

observed for the hDAT-1°HR population, were calculated for ATMhDAT- and TR-

2°HR populations. 

Qualitative examination of GC traces from individual hairy roots from each 

population was carried out to determine whether the “fingerprint” of metabolites 

(i.e. chromatographic peaks) present in extracts within a given population were 

consistent and reproducible. Qualitative analysis of GC traces from ATMhDAT-

2°HRs and TR-2°HRs was also performed to identify of chromatographic peaks 

that were present, which were undetectable in 1°HR populations. When possible, 

structural elucidation of metabolites present in increased yields and/or “novel” 

metabolites was carried out using the software described above. 

 

5.19. Data Analysis 

 

Statistical analyses, curve fitting, and graphical presentation of data were 

performed using GraphPad Prism software (Version 6.0; GraphPad Software, 

San Diego, CA, USA). Bmax and Kd values for [3H]-GBR12935 binding in hDAT-

1°HR membranes were calculated using nonlinear regression analysis to fit 

radioligand binding data to a one-site saturation binding model. One-way 

analysis of variance (ANOVA) followed by Tukey’s post-hoc analysis was 

performed to determine whether hDAT expression significantly increased [3H]-DA 

uptake in hDAT-1°HRs, and to determine whether GBR12909 or Na+-free 

conditions significantly affected radiotracer uptake in Ctrl- and hDAT-1°HRs at 4-
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minutes. Two-way ANOVA was performed (time x phenotype interaction) to 

determine if hDAT expression significantly increased [3H]-DA uptake in time 

course studies. Bonferroni’s post-hoc analysis was used to determine time points 

at which the magnitude of [3H]-DA uptake in Ctrl- and hDAT-1°HRs was 

significantly different. One-way ANOVA followed by Dunnett’s post-hoc analysis 

was performed to determine the time points at which [3H]-DA uptake in Ctrl- or 

hDAT-1°HRs was significantly different than that measured in respective groups 

at 1-minute. Two-way ANOVA (time x phenotype interaction) followed by 

Bonferroni’s post-hoc analysis was performed to determine whether [3H]-DA 

uptake measured at 5- and 25-minutes was significantly increased by hDAT 

expression, and to determine if uptake at 25-minutes was significantly greater 

than that observed at 5-minutes in Ctrl- and hDAT-1°HRs. Two-way ANOVA 

(treatment x phenotype interaction) followed by Bonferroni’s analysis was 

performed to determine whether GBR12909 significantly inhibited [3H]-DA uptake 

in Ctrl- and hDAT-1°HRs at 5- and 25-minutes. One-way ANOVA followed by 

Tukey’s post-hoc analysis was performed to determine whether susceptibility to 

cytotoxic DAT substrates was significantly affected by hairy root phenotype 

and/or hDAT expression. One-way ANOVA followed by Tukey’s post-hoc 

analysis was performed to determine whether GBR12909 significantly attenuated 

toxicity caused by cytotoxic DAT substrates in hDAT-1°HRs. One-way ANOVA 

followed by Tukey’s post-hoc analysis was performed to determine whether the 

mean inhibitory DAT activity and the mean lobinaline content of hairy root 

populations were significantly different. Two-tailed Chi-Square analysis and 

Fisher’s exact test were performed to determine whether ATM combined with 

selection significantly increased the frequency of “highly active DAT inhibitors” 

and/or “lobinaline overproducers” when compared to the use of ATM alone. All 

data are expressed as the mean ± the standard error of the mean (S.E.M.), 

unless otherwise stated. A p-value < 0.05 was defined as statistically significant. 
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Table 5.1. Binary vectors mobilized into A. rhizogenes 

Vector Reporter genes, 
genes of interest Selectable marker gene* 

pCamiba1301 GUS reporter 
gene KanR, kanamycin resistance 

pCambia1301-
hDAT 

GUS reporter 
gene 

cDNA encoding 
the hDAT 

KanR, kanamycin resistance 

pKM24GFP GFP KanR, kanamycin resistance 

pPCVICE4hpt CaMV 35S 
enhancer tetramer AmpR, ampicillin resistance 

*Selectable marker genes used to isolate transformed bacterial colonies  
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Figure 5.1.  Expression of foreign genes in plant cells via A. rhizogenes-
medicated genetic transformation. A. rhizogenes carrying the root inducing 
plasmid (Ri-plasmid) is capable of transforming plant cells leading the induction 
of hairy roots. Transfer DNA (T-DNA) present in the Ri-plasmid is transferred 
and integrated into the genome of host plant species, which encodes genes 
responsible for hairy root formation. The Ri-plasmid is isolated and genes of 
interest (GOI), along with a maker gene, are cloned into the borders of the T-
DNA. The Ri-plasmid, containing GOI and a marker gene within the borders of 
the T-DNA, is transformed into A. rhizogenes. Transformation of plant seedlings 
with A. rhizogenes harboring the newly constructed Ri-plasmid leads to the 
induction hairy roots, which arise from a single transformed plant cell. The 
resulting hairy root is comprised of cells that are clonal in nature, each 
expressing the GOI and the marker gene, which is utilized to confirm successful 
transformation. In the present study, L. cardinalis hypocotyl explants were 
transformed with AR1000-hDAT, harboring the binary vector pCambia 1301-
hDAT, leading to the induction of hDAT-1°HRs. 
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Figure 5.2. Lobinaline calibration curve. Data expressed as the mean ± S.E.M. 
The lobinaline concentration-response displayed excellent linearity (r2 = 0.9965) 
over the concentration range examined (10 – 1000 µg/ml). Each concentration 
was prepared in duplicate. X-intercept = 1.8 µg/ml. 
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Chapter 6 
 
 

Functional Expression of the hDAT in transgenic L. cardinalis hairy roots 
 
 
6.1. Introduction 

 

Lobinaline is structurally complex binitrogenous alkaloid present in L. 

cardinalis, which inhibits the DAT, albeit with low potency (IC50 = 12.0 µM). There 

is no published method for the total synthesis of lobinaline, and the alkaloid is 

obtained in low yields when purified from plant material, preventing access to 

sufficient quantities of lobinaline required for pharmacological optimization via 

traditional approaches [8, 20, 206]. In order to generate a library of L. cardinalis 

plant cell cultures whose pharmacological profile was genomically optimized, the 

human dopamine transporter (hDAT) was functionally expressed in transgenic L. 

cardinalis hairy “primary” root cultures (hDAT-1°HRs). Here, “primary” refers to 

hairy roots induced directly from wild-type plant, L. cardinalis, in contrast to 

“secondary” hairy roots generated directly from hairy root explants via sequential 

transformation.  

The purpose of expressing the hDAT protein in transgenic plant cells was 

two-fold. One, to enable the selection of gain-of-function mutant transgenic plant 

cells expressing the hDAT on selection medium containing cytotoxic DAT 

substrates, which was predicted to favor mutants with increased yields of 

lobinaline and/or “novel” DAT inhibitors. Two, to favor biosynthesis of “novel” 

DAT ligands whose structure was optimized to interact with a specific human 

target protein. The former was desirable since mutants with increased yields of 

lobinaline could be utilized for the production of the alkaloid, whereas mutants 

with “novel” DAT inhibitors served as a repository of leads for the development of 

novel DAT ligands. The latter should theoretically enable one to redirect plant 

evolution favoring biosynthesis of molecules meant to interact with a human 
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target protein. This is in contrast to naturally occurring plant metabolites, which 

evolved to interact with molecular targets present in organisms more frequently 

encountered by plants, such as microbes or herbivorous insects [13, 14]. 

 

6.2. Candidate plant species: Lobelia cardinalis 

 

 L. cardinalis was selected as the candidate species for proof-of-concept 

studies using target-directed biosynthesis. Lobinaline (see Figure 3.3), the major 

alkaloid present in L. cardinalis, inhibits the DAT and scavenges free radicals 

(see sections 4.3 and 4.4, respectively). However, there is no published method 

for the total synthesis of the complex decahydroquinoline alkaloid, rendering 

lobinaline a poor candidate for pharmacological optimization via traditional 

methods used by medicinal chemist. In preliminary studies, L. cardinalis was 

readily transformed using A. rhizogenes-mediated genetic transformation. The 

resulting hairy root cultures displayed a rapid rate of growth and were easily 

maintained in vitro on solid ½ MS medium. These characteristics of the L. 

cardinalis, L. cardinalis hairy root cultures, and lobinaline were ideal for proof-of-

concept studies using target-directed biosynthesis to optimize the plant’s 

pharmacological activity at the hDAT. Here, optimized activity at the hDAT refers 

to: 1) increased yields of lobinaline and/or 2) biosynthesis of “novel” metabolites 

that are more potent DAT inhibitors. 

 

6.3. Construction of pCambia1301-hDAT and the establishment of L. cardinalis 

primary hairy root cultures 

 

Full-length cDNA encoding the hDAT (1.8-kb) was PCR amplified from 

human brain total reference RNA (Figure 6.1), sequenced and authenticity 

confirmed. Subsequently, the cDNA coding for the hDAT was ligated into an 

expression cassette downstream of the constitutively active CaMV 35S promoter 

and upstream of the rbcs 3’ terminator sequence (Figure 6.2). AR1000-hDAT 

was obtained by transforming AR1000 with pCambia1301-hDAT, created by sub-
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cloning the hDAT expression cassette within the T-DNA borders of the binary 

vector pCambia1301.  

Hairy roots were generated from hypocotyl segments of L. cardinalis 

seedlings. Initial studies were performed to determine whether hairy roots could 

be induced from L. cardinalis hypocotyl explants using AR1000-C. Ctrl-1°HRs 

were successfully obtained. The transformation frequency for L. cardinalis 

hypocotyl explants was ~53% (46 out of 86 explants produced Ctrl-1°HRs that 

tested positive for GUS reporter gene expression). A total of 129 Ctrl-1°HRs, as 

confirmed GUS reporter gene expression, were generated from the 46 explants 

(mean Ctrl-1°HRs per explant, 2.8). Images of Crtl-1°HRs subject to GUS 

histochemical staining clearly demonstrate the presence of a blue precipitate 

(Figure 6.3), indicative of successful transformation. Subsequently, hypocotyl 

explants were transformed with AR1000-hDAT generating hDAT-1°HRs, and 

successful integration of T-DNA was confirmed based on GUS reporter gene 

expression. A schematic summarizing the approach utilized to induce Ctrl- and 

hDAT-1HRs is depicted in Figure 6.4. 

 

6.4. hDAT-1°HRs tested positive for cDNA encoding the hDAT and hDAT protein 

expression 

 

 The expression of the cDNA encoding the hDAT was examined in hDAT-

1°HRs by RT-PCR. As shown in Figure 6.5 A, a 1.8-kb PCR amplification 

product was clearly visible in the sample from hDAT-1°HRs (lane 4), whereas the 

band was absent in the sample from Ctrl-1°HRs (lane 3). Radioligand binding 

studies were conducted to determine if the hDAT protein was expressed by 

hDAT-1°HRs that tested positive for cDNA encoding the transporter. Ctrl- or 

hDAT-1°HR membranes were incubated with varying concentrations of [3H]-

GBR12935 (0 – 250 nM), a highly selective DAT ligand [84, 86]. In hDAT-1°HR 

membranes, specific binding was saturable (Kd = 2.8 ± 0.7 nM, Bmax = 22.9 ± 1.0 

fmol/mg tissue), and displayed excellent fit (r2 = 0.9687) to a one-site binding 

model (Figure 6.5 B). The Kd value for [3H]-GBR12935 at the hDAT in plant cell 
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membranes corresponded well with that reported for the radioligand at the DAT 

in rat striatal membranes (Kd ~1 – 6 nM) [84, 86]. However, the Bmax value 

determined for hDAT-1°HR membranes was substantially lower than that 

reported for rat striatum (56.9 ± 3.5 pmol/µg tissue) [216]. In Ctrl-1°HR 

membranes, a non-specific increase in binding was observed. The hDAT-1°HR 

lines that tested positive for cDNA encoding the hDAT and hDAT protein 

expression were maintained for use in subsequent experiments. 

 
6.5. [3H]-DA Uptake in 1°HRs: the hDAT expressed in hDAT-1°HRs is functional  

 

Radiotracer uptake studies were performed to determine if the hDAT was 

functional when expressed in transgenic plant cells. Initially, [3H]-DA uptake was 

measured at a single time point (4 minutes; Figure 6.6 A). The rate of [3H]-DA 

uptake was significantly greater in hDAT-1°HRs, as compared to Ctrl-1°HRs (5.9 

± 0.5 and 2.8 ± 0.3 DPM/mg tissue/minute, respectively; p = 0.0008). In hDAT-

1°HRs, the rate of [3H]-DA uptake was significantly reduced by GBR12909 (100 

µM) or under Na+-free conditions (3.1 ± 0.2 and 2.4 ± 0.4 DPM/mg tissue/minute, 

p = 0.0018 and p = 0.0002, respectively), both of which reduced the rate of 

radiotracer uptake to that observed in Ctrl-1°HRs. The rate of [3H]-DA uptake in 

Ctrl-1°HRs was unaffected by GBR12909 pretreatment or under Na+-free 

conditions. Next, the time course of [3H]-DA uptake was examined in Ctrl- and 

hDAT-1°HRs (Figure 6.6 B). Two-way ANOVA revealed a significant effect of 

phenotype (p < 0.001), a significant effect of time (p < 0.001), and a significant 

time x phenotype interaction (p < 0.001). The magnitude of [3H]-DA uptake in 

Ctrl- and hDAT-1°HRs was significantly different at 4-minutes (16.8 ± 0.9 and 

24.7 ± 1.1 CPM/mg tissue, respectively, p = 0.0257), and remained significant 

thereafter. Of note, [3H]-DA uptake in Ctrl- and hDAT-1°HRs was time-dependent 

and saturable, albeit the Vmax was significantly lower (p = 0.0006) in Ctrl-1°HRs 

(Vmax = 94.1 ± 2.7 CPM/mg tissue/minute), as compared to hDAT-1°HRs (Vmax = 

131.8 ± 2.6 CPM/mg tissue/minute). A one-way ANOVA followed by Dunnett’s 

post-hoc analysis was performed to determine the time points at which [3H]-DA 
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uptake was significantly greater than that measured at 1-minute in Ctrl- or hDAT-

1°HRs. In Ctrl- and hDAT-1°HRs, the magnitude of [3H]-DA uptake at 5-minutes 

(25.6 ± 0.1 and 36.0 ± 1.0 CPM/mg tissue, respectively) was significantly greater 

(p < 0.001 and p = 0.0007, respectively) than that measured at 1-mintue (15.6 ± 

0.4 and 18.6 ± 0.8 CPM/mg tissue, respectively). These data indicate that both 

Ctrl- and hDAT-1°HRs express transporters with the capacity for [3H]-DA uptake, 

in agreement with previous studies reporting transporter-mediated biogenic 

amine uptake in plants [217, 218]. However, hDAT expression significantly 

increased [3H]-DA uptake in hDAT-1°HRs demonstrating that the transporter was 

functional in transgenic plant cells. Additionally, the increase in [3H]-DA uptake in 

hDAT-1°HRs was abolished by GBR12909 or under Na+-free conditions 

indicating that hDAT expressed in plant cells retains its sensitivity to 

pharmacologic and ionic manipulations known to influence DAT function in 

mammalian cells [54, 84-88]. 

 To confirm hDAT-1°HR’s increased capacity for [3H]-DA uptake was 

attributable to hDAT expression beyond 4-minutes, radiotracer uptake was 

measured in Ctrl- and hDAT-1°HRs pretreated with vehicle or GBR12909 (100 

µM) at two time points (5- and 25-mintues; Figure 6.6 C). Two-way analysis of 

variance revealed a significant effect of time (p < 0.001), and a significant effect 

of phenotype (p < 0.001), and a significant time x phenotype interaction (p < 

0.001). [3H]-DA uptake measured at 5- and 25-mintues in hDAT-1°HRs was 

significantly greater (p < 0.001) than that observed in all of the corresponding 

Ctrl-1°HR treatment groups at 5- and 25-minutes. In Ctrl- and hDAT-1°HRs, the 

magnitude of [3H]-DA uptake was significantly greater (p < 0.001) at 25-minutes, 

as compared uptake measure in corresponding treatment groups at 5-mintues. 

An additional two-way ANOVA revealed a significant effect of phenotype (p < 0. 

001), a significant effect of treatment (p < 0.001), and a significant phenotype x 

treatment interaction (p < 0.001). GBR12909 pretreatment did not affect [3H]-DA 

uptake in Ctrl-1°HRs at either time point. In contrast, [3H]-DA uptake in hDAT-

1°HRs was significantly decreased (p < 0.001) by GBR12909 at 5- and 25-

minutes (19.9 ± 0.1 and 76.2 ± 1.6 CPM/mg, respectively), as compared to 
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vehicle pretreated hDAT-1°HRs (36.0 ± 1.0 and 127.2 ± 1.1 CPM/mg tissue, 

respectively). At 5- and 25-minutes, the magnitude of [3H]-DA uptake in hDAT-

1°HRs pretreated with GBR12909 was reduced to that observed in Ctrl-1°HRs. 

These data indicate that hDAT expression enhances [3H]-DA uptake in hDAT-

1°HR’s, although radiotracer uptake occurs via two components: 1) hDAT-

mediated uptake, which is Na+-dependent and GBR12909-sensitive, and 2) Na+-

independent transporter-mediated uptake that was GBR-insensitive. The latter, 

which was observed in Ctrl- and hDAT-1°HRs, is consistent with previous studies 

in rice and Arabidopsis demonstrating Na+-independent biogenic amine uptake 

via system L amino acid transporters [217-219]. 

 

6.6. Differential cytotoxic effects of MPTP and 6-OHDA in Ctrl- and hDAT-1°HRs 

 

L. cardinalis wild-type roots (WT-Rs), Ctrl- and hDAT-1°HRs were treated 

with MPTP or 6-OHDA (final concentration, 100 and 50 µM, respectively; 24-hour 

treatment) to determine whether hairy root phenotype and/or hDAT expression 

altered root’s susceptibility to cytotoxic DAT substrates. MPTP’s oxidative 

metabolite, MPP+, is a cytotoxic DAT substrate [89, 90]. In initial studies, cell 

viability was normalized to that of WT-Rs treated with cytotoxins (Figure 6.7). 

MPTP significantly reduced cell viability in hDAT-1°HRs (54.1% decrease, p < 

0.0001), as compared to WT-Rs. MPTP reduced cell viability in Ctrl-1°HRs 

(15.8% decrease), as compared to WT-Rs, but the effect was not significant (p = 

0.2762). Cell viability in MPTP-treated hDAT-1°HRs was also significantly 

reduced (38.3% decrease, p = 0.0016), as compared to Ctrl-1°HRs. In contrast, 

6-OHDA significantly decreased cell viability in Ctrl-1°HRs (32.8% reduction, p = 

0.0060) and hDAT-1°HRs (58.4% reduction, p < 0.001), as compared to WT-Rs. 

Cell viability in hDAT-1°HRs exposed to 6-OHDA was significantly reduced 

(25.7% reduction, p = 0.0034), as compared to Ctrl-1°HRs. These findings 

indicated hairy root phenotype alone increased susceptibility to 6-OHDA, and 

vulnerability to 6-OHDA was augmented by hDAT expression. On the other hand, 

MPTP susceptibility was only significantly increased by hDAT expression. Thus, 
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hDAT expression increased susceptibility to MPTP and 6-OHDA, but MPTP was 

more selective for hDAT-1°HRs. These findings are consistent with studies 

reporting DAT-independent 6-OHDA-induced toxicity, whereas MPTP is highly 

selective for DAT-expressing cells [89, 90, 214]. 

Subsequent experiments examining GBR12909’s ability to attenuate 

MPTP- and 6-OHDA-induced cytotoxicity in Ctrl- and hDAT-1°HRs ensued 

(Figure 6.8). GBR12909 is a potent, selective DAT inhibitor which prevents 

MPTP toxicity in mammalian cells expressing the DAT [84-90, 124]. Cell viability 

was normalized to that of Ctrl-1°HRs treated with vehicle alone (i.e. no exposure 

to MPTP or 6-OHDA). Prior to being exposed to MPTP or 6-OHDA (final 

concentration, 100 and 50 µM, respectively; 24-hour treatment), hDAT-1°HRs 

were pretreated (1 hour) with vehicle or GBR12909 (final concentration, 10 or 

100 µM). MPTP and 6-OHDA significantly reduced cell viability (p = 0.0003 and p 

< 0.001, respectively) in vehicle pretreated hDAT-1°HRs (51.3% and 52.0% 

reduction, respectively), as compared to vehicle treated Ctrl-1°HRs. In hDAT-

1°HRs, GBR12909 dose-dependently attenuated MPTP-induced cytotoxicity. Cell 

viability was increased by 10 µM GBR12909 (25.3% increase, p = 0.0619), and 

was significantly increased by 100 µM GBR12909 (38.0% increase, p = 0.0088), 

as compared to vehicle pretreated hDAT-1°HRs. In fact, cell viability in hDAT-

1°HRs pretreated with 100 µM GBR12909 was not significantly different from that 

of Ctrl-1°HRs. However, GBR12909 pretreatment failed to attenuate cytotoxicity 

caused by 6-OHDA in hDAT-1°HRs. Similar to PC12 cells, cytotoxicity caused by 

6-OHDA in 1°HRs is not entirely dependent on the DAT, nor is it abolished by 

selective DAT inhibition [214]. In contrast, MPTP-induced cytotoxicity was 

selective for transgenic plant cells expressing the hDAT, and was dose-

dependently attenuated by GBR12909, in agreement with previous reports in 

mammalian models [84-90, 124]. 
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6.7. Discussion 

 

The hDAT was functionally expressed in transgenic L. cardinalis hDAT-

1°HRs via A. rhizogenes-mediated genetic transformation. The expression and 

function of the hDAT protein in transgenic plant cells was confirmed by 

performing radioligand binding and radiotracer uptake studies, respectively. 

Expression of the hDAT in transgenic plant cells increased their susceptibility to 

the DAergic neurotoxins MPTP, which is oxidized to the cytotoxic DAT substrate 

MPP+, and 6-OHDA [43, 89-91, 214]. Cytotoxicity caused by MPTP in hDAT-

1°HRs was attenuated by the highly selective DAT inhibitor GBR12909 [84-88].  

Initially, full-length cDNA coding for the hDAT was reverse transcribed 

from human brain total reference RNA, PCR amplified, and cloned into the vector 

p-GEMT. Authenticity of the gene was confirmed via sequencing. Full-length 

cDNA encoding the hDAT was sub-cloned into the expression cassette depicted 

in Figure 6.2, which was mobilized into the T-DNA borders of the binary vector 

pCambia1301, creating pCambia1301-hDAT. A. Rhizogenes strain R1000 was 

transformed with pCambia1301-hDAT, thus obtaining AR1000-hDAT. 

Subsequently, hypocotyl explants from L. cardinalis seedlings were transformed 

with AR1000-hDAT, inducing the formation of hDAT-1°HRs. Successful 

transformation of hDAT-1°HRs was confirmed using the GUS histochemical 

assay. 

Radioligand binding studies were performed in 1°HR membranes 

determine if the hDAT protein was expressed in transgenic plant cells. 

Membranes preparations from Ctrl- and hDAT-1°HRs were incubated with the 

highly selective DAT ligand [3H]-GBR12935 [84, 86]. Binding in hDAT-1°HRs was 

saturable and consistent with binding to a single site, whereas a non-specific 

increase in [3H]-GBR12935 binding was observed in controls, confirming that the 

hDAT protein was expressed in hDAT-1°HR cells. The affinity of [3H]-GBR12935 

at the hDAT in hDAT-1°HRs (Kd = 2.7 ± 0.7 nM) corresponded well with that 

reported for the radioligand at the DAT in rat striatal membranes (Kd ~1 – 6 nM) 

[84, 86]. These data indicated that the hDAT cDNA was effectively translated, 
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transcribed, and the hDAT protein was trafficked to the cell membrane where it 

assumed a structural conformation similar to that in mammalian cells, thereby 

enabling similar ligand-transporter interactions [213]. However, the expression 

level of the hDAT protein expression (Bmax = 22.9 ± 1.0 fmol/mg tissue) in hDAT-

1°HRs was substantially lower than that reported in rat striatal tissue (Bmax = 56.9 

± 3.5 pmol/µg tissue), likely due to differences in codon preference, protein 

trafficking, and/or protein turnover [213, 216]. A significant increase in [3H]-DA 

uptake was observed in hDAT-1°HRs, as compared to Ctrl-1°HRs, indicating the 

transporter was functional. The hDAT expressed in transgenic plant cells also 

retained its sensitivity to pharmacologic and ionic manipulations known to 

influence DAT function in mammalian cells [54, 84-88]. Uptake of [3H]-DA was 

saturable and time-dependent in Ctrl- and hDAT-1°HRs, indicating the presence 

of endogenous transporters with the capacity for [3H]-DA uptake. GBR12909 and 

Na+-free conditions reduced radiotracer uptake in hDAT-1°HRs to that observed 

in Ctrl-1°HRs, suggesting the endogenous transporter is structurally distinct from 

the hDAT and Na+-independent. This is consistent with studies performed in rice 

and Arabidopsis, wherein biogenic amine uptake was mediated by a Na+-

independent system L amino acid transporter [217-219].  

Expression of the hDAT protein in hDAT-1°HRs significantly increased 

toxicity caused by the DAergic neurotoxins MPTP and 6-OHDA [43, 89-92, 114, 

214]. Cell viability in Ctrl-1°HRs was significantly reduced by 6-OHDA, but not 

MPTP, indicating toxicity caused by 6-OHDA was not dependent on hDAT 

expression. This is consistent with 6-OHDA’s ability to induce cytotoxicity 

extracellularly in PC12 cells [214]. The highly selective DAT inhibitor GBR12909 

dose-dependently attenuated MPTP-induced cytotoxicity in hDAT-1°HRs, but did 

not reduce toxicity caused by 6-OHDA [84-88]. Again, this is in agreement with 

previous reports of DAT-independent toxicity caused by 6-OHDA, whereas 

MPTP toxicity is highly dependent on DAT expression and is attenuated by DAT 

inhibitors [89, 90, 214, 220]. Alternatively, endogenous transporters present in 

the hairy roots may be capable of transporting 6-OHDA. Since [3H]-DA uptake 

attributed to an endogenous transporter/s was not inhibited by GBR12909, the 
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DAT inhibitor would not be expected attenuate 6-OHDA’s cytotoxic effects. On 

the other hand, the endogenous transporter/s putatively present in Ctrl- and 

hDAT-1°HRs may lack the capacity to efficiently translocate MPP+. In the latter 

case, toxicity caused by MPTP’s oxidative metabolite MPP+, would be highly 

dependent on DAT-mediated transport in hDAT-1°HRs, explaining GBR12909’s 

ability to attenuate its cytotoxic effects. Based on these observations, gain-of-

function mutations that increase biosynthesis of lobinaline and/or “novel” DAT 

inhibitors in hDAT-1°HRs should confer resistance to MPTP only. Therefore, 

MPTP was chosen as a selection agent for future studies. 
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Figure 6.1. Full-length cDNA encoding the 
hDAT cloned into the multiple cloning site of 
the vector p-GEMT. Sample DNA was PCR 
amplified with hDAT specific primers. Lane 1 
– ladder; Lane 2 – empty p-GEMT vector; 
Lane 3 – p-GEMT vector containing full-
length cDNA encoding the hDAT; A 1.8-kb 
band (indicated by the white arrow) is clearly 
visible in the sample from p-GEMT containing 
full-length cDNA coding for the hDAT 
indicating the presence of cDNA coding for 
the hDAT, which is absent in the sample from 
empty p-GEMT vector. The hDAT cDNA was 
sequenced and authenticity confirmed. 



	
  

 102	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hDAT rbcs 35S P 5’ 3’ 

Figure 6.2. Diagram of the hDAT expression cassette. Full-length cDNA 
encoding the hDAT was flanked by the constitutively actively CaMV 35S 
promoter (35S P) at it’s 5’-end and the rbcs terminator at it’s 3’-end. The 
expression cassette was sub-cloned into the T-DNA borders of the binary 
vector pCambia-1301, creating pCambia1301-hDAT.  
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Figure 6.3. L. cardinalis hypocotyl explant 
successfully transformed with AR1000-C. Hairy 
roots can been seen emerging the explant which 
tested positive for the GUS reporter gene, as 
indicating by the formation of blue precipitate 
following GUS histochemical staining. 
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Figure 6.4. Induction of Ctrl- and hDAT-1°HRs. A) An empty binary 
vector (pCambia1301) was mobilized into A. rhizogenes strain AR1000 
creating AR1000-C. L. cardinalis seedlings were transformed with 
AR1000-C inducing the formation of Ctrl-1°HRs. B) The binary vector 
pCambia1301-hDAT, carrying the hDAT expression cassette within the 
borders of its transfer DNA (T-DNA), was mobilized into A. rhizogenes 
strain AR1000 creating AR1000-hDAT. L. cardinalis seedlings were 
transformed with AR1000-hDAT inducing the formation of hDAT-1°HRs. 
The GUS reporter gene was present in pCambia1301 and 
pCambia1301-hDAT enabling the conformation of successful 
transformation using the GUS histochemical staining assay. T-DNA 
refers to DNA present in A. rhizogenes’ root inducing plasmid that is 
transferred and integrated into the plant genome, which also encodes 
genes responsible for the induction of hairy roots. A hairy root arises 
from a single transformed plant cell and consists of cells that are clonal 
in nature, each expressing the gene/s present within the T-DNA borders. 
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Figure 6.5. Detection of cDNA encoding the hDAT and the hDAT protein in L. 
cardinalis hDAT-1°HRs. A) DNA samples PCR amplified with hDAT specific 
primers (Lane 1 – ladder; Lane 2 – pCambia1301-hDAT; Lane 3 – sample from 
Ctrl-1°HRs; Lane 4 – sample from hDAT-1°HRs). A 1.8-kb band representing 
the full-length cDNA encoding the hDAT is clearly visible in samples from 
hDAT-1°HRs (small arrow; Lane 4) and pCambia1301-hDAT (large arrow; Lane 
2), but is absent in the sample from Ctrl-1°HRs (Lane 3). B) Radioligand binding 
was performed in Ctrl- and hDAT-1°HRs (dashed line with open circle markers 
and solid line with gray circle markers, respectively) with the highly selective 
DAT ligand [3H]-GBR12935. In hDAT-1°HR membranes, specific binding was 
saturable (Kd = 2.773 ± 0.7304 nM, Bmax = 22.87 ± 0.9704 fmol/mg tissue) and 
displayed excellent fit to a one-site binding model (r2 = 0.8956). In Ctrl-1°HR 
membranes, only a non-specific increase in binding was observed. 
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Figure 6.6. [3H]-DA uptake in L. 
cardinalis 1°HRs. A) [3H]-DA uptake 
performed at a single time point in Ctrl- 
(white fill) and hDAT-1°HRs (gray fill). 
[3H]-DA uptake in vehicle (VEH) 
pretreated hDAT-1°HRs was 
significantly greater than that in VEH 
pretreated Ctrl-1°HRs. GBR12909 
(GBR) pretreatment and Na+-free 
conditions significantly reduced uptake 
in hDAT-1°HRs. GBR pretreatment and 
Na+-free conditions did not affect uptake 
in Ctrl-1°HRs. *** p < 0.001 vs. VEH 
treated Ctrl-1°HRs, +++ p < 0.001 vs. 
GBR pretreated hDAT-1°HRs, p < 0.001 
vs. hDAT-1°HRs under Na+-free 
conditions; One-way ANOVA, Tukey’s 
post-hoc test. B) Time course of [3H]-DA 
uptake in Ctrl- (dashed line) and hDAT-
1°HRs (solid line). [3H]-DA uptake was 
significantly greater in hDAT-1°HRs, as 
compared to Ctrl-1°HRs by 4 minutes. 
[3H]-DA uptake in Ctrl- and hDAT-
1°HRs was significantly greater than 
that observed within the same group at 
1 minute, and thereafter. * p < 0.05, ** p 
< 0.01, *** p < 0.001 vs. Ctrl-1°HRs; 
Two-way ANOVA, Bonferroni’s post-hoc 
test. ^^^ p < 0.001 vs. Ctrl-1°HRs at 1 
minute, ### p < 0.001 vs. hDAT-1°HRs 
at 1 minute; One-way ANOVA, 
Dunnett’s post-hoc test. C) [3H]-DA 
uptake Ctrl- and hDAT-1°HRs at 5- and 
25 minutes pretreated with VEH (no 
lines) or GBR (diagonal lines). [3H]-DA 
uptake in hDAT-1°HRs was significantly 
greater than that observed in Ctrl-
1°HRs, and was significantly reduced 
by GBR pretreatment. [3H]-DA uptake in 
all treatment groups at 25-minutes was 
significantly greater than that observed 
at 5-minutes in corresponding treatment 
groups. *** p < 0.001 vs. Ctrl-1°HRs, 
+++ p < 0.001 vs. GBR, ^^^ p < 0.001 
vs. corresponding group; Two-way 
ANOVA, Bonferroni’s post-hoc test. n = 
3. 
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Figure 6.7.  MPTP- and 6-OHDA-induced cytotoxicity in L. 
cardinalis roots. Representative images of MPTP treated A) WT-
Rs, B) Ctrl-, and C) hDAT-1°HRs stained with trypan blue. D) 
MPTP significantly reduced cell viability in hDAT-1°HRs, but not 
Ctrl-1°HRs, as compared to WT-Rs. MPTP significantly reduced 
cell viability in hDAT-1°HRs, as compared to Ctrl-1°HRs. D) 6-
OHDA significantly reduced cell viability in Ctrl- and hDAT-1°HRs, 
as compared to WT-Rs. Cell viability was significantly reduced by 
6-OHDA in hDAT-1°HRs, as compared to Ctrl-1°HRs. ** p < 0.01, 
*** p < 0.001 vs. WT-Rs; ++ p < 0.01 vs. Ctrl-°HRs; One-way 
ANOVA, Tukey’s post-hoc test. n = 5. 
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Figure 6.8. GBR-12909 dose-dependently attenuates toxicity caused by 
MPTP, but not 6-OHDA, in L. cardinalis hDAT-1°HRs. A – C) 
Representative images of vehicle treated Ctrl-1HRs (A), and hDAT-1°HRs 
pretreated with vehicle (B), or 100 µM GBR12909 (C) prior to being exposed 
to MPTP, then stained with trypan blue. D) MPTP significantly reduced cell 
viability in vehicle pretreated hDAT-1°HRs (gray fill) and hDAT-1°HRs 
pretreated with 10 µM GBR 12909, as compared to vehicle treated Ctrl-
1°HRs. Cell viability in hDAT-1°HRs pretreated with GBR12909 prior to 
MPTP exposure was not significantly different than that of vehicle treated 
Ctrl-1°HRs. Cell viability measured after exposure to MPTP was significantly 
increased hDAT-1°HRs pretreated with 100 µM GBR12909, as compared to 
vehicle pretreated hDAT-1°HRs. E) 6-OHDA significantly reduced cell 
viability in all hDAT-1°HR treatment groups, as compared to vehicle treated 
Ctrl-1°HRs, and GBR12909 failed to attenuate toxicity caused by 6-OHDA in 
hDAT-1°HRs. ** p < 0.01, *** p < 0.001 vs. vehicle treated Ctrl-1°HRs; ++ p 
< 0.01 vs. MPTP treated hDAT-1°HRs following pretreatment with vehicle. 
One-way ANOVA, Tukey’s post-hoc test. n = 5. 
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Chapter 7 
 
 
Sequential hairy root transformation (proof-of-concept): induction of gain-
of-function hairy roots, initial pharmacological, and chemical assessments 
 
 
7.1. Introduction 

 

 The hDAT was functionally expressed in transgenic L. cardinalis hDAT-

1°HRs via A. rhizogenes-mediated genetic transformation. Expression of the 

transporter in hDAT-1°HRs increased their susceptibility to the selective DAergic 

neurotoxin MPTP. Given DAT inhibition attenuated MPTP-induced cytotoxicity in 

hDAT-1°HRs, gain-of-function mutations which increase biosynthesis of 

lobinaline and/or “novel” DAT inhibitor should confer resistance to MPTP. 

However, intact transgenic plants are traditionally regenerated from hairy roots 

prior to further genomic modification. Regeneration can be particularly time 

consuming in plants species, such as L. cardinalis, for which a standardized 

regeneration protocol has not been developed. In order to circumvent the need 

for regeneration, a novel method to induce hairy roots directly from hairy root 

explants was developed, referred to as sequential hairy root transformation. 

Subsequently, hDAT-1°HR explants were sequentially transformed with AR1000-

ATM harboring the activation tagging vector pPCVICE4hpt, inducing the 

formation of gain-of-function transgenic hairy roots expressing the hDAT [16, 19, 

221]. One population of ATMhDAT-2°HRs was generated under selection on 

medium containing MPP+, such that only individuals having beneficial gain-of-

function mutations engendering MPP+-resistance should survive. The resultant 

population of TR-2°HRs was enriched with mutants with mutants overproducing 

lobinaline and/or putatively “novel” inhibitors of the hDAT. Additionally, TR-2°HRs 

were identified which survived selection via mechanisms other than DAT 

inhibition. 
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7.2. Sequential Transformation of L. cardinalis hairy roots: secondary hairy root 

induction 

 

In the present study, a novel method was developed to accelerate the 

generation of gain-of-function transgenic hairy roots expressing the hDAT. 

Essentially, hairy roots are induced directly from hairy root explants, herein 

referred to as sequential transformation, leading the induction of 2°HRs. The 

proof-of-application was demonstrated using AR1000-C and AR1000-GFP. L. 

cardinalis hypocotyl explants were transformed with AR1000-C, and the resultant 

Ctrl-1°HRs that tested positive for GUS reporter gene expression were 

transformed with AR1000-GFP. In Figure 7.1 A, 2°HRs can be seen emerging 

from a transformed Ctrl-1°HR explants. As shown in Figure 7.1, 2°HRs 

expressing GFP (Figure 7.1 B) and the GUS reporter gene (Figure 7.1 D), via 

integration of T-DNA from AR1000-C and AR1000-GFP, respectively, were 

successfully obtained. On average, ~25 2°HRs were obtained from each Ctrl-

1°HR explant with a transformation frequency of ~32% (12 out of 37 tested 

positive for both reporter genes). In theory, the process could be repeated to 

induce successive hairy root “generations”, thus generating secondary, tertiary, 

quaternary, etc. hairy roots. To the best of our knowledge, this is the first report 

of sequential hairy root transformation. 

 

7.3. Generation of secondary gain-of-function transgenic hairy roots expressing 

the hDAT 

 

Explants from hDAT-1°HRs were transformed with AR1000-ATM. Nodules 

signifying the initiation of developing secondary gain-of-function transgenic hairy 

roots expressing the hDAT (ATMhDAT-2°HRs) became visible on transformed 

explants within ~2 weeks. Explants were then placed on selection medium 

containing MPP+ (final concentration, 100 µM). Nodules were allowed to initiate 

before placing explants on selection medium to allow adequate time for 
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alterations in gene expression, resulting from the integration of the CaMV 35S 

enhancer tetramer, to manifest at the cellular level prior to selection. Therefore, 

only nodules representing developing ATMhDAT-2°HRs with beneficial gain-of-

function mutations conferring MPP+-resistance were able to survive, differentiate, 

and form mature hairy roots (Figure 7.2, schematic of selection process and 

predicted mechanism/s underlying MPP+-resistance). Explants from hDAT-1°HRs 

transformed with AR1000-ATM and emerging activation tagged 2°HRs on 

medium lacking or containing MPP+, as well as TR-2°HRs emerging from hDAT-

1°HR explants, are depicted in Figure 7.3 A – C. ATMhDAT-2°HRs resistant to 

MPP+ (MRGFhDAT-2°HRs) were maintained on selection medium for 4 months 

to ensure genotype/phenotypes stability. A total of ~1500 hDAT-1°HR explants 

were transformed with AR1000-ATM, which should theoretically yield ~12,000 

activation tagged 2°HRs. However, only 120 TR-2°HRs were obtained, equating 

to a survival rate of 1.0% in the presence of MPP+. After maintaining TR-2°HRs 

on selection medium for ≥ 4 months, TR-2°HRs were transferred to growth 

medium lacking MPP+. Only tissue from TR-2°HRs that had been removed from 

selection medium for ≥ 2 months was used to prepare methanolic (MeOH) 

extracts. Of note, 11 TR-2°HRs failed to survive after being removed from 

medium containing MPP+, and were not included in pharmacological or chemical 

analyses as they did not pass the 2 month “washout” period. MPP+ could 

detected in MeOH extracts prepared from TR-2°HR tissue collected up to 6 

weeks after removal from selection medium. Thus, the 2-month “washout” period 

was essential to avoid confounds arising from the presence of MPP+ in TR-2°HR 

extracts. A second population of ATMhDAT-2°HRs was generated (n = 72), but 

was not selected on medium containing MPP+. 

 

7.4. Pharmacological analysis of hairy root MeOH extracts: evaluation of DAT 

inhibition in vitro 

 

In vitro [3H]-DA uptake studies in rat striatal synaptosomes were 

performed to measure the DAT inhibitory activity of hairy root extracts. Four 
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populations were examined: 1) Ctrl-1°HRs (n = 68), 2) hDAT-1°HRs (n = 77), 3) 

ATMhDAT-2°HRs (n = 72), and 4) TR-2°HRs (n = 109). The DAT inhibitory 

activity of each hairy root extract was expressed as lobinaline equivalents, 

extrapolated from lobinaline’s DAT inhibition dose-response curve. The DAT 

inhibitory activity of each population were (summarized in Table 7.1; n, mean, 

S.E.M., min., and max.) as follows (mean ± S.E.M): Ctrl-1°HRs, 2.9 ± 0.3 µg/ml; 

hDAT-1°HRs, 2.3 ± 0.2 µg/ml; ATMhDAT-2°HRs, 3.6 ± 0.3 µg/ml; TR-2°HRs 

2,632 ± 791 µg/ml. The mean DAT inhibitory activity of the Ctrl-1°HR, hDAT-

1°HR, and ATMhDAT-2°HR populations were not significantly different. However, 

the mean DAT inhibitory activity of the TR-2°HR population was significantly 

greater than that of Ctrl-1°HR, hDAT-1°HR, and ATM-hDAT-2°HR populations (p 

= 0.0024, p = 0.0015, and p = 0.0019, respectively). Additionally, the frequency 

of “highly active DAT inhibitors” in the TR-2°HR population (64.2%) was 

significantly greater (p < 0.001) than that of the ATMhDAT-2°HR population 

(12.5%). Frequency distributions of each population are depicted in Figure 7.4. 

These data indicate that hDAT expression does not increase DAT inhibitory 

activity of hairy root extracts. Although ATM alone was capable of generating 

mutants with increased inhibitory activity at the DAT (max. = 11.9 µg/ml), the 

frequency at which such mutants were generated was not sufficient to 

significantly increase the mean DAT inhibitory activity of the ATMhDAT-2°HR 

population. As predicted, the TR-2°HR population displayed a significant 

increase in the frequency of mutants with increased inhibitory activity at the DAT, 

thereby significantly increasing the mean DAT inhibition of the population. 

Furthermore, TR-2°HR cultures were obtained which displayed a remarkable 

increase in DAT inhibitory activity, exceeding that which could be expressed as 

lobinaline equivalents. Therefore, the activity of 10 TR-2°HRs was expressed as 

the maximum amount of lobinaline equivalents which could be extrapolated from 

lobinaline’s DAT inhibition dose-response curve (i.e. 28,496 µg/ml). A single TR-

2°HR mutant’s extract did not produce DAT inhibition of sufficient magnitude, and 

was expressed as the minimum amount of lobinaline equivalents that could be 

extrapolated from lobinaline’s DAT inhibition dose-response curve (i.e. 1.2 x 10-4 
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µg/ml). DAT inhibitory activity of extracts from individuals of all other populations 

could be expressed as lobinaline equivalents. These observations indicate that 

target-directed biosynthesis is a feasible approach to optimize a plant’s 

pharmacological activity at a specific molecular target. 

 

7.5. GC-MS analysis of hairy root extracts  

 

Hairy root MeOH extracts were analyzed via GC-MS to quantify lobinaline 

content and to acquire a chromatographic “fingerprint” of the metabolite profile of 

each hairy root. The lobinaline content of each population are as follows: 1) Ctrl-

1°HRs, 41.3 ± 1.9 µg/mL; hDAT-1°HRs, 38.3 ± 1.8 µg/mL; ATMhDAT-2°HRs, 

56.5 ± 1.8 µg/mL; TR-2°HRs 59.2 ± 2.5 µg/mL (summarized in Table 7.2; n, 

mean, S.E.M, min., and max.). The mean lobinaline content of the Ctrl- and 

hDAT-1°HR populations was not significantly different. In contrast, the mean 

lobinaline content of ATMhDAT- and TR-2°HR populations was significantly 

greater than that of the Ctrl- (p < 0.001 and p < 0.001, respectively) and hDAT-

1°HR (p < 0.001 and p < 0.001, respectively) populations. Although the mean 

lobinaline content of ATMhDAT- and TR-2°HR populations were not significantly 

different, the frequency of “lobinaline overproducers” in the TR-2°HR population 

(33.9%) was significantly greater (p = 0.0267) than that of the ATMhDAT-2°HR 

population (18.1%). Frequency distributions of each population are depicted in 

Figure 7.5. Qualitative analysis of the GC traces acquired from Ctrl- and hDAT-

1°HRs revealed an excellence correspondence between the chromatographic 

peaks present and their relative abundances when comparing traces within and 

between populations. An overlay of representative GC traces obtained from Ctrl- 

and hDAT-1°HRs can be seen in Figure 7.6. These findings indicate that hDAT 

expression does not significantly increase lobinaline biosynthesis. Greater 

variation was observed in GC traces acquired from ATMhDAT- and TR-2°HRs 

with regards to the chromatographic peaks present (see below) and their relative 

abundances. The use of ATM alone did generate ATMhDAT-2°HRs with a 

marked increased in lobinaline content (max. = 92.9 µg/ml), however the 
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frequency at which such mutants were generated was insufficient to significantly 

increase the mean of the population. As predicted, the frequency of “lobinaline 

overproducers” was significantly increased in the TR-2°HR population, thus 

leading to a significant increase in the mean lobinaline content of the population. 

The lobinaline content of 14 TR-2°HRs was greater than the maximum of the 

ATMhDAT-2°HR population. The frequency of “lobinaline overproducers” and the 

maximum increase in lobinaline biosynthesis (max. = 117.0 µg/ml) was greater in 

the TR-2°HR population, owing to the use of selection favoring mutants of 

interest. These observations indicate that target-directed biosynthesis is a 

feasible approach to genetically optimize medicinal plants to increase yields of 

therapeutically valuable, structurally complex bioactive plant metabolites. 

 

7.6. Discussion 

 

Agrobacterium-mediated ATM creates stable gain-of-function mutations in 

plant cells via integration of an enhancer tetramer into the plant genome, 

activating genes 10-kb upstream and downstream of the integration site [14, 18]. 

Activation tagging has previously been demonstrated as a means to increase the 

yields of bioactive plant metabolites and/or cause synthesis of putatively “novel” 

metabolites with similar bioactivity [14, 15]. However, the use of ATM requires 

the generation and maintenance of thousands of mutants to saturate the plant 

genome, and subsequent preparation and screening of extracts from each 

culture [14, 15]. As such, ATM alone is inefficient, timely, and laborious if used 

for the purpose of drug discovery [14, 15]. Target-directed biosynthesis 

circumvents these limitations by generating gain-of-function mutants under 

selection conditions favoring the survival of individuals of interest. First, a human 

target protein is functionally expressed in transgenic plant cells, corresponding to 

hDAT-1°HRs expressing the hDAT in the current study. Next, gain-of-function 

mutants functionally expressing the human target protein are generated on 

selection medium such that survival is dependent upon enhanced activity at the 

human target protein, described below. 
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Traditionally, after obtaining transgenic plant cell cultures, intact plants are 

regenerated and the T3 progeny is obtained to ensure plants are homozygous for 

the transgene before inducing additional mutations in the transgenic plants. 

However, the process can problematic when time constraints are an issue, 

especially if the plant species is difficult to regenerate and/or has a long life cycle. 

Since there is no standardized regeneration protocol for L. cardinalis hairy roots, 

and the plant takes a minimum of ~3 months to mature and produce seed, a 

considerable amount of time would have been invested to obtain the T3 progeny. 

In order to circumvent the need to regenerate and obtain T3 progeny prior to 

activation tagging, a novel method referred to as sequential hairy root 

transformation was developed, wherein hairy roots are induced directly from 

hairy roots. Proof-of-concept was demonstrated by transforming Ctrl-1°HR 

explants, which expressed the GUS reporter gene, with AR1000-GFP, inducing 

the formation of GUS/GFP-2°HRs. The GUS/GFP-2°HRs expressed both 

reporter genes, as confirmed via fluorescence microscopy and GUS 

histochemical staining, respectively. To the best of our knowledge, this is the first 

report of sequential hairy root transformation, a feasible approach rapidly obtain 

transgenic plant cell cultures expressing multiple transgenes. In theory, hairy 

roots could be sequentially transformed repeatedly, inducing successive hairy 

root “generations” introducing additional transgenes with each round of 

transformation. This possibility remains to be explored in future studies. 

One goal of the current study was to obtain gain-of-function hairy root 

cultures with mutations leading to increased inhibitory modulation of the hDAT 

predicted to arise via increased biosynthesis of lobinaline and/or “novel” DAT 

inhibitors of greater potency. Activation tagged hDAT-1°HR explants were placed 

on selection medium containing the cytotoxic DAT substrate MPP+ once nodules 

representing the initiation of ATMhDAT-2°HRs became visible [89, 90]. As such, 

only nodules representing ATMhDAT-2°HRs with beneficial gain-of-function 

mutations conferring resistance to MPP+ should survive selection. Given 

GBR12909 prevented toxicity caused by MPTP in hDAT-1°RHs, gain-of-function 

mutations that increase inhibitory activity at the hDAT should confer resistance to 
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the toxin. MPP+ was utilized as a selection agent, rather than its precursor 

MPTP, given resistance to the latter could have arisen due to mutations that 

decreased MPTP oxidation. Monoamine oxidase inhibitors and DAT inhibitors 

attenuate MPTP-induced cytotoxicity, whereas the former do not reduce toxicity 

caused by MPP+ [89, 90, 124]. Thus, selection on medium containing MPP+ 

should theoretically engender greater selectivity for mutations that enhance 

inhibitory activity at the hDAT. However, MPP+-resistance could potentially arise 

via other mechanisms. The selective DAergic neurotoxin MPP+, which is used to 

model PD, is generally accepted to cause neurotoxicity as follows: 1) MPP+ is 

transported to the cell interior by the DAT, 2) MPP+ inhibits complex-I of the 

electron transport chain, 3) mitochondrial dysfunction leads to depletion of ATP 

and excessive free radical production, and 4) resultant caspase activation leads 

to initiation of apoptotic signaling, ultimately culminating in cell death [92]. Gain-

of-function mutations that directly and/or indirectly interfere with any of the 

aforementioned steps preceding cell death should confer resistance to MPP+, 

given pharmacological agents acting at any of these stages attenuate toxicity 

caused by MPP+ in mammalian cells [89, 90, 92, 107-126]. 

Indeed, 109 TR-2°HRs were obtained which expressed the hDAT, yet 

were MPP+-resistant. In order to obtain this quantity of TR-2°HRs, ~1500 hDAT-

1°HR explants were activation tagged, which should have theoretically produced 

~12,000 ATMhDAT-2°HRs, equating to a survival rate of 1.0%. Three other 

populations of L. cardinalis hairy roots were generated: Ctrl-1°HRs, hDAT-1°HRs, 

and ATMhDAT-2°HRs. Extracts prepared from every individual of each 

population were evaluated for their ability to inhibit DAT-mediated [3H]-DA uptake 

in rat striatal synaptosomes. Additionally, extracts were subject to GC-MS 

analysis to quantify their lobinaline content, examine GC traces for the present of 

“novel” chromatographic peaks undetectable in controls, and to identify peaks 

present in controls that may have been up-regulated in other experimental 

groups, as described below. 

 

Copyright © Dustin Paul Brown 2015 
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Figure 7.1. Sequential hairy root transformation in L. cardinalis. A) GUS/GFP-
2°HRs (arrowheads) emerging from a Ctrl-1°HR explant (arrow) transformed 
with AR1000-GFP. B) GFP expression in a GUS/GFP-2°HR. C) Background 
observed in Ctrl-1°HRs. D) GUS/GFP-2°HRs that tested positive for GFP 
expression, which express the GUS reporter gene, as indicated by the 
formation of blue precipitate. 

 A  B  C  D 
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Predicted Outcome: A) Survival of mutants that “overproduce” inhibitors of 
DAT or B) molecules that interfere with toxins intracellular mechanisms of cell 
death 

Figure 7.2. Schematic of the selection process and mechanisms predicted to 
confer resistance to MPP+. 
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Figure 7.3. Activation tagged hDAT-1°HR explants and emerging 
activation tagged 2°HRs on medium containing and lacking MPP+. A) On 
medium lacking MPP+, hDAT-1°HR explants and ATMhDAT-2°HRs 
thrive. B) On selection medium containing MPP+, all hDAT-1°HR 
explants, and the vast majority of activation tagged 2°HRs, fail to survive. 
C) If sufficient quantities of hDAT-1°HR explants are activation tagged 
and placed on selection medium containing MPP+, TR-2°HRs that 
express the hDAT, yet are resistant to MPP+ (indicated by arrows), can 
be obtained. However, hDAT-1HR explants never survived selection. 
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Table 7.1. 
DAT inhibitory activity of hairy root populations* 

Population n Mean S.E.M. Min. Max. 
Ctrl-1°HRs 68 2.9 0.3 0.2 10.7 

hDAT-1°HRs 77 2.3 0.2 1.1 x 10-2 9.0 
ATMhDAT-2°HRs 72 3.6 0.3 0.3 11.9 

TR-2°HRs 109 2,632 791 1.2 x 10-4 28496 
*DAT inhibitory activity expressed as lobinaline equivalents (µg/ml) 
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Figure 7.4. Frequency distributions of the hairy root populations' DAT inhibitory 
activity. As depicted above, Ctrl-1°HR, hDAT-1°HR, and ATMhDAT-2°HRs 
frequency distributions were not significantly different. However the frequency of 
individuals that were "highly active inhibitors of the DAT" was significantly 
increased in the X-2°HR population. 
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Table 7.2 
Lobinaline content of hairy root populations* 

Population n Mean S.E.M Min. Max. 
Ctrl-1°HRs 68 41.3 1.9 13.7 70.3 

hDAT-1°HRs 77 38.3 1.8 11.0 76.8 
ATMhDAT-2°HRs 72 56.5 1.8 12.2 92.9 

TR-2°HRs 109 59.2 2.4 9.9 117.0 
*Lobinaline content expressed as (µg/ml) 
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Figure 7.5. Frequency distributions of the hairy root populations' lobinaline 
content. The frequency  of "lobinaline overporducers" in  Ctrl- and hDAT-1°HR 
populations was not significantly different. The frequency of "lobinaline 
overproducers" present in the ATMhDAT- and X-2°HR populations was 
significanly greater than that of Ctrl- or hDAT-1°HRs. Additionally , the 
frequency of "lobinaline overproducers " present in the X-2°HR population was 
significantly greater than that of the ATMhDAT-2°HR population. 
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Figure 7.6. Overlay of a representative GC trace from a Ctrl- (green trace) and 
a hDAT-1°HR (black trace). A) An overlay of a representative GC trace from a 
Ctrl- and hDAT-1°HR reveals major differences with regards to the 
chromatographic peaks present and their relative abundances. B) Closer 
examination reveals no difference in the relative abundance of lobinaline in 
Ctrl- and hDAT-1°HRs. This was also confirmed quantitatively for Ctrl- and 
hDAT-1°HR populations. The green and black striped arrow in each of the GC 
traces indicates the chromatographic peak corresponding to lobinaline. 
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Chapter 8 
 
 

Characterization of gain-of-function subpopulations 
 
 
8.1. Introduction  

 
 In previous studies, a population of MPP+-resistant gain-of-function mutant 

transgenic secondary hairy roots expressing the human dopamine transporter 

(TR-2°HRs) was generated. After analyzing extracts from MPP+-resistant TR-

2°HRs for their ability to in inhibit the DAT, and via GC-MS, it became apparent 

that the TR-2°HR population consisted of multiple “subpopulations”, summarized 

in Table 8.1. The selection agent utilized in the present study, MPP+, is generally 

accepted to cause cytotoxicity by the following steps: 1) DAT-mediated MPP+ 

uptake to the cytosol, 2) mitochondrial dysfunction arising from inhibition of 

complex-1 by MPP+, 3) consequential depletion of ATP and excess free radical 

production, 4) activation of caspases and associated apoptotic signaling 

cascades, and 5) ensuing cell death [92]. As such, molecules that inhibit the 

DAT, preserve mitochondrial function, prevent ATP depletion, prevent free 

radical damage, or prevent activation of caspases attenuate MPP+-induced 

cytotoxicity [89, 90, 92, 107-126]. The various “subpopulations” of TR-2°HRs, 

and their respective mechanisms of MPP+-resistance, are described in greater 

detail below. 
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Table 8.1 
TR-2°HR Subpopulations 
Number Mechanism of Resistance n, (frequency) 

1 DAT inhibition 42, (38.5%) 
2 Increased biosynthesis of cytoprotective lipids 33, (30.3%) 
3 Increased biosynthesis of cytoprotective metabolites 24, (22.0%) 
4 Induction of cytoprotective genes 10, (9.2%) 
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Chapter 9 
 

 

TR-2°HR Subpopulation-1: increased inhibitor modulation of the hDAT 
 
 

9.1. Introduction 

 

 The DAT transporter is exclusively expressed on DAergic neurons in the 

CNS, and has been implicated as a “gateway” allowing neurotoxins to access the 

intracellular compartment of nigrostriatal neurons [43, 50, 52, 95, 97, 98, 220, 

222-224]. Upon gaining entry to the interior of DAergic neurons, selective 

DAergic neurotoxins have been reported to cause cell death by a variety of 

mechanisms, such as inhibition of mitochondrial function and inducing excessive 

free radical production [43, 50, 52, 92, 95, 97, 98, 220, 222-224]. Given DAT-

mediated uptake plays a pivotal role in the selective vulnerability of DAergic 

neurons to the neurotoxin MPP+, it is not surprising that numerous DAT inhibitors 

have been reported to attenuate MPP+-induced cytotoxicity in vitro and in vivo 

[50, 52, 89, 90, 95, 97, 98, 220, 222-224]. As such, increased inhibition of the 

hDAT was predicted to be the primary mechanism underlying MPP+-resistance in 

in the TR-2°HR population. Pharmacological analysis of TR-2°HRs’ methanolic 

(MeOH) in [3H]-DA uptake studies revealed that DAT inhibition was the primary 

mechanism underlying MPP+ resistance in the TR-2°HR population.  

 

9.2. Criteria indicating that MPP+-resistance was the result of beneficial gain-of-

function mutations that increased inhibitory modulation of the DAT 

 

 The designation of TR-2°HRs to Subpopulation-1 (mechanism of survival, 

increased inhibitory modulation of the hDAT) was made based on the following 

criteria: 1) DAT inhibitory modulation of TR-2°HR extract could not be expressed 

as lobinaline equivalents and/or 2) the TR-2°HR’s extract produced DAT 



	
  

 128	
  

inhibition greater than three standard deviations above the mean of the 

ATMhDAT-2°HR population (see Table 9.1). DAT inhibition produced by the TR-

2°HRs’ extracts was attributed to a “novel” DAT inhibitor if the extract’s activity 

could not be expressed as lobinaline equivalents. 

 

9.3. TR-2°HR Subpopulation-1: DAT inhibitory activity is attributable to lobinaline 

and putatively “novel” inhibitors of the DAT 

 

The majority of TR-2°HRs (n = 42, frequency = 38.5%) were resistant to 

MPP+ via increased inhibitory modulation of the DAT, and therefore were 

designated to Subpopulation-1. In Subpopulation-1, 22 TR-2°HRs’ extracts 

exhibited increased DAT inhibition that was attributed to lobinaline, as indicated 

by a corresponding increase in DAT inhibition and lobinaline content. However, 

20 TR-2°HRs in Subpopulation-1 displayed a marked increase in DAT inhibitory 

activity that was not accompanied by a corresponding increase in lobinaline. In 

fact, DAT inhibition produced by extracts from 10 TR-2°HRs could not be 

expressed as lobinaline equivalents. These observations, and the presence of 

chromatographic peaks in GC traces acquired from the latter TR-2°HRs’ extracts, 

which were absent/undetectable in controls, suggested the extracts contained 

“novel” metabolites that where presumably highly potent DAT inhibitors. 

 

9.4. Discussion 

 

In the present study, L. cardinalis TR-2°HRs expressing the hDAT were 

generated on medium containing the cytotoxic DAT substrate MPP+ [89, 90]. As 

predicted, the presence of beneficial gain-of-function mutations that increased 

DAT inhibitory activity were the primary explanation for MPP+-resistance in the 

TR-2°HR population. The underlying reasons for this were two-fold: 1) L. 

cardinalis has the biosynthetic machinery necessary to synthesize DAT inhibitors 

and 2) DAT inhibitors are known to ameliorate the cytotoxic effects of MPP+ in 

vitro and in vivo [75, 89, 90, 94, 124]. Increased yields of lobinaline explained 
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DAT inhibition produced by roughly half (n = 22) of the TR-2°HRs designated to 

Subpopulation-1. A representative GC trace obtained from an TR-2HR whose 

DAT inhibitory activity was explained by increased yields of lobinaline is depicted 

in Figure 9.1. However, the quantity of lobinaline present in the remaining TR-

2°HRs was not sufficient to account for DAT inhibition produced by their extracts, 

indicating the presence of putatively “novel” DAT inhibitors of greater potency. 

Lobinaline is a complex binitrogenous decahydroquinoline alkaloid present 

in L. cardinalis that inhibits the DAT, activates nicAchRs, and scavenges free 

radicals (see Chapter 4). Considering MPP+ treatment increases free radical 

production, which contributes to its cytotoxic effects, lobinaline should attenuate 

the deleterious effects of the toxin via two mechanisms: 1) preventing uptake of 

the MPP+ via inhibition of the hDAT, and 2) scavenging free radicals produced by 

MPP+ that may have gained access to the cell interior through hDAT proteins 

unoccupied by lobinaline. The potential cytoprotective effects of lobinaline in 

models of neurodegeneration in mammalian cells utilizing MPTP/MPP+ remain to 

be explored in future studies. 

In Subpopulation-1, roughly half (n = 20) of the TR-2°HRs’ extracts 

inhibitory activity at the DAT was not attributed to lobinaline. In fact, the potency 

of 10 TR-2°HRs’ extracts produced DAT inhibition equivalent to the positive 

control GBR12909, a highly potent and selective DAT inhibitor [84-88]. DAT 

inhibition produced by extracts from the aforementioned hairy roots could not be 

expressed as lobinaline equivalents. Therefore, their activity was expressed as 

the maximum amount of lobinaline equivalents that could be extrapolated from 

the lobinaline dose-response curve. GC trace acquired via analysis of TR-2°HRs’ 

extracts for which lobinaline was not responsible for DAT inhibition are depicted 

in Figure 9.2 and Figure 9.3. These TR-2°HRs represent a “library” of 

genomically optimized plant cultures whose evolution was redirected to favor 

biosynthesis of DAT inhibitors meant to interact with the hDAT. This is in contrast 

to DAT inhibitors that occur naturally in plants, which evolved to target the DAT 

and/or other monoamine transporters present in organisms other than humans. 

Given the TR-2°HRs putatively contain “novel” DAT inhibitors that evolved to 
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interact with the human target protein, leads isolated form the cultures may 

require less optimization than those found in nature. This is particularly 

advantageous from a drug discovery perspective, since their extracts known to 

contain highly potent DAT inhibitors whose structure may require only minor 

modifications, thus streamlining their discovery and development.  

Pharmacological and chemical analysis of extracts from TR-2°HR 

designated to Subpopulation-1 demonstrated that the technology is a viable 

option to increase yields of bioactive metabolites present in the wild-type plant. 

Furthermore, target-directed biosynthesis represents a means to tap a plant’s 

inherent biosynthetic capacity to generate “novel” bioactive metabolites active at 

a specific human target protein, here the hDAT. If lobinaline proves to be a 

valuable therapeutic, and/or derivatives of lobinaline prove to be valuable 

therapeutics, TR-2°HRs which overproduce lobinaline could be used as a 

production system to obtain bulk quantities of the complex alkaloid. The hairy 

roots containing novel DAT inhibitors represent a repository of metabolites that 

could be mined to identify “novel” DAT inhibitors and/or leads for the 

development of novel DAT inhibitors. Given natural products are often more 

“druggable” than synthetics, target-directed biosynthesis may prove to be an 

effective approach to generate leads with greater potential to be successfully 

developed as therapeutics. It’s also advantageous in that leads generated using 

this system “evolve” in an aqueous environment, akin to that of human cells. This 

is in contrast to synthetics, which “evolve” in organic solution, which may partly 

contribute to lower druggability of the synthetic molecules. 
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Table 9.1 
DAT inhibitory modulation of the ATMhDAT-2°HR population* 

Mean Standard Deviation (S.D.) Mean + 3x S.D. 
3.6 2.5 11.3 

*DAT inhibition expressed as lobinaline equivalents (µg/ml) 
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Figure 9.1. Overlay of a representative GC trace from a hDAT-1°HR (black 
trace) and a TR-2°HR (green trace) overproducing lobinaline. A) An overlay of a 
representative GC trace from a hDAT-1°HR and a TR-2°HR with increased 
yields of lobinaline clearly shows a marked increase in the latter, as compared 
the former. B) A closer examination demonstrates the pronounced increase in 
lobinaline content in the TR-2°HR, as compared to a representative hDAT-
1°HR. The black and green arrows indicate the chromatographic peak 
corresponding to lobinaline in the GC traces from a hDAT-1°HR and a TR-
2°HR, respectively. 
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Figure 9.2. Overlay of GC traces from a representative hDAT-1°HRs (black 
trace) and a TR-2°HR with increased yields of a putatively “novel” DAT inhibitor 
(blue trace). A) An overlay of a representative GC trace from a hDAT-1°HR and a 
TR-2°HR with increased yields of a putatively “novel” DAT inhibitor demonstrates 
a marked increase in the latter (blue arrow), as compared the former (black 
arrow). B) A closer examination demonstrates the pronounced increase in the 
TR-2°HR, as compared to a representative hDAT-1°HR. 
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Figure 9.3. Overlay of GC traces from a representative hDAT-1°HRs and a TR-
2°HR with increased yields of a putatively “novel” DAT inhibitor. A) An overlay 
of a representative GC trace from a hDAT-1°HR and a TR-2°HR with increased 
yields of a putatively “novel” DAT inhibitor demonstrates a marked increase in 
the latter (green arrow), as compared the former (black arrow). B) A closer 
examination demonstrates the pronounced increase in the TR-2°HR, as 
compared to a representative hDAT-1°HR. 
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Chapter 10 
 

 

Subpopulation-2: Increased biosynthesis of cytoprotective lipids 
 

 

10.1. Introduction 

 

Lipids are hydrophobic molecules that serve diverse physiological 

functions in eukaryotic cells [225]. For example, lipids are the primary structural 

components of cellular membranes, serve as substrates that can be metabolized 

to produce energy in the form of ATP, function as intracellular and extracellular 

signaling molecules, and modulate gene expression [225]. The four primary 

classes of lipids are fatty acids, triglycerides, phospholipids, and steroids [225].  

A variety of naturally occurring lipids have been demonstrated to attenuate 

the cytotoxicity caused by a variety of insults [75, 94, 226, 227]. As described 

above, MPP+-resistance in TR-2°HRs was predicted to arise from increased 

inhibitory modulation of the hDAT and/or increased biosynthesis of cytoprotective 

metabolites that prevent MPP+-induced cytotoxicity intracellularly. A variety of 

lipids have been reported to attenuate cytotoxicity caused by cytotoxic substrates 

of the DAT, such as squalene, lanosterol, and polyunsaturated fatty acids [93, 

94, 227]. In the TR-2°HR population, increased biosynthesis of cytoprotective 

lipid was the second most common mechanism explaining MPP+-resistance, as 

described below. 

 

10.2. Criteria indicating MPP+-resistance was attributable to increased 

biosynthesis of cytoprotective lipids 

 

The designation of TR-2°HRs to Subpopulation-2 (mechanism of survival, 

increased biosynthesis of cytoprotective lipids) was made based on the following 

criteria: 1) DAT inhibitory modulation produced by the TR-2°HRs’ extracts was 
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less than three standard deviations above the mean of the ATMhDAT-2°HR 

population (see Table 9.1) and 2) chromatic peaks in the TR-2°HRs’ GC traces 

were “positively identified” as lipids previously reported to attenuate cytotoxicity 

caused by cytotoxic DAT substrates. Here, “positive identification” refers to the 

identification of lipids based on the MS spectra extracted from their 

corresponding chromatographic peak (quality of match ≥ 99%). 

 

10.3. Subpopulation-2: increased biosynthesis of squalene, polyunsaturated fatty 

acids, and/or sterols engenders resistance to MPP+ 

 

MPP+-resistance arose from increased biosynthesis of cytoprotective 

lipids in 33 TR-2°HRs (frequency = 30.3%). In TR-2°HRs designated to 

Subpopulation-2, squalene was the most common lipid present in increased 

quantities (n = 23, 69.70%), followed by linoleic acid (n = 21, 63.64%). In 

Subpopluation-2, both squalene and linoleic were present in increased yields in 9 

TR-2°HRs (frequency = 27.27%). Each of these lipids has previously been 

reported to attenuate the deleterious effects of cytotoxic DAT substrates [93, 94, 

227]. 

 

10.4. Discussion 

 

 A heterogeneous population of L. cardinalis gain-of-function mutant 

transgenic hairy roots expressing the hDAT was generated on medium 

containing MPP+. Upon completing pharmacological and chemical analysis of 

TR-2°HRs extracts, it became evident that MPP+-resistance in a large portion of 

the population arose from increased biosynthesis of cytoprotective lipids. In fact, 

increased biosynthesis of cytoprotective lipids was the second most frequent 

mechanism underlying MPP+-resistance in TR-2°HRs. 

 Squalene was the most frequently observed lipid present in increased 

quantities in extracts from TR-2°HRs designated to Subpopulation-2. MPP+ is 

commonly utilized to model DAergic neurotoxicity observed in PD, and the hDAT 
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was expressed in TR-2°HRs such that their phenotype resembled that of DAergic 

neurons at a fundamental level in that DAT expression is restricted to DAergic 

neurons [43, 52]. Thus, a literature search was performed to determine whether 

squalene was reported to exert cytoprotective effects in models of PD. Indeed, 

previous studies demonstrated that squalene attenuated DAergic neurotoxicity 

observed in the 6-OHDA model of PD in rats [93]. This finding supported the 

hypothesis that cytoprotective metabolites that prevent the cytotoxic effects of 

selective DAergic neurotoxins would also exert similar effects in mammalian 

cells. The neuroprotective effects of squalene in the 6-OHDA model of PD were 

attributed to its ability to stabilize cell membranes, scavenge singlet oxygen 

radicals, and reduce inflammation [93, 228]. Lastly, squalene is a precursor for 

the biosynthesis of plant phytosterols and sterols present in human cells [227, 

229]. Given lanosterol exerts cytoprotective effects in in vitro and in vivo models 

of PD, increased yields of squalene may led to greater levels of phytosterols that 

exert effects analogous to lanosterol in plant cells (i.e. induction of mitochondrial 

uncoupling proteins) [227]. 

 Linoleic acid has previously been reported to abolish the cytotoxic effects 

of MPP+ in PC12 cells [94]. Polyunsaturated fatty acids (PUFAs), such as 

arachidonic acid, attenuate H2O2- and glutamate-induced cytotoxicity in 

hippocampal slices [94]. PUFAs also reduce cell death caused by ischemia and 

ethanol in the cardiac myocytes and gastrointestinal epithelia cells, respectively 

[94]. Furthermore, PUFAs have been reported to inhibit the DAT [74, 75]. 

Elongation of hydrocarbon tail and a higher degree of unsaturation increases the 

inhibitory potency of PUFAs [75]. The inhibitory action of PUFAs is dependent 

upon the presence of a terminal carboxylic acid group, given esters of PUFAs fail 

to inhibit DAT function [75]. Given PUFAs are reported to inhibit DAT, and exert 

antioxidant, anti-inflammatory, and anti-apoptotic effects, their ability to inhibit 

cytotoxicity caused by MPP+ is not surprising [74, 75, 94, 226]. Additionally, 

MPTP toxicity was reduced in mice via dietary supplementation with PUFAs 

[226].  
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 Resistance to MPP+ in TR-2°HR Subpopulation-2 arose from beneficial 

gain-of-function mutations which increased the biosynthesis of cytoprotective 

lipids. Both squalene and linoleic acid were present in increased quantities in TR-

2°HRs, each of which has been reported to exert neuroprotective effect in 

models of PD [93, 94]. The ability of cytoprotective lipids to prevent the cell death 

caused by MPP+ in plant cells, in addition to their cytoprotective effects in 

mammalian models of PD, supports the hypothesis that cytoprotective 

metabolites will protect human and plant cells challenged with similar insults [93, 

94]. As such, similar approaches could be utilized to drive the production of 

cytoprotective metabolites for the treatment of other human diseases. For 

example, the generation of gain-of-function mutants plant cell resistant to 3-

nitropropionic acid, which is utilized to model Huntington’s disease (HD), would 

be predicted to favor biosynthesis of metabolites with therapeutic applications in 

HD [230-233]. The utilization of target-directed biosynthesis may potentially 

revitalize plant-based drug discovery and accelerate the discovery of 

therapeutics and/or “druggable” leads for the treatment of numerous human 

diseases.  
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Figure 10.1. Overlay of a representative GC trace from a hDAT-1°HR (black 
line) and a TR-2°HR (green line) overproducing squalene. A) An overlay of a 
representative GC trace from a hDAT-1°HR and a TR-2°HR with increased 
yields squalene demonstrates the marked increase in the latter, as compared 
the former. B) A closer examination demonstrates the pronounced increase 
squalene content in the TR-2°HR, as compared to a representative hDAT-
1°HR. The black and green arrows indicate the chromatographic peak 
corresponding to squalene in the GC traces from a hDAT-1°HR and a TR-
2°HR, respectively. C) The structure of squalene.	
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Figure 10.2. Overlay of a representative GC trace from a hDAT-1°HR (black 
trace) and a TR-2°HR (blue trace) overproducing linoleic acid. A) An overlay of a 
representative GC trace from a hDAT-1°HR and a TR-2°HR with increased yields 
linoleic acid demonstrates the marked increase in the latter, as compared the 
former. B) A closer examination demonstrates the pronounced increase in the 
TR-2°HR, as compared to a representative hDAT-1°HR. The black and blue 
arrows indicate the chromatographic peak corresponding to squalene in the GC 
traces from a hDAT-1°HR and a TR-2°HR, respectively. C) The structure of 
linoleic acid. 
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Figure 10.3. Overlay of a representative GC trace from a hDAT-1°HR (black 
trace) and a TR-2°HR (blue trace) overproducing linoleic acid and squalene. A) 
An overlay of a representative GC trace from a hDAT-1°HR and a TR-2°HR 
with increased yields linoleic acid and squalene demonstrates the marked 
increase in the latter, as compared the former. B) A closer examination 
demonstrates the pronounced increase in the TR-2°HR, as compared to a 
representative hDAT-1°HR. The black and blue arrows indicate the 
chromatographic peaks corresponding to linoleic acid and squalene 
(chromatographic peaks indicated by arrows on the left and right, respectively) 
in the GC traces from a hDAT-1°HR and a TR-2°HR, respectively. 

1 1 .5 0 1 2 .0 0 1 2 .5 0 1 3 .0 0 1 3 .5 0 1 4 .0 0 1 4 .5 0 1 5 .0 0 1 5 .5 0 1 6 .0 0 1 6 .5 0 1 7 .0 0 1 7 .5 0
2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 2 0 0 0 0

1 3 0 0 0 0

1 4 0 0 0 0

1 5 0 0 0 0

1 6 0 0 0 0

1 7 0 0 0 0

1 8 0 0 0 0

T ime -->

A b u n d a n c e

T IC: 0 8 2 8 2 0 1 3 D A T (+)H R 7 4 _ 2 .D
T IC: 0 9 1 7 2 0 1 3 R H R 5 6 3 (0 7 )_ 1 .D  (*)

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Time-->

Abundance

TIC: 08282013DAT(+)HR74_2.D
TIC: 09172013RHR563(07)_1.D (*)

A 

B 



	
  

 142	
  

Chapter 11 
 

 

Subpopulation 3: Increased biosynthesis of putatively “novel” 
cytoprotective metabolites 

 

11.1. Introduction 

 

 Numerous phytochemicals and other small molecule natural products 

(SMNPs) have been investigated for their ability to attenuate MPP+-induced 

cytotoxicity in vitro and in vivo [108, 109, 112, 113, 115-118, 120-122, 125]. 

MPP+-induced DAergic neurotoxicity is widely accepted as a useful tool to model 

PD [92, 123, 124]. The efficacy of phytochemicals and SMNPs at preventing 

DAergic neuron loss in models of PD has spiked interest in their use as potential 

therapeutics and/or drug leads for the development of anti-PD therapeutics, as 

covered in recent reviews [234, 235]. Chrysotoxine, salvianolic acid B, lycopene, 

and neoechinulin A, amongst other SMNPs, have been reported reduce 

cytotoxicity caused by MPP+ (select phytochemicals and SMNPs reported to 

reduce MPP+-induced cytotoxicity are summarized Table 11.1) [108, 109, 112, 

113, 115-118, 120-122, 125]. The cytoprotective effects of the aforementioned 

plant metabolites were not reported to occur via inhibition of the DAT, nor have 

they been reported to inhibit the DAT [108, 109, 112, 113, 115-118, 120-122, 

125]. In fact, salvianolic acid B was reported to lack inhibitory activity at the DAT, 

and was shown to increase Nrf2 expression and glial-cell derived neurotrophic 

factor (GDNF) release [122]. Therefore, it is conceivable that TR-2°HRs’ 

resistance to MPP+ may have arisen due to increased biosynthesis 

cytoprotective metabolites that exert effects similar to those of the 

abovementioned phytochemicals. Extracts from TR-2°HRs designated to 

Subpopulation-3 did not display a marked increased in DAT inhibitory 

modulation, and GC-MS analysis of their extracts indicated no discernable 

increase in cytoprotective lipids. However, GC-MS analysis of extracts from TR-
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2°HRs designated to Subpopulation-3 revealed the presence of chromatographic 

peaks that were detectable in trace amounts and/or were undetectable in 

controls, and were predicted to represent putatively “novel” cytoprotective 

metabolites. 

 

11.2. Criteria indicating MPP+-resistance was attributable to increased 

biosynthesis of “novel” cytoprotective metabolites 

 

The designation of TR-2°HRs to Subpopulation-3 (mechanism of survival, 

increased biosynthesis of “novel” cytoprotective metabolites) was made based on 

the following criteria: 1) DAT inhibitory modulation produced by the TR-2°HRs’ 

extracts was less than three standard deviations above the mean of the 

ATMhDAT-2°HR population (see Table 9.1), 2) chromatographic peaks 

representing cytoprotective lipids were not identified in the TR-2°HRs’ GC traces, 

and 3) prominent chromatographic peaks were present in the TR-2°HRs’ GC 

traces that were only detectable in trace amounts and/or were undetectable in 

controls. 

 

11.3. Subpopulation 3: increased biosynthesis of “novel” cytoprotective 

metabolites putatively underlies resistance to MPP+ 

 

 Increased biosynthesis of putatively “novel” cytoprotective metabolites that 

prevent MPP+ intracellularly, rather than preventing DAT-mediated toxin uptake 

or via increased biosynthesis of cytoprotective lipids, was the third most 

frequently observed mechanism underlying MPP+-resistance (n = 24, frequency 

= 22.0%). Chemical structures were not assigned to the putatively “novel” 

cytoprotective metabolites present TR-2°HRs designated to Subpopulation-3. 

The inability to assign chemical structures the aforementioned metabolites 

presumably arose from the utilization of a GC-MS method aimed to separate and 

identify alkaloids, specifically those structurally related to lobinaline. Considering 

“novel” metabolites present in the TR-2°HRs were predicted to have structures 
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related to lobinaline, the method employed for GC-MS analysis was developed 

accordingly with the aim of separating and identifying such alkaloids. 

 

11.4. Discussion 

 

 A population of L. cardinalis TR-2°HRs was generated, which consisted of 

mutants resistant to MPP+ despite expressing the hDAT. The most common 

mechanism explaining resistance to the cytotoxin in the TR-2°HRs was increased 

inhibitory modulation of the hDAT, followed by increased biosynthesis of 

cytoprotective lipids. However, TR-2°HRs were identified which did not display 

increased inhibitory activity at the DAT, nor did their extracts contain increased 

amounts of cytoprotective lipids previously reported to attenuate MPP+-induced 

cytotoxicity. Chemical analysis of the aforementioned TR-2°HR extracts via GC-

MS led to the identification of chromatographic peaks that were absent and/or 

present in trace amounts in controls. The peaks were predicted to indicate the 

presence of putatively “novel” cytoprotective metabolites that conferred 

resistance to MPP+. 

 Structural elucidation of the putatively “novel” cytoprotective metabolites 

via analysis of the MS extracted from their corresponding chromatographic peaks 

proved unavailing. However, the GC-MS method employed in the current study 

was developed to enable the detection, separation, and structural identification of 

lobinaline (see Figure 3.3) and lobinaline-like alkaloids. Considering alkaloids 

structurally related to lobinaline, which were active at the DAT, were predicted to 

be the primary metabolites present in TR-2°HRs, the GC-MS method utilized was 

logical. If an alternate GC-MS method was utilized the quantification of lobinaline 

present in hairy root extracts may not have been achieved, which would have 

prevented the attribution of DAT inhibition to lobinaline and/or a novel DAT 

inhibitor/s. However, the GC-MS method utilized generated data essential for one 

develop hypotheses pertaining to the class of metabolites present in the TR-

2°HR extracts, thus allowing the future utilization of analytical instrumentation 

necessary for structural elucidation.    
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In future studies, analytical instrumentation that is less likely to 

decompose metabolites prior to reaching the mass selective detector (MSD), 

which also acquires superior MS data, could be utilized in combination with MS 

libraries of greater breadth. For example, flavonoids are decomposed when 

analyzed via GC-MS prior to reaching the MSD, precluding structural elucidation 

[236]. Liquid chromatographic techniques (i.e. HPLC or UPLC) coupled to 

tandem mass spectroscopy (LC-MS/MS) may prove to be an effective alternative 

to elucidate the structures of unidentified metabolites present in TR-2°HRs [236]. 

The TR-2°HRs represent a repository of putatively “novel” small molecule natural 

products (SMNPs) with a high probability of exerting cytoprotective effects 

awaiting to be mined for such metabolites if reasonable manpower and resources 

are dedicated to this task. Given squalene and linoleic acid were present in TR-

2°HRs designated to Subpopulation-2, each of which protects TR-2°HR and 

neuronal cells from similar insults, this is truly a possibility of high likelihood [93, 

94].  

That said, a coumarin-like compound (8-methyloctahydrocoumarin) was 

amongst the hits that arose in the while performing library searches of the MS 

data, albeit the quality of the match was low (quality of match, 41%). This may 

indicate that increased biosynthesis of molecules similar to coumarins and/or 

flavonoids, which share a degree of structural similarity, and are reported to 

attenuate MPP+-induced cytotoxicity, led to MPP+-resistance in TR-2°HRs 

designated to Subpopulation-3 [112, 114, 116, 117, 119]. Especially considering 

L. cardinalis contains complex flavonoid-anthocyanin glycosides, and both 

flavonoids and anthocyanins have been shown to attenuate MPP+-induced 

cytotoxicity [112, 114, 116, 117, 119, 237]. Although other classes of metabolites 

cannot be ruled out, increased biosynthesis of flavonoid- or anthocyanin-like 

metabolites is a plausible explanation underlying MPP+-resistance in 

Subpopulation-3. 

 A wide variety of phytochemicals and SMNPs have been identified that 

attenuate the deleterious effects of cytotoxic DAT substrates in mammalian 

systems in vitro and in vivo [108, 109, 112, 113, 115-118, 120-122, 125]. Most of 
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the aforementioned natural products reduce MPP+-induced formation of reactive 

oxygen species, prevent opening of the mitochondrial permeability transition 

pore, reduce the Bax/Bcl-2 ratio, and decrease caspase-3 activity, all effects 

which reduce MPP+-induced apoptosis [108, 109, 112, 113, 115-118, 120-122, 

125]. Lycopene, salvianolic acid B, sulforaphane, and carnosic acid cause Nrf2 

translocation to the nucleus, which is believed to function as a master regulator 

of antioxidant systems within cells responsible for the induction of detoxification 

and antioxidant enzymes [108, 113, 118, 122, 238]. Furthermore, Nrf2 signaling 

activated by salvianolic acid B increases GDNF release in vitro, and increases 

GNDF levels in vivo [122]. GDNF exerts neuroprotective effects in a wide variety 

of in vitro and in vivo models, and is particularly effective at restoring DAergic 

function in animal models of PD [122]. 

Homologs of Nrf2’s upstream regulator, Keap1, have been identified in 

plants [238-241]. It is conceivable that phytochemicals such as salvianolic acid B, 

sulforaphane, and carnosic acid, which activate Nrf2, bind to homologs of Keap1 

in plant cells, but disrupt the Keap1-Nrf2 interaction in animal cells thereby 

allowing Nrf2 translocation to the nucleus. Considering plant homologs of Keap1 

have been identified, plants and animals may share similar signaling pathways to 

induce the expression of antioxidant defenses [13, 239]. Subpopulation-3 may be 

enriched with TR-2°HRs containing molecules that activate plant cells’ 

antioxidant defense systems, thereby providing protection from toxicity caused by 

MPP+. Supporting this notion, an isothiocyanate (2-heptane isothiocyanate) was 

the top match identified after performing a library search on the MS extracted 

from a chromatographic peak present in increased abundance in an TR-2°HR’s 

extract present in Subpopulation-3. Isothiocyanates that occur naturally in plants, 

sulforaphane representing a prime example, have been shown activate Nrf2 

thereby exerting neuroprotective effects [118, 241, 242]. Subpopulation-3 could 

essentially be viewed as a chemical repository that likely contains SMNPs 

capable of promoting Nrf2 translocation to the nucleus, thereby exerting 

cytoprotective and neuroprotective effects.  

Copyright © Dustin Paul Brown 2015 
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Table 11.1 
Phytochemicals and other SMNPs shown to reduce the toxic effects of 
cytotoxic DAT substrates and/or selective DAergic neurotoxins* 

SMNP Source 
Cytotoxin, 

model 
system 

Mechanism of Action 

Chrysotoxine1 Dendrobium 
species 

6-OHDA,  
SH-SY5Y 

cells 

Reduce ROS formation 
Preserve ΔΨm 

Attenuate increase in [Ca2+]i 
Prevent cytochrome c 

release 
Reduce Bax/Bcl-2 ratio 

Prevent caspase-3 
activation 

Reduce p38 MAPK and 
ERK1/2 phosphorylation 

Inhibit NF-κB translocation 
Prevent iNOS up-regulation 

Reduce NO production 

Kaempferol2 Glycine max 
Rotenone,  
SH-SY5Y 

cells 

Reduce ROS formation 
Preserve ΔΨm 

Restore ΔΨm (<12 post-
treatment) 

Reduce lipid peroxidation 
Induce mitophagy  

Lycopene3 Solanum 
lycopersicum 

MPP+,  
SH-SY5Y 

cells 

Reduce ROS formation 
Reduce lipid peroxidation 

Preservation of 
mitochondrial morphology 
Prevent opening of mPTP 

Prevent ATP depletion 
Prevent reduction in mtDNA 

Neoechinulin A4 Eurotium 
rubrum 

MPP+,  
PC12 
cells 

Reduce free radical levels 
Reduce activation of 

caspase-3 
Increase NADH production 
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Table 11.1 (continued) 
Phytochemicals and other SMNPs shown to reduce the toxic effects of 
cytotoxic DAT substrates and/or selective DAergic neurotoxins* 

Osthole5 Cnidium 
monnieri 

MPP+, 
PC12 
cells 

Reduce ROS formation 
Induction of SOD activity 

Induction of catalase 
activity 

Reduce lipid peroxidation 
Reduce Bax/Bcl-2 ratio 

Reduce caspase-3 activity 

S-Allylcysteine6 Allium 
sativum 

MPP+, 
C57BL/6J 

mice 

Reduce ROS formation 
Reduce lipid peroxidation 

Enhance CuZn-SOD 
activity 

Enhance glutathione 
reductase activity 

Salvianic acid A7 Salvia 
miltiorrhiza 

MPP+,  
SH-SY5Y 

cells 

Reduce ROS formation 
Reduce Bax/Bcl-2 ratio 

Preserve ΔΨm 
Inhibit cytochrome c 

release 
Reduce caspase-3 activity 

Salvianolic acid B8 Salvia 
miltiorrhiza 

MPP+, 
neuron-
microglia 
cultures 

Reduce glial TNF-a release 
Reduce IL-1b release 

Reduce NO production 
Increase GDNF mRNA 
Increase GDNF release 

MPP+,  
mouse 

midbrain 
neuron-

glia 
cultures 

Increase Nrf2 expression 
Increase Nrf2 translocation 
Reduce glial TNF-a release 

Reduce IL-1b release 
Reduce NO production 
Increase GDNF mRNA 
Increase GDNF release 

MPTP, 
C57BL/6J 

mice 

Reduce glial TNF-a release 
Reduce IL-1b release 

Reduce NO production 
Increase GDNF content 
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Table 11.1 (continued) 
Phytochemicals and other SMNPs shown to reduce the toxic effects of 
cytotoxic DAT substrates and/or selective DAergic neurotoxins* 

Tetrahydroxystilbene 
glucoside9 

Polygonum 
multiflorum 

MPP+,  
SH-SY5Y 

cells 

Reduce ROS formation 
Preserve ΔΨm 

Reduce Bax/Bcl-2 ratio 
Reduce capase-3 activity 

Licopyranocoumarin10 Glycyrrhiza 
species 

MPP+,  
PC12 
cells 

Reduce ROS formation 
Preserve ΔΨm 

Attenuate JNK activity  Glycyrurol10 

*The list provided is non-exhaustive and is intended to provide select examples 
of phytochemicals and other SMNPs that reduce MPP+- and/or 6-OHDA-
induced cytotoxicity 
Small molecule natural product, SMNP; 6-hydroxydopamine, 6-OHDA; 1-
methyl-4-phenylpyridinium, MPP+; reactive oxygen species, ROS; 
mitochondrial membrane potential, ΔΨm; inducible nitric oxide synthase, 
iNOS; nitric oxide (NO), mitochondrial permeability transition pore; adenosine 
triphosphate, ATP; mitochondrial DNA, mtDNA; superoxide dismutase, SOD; 
copper-zinc superoxide dismutase, CuZn-SOD 
1Song et al. (2013) [109] 
2Filomeni et al. (2012) [116] 
3Yi et al. (2013) [113] 
4Kajimura et al. (2008) [115] 
5Liu et al. (2010) [117] 
6Rojas et al. (2011) [120] 
7Wang et al. (2015) [121] 
8Zhou et al. (2014) [122] 
9Sun et al. (2011) [125] 
10Fujimaki et al. [112] 
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Figure 11.1. Overlay of GC traces from a representative hDAT-1°HR extract 
(black trace) and a TR-2°HR with increased yields of a putatively “novel” 
cytoprotective metabolite/s (blue trace), in this case a coumarin-like metabolite. 
A) An overlay of a representative GC trace from a hDAT-1°HR and a TR-2°HR 
with increased yields of a putatively “novel” cytoprotective metabolite 
demonstrates the marked increase in the latter (blue arrows), as compared the 
former (black arrows). B) A closer examination demonstrates the pronounced 
increase in the TR-2°HR, as compared to a representative hDAT-1°HR.	
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Chapter 12 
 

 

Subpopulation 4: Mechanism of MPP+-resistance undetermined 
 

12.1. Introduction 

 

 The DAT has been implicated to play a role in DAergic neurodegeneration 

seen in PD, functioning as a “gateway” allowing cytotoxic substances to access 

the cytosol of nigrostriatal neurons [50, 52, 95, 97, 98, 220, 222-224]. Cytotoxic 

substrates of the DAT include endogenous and exogenous compounds, such as 

salsolinol and MPP+, respectively [95]. Upon accessing the cytosol of DAergic 

neurons, the aforementioned compounds cause cell death by disrupting 

mitochondrial function, increasing free radical production, and/or depleting ATP 

levels, ultimately inducing apoptosis and/or necrosis [50, 52, 92, 95, 97, 98, 110, 

220, 222-224]. In the present study, the hDAT was expressed in L. cardinalis 

hairy root cells, which were subsequently “activation tagged” and selected on 

medium containing MPP+. Methanolic extracts from the resulting population of 

MPP+-resistant TR-2°HRs were subject to pharmacologic and chemical analysis 

(see sections 7.4 and 7.5). MPP+-resistance in the TR-2°HR Subpopulations 1 – 

3 was explained by the presence of beneficial gain-of-function mutations that 

increased inhibitory modulation of the hDAT, increased biosynthesis of 

cytoprotective lipids, or increased biosynthesis of other cytoprotective 

metabolites, respectively. However, resistance to MPP+ in Subpopulation-4 did 

not arise via the aforementioned mechanisms.  

  

12.2. Criterion leading to the designation of TR-2°HRs to Subpopulation-4  

 

The designation of TR-2°HRs to Subpopulation-4 (mechanism of survival 

undetermined) was made based on the following criteria: 1) DAT inhibitory 

modulation produced by the TR-2°HRs’ extracts was less than three standard 
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deviations above the mean of the ATMhDAT-2°HR population (see Table 9.1), 2) 

chromatographic peaks representing cytoprotective lipids were not identified in 

the TR-2°HRs’ GC traces, and 3) chromatographic peaks that were detectable in 

trace amounts and/or were undetectable in controls were not present in greater 

abundance in GC traces acquired from the TR-2°HRs’ extracts. 

 

12.3. Subpopulation 4: mechanism of MPP+-resistance undetermined 

 

 In Subpopulation-4, the mechanism/s underlying TR-2°HRs’ resistance to 

MPP+ was undetermined. This was the least common type of TR-2°HR 

encountered   (n = 10, frequency = 9.17%). As seen in Figure 12.1, GC traces 

acquired via analysis of the aforementioned TR-2°HRs’ extracts were devoid of 

chromatographic peaks other than that which corresponded to lobinaline. 

 

12.4. Discussion 

 

A population of L. cardinalis TR-2°HRs that express the hDAT, yet are 

resistant to MPP+, was generated. The vast majority of TR-2°HRs were resistant 

to the toxin owing to increased inhibitory modulation of the hDAT (Subpopulation-

1) or increased biosynthesis of cytoprotective metabolites (Subpopulations 2 and 

3). However, a small portion of the population survived selection on medium 

containing MPP+ via a mechanism/s independent of DAT inhibition and increased 

biosynthesis of metabolites capable of attenuating the deleterious effects of the 

toxin. These TR-2°HRs were designated to Subpopulation-4. At present, the 

mechanism/s underlying MPP+-resistance in this subpopulation is undetermined. 

One could speculate that resistance to the toxin arose via enhanced expression 

of cytoprotective genes that were capable of mitigating MPP+-induced 

cytotoxicity.  However, increased biosynthesis of cytoprotective metabolites that 

were undetectable using the analytical instrumentation and methodology 

employed in the present study cannot be ruled out. The former is predicted to 

explain MPP+-resistance in these TR-2°HRs, as described below. 
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 The Arabidopsis genome was sequenced in 2000, and subsequent 

analyses led to the realization that plant homologs exist for 71% of the genes 

linked to human neurological disorders [243, 244]. Although the evolution of 

plants and humans diverged roughly 1.6 billion years ago, plant orthologs exist 

for the majority of genes linked to human disease [243, 244]. Furthermore, the 

aforementioned genes serve related functions in plant and human cells, despite 

differences the organisms’ morphological structure, cellular requirements for the 

production of energy (i.e. autotrophs and heterotrophs, respectively), and 

challenges encountered during their existence [243]. These observations have 

spiked interest in the use of plants to model human disease, including 

neurodegenerative diseases [243-245]. In fact, knowledge relating to the function 

of plant genes, and their respective proteins products, facilitated the discovery of 

genes associated with several neuropathological disorders, including PD, 

Alzheimer’s disease, Rett syndrome, and Friedreich’s ataxia [243-245]. Plant 

models may be particularly well-suited to delineate certain genetic defects that 

contribute to the manifestation of PD, considering plant orthologs exist for all PD-

linked genes, with the exception of PARK1 and PARK3 [244]. Furthermore, 

aberrant gene variants, such as mutant SPK1-like1-1 (ask1-1), produce similar 

cellular defects in human and plant cells [246]. Ask1-1 is homologous to SPK1 

present in mammalian cells [246]. Downregulation of SPK1 in mouse embryonic 

substantia nigra-derive DAergic cells produces a phenotype that resembles that 

of sporadic PD [246]. A loss-of-function mutant form of ask1-1 produces cellular 

defects in Arabidopsis analogous to those observed in mammalian cells, 

including the formation of intracellular aggregates, aberrant cell division, and 

ultimately cell death [246]. Given plants such as Arabidopsis have shot life-

spans, are easily maintained in the laboratory at relatively low costs, can be 

genetically modified rapidly using well-established methodology, and ethical 

constraints are less of an issue, plants represent an excellent alternative to 

model neurological disorders [244]. 

 A variety of genes have been demonstrated exert cytoprotective effects in 

models of DAergic neurodegeneration, including models of PD wherein lesions 
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are created via the administration of cytotoxic DAT substrates [247-251]. For 

example, DJ-1 reduces oxidative stress caused by MPP+ and paraquat in SH-

SY5Y cells via activation of superoxide dismutase (SOD) [247]. The plant 

ortholog of DJ-1, AtDJ-1a, also increases SOD activity, thereby playing a role 

cellular defense system that prevent the deleterious effects of reactive oxygen 

species [244, 252, 253]. Overexpression of the vesicular monoamine transporter 

type-2 (VMAT-2) decreases the neurotoxic effects of MPP+ in a mouse model of 

PD [248]. Undifferentiated SH-SY5Y cells are less vulnerable to MPP+, compared 

to SH-SY5Y cells differentiated toward a DAergic phenotype, which is believed to 

arise due to differences in the DAT: VMAT-2 expression ratio [124]. The DAT: 

VMAT-2 expression ratio is lower in the former, which is believed reduce uptake 

and enhance vesicular sequestration of the toxin thereby reducing cytotoxicity 

caused by MPP+ [124]. Plant express transporters for auxins, hormones that 

influence the growth and differentiation of plant cells, and auxin transporters and 

VMAT-2 share homology with p-glycoprotein [254-258]. Therefore, 

overexpression of transporters for auxins, or structurally related molecules, may 

lead to the sequestration of MPP+ in storage organelles present in plant cells, 

thereby abrogating MPP+-induced cytotoxicity. Plant also express homologs of 

Keap1, which regulates the activity of Nrf2 (see section 11.4), the latter of which 

has been proposed as the master regulator of antioxidant defense systems [238, 

239]. Given Keap1’s role in the regulation of Nrf2, induction of genes whose 

protein products reduce Keap1 activity may lead increased expression of 

antioxidant defense systems, which would also be predicted to attenuate the 

cytotoxic effects of MPP+ [238, 240, 241]. Lastly, plants and mammals express 

the anti-apoptotic protein Bcl-2, which has been reported to attenuate toxicity 

caused by MPP+ [251, 259]. Clearly, a vast array of genes present in plants may 

lead to MPP+ resistance if their genes were directly or indirectly “activated” by 

gain-of-function mutations introduced in TR-2°HRs via ATM. 

 The induction of cytoprotective genes was predicted to explain resistance 

to MPP+ in Subpopulation-4, although the presence of cytoprotective metabolites 

that were undetectable using the analytical techniques employed in the current 
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study cannot be ruled out. Plants express a variety of genes that are homologous 

to human genes linked to neurological disorders, and which serve similar 

functions in plant and animal cells [243-245]. Since the “activation tag” allows 

one to identify and rescue genes up-regulated via ATM, the TR-2°HRs 

designated to Subpopulation-4 are a potential source of putatively “novel” 

cytoprotective genes capable of reducing the effects of the DAergic neurotoxin 

MPP+. DAergic neurodegeneration caused by MPP+ recreates many of the 

symptoms observed in PD, such as rigidity and bradykinesia [89-91]. Considering 

many genes linked to human neuropathological disorders (e.g. PD) share 

homology with those present in plants, human homologs of cytoprotective genes 

capable of mitigating the deleterious effects of MPP+ in TR-2°HRs may exist 

[243-245]. Future studies examining genes flanking the “activation tag” in TR-

2°HRs remain to be performed. If “novel” cytoprotective genes are identified in 

these TR-2°HRs, their sequences could be utilized to identify homologous human 

genes, thereby accelerating the identification of new molecular targets for the 

development of therapeutics to treat and/or prevent PD. 
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Figure 12.1. Overlay of GC traces from a representative hDAT-1HRs and a TR-
2°HR in which a cytoprotective gene/s has putatively been activated. No 
appreciable difference was apparent upon comparison, however the TR-2°HR 
survived selection, suggesting survival due to the induction of a cytoprotective 
gene/s. 
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Chapter 13 
 

 
Evaluation of TR-2°HR extracts for the presence of putatively “novel” DAT 

inhibitors and/or potentially neuroprotective metabolites 
 
 
13.1 Introduction 

 

 In the present dissertation, the fundamental principles underlying evolution 

by natural selection were applied to develop a novel plant-based drug discovery 

platform. The innovative biotechnology described herein, referred to as target-

directed biosynthesis, essentially redirects plant evolution favoring the 

biosynthesis of metabolites meant to interact with a specific human target 

protein. Here, the hDAT was used as an example to demonstrate the application 

of the technology. 

 Two fundamental requirements for evolution via natural selection are: 1) 

genetic/phenotypic heterogeneity within a given population, and 2) environmental 

selection pressures favoring the survival of individuals with the greatest 

reproductive fitness [12]. In nature, genetic heterogeneity within a plant 

population arises from sexual reproduction and germline mutations, whereas 

environmental selection pressures arise from a vast array of abiotic and biotic 

sources [12-14]. For example, ultraviolet (UV) radiation favored the survival of 

plants whose genome encoded the biosynthetic machinery responsible for the 

synthesis of carotenes and flavonoids, metabolites capable of absorbing UV 

energy and scavenging free radicals thereby abrogating the deleterious effects of 

UV radiation [13, 14]. As described above (see section 1.2), the presence of 

herbivorous insects favored the survival of plants having genomes that encoded 

biosynthetic pathways responsible for the synthesis of secondary metabolites, 

such as nicotine or cocaine, which function as natural insect deterrents [13, 14].  
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 We sought to emulate the process of evolution via natural selection in the 

laboratory setting to revolutionize and revitalize drug discovery from plant 

sources. This was accomplished by creating an artificial environment wherein 

survival was dependent upon the biosynthesis of plant metabolites with a 

required bioactivity at a specific human protein. The hDAT, a molecular target for 

therapeutics in drug abuse and Parkinson’s disease, was chosen as an example 

to illustrate the application of target-directed biosynthesis [59, 60, 65, 66, 70, 79, 

95-101]. A. rhizogenes-mediated genetic transformation was utilized to express 

the hDAT in L. cardinalis, which contains the relatively weak DAT inhibitor 

lobinaline. Transgenic L. cardinalis plant cells expressing the hDAT displayed 

increased sensitivity to MPP+, a cytotoxic DAT substrate [89, 90]. MPP+-induced 

toxicity in the aforementioned cells was prevented via pharmacological blockade 

of the transporter with GBR12909, a highly potent and selective DAT inhibitor 

[84-88]. As such, one requirement for evolution in the laboratory setting was 

fulfilled: selection of transgenic L. cardinalis plant cells expressing the hDAT on 

medium containing MPP+ favoring survival of individuals that synthesized 1) DAT 

inhibitors of sufficient potency, or at a concentration to prevent MPP+ uptake and 

ensuing toxicity and/or 2) metabolites that interfere with MPP+-induced toxicity 

downstream of DAT-mediated uptake. Furthermore, the former favored 

biosynthesis of metabolites that were optimized for activity at a human target 

protein, i.e. the hDAT. Given DAT inhibitors present in plants evolved to target 

the insect variant of the transporter, the artificial selection conditions created 

should “redirect” plant evolution favoring biosynthesis of molecules meant to 

target the hDAT [30]. 

 Next, agrobacterium-mediated ATM was performed on transgenic L. 

cardinalis plant cells expressing the hDAT to create a heterogeneous population 

of gain-of-function mutants. ATM produces dominant, gain-of-function mutations 

in plant cells via integration of T-DNA containing a tetramer of the CaMV 35S 

promoter enhancer sequence “activating” genes 10-kb upstream and 

downstream of its integration site [221]. Since the integration of agrobacterial T-

DNA occurs randomly throughout the plant genome, each mutant generated has 
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a unique gain-of-function mutation [14, 16-19]. Thus, the utilization of ATM 

fulfilled the second fundamental requirement needed for evolution via natural 

selection. ATM was already shown to have the capacity to alter plant metabolism 

in studies conducted in Nicotiana tabacum, wherein mutant cultures with 

increased yields of nicotine, or novel nicAchR ligands, were successfully 

obtained [14, 260]. If ATM increased yields of lobinaline, a novel DAT inhibitor of 

greater potency, and/or induced biosynthesis of cytoprotective metabolites that 

were capable of mitigating intracellular events preceding MPP+-induced cell 

death, then the gain-of-function mutants should be resistant to the toxin. 

 Indeed, MPP+-resistant transgenic gain-of-function L. cardinalis plant cells 

expressing the hDAT were obtained. Additionally, TR-2°HRs were resistant to 

MPP+ via both of the predicted mechanisms: 1) increased inhibitory modulation 

of the DAT and 2) biosynthesis of cytoprotective metabolites that prevent the 

deleterious effects of MPP+ via a mechanism independent of DAT inhibition (i.e. 

prevent MPP+-induced cytotoxicity intracellularly). To provide proof-of-concept, 

two studies were performed: 1) a MeOH extract from a TR-2°HR that survived via 

DAT inhibition was sub-fractionated via pHPLC in an effort to identify a novel 

DAT inhibitor, and 2) a MeOH extract from a TR-2°HR was evaluated for its 

ability to attenuate MPP+-induced cytotoxicity in SH-SY5Y cells. In the former 

study, a MeOH extract from a TR-2°HR that displayed DAT inhibitory activity, 

exceeding that which could be expressed as lobinaline equivalents, was chosen 

to increase the probability of identifying a novel DAT inhibitor. In the latter study, 

the cytoprotective effect of a TR-2°HR aqueous extract was compared to that of 

an aqueous extract from a hDAT-1°HR. Treatment of SH-SY5Y cells with MPP+ 

is widely accepted as an in vitro model of DAergic neurodegeneration seen in PD 

[92, 107-126]. In the latter study, it was predicted that cytoprotective metabolites 

that attenuated MPP+-induced cytotoxicity in TR-2°HRs would also exert 

cytoprotective effects in mammalian cells challenged with the toxin.  
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13.2. Study 1: Methods 

 

13.2.1. Chemicals and supplies 

 

Methanol, acetonitrile, and o-phosphoric acid were purchased from Sigma 

Aldrich (St. Louis, MO, USA). [3H]-DA (S.A. = 60 Ci/mmol) was purchased from 

American Radiolabeled Chemicals, Inc. (St. Louis, MO, USA). All other 

chemicals and materials were purchased from Fisher Scientific (Pittsburgh, PA, 

USA), unless otherwise stated. 
 

13.2.2. pHPLC sub-fractionation of L. cardinalis hairy root methanolic extracts 

 

Hairy root tissue was collected and MeOH extracts were prepared as 

described above (see sections 5.15 and 5.16, respectively). Hairy root MeOH 

extracts were sub-fractionated via pHPLC using a Waters XBridge Prep C18 (5 

µm OBD, 19 x 150 mm) column attached to a Waters 600E Multisolvent Delivery 

System coupled to a Waters 2998 Photodiode Array Detector and Waters 2767 

Sample Manager, Injector, and Collector. The pHPLC instrument was operated 

using Waters MassLynx Software (Version 4.1) and FractionLnyx Collection 

Control Software (Version 4.1). The mobile phase consisted of a mixture of 

Solvent A (100% acetonitrile, pHPLC grade) Solvent B (0.1% o-phosphoric acid 

in Milli-Q water, pH = 1.890), and Solvent C (100% Milli-Q water, pH 7.0). Dried 

hairy root MeOH extract samples were dissolved in a mixture of Solvents A – C 

(20% A, 1% B, 79% C) to achieve a final concentration of 20 mg/ml. Samples 

were vortex briefly (~30 seconds), sonicated (~45 seconds), and then syringe 

filtered (pore size, 0.22 µm) prior to injection (sample injection volume = 200 µl). 

Separation was performed with the following gradient at a flow rate of 10 

ml/minute: initial conditions, 10% A in C; 0 – 3 minutes, gradient curve = 5, 10 – 

15% A in C; 3 – 6 minutes, gradient curve = 5, 15 – 20% A in C; 6 – 12 minutes, 

gradient curve = 7, 20 – 30% A in C; 12 – 24 minutes, gradient curve = 6, 30 – 

50% A in C; 24 – 25 minutes, gradient curve = 6, 50 – 84% A in C; 25 – 30 
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minutes, gradient curve = 6, 84 – 10% A in C; B was held at 1% throughout the 

entire run. Sub-fractions (SFs) were dried, and then re-suspended in uptake 

buffer containing 0.1% DMSO (final concentration, 66.7 – 16.7 µg/ml) or 

methanol (final volume, 150 µl) for [3H]-DA uptake studies and GC-MS analysis, 

respectively (see sections 5.17 and 5.18, respectively). In [3H]-DA uptake 

studies, lobinaline was evaluated at four concentrations (51.5 – 6.4 µg/ml) in 

each 96-well plate to allow comparison to pHPLC SFs, and to ensure 

consistency between experiments. 

 

13.2.3 Data Analysis 

 

Graphical presentation of data were performed using GraphPad Prism 

software (Version 6.0; GraphPad Software, San Diego, CA, USA). Data were 

expressed as the mean ± S.E.M.  

 

13.3. Study 2: Methods 

 

13.3.1. Chemicals and supplies 

 

Penicillin (10,000 units/ml), streptomycin (10,000 µg/mL), 2.5% trypsin 

(10x), heat inactivated fetal bovine serum (FBS), Dulbecco's Modified Eagle 

Medium (DMEM), and Hanks Balanced Salt Solution (HBSS) were purchased 

from Life Technologies Corporation (Grand Island, NY, USA). 1-methyl-4-

phenylpyridinium (MPP+) iodide, and 7-hydroxy-3H-phenoxazin-3-one-10-oxide 

sodium salt (resazurin) were purchased from Sigma-Aldrich (St Louis, MO, USA). 

All other chemicals and supplies were purchased from Fischer Scientific 

(Pittsburgh, PA, USA), unless stated otherwise. 

 

13.3.2. Preparation of hairy root aqueous extracts and MPP+ treatment solutions 

 

L. cardinalis hairy root tissue was collected, flash frozen with liquid 
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nitrogen, and lyophilized. Immediately after removing tissue from the lyophilizer, 

freeze-dried plant tissue was ground to a fine powder and extracted with 3 

volumes of water for 24-hours in the dark. The following day, L. cardinalis hairy 

root aqueous extracts (LCE) were obtained via vacuum filtration, filter sterilized 

(pore size, 0.45 µm), frozen, and dried with a lyophilizer. Solutions of LCEs (final 

concentration, 50.0 µg/ml) were prepared by dissolving the extracts in an 

appropriate volume of serum-free DMEM containing 0.5% DMSO, then 1:1 serial 

dilutions were performed (concentration of final dilution, 9.4 – 150.0 µg/ml). A 

solution of MPP+ (final concentration, 3.0 mM) was prepared by dissolving the 

cytotoxin in serum-free DMEM containing 0.5% DMSO. Solutions of LCEs and 

MPP+ in serum-free DMEM were prepared fresh on the day of the experiment, 

and filter sterilized (pore size, 0.45 µm). 

 

13.3.3. SH-SY5Y Cell Culture 

 

SY-SY5Y human neuroblastoma cells were obtained from the American 

Type Culture Collection (Manassas, VA, USA) and cultured as described 

previously with minor modifications [113, 124]. Cells were cultured in 60 mm 

dishes containing DMEM supplemented with 10% FBS (v/v), penicillin (100 

units/ml), and streptomycin (100 µg/ml) in humidified 5% CO2/95% air at 37°C. 

Culture medium was changed at 3-day intervals, and cells were subcultured 

roughly twice per week, or upon reaching 80% confluence. 

 

13.3.4. MPP+ treatment and measurement of cell viability 

 

 Experiments assessing the ability of LCEs to inhibit MPP+ toxicity in SH-

SY5Y were performed as previously described with minor modifications [113, 

124]. SH-SY5Y cells were seeded in 96-well plates at a density of 5 x 105 

cells/ml (final volume, 100 µl) in DMEM supplemented with 10% FBS (v/v), 

penicillin (100 units/ml), and streptomycin (100 µg/ml), and maintained at 37°C in 

humidified 5% CO2/95% air for ≥ 24 hours prior to further manipulation. After cells 
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adhered and reached ~80% confluence, cell culture medium was aspirated, cells 

were gently washed with HBSS, and then 50 µl of serum-free FBS or serum-free 

FBS containing LCE (final concentration, 3.1 – 50.0 µg/ml) was added to each 

well. LCEs did not cause toxicity at the concentration used in the present study. 

96-well plates were incubated with various treatment solutions for 1 hour at 37°C, 

after which serum-free FBS containing 3.0 mM MPP+ was added (final 

concentration, 1.0 mM), and then 96-well plates were maintained at 37°C in 

humidified 5% CO2/95% air for 60 hours prior to assessing cell viability. In each 

96-well plate, one column contained serum-free medium only, and a second 

column contained cells that were subject to all manipulations, but were only 

challenged with serum-free DMEM (i.e. no MPP+ and/or LCE treatment). The 

former was used to subtract background signal, and the latter served as control. 

After 60 hours, resazurin (final concentration, 100.0 µM) was added to each well, 

and then 4 hours later fluorescence (excitation wavelength = 560 nm, emission 

wavelength = 590 nm) was measured using a Wallac 1420 VICTOR plate reader 

(PerkinElmer, MA, USA). Background fluorescence measured in wells containing 

serum-free FBS and resazurin only was subtracted from all treatment groups, 

and cell viability was normalized to that of controls. 

 

13.3.5 Data analysis 

 

Statistical analyses and graphical presentation of data were performed 

using GraphPad Prism software (Version 6.0; GraphPad Software, San Diego, 

CA, USA). Two-way ANOVA (treatment type x concentration) followed by 

Bonferroni’s post-hoc analysis was performed to determine whether the extract 

from the TR-2°HR exerted significantly greater cytoprotection against MPP+-

induced cytotoxicity, compared the hDAT-1°HR extract, and to determine the 

concentrations at which the difference was significant. Here, treatment type 

refers to extracts from the hDAT-1°HR or the TR-2°HR. Two-way analysis of 

variance (treatment x concentration) followed by Tukey’s post-hoc analysis was 

performed to determine the effect of the hDAT-1HR extract and the TR-2°HR 
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extract significantly attenuated MPP+-induced cytotoxicity as compared to 

vehicle treated controls, and to determine the concentrations at which each 

extract significantly attenuated MPP+-induced cytotoxicity. Data are expressed 

as the mean ± S.E.M. A p-value < 0.05 was defined as statistically significant. 

 

13.4. Study 1: Results 

 

13.4.1. Study 1: pHPLC SFs 1 – 9 from TR-2HR #479 inhibited [3H]-DA uptake 

and contained negligible quantities of lobinaline 

 

 The MeOH extract from TR-2°HR #479 was sub-fractionated via pHPLC, 

and the SFs thus obtained were evaluated for their ability to inhibit DAT-mediated 

[3H]-DA uptake in rat striatal synaptosomes. The SFs were also analyzed via GC-

MS to identify the metabolites present and to quantify the amount of lobinaline 

present in each of the SFs.  

SF-1 and SFs 3 – 8 dose-dependently inhibited [3H]-DA uptake in rat 

striatal synaptosomes (Figure 13.1). Lobinaline was not detected in any of the 

SFs indicating that DAT inhibition produced by the SFs was contingent upon the 

presence of another bioactive metabolite/s. SF-2 and SF-9 also dose-

dependently inhibited DAT-mediated [3H]-DA uptake in rat striatal synaptosomes, 

which contained only trace amounts of lobinaline (AUC = 1.3% and 2.3%, 

respectively). The lobinaline content of all SFs is depicted in Figure 13.2. SFs 

beyond SF9 contained quantities of lobinaline that were readily detectably. 

Therefore, these fractions were not included in the present dissertation, since the 

presence of lobinaline presented a confound. The major metabolites detected in 

SF-1 and SF-2 were 2,4-bis(1,1-dimethylethyl)phenol (2,4-DTBP) and dodecyl 

acrylate. The identity of 2,4-DTBP and dodecyl acrylate was determined based 

on the MS spectra extracted from their respective chromatographic peaks. SFs 3 

– 9 contained a mixture of metabolites, the majority of which could not be 

assigned a chemical structure. 
 



	
  

 165	
  

13.5 Study 2: Results 

 

 Attenuation of MPP+-induced cytotoxicity in SH-SY5Y cells pretreated with 

an TR-2°HR aqueous extract was significantly greater than that observed in SH-

SY5Y cells pretreated with an hDAT-1°HR extract (Figure 13.3). Two-way 

ANOVA (treatment type x concentration) revealed a significant effect of treatment 

type (p < 0.001), a significant effect of concentration (p < 0.001), and a significant 

treatment type x concentration interaction (p < 0.05). The aforementioned two-

way ANOVA was performed to determine if the difference between treatment 

types was significant (i.e. hDAT-1°HR extract vs. TR-2°HR extract). An additional 

two-way ANOVA (treatment x concentration) revealed a significant effect of 

treatment (p < 0.001), a significant effect of concentration (p < 0.001), and a 

significant treatment by concentration interaction (p = 0.0255). This two-way 

ANOVA was utilized to compare the effect of the hDAT-1°HR extract or the TR-

2°HR extract, as compared to vehicle treated controls. MPP+-induced cytotoxicity 

in SH-SY5Y cells was significantly reduced by both the hDAT-1°HR and the TR-

2°HR extracts, as compared to vehicle pretreated SH-SY5Y cells. However, at 

concentrations of 3.1, 6.3, and 12.5 µg/mL, the cytoprotective effect the  

TR-2°HR extract was significantly greater than that produced by the hDAT-1°HR 

extract (p = 0.0123, p = 0.0288, and p = 0.0203, respectively). At higher 

concentrations (25.0 and 100 µg/ml), the attenuation of MPP+-induced 

cytotoxicity by the hDAT-1°HR and the TR-2°HR extract was not significantly 

different. The TR-2°HR extract displayed greater efficacy at attenuating MPP+-

induced cytotoxicity in SH-SY5Y cells, given the TR-2°HR extract’s cytoprotective 

effect was significant at 3.1 µg/ml (p < 0.001), whereas a concentration ~8-fold 

greater (25.0 µg/ml, p = 0.0100) was required for the hDAT-1°HR extract’s 

cytoprotective effect to reach significance.  

 

13.6. Discussion 

 

 Plant cells were made to resemble DAergic neurons on a fundamental 
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level, i.e. the hDAT was expressed in transgenic plant cells of L. cardinalis [43, 

52]. The transgenic plant cells were activation tagged creating a heterogeneous 

population of transgenic plant cells expressing the hDAT. This population was 

subject to selection on medium containing the neurotoxin MPP+, which is 

accumulated via the DAT [89, 90]. Since L. cardinalis has the inherent 

biosynthetic potential to synthesize DAT inhibitors, gain-of-function mutations 

that enhanced transcription of genes that increased inhibitory modulation of the 

DAT was predicted to confer resistance to MPP+. Indeed, the population of MPP+ 

resistant mutant was enriched with mutants highly active at the DAT, or which 

survived selection via increased biosynthesis of cytoprotective compounds.  

 A gain-of-function mutant that displayed a dramatic increase in DAT 

inhibitory modulation (TR-2°HR #479) was chosen in an effort to identify a novel 

DAT inhibitor. A MeOH extracted prepared from the hairy root was sub-

fractionated via pHPLC, and the SFs were evaluated for their ability to inhibit 

DAT-mediated DA uptake in rat striatal synaptosomes. In addition, the SFs were 

subject to chemical analysis to quantify lobinaline present in each SF. Indeed, 

SFs that lacked lobinaline, or only contained the alkaloid in trace amounts, 

inhibited the DAT-mediated [3H]-DA uptake in rat striatal synaptosomes. 

 The two primary metabolites, if not the only metabolites present in SFs 1 – 

2 were 2,4-DTBP and dodecyl acrylate. The former resembles tert-

butylhydroquinone (tBHQ), which has previously been reported to activate Nrf2 

signaling, which has been shown to exert neuroprotective effects [238, 240-242, 

261]. Dodecyl acrylate resembles PUFAs, which may explain DAT inhibition 

produced by the SFs, considering a variety of PUFAs have been demonstrated to 

inhibit the DAT [74, 75]. That said, 2,4-DTBPs effects on the DAT cannot be 

ruled out. Thus, future studies remain to be performed to determine whether DAT 

inhibition caused by SFs 1 – 2 was attributable to 2,4-DTBP or dodecyl acrylate, 

or perhaps additive or synergistic actions of the two molecules. 

 In an additional set of studies, an hDAT-1°HR aqueous extract and a TR-

2°HR extract were evaluated for their ability to attenuate MPP+-toxicity in SH-

SY5Y cells. Cytotoxicity caused by MPP+ in SH-SY5Y cells is commonly utilized 
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as an in vitro to model DAergic neurodegeneration that occurs in PD, and to 

evaluate the potential cytoprotective and/or neuroprotective effects of molecules 

[92, 107-126]. Given TR-2°HRs were made to resemble DAergic neurons via 

expression of hDAT in the transgenic plant cells, and metabolites present in TR-

2°HRs were predicted to exert similar cytoprotective effects in mammalian cells, 

the TR-2°HR extract was predicted to exert cytoprotection that was superior to 

that of the hDAT-1°HR extract. Both the hDAT-1°HR extract and the TR-2°HR 

extract attenuated MPP+-induced cytotoxicity in SH-SY5Y cells. Furthermore, the 

cytoprotective effect of the TR-2°HRs’ extract attenuated MPP+-induced 

cytotoxicity at doses lower than that of the hDAT-1°HR extract. The fact that an 

~8-fold higher concentration of the hDAT-1°HR extract was required to reach 

significance, as compared to the TR-2°HR extract, indicated that selection 

favored the survival of mutants whose extracts were more effective at preventing 

insults caused by DAergic neurotoxins. Although these data are preliminary in 

nature, they warrant further evaluation of the population to identify mutants that 

synthesize novel neuroprotective agents, given only a single TR-2°HRs’ extract 

was tested.  

 The selection strategy used in the present study, target-directed 

biosynthesis, was capable of generating mutant plant cultures optimized for their 

pharmacological actions at a specific human target protein, here the hDAT. 

Additionally, mutants were generated whose extracts contained increased yields 

of cytoprotective metabolites previously reported to attenuate the effects of 

selective DAergic neurotoxins. Given these limited number of proof-of-concept 

studies successfully identified SFs that inhibited DAT and lacked lobinaline, and 

extracts from TR-2°HRs were superior to hDAT-1°HRs extracts with regards to 

their ability to attenuate MPP+-induced toxicity, the technology seems very 

promising indeed. Future evaluation of the aforementioned TR-2°HRs population 

described in the present dissertation is warranted, such that the potential of 

target-directed biosynthesis can be truly be realized. 

 

Copyright © Dustin Paul Brown 2015 
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Figure 13.1. Sub-fractions 1 – 9 dose-dependently inhibited DAT-mediated 
[3H]-DA uptake in rat striatal synaptosomes. Data expressed as the mean ± 
S.E.M. SFs 1 – 9, which lacked lobinaline or only contained trace amounts of 
the alkaloid, dose-dependently inhibited the DAT. SF-1 and SFs 3 – 8 lacked 
lobinaline, indicating DAT inhibition was dependent upon the presence of 
other bioactive metabolites. SF-1 and SF-9 contained only trace amounts of 
lobinaline, yet were still capable of inhibiting the DAT. The dotted line indicates 
the magnitude of specific [3H]-DA uptake observed in rat striatal 
synaptosomes pretreated with vehicle. n = 3 – 4. 
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Figure 13.2. Lobinaline content of various pHPLC sub-fractions. Sub-fractions 1 
– 9 contained undetectable or trace amounts of lobinaline. 



	
  

 170	
  

 

 

 

 

 

 

 
 
 

Figure 13.3. The X-2°HR (gray fill) aqueous extract’s cytoprotective effect was 
significantly greater than the hDAT-1°HR (white fill) aqueous extract in SH-
SY5Y cells treated with MPP+. Data are expressed as the mean ± S.E.M. Both 
the hDAT-1°HR and the X-2°HR extract significantly attenuated MPP+-induced 
cytotoxicity as compared to vehicle pretreated cells (black fill), albeit higher 
concentrations of the hDAT-1°HR extract were required to reach significance. 
^^^ p < 0.001 vs. vehicle treated cells, ## p < 0.01 vs. vehicle treated cells, 
two-way ANOVA, Tukey’s post hoc test. * p < 0.05, hDAT-1°HR extract vs. X-
2°HR extract, two-way ANOVA, Bonferroni’s post-hoc test. n = 6 – 21. 
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Chapter 14 
 

 
Major findings and future directions 

 
 

Herein, principles underlying the evolution of species via natural selection 

were applied to plant-based drug discovery to develop a novel approach to 

genomically optimize a plant’s pharmacological profile, coined target-directed 

biosynthesis. The technology enables one to redirect plant evolution such that 

the biosynthesis of metabolites meant to interact with a specific human target 

protein is favored.  

 In the present dissertation, proof-of-concept was demonstrated in the 

species Lobelia cardinalis. The major alkaloid present in L. cardinalis was 

identified as possessing a unique combination of pharmacological effects 

relevant to the treatment of drug abuse and dopaminergic neurodegeneration 

[80, 81, 135, 174, 175]. The complex multifunctional decahydroquinoline alkaloid 

acts as an agonist at nicAchRs, an inhibitor of the DAT, and a relatively potent 

free radical scavenger [80, 81, 135, 174, 175]. To the best of our knowledge, this 

combination of multi-target effects has not been reported for any other natural 

product, representing a structural scaffold with potential for the development of 

pharmaceuticals with the aforementioned multifunctional pharmacological 

activities. 

 The activity of L. cardinalis was optimized for activity at the hDAT, a 

potential target for therapeutics aimed for the treatment of drug abuse and/or 

neurodegeneration [59, 60, 65, 66, 70, 79, 95-101]. The hDAT was expressed in 

transgenic L. cardinalis plant cells increasing their susceptibility to the cytotoxic 

DAT substrate MPP+ [89, 90]. DAT inhibitors prevented the cytotoxic actions of 

MPP+ in transgenic L. cardinalis plant cells. As such, selection of a population of 

genetically heterogeneous plant cells on medium containing MPP+ would be 

predicted to favor the survival of individuals with a greater capacity to synthesize 
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DAT inhibitors. Genetic heterogeneity was achieved by creating a population of 

gain-of-function mutant L. cardinalis plant cells expressing the hDAT, each 

possessing a unique mutation, which enhanced of gene transcription [14, 16-19, 

221]. Indeed, selection of the gain-of-function mutant population favored 

individuals with a marked increase in DAT inhibitory activity. This provides proof-

of-concept for the ability of the technology to evolve a plant species toward a 

desired pharmacological phenotype.  In addition, DAT inhibition arose due to 

increased biosynthesis of lobinaline, in addition to “novel” DAT inhibitors (i.e. 

active metabolites not readily detectable in the wild-type plant). This provides 

proof-of-concept for the ability of the technology to act as a plant drug discovery 

platform targeted on a specific protein. In parallel, subpopulations of gain-of-

function mutants resistant to MPP+ via mechanisms independent of DAT 

inhibition were generated. This included gain-of-function mutants with increased 

yields of metabolites previously reported to attenuate the cytotoxic effects of the 

DAergic neurotoxins, including squalene and polyunsaturated fatty acids, in 

addition to individuals with increased yields of putatively “novel” cytoprotective 

metabolites and as yet undetermined mechanisms of MPP+-resistance [93, 94, 

226, 227].  

This novel approach to plant-based drug discovery could be applied to 

numerous molecular targets and plant species, representing a new approach to 

develop drug leads whose “druggability” may be superior to than that of 

synthetics. Target-directed biosynthesis could potentially revitalize and 

revolutionize plant-based drug discovery fueling the parched pipelines of drug 

discovery programs with leads of increased diversity and complexity. 

Furthermore, the application of the technology is not limited to the production of 

pharmaceuticals. Rather, target-directed biosynthesis represents a viable 

strategy for other avenues such as the production of valuable agrochemicals and 

the generation of plants suitable for phytoremediation (i.e. those capable of 

removing accumulating toxins facilitating their removal from contaminated soil). 

Target-directed biosynthesis has tremendous potential for application to 
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numerous disciplines. It is a technology which could revolutionize the way in 

which we view evolution of the plant genome. 
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