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ABSTRACT OF DISSERTATION 

Nanoporous (np) materials with pore size below 100 nanometers exist naturally in 

biological and mineral structures, and synthetic np materials have been used industrially 

for centuries. Np materials have attracted significant research interest in recent decades, 

as the development of new characterization techniques and nanotechnology allow the 

observation and design of np materials at a new level. This study focuses on two np 

materials: nanoporous silicon (np-Si) and nanoporous palladium (np-Pd). 

Silicon (Si), because of its high capacity to store lithium (Li), is increasingly becoming 

an attractive candidate as anode material for Li ion batteries (LIB). One significant 

problem with using Si as an anode is the large strain that accompanies charge-discharge 

cycling, due to swelling of the Si during Li insertion and deinsertion. Np-Si offers a 

large amount of free volume for Li absorption, which could allow the anode material to 

swell without cracking. A new method to fabricate thin films of high-purity (100% Si 

content) np-Si, which is promising as an anode material for LIB, is demonstrated and 

discussed in this study. Microstructural characterization, chemical analysis, battery 

performance testing and mechanical behavior of thin film np-Si are discussed here. 
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Palladium (Pd) is considered an ideal and reliable hydrogen sensor and storage material, 

due to its fast response and selectivity for hydrogen gas. This research not only 

demonstrates a method to fabricate np-Pd thin films, but also proposes a method to 

fabricate bulk np-Pd. The uniformly crack-free and sponge-like np-Pd thin film 

provides high sensitivity to low concentrations of H2, showing promise as a hydrogen 

sensor material. Stress changes during hydrogenation/dehydrogenation were measured 

using wafer curvature. For bulk np-Pd, ultra-fine pore sizes were achieved by 

electrochemically dealloying bulk PdNi alloy. Mechanical behavior of bulk np-Pd was 

studied using in-situ transmission electron microscopy (TEM). Scanning electron 

microscopy (SEM) and x-ray diffraction were also used to characterize the structure 

and morphology of np-Pd. 

This doctoral research has involved the optimization of fabrication conditions and 

investigations of microstructural evolution during processing, yielding an improved 

understanding of the properties, mechanical behavior and potential applications of np-

Si and np-Pd. 

KEYWORDS: Nanoporous, Silicon, Palladium, Thin films, Microstructure, 

Mechanical behavior 
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Chapter 1. Introduction 

 

1.1 Introduction of nanoporous Si and nanoporous Pd 

Nanoporous (np) materials have attracted significant research interest in recent decades 

as they have played an essential role in the design of new materials and applications [1, 

2]. The recent rapid development of nanotechnology enables to study nanoscale 

materials with new characterization and observation techniques at the molecular and 

atomic level. This doctor work focuses on the synthesis and properties of two 

nanoporous materials: nanoporous silicon (np-Si) and nanoporous palladium (np-Pd). 

As the second most abundant element on earth, Si has been considered as a promising 

negative electrode for lithium ion battery (LIB) as its extremely high theoretical 

capacity (up to 4212 mAh/g) [3]. However, a pure Si thin film electrode undergoes 

expansion/contraction during cycling lithiation and delithiation [4], during which the 

stress induced by these volume changes causes mechanical cracking and pulverization 

and thus results in the failure of the cells. Some degree of capacity fading over many 

cycles and increased polarization at higher current rates could possibly be due to the 

limited surface area accessible to the electrolyte and the continuous growth of solid 

electrolyte interphase (SEI) at the interface between the Si and electrolyte [5]. Np-Si 

has drawn great attention as the np structure providing sufficient room for the anode to 

swelling during the charge/discharge cycle. Some researchers has achieved 1000–2000 

mAh/g capacities in nanostructured Si for hundred cycles, however, it is still far away 
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from their theoretical capacity [6]. Therefore, efforts are underway to improve existing 

battery technologies and develop new electrode for the next generation electrochemical 

devices. In this dissertation, a new method to fabricate np-Si thin film which could be 

used as negative electrode in LIB in the future will be demonstrated. Also, the 

mechanical properties of np-Si when it ligaments decreases to nanometers still lack of 

understanding. More research is needed to investigate the mechanisms of deformation 

and fracture of np-Si.   

At room temperature and atmospheric pressure, Pd can absorb 900 times of its own 

volume of H2. Due to the excellent reactivity, fast response and selectivity for hydrogen 

gas, Pd has been considered an ideal and reliable material for hydrogen sensor and 

storage material [7]. Palladium hydride is metallic palladium that contains a substantial 

quantity of hydrogen within its crystal lattice. It is not an ionic hydride but rather an 

alloy of palladium with metallic hydrogen. At room temperature, palladium hydrides 

may contain two crystalline phases, α and β (sometimes called α') depending on 

different H/Pd stoichiometric ratio [8]. Pure α phase exists at H content less than 

X<0.017 in PdHx whereas pure β phase is realized for X > 0.58 in PdHx while 

intermediate H content correspond to α-β mixtures. However, the pure Pd can not 

accommodate the large strain generated by the H insertion and extraction from the Pd 

lattice, which leads to the failure of the Pd sensor and storage applications [9]. 

Increasing the surface to volume ratio has been considered a key factor to improve the 

sensitivity and stability of the Pd-H applications, thus nano structured Pd with high 
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surface to volume ratio was developed to improve the H/Pd interaction. This research 

not only demonstrates a method to fabricate nanoporous palladium (np-Pd) thin films 

by dealloying precursor Pd alloys deposited by magnetron co-sputtering, but also 

demonstrates a method to fabricate bulk np-Pd by electrochemical dealloying.  

1.2 Motivation and hypotheses  

Motivated by the background as described in the introduction, a new type of structured 

Si anode which could overcome the disadvantages and present long cycle life without 

fading and cracking issues is needed in the future portable device development. The 

understanding of mechanical behavior of the as fabricated film is desired for the further 

LIB development. 

Although the Pd based H2 sensor has been commercially used, there are still drawbacks 

that hold up the development of these applications. For example, the response of Pd 

film sensor only function at high H2 concentration and the film cracks due to the strain 

generated by the hydrogen cycling. Therefore, a reliable hydrogen sensing and 

storaging material that has high response speed and storage ability needs to be 

developed.  

For the np-Si part, this research will focus on the fabrication of np-Si thin film which 

will be used as the anode of LIB that is expected to provide high and stable specific 

capacity and long cycling life than existing Si anode LIB, as well as the mechanical 

behavior of the np-Si thin film. For the np-Pd part, this dissertation will focus on the 

hydrogen sensing performance of np-Pd thin film. The fabrication of bulk np-Pd and 
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its mechanical behavior will also be studied later in the thesis.  

The hypotheses of this study include: 

1. The hypotheses of the fabrication of np-Si and its lithiation/ delithiation cycling 

performance is shown in Figure 1.1. Novel np-Si that may provide alternatives to 

graphitic carbon could be developed by dealloying precursor Si alloy thin film. The 

np structure of the electrode would provide sufficient room for the lithiation and 

delithiation process and show well stability after a large number of electrochemical 

cycles. The np-Si anode materials will present better battery cycling performance 

than existing graphite anode LIB, Si thin film LIB and other structured Si anode 

LIB.  

        

             

Figure 1.1 Hypotheses schematic of the fabrication of np-Si and LIB cycling 

2. Brittle-ductile transition will be observed when the ligament size of np-Si varies. 

Nanostructured porous Si may present special deformation behavior due to the 

effect of nanoscale ligaments. The microstructure and ligament size will affect the 

deformation behavior of the np-Si thin films. Nanocrystalline np-Si (nc-np-Si) 

As deposited Si alloy precursor 

film 

As dealloyed np-Si anode 

filmDealloying 

Lithiation 

Delithiation 
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could be made from the amorphous np-Si (a-np-Si) by suitable heat treatment. The 

nc-np-Si and a-np-Si would present different mechanical properties.  

3. The sensing property of as fabricated np-Pd thin film will be tested under low H2 

concentration. The large surface area of the np structure would improve the 

sensitivity and the swelling ability of Pd during the hydrogen cycling. 

4. Bulk np-Pd will be fabricated by dealloying bulk Pd alloys. The mechanical 

behavior of nano size ligament would be studied.  

1.3 Outline of dissertation 

The following is a brief outline of this dissertation. 

Chapter 1 gives a brief introduction of this research, presents the hypotheses and 

motivation. 

Chapter 2 introduces the background information that is necessary to understand this 

doctoral work. It includes the np-Si, np-Pd and their applications as well as the 

mechanical behavior and stress in thin films. 

Chapter 3 describes the experimental details that involves in this research. The detailed 

fabrication process, specific equipment and characterization methods.  

Chapter 4-9 contains the major studies related to this doctoral work. Chapter 4 discusses 

a novel fabrication method of np-Si thin film and its properties. Chapter 5 investigates 

the capacity of the np-Si thin film working as anode in LIB. Chapter 6 studies the 

mechanical behavior of the np-Si thin film under in-situ TEM indentation.  



 
6 

 

Chapter 7 describes the response capability of the np-Pd thin film to H2 gas.  

Chapter 8 presents the transition of single-layer np-Pd to multi-layer np-Pd.  

Chapter 9 discusses the fabrication of bulk np-Pd and its in-situ indentation 

performance. 

Chapter 10 is a summary of this thesis which includes remarkable conclusions and 

recommendations for future work. 
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Chapter 2. Background 

 

2.1 Nanoporous Si (np-Si) and lithium ion batteries (LIB) 

2.1.1 Battery, LIB and Si anode LIB  

A battery is a device that converts the chemical energy contained in its active materials 

directly into electric energy by means of an electrochemical oxidation-reduction (redox) 

reaction [10]. This research will focus on the rechargeable batteries. The term of battery 

in the following context of this thesis refers to “rechargeable battery” for convenience. 

A battery consists of a number of voltaic cells either parallel or series. An individual 

cell is composed of three major components [10]:  

 Anode (negative electrode): the reducing electrode - which gives up electrons to 

the external circuit and is oxidized during the electrochemical reaction. 

 Cathode (positive electrode): the oxidizing electrode - which accepts electrons 

from the external circuit and is reduced during the electrochemical reaction. 

 Electrolyte (the ionic conductor): provides the medium for transfer of charge, as 

ions, inside the cell between the anode and cathode which is typically a liquid. 

During the discharge, the electrons flow from the anode, which is oxidized, through the 

external load to the cathode, where the electrons are accepted and the cathode material 

is reduced. The electric circuit is completed in the electrolyte by the flow of anions 

(negative ions) and cations (positive ions) to the anode and cathode, respectively. 

During the charge, which is a reversal process of the discharge, the current flow is 

reversed and oxidation takes place at the positive electrode while reduction happened 
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at the negative electrode. As the anode is, by definition, the electrode at which oxidation 

occurs and the cathode the one where reduction takes place, the positive electrode is 

now the anode and the negative the cathode. 

Nowadays, the demand for portable power is growing due to the miniaturization of 

electronic devices like cell phones and vehicles [11, 12]. Reliable secondary 

rechargeable batteries of high energy and power density are needed for this rapidly 

growing demand. Among the various existing batteries, LIB is the most attractive one 

because  Li is the most electropositive (–3.04V versus standard hydrogen electrode) 

as well as the lightest metal (standard atomic weight 6.941amu, and density 0.534 g/cm–

3) [13].  

Group IV elements such as Si and Sn have been the main focus as LIB negative 

electrode metals owing to their high capacity. Si, as the second most abundant element 

on earth, has been considered as a promising negative electrode because of its extremely 

high theoretical capacity for Li ions compared with currently used carbon or graphite, 

as shown in Figure 2.1 [14]. The Si itself can alloy with Li up to Li4.4Si, corresponding 

to 4212 mAh/g [15], which is more than ten times that of existing graphite anodes and 

various other oxide and nitride materials. Because of these attributes, a great deal of 

attention has been given to using Si as LIB anode material. 
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Figure 2.1 The specific capacity of various electrochemically active metal elements 

Thin Si films have demonstrated the highest capacities and longest cycle lives due to 

the small amount of active material limiting total volumetric expansion. As reported by 

other researchers, Si films with thicknesses 50 nm or less exhibit the best reversibility 

and highest capacities. This amorphous Si thin film fabricated by vacuum deposition 

with nickel substrate exhibited an initial capacity of approximately 3750 mAh/g and a 

reversible capacity near 3800 mAh/g after 200 cycles at 1C cycle rate [16]. The 

performance of LIB with Si thin film electrode improves as film thickness decreases, 

consistent with the Griffith-Irwin relation, which states that the critical fracture stress 

increases as film thickness decreases [16, 17]:  

𝜎𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 =
K

√𝜋𝑑
                   Equation 2.1 

Where: 

σracture is the critical fracture stress, K is the fracture toughness of the material, and d is 

the film thickness. 

However, a pure Si electrode suffers from poor cycle ability due to mechanical cracking 
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caused by the volume change during the cycling expansion/contraction. The Si 

electrode undergoes cycles of compressive and tensile stresses, respectively upon 

lithiation and delithiation. The stress induced by these volume changes causes cracking 

and pulverization of the Si anode, leading to loss of electrical contact and eventual 

fading of capacity, which typically results in extremely limited cycle life [18]. Unlike 

intercalation electrodes such as graphite which presents the high reversibility and stable 

capacity over repeated cycling with only over 10% volumetric expansion during Li 

intercalation between the planar graphite layers, intermetallic alloy electrodes like Si 

suffer large volume changes and may go through multiple crystallographic phase 

transition during lithiation and delithiation [16]. The volume of Si anodes may change 

by about 200%–300% during cycling. Evidence has shown that there are four 

crystalline Li-Si phase exist according to the Li-Si phase diagram [19] [20] (Figure 2.2): 

Li12Si7, Li7Si3, Li13Si4, Li22Si5, and each phase has a different open circuit voltage vs. 

Li. The formation of various LixSiy phases generates enormous mechanical stress within 

the ionic character material, results in poor transport of electrons and rapid loss of the 

reversible capacity upon prolonged cycling (fading) [21-23]. As a result, Si films and 

particles tend to pulverize during cycling, much of the material loses contact with the 

current collector. Regarding these issues the degradation of the mechanical integrity of 

Si electrodes which leads to loss of electrical contact and eventual capacity fading is 

critical challenges associated with silicon-based anode materials [24]. 
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Figure 2.2 (a) Li-Si phase diagram (b) composition dependence of the potential in the 

Li-Si system 

Previous studies about pure Si films electrodes in LIB have shown the capacity fading 

and short battery lifetime due to pulverization and loss of electrical contact between the 

active material and the current collector. J. P. Maranchi, et al. [25] examined the 

interfacial properties of a model active/inactive system comprised of an amorphous Si 

(a) 

(b) 
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thin film deposited on a polycrystalline Cu foil substrate. The crack pattern on 250 nm 

Si thin film presented after the first cycle. After 30 cycles, final decohesion of the Si 

island was formed. Juchuan Li, et al. [26] studied the fracture behavior and cracking 

patterns in amorphous Si thin film electrodes as a result of electrochemical cycling. The 

result shows that cracks are straight in thick films, but show more wiggles in thin films. 

As the thickness of film decreases, the average size of islands separated by cracks 

decreases. They claim that there might be a critical thickness below which material 

would not crack for amorphous Si films. 

The volume change during discharge (lithiation) and charge (delithiation) would be 

compromised to some extent if the microstructure of the electrode materials could be 

designed properly. In order to alleviate the mechanical strain generated due to the 

volume change as the Li ions are inserted to and extracted from the host electrode 

materials, not only composite materials, but also nano sized particles and 

nanostructured materials have been studied in the past decades [27].  

2.1.2 Nanostructured Si anode LIB 

Properly structured materials could avoid the problems caused by Si swelling. Indeed, 

novel nanostructured materials have been explored for this purpose. Recently, the nano-

scaled materials has been suggested as a possibility for next generation LIB since their 

physical, electrical and chemical properties are very different from those of their bulk 

materials [28]. Nanostructured Si like Si nanocomposites, nanowires, nanotubes and 

np-Si have received wide interest because of their good cycling performance as 

negative electrode material since the nanostructure provides sufficient room to 
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accommodate Si volume change and allows for facile strain relaxation without 

mechanical fracture during charge/discharge cycle.  

Many researchers have studied the nanosized materials used for battery negative 

electrode. For example, Hyo-Jin Ahn, et al. [28] used Sn nanodots embedded Si 

electrode synthesized by co-sputtering as negative electrode for Li batteries. It showed 

very good (up to 600µAh/cm2µm) reversible capacity during the Li insertion and 

extraction process for the first 15 cycles. Michael Holzapfel, et al. [23] developed a 

new type of nano-sized Si/carbon composite electrode. The ~100-200nm composited 

electrode showed up to 1000 mAhg-1 specific capacity for the first 100 cycles with low 

fading.  

Porous Si nanowires and nanotubes have been demonstrated to exhibit good cycling 

performance as anode materials since those structures provide empty space to 

accommodate Si volume changes and allow for strain relaxation without mechanical 

fracture upon during lithiation. Si nanowires and nanotubes have shown reversible 

capacities as high as approximately 3400 mAh/g [16]. Mi-Hee Park, et al. [29]  

demonstrated a method of prepared around hundreds Si nanotubes which showed about 

3247 mAh/g reversible charge capacity by reductive decomposition of a Si precursor in 

an alumina template. Hui Wu, et al. [24] recently reported a double-walled Si nanotube 

(DWSiNT) electrode that retained more than 85% of its initial capacity after 6000 

cycles. Due to this double wall design, the Li ions can penetrate through the outer wall 

and react with the inner Si wall during the lithiation and delithiation. The inner Si wall 
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expanded into the hollow space during lithiation and shrinks back during delithiation.  

In this regard, when porous particles contain ordered pores, these pores act as a buffer 

layer for volume changes, demonstrating another means of controlling the volume 

expansion/contraction [15]. Chunyu Du, et al. [30] reported a simple, green, low cost 

and easy fabrication method of a novel Si electrode with a large amount of np by an in-

situ thermal generating approach using triethanolamine as a sacrificing template. The 

np-Si electrode had ~200nm pore size void volume which largely accommodated the 

volume expansion during Li-insertion, gave the np-Si electrode up to 2200mAhg-1 

capacity for 100 cycles. However, the np structure collapsed after 50 cycles. Wei Chen, 

et al. [31] studied the porous Si anode LIB, which was prepared by the magnesiothermic 

reaction. Although the electrode showed very small pore size, the specific capacity 

experienced a rapid decreasing during 50 cycles.  

In sum, although silicon anodes have great advantages over conventional graphite 

anodes in LIBs, there are still significant challenges need to be overcome before silicon 

anodes can be utilized in practical Li batteries. As discussed above, over the last decade, 

tremendous progress has been made in addressing these challenges by using 

nanostructured silicon anodes. Despite the variations of reported performance, a 

consistent trend has been emerging that storage capacities as high as 2000–2500 mAh/g 

for thin film silicon anodes and 1000–2000 mAh/g in other silicon nanostructure 

morphologies with rather impressive cycling lifetimes up to a couple hundred cycles at 

practical charge/discharge rate can be reproducibly achieved [16]. However, the 
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previously structured Si anode either had nonuniform macro/micro structure or large 

pore size (~μm). These materials exhibited increased polarization at higher current rates 

and some degree of capacity fading over many charging/discharging cycles, which 

could possibly be due to the limited surface area accessible to the electrolyte and the 

continuous growth of SEI at the interface between the Si and electrolyte [15]. Also, the 

fabrication of np-Si is non-environmental friendly as it always involve the dangerous 

acid HF. Therefore, efforts are still underway to improve existing battery technologies 

and develop new electrode reactions for the next generation of electrochemical devices. 

In this chapter, a new method to fabricate np-Si thin film which could be used as 

negative electrode in LIB in the future will be demonstrated. 

2.2 Nanoporous-Pd based H2 sensor 

2.2.1 H2 sensor and H-Pd system 

Hydrogen has been drawing a lot of attention as a renewable clean energy source [32]. 

However, as a highly explosive and flammable but colorless, odorless and high 

diffusivity gas, the reliable, fast, accurate and economical hydrogen detector and safe 

storage method is needed for the safe use of hydrogen gas [33, 34]. There are various 

types of hydrogen micro-sensors, which use different mechanisms to detect the gas. 

Around all the alternative hydrogen detection materials, Pd has been considered as a 

promising candidate for hydrogen sensors, suitable hydride batteries, hydrogen storage 

materials and hydrogen separation membranes because of its excellent selectivity to 

hydrogen and high solubility of H in Pd [35].   

Pd is used in many of the hydrogen sensors and storage applications because it 
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selectively absorbs hydrogen gas and forms the compound palladium hydride. The H-

Pd system has been studied since first reported by T. Graham in 1866 [36]. Palladium 

hydride is metallic palladium that contains a substantial quantity of hydrogen within 

its crystal lattice. It is not an ionic hydride but rather an alloy of palladium with metallic 

hydrogen. When the H2 molecules contact with Pd, the H2 molecules first physisorb on 

the Pd surface by van der Waals forces and/or electrostatic attraction which closely 

depend on pressure and temperature. The physisorbed H2 can dissociate into two H 

atoms then chemisorb with the surface Pd atoms. The H2 readily dissociates on Pd 

surface and diffuse into the subsurface layer of the Pd, which makes the reaction 

between H and Pd spontaneous and reversible at room temperature. In the reaction of 

H with Pd, the H atoms occupy the octahedral sites in the face-centered cubic structure 

of Pd lattices. The Pd lattices near the surface deformed by the surface tension which 

causes a higher difficulty in H occupation at the octahedral sites. Instead, H atoms prefer 

tetrahedral sites near the Pd surface. H atoms can also reside at/near defects, including 

dislocation cores, grain boundaries and vacancies [37]. 

At low hydrogen pressure, Pd absorbs hydrogen in a solid solution (α-phase) with a low 

hydrogen concentration. When the hydrogen pressure increases, phase transition occurs 

at a certain hydrogen pressure (plateau pressure) to form a hydride in β-phase, which 

can contain hydrogen at a much higher concentration than the α-phase [38]. The 

miscibility gap between the hydrogen solubility of the α and β-phases indicates the 

hydrogen storage capacity of Pd. 
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Although Pd has the greater capacity to absorb hydrogen, the repeated volume change 

of the bulk Pd or thin film Pd material during the hydrogen absorption and desorption 

results in cracking, blistering and delamination. Also, most of the commercial Pd thin 

film sensors only have quick response at a relatively high H2 concentration. The reliable 

and rapid detection sensor of low concentration H2 is still desired to enhance the safe 

use of H2.  

2.2.2 Hydridation and dehydridation of np-Pd  

Nanostructured Pd, with much larger contact area per volume has different hydrogen 

absorption/ desorption behavior from those of their bulk counterparts [39]. 

Nanoparticles [40], nanowires [41], and nano fibers [42], with higher surface area and 

shorter hydrogen diffuse distance, was studied to improve the sensing performance 

including the response time and accurate quantification of H2 [43].  

Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium has 

been studied by J. A. Eastman et al. [44]. The results claimed that the increasing of 

grain boundaries and/or strains in nanocrystalline Pd caused the entropy of mixing large 

than that in coarse grained Pd. The higher degree of atomic disorder in the lattices 

at/near Pd surfaces narrowed the miscibility gaps of the np structured Pd. In these 

nanostructured Pd materials, due to the effects of the large amount of surface and grain 

boundary, the distinction between the phases and phase becomes unclear. The effects 

of these nanostructure are expected to be different and understanding of them may be 

used to improve the H2 sensing techniques [45, 46]. 
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Over the past four decades, due to the high surface to volume ratio, the low dimensional 

Pd nanostructures such as Pd nanowires, Pd nanoparticles, np-Pd thin films have been 

develop for fast, sensitive and reliable H2 sensor. Dongyan Ding et al. [47] reported a 

np-Pd film sensor supported by anodic aluminum oxides which had a relatively quicker 

response under hydrogen concentration as low as 250ppm. M Krishna Kumar et al. [48] 

studied a polycrystalline fcc nanostructured Pd thin film hydrogen sensor with a sensing 

time 10-20s. WenChun Li et al. reported the np-Pd thin film hydrogen 

absorption/desorption behavior. The as fabricated fine pore structure Pd presented high 

sensitivity upon Hydrogen exposure. Despite the various np-Pd have been developed, 

they are generally difficult to precisely measure H2 with low concentration under 500 

ppm with rapid response time [49]. Due to the demands of fast response, economic H2 

sensor and efficient H2 storage material, reliable np structured Pd and its reaction 

mechanism with H2 is still under development.  

2.3 Mechanical behavior of np structured materials 

Nanoporous structured materials with the internal pores and ligaments in nanometer 

scale usually have different mechanical properties from their bulk materials [50]. 

Because of the large surface to volume ratio in the np structured materials, the materials’ 

property are more affected by the free surface while the elastic and plasticity response 

become more influenced by the length scale [51]. Due to the porous structure the 

deformation volume in the ligaments had been limited, which results in unique 

mechanical behavior. A basic conclusion for np materials was drawn as that the 
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nanophase materials may deform in a different way from its bulk materials when the 

materials grain size approaches 5-10 nm [52].  

The Gibson and Ashby scaling law has been used to describe the mechanical properties 

of porous materials [53]. From these equations, the relative density of the foam 

materials as the dominating parameter of mechanical properties. According to Gibson-

Ashby scaling law, the yield strength of an open cell foam is given by: 

σy=C1σs(ρnp/ρs)
n                   Equation 2.2 

Where: 

σs and ρs are the yield strength and density of the solid materials, and ρnp is the density 

of the porous counterpart. ρnp /ρs is the relative density of porous materials. C1 and n 

are empirical constants, with C1 = 0.3 and n = 3/2 for many materials.  

The yield strength of ligaments could also calculated by rewriting the above equation 

as: 

σs = C1
-1 σy (ρnp /ρs) 

–n               Equation 2.3  

However, some researchers also reported that the yield strength of np-Au is higher than 

it as predicted by this model. And the yield strength dramatic increased with decreasing 

of the submicron columns and wires size [54, 55].  

Many researchers have been working on understanding the np materials’ mechanical 

behavior in the past decade by the desire to create np structured material with unique 

functional performance. For example, the strength of nanoscale gold ligaments had 
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been measured by nanoindentation and reported to approach or even exceed the 

theoretical yield strength of bulk gold [56]. Many of the studies have been conducted 

with the aid of nanoindentation technique. Juergen Biener et al. [55] reported the 

dominant deformation mechanism during nanoindentation in np-Au was ductile plastic 

densification. The plastic deformation is confined to the area under the indenter, and 

adjacent areas are virtually undisturbed. Brittle fracture or crack emission was not 

observed, which clearly evidences the intrinsic ductile behavior of Au ligaments in np-

Au. T. John Balk, et al. [57] studied the tension and compression properties of the np-

Au by combining a fabrication approach and a microspecimen test technique. They 

claimed that although the macroscopic tensile behavior of np-Au micro-specimen was 

brittle, the failure of individual ligament appeared ductile. The cracked surface of 

individual ligament underwent extensive plastic deformation prior to rupture.  

A variety of mechanical test techniques could be applied to investigate the mechanical 

properties of np materials such as tensile test, micro-pillar compression test, indentation 

test etc. [58]. Nanoindentation is one of the most applied method to measure the 

compressive strength, yield strength and Young’s modulus. However, normal 

indentation test will not work when the sample is 2D dimension thin films with several 

nanometer ligaments size as the indenter is larger than the ligaments size and film 

thickness. Instead, in-situ TEM indentation is more effective and accurate for materials 

with nano scale. In-situ TEM nanoindentation technique is a recently developed 

technique that provides a unique possibility to study the deformation of the materials 
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when they are indented [56]. With this technique, the nucleation and motion of 

dislocations can be observed while a load-displacement curve is simultaneously 

recorded. It allows direct correlation of mechanical behavior measurement with 

microstructural changes. Ye Sun, et al. [56] studied the as-dealloyed crack free np-Au 

thin film by in-situ TEM indentation. The np structure of Au film compacted during 

indentation and became significantly denser with a corresponding decrease in electron 

transparency. 

The research about the mechanical behavior, such as the tensile and compression 

behavior of the macro brittle material (like Si) is still unclear when its ligament size 

getting into nano-size. Also, the property difference between bulk Pd and np-Pd is still 

unclear in the past studies. The research of mechanical properties of np-Pd will 

contribute to understand the hydridation process of np-Pd.   

2.4 Deposition and Dealloying 

Sputtering deposition is a technique used to deposit thin films of a material onto a 

surface (substrate) by first creating gaseous plasma and then accelerating the ions from 

this plasma into some source material (target). Sputtering usually uses Argon plasma. 

Sputtered atoms ejected into the gas phase are not in their thermodynamic equilibrium 

state, and tend to deposit on all surfaces in the vacuum chamber. A substrate (such as a 

Si wafer) placed in the chamber will be coated with a thin film, as shown in Figure 2.3. 

Magnetron sputtering deposition which has high rate and ease of scaling is used in this 

research because of it could produce high quality as deposited thin films and hard 
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coatings. The magnetron sputtering uses magnets behind the cathode to trap the free 

electrons in a magnetic field directly above the target surface, thus there is no free 

electrons to bombard the substrate. The increase in available ions significantly increase 

the rate at which target material is eroded and subsequently deposited onto the substrate. 

 

          (a)                                          (b) 

Figure 2.3 (a) Schematic of the multi-source magnetron sputtering system (b) The 

sputtering process 

Dealloying, also called selective leaching, is a common corrosion process during which 

an alloy is ‘parted’ by the selective dissolution of the most electrochemically active of 

its elements. The less noble metal is removed from the alloy by microscopic-

scale galvanic corrosion mechanism and results in the formation of a nanoporous 

sponge composed almost entirely of the more noble alloy constituents [59]. For 

dealloying to occur, the etchant must be able to selectively remove the sacrificial 

element(s) from the alloy, and thus a suitable element typically is less noble than the 

elements that are wished to retain. Under appropriate dealloying condition the as 
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fabricated np structure could exhibit a ligaments size for several nm. There are two 

types of dealloying, i.e. free corrosion and electrochemical dealloying, depending on if 

voltage is applied. The alloying elements and composition of the precursor alloy, 

concentration and temperature of dealloying etchant, dealloying time and applied 

voltage all have effects on the final dealloyed structure.  

Dealloying of binary alloys in acidic solutions have been extensively applied to 

synthesize np films of various pure metals. Biener et al. [55] investigated the 

mechanical behavior of np-Au fabricated by dealloying Au-Ag precursor alloys. Pugh 

et al. [60] obtained np-Pt by electrochemically dealloying Cu0.75Pt0.25 precursor alloys. 

Wang et al. [61] fabricated several nanoporous metals by dealloying precursors that 

contained Mg as the sacrificial element. However, this approach has never been applied 

to semiconductor material systems. In this research, dealloying was conducted to SiMg 

alloy system to create Si thin film with nanoscale porosity. The fabrication and 

properties of both thin film np-Pd and bulk np-Pd were also investigated by dealloying 

thin film and bulk Pd alloys. 

  

http://www.researchgate.net/researcher/2005401825_S_G_Corcoran
http://www.researchgate.net/researcher/2005401825_S_G_Corcoran
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Chapter 3. Experimental 

 

 

3.1 Preparation of np-Si thin film 

3.1.1 Deposition of SiMg precursor alloy thin film 

The SiMg precursor film was deposited by magnetron co-sputtering from Si and Mg 

targets (both 99.99% purity) in a high-vacuum chamber (AJA ORION system) at room 

temperature. The sputtering system had a base pressure ~10-8 torr and a working 

pressure of 2.5×10-3 torr (Ar gas), with a substrate height being 55 mm above the 

confocal sputter guns and substrate pre-cleaning being performed by biasing with RF 

power (35 W) for 1.5 minutes at an Ar pressure of 2.5×10-2 torr. The same deposition 

conditions were applied for preparation of all samples. Various substrates, including 

(100)-oriented Si wafers with thickness of 180 µm, 230 µm, as well as 50 µm Cu foil 

and Kapton, were used in this study. Different interlayers, including Ta, Cr, Au and Si, 

were deposited before the SiMg precursor film in order to improve the adhesion and 

stability of Si films. More detailed deposition conditions will be discussed in Chapter 

4.  

3.1.2 Np-Si thin film preparation via dealloying 

Si-Mg system was chosen in this research to fabricate the np Si where Mg offers several 

attractive features as a sacrificial element. Phase diagram of Si-Mg are shown in Figure 

3.1 [62]. SiMg2 (CaF2 structure, eight Mg atoms are inside the face-centered cubic unit 

cell at ±1/4 1/4 1/4) is the only equilibrium intermediate alloy between the pure 
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elements. As shown in Figure 3.2, Si and Mg were deposited on substrates by magnetic 

sputtering followed by the as-deposited Si-Mg film being immersed in etchant to form 

porous structure through dealloying. To find the best dealloying etchant and synthesis 

approach, different dealloying procedures were evaluated and are discussed later in this 

paper. 

 

Figure 3.1 Si-Mg phase diagram 

 

 

 

Figure 3.2 Flow chart of fabrication of np-Si thin film, the substrate is co-deposited 

with Si and Mg followed by dealloying with suitable etchant 

3.2 Preparation of np-Pd thin film 

3.2.1 Deposition of PdNi alloy thin film  

In this research work, an AJA (ORION system, AJA International Inc., North Scituate, 

Si-Mg thin film 

Deposition Dealloying 

np-Si thin film 

Substrate Substrate Substrate 
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MA, USA) magnetron sputtering system was used to prepare the PdNi thin films in 

which the base and working pressure were ~10-8 Torr and 2.5×10-3 Torr, respectively. 

Co-sputtering was carried out under an inert Ar gas atmosphere at 19.9 sccm at room 

temperature. The Sub-height was optimized to be 55 mm. The 180 µm-thick single 

crystalline Si wafers, oriented in (100) with 50 nm silicon nitride outer layers, were 

used as the substrate. Sub-clean was conducted on substrates with RF 35 W for 1.5 

minutes at pressure 2.5×10-2 Torr before film deposition. To increase the adhesion of 

the PdNi films and balance the initial wafer stress, 2 nm Ta and 2 nm Pd interlayers 

were sputtered subsequently on both sides of the wafer substrate prior to the Pd-Ni alloy 

thin film deposition. These basic deposition parameters were kept same for all the 

following PdNi samples preparations in this research. 

3.2.2 Np-Pd thin film preparation via dealloying 

The np-Pd thin films were fabricated by free corrosion. The as-deposited Pd-Ni films 

were immersed in 25% (vol. %) sulfuric acid for several hours to process the dealloying, 

in which the sulfuric acid reacted with Ni as following:  

Ni(s) + H2SO4(aq) NiSO4(aq) + H2(g). 

To achieve the fine porous structure, Oleic acid and Oleylamine acid dissolved in the 

ethanol was used as the surfactant [63]. 
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3.3 Preparation of bulk np-Pd 

3.3.1 Vacuum arc-melting 

Vacuum arc melting (VAR) is a secondary melting process for production of metal 

ingots with elevated chemical and mechanical homogeneity for highly demanding 

applications. Ni and Co were select as the sacrificial elements to fabricate the np-Pd via 

arc-melting followed with electrochemical dealloying. The bulk PdNi and PdCo 

samples were fabricated using compact Edmund Buhler GmbH MAM-1 vacuum arc 

melter. To achieve the optimized composition PdNi alloy that would yields the best np-

Pd structure after dealloying, various proportion of pure Pd (99.9%) sheet, Co sheet 

(99.9%) and pure Ni (99.9%) pellet and were weighted and arc melted. Before each 

melting, the chamber was purged with 2.5 atm Ar gas for 4-5 times for 3 minutes each 

time. The samples were melted with Ar gas flow under 0.5 mbar absolute pressure and 

each sample was flipped 4-5 times to unify the Pd and Ni/Co distribution in the sample. 

3.3.2 Bulk np-Pd preparation via electrochemical dealloying 

Electrochemical dealloying was applied on as arc-melted Pd alloys to form the 

nanoporous structure with a potentiostat (eDAQ). The anodic polarization measurement 

was first conducted in 0.1mol/L H2SO4 to find the critical potential of the samples. In 

this three electrode electrochemical systems, Pt wire was used as a counter electrode, 

Ag/AgCl was the reference electrode while the polished samples with various 

dimension holding with an Ir wire holder was used as the working electrode. The 

exposed area to the electrolyte of each sample was measured each time (scan rate was 
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20mV/s) for the current density calculation. . 

The same three sets of electrode system and electrolyte were used for dealloying. 

Different dealloying potentials were selected with an attempt to approach the best np 

structure. Samples were weighted before and after dealloying to tracking the weight 

loss due to dealloying. The dealloying current approached to zero when the dealloying 

finished. Dealloying time varied due to the size of the sample. The samples were then 

rinsed and immersed with distilled water and ethanol to remove the residual H2SO4. 

3.4 Characterization 

3.4.1 SEM and EDS 

The microstructure of the thin film and bulk np sample was examined by using high 

resolution scanning electron microscopy (SEM). Three SEMs were used in this study: 

Hitachi S900 (Cold-cathode field emission filament), Hitachi S3200 (tungsten hairpin 

filament) and Hitachi S4300 (Cold-cathode field emission filament). SEMs were 

primarily worked under secondary electrons (SE) mode to observe the microstructure 

of the specimens. The Hitachi S900 has the highest resolution ( up to 1nm) among the 

three SEMS. 3KV and 6KV acceleration voltages were used for S900. The samples for 

S900 were cut into small pieces and mounted on Cu holders with conductive carbon 

tape followed with carbon paint painted along the sample edges. SEM S3200 with Evex 

EDS system was used to analyze the composition of both Si and Pd samples under 

20KV acceleration voltage. Usually, 90 seconds of collection time and three data points 

were used for each sample. SEM S4300 was also used to study the morphology of bulk 
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Pd sample under both SE mode and backscattering electrons (BSE) mode respectively. 

The samples for S3200 and S4300 were mounted on Al stubs with carbon tape and 

painted with carbon paint. To avoid the effects of coating layer on the fine np structure, 

Au nor other conductive layer were coated on all SEM samples in this research. 

3.4.2 TEM and in-situ TEM 

Transmission electron microscopy (TEM), one of the most powerful tools to directly 

observe microstructures of thin films materials, is a microscopy technique in which a 

beam of electrons transmits through an ultra-thin specimen, interacting with the 

specimen as it passes through. The TEM, scanning transmission electron microscopy 

(STEM) imaging and energy dispersive spectroscopy (EDS) were performed on a JEOL 

2000FX. To make the TEM samples, the as deposited film with Si substrate (The Si 

wafer used for TEM specimen has a-SiOx and a-SiNx surface layer.) was cut into 3mm 

diameter plates by using an ultrasonic cutter. Then the cut piece was mounted to a quartz 

plug of a Gatan dimpler using crystal bond with film side down. Thickness of the 

sample was grounded down to ~75 nm thick by grounding Si wafer side with grinding 

paper. As ground TEM specimens were dimpled (Gatan Dimpler) the back side of the 

Si wafer substrate. After dimpling, the remaining Si and a-SiOx was chemically etched 

with a solution of HNO3: HF: acetic acid (2:1:1). The a-SiNx layer acted as an etching 

stopper in the following etching step and allowed the deposited SiMg film to remain 

intact. Subsequently, dealloying was performed on etched TEM samples [64].  

The in-situ nanoindentation of as-dealloyed np-Si on Si wedges was performed with a 

http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Electron
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Hysitron PicoindenterTM inside a JEOL 3010 TEM (operated at 300 kV) as shown in 

figure 3.3 (a). A cube corner diamond indenter with radius of curvature 100 nm was 

used. All indentations were performed under displacement control. The np-Si film for 

in-situ indentation was made by depositing SiMg film on 1000µm thick H type Si 

wedge wafer (Figure 3.3(b)) followed by dealloying. In this research the deformation 

behavior of the as-dealloyed np thin films was observed in-situ.   

 

 

 

 

 

 

Figure 3.3 (a) Schematic of in-situ TEM indentation (b) Wedge Si wafer 

 

The thin film stress evolution during dealloying and in-situ stress development during 

the absorption/desorption was measured with a wafer curvature system (FLX-2320-S, 

Toho Technology Co.). The laser source with 785nm wavelength was used to scan the 

film every 15˚ or 45˚ to distribute a 3D stress map that could indicate the stress situation 
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of the entire film. The film stress was calculated by the Stoney’s equation:  

 𝜎𝑓 =
𝐸𝑠

(1−𝜈𝑠)
(

ℎ𝑠
2

6𝑅ℎ𝑓
)                Equation 3.1 

Where: 

Es is Young’s modulus of the substrate, νs is Poisson’s ratio of the substrate, hs is 

substrate thickness, hf is film thickness and R is radius of the curved substrate (thin 

film).   

The thermal cycling was performed on the np-Si film with the wafer curvature system. 

Due to the difference of thermal expansion coefficients between the film and the 

substrate, when the thin film subjected to heating or cooling the film and substrate will 

be subjected to different degrees of expansion or contraction, as shown in Equation 3.2. 

∆𝜎(𝑇)

∆𝑇
= (𝛼𝑠 − 𝛼𝑓) × 𝑀𝑓                 Equation 3.2 

Where: 

αs and αf are thermal expansion coefficients for substrate and film respectively. 

Δσf(T)/ΔT is the slope of the thermal elastic curve, Mf is film’s biaxial modulus. 

For the H2 absorption/desorption experiments, ultra-pure nitrogen (99.999% purity) 

was used to purge the chamber for ~20 minutes before test. The absorption/desorption 

experiments with zero grade hydrogen (99.9% purity) and nitrogen were controlled by 

separate flow meters to make the H2-N2 mixture at the desired H2 concentration.  

All the samples for the wafer curvature test were deposited on 3-inch diameter X180µm 
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thickness Si wafer. For the samples with interlayer, the interlayer was also deposited on 

the back side of the wafer to balance the stress caused by interlayer.  

3.4.3 XPS  

X-ray photoelectron spectroscopy (XPS), a surface-sensitive quantitative spectroscopic 

technique, was used to measures the elemental composition at the parts per thousand 

range, empirical formula, chemical state and electronic state of the elements that exist 

within a material. With the ion beam etching technic of K-Alpha XPS (Thermo 

Scientific), depth-profiling composition of the SiMg and np-Si thin film has been 

studied. The XPS samples was deposited on Cu foil substrate with interlayers. 

  

http://en.wikipedia.org/wiki/Empirical_formula
http://en.wikipedia.org/wiki/Chemical_state
http://en.wikipedia.org/wiki/Electronic_state
http://en.wikipedia.org/wiki/Ion_beam#Ion_beam_etching_or_sputtering
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L11430_80481_11962357_-1
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L11430_80481_11962357_-1
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Chapter 4. Novel method for fabrication of nanoporous 

Silicon via dealloying in H2O 

 

 

4.1 Introduction 

Porous silicon continues to attract scientific and technological attention for a number 

of potential applications [65]. It has been studied for possible use in sensing [66] and 

photonic devices [67], as a biomaterial for drug delivery [68], in new roles for the 

electronics industry, and in other diverse areas [69]. Porous Si is also a promising anode 

material for lithium ion batteries (LIBs), since this material would enable smaller 

electronic device sizes, higher specific capacity and lower irreversible capacities, 

features that have been actively pursued in recent years [70-73]. Over the last few 

decades, several methods have been developed to fabricate porous Si. In most cases, 

the porous silicon structure is formed by electrochemical anodization, typically with Si 

wafers etched in an electrolyte such as hydrofluoric acid (HF) [74]. There are also 

newer methods, e.g. ultrasonically enhanced anodic electrochemical etching and pulse 

current electrochemical etching [75, 76]. However, these methods involve the use of 

HF, yield a large pore size, or result in a rough material surface. The use of HF not only 

makes processing extremely dangerous, but is also environmentally unfriendly. 

Recently, Dai et al. [77] introduced a bottom-up synthesis method to fabricate porous 

Si with nanoscale crystallize size. 

This paper describes a novel method for synthesizing high-purity (100% Si content) 
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nanoporous Si (np-Si) thin films, by dealloying Si-Mg precursor alloy thin films. The 

dealloying etchant used in this research study is pure water, which makes the process 

simple, non-hazardous and environmentally friendly. The waste product contains Mg 

ions in solution and is therefore also benign. Details of the synthesis, structural 

characterization and chemical analysis of dealloyed np-Si materials are presented here. 

This fabrication method holds promise for the production of substrate-supported np-Si 

that can be used as a LIB anode or in photovoltaic applications. 

Dealloying is a common corrosion process during which an alloy is ‘parted’ by the 

selective dissolution of the most electrochemically active of its elements. This process 

results in the formation of a nanoporous sponge composed almost entirely of the more 

noble alloy constituents [59]. Dealloying of binary alloys in acidic solutions has been 

extensively applied to synthesize np films of various pure metals. Biener et al. [55] 

investigated the mechanical behavior of np-Au fabricated by dealloying Au-Ag 

precursor alloys with 75% HNO3. Pugh et al. [60] obtained np-Pt by electrochemically 

dealloying Cu0.75Pt0.25 precursor alloys with 1 M H2SO4. Wang et al. [61] fabricated 

several nanoporous metals such as Ni by dealloying precursors that contained Mg as 

the sacrificial element in various combination of distilled water and acetic acid. 

However, most dealloying etchants involve strong mineral acids and previous studies 

of np film synthesis via dealloying have primarily focused on alloys of noble and/or 

transition metals, such as the Au-Ag and Pd-Ni systems. This approach has not been 

applied to semiconductor material systems, e.g. to create Si with nanoscale porosity. In 

http://www.researchgate.net/researcher/2005401825_S_G_Corcoran
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order to utilize dealloying for this purpose, a suitable precursor with an optimized 

content of the sacrificial element, as well as a suitable dealloying etchant and procedure 

must be established. 

To fabricate np-Si, the Si-Mg system was chosen in this study, since Mg offers several 

advantages as a sacrificial element. The phase diagram for the Si-Mg system indicates 

that SiMg2 (CaF2 structure, with Si atoms at the regular lattice positions of a face-

centered cubic unit cell and Mg atoms occupying the tetrahedral sites) is the only 

equilibrium intermediate alloy expected to exist between the pure elements [62]. Mg 

was selected as the sacrificial element because (1) the SiMg2 composition is close to 

the optimized composition for precursor systems such as Au-Ag for fabricating np-Au 

[78], and (2) Mg is an electrochemically active element that should be easily etched. 

 

4.2 Experimental 

The Si-Mg precursor film was deposited by magnetron co-sputtering from Si and Mg 

targets (both 99.99% purity) in a high-vacuum chamber (AJA ORION system) at room 

temperature. The sputtering system had a base pressure ~10-8 torr and a working 

pressure of 2.5×10-3 torr (Ar gas). The substrate height was 55 mm above the confocal 

sputter guns, and substrate pre-cleaning was performed by biasing with RF power (35 

W) for 1.5 minutes at an Ar pressure of 2.5×10-2 torr. The same deposition conditions 

were used for preparation of all samples. Various substrates, including (100)-oriented 

Si wafers with thickness 230 µm, as well as 50 µm Cu foil, were used in this study. 
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Different interlayers, including Ta, Cr, Au and Si, were deposited before the Si-Mg 

precursor film in order to improve the adhesion and stability of dealloyed np-Si films. 

To find the best dealloying etchant and synthesis approach, different dealloying 

procedures were evaluated and are discussed later in this chapter.  

The microstructures of as-dealloyed np-Si thin films were characterized by high 

resolution scanning electron microscopy (SEM; Hitachi S-900), while the film 

composition was analyzed with x-ray energy-dispersive spectroscopy (EDS; Evex 

detector attached to Hitachi S-3200 SEM). Film thickness was measured with a Dektak 

6M surface profilometer (Veeco, Inc). The evolution of film stress during dealloying 

was tracked by measurements in a wafer curvature system (FLX-2320-S, Toho 

Technology Co.). The crystal structure of the as-dealloyed samples was analyzed using 

a JEOL 2010F transmission electron microscope (TEM). Disks for making TEM 

samples were produced by ultrasonic coring, followed by dimpling the Si wafer side of 

the substrate/film disk. For TEM samples only, a Si wafer with amorphous SiOx and 

SiNx layers was used, with the SiNx layer acting as an etch stop and also as a supporting 

membrane for the np-Si film. After dimpling, the remaining Si and a-SiOx were 

removed by chemical etching with a solution of HNO3:HF:acetic acid (2:1:1). 

 

4.3 Results and Discussion 

4.3.1 Optimization of the SiMg precursor composition 

To optimize the composition, the deposition rate of the Si and Mg was first determined. 
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For determining the deposition rate of Si, a glass substrate was marked with two straight 

lines with Sanford permanent Sharpie® before Si was directly deposited onto the glass 

substrate. The sputtering parameters for Si deposition rate measurement were as 

following: base pressure=1.2×10-7 Torr; Sub height=55mm. Before the deposition, the 

substrate was cleaned with RF power 35 W for 1.5 minutes at pressure of 2.5×10-2 Torr. 

The deposition was held at pressure of 2.5×10-3 Torr for 20 minutes with RF power 

100W. After deposition the glass substrate was immersed in Acetone for hours until the 

film on the marked lines removed completely. Then the thickness of the film was 

measured with Dektak 6 M surface profilometer (Veeco, Inc) by using standard scan. 

The parameters were selected as following: stylus radius i=12.5μm, scan length=800μm, 

duration=13 seconds and force=3 mg. These parameters were kept consistent in all 

thickness measurements in this study. 15 points were measured along the Sharpie® 

marked line to get thickness. By this way, the deposition rate of Mg was obtained. The 

deposition rate of Mg with DC power 100W was ~28.4 nm/min (~4.7 Å/s).  The 

measured average Si thin film thickness was ~49 nm, giving rise to the deposition rate 

of Si with RF power 100W being ~2.5 nm/min (~0.4 Å/s). As the deposition rate is 

proportional to the power that applied on the target, the composition of the sample could 

be controlled by varying the deposition power. 

Gradient samples with linearly varying Si-Mg content were prepared, to find the 

optimal Si-Mg film composition that would yield the np structure with smallest 

ligament size and stable ligament network after dealloying. To create the gradient 
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sample, Si and Mg sputtering targets were oriented in a confocal but diametrically 

opposed configuration, with a rectangular Cu foil substrate (size 7.5 cm × 0.5 cm, 

coated with a 10 nm Cr interlayer) below and parallel to a line connecting the sputtering 

sources. One side was closer to the Si target and the opposite side was closer to the Mg 

target, and this arrangement was held stationary during film deposition. In this way, a 

100 nm thick Si-Mg precursor film with composition gradient was created. 

The rectangular gradient sample was cut into 15 pieces, each 5 mm long. All EDS 

composition measurements were conducted on the midline of the long axis of the initial 

gradient strip, in the middle of each 5 mm piece. As shown in Figure 4.1, the Si content 

along the gradient sample decreased linearly, from ~80 at.% on the Si-rich side to ~33 

at.% on the Mg-rich side. The gradient sample was dealloyed with distilled water at 

elevated temperature for 24 hours. The two samples at the extreme ends of the gradient 

did not yield any porous structure after dealloying. The as-dealloyed microstructures of 

the five samples in the middle of the gradient, where Si content varied from ~63 at.% 

to ~50 at.%, are shown in Figure 4.2. The sample from this region with the highest Si 

content (~63 at.%) did not exhibit an open-cell np structure after dealloying (Figure 

4.2a). Although it exhibited nanoscale pores at the surface, the limited amount of total 

porosity indicates there might be too much Si in the precursor, such that it could not be 

fully dealloyed. As the Si content gradually decreased, an increasing number of pores 

were created throughout the dealloyed films. However, as the Si content decreased to 

~50 at.% (Figure 4.2e), the Si ligaments were unconnected, forming islands on the 
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substrate surface. The desired microstructure, consisting of a three-dimensional 

interconnected network of Si ligaments and open pores throughout a crack-free thin 

film, was observed in sample c (Figure 4.2c), which had an initial Si content ~57 at.%. 

This Si-Mg alloy composition was therefore considered to be the precursor film 

optimized for producing the best np-Si structure via dealloying. 
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Figure 4.1 Variation of Si content along a Si-Mg compositional gradient sample. The 

locations marked (a)-(e) yielded porous structures during dealloying and were 

evaluated to identify the optimal precursor alloy for fabricating np-Si 
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Figure 4.2 Microstructures of np-Si created from precursor films with different Si 

content. Micrographs (a)-(e) correspond to the compositions indicated in Figure 4.1. 

The film in (c) exhibited the best microstructure in terms of open-cell porosity and 

interconnected ligaments 

4.3.2 Optimization of the dealloying procedure, morphology and film stress 

evolution during dealloying 

Different dealloying etchants, times and temperatures were evaluated in this study, to 

fabricate np-Si on various substrates. Ideally, the dealloying etchant should selectively 

and completely remove the sacrificial element (Mg) from the alloy and leave the more 

noble element (Si) in the np structure. Acetic acid (CH3COOH) in different 

concentrations, such as 0.05%, 0.15%, 2% and 5% (on a volume basis, diluted  
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with distilled water), was initially used to fabricate np-Si film samples. This etchant 

had been found to remove Mg effectively in a previous study [79]. The reaction between 

Mg and acetic acid is: 

 Mg(s) + 2CH3COOH(aq)  Mg2+(aq) + 2CH3COO-(aq) + H2(g)       (1) 

This etchant yielded a porous Si film on Si wafer samples that had not been pre-coated 

with an interlayer, although the structure was not uniformly porous (some areas appear 

not to have been dealloyed) and the ligaments were coarse. The same dealloying 

method did not yield any porous Si on Cu foil samples, even Cu coated with an 

interlayer. In these cases, dealloying resulted in complete removal of the film. Similar 

results were obtained for Si wafer substrates that had been coated with various 

interlayers and dealloyed with acetic acid. These dealloying attempts yielded only bare 

substrates. 

Subsequently, distilled water was found to be an effective dealloying etchant for Si-Mg 

precursor thin films. Surprisingly, this environmentally friendly etchant worked very 

well for a variety of substrate samples with different interlayers. Si-Mg films (with no 

interlayer) were dealloyed at different temperatures and over a range of times. The 

optimized dealloying procedure for producing np-Si from Si-Mg films involved 

distilled water at elevated temperature for 24 hours and yielded the desired np-Si 

structure, with a final composition of 100 at.% Si on all substrates which will be 

discussed later in this chapter. 

The probable reaction between Mg and distilled water during dealloying is: 
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Mg(s) + 2H2O (l)  Mg2+ + 2OH- + H2(g)         (2)  

As the PH of the distilled water is around 6.5~7 the Mg is more likely to dissolved into 

Mg ions. Even if Mg were simply to be oxidized, the final reaction product of oxidized 

Mg should be Mg(OH)2, which has low solubility in water. Note that EDS 

measurements of film composition after dealloying in distilled water indicated that no 

Mg was present. Therefore, even though solid Mg(OH)2 should form as a waste product 

during dealloying, it is removed from the np-Si structure. 

A 100 nm Si-Mg sample with 10 nm Cr interlayer on Cu foil substrate was dealloyed 

in distilled water, to study the microstructural evolution of np-Si during dealloying. 

Figure 4.3 presents SEM micrographs after various times, where each micrograph 

corresponds to a different sample that was dealloyed in one step, for the time indicated. 

The microstructures in Figures 4.3f and 4.3g are similar, and further dealloying does 

not noticeably change the np-Si morphology. This is reasonable, given that all Mg has 

been removed after 24 hours. It is noted that the np-Si structure on the sample store in 

air for one year remained the same as the fresh dealloyed sample. 

In addition to microstructural evolution, film stress and composition were tracked 

during dealloying. Figure 4.4 presents the biaxial film stress, as measured by wafer 

curvature, and the Si content, as measured by EDS, during the initial stages of 

dealloying when microstructural changes are most significant. After one minute of 

immersion in distilled water, the Si-Mg precursor film experienced an increase in Si 

content of almost 5%, and a limited number of incipient pores were observed with SEM 
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(see Figure 4.3a). Additionally, the initial compressive film stress (-113 MPa) changed 

to a tensile stress of 34 MPa. This large change in film stress (nearly 150 MPa) during 

the first minute of dealloying, despite the lack of obvious pore formation, indicates that 

the dealloying process starts immediately upon contact with distilled water and that the 

sample undergoes significant changes. After eight minutes of dealloying, Si content 

increased further to 65 at.%, and numerous small pores were seen at the film surface 

(see Figure 4.3b). After dealloying for a total of 12 minutes, the stress in the film peaked 

at nearly 300 MPa, approximately 400 MPa higher than the initial precursor film stress. 

Si content at this point had increased to 69 at.%, and the film exhibited numerous small 

pores. 

Changes in stress during this initial dealloying stage are due to two factors: (1) removal 

of Mg atoms, which causes volume contraction and introduces a tensile stress, and (2) 

rearrangement of Si atoms during ligament formation and coarsening, which should 

reduce the film stress toward zero. These factors dominate the initial and latter stages 

of dealloying, respectively, as reflected in the stress-time plot in Figure 4.4. Dealloying 

begins with rapid loss of sacrificial Mg and causes film stress to move into the tensile 

regime. As Mg loss slows, film stress peaks (in this case, at 12 minutes). Further 

dealloying removes additional Mg, albeit at a much slower rate, and ligament 

coarsening reduces the film stress toward zero. In the case of dealloying np-Si, stress 

becomes compressive again, perhaps due to absorption of hydrogen produced during 

the dealloying reactions (reaction equation 2 and 3). This absorption-induced 
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compressive stress is believed to occur in np-Pd as well [80]. After 20 minutes of 

dealloying, the rate of Mg loss tapered and Si content appeared to stabilize, although 

complete removal of Mg would continue over a timespan of hours. Pores at the film 

surface were more prominent at 20 minutes, after most of the Mg removal had occurred 

(see Figure 4.3d), as compared to earlier dealloying times. As dealloying continued 

from 20 minutes to 160 minutes, Si content increased slightly from ~83 to ~87 at.% and 

film stress plateaued at -130 MPa, while the pores and ligaments coarsened 

(microstructure similar to that shown in Figure 4.3e). After dealloying for a total of 24 

hours, the np-Si film exhibited interconnected ligaments with an average size of 25 nm 

(Figures 4.3g and 4.3h) and the Si content was 100 at.%. The film stress measured at 

24 hours was -130 MPa, consistent with the plot in Figure 4.4. 

 

 

 

 

 

 



 
45 

 

   

  

    

Figure 4.3 Microstructural evolution during dealloying, after (a) 1min, (b) 8 min, (c) 

12 min, (d) 20 min, (e) 4 hours, (f) 18 hours, and (g),(h) 24 hours. Pores appeared 

quickly during dealloying, although it took much longer to establish a fully porous 

structure 
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Figure 4.4 Film stress and Si content measured at different stages of dealloying. The 

sample was removed from solution, rinsed and dried in order to track the film stress. 

Composition was measured using witness samples that were dealloyed along with the 

larger wafer used for measuring stress 

Different interlayers have been tried to optimize the np-Si structure and increase the 

adhesive of the film and the substrate. 100nm precursor Si-Mg film with different 

interlayers, such as 10nm Ta, Si, Au, Cr, Ni and 5nm Ta+5nm Si, have been tried. All 

these interlayer precursor films have the composition Si53Mg47 which is the optimized 

composition and with Cu foil substrate. All the deposition parameters were kept the 

same and all of the samples were dealloyed with distilled water for 24 hours. Figure 4.5 

shows the morphology of the np-Si samples with different interlayers. All these samples 

distributed homogeneous porous structure with the ligament size around 25 nm. There 

are no macro and micro cracks. However, the np structure with different interlayers are 
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slightly different from each other in details. The np-Si film with Ta interlayer (Figure 

4.5a) presents interconnecting cracking free structure. The open and uniform np-Si was 

observed all over the sample. The sample with 5 nm Ta and 5 nm Si interlayer also 

present nice np-Si structure. The 10nm Si interlayer sample display more open, 

continuously, network liked np-Si among these different interlayer samples. The 10nm 

Cr interlayer sample is one of the best np-Si structures that had been obtained in this 

research. It displayed very small pore size (less than 20nm) and uniformly ligaments 

across the whole sample. The np-Si also presented on the Au interlayer sample. The 

pore size of Au interlayer as-dealloyed sample is around 20 nm. The EDS study had 

been applied the as-deposited and as-dealloyed samples. For the as deposited Au 

interlayer sample, Table 4.1 shows the composition is about Si52Mg48. Table 4.2 and 

Figure 4.6 shows the EDS result and spectrum of the as-dealloyed Au interlayer sample. 

After dealloying, there is no Mg left in the film, which indicate that the film is pure 

crack-free np Si thin film.  
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Figure 4.5 Morphologies of np-Si films with different interlayers. (a) Ta interlayer; (b) 

Ta and Si interlayers; (c) Si interlayer; (d) Cr interlayer; (e) Au interlayer. In all cases, 

a stable open-cell structure was achieved, although the average ligament size and 

structural details of the np network varied with interlayer material 

Chemical composition ratio of as-deposited Au interlayer sample 

 

Table 4.1 Chemical composition ratio of as-deposited Au interlayer sample 

Elements 

Point 1 Point 2 Point 3 Average 

WT% AT% WT% AT% WT% AT% WT% AT% 

Mg 42.85 46.41 44.17 47.75 45.90 49.50 44.31 47.89 

Si 57.15 53.59 55.83 52.25 54.10 50.50 55.69 52.11 
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Table 4.2 Chemical composition ratio of as-dealloyed Au interlayer sample 

 

 

Figure 4.6 EDS spectrum of the as-dealloyed Au interlayer sample 

 

4.3.3 Amorphous np-Si and crystallized np-Si 

After obtaining the np-Si film, vacuum annealing at various temperatures had been 

carried out to control the crystal structure and the ligaments size of the as fabricated 

film which may change mechanical behavior and cycling performance of the np-Si to 

prepare for future study. Among trials, annealing the as-dealloyed np-Si samples at 

400˚C in vacuum for an hour resulted in the crystal structure change and ligaments 

coarsing of the as dealloyed film. As demonstrated in Figure 4.6, (a) is the morphology 

as-dealloyed in distilled water for 24 hours on Si wafer substrate, (b) is the morphology 

of the as-dealloyed sample after annealed at 400˚C for 1 hour. It is evident that the np 

structure of the Si thin film remained after annealing and the ligaments of the np-Si 

grew bigger after annealing.  
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Figure 4.7 Morphology of 200 nm np-Si film with Au interlayer (a) in the as-

dealloyed condition and (b) after vacuum annealing at 400°C for 1 hour. The ligament 

structure is coarser after annealing, but is still nanoporous 

TEM was used here to study the details and crystal structure of the np-Si thin film. TEM 

specimens was made by cutting, dimpling, etching and dealloying. As showing in 

Figure 4.8 is the TEM observation of the np-Si film before and after annealing. As 

shown in Figure 4.8a, the ligament size of the np-Si film is around 20-25 nm. The 

selected area electron diffraction (SAED) pattern (Figure 4.7b) shows diffuse scattering, 

suggesting that the as-dealloyed np-Si is amorphous which is also supported by the 

HRTEM results (Figure 4.78c). The porous structure of the as annealed sample was 

shown in Figure 4.8d, twinning was observed in the film as indicated by the red circle. 

The SAED pattern no longer shows diffuse scattering as appeared on the as-dealloyed 

sample before, but the polycrystalline diffraction rings. Together with the HRTEM 

pattern (Figure 4.8f), it is confirmed that the as-dealloyed amorphous np-Si transferred 

into crystalline np-Si film after annealing at 400˚C for 1 hour in the vacuum chamber. 

This result verified that it is possible to fabricate nc-np-Si by annealing at moderate 
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temperature. The TEM-EDS result showing no Mg peak in the as-dealloyed and 

annealed np-Si film which confirms that the obtained film is a 100% pure np-Si thin 

film.  

 

 

Figure 4.8 Micrographs (a)-(c) show TEM results for as-dealloyed np-Si: (a) BF 

image, (b) selected area diffraction pattern from the np-Si film, (c) high resolution 

image. The absence of diffraction spots in (b) and lack of lattice fringes in (c) indicate 

that as-dealloyed np-Si is amorphous. Micrographs (d)-(f) show TEM results for np-Si 

that was annealed at 400°C in vacuum for 1 hour: (d) dark-field STEM image, (e) 

selected area diffraction pattern, (f) high resolution image. Images (d) and (f) indicate 

that the annealed np-Si is at least partially crystalline 

It may be that amorphous np-Si contains hydrogen and is actually hydrogenated a:Si-

H. This would agree with earlier statement that hydrogen incorporation into Si causes 
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compressive stress in the np-Si film. H would likely be incorporated during dealloying 

of the Si-Mg precursor and formation of np-Si ligaments, allowing the ligaments to be 

amorphous rather than H being incorporated after formation of pure Si ligaments. Finish 

by stating that this is a novel form of nanostructured Si that may exhibit good properties 

for applications. 

4.3.4 XPS study of the np-Si film 

TEM EDS line scan was conducted on the as dealloyed sample. As shown in Figure 4.9 

The Si peaks shows when scan on Si ligaments. The Mg peak has very low counts 

during the whole scan, which indicates the film has low residual Mg after dealloying. 

Also, the low counts of O peak reveal the ligaments was pure Si instead of SiO2. 
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Figure 4.9 TEM EDS line scan result 

XPS was used to study the film composition distribution along the film. With the ion 

beam etching technic of K-Alpha XPS (Thermo Scientific), depth-profiling 

composition of the as deposited SiMg film and as dealloyed np-Si thin film has been 

studied. The XPS was carried on the 100nm on fresh as-deposited (within 24hrs after 

deposition) SiMg film with 10nm Cr interlayer on Cu foil substrate sample as shown in 

Figure 4.10. The sample was etched for 35 depth levels with 30 seconds for each etching 

level. The XPS results (Figure 4.10 (a)) show the overall composition composes: 67.84 

at.% Si and 32.16 at.% Mg from the XPS result. The same film chemical composition 

was also tested with EDS, showing 53.59 at.% Si and 46.41 at.% Mg (Table 4.3). It is 

http://en.wikipedia.org/wiki/Ion_beam#Ion_beam_etching_or_sputtering
http://en.wikipedia.org/wiki/Ion_beam#Ion_beam_etching_or_sputtering
http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L11430_80481_11962357_-1
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commonly known that EDS results are usually for qualitative analysis only, while XPS 

is more quantitatively accurate thus offers more credentials. From the depth profile, 

near surface area was observed to have more Mg content, which might be attribute to 

Mg shutter was the last one to be closed when finishing deposition. Also, the Si 

composition bumps near the substrate is due to the Si shutter was open previous to the 

Mg shutter during the deposition. After about 21 etching levels, the Cr signal appears 

which indicated the scan approached the interlayer level and the SiMg film has been 

penetrate. Figure 4.10 (b) indicates the low content oxygen is associate with the Mg 

content through the as deposited film. More Mg presents about 10nm deep below the 

surface and oxidation happened near the surface. Throughout the film, no trace of SiO2 

was observed. The Si2p scan on the as deposited film is shown in Figure 4.11. There is 

no silica peak appear in the as deposited film, however, in the as dealloyed film, the 

SiO2 peak did present. 
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Figure 4.10 Depth profile scan of 100 nm as deposited SiMg film 

 

Table 4.3 EDS result of the 100nm as deposited SiMg film 
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Figure 4.11 The Si2p peak in the (a) as deposited film and (b) as dealloyed film 

4.3.5 Thermal cycle stress study of the np-Si film 

Two thermal cycles were applied on the np-Si film dealloyed from 100nm precursor 

SiMg alloy thin film on 3 inch SiNx coated Si wafer. The thermal cycling stress 

evolution is shown in Figure 4.12. During the first heating cycle which started at room 

temperature then heated up to 200ºC, the stress in the np-film increased ~170MPa and 

the stress stayed quite stable during the followed cooling process from 200ºC to room 

temperature. The stress increased by another ~180MPa during the second heating up 

cycle from room temperature to 300ºC, while stress did not appear notable change 

SiO2 2p 

Si 
Si 2p 

Si 
Si 2p (a) 

(b) 
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during the followed cooling process from 300ºC to room temperature. The stress stay 

stable during the cooling cycles up to 300ºC indicating that the np-Si film is pure Si but 

not SiO2, as the np-Si film has the same thermal expansion coefficient with the Si wafer 

and the SiO2 has a significant difference thermal expansion coefficient (0.55×10-6 ᵒC−1) 

from Si (2.6 ×10-6  ᵒC−1). 

 

Figure 4.12 Thermal cycling stress evaluation of 100nm precursor np-Si thin film 

4.3.6 Approaching micro-meter thick np-Si film 

Thicker SiMg film was pursued in order to investigate the mechanical properties of np-

Si, the 300nm precursor SiMg film has been achieved by tripling the deposition time of 

100 nm film. The film was dealloyed in H2O for 24 hours, the morphology of the as 

dealloyed film are shown in Figure 4.13. The plan view of the film still showing 

uniformly distributed Si ligaments with the size around 30~50 nm, which are similar to 

the np structure dealloyed from 100 nm precursor film. The cross section image (Figure 
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4.12 (c)) shows the as dealloyed film thickness is about 157nm which indicated the 300 

nm precursor SiMg film has about 50% thickness contraction during dealloying.  

   

Figure 4.13 Morphology of as dealloyed 300nm precursor film (a) and (b) plane view 

morphology, (c) cross section view 

SiMg alloy precursor film with 600 nm thickness has been deposited by extend the 

deposition time (Figure 4.14 (a)). However, after dealloying in H2O for 24 hours the 

film peel off from the substrate as shown in Figure 4.14 (b). Various dealloying 

procedure has been applied to the 600nm film to pursue the np structure as shown in 

table 4.4. However, all the films result in delamination or none np structure. The 600nm 

film was then deposited onto 3 inch Si wafer to study the stress distribution in the film.  

10nm Cr layer was deposited on both side to balance the stress caused by interlayer. 

The stress distribution inside the films was mapping by wafer curvature and shown in 

Figure 4.15. The average stress in 600 nm as deposited film was 373.09 MPa, compare 

that with 100 nm as deposited film, the average stress is 113.09 MPa. The initial stress 

in the film effect the dissolution of the Mg and diffusion of the Si during the dealloying 

process. The increasing stress in the thicker film is considered as the reason of the film 
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delamination during dealloying. 

 

Figure 4.14  cross section images of (a) as deposited 600 nm film  

(b) as dealloyed film 

Table 4.4 Various dealloying precurdure that has been applied on to 600nm SiMg films 

Sample 

No. 

etchant Concentration  

vol % 

Dealloying 

temperature ºC 

Dealloying 

time 

1 H2O - -6 28 hours 

2 H2O - Room temperature 6 hours 

3 H2O - Room temperature 20 hours 

4 H2O - Room temperature 50 hours 

5 HAC 0.5% Room temperature 20 mins 

6 HAC 2.5% Room temperature 1 mins 

7 HAC 2.5% Room temperature 2 mins 

8 HAC 2.5% Room temperature 20 mins 
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Figure 4.15 Stress mapping of the as-deposited SiMg films (a) 500 nm as-deposited 

film (b) 100nm as-deposited film 

 

4.4 Summary 

In summary, it is possible to fabricate np-Si by dealloying the deposited Si-Mg 

precursor thin film with the optimized composition as established in this research. The 

best composition of SiMg precursor alloy is not SiMg2 as expected but around Si53Mg47. 

The composition is not extremely strict, the np structure presented with the Si at.% 

varies from 52%-57%. The appropriate dealloying method with pure water has been 

(a) 

(b) 
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found to yield the as-dealloyed film that presents an open np structure with the ligament 

size ~25 nm. TEM observation verified the microstructure of the as-dealloyed np-Si 

thin film is pure amorphous Si film and the amorphous film could be crystallized by 

annealing in vacuum at certain temperature. Further research work needs to be 

conducted in the future. The as fabricated np-Si thin film will be served as an anode in 

LIB and tested with electrochemical battery testing. The difference between the 

properties of amorphous and nanocrystalline np-Si, the mechanical behavior of the np-

Si thin film will also be studied in the future. 

  



 
62 

 

Chapter 5. Nanoporous Si thin film negative electrode 

lithium ion battery 

 

Silicon, because of its high capacity to store lithium, is increasingly becoming an 

attractive candidate as an anode material for lithium ion batteries (LIB). One significant 

problem with using Si for the anode is the large strain that accompanies charge-

discharge cycling, due to swelling of the Si during Li insertion and deinsertion. Np-Si 

offers a large amount of free volume for Li absorption, which allows the anode material 

to swell without cracking. In this chapter we demonstrate the cycling performance of 

coin-cell battery samples with np-Si thin film that prepared via dealloying and also 

discuss the suitability of np-Si as a LIB anode material. 

 

5.1. Introduction 

Among the various Li alloy elements, group IV elements such as Si and Sn have been 

the main focus as LIB negative electrode materials owing to their high capacity. Si as 

the second most abundant element on earth has been considered as a promising negative 

electrode because of its extremely high theoretical capacity for Li ions compared with 

currently used carbon or graphite. The Si itself can alloy with Li up to Li4.4Si, 

corresponding to 4212 mAh/g [15], which is more than ten times that of existing 

graphite anodes and various other oxide and nitride materials. However, an 

intermetallic alloy electrodes like Si suffers large volume changes and may go through 



 
63 

 

multiple crystallographic phase transition during lithiation and delithiation [16], which 

result in up to 200%–300% volume change during the cycling expansion/contraction 

insertion. The compressive and tensile stresses, respectively upon lithiation and 

delithiation, causes mechanical cracking and pulverization of the Si anode and leading 

to loss of electrical contact and eventual fading of capacity, which typically results in 

extremely limited cycle life [18]. 

Properly structured materials could avoid the problems caused by Si swelling. As the 

nano-scaled materials has been suggested to be a possibility for next generation LIB 

since their physical, electrical and chemical properties are very different from those of 

their bulk materials [28], novel nanostructured silicon have been explored for this 

purpose. Si nanostructures like Si nano-composites, nanowires, nanotubes and np-Si 

have received wide interest because of their good cycling performance as negative 

electrode materials since the nanostructures Si provides sufficient room to 

accommodate Si volume change and allows for facile strain relaxation without 

mechanical fracture during charge/discharge cycle. Many researchers have studied the 

nanosized materials used for battery negative electrode. For example, Zhenda Lu, et al. 

[81] designed a nonfilling carbon-coated porous silicon micro particle that presented 

~1500mAhg-1 specific capacity for over 1000 cycles with C/4 cycle rate. Yan Yao et al. 

[82] reported a novel interconnected Si hollow nanosphere electrode that achieved the 

discharge capacity of 2725 mAhg-1 for 700 cycles. Zhiyu Jiang et al. [83] developed a 

method to prepare porous Si powder by acid etching Al-Si alloy powder. The porous 
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silicon powder had a spongy structure with size about 15µm, it contains silicon 

nanobars of with diameter about 50 nm which exhibited about 1497 mAhg-1 at 69th 

battery cycle.  

Although silicon anodes have great advantages over conventional graphite anodes in 

LIBs, there are still significant challenges need to be overcome before silicon anodes 

can be utilized in practical Li batteries. Motivated by this, a new type of structured Si 

anode which could overcome the disadvantages and present long cycle life without 

fading and cracking issues is needed in the future portable device development. The 

previously structured Si anode either have none uniform macro/micro structure or large 

pore size (~μm). In this chapter we investigated the performance of the lithium ion 

battery (LIB) with the np-Si thin film that fabricated from dealloying SiMg alloy. The 

uniformly distributed ligaments and pores provided sufficient room for the anode to 

swelling during the battery cycling. This method is promising to produce the Si negative 

electrode in LIB in the future. 

5.2. Experimental 

The np-Si thin film was fabricated by deposition followed with dealloying [84]. Mg 

was selected as the sacrificial elements. The SiMg precursor film was deposited by 

magnetron co-sputtering from Si and Mg targets (both 99.99% purity) in a high-vacuum 

chamber (AJA ORION system) at room temperature. The sputtering system had a base 

pressure ~10-8 torr and a working pressure of 2.5×10-3 torr (Ar gas). The substrate 

height was 55 mm above the confocal sputter guns, and substrate pre-cleaning was 
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performed by biasing with RF power (35 W) for 1.5 minutes at an Ar pressure of 

2.5×10-2 torr. The same deposition conditions were used for preparation of all samples. 

50µm Cu foil and Kapton were used as substrate and as the current collector in the coil 

cell. 10 nm Cr or Au interlayer was introduced to improve the adhesion and stability 

between the films and the substrates. For Kapton substrate sample, 100 nm Cu layer 

was deposited on both side to provide the conductivity of Kapton for working as the 

current collector. 100 nm and 200 nm precursor SiMg alloy film has been deposited 

with the composition Mg ~47% (at. %) and Si~ 53% (at. %) which has been proved as 

the optimized alloy composition in previous work [84]. Dealloying was followed with 

deposition to conduct np-Si structure. The distilled water which is totally environmental 

friendly was used as etchant. The as-deposited samples were immersed in distilled 

water at elevated temperature for 24 hours for dealloying. The dealloying etchant and 

dealloying procedure has been optimized in previous study [84].  

CR2025 coin-type half cells (Hohsen) with the as fabricated np-Si anode was assembled 

for battery test in this research. Pure Li metal (99.9%, Sigma Aldrich) foils was used as 

the counter electrodes. The electrolyte used in the research was 1 M LiPF6 in ethylene 

carbonate/dimethyl carbonate (EC/DMC, 50/50 by volume, Novolyte). A computer 

controlled multi-channel potentiostat (VMP3, Bio-Logic) was used to conduct the 

electrochemistry measurements. These coin cells were cycled at room temperature with 

various C-rates by galvanostatically cycling to evaluate the electrochemical and cycling 

performance. The high and low potential cut-offs for cycling the Si thin film electrodes 
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were set to 2.0 and 0.01 V relative to pure Li, respectively. In this work, discharging 

refers to Li going into Si (lithiation of Si), and charging refers to Li coming out of Si 

(delithiation of Si) [26]. 

The microstructures of as-dealloyed np-Si thin films were characterized by high 

resolution scanning electron microscopy (SEM; Hitachi S-900), while the film 

composition was analyzed with x-ray energy-dispersive spectroscopy (EDS; Evex 

detector attached to Hitachi S-3200 SEM).  

5.3. Results and discussion 

100 nm Si-Mg film was deposited on the Cu foil substrate (10 nm Cr interlayer) with 

the composition Si53Mg47. Figure 5.1(a) and 5.1(b) show the SEM morphology of the 

sample dealloyed with distilled water for 24 hours. The as dealloyed sample distributed 

homogeneous porous structure with the uniformly ligament size around 20nm. The 

cross section image (Figure 5.1(c) and 5.1(d)) show that the thickness of the as-

deposited sample is about 102 nm, and after dealloying, the thickness of the sample is 

about 65nm, which indicates the film thickness shrink about 30% during the dealloying 

due to the loss of the Mg and the re-distributed of the Si atoms.  
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Figure 5.1 (a) and (b) are SEM morphology of the sample Cr interlayer sample 

dealloyed with distilled water for 24 hours under different magnification; (c) and (d) 

are the as-deposited and as-dealloyed sample cross section, respectively 

Battery tests have been applied on Cr interlayer np-Si samples. The as-dealloyed np-Si 

film sample that had ~20nm pore size was used as the collector acting as anode in a 

coin type half-cell. Some Si has lost during dealloy which was indicated by the film 

thickness shrinking and was detected by ICP in the research. However, the exact amount 

Si on the electrode has not been found out at this point, so the Si that has been sputtered 

on the substrate was taken as the mass that involved in the battery cycling. More 

experiments are needed to perform to measure the effective mass on the electrode.  
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As plotted in Figure 5.2, the np-Si anode was cycled with C/5 rate for 30 cycles. The 

GCPL cycling result shows that the np-Si anode has impressive specific capacity up to 

1100 mAh/g and cycling stability up to 30 electrochemical cycling. The surface 

morphology of the np-Si anode sample after cycling with C/5 rate for 30 cycles is 

showing in Figure 5.3. From the SEM images, it is noted that the np structure of the np-

Si electrode still remains similar to its structure before cycling, which indicates that the 

fine-sized and uniform porous structure of the np-Si anode provided the sufficient room 

for Si to swell during the lithiation and delithiation. It is also impressed that, as shown 

in Figure 5.3a, the surface of the np-Si with Cr interlayer electrode is still very smooth 

and no macro crack presents on the surface. Compared the cycled electrode morphology 

with other researchers’ results in which pure Si thin film was cycled [26], it is believed 

that the porous structure played a critical role to minimize the crack possibility during 

the cycling. And the as-dealloyed 100% pure np-Si is promising for the anode materials 

of LIB. 

 

Figure 5.2 Cycling performance of 100nm np-Si with 10nm Cr interlayer anode 
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Figure 5.3 Morphology of the np-Si (10nm Cr interlayer) electrode after 30 cycles 

under different magnification 

100 nm and 200 nm precursor Si-Mg films with 10nm Au interlayer np-Si samples have 

also been fabricated to act as the anode for LIB half cells to identify the thickness effect 

on the battery performance. As shown in Figure 5.4 the 200 nm precursor-Au interlayer 

sample cycled with C/5 rate has the lowest specific capacity. Under the same cycle rate 

C/5, 100nm np-Si electrodes had a capacity which almost doubled the 200 nm electrode 

in the beginning. However, after ~15 cycles, the capacity started to decrease. And the 

capacity of 100nm precursor electrode became close to the 200 nm one when it reached 

30 cycles. Though the 200 nm electrode had a lower starting specific capacity, it showed 

more stable cycling performance during the 50 cycles. When the 100 nm precursor film 

np-Si electrode cycled with C/5 and C/10 rates, the specific capacity were starting at 

the same level and all slowly decreasing towards the same ending capacity level. The 

sample cycled at C/10 rate showed the largest capacity drop after 50 cycles. After 50 

cycles, the 200 nm sample cycled with C/5 rate had similar capacity as the 100nm 

precursor sample that cycled with C/10 rate. Comparing this results with the Cr 
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interlayer sample’s cycling performance, the Cr interlayer sample did not have the 

highest specific capacity in the beginning; however, it had the most stable specific 

capacity. Its capacity demonstrated almost no change after 30 cycles. 

 

Figure 5.4 Cycling performance of RS-Au anode sample cycled with C/5 and C/10 rate 

Figure 5.5 shows the morphology of the Au interlayer sample before and after cycling. 

The morphology of the 100nm precursor and 200nm precursor samples that dealloyed 

by the same method are slightly different. 200nm precursor film shows more 

hierarchical feature (Figure 5.5a and 5.5b). The macro crack on the 100nm precursor 

film anode as shown in Figure 5.5b was believed to be due to the roughness of the Cu 

foil substrate. The stress during dealloying caused the racks happened along the 

machining scratch of the Cu foil substrate [85]. Figure 5.5c shows the morphology of 

the RS-Au-100 nm sample that was cycled with C/5 rate for 30 cycles. It is clear that 

the np structure of the electrode was deformed after 30 cycles. This failure may be due 
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to the macro defects of the as-dealloyed np-Si film. The reason of why the electrode 

sample Cr and Au interlayer sample with similar starting morphology end up with 

totally different structure after cycled after 30 cycles is unclear for now. The coulumbic 

efficiency of Cr and Au (100 and 200nm) interlayer coin cell cycled with different 

cycled rate are showing in Figure 5.6. All coulumbic efficiency are close to 98% after 

30 cycles. More research focus on the effect of the structure on the cycling performance 

will be done in the further research. 

    

Figure 5.5 Plane view of the np-Si (10nm Au interlayer) electrode (a) 200nm 

precursor film after dealloying before cycling (b) 100nm precursor film after 

dealloying before cycling, (c) the morphology of as-dealloyed 100nm precursor film 

anode after 30 cycles 
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Figure 5.6 The coulumbic efficiency of Cr and Au (100 and 200nm) interlayer coin 

cell cycled with different cycled rate 

Kapton, a polyimide film with high mechanical and thermal stability, was also tried as 

the substrate of the electrode in this research. 100nm thick Cu was first deposited on 

both sides of the Kapton substrates as the current collectors, then 10nm Au was 

deposited as the interlayer. As shown in Figure 5.7, the morphology of as-dealloyed 

sample with Kapton substrate under different magnification shows that the np structure 

on the Kapton substrate is more continuous and uniform than the structure on Cu foil 

substrate. And contributed by the smooth surface of Kapton, there was no macro cracks 

on the as-dealloyed samples. The battery cycling performance of the np-Si on Kapton 

substrate was also carried out by GCPL measurement with different C-rate. The results 

are shown in Figure 5.8. Although the Kapton substrate sample has the best as-
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dealloyed np-Si structure, the cycling performance of both C/5 and C/10 rate testing 

showed very low specific capacity, which was only around 100-200 mAh/g. It indicate 

that the binding force between the np-Si film, interlayer and substrate is one of the 

critical aspects for LIB.    

   

Figure 5.7 Plane view of the Kapton substrate np-Si electrode (a) and (b) are the 

morphology before cycling under different magnification (c) is the morphology after 

cycling 

 

Figure 5.8 Cycling performance of np-Si with Kapton substrate anode sample cycled 

with C/5 and C/10 rate 
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5.4. Summary 

In summary, the optimized composition Si53Mg47 precursor thin film yielded an open 

np structure with the ligament size of 20~25nm when dealloying with distilled water 

which is totally environment friendly. The as-dealloyed np-Si thin film that has been 

tested as an anode in LIB with electrochemical battery testing in which the specific 

capacity of the as fabricated LIB has achieved ~2000mAh/g. Different interlayer 

sample has an noticeable effect on the behave of the cycling performance. Also, the 

film thickness play a role on the capacity of the as tested LIB. 

More work still needs to be conducted in the future. The effective mass of np-Si on the 

electrode, which is important for the battery cycling current and specific capacity, is 

subjected to be exactly measured or calculated. The macro cracking issue due to the Cu 

foil substrate machining defect needs to be solved. The deformation behavior of the np-

Si thin film will be studied by in-situ TEM. The np-Si thin film which could allow the 

relaxation of the strain and stress during the volume expansion/ contraction with the 

lithiation/ delithiation for LIB will be further developed in the following research. 
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Chapter 6. Mechanical behavior of nanoporous Silicon  

 

Nanoporous silicon (np-Si) is an attractive potential anode material for lithium ion 

batteries (LIBs) as it offers a large amount of free volume for lithium insertion and de-

insertion, allowing the anode to swell and contract without cracking during lithium 

cycling. Understanding the mechanical behavior of np-Si is challenging, as the 

nanoscale ligaments (20 nm wide) induce size effects and can change the fundamental 

deformation mechanism(s) in Si at this length scale. High-purity (100% Si content) np-

Si thin film was fabricated by dealloying precursor SiMg alloy film and the mechanical 

behavior was measured for these specimens. In-situ nanoindentation in the TEM, 

performed on as-dealloyed thin film np-Si, revealed that this material can withstand 

extensive deformation without exhibiting brittle fracture.  

6.1 Introduction 

Many research works have been carried out to pursue better understanding of the np 

materials mechanical behavior in the past decade. A basic conclusion for np materials 

is that when the materials grain size approaches 5-10 nm, the nanophase materials may 

deform in a different way from its bulk materials [52]. Nanoporous materials exhibit 

mechanical properties different from their dense/bulk counterparts therefore offer an 

opportunity to study size effects on mechanical behavior. Fredrik O stlund, et al. [86] 

discovered size effect in compression tests on Si pillars with sub-micrometer, where the 

small Si pillars show ductility comparable to that of metals. The critical diameter of Si 
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pillar is between 310 and 400 nm. Over the size range of 1μm down to 200 nm the Si 

columns transitioned from predominantly brittle to ductile behavior at room 

temperature.  

The recent development of in-situ TEM mechanical testing allows the observation of 

the nanoporous materials’ dynamical mechanical behavior. Especially, the combination 

of TEM and in-situ TEM nanoindentation technique provides a unique possibility to 

study the deformation of the materials when they are indented [56].  With this 

technique, the nucleation and motion of dislocations can be observed while a load-

displacement curve is simultaneously recorded, allowing direct correlation of measured 

mechanical behavior with microstructural changes. Many of the studies have been 

conducted with the aid of nanoindentation technique. A J Lockwood et al. [87] study 

the dynamical mechanical deformation properties of 50nm Si nanoparticle clusters by 

in-situ TEM nanoindentation. The Si nanoparticles loaded with displacement controlled 

load fractured along the weak interface between two nanoparticles. 

The development of lithium-ion batteries requires a novel anode material that can 

replace the currently used anode material, carbon, which has relatively low energy 

storage ability. Si which has the lower electrical discharge potential and higher charge 

capacity provides the possibility of serving as the anode material in LIB. However, Si, 

as the anode material suffers the large strain that accompanies charge-discharge cycling, 

due to swelling of the Si during lithium (Li) insertion and deinsertion. Properly 

structured materials could avoid the problems caused by Si swelling. Np-Si which could 
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provide sufficient room during battery cycling has drawn lots of attention [Xu Jiang 

Np-Si for LIB]. The recent interests in nanoscale materials have led to advances in the 

understanding of these promising materials. However, the mechanical properties of np-

Si still lacks understanding and little attention has been given brittle nanoporous 

materials fabricated by dealloying, e.g. np-Si. The study of the mechanical behavior of 

np-Si in this research offers an opportunity to study size effects on mechanical behavior 

Si which can help to understand the performance of np-Si anode in LIB.  

6.2 Experimental 

The np-Si thin film was fabricate by deposition followed with dealloying [84], during 

which Mg was selected as the sacrificial elements. The Si-Mg precursor film was 

deposited by magnetron co-sputtering from Si and Mg targets (both 99.99% purity) in 

a high-vacuum chamber (AJA ORION system) at room temperature. The sputtering 

system had a base pressure ~10-8 torr and a working pressure of 2.5×10-3 torr (Ar gas). 

The substrate height was 55 mm above the confocal sputter guns, and substrate pre-

cleaning was performed by biasing with RF power (35 W) for 1.5 minutes at an Ar 

pressure of 2.5×10-2 torr. The same deposition conditions were applied for preparation 

of all samples. 

Dealloying process was followed with deposition to conduct the np-Si while distilled 

water was used as etchant which was totally environmental friendly. The as-deposited 

samples were immersed in distilled water 24 hours for dealloying. The dealloying 

etchant and dealloying procedure have been optimized in previous study [84].  
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TEM is one of the most powerful tools to directly observe microstructures of most thin 

films and bulk materials. In this research. The crystal structure and dimension of the as-

dealloyed samples was analyzed using a JEOL 2010F transmission electron microscope 

(TEM). Disks for making TEM samples were produced by ultrasonic coring, followed 

by dimpling the Si wafer side of the substrate/film disk. For TEM samples only, a Si 

wafer with amorphous SiOx and SiNx layers was used, with the SiNx layer acting as an 

etch stop and also as a supporting membrane for the np-Si film. After dimpling, the 

remaining Si and a-SiOx were removed by chemical etching with a solution of 

HNO3:HF:acetic acid (2:1:1) [64].  

The in-situ TEM indentation study was analyzed inside a JEOL 3010 TEM operated at 

300 kV (National Center for Electron Microscopy, Lawrence Berkeley National 

Laboratory, Berkeley, CA). In-situ nanoindentation of dealloyed np-Au on Si wedges 

was performed with a Hysitron PicoindenterTM, in which a cube corner indenter with 

radius of curvature 100 nm was used. All indentations were performed under 

displacement control. The np-Si film was made by deposited SiMg film on 1000µm 

thick H type Si wedge wafer followed with dealloying.  

6.3 Results and Discussion 

The in-situ nano-indentation in TEM was designed to test how much strain the thin film 

can accommodate, thus a series of strain levels were set in the test, i.e. in the ranges of 

<10%, 20%-30% and 60-70%. The ‘strain’ in this chapter is represented the film’s 

thickness change during indentation compared to its original thickness. It is necessary 
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to note that the strain through the deformed sample area was not homogeneous because 

the different ligaments were subjected to different amount of deformation, and also 

different types of deformation. The strain referred in this chapter is not an actual strain 

because the ligaments subjected to different amount of deformation, and also different 

types of deformation (most of the ligament were bent rather than compressed under 

indenter). 

A very small indent depth ~9nm resulting a max load ~4µN was first applied. The load 

and displacement curve with a strain range ~9% is shown in Figure 6.1. The curve 

appears like elastic deformation range within 10% strain as no elastic-plastic transition 

point nor slop change in the loading curve. The relationship of load and displacement 

can be fit in a linear relationship during the loading process. Figure 6.2 shows the TEM 

images captured from in-situ indentation video on load displacement curve with strain 

range <10%. Figure 6.2 (a) shows the np-Si film before the indenter approached the 

film, (b) is the moment of the max indent depth being ~9nm and (c) is after the indenter 

was removed from the film. The film thickness did not have any change before and 

after indentation, which testify that the film is under elastic deformation with ~10% 

strain. Also from Figure 6.2, it was noticed that some materials presented at the indenter 

tip prior the indentation. According to Eric A. Stach et al. [88] the debris clings on the 

indenter after a deep indentation may result from a build-up of static charge on the 

diamond caused by exposure to the electron beam.  
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Figure 6.1 Load displacement curve with strain range <10% 

 

Figure 6.2 TEM images captured from in-situ indentation video upon above load 

displacement curve with strain range <10%, (a) before indentation (b) at the max 

deformation point (c) after indentation 

As shown in Figure 6.3 are the loading curves with strain range 20%-30%. The curves 

are plotted against indenter impression depth. All the curves show similar trend, i.e. the 

load increases with compressive strain and exist two regions similar to the stress-strain 

curves in bulk materials, i.e. elastic region and plastic deformation region (obviously 

different hardening rates). In order to further understand such mechanical behavior, the 

two curves enveloping all the rest curves were selected and plotted in Figure 6.3(b). 
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Because both regions appear linear trend, thus linear fitting was calculated using the 

portion of data corresponding to each region respectively and for each curve. For 

simplicity, the intersection of the linear fitting can be regarded as the onset of plastic 

deformation in this study. Starting from onset point to the beginning of unloading, all 

curves show steady increase in load without any drops or significant deflection, thus it 

can be assumed that the deformation of film is steady and no structural failure or 

breakage has occurred before unloading. In another word, these films can stand up to 

30% strain in these tests.  
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Figure 6.3 (a) Load displacement curve with strain range 20%-30%, (b) Load displace 

curve of indentation 1 and 3 

In the middle-strain-level tests, a very interesting phenomenon was observed. As shown 

in series of video frames in Figure 6.4 which was captured from in-situ TEM 

indentation of np-Si thin film at acquisition rate of 1 image/10 second. This np-Si film 
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was dealloyed from 150 nm precursor SiMg alloy thin film deposited on Si ridge 

substrate. The morphology of as-dealloyed np film prior to indentation under TEM 

mode is shown in Figure 6.4 (a) in which the indenter is also visible close to the film. 

The film’s thickness was measured as ~100 nm before indentation. The as dealloyed 

np-Si film has an open porosity with the average ligaments size of ~11-13 nm and pore 

size of ~10 nm. The ligaments circled with dish line in Figure 6.4 (a) became denser 

(Figure 6.4 (e)) during the indentation loading cycle, showing corresponding decrease 

in electron transparency. The pore circled with black dish line in Figure 6.4 (a) was 

being compressed during the loading with a decreased size along indenter loading 

(Figure 6.4 (e)). When the indenter was removed from the film, this pore acted as initial 

cracking point, and the right side of the film sticked to the indenter during unloading 

cycle. Figure 6.5 combined Figure 6.4 (a) and (k) together illustrated the film thickness 

change before and after indentation. Two parallel white lines were draw along the 

substrate edge and the top edge of the film. The sponge like interconnected pores and 

ligaments structure did not collapse after indentation. Instead, the film thickness 

between the white boundary lines present no noticeable change before and after 

indentation. The real time load-displacement curve tested from the above video is 

shown in Figure 6.6. The max load is about ~6 µN corresponding to ~30 nm max 

deformation. The thin film was deformed to 30% in strain during loading cycle, and it 

reversed back to its original thickness in unloading cycle in Figure 6.5, which indicated 

the film recovered from ~30% deformation produced by indentation. This 30% 

deformation recovery is surprisingly high considering the very brittle nature of Si. 
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Fredrik Ostlund’s et al. [86] studied the Si pillar and reported the maximum engineering 

strain can reach 22% in the test.  

This is interesting because it demonstrates a totally different behavior, i.e. only showed 

elastic deformation but not any plastic counterparts. As shown by load-displacement 

evolution against time in Figure 6.7, however, these data eᵒludes the intriguing scenario 

above. The curves shows that the load bounce back to positive load (tensile load) 

starting at the beginning of unloading cycle. This might be accounted for by Si being 

stick to the indenter, thus the compressed thin film was actually pulled back by the 

indenter. So with this assumption, the fully reversibility is not resulted by elasticity of 

the film itself. Even though after the film reverse back to the original thickness, no 

cracks/fractures was observed in thin film. This means that, being deformed by an 

external force, the film can stand a strain level in the range of 30%, and reverse fully 

back “intact” without cracking.  
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Figure 6.4 Series of video frames from in-situ indentation of np-Si thin film (a) 

immediately prior to loading (f) upon removal of load 
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Figure 6.5 Film thickness did not show noticeable change before and after indentation 

(a) before indentation (k) after indentation 

 

 

Figure 6.6 Load displacement curve of 100nm film in-situ indentation 
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Figure 6.7 Load and displacement evolution during the above indentation 

Inspired by such good formability as seen above, the high strain level tests were carried 

out, as attempts to reaching the maximum potential of the thin films. As noticed in 

Figure 6.8, the work hardening rate increases with strain. However, this might be 

contributed by two possible reasons, i.e. (1) actual work hardening from the thin film 

itself (materials being condensed) and (2) support from harder Si substrate. It is difficult 

differentiate the two contribution quantitatively, as the main objective in this study the 

attention was focused on how much strain the thin film can accommodate. The 

indentation depth in curve 1 was about 69 nm and two load-drops were observed during 

this indentation curve. However, there appeared no obvious drop in load displacement 

curve 2 in Figure 6.8 all the way to 62% strain. The drops in curve 1 were possible 

because of the np-Si deformed easily in the initial stages of nanoindentation as only the 

outermost layer of ligaments was compacted by the indenter. Upon further indentation, 

the "compaction front" of deformed np-Si moved into the film, ahead of the indenter, 
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successively collapsing each neighboring layer of ligaments. This phenomena has also 

been observed in np-Au thin film [56]. The different behaviors of the 2 indentations 

could also be attribute to possible pre-defect in the film/indentation.  

The TEM images captured from these two indentations videos are shown in Figure 6.9. 

Five frames was taken from each indentation video, the images were snap at the second 

before the indenter touched the film, during the indentation, at the max deformation 

point, during the unloading, and the final stage, respectively. Figure (a)-(e) in 6.9 

correspond to indentation curve 1, (f)-(j) correspond to indentation curve 2. From the 

Figure 6.9 (e) and (j), it is clear that the film was attached to the indenter during the 

unloading and pulled away from the substrate. Although ~70% deformation result in 

film delamination during unloading, it is hard to statistically claim that the thin film has 

a limit in strain at ~70% because of limited sampling size. More statistical and 

repeatable tests should be carried out in the future work. 

 

Figure 6.8 Load displacement curve with strain range 60%-70% 
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Figure 6.9 TEM images captured from in-situ indentation of large displacement (a)-

(e) are from indentation curve 1 (f)-(j) are from indentation curve 2 

 

6.4 Summary 

Therefore in summary, the as dealloyed np-Si thin film exhibited a sponge-like behavior 

in in-situ nanoindentation test which showed very promising and inspiring capability in 

accommodating compressive stress and strain. Thickness of the np-Si thin film could 

be fully recovered after the indenter removed from the film under particularly strain. 

The maximum deformation in thickness was up to 30%, which was impressive 

considering about the brittle feature of Si. Although this loading mode is different from 

internal force during lithiation and de-lithiation, these test in this chapter can still imply 

such thin film is good candidate for Li battery application.  
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Chapter 7. Response of nanoporous Palladium thin films to 

hydrogen gas 

 

Palladium (Pd) is a responsive and reliable material for hydrogen sensing due to its 

selectivity and strong interaction with hydrogen gas. This chapter demonstrates a 

method to fabricate nanoporous palladium (np-Pd) thin films by dealloying the 

precursor Pd-Ni alloys that were deposited by magnetron co-sputtering. With an 

optimized precursor alloy composition and dealloying procedure, the np-Pd films 

exhibited a uniform, crack-free and sponge-like structure with open porosity.  The np-

Pd consisted of interconnected ligaments that were each as small as 5-7nm in width. 

SEM, TEM and EDS were used to characterize the thin films. Changes in np-Pd thin 

film stress due to hydrogen exposure were measured with wafer curvature system. The 

high surface area to volume ratio of np-Pd thin film resulted in high sensitivity to H2, 

even at low concentrations, and showed promise for future applications of this material 

as a hydrogen sensor.  

 

7.1 Instruction 

Hydrogen has been drawing a lot of attention as a renewable clean energy source [32]. 

However, as a high explosive and flammable but colorless, odorless and highly 

diffusive gas, the reliable, fast, accurate and economical hydrogen detector is highly 

desired for the safety use of hydrogen gas [33, 34]. Around all the alternative hydrogen 

detection materials, Pd has been considered as a promising candidate because of its 
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excellent selectivity to hydrogen and high solubility of H in Pd [7]. The reaction 

between H and Pd is spontaneous and reversible at room temperature. In the reaction 

of H with Pd, the H atoms occupy the octahedral sites in the face-centered cubic 

structure of Pd and are able to form the either of immiscible α or β phase, depending on 

different H/Pd stoichiometric ratio [8]. Such phase transformation results in internal 

stress change in the structure of Pd, which can be measured as an indicator for the 

existence of H2. Although there has been a bunch of commercial Pd thin film sensor, 

however, most of them only have quick response at a relatively high H2 concentration. 

The reliable and rapid detection of low concentration H2 is still desired to be enhanced 

the safe use of H2. Nanostructured Pd thin film, with much larger contact area per 

volume, is expected to have different hydrogen absorption/desorption behavior that 

may be used to improve the H2 sensing techniques [45, 46]. A novel method to fabricate 

the np-Pd thin film with 15% remnant Ni was presented in this investigation. The 

investigation of the hydridation/dehydridation behavior study shows the as fabricated 

Pd thin film had a quicker and sensitive response to H2.  

7.2 Experiments 

Sputtering deposition is a technique used to deposit the thin films onto a surface 

(substrate) by first creating gaseous plasma and then accelerating the ions from this 

plasma into some source material (target). In this research work, an AJA (ORION 

system, AJA International Inc., North Scituate, MA, USA) magnetron sputtering 

system was used to prepare the thin films in which the base and working pressure were 
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~10-8 Torr and 2.5×10-3 Torr, respectively. Sputtering was carried out under an inert Ar 

gas atmosphere at 19.9 sccm at room temperature. The Sub-height was optimized to be 

55mm. The 180µm-thick single crystalline Si wafers, oriented in (100) with 50nm 

silicon nitride out layers, were used as the substrate in this research. Sub-clean was 

conducted on substrates with RF 35 W for 1.5 minutes at pressure 2.5×10-2 Torr before 

film deposition. To increase the adhesion of the films and balance the initial wafer stress, 

2nm Ta and 2nm Pd interlayers were sputtered subsequently on both sides of the wafer 

substrate prior to the Pd-Ni alloy thin film deposition. These basic deposition 

parameters were kept same for all the following sample preparations in this research.  

Dealloying, which is a common corrosion process during which an alloy is ‘parted’ by 

the selective dissolution of the most electrochemically active of its elements, was used 

in the present work. The as-deposited Pd-Ni films were immersed in 25% (vol. %) 

sulfuric acid for several hours to process the dealloying, in which the sulfuric acid 

reacted with Ni as following:  Ni(s) + H2SO4(aq) NiSO4(aq) + H2(g). To achieve the 

fine porous structure, Oleic acid and Oleylamine acid dissolved in the ethanol was used 

as the surfactant [63]. The microstructure of the thin films was examined using a high 

resolution scanning electron microscopy (SEM Hitachi S-900) operated at 6kV.  And 

scanning electron microscopy (SEM, Hitachi S-4300) equipped with a PGT EDS 

system was used to characterize the chemical composition of the films. In order to 

exclude the effect of 2nm Pd interlayer on characterization of the chemical composition, 

the chemical composition measurements of the as deposited and as dealloyed thin films 
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were carried out on the thin films without the 2nm Pd interlayer. The crystal structure 

of the as-dealloyed samples was also analyzed using an electrodes transmission electron 

microscopy (TEM, JEOL 2010F).  

The thin film stress map before and after dealloying and in-situ stress evolution during 

the absorption/desorption was measured with a wafer curvature system (FLX-2320-S, 

Toho Technology Co.). Ultra-pure nitrogen (99.999% purity) was used to purge the 

chamber for ~20 minutes followed by absorption/desorption experiments during which 

zero grade hydrogen (99.9% purity) and nitrogen were controlled by separate flow 

meters to make the H2-N2 mixture at the desired H2 concentration. A laser with 785nm 

wavelength was used to scan the film every 30 seconds to measure the internal stress 

of the thin film. 

7.3 Results and Discussion 

The morphology of the as dealloyed np-Pd film that exhibits a totally cracking free with 

uniform fine pores surface is shown in Figure 7.1. The as distributed interconnected 

sponge like structure exist the ligaments and pores (~5nm in size) contacted with each 

other. The chemical composition of the precursor PdNi alloy film that results in the 

most uniform and finest porous structure after dealloying was optimized to be Pd ~20% 

(at. %). After dealloying in the mixture of sulfuric acid and surfactant for 5 hours, the 

~100nm thick as-deposited film exhibited a ~80nm thick structure with nanoporous 

throughout the whole film. The cross section of the as dealloyed np-Pd sample is shown 

in Figure 7.1c. The shrinkage of the film thickness may be due to the loss of most Ni 
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and some Pd during dealloying. Although Pd is nobler than Ni, its slow dissolving in 

the nitric acid may also result in the decreasing of the film thickness. The amount of the 

remnant Ni concentration in the as dealloyed film depends on the dealloying time and 

the original film thickness. For example, 50nm thick film resulted in ~6% (at. %) 

remnant Ni after dealloying for 5 hours while the 100nm thick film left with ~30% 

(at. %) Ni for the same dealloying time.  

  

Figure 7.1 (a) and (b) are plan view of 100 nm precursor film dealloyed for 5 hours 

under different magnification; (c) the cross section view of the same film 

To study the details about the ligaments structure of the np-Pd film, ultra thin film 

(~35nm precursor alloy film) was deposited on SiNx coated Si wafer followed with 

ultrasonic cutting, dimpling, chemical etching and dealloying for the TEM observation. 

Figure 7.2a and 7.2b show the plan view morphology of the np-Pd film in  bright field 

mode under different magnification. The uniformed np-Pd with the ligaments size 

around ~5nm, some of the ligaments are even smaller with the size 3-4nm. The pore 

size is around 5nm while some ultrafine pores were able to be observed on the ligament 

in the STEM image of the np-Pd film as shown in Figure 7.2c. With higher 
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magnification some pore with even smaller size around 2nm were observed. The 

selected area electron diffraction (SAED) pattern shows diffraction rings (Figure 7.2d), 

suggesting that the as-dealloyed np-Pd was polycrystalline. The characteristic rings in 

the polycrystalline can be indexed to the {111}, {220} and {311} allowed reflecting 

planes expected fron fcc Pd.   

 

  

Figure 7.2 (a) , (b) and (c) TEM images of the np-Pd thin film; (d) diffraction pattern 

of the film 

The film stress was measured using the wafer curvature system (FLX 2320 S, Toho 

Technology Co.). The laser source with 785nm wavelength was used to scan the film 

111 

220 
311 
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every 45˚ to distribute a 3D stress map that could indicate the stress situation of the 

entire film. The film stress was calculated by the Stoney’s equation:  

𝜎𝑓 =
𝐸𝑠

(1−𝜈𝑠)
(

ℎ𝑠
2

6𝑅ℎ𝑓
)             Equation 7.1 

Where:  

Es is Young’s modulus of the substrate, νs is Poisson’s ratio of the substrate, hs is 

substrate thickness, hf is film thickness and R is radius of the curved substrate (thin 

film).   

The stress of 300nm as deposited PdNi film was mapped on a 3 inch Si wafer coated 

with 50nm silicon nitride. The initial stress of bare wafers was measured with a quartz 

plate every 45˚ before deposition and the stress introduces by the Ta and Pd interlayer 

was subtracted. Figure 7.3a shows the stress map of 300nm precursor PdNi alloy film. 

During dealloying, as the Ni atoms dissolve in the sulfuric acid the Pd atoms diffused 

to form the np-Pd ligaments. The as deposited PdNi precursor film holds an average 

762.49MPa stress and after dealloying for 21 hours the film stress relaxed about 700 

MPa from its original stress level, which decreased to 39.77 MPa as average, as shown 

in Figure 7.3b. 
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Figure 7.3 (a) and (b) are stress map of 300nm film before and after dealloying, 

respectively 

300nm precursor PdNi thin film and 100nm dense Pd thin films were deposited for the 

hydridation experiment. After being dealloyed in sulfuric acid mixture for 21 hours, the 

as dealloyed np-Pd film exhibited a ~240nm thick porous structure with the ligaments 

size around 5~7nm. The remnant Ni content was around 15 at. %. As R. C. Hughes [89] 

reported that, compared with the pure Pd film, remnant Ni (15 at.%) in PdNi alloy could 

be a good material for hydrogen sensor due to that the Ni can cause the Pd lattice to 

contract and suppress the transition from α to β phase. 15ml/min hydrogen under 1 atm 

pressure was mixed with the 99.99% purity nitrogen gas to form the hydrogen gas 

mixture with the concentration 0.53% (vol.%). The H2 was controlled by the flow meter 

between 0 and 0.53% (vol.%) with the N2 was flown in during the whole measurement. 

The stress curves of the pure Pd film and the np-Pd film during the hydridation/ 

dehydridation test are shown in Figure 7.4. Once contacting with hydrogen, the pure Pd 

film has a rapidly compressive stress drop as shown in Figure 7.4a. The dense Pd film 

stress was kept going down for over 10 minutes to reach its plateaus in the compressive 

(a) (b) 
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stress region, and after switching off the H2 gas the film stress gradually relax to its 

starting stress level in 30 minutes. The as dealloyed 240nm np-Pd film which has 

comparable Pd atom number to the 100nm dense Pd film was tested with the same H2 

absorption/ desorption cycling. The np-Pd film shows a rapid compress stress response 

to the hydrogen within 30 seconds when contacting with H2, and presented a significant 

different behavior during the dehydridation process compare with dense Pd film. After 

closing H2, the film stress rapidly relaxes back to its original stress within one minute, 

which is tens times faster than the dense film (Figure 7.4b). The average stress changes 

corresponded to H absorption and desorption in the film, about 17 MPa, had a stable 

repeatability during the cycling. The slightly increasing trend of the whole curve during 

the whole experiment was believed to be due to the N2, as the stress was increasing 

slowly with the time under pure N2 flow in. Although the dense film has much higher 

capacity to absorb hydrogen, however it has longer response time compare with the 

porous film. There are may be two reasons of the high response time of the np-Pd, one 

is the porous structure of the film provides more contact area between the Pd and the 

H2 gas which cause the H2 molecular adsorption and dissociative chemisorption easier 

than on the dense film; another one is the fine ligaments ensure the following absorption 

step has shorter and faster hydrogen diffusion path than the dense film [90]. When the 

hydrogen atoms contact with Pd, they prefer to located at octahedral interstitial sites, 

causing the lattice expansion and introducing the compressive stress in the film. The 

porous structure provides sufficient room for the Pd ligament during the hydridation 

and dehydridation, which increase the sensitivity of the Pd film to the hydrogen and 
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avoid the film cracking during the process.  
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Figure 7.4 (a) Stress curve of 100 nm dense Pd film during H2 cycling measurement 

(b) Stress curve of 240nm np-Pd film during H2 cycling measurement 

The film stress change of 100nm dense Pd film and 240nm np-Pd film was also studied 

with varying H2 concentrations, respectively. During the experiment N2 gas was kept 

flowing into the chamber while the H2 gas was opened each time with different H2 flow 

rates to generate different H2 partial pressure ranging from 1.8 mbar to 10.6 mbar. At 

each desired H2 concentration, H2 was hold about ~5 minutes for data recording. For 

the np-Pd film, the stress drop between the starting point and the first lowest point after 

(a) 

(b) 
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flowing into H2 was considered as the film stress change due to the hydridation. For the 

dense Pd film the stress change between the starting point and the average of the plateau 

was taken as the stress change due to H2. The different hydridation slope of forming 

phase transformation (αtoβ) region has never presented in this experiment on either 

dense Pd film or np-Pd film. For the np-Pd film, the film stress dropped to its lowest 

level and reached its plateau with in one minute. As shown in Figure 7.5a, the stress 

change increases with the partial pressure of H2. The stress change of the dense film 

varies from ~140 MPa to ~300MPa while that for np-Pd film varies from ~12MPa to 

~24MPa. The relationship between the log-scaled stress change of the film and log-

scaled partial pressure of H2 indicates that the dense Pd film and the np-Pd film have 

the slopes about 0.41 and 0.35 (Figure 7.5b), respectively, which is slightly lower than 

Sievert’s constant (0.5) that describing the H2 solubility in Pd metal [91].   
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Figure 7.5 (a) Plot of stress change and partial pressure of H2 (b) Plot of log (stress 

change) and log (partial pressure of H2) 

 

7.4 Summary 

Fine np-Pd film with the ligament size around 5~7nm has been fabricated by dealloying 

as deposited PdNi thin film with suitable etchant. The optimized precursor alloy 

composition and dealloying procedure that yielded the best nanoporous structure has 

been developed. The morphology of the cracking free sponge like interconnected 

ligament structure has been studied by SEM and TEM. The hydridation and 

(a) 

(b) 
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dehydridation behavior of the np-Pd film has been investigated by the stress change in 

the film during the absorption and desorption process. The as fabricated porous Pd film 

exhibited high sensitivity to low concentration H2 gas, which is promising to be used 

as the hydrogen sensing materials in the future. 
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Chapter 8. Transfer from single layer np-Pd to multi-layer 

np-Pd thin films 

 

 

8.1 Introduction 

Nanostructured materials always refers to those materials with structural elements, 

clusters, crystallites or molecules, with the dimension within 100nm range [92]. With 

the high surface area to volume ratio and the nanoscale size effect on the physical and 

chemical property, it has received both academic and industrial attention in the last 

decades. Among all the nano structure synthesis methods, dealloying, also refer as 

selective dissolution, is one of the most efficient method to fabricate np structured 

material [93, 94]. Dealloying has been wildly studied to fabricate porous material, np-

Au from Au-Ag alloys [95], monolithic np-Cu from Mn-Cu alloy [96], np-Pd from Pd-

Ni [97]. Conventional dealloying does not allow precise control of pore size. However,   

precursor alloy composition and dealloying conditions such as etchant concentration, 

dealloying temperature, dealloying time, agitation of etchant has significant effects on 

morphology of the as dealloyed structure [98]. Low temperature dealloying technique 

was developed by L. H. Qian et al. to tailor the characteristic length scale of np-Au in 

order to achieve the ultrafine np Au for advanced functional applications [99]. Thermal 

cycling was also reported by Ye Sun et al. [100] to widen the np-Au as dealloyed 

ligaments. Lei Wang et al. [101] tailored the np-Au and np-Ir structure by dealloying 

multilayered precursor to achieve the layered np architecture. However, predictable 
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design or quantitative control of pores and ligaments geometry cannot be controlled by 

dealloying normally. In this chapter, np-Pd was controlled by dealloying multilayered 

PdNi precursor film. The thickness combination of the multiple layer has been carried 

out to manipulate the np structure.  

8.2 Experimental 

The multilayer deposition was also fabricated in AJA (ORION system, AJA 

International Inc., North Scituate, MA, USA) magnetron sputtering system. The base 

and working pressure were ~10-8 Torr and 2.5×10-3 Torr, respectively. Sputtering was 

carried out under an inert Ar gas atmosphere at 19.9 sccm at room temperature. The 

Sub-height was optimized to be 55mm. The 180µm-thick single crystalline Si wafers, 

oriented in (100) with 50nm silicon nitride out layers, were used as the substrate in this 

research. Sub-clean was conducted on substrates with RF 35 W for 1.5 minutes at 

pressure 2.5×10-2 Torr before film deposition. To increase the adhesion of the films and 

balance the initial wafer stress, 2nm Ta interlayers were sputtered subsequently on the 

wafer substrate prior to the Pd-Ni alloy thin film deposition. These basic deposition 

parameters were kept same for all the following sample preparations in this research. 

The dealloying was processed in 25% (vol. %) sulfuric acid with Oleic acid and 

Oleylamine acid as the surfactant. The microstructures of the thin films were examined 

using high resolution scanning electron microscopy (SEM Hitachi S-900) operated at 

6kV.   



 
105 

 

8.3 Results and Discussion 

The deposition of multilayer samples were fabricated by programming the gun shutters 

to open and close in a sequential order. Four different multilayer samples with different 

Pd interlayer thicknesses has been investigated. The details of the film layer 

configuration are shown in Table 8.1. To increase the adhesion of the film to substrate, 

2nm Ta and 2nm Pd interlayer was sputtered before the film deposition in all situation. 

In the previous study results on the np-Pd thin film , the nano pores of Pd has the size 

of 5-7 nm. Therefore, 14 nm, approximately pore size plus ligaments size, was 

deposited as the interlayer thickens for most of the cases. Multilayer sample 1 (ML1) 

namely has a three-layer structure. 2nm Pd interlayer was sputtered between each PdNi 

alloy layer and the deposition sequence was repeated for three times. Multilayer sample 

2 (ML2) has 74 nm thickness with 5 layers of PdNi alloy film separated by 1nm Pd 

layer. Multilayer sample 3 (ML3) has similar layer structure as ML1 but has two more 

layers than ML1. Multilayer sample 4 (ML4) also has five layers, instead of 14 nm 

thick for each PdNi alloy layer, 20nm PdNi film being deposited between each 2nm Pd 

separation layer. The PdNi precursor alloy layer was deposited under Pd and Ni targets 

powered by DC at 10W and 143W respectively. The deposition setting would result in 

18 at. % Pd in the PdNi alloy layer as studied in Chapter 7. 
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Table 8.1 Schematic diagram of 4 multilayer samples 

 

14nm Pd-Ni 14nm Pd-Ni 20nm Pd-Ni 

1nm Pd 2nm Pd 2nm Pd 

14nm Pd-Ni 14nm Pd-Ni 20nm Pd-Ni 

1nm Pd 2nm Pd 2nm Pd 

14nm Pd-Ni 14nm Pd-Ni 14nm Pd-Ni 20nm Pd-Ni 

2nm Pd 1nm Pd 2nm Pd 2nm Pd 

14nm Pd-Ni 14nm Pd-Ni 14nm Pd-Ni 20nm Pd-Ni 

2nm Pd 1nm Pd 2nm Pd 2nm Pd 

14nm Pd-Ni 14nm Pd-Ni 14nm Pd-Ni 20nm Pd-Ni 

2nm Pd 2nm Pd 2nm Pd 2nm Pd 

2nm Ta 2nm Ta 2nm Ta 2nm Ta 

Substrate Substrate Substrate Substrate 

ML1* ML2 ML3 ML4 

* MLx = Multilayer sample x 

The composition of the multilayer samples before and after dealloying was tested by 

EDS as shown in Table 8.2. Because of the Pd separation layer, the Pd content in the as 

deposited multilayer samples were all higher than the single layer PdNi thin film. Oleic 

acid and Oleylamine acid mixed with ethanol was kept using as surfactant in the 

multilayer sample dealloying as it immobilize surface diffusion of Pd atoms during 

dealloying [63]. The dealloying was processed in 25% (vol. %) sulfuric acid with 

surfactant for 7 hours. The EDS was conducted on the as dealloyed film for composition. 

The ML1 had only 5.65 at. % Ni left after dealloying,up to 94.5% Pd remained in the 

film, which was a higher Pd content than single layer np-Pd film. ML2 and ML3 had 

42.2 at. % and 50.6 at. % residual Ni, respectively, maybe due to the partial dealloying. 
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ML4 has a relatively high Pd content after dealloying among these multilayer np-Pd 

films.  

Table 8.2 Composition of multilayer samples 

 ML1 ML2 ML3 ML4 

at. % Ni Pd Ni Pd Ni Pd Ni Pd 

As-deposited 73.2 26.8 73.5 26.5 67.9 32.1 77.6 22.4 

As-dealloyed 5.65 94.5 42.2 57.8 50.6 49.4 17.6 82.4 

The ML1 did not result in np structured Pd after dealloying. The possible reason is that 

three PdNi alloy layers structure with 2nm Pd separation layer resulted in Pd rich in the 

whole structure and most of the Ni atoms was etched during dealloying leading to Pd 

dense structure. As shown in Figure 8.1 is the morphology of ML2 in which the pores 

size and ligaments width were determined from measurements of plan view SEM 

images. At least 50-100 ligaments were measured for a decent statistics (same for 

following measurements) and the results indicated that the uniformly distributed np 

structure consisted of pores and ligaments of approximately 5.1 nm and 7.0 nm in size 

respectively, which was the same size scale with the single layer np-Pd. However, the 

cross section of the ML2 did not appear any layered structure as expected.  
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Figure 8.1 Morphology of ML2, pores are approximately 5.1 nm and ligaments are 

about 7.0 nm 

The ML3 appears np structure with ~3.7 nm pore size and~7.8 nm ligaments. The 

surface morphology of ML3 is shown in Figure 8.2 (a). The porous structure appears 

denser than ML2. Layered structure has been observed in the cross section structure of 

ML3 (Figure 8.2 (b)) where the three pure Pd layers could be distinguished from the 

image. The porous layer between the dense layers appears indeed porous, however, the 

ligaments that stand between the boundary layer were much wider than the ligaments 

on the surface. Overall, the ML3 has layered structure after dealloying, the np-structure 

is denser than ideal layered np-Pd structure.  
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Figure 8.2 Morphology of ML3 (a) plan view (b) cross section view 

Layered np structure was observed in ML4 throughout the whole film. The pore size 

and ligament size as measured from the surface SEM image of Figure 8.3 (a) are 

~5.2nm and ~6.7nm respectively. The pore and ligament sizes of ML4 are close to those 

of single layer np-Pd thin film samples. In precursor ML4 thin film sample, 5 layers of 

20nm PdNi alloy were separated by 4 layers of 2 nm Pd. Cross section SEM images are 

shown in Figure 8.3 (b) and (c) demonstrating the internal film morphology after 

dealloying. 4 porous layers and 3 separating Pd layers were visible. Approximately 9.4 

nm dense top layer appears on the surface layer. Figure 8.3 (d) was enlarged from Figure 

8.3 (c) to illustrate the details of the layered structure. The average spacing (porous 

layer plus pure Pd layer) of ligament layers was measured as 8.7 nm. The ligaments 

along the separation 2nm pure Pd layer was measured as 4.4 nm after dealloying, which 

probably was due to the Pd atom diffusion and agglomeration during dealloying 

towards the Pd rich layer. The bridging ligaments between two layers were oriented 

perpendicular to the pure Pd layers, similar to the phenomenon as reported by Lei Wang 

in multilayer Ir/Ir-Ni and Au/Au-Ag film [101].  
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Figure 8.3 Morphology of M-4 (a) plan view, (b) and (c) are the cross section view 

under different magnification, (d) enlarge of the square marked region in (c) with its 

original scale bar 

The np-Pd dealloyed from single layer PdNi alloy film are shown in Figure 8.4. The 

100 nm precursor PdNi film was deposited with the same deposition power as the one 

used in deposition of the PdNi layer in the multilayer films. In other words, the film 

composition of this single layer film has the same composition as the PdNi alloy layer 

in the multilayer film. From the cross section view, the ligaments appeared straight 

forward from substrate to the top of the np-Pd film. Comparing it with the multilayered 
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np-Pd/Ni (Figure 8.3 (d)), the ML4 revealed apparently different structure than regular 

np-Pd thin film. From the EDS result, after dealloying, the Ni content in the film is 

about 17.6 at. %, which is even lower than the residual Ni in the as-dealloyed single 

layer np-Pd film. The separation pure Pd layer did not behave like an atom diffusion 

barrier during dealloying, instead it served as a ‘seed’ layer during the formation of the 

np structure. The Pd layer changed the diffusion and agglomeration of Pd atoms during 

dealloy yields, unlike single layer film which yielded perpendicular ligaments 

distributed between the layered structures. 

 

Figure 8.4 Cross section as dealloyed single layer 100nm precursor PdNi film 

The pore and ligaments size was indeed affected by the thickness combination of 

different layers. Among the three samples that resulted in np structure after dealloying, 

ML2 has 5 layers of 14 nm PdNi with 1 nm pure Pd; ML3 had 5 layers of 14 nm PdNi 

with 2 nm pure Pd; ML4 had 20nm PdNi with 2 nm pure Pd. After dealloying, ML2 

resulted in 5.1 nm pores and 7.0 nm ligaments; ML3 3.7nm pores ad 7.8 nm ligaments 

and ML4 5.2 nm pores and 6.7 nm ligaments. The ML2 and ML3 had same thickness 
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of PdNi alloy layer but different thickness of separation Pd layer, as the ML2 did not 

presents any layered structure after dealloy, it revealed that if the pure noble metal layer 

is too thin to provide a ‘seed’ layer for the noble metal to diffuse and aggregate during 

dealloying, thus the layered structure would not be formed. ML3 and ML4 has the same 

thickness of separation Pd layer but different thickness of alloy layer, although they 

both showed np layered structure after dealloying, The structure of ML3 is much denser 

than that of ML4. In sum, the thickness ratio of the alloy layer and pure metal layer 

would play a role on the finished np structure. For np-Pd, the optimized alloy layer 

thickness is 20 nm instead of 14 nm as sum of the pore size and ligament size in single 

layered np-Pd thin films.  

8.4 Summary 

The as-deposited multilayer PdNi films with various configuration of alloys and pure 

Pd layers, different thickness combination led to different as dealloyed np structure 

showing layered architecture. The as dealloyed film presented periodic cells with 

ordered ligaments layers throughout the film thickness. The bridge ligaments between 

the layers oriented vertically to the bounding layers. The pores and ligaments size could 

be controlled by tuning the thickness of the PdNi alloy layer and the separation layer. 

Manipulating the alloy / pure metal thickness could lead to achieve the desired structure 

with targeted ligaments and pore size. Too thin noble metal separation layer would not 

provide the ‘seed’ for the noble metal to diffuse and aggregate during dealloying and 

too thick separation would create a barrier that slow the further dealloying underneath 
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it. For the future work, film with more layers should be explored to study the thickness 

effect of the alloy and separation layer on the final layered np structure. By adjusting 

thickens ratio of the alloy and pure element, the pore and ligaments size could be 

manipulated. Desired np structured Pd could be fabricated for sensing and storage 

application. 
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Chapter 9. Bulk nanoporous Pd with ultra-fine pore size 

 

 

9.1 Introduction 

Nanoporous metals could be fabricated via dealloying by remove the less noble metal 

in the alloy system and leaving a nanoporous sponge like structure of the more noble 

metal throughout the entire sample. This technic has been applied to various alloy 

system to produce np-Au [102], np-Pt [60], np-Ni [103], np-Cu [104] and np-Si [105]. 

Among all these np-structured samples, np-Pd that offers high amount surface area 

draws a lot attention due to its great potential for catalytic application, hydrogen storage 

and sensing application. Xiaoguang Wang et al. [106] achieved fine ligaments size np-

Pd via dealloying PdAl alloy in alkaline solution. Masataka Hakamada et al. studied 

the dealloying behavior and structure of Pd-M (Fe, Co, Ni) alloys [107] as well as the 

thermal coarsening of np-Pd [108]. Nanoporous materials may exhibit mechanical 

properties difference from their dense/bulk counterparts, and offer an opportunity to  

study size effects in mechanical behavior. Fredrik O Stlund, et al.[86] discovered when 

the size range is reduced from1μm down to 200 nm the Si columns transited from 

predominantly brittle to ductile behavior at room temperature. When the ligaments size 

of np-Au decreased to 10 nm, the shear stress of the np-Au film increased to 

approximately 60% of the realistic estimate of the theoretical shear strength for gold 

[56]. Although research has been conducted on the preparation of the np-Pd, the 

mechanical behavior of the as fabricated np-Pd has never been studied. In this chapter, 

we discussed the fabrication of np-Pd by electrochemical dealloying bulk PdNi and 
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PdCo alloy which resulted in very fine np structure, as well as the in-situ TEM 

indentation behavior of the as fabricated np-Pd. The research on the mechanical 

behavior of the np-Pd would help to understand the hydridation mechanism of np-Pd. 

9.2 Experimental 

Ni and Co were selected as the sacrificial elements to fabricate the np-Pd. Pure Pd 

(99.9%) sheet, pure Co sheet (99.9%) and pure Ni (99.9%) pellet were weighted 

proportionally to produce the alloy precursor bulk PdNi and PdCo samples by arc melter. 

Various composition combinations: Pd14Ni86, Pd18Ni82, Pd20Ni80, Pd22Ni78 and Pd20Co80, 

have been tried to obtain the best precursor alloy composition that yields the optimized 

bulk np-Pd structured sample after dealloying. The Edmund Bühler Compact Arc 

Melter MAM-1 was used in this study to fabricate the Pd alloy ingot. The vacuum 

chamber of the arc melter was purged with 2.5 atm Ar gas for 3-4 times for 3 minutes 

each time. The samples were melted with Ar gas flowing under 0.5mbar absolute 

pressure and each sample was flipped 4-5 times to uniform the Pd and Ni/Co 

distribution in the sample. In addition, annealing at 1000°C under Ar atmosphere for 

24 hours was applied to the as melted Pd14Ni samples for homogenization. The as 

melted spherical samples were cut into 500μm thick pieces with the precision diamond 

saw (Isomet, Buehler). Then the sliced thin sample was mounted, grinded and polished 

with final finishing using 1μm diamond paste before dealloying.  

To optimize the dealloying procedure, free corrosion dealloying, step dealloying and 

electrochemical dealloying have been explored. For the free corrosion dealloying, the 
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H2SO4 with and without surfactant under different concentration and various dealloying 

temperature have been attempted. The three electrodes electrochemical dealloying 

system and electrolyte were applied to form the nanoporous structure with a potentiostat 

(eDAQ) for all dealloying process. In this system, 0.1mol/L H2SO4 was, Pt and 

Ag/AgCl were used as the electrolyte, the counter electrode and the reference electrode, 

respectively, while the polished samples with various dimensions attached with an Ir 

wire holder was used as the working electrode. Samples were weighted before and after 

dealloying to track the weight loss due to dealloying. And the exposed area to the 

electrolyte of each sample was measured each time for the current density calculation. 

The anodic polarization measurement was conducted in order to find the critical 

potential. Different dealloying potentials have been tried to obtain the best np structure. 

The finishing of the dealloying was indicated by the current approached to zero on the 

dealloying current vs. time schematic. Dealloying time varies due to the size of the 

sample. The samples were rinsed with and immersed in distilled water, followed by 

using ethanol to remove the residual H2SO4 after dealloying. The scan rate for 

electrochemical dealloying was 20mV/s.  

The structure of the as melted and as dealloyed samples were then studied under 

scanning electron microscope S-4300 (Hitachi) and S-900 (Hitachi). The Hitachi S3200 

SEM was used to perform EDS analysis on the samples to determine the composition. 

The as fabricated bulk np-Pd was milled into np-Pd pillars by focused ion beam (FIB) 

under Zeiss SEM to perform the in-situ Pd pillar indentation. 
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9.3 Results and discussion 

9.3.1 Microstructure study of np-Pd dealloyed from Pd14Ni86 precursor alloy 

The amount of Pd and Ni based on the calculation that gave the desired atomic percent 

PdNi alloy always resulted in higher Pd content after arc melting which indicated that 

there was high Ni loss during the arc-melting process. To achieve the desired atomic 

percent sample, arc melting was applied multiple times to tune the Ni amount to 

approach the desired composition. The composition of the as melted PdNi samples were 

cut and checked by EDS on Hitach 3200 under area scan mode. 

As listed in Table 9.1 is the dealloying condition on the Pd14Ni86 samples. At the 

beginning, the same dealloying method of fabricating np-Pd thin film was carried out. 

After free dealloying in concentrated H2SO4 at 25°C for 1 day, the Pd content in the 

alloy increased from 14% to 31% (at.%). After dealloying for 5 days, some nano sized 

pores showed on the sample surface (Figure 9.1 (a)), however, the Pd content is about 

38%,  indicating that large amount of Ni was still under dealloying. The morphology 

of the sample dealloyed in concentrated H2SO4 without surfactant at room temperature 

for 5 days showed less porosity (Figure 9.1 (b)). The step dealloying was conducted on 

the polished Pd14Ni86 sample. The first step was carried out in concentrated H2SO4 with 

surfactant for the1st day at 50°C, then the sample was kept immersed in the etchant at 

room temperature for the following 6 days for the second step dealloying. As observed 

with SEM and EDS, cracks grew along the grain boundary after the first step dealloying 

and no porosity exhibited after the second step dealloying and Ni was left in the alloy. 
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All the dealloying conditions that are listed in Table 9.1 have been attempted to pursue 

the np-Pd structure, however, none of the above dealloying procedure results in 

promising np-Pd structure.    

Table 9.1 List of the free corrosion dealloying condition of Pd14Ni86 

 

 

 

 

 

 

 

 Temperature ᵒC Concentration 

of H2SO4 

Dealloying time 

/Days 

Surfactant 

Dealloying Room temperature 25% 5 with 

Room temperature concentrated 5 without 

25 concentrated 1 with 

25 concentrated 5 with 

50 25% 5 with 

Step 

dealloying 

50 25% 1 with 

Room temperature 25% 6 with 
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Figure 9.1 (a) dealloying in 25°C H2SO4 for 5 days (b) dealloying in concentrated 

H2SO4 without surfactant at room temperature for 5 days (c) after 1st step dealloy in 

25% H2SO4 at 50ºC for 1 day, pores along the grain boundary. (d) after 2nd step 

dealloying, the sample in (c) keep dealloying in 25% H2SO4 at room temperature for 

another 6 days 

Electrochemical dealloying then applied as the free corrosion dealloying did not yield 

good np structure. A three-electrode system was used for dealloying, with Pt wire 

working as a counter electrode, a saturated Ag/AgCl electrode used as a reference 

electrode and the polished alloy piece carried by Ir wire holder serving as working 

electrode. The electrochemical dealloying was carried out in 0.1 mol/L H2SO4 

electrolyte. Linear sweep was first conducted to the sample with a scan rate, 20mv/s, to 



 
120 

 

find out the critical potential. The electrochemical dealloying was then conducted on 

the sample at 0.2V, which was determined from the linear sweep result (Figure 9.2), for 

18 hours until the current reached zero. After dealloying, the weight of the sample 

decreased from 0.0117g to 0.0034gindicating 70.94% weight loss. As shown in Figure 

9.3 is the morphology of the samples after electrochemical dealloying. No np structure 

was observed from the top view image (Figure 9.3 (a)) and cracks were observed to 

form all over the surface and exist in the entire sample (Figure 9.3 (c)). The as dealloyed 

Pd sample was extremely brittle as implied by some surface region of the sample being 

broken(as marked with the white square in Figure 9.3 (a))s. Figure 9.3 (b) is the close 

view of the structure in the white square in (a). Although the np structure did not present 

on the surface, it did yield np structure inside the sample as shown in Figure 9.3 (d) 

which is one spot in (b) under large magnification. The ligaments are contacted and the 

pores size is small. To improve the np structure and solve the cracking issue, the 

composition of precursor alloy was then adjusted to Pd18Ni82.  

 

Figure 9.2 Linear sweep of Pd14Ni86 
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Figure 9.3 Morphology of bulk Pd14Ni86 after electrochemical dealloying (a) as 

dealloyed bulk Pd14Ni86 surface morphology, (b) the morphology inside the sample as 

indicated in the white in (a), (c) surface cracks, (d) zoom in one spot of (b) shows np-

Pd structure 

9.3.2 Microstructure study of np-Pd dealloyed from Pd18Ni82 precursor alloy 

To adjust the composition of the PdNi precursor alloy that would yield best np-Pd 

structure, Pd18Ni82 alloy pellet was also arc melted. The linear sweep was conducted on 

both the Ir wire holder and the holder with polished Pd18Ni82 sample to find out the 

critical dealloying potential (Figure 9.4 (a)). The potential cospording to the first lowest 

current drop on the Pd18Ni82 liner sweep, 50mV, was used as the electrochemical 

dealloying. The dealloying current reached zero after 15 hours of dealloying as shown 

(a) (b) 

(c) (d) 
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in the current density curve in Figure 9.4 (b).    

 

 

Figure 9.4 (a) Linear sweep of Pd18Ni82 and Ir wire holder (b) Dealloying current 

density evolution curve of Pd18Ni82 

As shown in Figure 9.5 (a) and (b) cracks grew along the grain boundary both on the 

surface and inside the sample after dealloying. The sample thickness was ~214μm 

before dealloying and ~147μm (Figure 9.5 (c)) after dealloying, thus the thickness 

shrunk was ~31%. The large volume shrinkage during dealloying was an obvious cause 

of the cracking, as well as the macro defects in the bulk sample. The measured mass 

before and after dealloying was 0.0082g and 0.0026g respectively, which indicates 

about 68% mass loss. From the plan view image, no np structure has been observed. 
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The cross section image Figure 9.5 (e) showing close to surface area, there is about 100 

nm thick top dense layer. By EDS spot scan on both the top layer and inside the grain, 

it was confirmed that the dense np top layer in Figure 9.5 (d) is Ni-rich. As shown by 

statistics of ligament size and pores size distribution in Figure 9.5 (f) and Figure 9.6, 

approximately 95% pores have size between 3-5nm, which is the smallest bulk 

nanoporous structured Pd that has never been reported. The average pore size is about 

4.07 nm while the ligaments size is even smaller than previous np-Pd thin film. More 

than 35% of the ligaments are with the size ~5nm; 77% of the ligaments are about 5-7 

nm. The ultrafine np-Pd would be a promising option for hydrogen storage and sensing 

as it provide more room for hydrogen swelling cycles and more contact area for 

increasing its sensitivity. 
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Figure 9.5 Morphology of the Pd18Ni82 after electrochemical dealloying for 14 hours 

(a) plan view (b) cracks on the surface and inside the sample (c) cross section view (d) 

dense top layer and np structure at the broken region (e) cross section view with dense 

top layer (f) ultrafine np-Pd structure with pore size 3-5 nm 
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Figure 9.6 Size statistics of ligaments and pore 

The back scattering electron (BSE) image of the as dealloyed np-Pd is shown in Figure 

9.7. The PdNi alloy has the brunch rod structure and the Pd is rich in the grain boundary 

area as it is brighter in the BSE image. Even in the grain boundary, there are some dark 

region which indicates the as-arc melted sample is not homogeneous. Spot scan EDS 

was conducted on the as-melted sample and as-dealloyed sample as shown in Table 9.2. 

The composition was the average of three spot scan results. Inside the grain region that 

formed np-Pd structure after dealloying, the Pd content is about 13.52 at. % . The Pd is 

rich in the grain boundary region with a content 59.79 at. %. In the thin film form, the 

optimized composition to fabricate np-Pd is Pd 18% in the precursor alloy. When 

fabricate bulk PdNi sample the same composition was pursued as the optimized area 

scan composition. However, inside the bulk PdNi alloy, due to the brunch rod structure 

of Pd rich grain boundary, the optimized composition resulted in np-Pd was Pd13.5Ni86.5 

(within the grains) precursor alloy. Although the Pd-Ni alloy formed a continuous series 

of solid solutions over the entire composition and temperature range, a short range order 

has been reported [109] [110]. This rod like Pd rich structure was one of the main 
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reasons that caused the cracking during dealloying.  the high Pd content, the grain 

boundary could not be dealloyed. The EDS spot scan on the surface of the as dealloyed 

sample indicated 45.84% residual Ni, which was due to the dense top layer showed in 

Figure 9.6. Inside the np-Pd region, the Pd content was up to 80%, which was close the 

residual Ni in np-Pd thin films.  

  

Figure 9.7 BSE image of as dealloyed np-Pd (a) surface morphology (b) inside grain 

structure imaged by cutting a slot on the sample by FIB 

Table 9.2 EDS spot scan result on the top layer of as-melted and as-dealloyed PdNi 

alloy 

Elements 
Before dealloying (at.%) After dealloying (at.%) 

Inside the grain Grain boundary Inside the grain Grain boundary 

Pd 13.52 59.79 54.16 64.37 

Ni 86.48 40.23 45.84 35.63 

XRD has been applied on the as arc-melted Pd18Ni82 sample. Ni and Pd are both fcc 

structure, Ni has a lattice parameter ‘a’ as 3.5239 while Pd has a lattice parameter ‘a’ as 

3.8908. As shown in Figure 9.8 and Table 9.3, the XRD scan result is shows 2θ of the 

peaks. Theas measured 2θ of peaks, 44.06, 51.17, 75.48 and 91.35, are close to the Ni’s 
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[111], [200], [220] and [311] but all shifted to a higher angle. In the crystalline phases 

and/or crystal structure peaks to higher values of the diffraction angle, this means that 

the lattice parameter is decreasing. 

 

Figure 9.8 XRD scan result of as arc melted Pd18Ni82 alloy 

Table 9.3 XRD parameters and scan results of Ni, Pd and PdNi alloy 

Pd 2θ/ᵒ Ni 2θ /ᵒ Peaks 2θ/ᵒ Shift between Ni’s 2θ /ᵒ and peaks’ 2θ /ᵒ 

Pd 111 40.10 Ni 111 44.48 44.06 0.42 

Pd 200 46.63 Ni 200 51.83 51.17 0.66 

Pd 220 68.08 Ni 220 76.35 75.48 0.87 

Pd 311 82.05 Ni 311 92.89 91.35 1.54 

In order to reduce the cracks, annealing was conducted on the sample to uniform the 

composition distribution through the sample and enlarge the grain size to reduce the 

effect of the grain boundary. Arc melted sample was annealed at 1000ºC for 24 hours 

under Ar gas then slowly cooled down in Ar. The optical microstructure of the Pd18Ni82 

sample before and after annealing are showing in Figure 9.9. After annealing, the as 

cast dendrites transferred to fully annealed and enlarged grains, showing the 
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homogenization was correctly processed at least from optical microstructure and thus 

the elemental distribution should have been better (more uniformly) than the as cast 

status.  The grain reached the level of hundreds of micrometers.  

  

Figure 9.9 The optical microstructure of the Pd18Ni82 sample before and after 

annealing are showing in (a) before annealing (b) after annealing 

The electrochemical dealloying that carried out on the as annealed Pd18Ni82 sample was 

under 250mV for 24 hours which results in 72% weight loss. The optical microstructure 

of as annealed Pd18Ni82 sample before and after dealloying are shown in Figure 9.10. 

As the result from EDS spot scan on both the dark boundary area and the bright area in 

Figure 9.7 (a), the cluster net structure is Pd rich rod. The as dealloyed sample was 

cracked and extremely brittle. Although the sample shrunk about 30% in the thickness, 

as shown in Figure 9.10 (a) and (c), the sample’s size did not have notable changes from 

the 2D dimension. 
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Figure 9.10 (a) and (b) optical microstructure of the as annealed Pd18Ni82 before 

dealloying, (c) and (d) are after dealloying 

The structure of the as dealloyed np-Pd are shown in Figure 9.11. The top surface does 

present np structure as shown in Figure 9.11 (a). However, as in Figure 9.11 (b), it has 

very promising np structure inside the sample. The pore size is as small as 2-3 nm which 

is the smallest bulk np-Pd pore size that has never been reported. The ultra-fine np 

structure spreads all over the entire sample. After annealing, the grain boundary still 

cracks, however, the grain size grows ten times compare with the sample before 

annealing, less cracks inside the grain and in the whole sample as shown in Figure 9.11 

(d). 
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Figure 9.11 Morphology of the as annealed Pd18Ni82 after electrochemical dealloying 

under different magnification 

9.3.3 Microstructure study of np-Pd dealloyed from Pd20Co80 precursor alloy 

Owing to the cracking issue of dealloying PdNi alloy, Co was also selected server as 

the sacrificial element in the Pd alloy system to fabricate the np-Pd. The linera sweep 

was also applied to search for the critical dealloying potential. Electrochemical dealloy 

was carried out under 200mV until the dealloying current decreased to zero. The as 

fabricated Pd20Co80 has grain sizes around 20-40 µm. Although the micro structure did 

not have the Pd rich cluster structure, large amount of cracks were presented over the 

whole sample that dealloyed from Pd20Co80 alloy (Figure 9.12 (a)). Besides the cracks, 

the as dealloyed bulk np-PdCo has uniform and continuous np structure. The pore size 

is around 7-10 nm as shown in Figure 9.12 (b) and (c), which is larger than the np-Pd 

dealloyed from Pd18Ni82. 
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Figure 9.12 Morphology of as dealloyed Pd20Co80 alloy under different magnification 

9.3.4 Micro-pillar compression test of bulk np-Pd 

The np-Pd electrochemically dealloyed from Pd18Ni82 was milled using a focused ion 

beam, as shown in Figure 9.13, to create micron-scale pillars for compression testing 

in the TEM. The sample was thinned to a slice/wedge 40-50 microns thick, the columns 

were then milled near the edge/tip. The cracks that penetrated the sample are clearly 

shown in the cross section image after milling into the sample.  

  

Figure 9.13 Np-Pd pillar (a) a single pillar, and (b) cross section image after FIB. 

The load displacement curve, load vs. time curve and displacement vs. time curve are 

(a) (b) 
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shown in Figure 9.14. Additionally, images captured during the indentation experiment 

are shown in Figure 9.15. The as measured pillar geometry had a height of 1 µm and 

diameter of 0.62 µm. The maximum indentation depth was ~0.45µm, corresponding to 

~44% deformation. Although the bulk np-Pd is very brittle on a macroscopic scale, the 

np-Pd pillar did not break during indentation. Instead, the pillar became denser after 

indentation, as shown in Figure 9.15 (d). During the removal of load, the np-Pd pillar 

recovered ~22% of its original height. The final height of the pillar was ~0.88 µm after 

unloading. The post-compression recovery may also be due to adhesion between the 

pillar and indenter during the beginning of unloading. After indentation, the top of the 

pillar was compacted instead of fractured. The stress-strain curve is shown in Figure 

9.16, indicating a compressive yield stress of ~105MPa for np-Pd. As shown in the 

enlarged view in Figure 9.16, the yield strain is ~7.3%. Linear fitting of the stress strain 

curve indicates a Young’s modulus of ~1.5 GPa.  
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Figure 9.14 Plots of (a) load vs. displacement and (b) load/displacement versus time. 

The increase in load near the end of the test (above 70 µN load) is due to contact of 

the indenter tip with material surrounding the micro-pillar, and is therefore not 

indicative of sample behavior. 
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Figure 9.15 In-situ indentation test of np-Pd pillar (a) before indentation (b) indenter 

contact with the pillar (c) the max deformation point (d) after indentation. 
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Figure 9.16 (a) Stress-Strain curve of np-Pd micro-pillar, (b) and (c) with a detailed 

showing the loading section from which elastic modulus was measured. 
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9.4 Summary 

The optimized composition of precursor PdNi alloy that yields the best np structure 

after dealloying and the proper dealloying procured resulted in the finest pore size has 

been developed in the research of this chapter. The ultra-fine np-Pd has been 

successfully fabricated by electrochemically dealloying the as annealed Pd18Ni82 

sample. The pore size of the as fabricated np-Pd is as small as 3-5 nm which has never 

been achieved before. The as presented ultra-fine nano structure has much more surface 

than previous np-Pd which provides remarkable potential of serving as a hydrogen 

storage material. However, although the annealing helps to grow the grain tens time, 

the crack issue along the grain boundary is still the vital problem. The mechanical 

behavior of the as fabricated bulk np-Pd has been tested by in-situ indentation. 

Although the entire sample is extremely brittle, the ligaments structured np-Pd 

compressed in to denser structure instead of break down after indentation. And it has 

the ability to recover its deformation like a sponge. For the future work, single crystal 

of Pd could be made by the Bridgman technique to avoid the cracking along the grain 

boundary. The in-situ indentation work carry out on none cracked sample would 

provide more accurate detailed results of the mechanical behavior of the bulk np-Pd.  
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Chapter 10. Conclusions and future work 

 

10.1 Conclusion remarks 

In this doctoral research work, two nanoporous alloy system np-Si and np-Pd have been 

studied. A novel method to fabricated np-Si using distilled water has been developed 

and the properties of the np-Si have been studied by various microscopic observation. 

The as fabricated np-Si served as the negative electrode in LIB in the experiments and 

exhibited very promising specific capacity. As well, the mechanical behavior of the np-

Si has been studied by in-situ TEM compression test. For the np-Pd thin film, the 

hydridation and dehydridation behavior has been studied, in which it demonstrated that 

the multilayered np-Pd provided a possibility to manipulate the np structure of np-Pd 

films. The bulk np-Pd with ultra-fine pores and ligaments have been developed and the 

mechanical behavior of the bulk np-Pd has been studied by in-situ pillar compression 

test. 

The key findings of this doctoral research are drawn as follows: 

1. Np-Si has been successfully fabricated by dealloying the as deposited Si-Mg 

precursor thin film. The optimized composition of Si-Mg alloy film of is 

Si53Mg47 and the best dealloying method has been developed. Instead of the high 

concentration acid or HF that has usually been used to fabricated porous Si, the 

dealloying etchant in this method is distilled water, which is totally environment 

friendly.  
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2. The as-fabricated np-Si presents an open np structure with the ligament size 

~20-30 nm. The as-dealloyed np-Si thin film is pure amorphous Si film and the 

amorphous film could be crystallized by annealing in vacuum at certain 

temperature.  

3. The as-dealloyed np-Si thin film that has been tested as an anode in LIB with 

electrochemical battery testing. The specific capacity of the as fabricated LIB 

has achieved ~2000mAh/g. Different interlayers and film thickness have 

noticeable effect on the behave of the cell cycling performance and the capacity 

of the as tested LIB. 

4. The mechanical behavior of the as fabricated amorphous np-Si has been studied 

by in-situ TEM indentation. The as dealloyed np-Si thin film exhibited a 

sponge-like behavior in in-situ nanoindentation test. Thickness of the np-Si thin 

film could be fully recovered after the indenter removed from the film under 

particularly strain. The maximum deformation in thickness was up to 30%. 

5. The hydridation and dehydridation behavior of the np-Pd film with the 

ligaments size around 5~7nm has been investigated by monitoring the stress 

changing in the film during the absorption and desorption process. The as 

fabricated porous Pd film exhibited high sensitivity to low concentration H2 gas. 

6. Multilayer np-Pd thin film has been developed. The as dealloyed film presented 

layered architecture with periodic cells and ordered ligaments layers throughout 

the whole film. The bridge ligaments between the layers oriented vertically to 

the bounding layers. The pores and ligaments size could be controlled by tuning 
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the thickness of the PdNi alloy layer and the separation Pd layer.  

7. The ultra-fine bulk np-Pd has been successfully fabricated by proper 

electrochemically dealloying the annealed arc-melted Pd18Ni82 sample. The 

unprecedented ultra-fine np-Pd presents as small as 3 nm ligaments. The ultra-

fine ligaments and pores dramatically increased the surface area which provides 

remarkable potential of serving as a hydrogen storage material. 

8. The np structured bulk np-Pd was test by in-situ pillar compression test. The 

pillar was compassed in to denser structure after indentation instead of breaking 

down which was unanticipated considered the extremely brittle character of the 

as fabricated bulk np-Pd. 

10.2 Suggestion for future work  

There are still more research work needs to be conducted on the related field of np-Si 

and np-Pd in the future.  

The effective mass of np-Si on the electrode, which is important for the battery cycling 

current and specific capacity, is subjected to be exactly measured or calculated. The 

macro cracking issue due to the Cu foil substrate machining defect needs to be solved. 

The np-Si thin film which could allow the relaxation of the strain and stress during the 

volume expansion/ contraction with the lithiation/ delithiation for LIB will be further 

developed in the future. 

The properties difference, such as the mechanical behavior, between the as dealloyed 

amorphous and as annealed nanocrystalline np-Si the of the np-Si thin film will also 
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need to be studied in the future. 

Inspired by the multilayer np-Pd film, multilayer np-Si film could be fabricated in the 

further study. By manipulating the alloy / pure metal thickness, the desired np-Si 

structure made from the total environment friendly method with targeted ligaments and 

pore size would be able to promote the development of Si in LIB, photonics, biological 

imaging, sensors, drug delivery and energy storage field in future. 

The np-Pd thin film and bulk np-Pd would be promising to be used as the hydrogen 

sensing materials in the future. The ultra-fine ligaments and pores dramatically 

increased the surface area which provides remarkable potential of serving as a hydrogen 

sensor or storage material. 

For the future work, film with more layers should be explored to study the thickness 

effect of the alloy and separation layer on the final layered np structure. By adjusting 

thickens ratio of the alloy and pure element, the pore and ligaments size could be 

manipulated. Desired np structured Pd could be fabricated for sensing and storage 

application. 

For the future work of bulk Pd, more careful controlled dealloying procedure could be 

investigated to reduce the formation of cracks during dealloying. Low potential 

electrochemical dealloying at elevated temperature or multistep free corrosion plus 

electrochemical dealloying would be attempted to achieve reduction in crack formation. 

A better understanding of the dealloying process and the volume shrinkage mechanisms 

would be studied. 
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For the future work, single crystal of Pd could be made by the Bridgman technique to 

avoid the cracking along the grain boundary. Bulk np-Pd pillar would be fabricated 

from dealloying single crystalline bulk PdNi alloy sample, to be meet the crack free 

requirement of the micro-pillar compression test. The in-situ indentation work carry out 

on none cracked sample would provide more accurate detailed results of the mechanical 

behavior of the bulk np-Pd. 
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